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ABSTRACT. We consider compact ancient solutions to the three-dimensional
Ricci flow which are k-noncollapsed. We prove that such a solutions is
either a family of shrinking round spheres, or it has a unique asymp-
totic behavior as ¢ — —oo which we describe. This analysis applies in
particular to the ancient solution constructed by Perelman.
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1. INTRODUCTION

A solution to a geometric evolution equation such as the Ricci flow or
the Mean Curvature Flow is called ancient if it exists for all ¢t € (—o0,T7,
for some T. In the special case where the ancient solution exists for all
t € (—00,00), it is called eternal. Ancient solutions were first studied by
Hamilton [19]. They play a central role in Perelman’s work [25],[26] on
singularity formation in the Ricci flow in dimension 3. In particular, blow up
limits at a singularity give rise to an ancient solution. In higher dimensions,
there is a similar picture if we assume that the initial metric has positive
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isotropic curvature (see [20], [4]). For all these flows, the requirement that a
solution should exist for all times ¢t < T' is quite restrictive, especially when
combined with a noncollapsing assumption or a positive curvature condition.
In various cases, it is possible to give a complete classification; this gives a
very precise description of how singularities form.

For the two-dimensional Ricci flow, Perelman [25] proved that there is
only one k-noncollapsed ancient solution, namely the shrinking spheres.
Daskalopoulos, Hamilton, and Sesum [I4] gave a complete classification of
all compact ancient solutions to the Ricci flow in dimension 2, without any
noncollapsing assumptions. It turns out that the complete list contains only
the shrinking spheres and the King solution. The latter was first discovered
by King [22] (and later independently by Rosenau [27]) in the context of the
logarithmic fast-diffusion equation on R?. The King solution also appears as
the sausage model in the context of quantum field theory, in the independent
work of Fateev-Onofri-Zamolodchikov [16]. While the King solution is not
self-similar, it may be visualized as two cigar solitons glued together. Non-
compact ancient solutions to the two-dimensional Ricci flow were classified
by Daskalopoulos and Sesum [I5] (see also [I0]). It turns out in this case the
only ancient solutions with bounded curvature are the cigar solitons. This
gives a classification of all ancient solutions to the two-dimensional Ricci
flow, covering both the compact and noncompact case.

Solutions analogous to the King solution exist in the higher dimensional
Yamabe flow as well. Like the King solution, this is a rotationally symmetric
ancient solution which is not self-similar. It can be written in closed form,
and was found by King [22]. However, in the case of the Yamabe flow many
more ancient solutions exist. The known examples on S™ include a five-
parameter family of Type I ancient solutions found in [I1I] (which includes
the King solution as a special case), and the so-called ”towers of bubbles”
constructed in [I2] (which are of Type II). These examples suggest that it
will be difficult to classify all ancient solutions to the Yamabe flow.

For curve shortening flow (i.e. mean curvature flow for curves in the
plane), Daskalopoulos, Hamilton, and Sesum [13] classified all ancient com-
pact convex solutions by showing that the only possibilities are the shrinking
circles and the so-called Angenent ovals. In higher dimensions, White [28]
and Haslhofer and Hershkovits [2I] constructed compact ancient solutions
which are rotationally symmetric but are not solitons. These can be viewed
as the higher dimensional generalization of the Angenent ovals; however,
no closed form expression seems to exist. For mean curvature flow in R3,
Brendle and Choi [6] classified all noncompact ancient solutions which are
convex and a-noncollapsed: the only example is the rotationally symmet-
ric bowl soliton which moves by translations under the flow. An analogous
result holds in higher dimensions, under an additional assumption that the
ancient solution is uniformly two-convex (cf. [7]). Angenent, Daskalopou-
los, and Sesum [2] recently classified all compact ancient solutions which
are uniformly two-convex and a-noncollapsed. They showed that, besides
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the shrinking spheres, there is only one example, namely the ancient oval
solution constructed by White [28] and by Haslhofer-Hershkovits [21].

Our main focus in this paper will be the Ricci flow in dimension 3. Fol-
lowing [25], we will consider ancient k-solutions: these are ancient solutions
which are complete; non-flat; k-noncollapsed; and have bounded and non-
negative curvature. In the noncompact case, Perelman made the following
conjecture:

Conjecture 1.1 (Perelman [25]). Let (M, g(t)) be a noncompact ancient
Kk-solution to the Ricci flow in dimension 3 with positive curvature. Then
(M, g(t)) is isometric to the Bryant soliton, up to scaling.

The first major step towards Perelman’s conjecture was carried out in
[3], where it was shown that the Bryant soliton is the only steady gradient
Ricci soliton in dimension 3 which is x-noncollapsed and has positive cur-
vature. Perelman’s conjecture was recently solved in full generality in [5].
The proof in [5] consists of two parts. In the first part, it is shown that
any noncompact ancient x-solution which is rotationally symmetric must be
the Bryant soliton. In the second part, it is shown that every noncompact
ancient k-solution is, in fact, rotationally symmetric.

We now turn to the compact case. A compact ancient k-solution in dimen-
sion 3 must have positive curvature; in particular, its universal cover must
be diffeomorphic to S2. Perelman established the existence of a rotationally
symmetric ancient solution on S3. This ancient solution is of Type II, i.e.
limsup,_, o (—t) Rmax(t) = 0o. Perelman’s solution can be viewed as the
three-dimensional analogue of the two-dimensional King solution. However,
unlike the King solution (which is collapsed), Perelman’s ancient solution is
k-noncollapsed. Going forward in time, Perelman’s ancient solution shrinks
to a round point. As t — —oo, Perelman’s ancient solution looks like two
Bryant solitons glued together.

The following conjecture can be viewed as the analogue of Perelman’s
Conjecture [I.1]in the compact setting:

Conjecture 1.2. Let (S3,g(t)) be a compact ancient k-solution to the Ricci
flow in dimension 3. Then g(t) is either a family of contracting spheres or
Perelman’s ancient solution.

As pointed out in [5], the methods in that paper imply that any compact
ancient k-solution in dimension 3 must be rotationally symmetric. The
classification of compact ancient solutions with rotational symmetry is a
difficult problem. A major challenge in this problem comes from the fact
that Perelman’s solution is not given in explicit form and is not a soliton. A
similar challenge appears in the classification of compact ancient solutions
to mean curvature flow which was resolved in [2]. To overcome this problem,
one needs a very precise understanding of the asymptotic behavior of the
ancient solution as t — —oo. In this paper, we carry out the necessary
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asymptotic analysis for compact rotationally symmetric ancient solutions to
the three-dimensional Ricci flow:

Theorem 1.3. Let (S3, g(t)) be a rotationally symmetric ancient k-solution
which is not isometric to a family of shrinking spheres. Then we can find
a reference point ¢ € S3 such that the following holds. Let F(z,t) denote
the radius of the sphere of symmetry in (S°, g(t)) which has signed distance
z from the reference point q. Then the profile F(z,t) has the following
asymptotic erpansions:

(i) Fiz a large number L. Then, as t — —oo, we have

F(z,t)? = =2t M—&-o( (=1) )

"~ 2log(—t) log(—t)
for |z| < Ly/—t
(ii) Fiz a small number > 0. Then as t — —oo, we have
2 22
F(z,t)" = -2t — ———~ -t
(221 S oD

for |2] < 2v1 = 02/(—t)log(—1).
(iii) The reference point q has distance (240(1))+/(—t)log(—t) from each

tip. The scalar curvature at each tip is given by (1 + o(1)) %.
Finally, if we rescale the solution around one of the tips, then the

rescaled solutions converge to the Bryant soliton as t — —oo.

In a recent work [8], we use Theorem to settle Conjecture in a
similar way that results about unique asymptotics of ancient ovals shown
in [I] were used to prove the classification result of closed ancient mean
curvature flow solutions (see [2]). The proof in [8] turned out to be very
involved and hence was written in a separate paper.

In order to prove Theorem we will combine techniques developed in
[1] and [5]. In [5], under the assumption on rotational symmetry, Brendle
constructed barriers by using gradient Ricci solitons with singularity at the
tip which were found by Bryant [9]. In the proof of Theorem we use
these barriers to localize our equation in the cylindrical region (where the so-
lution is close to a cylinder of radius v/—2t). Similar localization arguments
were employed in [1] and [5]. The localization enables us to do spectral de-
composition in the cylindrical region and obtain refined asymptotics of our
solution in the cylindrical region.

The outline of the paper is as follows: In Section [2] we record some basic
properties of compact ancient k-solutions. In particular, we show that, if
—t is sufficiently large, the solution looks like the Bryant soliton near each
tip. In Section (3] we use the barriers from [5] to achieve the spectral de-
composition of our solution. This allows us to apply the Merle-Zaag lemma
(see [24]). This leaves us with two possibilities: either the positive modes
dominate, or the neutral mode dominates. The former case is ruled out in
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Section [ In the latter case, we obtain precise asymptotics in the cylindri-
cal region (see Section . Subsequently, we combine this exact behavior in
the cylindrical region with barrier arguments to obtain the precise behav-
ior of our solution in the intermediate region (see Section @ In Section
[7, we obtain the precise behavior of the distance from the reference point
q to each tip. Combining this estimate with Hamilton’s Harnack inequal-
ity [18], we obtain precise asymptotics for the scalar curvature at each tip.
Finally, in Appendix [A] we state and prove an elementary estimate for the
one-dimensional heat equation, which is needed in Section [ in the proof
of Proposition [£:4 In Appendix [B] we state known facts about the Bryant
Ricci soliton.

2. BASIC PROPERTIES OF COMPACT ANCIENT SOLUTIONS

Throughout this paper, we assume that (S2,¢(t)), t € (—o0,0], is an
ancient k-solution which is rotationally symmetric. Moreover, we assume
that (53, g(t)) is not a family of shrinking round spheres.

Lemma 2.1. The asymptotic soliton of (S°,g(t)) is a cylinder. In other
words, suppose that we fir a point ¢ € S>. Consider a sequence of times
t, — —oo and a sequence of points xp € S* such that supy, £(xy, 1)) < oo,
where ¢ denotes the reduced distance from (q,0). If we dilate the mani-

fold (S3,g(ty)) around the point xy, by the factor (—tk)fé, then the rescaled
manifolds converge to a cylinder of radius /2.

Proof. By work of Perelman [25], the rescaled manifolds converge in
the Cheeger-Gromov sense to a smooth limit, and the limit is a shrinking
gradient Ricci soliton. We claim that the limiting soliton must be a cylinder
of radius v/2. We distinguish two cases:

Case 1: If the limiting soliton is compact, then it must have constant
sectional curvature I. In particular, the sectional curvatures of (5%, g(tx))
l—eg 1+eg
(—4tr)? (—4tk)
curvature pinching estimates now imply that (53, g(¢)) has constant sectional
curvature for each t (cf. [17]). Thus, (S3,g(t)) is a family of shrinking round
spheres, contrary to our assumption.

Case 2: If the limiting soliton is noncompact, then results of Perelman
imply that the limit is a cylinder of radius v/2 (cf. [26], Section 1.1). This

proves the assertion.

lie in the interval [ ], where e, — 0 as k& — oo. Hamilton’s

Lemma 2.2. Given any sequence of times t, — —oo, we have
Ruax(tr) diamg g, ) (5%, g(tx))* — oo,

where R denotes the scalar curvature and Ry.x denotes the mazimum of the
scalar curvature over all points in space.
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Proof. By work of Perelman [25], we can find a sequence of points
r, € 5% such that £(xy,t;) < 3 for each k. By Lemma if we dilate
the manifold (S3, g(#;)) around the point z; by the factor (—tk)_%, then
the rescaled manifolds converge to a cylinder of radius v/2. From this, the
assertion follows.

Proposition 2.3. Consider a sequence of times t, — —oo and an arbitrary
sequence of points x € S3. If we dilate the flow around the point (zy,tr) by
the factor R(zy, tk)%, then (after passing to a subsequence) the rescaled flows
converge to either a family of shrinking cylinders or the Bryant soliton.

Proof. By Perelman’s compactness theorem for ancient s-solutions, the
rescaled flows converge to an ancient k-solution. If the limit is compact,
then supy Rmax(tx) diamg, ) (S®, g(tx)) < oo, which contradicts Lemma .
Consequently, the limit must be noncompact. The results in [5] now imply
that the limit is either a family of shrinking cylinders or the Bryant soliton.

Proposition 2.4. Consider a sequence of times t, — —oo. If we rescale
the solution around one of the tips, then the rescaled solutions converge to
the Bryant solution.

Proof. By symmetry, the tracefree part of the Ricci tensor vanishes at
the tip. Consequently, if we rescale around the tip, the limit cannot be a
cylinder. By Proposition the only possible limit is the Bryant soliton.

Corollary 2.5. Let Ryip1(t) and Ryip2(t) denote the scalar curvature at the
tips. Then %Rtip,l(t) S 0(1) Rtip71<t)2 and %Rtipﬂ (t) S 0(1) Rtip72(t)2.

Proof. This is a direct consequence of Proposition [2.4

Corollary 2.6. We have (—t) Riip1(t) — oo and (—t) Ryp2(t) — oo as
t — —oo.

Proof. This follows by integrating the differential inequality in Corollary

Definition 2.7. Let (xg,t0) be a point in space-time with R(xg,to) = r~2.

We say that (z9,%o) lies at the center of an evolving e-neck if, after rescal-
ing by the factor r—!, the parabolic neighborhood Bg(to)(:ro,eflr) X [to —
e~ 12 o] is e-close in cttoa family of shrinking cylinders.

Proposition 2.8. Given ¢ > 0 and § > 0, we can find a time ty = to(e,0)
so that the following holds. Suppose (x,t) is a point in spacetime such that
t < to, and the radius of the sphere of symmetry through (x,t) is at least
dv/—2t. Then (z,t) lies at the center of an evolving e-neck.
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Proof. We argue by contradiction. Suppose that there exists a sequence
of points (zy,tr) in space-time with the following properties:
® 1 — —o0.
e The sphere of symmetry through (xg, t) has radius at least J/—2t.
e The point (z,tx) does not lie at the center of an evolving e-neck.

By assumption, the sphere of symmetry through (xg,tx) has radius r; >
dv/—2tk. At the point (zy,tx), the sectional curvature of the plane tangent
to the sphere of symmetry is bounded from above by r,;2. Consequently,

the minimum sectional curvature at (xy,t) satisfies Kpin(zg, tr) < rk_Q <

Since the point (z, t) does not lie at the center of an evolving e-neck, we
must have lim infy_, o0 R(2, tx) ™! Kmin (T, tx) > 0. Since (—t1) Kmin (2, tr) <
ﬁ, it follows that limsupy,_, . (—tx) R(zk, tx) < co. On the other hand, we
have (—ti) Ryip1(tx) — 0o and (—tg) Ryip 2(tx) — oo by Corollary This
gives R(zg, )" Riip1(tr) — oo and R(w, tg) ' Riip2(tk) — 0o. By Perel-
man’s long range curvature estimate, the distance of (xg,tx) from each tip
is bounded from below Ay R(wk,tk)_%, where A, — oco. Hence, if we di-
late the flow around the point (zy,ty) by the factor R(xy, tk)% and pass to
the limit, then the limit contains a line. By the Cheeger-Gromov splitting
theorem, the limit splits as a product. Thus, the limit is a cylinder. This
contradicts the fact that liminfj_ .o R(zg,tx) " Kmin(Tg, tx) > 0. This is a
contradiction.

3. ASYMPTOTIC ANALYSIS NEAR THE CYLINDER

We continue to assume that (S%,g(t)), t € (—o0,0], is an ancient -
solution which is rotationally symmetric. Moreover, we assume that (S3, g(t))
is not a family of shrinking round spheres. We begin by fixing a base point
q. This point will be chosen such that limsup,_, . (—t) R(q,t) < 100. The
existence of such a point follows from the Neck Stability Theorem of Kleiner
and Lott [23]. The result in [23] is stated in the noncompact setting, but
the argument can be easily adapted to the compact case:

Proposition 3.1 (cf. Kleiner-Lott [23], Section 6). There exists a point
q € S3 with the property that limsup,_, . (—t) R(q,t) < 100.

Proof. Suppose that the assertion is false. By Lemma [2.1] we can find a
sequence of points (g, Sx) in space-time and a sequence of positive numbers
er — 0 with the property that (gx,sk) lies at the center of an evolving
eg-neck. Our assumption implies limsup,_, . (—t) R(qx,t) > 100 for each
k. This implies limsup,_, . (sx — t) R(gk,t) > 100 for each k. For each
k, we define t := sup{t < sg : (sp —t) R(qx,t) > 10}. Clearly, t; <
Sk — 6,;1 R(qx, Sk)_l, (s — tr) R(qg,tx) = 10, and (sx —t) R(qx,t) < 10 for
all t € [tk, Sk].
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Let li(x,t) denote the reduced distance of (z,t) from (g, sk), and let
Vi(t) = [(sg — t)_% et (@) dyol g(t) denote the reduced volume. By defini-

tion of tg, we have £(q,tx) < QWI Vsk — t R(qx, t) dt < 100. Since

(qx, k) lies on an evolving e,-neck, we obtain lim supy,_, o Vi(sg+7 R(qk, s1) 1) <
Vey1(7) for each 7 € (—00,0), where Vey(7) denotes the reduced volume of a
family of shrinking cylinders. This implies lim sup;,_, Vk(sk—elzl R(qr,sk)™ 1) <
Vey1(—00). On the other hand, since the asymptotic soliton of (53, g(t)) is a
cylinder, Perelman’s monotonicity formula gives V() > Vey1(—00) for all &
and all t € (—o0, si).

We now dilate the flow around the point (g, ;) by the factor (s —tk)_%.
By work of Perelman, the rescaled flows converge in the Cheeger-Gromov
sense to a smooth limit. On the limit, the reduced volume is constant,
and equals Vgy1(—00). Consequently, the limit must be a shrinking gradient
Ricci soliton. Since (sg — tx) R(qk, tx) = 10 for each k, the limit is non-flat.
Moreover, the limit cannot have constant curvature, for otherwise our an-
cient solution (53, g(t)) would have constant curvature, contradicting our
assumption. Thus, the limiting gradient soliton must be a cylinder with
scalar curvature 1. In particular, (sx — tx) R(qx,tx) — 1 as k — oo. This
contradicts the fact that (sx — tx) R(qk,tx) = 10 for each k.

Proposition 3.2. Consider a sequence of times tp, — —oo. If we dilate
1
the flow around the point (q,tr) by the factor (—ty)~2, then the rescaled
manifolds converge to a cylinder of radius v/2.
Proof. By our choice of ¢, we have limsup,_, . (—t) R(q,t) < oco. Con-

sequently, limy_, o ¢(q,t) < 0o, where ¢ denotes the reduced distance from
(¢,0). Hence, the assertion follows from Lemma

For each t, we denote by F'(z,t) the radius of a sphere of symmetry which
has signed distance z from the reference point ¢. In particular, F'(0,t) is the
radius of the sphere of symmetry passing through ¢. Since the manifold has
positive sectional curvature, we have F,, < 0. Moreover, we have F, = +1
at the tips. Consequently, —1 < F, <1 at each point in space-time.

Proposition 3.3. The function F satisfies the evolution equation
Fi(z,t) = F..(z,t) — F(z,t) " (1 — F.(2,1)?)
*F..(2)t)
C9F (et / Tt g
=0 )y Fen
=F..(2,t) — F(z,t) 7' (1 + F.(2,1)%)
B z F (Z, t)2
2F.(z,t) |F(0,t) ' F.(0,t) — | =222 d2|.
r2n(0 PO R0 - [ EE

Proof. Let us consider an arbitrary point p € S3. Let 7(¢) denote the
radius (with respect to the metric g(t)) of the sphere of symmetry passing
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through the point p, and let z(t) denote the signed distance of that sphere
from the reference point q. Clearly, r(t) = F(z(t),t), hence

v (t) = Fy(2(t),t) + F.(2(t),t) 2'(t).
Using the formula

— F2
£ (g —dz®dz),

FZZ
Ric = — Ia (9+dz®dz) +

F2
we obtain ©
O FL (2
"(t) =2 =y
=) /0 F(zt)
and

' (t) = Fo.(2(t),t) — F(2(t),t) 1 (1 — Fu(2(t),1)?).
Putting these facts together, we obtain

Fy(z,t) = F,.(z,t) — F(z, t) (1 — Fz(z,t)Q)

—2F zt/ FZZ

Integration by parts gives

Fi(z,t) = Foy(2,t) — F(2,t) " (1 + Fy(2,1)?)
; -1 [P E(Z )7 v
+ 2R (2,0) [F(O,t) F.0,1) /0 d }

This completes the proof.

Definition 3.4. For each t, let ryax(t) = sup, F'(z,t) denote the maximum
radius at time ¢.

Lemma 3.5. We have —3 %(rmax(t)Q) > 1. In particular, rmax(t) > /—2t
for each t.

Proof. Consider the point where the radius is maximal. At that point,
F = rpax(t), F, = 0 and F,, < 0. Using the evolution equation for F,
we conclude that —35 E(FQ) > 1 at the point where the radius is maximal.
Thus, we conclude that —3 E(rmax(t)Q) > 1. Integrating over ¢, we obtain
Tmax(t) > v/—2t for each ¢t. This completes the proof of Lemma

Lemma 3.6. We have —% %(rmax(t)Q) < 1+40(1) ast — —oo. In particular,

rmax(t) < (1+0(1)) /=2t as t — —o0.

Proof. Let € > 0 be given. Let us consider the point where the radius
is maximal. At that point, F' = rpax(t) > /—2t and F, = 0. Proposition
implies that the point where the radius is maximal lies on an evolving e-
neck if —t is sufficiently large. Hence, if —t is sufficiently large, then we have
F.. > —e F~! at the point where the radius is maximal. Using the evolution
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equation for F, we obtain —35 E(F 2) < 1+-¢ at the point where the radius is
maximal. Thus, we conclude that —5 %(rmax( )2 ) < 1+¢if —t is sufficiently
large. Since € > 0 is arbitrary, it follows that —1 & (rpax(t)%) < 1+ 0(1) as
t — —oo. This finally implies rmax(t) < (1 + o(1 )) V=2t as t — —oo. This

completes the proof of Lemma [3.6

We next describe a barrier argument which plays a key role in our analysis.
We begin by recalling a result from [5]:

Proposition 3.7 (cf. [5], Section 2). There exists a positive real number
re with the following property. Given any large number a, we can find a
continuously differentiable function 1, : [rea™t, 1+ ﬁ a=?] — R such that

()t (s) — %%(8)2 + 572 (1= a(s)) (594 (s) + 2¢a(s)) — s (s) < 0

forall s € [rea™!, 1—&—% a=2]. The function Vo satisfies 1, (s) < Ca™2 for all
s € [15. 1+ﬁ a=?]. Moreover Va(5) > 55 La foralls € [rea™, 1—&—% a2,
and e (s) > a2(s72—1) + 6 Lo~ forallsc[1—6,1+ ﬁ a=2], where 0 is
a small positive number. Finally, 1q(rva™t) > %

Proof. It follows from Definition 2.6 in [5] that 1,(s) < Ca=2 for all s €
(15,14 155 %] and e (ra™) = 2+0(a™t). In particular, 1o (ra™t) > 3 if
a is sufficiently large. All the remaining statements follow from Proposition
2.7 in [5].

Proposition 3.8. Suppose that a is sufficiently large. Moreover, suppose
that t is a time with the property that Tmai\/i? <1+ 5072 forallt <t

Then F.(z,t)% < wa( Zt)) whenever t <t and F(z,t) > r.a='y/=2t.

Proof. Our assumption implies that \/@ < T\“}‘”‘i) <1+ 100 a~? for all
t <t and all 2. Let Z denote the set of all times ¢t < ¢ with the property
that F.(z,t)? < wa( (2 ) whenever F(z,t) > r.a~ty/—2t. It follows from
Proposition n 2.8 that ¢ € I if —t is sufficiently large (depending on a).

We claim that Z = (—oo,t]. Suppose this is false. Let ¢y denote the
infimum of the set (—oo, ]\ Z. We can find a point z such that F(z,ty) >
rea”'y/—2ty and F (20,t0)? = tha( \/@)) Clearly, F.(29,t0) # 0 since v,

is positive; in other words, the function z — F(z,t9) does not attain its
maximum at zg.

If F(z0,t0) = r«a~'\/=2tg, then
_ F(zg,t
FZ(Z07tO)2 <1< %(7’*@ 1) = wa(\ﬁ_oTt(o)))
This contradicts our choice of (zp,t9). Thus, we conclude that F(zp,tg) >

7@ \/—225
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Since F,(zp,t0) # 0, we can find a smooth function u(r,t) such that
F.(2,t)> = uw(F(z,t),t) in a neighborhood of the point (2, o). The function
u is defined locally in a neighborhood of (rg,ty), where r¢ := F(zo,tp)-
Clearly, u(rg,to) = wa(\/iOTto). Moreover, since (—oo,tg) C Z, we obtain

u(r,t) < dJa(\/%Zt) for t < tg. Asin [5], the function u(r,t) satisfies

1
up = Ullyr — 5 u? + 772 (1 — u) (ruy + 2u).

On the other hand, the function ¥, (r,t) := wa(ﬁ) satisfies

1 _
U > CaWapr = U2 172 (1 =Ty, (1, + 20,).
This contradicts the parabolic maximum principle. This completes the proof

of Proposition [3.8

We now perform a rescaling. We define
G(&,7)i=e2 Fe 26, —e77) = V2,
Then
Gr(E,7) = Geel6, ) — 5 ECL(E,7)
3 (VE4GET) - (VE+CE) ™ (L4 Gl 7))
Gf(gla 7_)2 ’
dg'|.

Z+a@nr

Proposition implies that, as 7 — —oo, the functions G(&, ) converges
to 0 in Cf°

loc®

£
+2Ge(€,7) (\/§+G(O,r))1G§(O,7)—/O :

Definition 3.9. For each 7, let pmax(7) := supy G¢,1)= e? Tmax(—e™ ) —
V2.

Lemma 3.10. We have pmax(7) > 0 for each 7. Moreover, pmax(7) — 0 as
T — —00.

Proof. This is an immediate consequence of Lemma [3.5] and Lemma [3.6

For each time 7, we define
6(7) :=sup(|G(0, 7)| + pmax(7)).

T<T
By definition, 6(7) is an increasing function of 7. Moreover, 6(7) — 0 as
T — —00Q.

Lemma 3.11. For —7 sufficiently large, the function T — 6(T) is Lipschitz
continuous with Lipschitz constant 1. In particular, the function T — §(T)
is differentiable almost everywhere, and 0 < §'(7) < 1 for —7 sufficiently
large.
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Proof. If —7 is sufficiently small, then the functions 7 — G(0,7) and
7+ G¢(0,7) are Lipschitz continuous with Lipschitz constant +. Moreover,
we have shown above that % gt(rmax(t)2) — —1 as t — —oo. This implies
%pmax(r) — 0 as 7 — —oo. Hence, if —7 is sufficiently large, then the
function 7 +— pmax(7) is Lipschitz continuous with Lipschitz constant %.
Putting these facts together, we conclude that the function 7 — 6(7) is Lip-
schitz continuous with Lipschitz constant 1. This proves the first statement.
The second statement follows from Rademacher’s theorem.

Proposition 3.12. Fiz 7, and let a := - 5(’)7% Then we have G¢(&,T)?

wa(l + GEE/T)) whenever 7 < 7 and G(&,7) > (rya™t — 1)\/5, where Ty s
defined as in [5].

| /\

Proof. By definition of 6(7), we have ppax(7) < §(7) for all 7 < 7.
This implies Tmax(t) < 1+ 6(7) for all t < —e~ 7. Hence, we may ap-

v—2t
ply Proposition with t = —e™7 and a = %(5( )~ 3 Using Propo-
sition we conclude that F,(z,t)? < wa( z1) ) whenever ¢ < ¢ and

F(z,t) > r.a™'y/=2t. In other words, G¢(¢, 7 )2 < a1+ GE?T)) when-
ever 7 < 7 and G(&,7) > (rva™! — 1)V/2.

Lemma 3.13. We have |G(&,7)|+|Ge(&,7)] < 0(5(7')% for |€] < 20(7)” 100

Proof. By definition of §(7), we have |G(0,7)| < §(r). Moreover, ap-
plying Proposition with 7 = 7, we obtain G¢(¢,7)? < C §(r) whenever
G, 1) > —%. Putting these facts together, the assertion follows.

Lemma 3.14. We have |Gee(¢,7)| < C ()5 for [¢] < 6(7)~ 0

Proof. The arguments in the noncompact case carry over unchanged (see
[5], Lemma 3.8).

Lemma 3.15. We have ‘(%m (&7)| < C(m) for || < é(r) 10

Proof. The arguments in the noncompact case carry over unchanged (see
[5], Lemma 3.9).

Lemma 3.16. We have

2
1Ge(0,7)[* < C5(r)Tho / e o )P de
{|€|<d(r)~ 100 }
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and

) 2
[ eFledentazoim [ TGP
{el<s(r)~Tb0) tel=om

1
+C exp(—g 6(7‘)_%).

Proof. The arguments in the noncompact case carry over unchanged (see
[5], Lemma 3.10).

Lemma 3.17. We have
e 1 2
/ TG r) — Geele ) + 2 EGeleT) — GleT)| de
{€]<8(r)~ 100} 2

gC&ﬂ@/

{j€]<8(r)~ 100}

1

e G(E,7) dE + C exp(— ()~ ).

Proof. The arguments in the noncompact case carry over unchanged (see
[5], Lemma 3.11).

We now perform a spectral decomposition for the operator
1
LG = Gge — ing-f—G.

This operator is symmetric with respect to the inner product ||G||3, =

n
25
responding eigenfunctions are Hn(%), where H,, is the n-th Hermite polyno-
mial. Let us write H = H, ® Ho ® H—_, where the subspace H is defined

as the span of Hg(%) and Hl(g), the subspace Hy is defined as the span of

2
fR e d¢. The eigenvalues of this operator are 1 — and the cor-

HQ(%), and #H_ is the orthogonal complement of H4 @& Hy. Moreover, let
P, , Py, and P_ denote the orthogonal projections associated with the direct
sum H = Hy @ Ho ® H_. The eigenvalues of the operator —L on H, are
bounded from above by —%. Similarly, the eigenvalues of the operator —L
on H_ are bounded from below by %

Let x denote a cutoff function satisfying x(s) = 1 for s € [—3, 1], x(s) = 0

for s e R\ [—1,1], and sx/(s) <0 for all s € R. We define
A(r) = /R T 1G(E, ) x(5(7)
H(r) = / e [P (G(E,7) x(6() W0 6)) P de,

L

100 g)’Q dg,

2O(r) = /R e [Po(G(€,7) x(6(r) 96))|2 de
() = /R e [P_(G(E,7) x(3(r) W0 8)) P dE.
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Clearly, & (1) < v" (1) +7°(r) + v (r) < C (). Using Lemma we
obtain
W) <O swp |G < OO0
{l€1<6(r) 100}
In particular, v(7) — 0 as 7 — —oo.
We first analyze the evolution of y*(7), 4°(7), and v~ (7).

Lemma 3.18. We have
P —1) < e ! yH(r) + C(S(T)ﬁ sup v()+C exp(—6i4 (5(7’)*%),
[T—1,7]

1
O(r=1) =7°(7)| < Cd(r)ﬁ [Su1p ]7(.) +C eXp(—Gqé(T)*%),

1
Y (r=1) 2 eq (1) = ()M sup y() = C exp(~ g d(r) ).
[T—1,7]
Proof. This follows from Lemma [3.17] The proof is analogous to the
noncompact case (see [5], Lemma 3.12).

We next analyze the evolution of the function pmax(7). We begin with a
lemma:

Lemma 3.19. Suppose that —1 s sufficiently large, and &, be the point
in space where the function & — G(&,7) attains its mazimum. Then 0 <

~Gee(sy7) < Cry(7)i.

Proof. Without loss of generality, we may assume that & > 0. By
Proposition every point with G(&,7) > —% lies on an evolving e-neck
if —7 is sufficiently large (depending on €). In particular, 2 |Gege (€, 7)| < C
whenever G(&,7) > —\%. Consequently, —Gee(§,7) > —% Gee(&iym) >
0 for all £ € [& + & Gee(&,7),&]. Since Ge(é,,7) = 0, it follows that
Ge(€,7) > 55 Gee(&,7)? for all € < & + Gee(&,7). Since & > 0 and
Gee(&x, ) is very small, we know that &, +Gee(€4, 7) > —1, and consequently
Ge(&,7) > 56 Gee(&s, 7)% for all £ < —1. We distinguish two cases:

Case 1: If G(=3,7) > 0, then G(§,7) > 555 Gee(&, 7)? for £ € [-2,-1].

Case 2: If G(—3,7) <0, then G(§,7) < —55 Gee(&s, 7)? for € € [-5, —4].

In either case, we conclude that ff5 |G(&,7)|>d¢ > ﬁ Gee(&, 7)1 Con-
sequently, Gee (&, 7)1 is bounded by a large constant times (7). This com-
pletes the proof of Lemma [3.19

Lemma 3.20. The function pmax(T) satisfies

I

d
%pmaX(T) > pmax(T) — Cpmax(T)2 —Cr(r)
if —7 s sufficiently large.
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Proof. We compute
d 1 _
%PmaX(T) = 5 (\/§+ Pmax(T)) — (\/§+ Pmax(T)) L+ Gé&(f*aﬂ?

where &, is the point where the function £ — G(&,7) attains its maximum.
Using Lemma [3.19, we obtain

NG

d
%Pmax(T) > pmax(T) - CpmaX(T)2 - C’Y(T) .

This proves the assertion.

Lemma 3.21. We have
pmax(T - 1) < 67% pmax(T) +C sup ’)/()i

if —T is sufficiently large.

Proof. Lemma [3.20| implies %pmaX(T) > %pmaX(T) — C”y(T)i if —71is
sufficiently large. If we integrate this differential inequality, the assertion
follows.

Lemma 3.22. We have
YT = 1) + pmax(T — 1)®

<e !t (yF (1) + pmax(T)S) + C’(S(T)ﬁ sup v()+C exp(—ﬁi4 d(T)"%0).
[T—1,7]

Proof. By Lemma [3.18, we have

Y r—1) < e ! ()t + C(S(T)ﬁ sup y(-)+C exp(—é 5(7’)*%)
[T—1,7]

Moreover, using Lemma and Young’s inequality, we obtain

pmax(T - 1)8 < 671 pmax(T)g +C : sup ]’7()2
T—1,7

Adding these inequalities, the assertion follows.

We now define

T<T
7 (7) == sup(y"(r) + pmax(7)%),
I%(7) := sup~°(7),

T7<T

I7(7) = supy™ (7).

T<T
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Clearly, S T'(7) <TH(7) +T9%7) + T~ () < CI'(7). It follows from Lemma
that v(7) < 05(7')%. Moreover, pmax(7) < 6(7) by definition of o(7).

Putting these facts together gives I'(7) < 06(7")%. In particular, I'(7) — 0
as T — —oo. Using Lemma and Lemma [3.18] we obtain

THF —1) < e ' TH(7) + C6(7) M0 T(7) + C exp(—é 5(7)~ ),

L

07 — 1) — T°(7)| < C'8(7) M0 T'(7) + C exp(—é 5(7) "),

[(7 1) 2 T (7) = Co(T) B T(7) ~ C expl— 6(7) ).

It follows from standard interpolation inequalities that |G(0,7)| < C 7(7’)i,
hence sup, - |G(0,7)| < CF(%)i. Since sup, <z Pmax(7) < I’(i’)é7 it follows
that

5(7) = sup(|G(0,7)| + pmax (7)) < CT(7)5.

T<T

Consequently, exp(—g; 5(?)_%) < C§(7)? < CO(F)I(7). Putting these
facts together, we conclude that

(7 —1) < e ' T (F) + C §(7) 30 [(7),
ID0(7 — 1) = T%(7)| < C8(7) = [(7),
I~ (7 —1) > el (7) — C'6(7)30 (7).

|

The following lemma is inspired by a lemma of Merle and Zaag (cf. [24],
Lemma A.1):

Proposition 3.23. We either have T°(7)+T~(7) < o(1) T (%), or I'T(7)+
I~ (7) <o(1)T%(F) as 7 — —o0.

Proof. By definition, the function I'"(-) is monotone increasing. This
implies ' (7) > T~ (7—1) > el' (7) — o(1) ['(7). Thus, I'"(7) < o(1) I'(7).

Let I denote the set of all positive real numbers o with the property that
the set {7 : T%(7) < aT'"(F)} is bounded. Moreover, let J denote the set
of all positive real numbers a with the property that the set {7 : I'O(7) >
aT'*(7)} is unbounded. Note that I C J.

We claim that, if « € J, then e3a € Jand e 3a € I. Tosee this, suppose
that a € J. If we choose —7y sufficiently large (depending on «), then we
obtain

1 1

(7 —1)<e'TT(F) + 20ta) (e72 —e ™ 1) (T (7) + T9(7))

and

(7 = 1) = T%7)| < g (1—e72) (0 (7) + I°(7)

(14 «)
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for 7 < 7p. This gives
07 —1) — ezl (7 — 1)

> T0(7) — e 2aTH(7) — —

(1= e73) (TH(R) 4 T°(7)
_ (1 B La (1— e—%)) T°(7) — a T (7))

for all # < 7. On the other hand, since a € J, the set {7 : T°(7) >
aT*(7)} is unbounded. Consequently, there exists some 7, < 7 such that
I%#) — aT*(7) > 0. Proceeding inductively, we obtain I'(7; — k) —
e%ozFJr(ﬂ — k) > 0 for every positive integer k. This implies eza € J.
Moreover, we have
inf (7)) — e 2aTH (7
?E[fl—}cn—l,ﬁ—k] (F(7) —e72al™(7))
>T0(7 —k—1) — e 2al* (7 — k)

>T0(7 — k) — e zal " (7 — k)

2(1+a) (1—e" 2)(I‘+(7_1 k)—i—FO(ﬂ—k))
= (1— 21+ a) (1—e 2)) T — k) —al* (7 — k)
+5(l=e )M k)
>0

for every positive integer k. This implies e~3a € I. This completes the
proof of the claim.

Using the claim, we conclude that either J = @ or I = (0,00). If
I = (0,00), it follows that I'T(7) < o(1)T%(7) as 7 — —oo. On the other
hand, if J = (), then T'%(7) < o(1)T+(F) as 7 — —oc. This completes the
proof of Lemma [3.23

4. RULING OUT THE CASE WHEN THE POSITIVE MODES DOMINATE

In this section, we will show that the positive modes cannot dominate.
Recall that rpax(t) > /=2t for all t.

Definition 4.1. Given 0 < a < 1, we say that condition (x,) holds if
Tmax(t) < V=2t (1+O(—t)"%).

Proposition 4.2. Suppose that (x) holds for some 0 < a < 1. If —t is
sufficiently large, then F,(z,t)? < C (—t)” T-a whenever F(z,t) > v/—t.

Proof. Let 1), denote the functions in Proposition By assumption,

T”‘%\/"T(? < 14+0((—t)~*). Hence, we can find a constant K with the following

properties:
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Tmax ()% 42t K© 2
° Tmax(t)Q S 1001—a Tmax(t)Qa fOI“ _t 2 Ka .
o Yo(s) >a (s 2—1)+satforse€[1-0,1+ 550 2] anda > K.
In the following, we consider a large number a > K. Using the inequality
Tmax(t) > v/—2t, we obtain

T'max (t) = T'max (t) > 2
20-0) — /—(2+ K1)t V2+ K1

\/—2t + Ka™ «
if —t > K?a . Moreover,
ot + Ka™s™ TR S
—a
Tmax (t)? 100
2(1—a) 2
Ka = Tmax () + 2t 1
= — —a
Tmax(t)2 Tmax(t)z 100
Ka™'& K 1,
> — 4+ —
T rmax(t)? 10017 rpai (8)2 100 “
>0
for —t > K?a . Note that in the last step we have used the elementary
2(1—a)
inequality  + vy > 2%y~ with z := % and y := WIO a2
Consequently,
Tmax(t) 1 91 -2
<(1-— <14 -—
e g ) s e
—2t+ Ka™ «
for —t > K2a . In other words,
F(Z,t) S Tmax(t) 1 + i a -2
2(1—a) 2(1—a) 100
—2t+ Ka™ = —2t+ Ka™ o

2(1—a)
for all —t > K24~ = and all 2.

In the following, We ﬁx a real number a > K, and denote by Z the set of
all times ¢t < —K?%a~ a Wlth the property that

Fu(z)? < %( F(z1) )
\/—2t +KaT

(1-a)
whenever F'(z,t) > r*a_l\/—Qt + Ka2 o . It follows from Proposition
that t € Z if —t is sufficiently large (depending on a).

. 2(1—a) L.
We claim that Z = (—oo, —K2a~ « |. Suppose this is false. Let o denote
2(1 [3)

the infimum of the set (—oo, —K2a ]\ Z. We can find a point zg such
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2(1—a)

that F'(zp,t0) > r*a_l\/—Qto + Ka™ «  and

F(zo,t
FZ(ZO,tO)Z N wa( ( - 0)2(1a) )
\/—2t0+Ka @

Clearly, F.(zo,tg) # 0 since 1), is positive; in other words, the function
z +— F(z,t9) does not attain its maximum at zg.
2(1—a)

If F(z9,t0) = r*afl\/—Qto + Ka~ a , then

F(z0,t0)? <1< tha(rea™) = w@( F(207t0)2<1 )>

\/—2750 + Ka™ a
which contradicts our choice of (zg,ty). Thus, we conclude that F(zg,tg) >

2(1—a)

mafl\/—QtO + Ka =

Since F,(zp,to) # 0, we can find a smooth function wu(r,t) such that
F.(2,t)?> = u(F(z,t),t) in a neighborhood of the point (29, to). The function
u is defined locally in a neighborhood of (rg,tg), where ro := F(zg,to).

Clearly,
ro
u(ro, to) = w“( 2(1-a) )
\/—Qto + Ka™ =
Moreover, since (—oo,tg) C Z, we obtain

,
u(r,t) < %( — )
\/—Qt + Ka™ =

for t < tg. Asin [0], the function u(r,t) satisfies

1
up = Wity — 5 w4+ 72 (1 —u) (ruy + 2u).

On the other hand, the function

~ r
‘Ija(ra t) = 111(1( o) )
\/—275 + Ka™ «

satisfies

~ - - 1 - B ~ ~ ~
Uor > VW0, — 3 U242 (1= W) (1, + 20,).

This contradicts the parabolic maximum principle.
2(1—a)

To summarize, we have shown that Z = (—oo, —K2a |. Consequently,

2(1—a)
F.(z,t)?> < Ca? whenever —t > K?a~ « and F(z,t) > \/—t. Putting
2(1—a) . . .
t =—K?a = , the assertion follows. This completes the proof of Proposi-

tion
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Corollary 4.3. Suppose that (%o) holds for some 0 < «a < 1. Then
1
diam(S3, g(t)) > % (—t)20-2) 4f —t is sufficiently large.
Proof. We know that the maximum value of F(z,t) is at least /—2t.

Moreover, Proposition implies that |F,(z,t)] < C (—t)_2(1cia> whenever
F(z,t) > +/—t. From this, the assertion follows.

Proposition 4.4. Suppose that (xo) holds for some 0 < a < 1. More-
over, suppose that (qo,to) in space-time with the property that the sphere
of symmetry through the point (qo,to) has radius at least \/—2ty. If —tg is

o2
sufficiently large, then —(F?),, < C (—to)~0+30) at the point (q0,t0)-
Proof. We denote by F(z, t) the radius of the sphere of symmetry which

has signed distance z from the point go. The function F satisfies the evolu-
tion equation

Fi(z,t) = Foy(2,t) — F(2,t) 71 (1

+ F.(2,1)%)
- N L~ z Z(Z,,t)Z ,
LR (1) [B(0,1) 1Fz(0,t)—/0 Wdz}

ieSh &l

In particular,
Fy(0,1) = F.(0,8) = F(0,4)7" (1 = F4(0,1)%).
Using the inequality F(0,t) < 0, we obtain

Fy(0,t) < —F(0,)7' (1 = F+(0,1)%),

hence 1 d
—~ —(F(0,t)%) > 1 — F,(0,t)%
S (P(0,1?) 21— R (0,1)
It follows from Proposition that F,(0,t)>2 < C(—t) T-a < C(—t)"°
whenever F'(0,t)? > —t. This implies
1d, - 1

-5 %(F((),t)Q) >1-C(—t)™ > 3

whenever F(0,t)2 > —t and —t is sufficiently large. By assumption, F(0,)% >
—2ty. Hence, if —t is sufficiently large, then a standard continuity argument
gives
F(0,t)2 > (=2t) (1 — C (—t)™%)
2

for all t < tg. In the following, we put ¢ := {7;. Using the estimate for
F.(z,t)? in Proposition we obtain

F(z, )2 > (=2t) (1 — C (—t)7%)

for all t < to and all z € [—(—t) =l (—t)l%] On the other hand, the

condition (%) gives

F(z,t)? < (=2t) (1 +C (—t)™%)
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for all ¢ <ty and all z.
We next consider the parabolic cylinder
14e 14e
Q = [—(=to) = ,(—to) = | x [to — (—to)"**, to)].
Moreover, we define a function H by

H(z,t) = §F(2,t)2 +t.

By assumption, H (0,t9) > 0. Moreover, the preceding arguments imply
that we can find a positive constant L such that

—L(—t)"8 < H(z,t) < L(~t)'™®
in Q. In particular,
—L (—2to) M9 0=5) < A (z,t) < L (—2t)1+)01—a)
in Q. 3
The function H satisfies an equation of the form
Hy(z,t) — H..(z,t) = —=S(z,1),

where the source term S is defined by
- - - - 5 z Fz !t 2
S(z,t) := 2 F,(2,t)?—2 F(z,t) Fy(z,1) F(O,t)_lFZ(O,t)—/ Mdz'].
o F(2,t)?

By Propositionm we have F,(z,t)> < C (—t)_ﬁ at each point in @). This
implies
[S(2,8)] < C (1) 77 < C(—t) T

at each point in (). Moreover, the higher derivatives of F satisfy the estimate
m o~ m—1 1 1
aaz—mF(z, t)] < C(m)(—tp)” 2z inthe parabolic cylinder [—(—tg)2, (—tp)2]x
[2to, to]. (This follows from the pointwise curvature derivative estimate.)
This implies |86Z—Tn5(z, t)] < C(m) (—to)~ 2 in the parabolic cylinder [—(—to)%, (—to)%] X
[2t0, to]. Using standard interpolation inequalities, we obtain

0 S S I
5550 < O (—to) 27T,

9? —1--2+¢
55500 < € (—to) 15,

0 Sl e
575D < C ()T rat

in the parabolic cylinder [—(—to)%, (—to)%] X [2t,t0].

We now introduce two auxiliary functions H (1) and H® on the parabolic
cylinder Q. Let H (1) denote the solution of the linear heat equation

AN (z,6) — BD (2,1) = S(z,t)
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on ) with Dirichlet boundary condition H® = 0 on the parabolic boundary
of Q. Moreover, let H®?) denote the solution of the linear heat equation

AP (z,t) = HD (2,8) = 0

on @Q with Dirichlet boundary condition H?) = L (—2ty)1+8)(1=a) _ H on
the parabolic boundary of Q.
Clearly, H® is nonnegative, and we have

HW (z,6) + H?(2,t) + H(z,t) = L (—2to) 191~
at each point in (). In particular,
HD(0,t0) + HP(0,t0) + H..(0,t9) = 0.

Therefore, in order to estimate |H.,,(0,t)|, it suffices to bound |FI,§?(0, to)|
and [H2)(0,)].

We begin with the term |f]§i)(0,t0)\. Using the estimate |S(z,t)| <
C (—tp)” ™= and the maximum principle, we obtain

AW (2,0)] < C (o) 757

in (). Using standard interior estimates for parabolic equations in the par-
1 1
abolic cylinder [—(—to)2, (—to)2] X [2to, to], we conclude that

|

<c sup ((~to) ™ HD|+ 1] + (~t0)? |
[(~t0) (~t0) ] x[2t0, o)
< O (—tg) Ta e

S|+ (~to) %SD

Q

z

In the next step, we estimate the term |H @ (0,%0)|. Using the inequality
—H(0,t9) <0 together with the estimate

—HW(0,9) < O (1) 575 < O (1) I,
we obtain
H®)(0,t) = L (=2t0) 1 +90=2) _ g0, 1) — H(0,t0)
< O (—tg)1+9)(1=a)

Moreover, we have H?) = L (=2t)1+9)(-) _ H < O (—t7)1+9)1=5) on
the parabolic boundary of (). Hence, applying Proposition gives
(—to)'** |HL2(0,0)|
< Cu 2 HP(0,1) + Ce o sup H®
{=(~10) 5 (—t0) "B }x[to—(~t0) 1+ to]

< Op2 (—tg)1H+901-0) Cefﬁ(—to)(”s)(l*%),
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where 1 € (0,1) can be chosen arbitrarily. Putting p := (—to)™¢ yields
[A2)(0,0)] < O (—tg)" 92,
Putting these facts together, we conclude that
|H.2(0,t0)| < [HZ(0,t0)] + [HEZ(0, 10)|
< C(—tg) Toa T 4 O (—tg)~(IHe)at2e?
< O (—ty) Ut

This gives —(F2),, < C (—to)~1"2)% at the point (0,#). This completes
the proof of Proposition [4.4]

Corollary 4.5. Suppose that (xo) holds for some 0 < o« < 1. If —t is
a2
sufficiently large, then —% %(rmax(tf) <1+C (—t)*(”m)“,

Proof. Consider the point where the radius is maximal. At that point,

a2
F = rpax(t) > V=21, F, = 0, and —(F?).. < C(—t)~(%2m%)* by Propo-
sition Using the evolution equation for F', we obtain —% %(F 2 <

2
1+ C (—t)~0+30)* at the point where the radius is maximal. From this,
the assertion follows.

Corollary 4.6. Suppose that (xq) holds for some 0 < o < 1. If0 < & <
min{(1 + %)a, 1}, then (xg) holds.

Proof. By Corollary we have —3 %(rmax(t)2) <1+ C(—t)~%. Inte-
grating this differential inequality gives rmax(t)? < —2t +C (—t)'~%. Conse-
quently, rmax(t) < /=2t (1 + C (—t)~%). Thus, (%5) holds. This completes
the proof of Corollary

After these preparations, we can now rule out the case that the positive
modes dominate. Suppose that T°(7) + '~ () < o(1)T'H (7). The results
in Section |3 imply I'"(7 — 1) < e 'TH(7) + C5(7)z0 I (7). Tterating
this inequality gives I'F(7) < O(ez). In particular, puax(7) < O(eT).
Equivalently, rmax(t) < v—2¢ (1 + O((—t)"16). Therefore, (xq) holds for
o= T16' Tterating Corollary finitely many times, we conclude that (%)
holds for each 0 < o < 1. Using Corollary we obtain

lim inf(—t)" 7 diam(S%, (1)) > 0
——00

for each 0 < o < 1. On the other hand, standard estimates for the change
of distances under Ricci flow imply —%diam(S‘g, g(t)) < C\/Rmax(t). Since
Rpax(t) is uniformly bounded from above by Hamilton’s Harnack inequality,
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we conclude that

lim sup(—t) ! diam(S?3, g(t)) < oo.

t——00
This is a contradiction. Thus, we have ruled out the case I'°(7) + '~ (7) <
o(1) T (7).
5. ANALYSIS OF THE CASE WHEN THE NEUTRAL MODE DOMINATES
In view of the preceding discussion, we now focus on the case I'"(7) +
r—(7) < (1)F0(_). Recall that [|G3, = [pe -5 G?d¢. Let us define

|G| = Jre™ T (G? + G2)d§ Note that |G|% = (G, (2 — £L)G)y if G is
compactly supported

Recall that the subspace Hg is one-dimensional and is spanned by the
second Hermite polynomial Hg(%) = ¢2 — 2. We consider the projection of

the function R )
G(&, 1) = G(&,7) x(6(r) 100 &)

to the subspace Hg. More precisely, we write

Py(G(€,7) = V2a(7) (€ - 2),

where

1 .
= 3 —2)G(&, 1) dE.
o) = o= | )Gle.7)de
Furthermore, we define
A(T) :=sup |a(T)].

<7

Clearly, & A(7)? < I'%(F) < C A(%)?* for some constant C. This implies
%A(T‘)Z1 ['(7) < C A(7)2. Since 6(7) < CT(7 )8 we conclude that §(7) <
CA(T)4.

Lemma 5.1. We have |[PyG(&,7)||n < o(1) A(T).

Proof. We have
IPLG(&, 7|3 <TT(7) < o(1)T(7) < o(1) A(7)>.

This proves the assertion.

Lemma 5.2. We have |P_G(¢,7)|l5 < C6(r)m™0 A(r).

Proof. Recall that ' (7 —1) > eI'"(7) — 05(7')% (7). Since I'"(+) is
monotone increasing, we obtain I'~(7) < C'6(7)200 I'(7). Consequently,

|P-G(€,7)|3, <T~(7) < Co(r)am I(r) < Co(7) 20 A(r)>.

This proves the assertion.

Lemma 5.3. We have |P_G(¢,7)|p < C 8() 0 A(r).
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Proof. Lemma implies %G(g,ﬂ = LG, 7) + E(&, 1), where the
source term E(&, T) satisfies

2
/ | €T B(¢ 7)2de < Co(r)im A(r)?.
{lei<otr) 1o}

Using Lemma we obtain %G(fﬂ') = LG(&,7) + E(¢,7), where the
source term E (&, 7) satisfies

&2

/R 5 Ble,7)2de < Co(r) 0 A(r).

Duhamel’s principle gives

G(-, T) = L G(-,T -1) +/ (=1L E(-,T’) dr’,

T—1
where the exponential refers to the semigroup of operators generated by L.
This implies

P.G(,1)=e*P.G(,7—1) + / VL P B ) dr
T—1

Using Lemma [5.2| together with the estimate for || E(-,7)||3, we obtain
IP-G( 7)o
SCIPGr =Dl +C [ (=7 +1)72 B dr’
T—1

< Co(r— 1) AT —1) + 0/ (7' — 7+ 1)72 8(') 2w A(7') dr’
71

< C(r) A(r),
where in the last step we have used the fact that the functions 6(-) and A(-)
are monotone increasing.
Lemma 5.4. We have
_g A
LT 01D 66,7~ V3a(r) (€ -2 de < o) A(r)?
and ,
_& A
€T k! 1Gelem) ~ 220l de < of1) Al
Proof. By Lemma we have
_g A
/R e~ (14 €)1 [Py G, 7) 2 de < o(1) A(r)?

and

[ e alent|gereéien] de < o) A
R o¢" " B
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Next, Lemma implies
_& A 1
[ e IP-GienP de < 0o(r) A2
R

and
/ _ﬁ a A 2 _1 2
e 4 |=P_G(&T)| d¢ < C ()20 A(T)=.
R 0§

This directly implies

/ T [EDPG(E T de < of1) A(7)?
{|€]<d (7)™ 1000 }

and
/ L (1+1¢h* P e, m)| de < o(1) A(r)2.
{lgl<é(n) m}
Consequently,
[ e asientp-cle nia < o) A2
and

[ asie iP G, de < o(1) A(r)2.

Putting these facts together, we conclude that

[T QD (P + P)G(E T de < of1) A2
and
_é 0 2 )
[ &5 @l 5P+ PG| de < o)) A
R

This proves the assertion.

Lemma 5.5. We have ]GE(O )| < o(1) A(T).

Proof. Clearly, %POG f, ’ £=0 = = 0. Moreover, Lemma implies
}(%PJFG T ‘520‘ < C||PyG(-,7)|l < o(1) A(7). Finally, Elsing Lemma
and standard interpolation inequalities, we obtain ‘B%P_G (&, T)} §:0| <

Cl|IP_G(-,T )HH o000 < o(1) A(7). Putting these facts together, the asser-

tion follows.

Proposition 5.6. The function G satisfies 2 5-G(, 1) = LG, T)+EE,T),

where

/ LT E(ET) (€ - 2)de = —128V2m a(r)? + O(A(r)?).
{lel<a(r) 100}
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Proof. The source term E(&,7) is given by
B(&,m) = ~G(E,7) + 5 (VI +G(E ™) - (VE+G(E )™ (1+ Gel6 7))

1 . ¢ Gf(glaT)Q /
1 2Ge(E, ) [(V2 1 G(0,7) 1 Ge(0,7) /O rarreridl
Let us write
B(67) = —— = GE,7)? — = Ge(6,7)? + Fy(6,7) + Bal€,7) + Bs(€,7),

2V2 V2

where

Er (677_) = _G(&T) + L

1 -
75 CET + 5 (V2HG(Em) - (V2+ G )

- (VI G Gele )

V2
By(6.7) = 2Ge(€.7) [(ﬂ +6(0.7) 7 Ge0.) - [ 5 :
Using Lemma we obtain

| aenr@ -2

Ez(fvT)Z[

Ge(¢,7)°
V2+G(E,7))

!
_d¢/|.

= 2a(7)2/Re_§42 (€2 = 2)3de + 0(1) A(1)* = 256/ a(T)? + 0(1) A(T)?
and

/R e Cele,m)? (€2 - 2) de
_ 804(7)2/1&@—32 €2 (62 9) de + o(1) A(7)? = 1287 a(r)? + o(1) A(7)2.

Finally, we estimate the terms Ej(&,7), Eo(§,7), and E3(&,7). The term
E (€, 7) satisfies the pointwise estimate |y (€, 7)| < C|G(&,7)]? < o(1) G(&,7)?
for [£] < 5(7’)_17110. Using Lemma 5.4, we obtain

2
] e T E(6 ) (€ 2)de
{|€]<d(r)~ 100 }

< o(1) / LT O ) (1 2)de < o(1) A(r)>.
{|€]<o(r)~ 100 }

The term E» (¢, 7) satisfies the pointwise estimate | E» (&, 7)| < C'|G(&,7)| Ge(€,7)? <
o(1) Ge(&,7)% for €] < 6(7’)_ﬁ. Using Lemmaﬂ, we obtain

'/ . 5 By(6,7) (€2 — 2) de
{l€]<o(r)~ 00 }

< o(1) / e GelE ) (€ 2)dE < o1) Ar)2.
{I€]<d(r)~ 100 }
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To estimate the term E3(&, 7), we observe that the function £ — G¢(&,7) is
monotone decreasing. Hence, if £’ lies between 0 and &, then G¢(€', 7) lies be-

tween G¢(0, 7) and G¢(&, 7), and consequently |G¢(¢', 7)| < max{|G¢(0,7)|, |Ge(&,7)|}
Using Lemma we conclude that the term Fs3(, 7) satisfies the pointwise

estimate

[Bo(€, 7)) < 21Ge(€, 7] |[Ge(0,7)] + €] Ge(0,7)% + €] Ge(€, 7)?]
< o(1) [Ge(¢, T A(T) + o(1) [§] A(7)* + 0(1) [¢] Ge (€, 7)?

for [£] < 5(7’)_th>. Using Lemma we obtain
‘ et B <§2z>d5\
{l¢§]<4(r)~ 100 }

<o) [ e TG I (€ + D)
{l¢|<é(r)~ 100 }

vo) [ T APl € 2 de
{l§]<8(r)~ 100 }

vo) [ e E G )P Il (€ + D
{l¢|<8(r)~ 100 }

So(l)A(T)z.

Putting these facts together, the assertion follows.

Corollary 5.7. The function a(7) satisfies o/ (1) = —8a/(7)? + o(1) A(1)2.

Proof. This follows easily from Proposition [5.6

Corollary 5.8. If —7 is sufficiently large, then A(T) = |a(T)|.

Proof. Suppose that A(7) > |a(7)| for some time 7, where —7 is very
large. We can find a time 7. € (—o0,7) such that |a(r.)] = A(7). By
continuity, we can find an open interval I such that 7. € I, I C (—o0,7),
and |a(7)| > $A(F) for all 7 € I. Corollary now implies o/(7) =
—8a(7)? + 0o(1) A(1)? < —A(F)? for almost all 7 € I. Consequently, the
function a(7) is strictly monotone decreasing on the interval I. This con-
tradicts the fact that the function |a(7)| attains a local maximum at 7.

Corollary 5.9. The function o) satisfies o/ (1) = —(8 + o(1)) a(7)2. In
particular, a(1) = m < 0 if —7 is sufficiently large.

Proposition 5.10. We have (—7) G(§,7) — —ﬁ (£ —2) in C2.
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Proof. Let us fix an arbitrary constant L. Lemma implies a%G &, 71)=
LG(&, 1)+ E(E,7), where the source term F(, 7) satisfies

/ e B(e,7)2de < C8(r)m A(r)2.
(1<)~ Tho}

I

Note that A(7) < C (—7)~1 and §(r) < C A(r)1 < C (—7) 1. Therefore,

/ (€7’ de < C(L) (—r)2 .
{l¢|<4L}

Using standard interpolation inequalities, we obtain

11
HEHCQva([—QL,QL]X[7’—1,7’]) <C(L)(-7) 1~ 1000

for any given positive integer m. Here, C?>™™ denotes the space of func-
tions which are 2m-times continuously differentiable in space and m-times
continuously differentiable in time.

Recall that £(¢2 — 2) = 0. Hence, the function G(&,7) — —=— (£2 — 2)
4\/57'

satisfies

0

= (G- —

42T

1
75 €-)

1
N iG]

Moreover, using Lemma [5.4] and Corollary we obtain

(€2 -2)) = £(6(e7) -

+E@E7)+

| eten - s @ -2 de <o) AP < o) (1) 2
fleg<azy 0 4V2T B B

Using standard interior estimates for parabolic equations, we conclude that

|Gten) (& - 2) < o(1) (—7)™

1
_4\/57'

for any given positive integer m. This completes the proof.

c?m([-L,L])

Corollary 5.11. The domain of definition of the function & — G(&,7) is
an interval of length at most o(1) (—7).

Proof. Recall that the function £ — G(&, 1) is concave, and G(§,7) >
—+/2. Hence, the assertion follows from Proposition

Corollary 5.12. Let € > 0 be given. If —7 1is sufficiently large, then the
function & — G(&,T) attains its mazimum in the interval (—¢,€).
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6. ASYMPTOTICS IN THE INTERMEDIATE REGION

We next study the asymptotics in the intermediate region where |z| >
M+/—t for some large constant M, and F(z,t) > 6v/—2t for some small
constant #. The following result is a consequence of our barrier arguments:

Proposition 6.1. Fiz a small number 6 € (0,%) and a large number M >

10. If —t is sufficiently large (depending on 6 and M ), then
M? +C(0) 1 ( —2t _1>
F(z,t)?

F.(z,1)% <
&S R =9 SToa(—p)

whenever |z| > M~/—t and F(z,t) > 0+/—2t.
Proof. Let us fix a large number M. By Proposition we have

Fle,t) = V=21 1 v +O(log1 )

~ Bloa(—1) =
and

M? 1

F,(z,t 2= + 0( )
== Slos7 a1
for |z| = M+/—t. Hence, if a is sufficiently large, then
F(z,t)
F.(z,t)? < a( ’ )

whenever log(—t) > %Zf% “2—2 and |z| = M+/—t. Using the maximum princi-

ple, we obtain

F(z,t)
F.(z,t)? < ( . )
Z( ) wa \/_—275
whenever log(—t) > %zfg “2—2, |z| > My/=t, and F(z,t) > r.a~'v/—2L

We now fix a small number 6 € (0,1). Using Definition 2.6 in [5], we
obtain 1,(s) < a=2(s72 — 1) + C(0) a=* for s € [#,1]. Consequently, if a is
sufficiently large, then we have

Fo(z, 62 < a”

-2
F(z,fﬁ)2 — 1) +C)a*

whenever log(—t) > %23 %, z| > M+/—t, and F(z,t) > 6y/—2t. We now

put log(—t) = %ifg “—22 Hence, if —t is sufficiently large, then we have

F.(z,1)* <

M2 42 1 —2t C(9)
M? —2 2log(—t) <F(z,t)2 B ) W

whenever |z| > M+y/—t and F(z,t) > 6y/=2t. Now, in the region |z| >
M+/—t, we have
M? -2 L2
8log(—t) ~ F(z,t)2

1.
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Consequently,
M24+C@H) 1 ( -2t 1)
M2 —2 2log(—t) \F(z,t)?
whenever |z| > M+y/—t and F(z,t) > 0y/—2t. This proves the assertion.

FZ(Z7t)2 =

Corollary 6.2. Fiz a small number 6 € (0, %) If —t is sufficiently large
(depending on 6), then

c(o)
log(—t)
whenever |z| > 10y/—t and F(z,t) > 0+/—2t.

Proof. Recall that F,(z,t) < 0 at each point in space-time. Moreover,
Corollary implies F.(z,t) > 0 for z < —y/—t and F,(z,t) < 0 for
z > y/—t. Using the evolution equation for F', we obtain

Fi(z,t) = F..(z,t) — F(z,t) "1 (1 — F(2,1)?)
2 Fy( zt/ Fzzz t

< —F(z,t)” (1—F(zt))
for |z| > /—t. Applying Proposition [6.1| with M = 10 gives F.(z,t)? <
CO)  whenever |z| > 10/—t and F(z,t) > 6y/—2t. Putting these facts

log(—t)
together, we conclude that
c(0) )

Fi(z,t) < —F(z,t)_l (1 - log(—t)

whenever |z| > 10y/—t and F(z,t) > 6+/—2t. From this, the assertion fol-

lows.

—(F%)y(z,t) > 2 —

Proposition 6.3. Fiz a small number 6 € (0, 2) and a large number M >
10. If —t is sufficiently large (depending on @ and M ), then

M?+C(9) 22
M2 —2 2log(—t)
whenever |z| > M+\/—t and F(z,t) > 0/—2t.
Proof. Proposition implies

0 M2 +C(9) 1
— /=9 — , 2| <
’82 2= Flz1) ‘ - M2 —2 2log(—t)

whenever |z| > M+/—t and F(z,t) > 6+/—2t. Moreover, by Proposition

we have
1
V=2 —F(zt)2 <, [————
=07 <\ G100 ¥

F(z,t)? > =2t —
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for |z| = M+/—t. Consequently,

M2+ C(9) 1 o
M2 —2 2log(—t)

—2t — F(z,t)2 <

whenever |z| > M+/—t and F(z,t) > 6y/—2t. From this, the assertion fol-
lows.

Proposition 6.4. Fiz a small number 0 € (0, %) and a large number M >

20. If —t is sufficiently large (depending on 6 and M ), then
M? - C(9) 22

M? 2log(—t)
whenever |z| > M+/—t and F(z,t) > 0+/—2t.

Proof. Let us fix a point (2, tg) such that |z9| > M+/—ty and F(z,to) >
2
0v/—2ty. Let t. := —12%. Clearly, ¢, < to, and |z9| > M+/—t > 20y/—t for
all t € [t.,to]. Hence, Corollary implies that
c(9)
log(—t)
for all times ¢t € [t.,to] satisfying F'(z9,t) > 6+/—2t. Since F(zp,t9) >
6\/—2ty, we conclude that F(zp,t) > 6v/—2t for all times ¢t € [ts, o], and

furthermore

F(z,t)* < =2t —

—(F%)y(20,t) > 2 — > 262

Lo ., co
log(—t) log(—to)
for all times t € [t,, to]. Integrating this inequality over [t., to] gives

—(F?)(29,1) > 2

F(Zo,t*)2 - F(Zo,t0)2 > 2ty — t) — C(6) lo(g_(i*t)o)

On the other hand, since |29| = M+/—t,, Proposition implies

F(20,ts)? = —2t, — (M?* - 2) (1) i O< (—ts) )

2log(—t4) log(—t.)
< =2, — (M? — 4) ﬂ.
210g(_t*)
Putting these facts together, we obtain
—ts) (—ts)
F t2<—2t—M2—4(7* 0) ————.
(20,t0)" = =2t = ( ) 2log(—t.) c®) log(—tp)
Using the identity t, = —AZ—?}Q, we conclude that

M? —4 22 cO) 22
M2 2log(—ty)  M? log(—to)

F(Zo,t0)2 S *2750 —
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Finally, Corollary gives |20| < v/—to log(—to). This implies —t, < 22 <
(—to) (log(—t9))?, hence log(—t.) < log(—to)+2log log(—to) < 4f2=¢ log(—to).
Therefore,

M? -6 22 cO) =z

F(zo,t0)> < —2tg — '
(207 0) = 0 M2 210g(—t0) + M? IOg(_tO)

This completes the proof.

Combining Proposition [6.3] and Proposition [6.4] and sending M — oo, we
can draw the following conclusions:

Corollary 6.5. Fiz a small number 6 € (0, ) If —t is sufficiently large (de-
pending on 0), then the set {z : F(z,t) > 9\/—2 }is an interval [—Z1(0,t), Z2(0,1)],

and
z1(0,t) = (2+0(1)) V1 —6%2+/(—t)log(—
Z2(0,t) = (2+0(1)) V1 — 62 \/(—t) log(—

Corollary 6.6. Fix a small number 6 € (0, %) If —t is sufficiently large

(depending on 0), then

22
F(z,t)* = -2t — Toa(—1) + o(—t)

for |2] < 2v1 —02,/(—t)log(—t).
7. ASYMPTOTICS IN THE TIP REGION

In this final section, we analyze the asymptotics of the solution near
each tip. For each t, the function z — F'(z,t) is defined on the interval
[—dtip1(t), diip2(t)], where dyip1(t) and dyip2(t) denote the distance of the
reference point ¢ from each tip. We first derive an asymptotic formula for
dtipJ(t) and dtjp72(t).

Proposition 7.1. We have
lim —dtip’l ®) = lim —dtip’z ® =
t==o0 y/(—t) log(—t)  t==oc \/(—t) log(—t)

Proof. For each 6 € (0,1), we have dyp1(t) > 21(6,t). Using Corollary
we obtain

lim inf dtip’—l(t) > lim inf & =
tmmeo /(=) log(—t) 1770 /(1) log(—t)
for each 0 € (0, 7). Moreover, since the function 2 — F(z,t) is concave, we
have 3 (21(20,t) + dyip,1(t)) < 21(0,t). Using Corollary we obtain
i 2 —z1(2
lim sup —dt p’l(t) < limsup 2(0.1) — 2(20,1) =
to—co /(—t) log(—t) = t—-oco (—t) log(—t)

1—6?

=41 - 62-2/1 — 462
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for each 6 € (0,%). Sending 6 — 0 gives lims % = 2. An
—0) log(—
dtip72(t)

analogous argument gives lim; ., o s (D 2. This completes the
1) log(—

proof.

Finally, we analyze the asymptotic behavior of the scalar curvature at
each tip. We first recall a basic fact about the Bryant soliton:

Lemma 7.2. Consider the Bryant soliton, normalized so that the scalar
curvature at the tip equals 1. Let v be a geodesic ray emanating from
the tip of the Bryant soliton which is parametrized by arclength. Then

Ji* Ric(x/(s),/(5)) ds = 1.
Proof. See [5], Lemma 4.3.

We now continue with the analysis of our ancient solution.

Lemma 7.3. We have —%dtipyl(t) = (1+0(1)) Rtip,l(t)% and —%dtipg(t) =
(1+0(1)) Riipa(t)?.

Proof. In the following, we assume that a small number § > 0 is given.
Let p1,p2 € S3 denote the two tips, so that dip1(t) = dg(t)(p1,q) and
diip2(t) = dy(r)(p2, q), where g is our fixed reference point. Note that p1, pa,
and ¢ represent fixed points on the manifold. Let us fix a time ¢, and let ~
denote the minimizing geodesic from the tip p; to the reference point ¢ with
respect to the metric ¢(t), so that 7(0) = p1 and ~y(dtip,1(t)) = ¢. In view of
Lemma and Proposition we can find a large constant A (depending
on 4) such that A > 851 and

NI

. [AR@LY? 5
(-0 Ryt < | Rie(+/(5),7/(s)) ds < (1+ 5) Rip1, )

if —t is sufficiently large (depending on ¢ and A). We next observe that v is
part of a minimizing geodesic from p; to py of length dip 1(t) + diip2(2).

Moreover, Corollary and Proposition imply that AR(p1,t)_% <
diip2(t) if —t is sufficiently large (depending on A). Hence, we may ap-
ply Theorem 17.4(a) in [19] with 0 = AR(p1,t)"2 and L = dsipa(t) +
AR(p1,t)7% < dyip1(t) + diipo(t). This gives

N |=

din1 (1) i / / 1 1
OS/ , Ric(v'(s),7'(s)) ds <4A7" R(p1,1)z.
AR(p1,t)” 2

Putting these facts together, we obtain

[
NI

diip,1(t) 5
=0 Rt < [ Rl (9,7/()) ds < (14§ +447) R, ).
0
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if —t is sufficiently large (depending on § and A). Thus, we conclude that

d )
< _£dtip71(t) <1+ ) + 41471) Riip,1(t)
if —t is sufficiently large (depending on § and A). Since 447! < % and
§ > 0 can be chosen arbitrarily small, it follows that —%dyp1 () = (1 +

o(1)) Rtip,l(t)%- An analogous argument gives — % dyp 2(t) = (1+0(1)) Rtipﬁg(t)%.

N
[N

(1 —6) Reip,1(?)

Proposition 7.4. The scalar curvature at each tip satisfies Ryip1(t) = (14

0(1)) 852 and Ryp(t) = (14 0(1)) “E5.

Proof. Let ¢ € (0, 3) be given. By Lemma we know that

d
(1 —¢)y/Reipa(t) < —£dtip,1(t) < (T+¢)y/Ruipa(t)

if —¢ is sufficiently large (depending on ¢). By Hamilton’s Harnack inequality
[18], the function ¢ — Ryip1(t) is monotone increasing. Consequently,

drip,1 (1 + €)t) — dip,1(t) < e(1+¢€) (=) \/ Reip,1 (¢)
and
diip,1(t) — diip1 (1 — €)t) 2 e(1 =€) (—t) \/ Reip,1(¢)

if —t is sufficiently large. Using Proposition |7.1} we obtain

2T H% =2 = liming 20 (L E)D) — deipa (1
e (=) log(~1)

(—t) Riip,1(t)
log(—t)

<e(l+¢)liminf
t——o0

and

92— 2T —¢ = limsup diip,1(t) — diip ((1 — €)1)
t——00 (—t) log(—t)

. (—t) Riip,1(t)
> (1l —¢)limsu R
2 el ) P log(—t)

(_t) Rtip,l (t)
log(—t)

= 1. This completes the proof.

Sending ¢ — 0, we conclude that lim;_,

(=t) Rip,2(t)
log(—t)

= 1. An analogous
argument gives lim;_,_
APPENDIX A. AN ELEMENTARY ESTIMATE FOR THE ONE-DIMENSIONAL

HEAT EQUATION

In this section, we prove an elementary estimate for the one-dimensional
heat equation on the interval [—1,1] with Dirichlet boundary conditions.
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This estimate is needed in the proof of Proposition 4.4l Recall that the heat
kernel for the Dirichlet problem is given by

1 _ (a—y+4k)® y+4k) — (tyteo2)?
Kifey) = | e 50 i

keZ kEZ

for z,y € [-1,1] and ¢t > 0. Note that K(x,1) = K¢(x,—1) = 0. We first
record some basic properties of the Dirichlet heat kernel K(z,y):

Lemma A.1. We can ﬁnd a large constant C such that the following holds:

(i) K1(0 y) > & cos T for ally € (—1,1).

(ii) 83:2 Ki(z,y ‘ |<Ccos s for ally € (—1,1).

(iii) —+5K(0, )‘: lt 3 e and 2 KtOy‘_71>%t*%efﬁfor
allte( 1].

: 1 1 2
(iv) ‘W@Kt(x’y”xzo,y:l‘ <Ct ze % and ‘%%Kt(x,y)‘
7 1
Ct ze 1 forallte (0,1].

z=0,y=—1 ‘ <

Proof. We can find a small constant 7 € (0, 1) such that the following
holds:

° ——Kt 0,9) ‘ =1 > %f% e~ and (%Kt(o,y)!
all £ € (0, 7],
_7 _ L 92 o
‘d:@ 8th(x y)|x:07y:1‘ < Ct7z e and ‘W%Kt(‘r’y)‘zzo,y:—l‘ <
Ct2e 1 forallt € (0, 7].
In particular, —(%KT(O,y)‘y:l and %KT(O,y)}y:_l are positive numbers.

Since K,(0,y) > 0 for all Y € (—1,1), we can find a small number £ > 0
such that K (0,y) > € cos & for all y € (—1,1). The maximum principle

3 1
=1 > %tif e~ 1t for

24

now implies K;(0,y) > ce” 1 cos ¥ for all y € (—1,1) and all ¢ € [r,1].

M

us

In particular, K1(0,y) > ee™ 1 cos 5. From this, statements (i), (iii), and
(iv) follow.
To prove statement (ii), we observe that the function y azg e (x, y)|

is smooth, and vanishes at y = 1 and y = —1. Consequently, !(%2 Ki(x,y ‘:1::0} <
C cos B! for all y € (—1,1). This proves (ii).

Proposition A.2. Let h(z,t) be a nonnegative solution of the heat equation
hi — hyr = 0 on the rectangle [—1,1] x [—1,0]. Then, for each € (0,1),

|h2s(0,0)] < Cu 2 h(0,0) + Ce™%  sup  h,
{—-1,1}x[-1,0]

where C' is a constant.

Proof. The idea is to use the Greens representation formula for the
Dirichlet problem for the heat equation on a rectangle. Fix a point =z €
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(—1,1). For each t € (0,1], we define
1
)i= [ Kile.) b~ dy
Then

1
1) = [ [blo.=0) 5 Kala) + Kilas) gty —0)] dy

1 2 2

? ?
= . [h(y7 _t) 872/2[{ (:Uay) - Kt(x7y) a Qh( )] dy
— h(1,~t) aath(x,y) L h(1 ) ;th(a;,y)‘y_l.

We now integrate this identity over ¢ € (0, 1]. Since lim;_0 I(¢) = h(x,0), it
follows that

1
Mamzﬁgnmwm%AMy

! 0
- /0 h(la_t) %Kt(x7y)‘ dt

y=1
! 0
+/0 h(_la_t) %Kt(xvy)‘y:_l dt

for z € (—1,1). We now put z = 0. Using part (i) and (iii) of Lemma

we obtain

1 [t Y
h(0,0) > C’/ COSTh( —1)dy
-1
1 (' s 1
+ / t=2 e~ [h(1, —t) + h(—1, —t)] dt.
¢ Jo

Similarly, using part (ii) and (iv) of Lemma we obtain

|m00]<0/ cos—h —1)dy

+ C/ t7% e at [h(1, —t) + h(—1, —t)] dt.
0
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Putting these facts together, we conclude that

| mooy<c/ cos ™2 h(y, ~1) dy
+C/ 5 et [h(1, —t) + h(—1, —t)] dt
+c/ 1% e [h(1, —t) + h(—1, —0)] dt
<C/ cos—h —1)dy
s /t S e [(h(1,—) + h(—1, )] dt
.

+Ce /M[h(l, —t) + h(—1,—b) dt
0

< Cu~?h(0,0) + Ce ® sup h
{-1,1}x[-1,0]

for each p € (0,1). This completes the proof.

APPENDIX B. THE BRYANT SOLITON

In [9] Bryant showed that up to constant multiples, there is only one com-
plete, steady, rotationally symmetric soliton in dimension three that is not
flat. It has positive sectional curvature. The maximum scalar curvature is
equal to 1, and is attained at the center of rotation. The complete soliton
can be written in the form g = dz ® dz + B(z)? gg2, where z is the distance
from the center of rotation. For large z, the metric has the following asymp-
totics: the aperature B(z) has leading order term v/2z, the orbital sectional
curvature K1, has leading order term %, and the radial sectional curvature
412

Sometimes it is more convenient to write the metric in the form ®(r) =1 dr?+
72 gg2, where the function ®(r) is defined by ®(B(z) ( )2 The
function ®(r) is known to satisfy the equation

K, aq has leading order term

S V() 7 (1= () (r2/(r) + 28(r)) = 0.

The orbital and radial sectional curvatures are given by K, = %2 (1—=®(r))

O(r)d" (r) —

and K,aq = —5 ®/(r). It is known that ®(r) has the following asymptotics.
Near r = 0, ® is smooth and has the asymptotic expansion

O(r) =1+ byr? + o(r?),

where by is a negative constant. As, r — oo, ® is smooth and has the
asymptotic expansion

O(r)=cor 2+ 23~ +o(r™),
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where cg is a positive constant.

We will next find (for the convenience of the reader) the exact values of
the constants by and cg in the above asymptotics for the Bryant soliton of
mazimal scalar curvature one.

Recall that the scalar curvature is given by R = 2Ky + 4K,a9. The
maximal scalar curvature is attained at z = 0, at which point K1, = Kyag.
The maximal scalar curvature being equal to 1 is equivalent to Ky, =
Kiaq = % at z = 0. On the other hand, the asymptotic expansion of ®(r)
gives Ko, = r% (1 —®(r)) = —bg + o(1) as r — 0. Consequently, by = —¢.

Bryant’s asymptotics imply that for z sufficiently large, the aperture
satisfies 7 = (1 + o(1)) V22, implying that 2z = (1 + o(1))r%. The ra-
dial sectional curvature satisfies Kiaq = (1 + o(1)) é = (14 o(1)r 4
for r large. On the other hand, the asymptotic expansion of ®(r) implies
Krad = —5- ®'(r) = (1+0(1)) cor—* for r large. Comparing the two formu-
lae, we conclude that ¢y = 1.

Summarizing the above discussion we conclude the following asymptotics
for the Bryant soliton with mazimal scalar curvature equal to one:

_ 2
B(r) = 1 — % +o(r?) asr — 0,
r=2 4 2r74 L o(r %) as r — oo.
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