UNIQUENESS OF COMPACT ANCIENT SOLUTIONS TO
THREE-DIMENSIONAL RICCI FLOW
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ABSTRACT. In this paper, we study the classification of k-noncollapsed
ancient solutions to three-dimensional Ricci flow on S3. We prove that
such a solution is either isometric to a family of shrinking round spheres,
or the Type II ancient solution constructed by Perelman.
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1. INTRODUCTION

Consider a solution to the Ricci flow %g(t) = —2Ricyy) on a compact

three-manifold which exists for all ¢ € (—oo, T']. Such a solution is called an
ancient solution. The goal in this work is to provide a classification of such
solutions under natural geometric assumptions.

Ancient compact solutions to the two-dimensional Ricci flow were classi-
fied by Daskalopoulos, Hamilton, and Sesum [13]. Tt turns out that in this
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case, the complete list contains only the shrinking spheres (which are non-
collapsed) and the King solution (which is collapsed). The King solution is
not self-similar, but it can be written in closed form. It was first discovered
by King [17] in the context of the logarithmic fast diffusion equation on R?
and later independently by Rosenau [20] in the same context. It also appears
as the sausage model in the context of quantum field theory (see [14]). Let
us remark that the classification work in [13] classifies both collapsed and
noncollapsed solutions.

We now turn our attention to the three-dimensional Ricci flow. In [10],
it was shown that any three-dimensional ancient solution on S% with uni-
formly pinched curvature is a family of shrinking round spheres. In [18],
Perelman established the existence of a rotationally symmetric ancient solu-
tion on S? which is k-noncollapsed and which is not a soliton. This ancient
solution is of Type II backwards in time, namely its scalar curvature sat-
isfies limsup;_, o (—%) Rmax(t) = co. Going forward in time, the solution
forms a Type I singularity, and shrinks to a round point. Perelman’s an-
cient solution has backward limits which are either the Bryant soliton or the
round cylinder S? x R, depending on how we choose the sequence of points
about which we rescale. Perelman’s ancient solution can be viewed as the
three-dimensional analogue of the King solution. However, unlike the King
solution, Perelman’s ancient solution is noncollapsed.

The noncollapsing property plays a crucial role in the study of the Ricci
flow. In fact, in [18] Perelman proved that every ancient solution arising
as a blow-up limit at a finite-time singularity on a compact manifold is k-
noncollapsed for some k > 0. Moreover, in dimension 3, the well-known
Hamilton-Ivey pinching estimate tells us that any such blow-up limit has
nonnegative sectional curvature. Following Perelman, we say that (M, g(t))
is an ancient s-solution if (M, g(t)) is defined on (—oo, T, is non-flat and
k-noncollapsed, and has bounded nonnegative curvature. It follows from
Hamilton’s Harnack estimate (see [15]) that R; > 0 on an ancient k-solution.
In [18], Perelman proposed the following conjecture:

Conjecture 1.1 (Perelman [18]). Let (M, g(t)) be a noncompact ancient
K-solution to the Ricci flow in dimension 3 with positive curvature. Then
(M, g(t)) is the Bryant soliton.

This conjecture was proved in [6] in the class of steady gradient Ricci
solitons, and in full generality in [7]. The proof in [7] has two main parts. In a
first step, it is shown that the Bryant soliton is the only noncompact ancient
k-solution which has positive curvature and is rotationally symmetric. In
a second step, it is shown that every noncompact ancient k-solution with
positive curvature must be rotationally symmetric.

The following is the analogue of Perelman’s conjecture in the compact
setting:
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Conjecture 1.2. Let (53, g(t)) be a compact ancient r-solution to the Ricci
flow on S3. Then g(t) is either a family of shrinking spheres or Perelman’s
ancient solution.

As announced in [7], the techniques in that paper can also be applied
to show that any ancient s-solution on S® is rotationally symmetric. We
include the proof of this fact in Section 1.3.

Theorem 1.3. Let (53, g(t)) be an ancient r-solution on S®. Then (S3, g(t))
18 rotationally symmetric.

After this result was announced in [7], an alternative approach to Theorem
1.3 was proposed in [4].

Next, we give a complete classification of all ancient -solutions on 53
with rotational symmetry:

Theorem 1.4. Let (S3,g1(t)) and (S3,g2(t)) be two ancient r-solutions
on S3 which are rotationally symmetric. Assume that neither (S3, g1 (t))
nor (S%,g2(t)) is a family of shrinking round spheres. Then (S3,g1(t)) and
(53, g2(t)) coincide up to a reparametrization in space, a translation in time,
and a parabolic rescaling.

Combining Theorem 1.3 and Theorem 1.4, we can draw the following
conclusion:

Theorem 1.5. Let (S3,g(t)) be an ancient k-solution on S which is not
a family of shrinking round spheres. Then (S3,g(t)) coincides with Perel-
man’s solution up to diffeomorphisms, translations in time, and parabolic
rescalings.

Let us mention some related work in the mean curvature flow setting.
Compact, convex ancient solutions to the curve shortening flow were classi-
fied in [12]. In [8],[9], it was shown that the bowl soliton is the only ancient
solution to mean curvature flow which is noncompact, noncollapsed, strictly
convex, and uniformly two-convex. In [2],[3], it was shown that every ancient
solution to mean curvature flow which is compact, noncollapsed, strictly con-
vex, and uniformly two-convex is either the family of shrinking spheres or
the family of ancient ovals constructed by White (cf. [21]) and Haslhofer-
Hershkovits (cf. [16]). Collapsed ancient solutions to mean curvature flow
were studied in [5].

The outline of the paper is as follows. In Section 2, we recall some qual-
itative properties of ancient r-solutions on S3. In particular, an ancient
k-solution on S? is either a family of shrinking round spheres, or it has
the structure of two caps joined by a tube (in which the solution is nearly
cylindrical). In Section 3, we give the proof of Theorem 1.3.

In Section 4, we establish various a-priori estimates for rotationally sym-
metric solutions, building on our earlier work [1].

In Section 5, we introduce two weight functions py(p,7) and p—(p,7) in
the tip regions. This will be needed to prove the tip region estimates (see
Proposition 6.5).
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In Section 6, we give the proof of Theorem 1.4. The proof is inspired
by the argument in [3]. Let us sketch the main ideas. Suppose we are
given two ancient s-solutions (53, g¢1(t)) and (53, g2(t)) which satisfy the
assumptions of Theorem 1.4. These ancient solutions can be described by
profile functions Fj(z,t) and Fy(z,t). As in [1], the profile function gives
the radius of a sphere of symmetry which has signed distance z from some
reference point. The results in Section 4 (and our earlier results in [1]) give
precise asymptotic estimates for the profile functions Fj(z,t) and Fy(z,t).

We work on a time interval (—oo,t,], where —t, is very large. We intro-
duce a three-parameter family of profile functions Fy' A 7(z,t). These differ
from the original profile function Fy(z,t) by a change of the reference point
(represented by the parameter a); a translation in time (represented by the
parameter (3); and a parabolic dilation (represented by the parameter 7).
Our goal is to show that there exists a time ¢, and parameters «, 8,y such
that Fy(z,t) = F$?7(z,t) for all t € (—oo, t.].

To prove this, we consider two regions, the tip region and the cylindrical
region. Roughly speaking, the tip region consists of points in space-time
where the radius of the sphere of symmetry is < 6v/—2t, while the cylindrical
region consists of point in space-time where the radius of the sphere of
symmetry is 2 0+/—2t. Here, 0 is a small positive constant which will be
chosen later.

The first main ingredient is a weighted estimate for the difference of two
solutions in the tip region (see Proposition 6.5). This estimate uses the
weight functions p4(p,7) and p—_(p,7) introduced in Section 5. The tip
region estimate works as long as we choose the parameter 6 small enough.
From this point on, we fix 6 sufficient sufficiently small, so that the tip region
estimate holds. We next analyze the difference of the two solutions in the
cylindrical region. To that end, it is useful to perform a rescaling. We define

Gule,7)im ek P e~ ) =V,
G5 (€ ) = ef F(eThe —e ) = V2,
and
HOPV(E, 1) = Gy (&, 7) — Ggm(fﬂ-)'

Moreover, we introduce a cutoff in space which allows us to localize the
function H*?Y to the cylindrical region. We put

HEPV(€,7) = xe((—7)"26) HO (€, 7),

where x¢ denotes a smooth, even cutoff function satisfying x¢ = 1 on

—Tx

[0,4/4 — %] and x¢c =0 on [y/4 — %,oo). Finally, we write ¢, = —e

Given a time 74, we choose the parameters «, 3,y such that the function
Hp #(.,7,) is orthogonal to the Hermite polynomials of degree 0, 1, and
2. This gives three orthogonality relations for the three parameters «, 3, .
Note that the orthogonality relations depend on #, but this does not pose a

problem, as we have already fixed 6 at this stage.
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For this choice of the parameters «, 3,7, we are able to prove an en-
ergy estimate for the function Hg cl (see Proposition 6.7). The estimate in
Proposition 6.7 contains a term

2
sup e~ HOPY (¢, 7V de dr’

.
T<Tx /7-1 A\/4f (*T/)%S\ﬂﬁ\/ 4*% (*7'/)%}
which arises from the cutoff. Crucially, this term can be controlled using
the tip region estimate (cf. Proposition 6.5). The upshot is that, for this
particular choice of a, 3,7, we can control the function Hp A7 in terms of a

scalar function a®??, which represents the orthogonal projection of Hg P to
the Hermite polynomial of degree 2 (see Proposition 6.8).

The final ingredient is an ODE for the function a®?” (see Proposition 6.9).
Using this ODE together with the relation a®?7(7,) = 0, we can conclude
that anp,(7) = 0 for all 7 € (—o0, 7]. From this, we deduce that G(§,7) =
G5V (€,7) for all (—oo,7,]. This finally gives Fi(z,t) = F577(z,t) for all
t € (—o0,tyl.

2. STRUCTURE OF COMPACT ANCIENT K-SOLUTIONS

In this section, we recall some basic facts about the structure of compact
ancient k-solutions. Throughout this section, we assume that (M, g(t)) is
a three-dimensional ancient x-solution which is compact and simply con-
nected. Moreover, we assume that (M, g(t)) is not a family of shrinking
round spheres. Note that M is diffeomorphic to S® by work of Hamilton.

Proposition 2.1. The asymptotic shrinking soliton associated with (M, g(t))
is isometric to the cylinder S? x R.

Proof. By Perelman’s classification of shrinking gradient Ricci solitons
in dimension 3 (cf. [19]), the asymptotic shrinking soliton associated with
(M, g(t)) either has constant sectional curvature, or it locally splits as a
product. If the asymptotic shrinking soliton associated with (M, g(t)) has
constant sectional curvature, then, by Hamilton’s curvature pinching esti-
mates, the solution (M, g(t)) has constant sectional curvature for each ¢,
contrary to our assumption. Therefore, the asymptotic shrinking soliton
associated with (M, g(t)) must be isometric to either the cylinder S? x R, or
a quotient of the cylinder S? x R. The asymptotic shrinking soliton cannot
be a compact quotient of S? x R. Furthermore, if the asymptotic shrinking
soliton is isometric to a Zg-quotient of the cylinder S? x R, then it contains
an embedded RP?, but this is impossible since M is diffeomorphic to S°.
Therefore, the asymptotic shrinking soliton must be isometric to the cylin-
der S? x R.

Proposition 2.2. Let (zy,t) be an arbitrary sequence of points in space-
time satisfying limy_ ot = —oo. Let us perform a parabolic rescaling
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around the point (x,tx) by the factor R(xy,ty). After passing to a sub-
sequence, the rescaled flows converge to a limit which is either a family of
shrinking cylinders or the Bryant soliton.

Proof. By Perelman’s work [18], the rescaled manifolds converge to an
ancient k-solution. If the limiting ancient solution is noncompact, then, by
[7], it must be either a family of shrinking cylinders or the Bryant soliton,
and we are done. Hence, it remains to consider the case when the limiting
ancient solution is compact. In this case, we have

lim sup Rmax (tx) diarng(tk)(M)2 < 0.
k—o0
This implies that (M, g(t;)) cannot contain arbitrarily long necks. On the
other hand, since the asymptotic shrinking soliton is a cylinder by Propo-
sition 2.1, we know that (M, g(tx)) must contain arbitrarily long necks if k
is sufficiently large. This is a contradiction. This completes the proof of
Proposition 2.2.

In the next step, we fix a small number ¢; > 0. For later purposes, it
is important that we choose €1 small enough so that the conclusion of the
Neck Improvement Theorem in [7] holds. Moreover, we fix a small number
6 > 0 with the following property: if (z,t) is a point in space-time satisfying
A(z,t) < OR(z,t), then the point (z,t) lies at the center of an evolving
ei-neck. Here, \1(z,t) denotes the smallest eigenvalue of the Ricci tensor at

(z,1).

Definition 2.3. We say that p is a tip of (M, g(t)) if A1(p,t) > ¢ R(p,t)
and VR(p,t) = 0.

By work of Hamilton, every neck admits a canonical foliation by CMC
spheres. This will be referred to as Hamilton’s CMC foliation.

Proposition 2.4. Consider a sequence of times t, — —oo. If k is suffi-
ciently large, we can find two disjoint compact domains €y and Qo j, with
the following properties:

o Oy and o are diffeomorphic to B3.

o For each point x € M \ (211 UQa ), we have \i(x,t) < OR(x, ).
In particular, the point (z,ty) lies at the center of an evolving £1-
neck.

o For each point x € Qq 1, U Qo ), we have A\i(x,ty) > %HR(CC, tr).

o 0Oy 1, and 0y ), are leaves of Hamilton’s CMC foliation in (M, g(tx)).

e For each k, there exists a leaf ¥y of the CMC foliation with the
property that 1 i, and $do . lie in different connected components of

A1 (z,tr)
R 0

o The domains (1 k,9(tk)) and (Qok,9(tr)) converge to the corre-
sponding subset of the Bryant soliton after rescaling.

M\ X, and SUPgey,
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Proof. By Proposition 2.1, the asymptotic shrinking soliton associated
with (M, g(t)) is a cylinder. Hence, we can find a sequence of points ¢ €

M such that )1\%1(((?:;:)) — 0. In particular, g lies at the center of an &1-
neck if k£ is sufficiently large. Let X; denote the center sphere of this neck.
Since M is diffeomorphic to S3, the complement M \ ¥ has two connected
components. Let us follow Hamilton’s CMC foliation outward to either
side of the neck, until we encounter a point where A\ > %01%. Therefore,
we can find points ¢; ; and g such that \i(qix, tx) = %HR(ql,k,tk) and
M@k te) = %GR(quc, tr). Moreover, ¢ ;, and gz, lie in different connected
components of M \ ¥;. By our choice of §, the point g; j, lies at the center of
an e1-neck, and g ;, also lies at the center of an e1-neck. Let ¥ ;, denote the
leaf of Hamilton’s CMC foliation passing through ¢; 1, and let X ; denote
the leaf of Hamilton’s CMC foliation passing through go . Moreover, let
Ny, denote the tube bounded by ¥;; and ¥pj. Clearly, ¥; C Ni, and
Az, tr) < OR(x,ty) for all z € N.

If we rescale the flow around the point (gi k,tx), then the rescaled flows
must converge to the Bryant soliton by Proposition 2.2. Consequently, there
exists a compact domain )y , such that 0Qy , = 31, Q1 is diffeomorphic
to B3, and A\j(x,t;) > %GR(x,tk) for all z € ;. Similarly, there exists a
compact domain €2y j, such that 0€Qs ;, = X 1, {2y . is diffeomorphic to a ball,

and A1 (z,t) > 5 OR(z,ty) for all z € Qo . Since SUDgex, )}%((;f:)) — 0, it fol-
lows that € ;U ,, C M\ Xy, if k is sufficiently large. Since gy 1 and ga i, lie in
different connected components of M\, we conclude that §2; , and Qg ;, are
contained in different connected components of M \ ¥j. In particular, £
and Qy ;, are disjoint. Finally, the complement M \ (€ ;U2 ) is contained
in the tube Ny; therefore, \i(x,t;) < OR(x, ;) for all x € M\ (21 U Qo 1).

This completes the proof of Proposition 2.4.

Corollary 2.5. If k is sufficiently large, then the manifold (M, g(ty)) has
exactly two tips. One of these points lies in 1y}, and the other lies in (o .

In particular, these points are contained in different connected components
Of M \ Ek.

Proof. On the Bryant soliton, the scalar curvature has exactly one crit-
ical point (namely, the tip), and this critical point is non-degenerate. By
Proposition 2.4, the domains (2 , g(t5)) converge to a domain in the Bryant
soliton. Hence, if k is sufficiently large, then the set {x € Q1 : i (2, tg) >
L R(x,ty), VR(z,t),) = 0} consists of exactly one element. An analogous ar-
gument shows that the set {z € Qo : A1 (2, ) > & R(w, 1), VR(x, ;) = 0}
consists of exactly one element. Since {x € M : A\(z,t;) > & R(z,t)} C
Q1 ,UQs 1, we conclude that {z € M : \i(z,t;) > & R(z,tx), VR(z,t;,) = 0}
consists of exactly two elements.
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Proposition 2.6. Consider a sequence of times t, — —oo. Let p1y4, and
pat, denote the tips in (M, g(ty)). If we rescale the flow around (pi4,,tk)
or (p2,t,,tr), then the rescaled flows converge to the Bryant soliton in the
Cheeger-Gromov sense.

Proof. This follows immediately from Proposition 2.2.

Proposition 2.7. Consider a sequence of times t, — —o0o. Let p1y4, and
P2, denote the tips in (M, g(ty)). Then R(pi ey, tr) dg(e,)(P1,t: P2,4,)° — 00
and R(pak,tr) dg(tk)(pl,tk7p2,tk)2 — O0.

Proof. Suppose that limsup;_ ., R(p14,,tr) dg(tk)(p17tk,p27tk)2 < 00. By
Corollary 2.5, p1 4, and pa ¢, are contained in different connected components
of M\ ¥j. Consequently, we can find a sequence of points yi € ¥ such that
lim supy,_, oo R(p14t,,tk) dg(tk)(pl,tka yr)? < oo. By Perelman’s longrange cur-
vature estimate, we obtain lim supy_, .o R(p1.4,,tx) "t R(yk, tx) < co. Putting
these facts together yields limsupy_,. R(Y, tx) dg(e,) (1, Yk)* < 00. On

the other hand, MWets) () gince Yk € Xg. From this, we deduce that

R(yk,tx)
A1 (p1,y 5th) . . 1
W’% — 0. This contradicts the fact that A1 (p1s,,tx) > g R(p1,t,tk)

for each k. This completes the proof of Proposition 2.7.

Proposition 2.8. Consider a sequence of points (xy,t) in spacetime such
that t, — —oo. Let p1y, and pay, denote the tips of (M, g(ty)). If both
R(pl,tkytk‘) dg(tk)(pl,tk7$k)2 — 00 and R(pZ,tkvtk‘) dg(tk)(pZ,tk ’ x/ﬂ)Q — 00, then

A1 (xk 7tk2)
Rloni) Y-

A1 (2, tk)
R(mkatk)
around the point (xy, tx) by the factor R(xg, ), and pass to the limit as k —
o0o. By Proposition 2.2, the limit must be the Bryant soliton. Consequently,
there exists a sequence of points y € M such that A\j(yg, tx) > %R(yk,tk),

VR(yg,tr) = 0, and limsupy_, R(:Uk,tk)dg(tk)(ark,yk)Q < 00. Perelman’s

> 0. Let us rescale the flow

Proof. Suppose that limsup;_, ..

longrange curvature estimate implies lim supy,_, . R(xx, tx) ™' R(yk, t) < o0o.
All the above together yield lim supy, o, R(yk. tk) dg(s,) (@, yr)? < 0o. Since
R(pl,tk7tk) dg(tk)(pl,tmwk)z — oo and R(pg,tk,tk) dg(tk)(pg,tk,.CU]C)2 — 00, it
follows that yi ¢ {p1+,,p2+,} if k is sufficiently large. Therefore, the set
{x € M : \(z,t;) > £ R(z,tk), VR(z,t;) = 0} contains at least three
elements if k is sufficiently large. This contradicts Corollary 2.5. This com-
pletes the proof of Proposition 2.8.

By combining Corollary 2.5, Proposition 2.6, Proposition 2.7, and Propo-
sition 2.8, we can draw the following conclusion:

Corollary 2.9. (i) If —t is sufficiently large, then the manifold (M, g(t))
has exactly two tips p1; and pas, and these vary smoothly in t.



UNIQUENESS OF COMPACT ANCIENT SOLUTIONS 9

(ii) Suppose that a large number A is given. If —t is sufficiently large (de-

pending on A), then the balls By (p1,t, AR(p1.t, t)_%) and By (p2,t, AR(p2t, t)~

are disjoint.
(iii) Suppose that a large number A and a small number € > 0 are given.
If —t is sufficiently large (depending on A and €), then the solution in the

ball By (p1t, AR(p1.t, t)_%) is (after a suitable rescaling) e-close to the cor-
responding piece of the Bryant soliton in the Cheeger-Gromov sense. Sim-
ilarly, the solution in the ball By (pQ,t,AR(pg,t,t)*%) is (after a suitable
rescaling) e-close to the corresponding piece of the Bryant soliton in the
Cheeger-Gromouv sense.

(iv) Given € > 0, we can find a time T € (—00,0] and a large constant A

with the following property. If t < T and x ¢ Bg(t)(pl,t,AR(pl,t,t)_%) U
By (pg,t,AR(pg,t,t)fé), then (x,t) lies at the center of an evolving e-neck.

3. ROTATIONAL SYMMETRY OF COMPACT ANCIENT K-SOLUTIONS AND
PROOF OF THEOREM 1.3

In this section, we give the proof of rotational symmetry. Throughout
this section, we assume that (M,g(t)) is a three-dimensional ancient k-
solution which is compact and simply connected. Moreover, we assume
that (M, g(t)) is not a family of shrinking round spheres. We claim that
(M, g(t)) is rotationally symmetric. The proof is by contradiction. We will
assume throughout this section that (M, g(t)) is not rotationally
symmetric.

As in the previous section, we fix a small number ¢; > 0 and a large
number L so that the conclusion of the Neck Improvement Theorem in [7]
holds. Moreover, we fix a small number 6 > 0 with the following property:
if (z,t) is a point in space-time satisfying A\ (z,t) < OR(z,t), then the point
(x,t) lies at the center of an evolving e1-neck.

We begin with a definition, which is adapted from [7]:

Definition 3.1. We say that the flow is e-symmetric at time ¢ if there exist a
compact domain D € M and time-independent vector fields UM, U2, y®)
which are defined on an open set containing D such that the following state-
ments hold:

e The domain D is a disjoint union of two domains Dy and Ds, each

of which is diffeomorphic to B3.

A (z,t) < OR(z,t) for all points x € M \ D.

M (z,%) > 2 0R(x,1) for all points z € D.

0D, and 0Dy are leaves of Hamilton’s CMC foliation of (M, g(t)).

For each x € M \ D, the point (z,t) is e-symmetric in the sense of

Definition 8.2 in [7].

o SUDpy 2y o Ty o2 DN Ly (9()? < €2, where py? =
Supx€D1 R(‘T’ {)

1
2

)
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® SUD D, - 2.1) 2ot a1 3 1D (Lyo (9(1)))]* < €2, where py? :=
Supl‘EDQ R(l‘) {)
e If ¥ C D is a leaf of the CMC foliation of (M,g(t)) satisfying

SUPey; dy(p) (z,0D1) <10 areag ) (8D1)%, then sups, 22:1 P1_2 \(U(a), v)|?

2, where v denotes the unit normal vector to X in (M, g(f)).
e If ¥ C Dy is a leaf of the CMC foliation of (M, g(t)) satisfying

sup ey dg(p) (7, 0D2) < 10 areay s (8D2)%, then supy, 320_, py 2 (U@, 1) 2

2, where v denotes the unit normal vector to X in (M, g(f)).
e If ¥ C Dy is a leaf of the CMC foliation of (M,g(t)) satisfying

SUPgeyx dg(r)(z,0D1) < 10areay (9D1) 2, then

3 2

< 2.

Oab — areag@(E)_Q /E<U(a), U(b))g@ dprg ()

a,b=1
o If ¥ C D5 is a leaf of the CMC foliation of (M, g(t)) satisfying
SUPgeyx dg(r) (2, 0D2) < 10 areayp (8D2)%, then

3 2

< 2.

Oab — areag@(E)_Q /E<U(a), U(b))g@ dprg ()
a,b=1

Remark 3.2. Each tip in (M, g(t)) is contained in D. Moreover, the two
tips lie in different connected components of {z € M : A\i(z,f) > S0R(x,1)};
in particular, the tips lie in different connected components of D. Hence, af-
ter relabeling Dy and Ds if necessary, we have p; 7 € D1 and py 7 € Da. With

this understood, we have diamgs(D1) < C R(py g, f)_% and diamg ) (Dz2) <
CR(pZt-,ﬂ*%. This gives % R(p17t) < R(z,t) < CR(py ,t) for all x € Dy,
and & R(py 1) < R(z,t) < C R(pyz, 1) for all x € Ds.

Lemma 3.3. Suppose that the flow is e-symmetric at time t. If t is suffi-
ciently close to t, then the flow is 2e-symmetric at time t.

Proof. The proof is analogous to the proof of Lemma 9.5 in [7].

Proposition 3.4. Let € > 0 be given. If —t is sufficiently large (depending
on ), then the flow is e-symmetric at time t.

Proof. This follows from Corollary 2.9.

We next consider an arbitrary sequence €, — 0. For k large, we define
tr = inf{t € (—o0, 0] : The flow is not ex-symmetric at time ¢}.

If lim supy,_, o tx > —00, it follows that (M, g(t)) is rotationally symmetric
for —t sufficiently large, and this contradicts our assumption. Therefore,
lim supy,_, o tx = —00.

IN

IN
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For —t sufficiently large, we denote by p1; and po; the tips of (M, g(1)).
Since tp, — —oo, Proposition 2.6 implies that, if we rescale the solution
around (pi14,,tx) by the factor rf,z = R(p1,4,,tk), then the rescaled flows
converge to the Bryant soliton. Sfmilarly, if we rescale the solution around
(p1,t,-tk) by the factor r;i := R(p2,,,tk), then the rescaled flows converge
to the Bryant soliton. 7

Hence, we can draw the following conclusion:

Proposition 3.5. There exists a sequence d — 0 such that the following
statements hold when k is sufficiently large:

e For each t € [t — 5,;1r%7k,tk], we have dg)(p1t,,p1t) < Okr1x and
1—0p <7ij R(prs,t) <1+ 0.

e For each t € [ty — (5,;11"%’,6,@], we have dg)(p2,t,,p2t) < Okrok and
1— 6 <73, R(pag,t) < 1+ 0.

e The scalar curvature satisfies T%,k R(z,t) < 4 and 5% (T;’i dy(t)(P1,t,, )+
Nt < rik R(z,t) < 2K (7"1_; dg(t) (P11, ) + 1)~ for all points
(x,t) € Bg(tk)(thk,ék_lrl,k) X [ty — 5,;1r%’k,tk].

e The scalar curvature satisfies r%k R(z,t) < 4 and 3= (7"2_,1 dy(t) (P2, T)+
1)~ < r%k R(z,t) < 2K (r;i g2, (P24, ) + 1)1 for all points
(x,t) € Bg(tk)(pg,tk,ékflrgvk) X [t — 5,;1T%’k,tk].

e There exists a nonnegative function f1 : Bg(tk)(Pl,tk,(S,;lrLk) X [tr —
5,;17“%,6,75/?] — R such that |Ric — D%f| < 5;97“;,3, IAf1 + |V fi]? —
rl_i] < 5767’1_,137 and | & fL+|V fi]?] < 5kr1_’2. Moreover, the function fi
satisfies 5j (Tf/i dy(t) (P14, 2)+1) < fi(z, £)+1 < 2K (szi dg() (P, )+
1) for all points (x,t) € Bg(tk)(pl,tk,(;];lTl,k) X [tr — 5/;17"%1@?51@]'

e There exists a nonnegative function fa : By, )(p2,t, 5,;17“27;9) X [ty —
5,;17“%?,6,75/?] — R such that |Ric — D?f5] < 5”5,1%? |Afa + |V fa]? —
7’2_13’ < 5kr£z, and | & fo+|V fa]?] < 5kr2_’,%. Moreover, the function fa
satisfies % (7"2_,& dg(t) (P24, x)+1) < fo(x, t)+1 < 2K (rz_i dg(t) (P2, )+
1) for all points (z,t) € By, (P2, 6 o) X [tk — 5,;17“37]{,25/,3].

Here, K is a universal constant.

Proof. By Proposition 2.6, the solution looks like the Bryant soliton near
each tip. From this, the assertion follows.

Lemma 3.6. By a suitable choice of d, we can arrange that the follow-
ing holds. If t € [ty — 5,;1r%k,tk] and dg)(p1,ty,T) < 5,;1 Tk, then 0 <

—%dg(t) (P14, ) < 80 r;,i Similarly, ift € [tk—5;1r§7k,tk] and dg(y) (2,1, *) <
(5,;1 rok, then 0 < —%dg(t) (p2,4,, ) < 80 r;i
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Proof. By Proposition 2.6, the solution looks like the Bryant soliton near
each tip. From this, the assertion follows.

Lemma 3.7. By a suitable choice of 0, we can arrange that the balls
_ _1 z _1 L

By (90, 6 2 R(p1 1)~ %) and By (pa, 05 2R(pas, )~ 4) are disjoint for each

te (—OO7 tk}.

Proof. Since t; — —o0, the assertion follows from Corollary 2.9.

Lemma 3.8. Ift € (—o0,l), then the flow is ei-symmetric at time t.
In particular, if (x,t) € M x (—oo,tr) is a point in spacetime satisfying
M(z,t) < 30R(z,t), then the point (z,t) is eg-symmetric in the sense of
Definition 8.2 in [7].

Proof. The first statement follows directly from the definition of ¢;. The
second statement follows from Definition 3.1.

Recall that L has been defined as the constant in the Neck Improvement
Theorem in [7]. By Corollary 2.9, we can find a time T € (—o0,0] and a
large constant A with the following properties:

o L\/4E <1076,
o If (z,1) € M x (—oo0,T] satisfies dyq)(p17,2) > %R(pl,g,f)*% and
dg(p) (P2,7, ) > %R(pQ,fvi)_%a then A\i(z,t) < %QR(:U,IS) for all points

1

(z,t) € By (z, LR(z,1)"2) x [t — LR(z,1)~1,1].

Lemma 3.9. If (7,t) € M x (—oo,t;] satisfies dy)(p17, T) > %R(p17g,t4)*%
and dgp (P27, T) > %R(ng,f)_%, then (Z,t) is 5 -symmetric.

Proof. By our choice of A, every point in the parabolic neighborhood
By (&, L R(z,1)"2)x [{—L R(z,T) ", ] satisfies A (z, 1) < 10R(x, t). By owr
choice of 6, every point in the parabolic neighborhood By (Z, L R(Z, ) 2) %
[t — L R(z,t)1,7] lies at the center of an evolving 1-neck. Moreover, by
Lemma 3.8, every point in the parabolic neighborhood By (7, L R(z, f)fé )X

[t— L R(z,t)"',%) is eg-symmetric. Hence, the Neck Improvement Theorem
in [7] implies that (Z,?) is S-symmetric.

Lemma 3.10. If (7,t) € Mx[tk—églrik,tk] satisfies Ay < dgp) (1, T) <

_ _ T1 _ 1
0 " 1k then dyy (p1, &) > 5 R(p1 s )2 and dgy (paz, 2) > 5 R(paz, 1) 2.
Similarly, if (Z,t) € M x [t — 5,;17’%7,6,75;{] satisfies Ara g < dgp) (2,1, T) <

1
3

Proof. Suppose that (7,7) € M x [ty — &, 72, tx] satisfies Arqy,
dg®) (P11, T) < 5,;1 r1k. Using Proposition 3.5, we obtain (A — i) 714
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dg(p) (P15, T) < (5,;1 +6)rip and 1 — 9 < r%’k R(py7,t) <1+ 0. Putting
these facts together, we obtain % R(p1 .t f)_% < dgp (P15 T) < 25,;1 R(p1 .t f)_%
if k is sufficiently large. By Lemma 3.7, the balls By (p1 7, 5,;2R(p175, t_)fé)
and By ) (P2, 5];2R(p27{, f)_%) are disjoint. Since dgy (p1 7 7) < 5,;2 R(p1 g, f)_%,

_ _ _1 _1 .
we conclude that dg (pez, 7) > 0,2 R(parst)™2 > L R(pyp,t)~2. This
proves the assertion.

Proposition 3.11. If (Z,t) € M X [ty —2*3'(5,;17“%,6,16;6] satisfies 91k Aryy <
g (P14, ) < (400K L) ™I 6. 1k, then (Z,1) is 2fj*15k-symmetm'c. Simi-
larly, if (i‘,f) € M x [tk—2_j6;1T§’k,?k] satisfies 2300 Arg g < dgi)(p24y,,T) <
(400K L)~/ 5,;1 ok, then (Z,t) is 2797 tey-symmetric.

Proof. The proof is by induction on j. We first verify the assertion
for j = 0. Suppose that (z,t) € M x [ty — 5;;1T%k7tk] satisfies Aryp <
dg®) (P1,t, T) < 5,;1 r1,k- By Lemma 3.10, we know that dyqp(p1g,7) >

%R(plyg,f)_% and dg ) (P27, T) > %R(pQ,g,f)_%. Hence, Lemma 3.9 implies
that (z,t) is S¢-symmetric. This proves the assertion for j = 0.

The inductive step is analogous to the proof of Proposition 9.16 in [7].
Suppose that 7 > 1 and the assertion holds for j — 1. We claim that the
assertion holds for j. To that end, we consider a point (Z,¢) € M x [ty —

2‘j5,€_1r%k,tk] such that 210 Arip < dyp(Pry,,T) < (400K L)~7 5,;1 T k-
Lemma 3.10 implies that dg)(p1z, %) > %R(pl,t—,f)fé and dyp (P27, T) >
2 R(py ., f)_% In view of our definition of A, we obtain A\ (z,7) < 30R(z, ).
Hence, by our choice of 6, (Z,t) lies at the center of an evolving e1-neck.
For abbreviation, we put R(z,t) = r~2. By Proposition 3.5, %rik <r?<
4K 11k dg (p1,ty,, ). This implies

t—Lr* > T —4KLry g dy@ (pra,, 2)
>t —AKL (400K L) 6, r,

—j s—1,2
*2‘](5]{: 'I"Lk
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Furthermore, 2 < 4K 71,k dg(p) (P14, T) < % dg(p) (pljtk,,a?)Q. Since L/ 1+ <

1075, we obtain r < \/%dg(g)(puk,:i) <1076t dg(#) (P1,t,, T). Conse-
quently,
dg(ﬂ (pl,tkvx) > dg(ﬂ (pl,tka j) —Lr
> (1—107°) dy()(P1y. )
> (1—107%) 270 Aryy,
> 2% Ary
for all z € By (%, Lr). Moreover, using the inequalities %rLk < r and
r? <4Krg dg(p (P1,t),,T), we obtain
dg(p (P, T) + 80Lr27"1_,,i < dy (P11, %) + Lr + 80Lr27"1_’i
< dyy(P1y, T) + 82Lr2r;;
< 400K L dg([) (thk , .’Z‘)
< (400K L) 77t 6y
for all € By (7, Lr). Lemma 3.6 implies

dg(t_) (pl,tka li) < dg(t) (pl,tkwr) < dg(f) (pl,tk)x) + 80[47"27’]:’1,,

hence
- '
2]4W Arl,k < dg(t) (thk,a;) < (4OOKL)7]+1 (5];1 Tk

for all (z,t) € By (Z, Lr) x [t — Lr?,t]. Therefore, the induction hypothesis
guarantees that every point in By (Z, Lr) x [t — Lr?, ] is 27 j-symmetric.
By the Neck Improvement Theorem in [7], the point (Z,#) must be 2777 1g;-
symmetric. This completes the proof.

Proposition 3.12. If k is sufficiently large, then the flow is 5 -symmetric
at time tg.

Proof. The arguments in Section 9 of [7] go through unchanged.

Proposition 3.12 contradicts the definition of ¢;. This completes the proof
of Theorem 1.3.

4. A PRIORI ESTIMATES FOR COMPACT ANCIENT k-SOLUTIONS WITH
ROTATIONAL SYMMETRY

We first recall some basic facts about the Bryant soliton.

Proposition 4.1 (R. Bryant [11]). Consider the Bryant soliton, normalized
so that the scalar curvature at the tip is equal to 1. Then the metric can be
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written in the form ®(r)~tdr @ dr + r? gg2, where ®(r) satisfies the ODE

%@’(rﬁ + 772 (1= ®(r)) (r®'(r) + 20(r)) = 0.
Moreover, ®(r) =1 — % +00*) asr — 0 and ®(r) = r=2 +2r 4+ O(r9)
as r — 0.

Proof. See [11], Theorem 1 on p. 17.

o(r)®"(r) -

Proposition 4.2. Let n > 0 be given. If |s| is sufficiently small (depending
onn), then

‘CD((I + s)r)_l — @(T)_l‘ <n (@(r)_l — 1)
for allr > 0.

Proof. We define x(r) = r=2 (®(r)~! — 1). Note that x(r) is a positive
smooth function. Moreover, x(r) satisfies the asymptotic expansions x(r) =
£+ 0(r?) asr — 0 and x(r) =1+ O(r~2) as r — occ. In particular, x(r) is
uniformly bounded above and below by positive constants. Hence, if |s| is
sufficiently small (depending on 7), then

X1+ 8)r) = x(r)] < 3 x(r)
for all » > 0. Therefore, if |s| is sufficiently small (depending on 7), then
(14 )2 x((1+5)r) = x(r)] < (14 8) x((1+ 8)r) = x(r)] + (1 + ) = 1| x(r)
< nx(r)
for all r > 0. This gives
‘<I>((1 + S)T)_l — @(r)_l‘ <n (<I>(7“)_1 — 1)
for all r > 0.

Corollary 4.3. Consider the Bryant soliton, normalized so that the scalar
curvature at the tip is equal to 1. Let us write the metric in the form dz ®

dz+B(2)? gg2. Then there exists a large constant Lo such that j—; (2)2<0
if B(2)? > 14,
Proof. Since r®'(r) + 2®(r) = —4r=* + O(r~%) as r — oo, we con-

clude that r®'(r) + 2®(r) < 0 for r sufficiently large. We next observe that

(d%B (z))2 = ®(B(z)). Differentiating this identity with respect to z gives
2 & B(z) = ®(B(z)). Thus, we conclude that £, B(z)? = B(z) ®(B(z)) +

20(B(z)) < 0 if B(z) is sufficiently large.

Corollary 4.4. Consider the Bryant soliton, normalized so that the scalar
curvature at the tip is equal to 1. Let us write the metric in the form dz ®
dz + B(z)% gg2. Then B(z) d%B(z) — 1 as z — oo.
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Proof. Note that r@(r)% — lasr — oo. Usmg the identity (£ B(z))2 =
®(B(z)), we obtain B(z) di (z) = B(2) ®(B(z ))2 — 1 as z — oo.

We now assume that (93, g(t)) is an ancient x-solution which is not a
family of shrinking round spheres. Let ¢ € S? be a reference point chosen
as in [1]. Recall that ¢ is chosen so that limsup,_, . (—t)R(q,t) < 100 (see
Proposition 3.1 in [1]). In the same paper we showed that if £; - —oco and
if we dilate the flow around the point (g, ;) by the factor (—¢ -)_%, then the
rescaled manifolds converge to a cylinder of radius v/2. Let F(z,t) denote
the radius of a sphere of symmetry in (S, g(t)) which has signed distance z
from point g. The function F'(z,t) satisfies the PDE

*F..(2)t)

d/
o F(t) 7

Fi(z,t) — Fy,(2,t) = —F(z,t)_1 (1-— Fz(z,t)z) —2F,(z,t)

For abbreviation, let H(z,t) := & F(2,t)? +t.

Lemma 4.5. Let Lg be the constant in Corollary 4.3. There exists a time
Ty < 0 with the following property. If t < Ty and F(z,t)? = L} lo(gzt)t), then
H..(z,t) <0.

Proof. Suppose this is false. Then there exists a sequence of times

t; — —oo and a sequence of points z; such that F(z;,t ) L% lo(g(t ),) and
H..(zj,t;) > 0. By the result in [1], the curvature in the tip region behaves

like (2+0(1)) lo(g_(t_j?). Since F(zj,1;)* = L§ 5 ( (tj) iy it follows that the point

(zj,t;) has distance at most C(Ly) 1o(g( )) from one of the tips. Hence,

if we rescale around the point (zj,;), the rescaled metrics converge to the
Bryant soliton. Passing to the hmlt we find a point z, on the Bryant
soliton such that B(zs)? = L3 and %B(z)%:zw > 0. This contradicts
Corollary 4.3.

Lemma 4.6. The function H,,(z,t) satisfies the evolution equation

szt(z t) H,... Z t)

F. t
—2H...(2,1) / FGL D) 1t o p(eat) ™ Fue,t) Hono(211).
Proof. The function H(z,t) satisfies

F t
Hy(z,t) — Hou(z,t) = —2 Ho( zt/ “Z
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This implies
szt(zv t) - szzz(za t)
*F,.(¢,t)
0 F(Zl7t)
—AF,(2,t)> + 4 F(2,8) " Fu(z,1)? Fau(2,).

=—-2H,..(z,1) dz —2F(z,t) "V F.(2,t) H...(z,1)

Since F,,(z,t) <0, the assertion follows.

Proposition 4.7. Let Ly be chosen as in Corollary 4.3 and let Ty be chosen

as in Lemma 4.5. If t < Ty and F(z,t)? > L3 lo(g_(t—)t)’ then H,.(z,t) <O0.

Proof. Suppose this is false. Then we can find a point (zg, o) such that

to < Ty, F(z0,10)? > L2 loﬂg‘(ﬁ)t)o), and H..(20,t0) > 0. In view of Lemma 4.5

and Lemma 4.6, the maximum principle gives
sup H..(z,t) > H,,(20,t9) >0

—t
F(zt)2>L3 lo(g(—)t)

for each t < ty. Let us consider a sequence t; — —oo. For j large, we can find

a point z; such that F(zj,t;)? > L2 lo(g_(ijt)') and H,(zj,t;) > H..(20,t0) >
J

0. Using the inequality F,, < 0, we obtain F.(z;,t;)? > H..(zj,tj) >

H..(20,tg) > 0 for j large. Hence, if we rescale around the points (zj,t;)

and pass to the limit, then the limit cannot be a cylinder. Consequently, the

limit of these rescalings must be the Bryant soliton. Hence, after passing to

the limit, we obtain a point z,, on the Bryant soliton such that B(ze)? > L2
and %B (2)2‘222 > 0. This contradicts Corollary 4.3.

We next recall a crucial estimate from [1].

Proposition 4.8 (cf. [1]). Fiz a small number 6 > 0 and a small number
n > 0. Then

1 22 4+ 2t 22—t
Pt T g 2
2 (8] +t+ 4log(—t) 1 — K log(—t)

if F(z,t) > 4%0 —t and —t is sufficiently large (depending on n and 0).

Proof. By Proposition 6.3 and Proposition 6.4 in [1], we can find a large
number M (depending on 7 and 6) with the property that
22+ 2t ‘ 22
4log(—t)l — 1 log(—t)
whenever |z| > M~/—t, F(z,t) > & —t, and —t is sufficiently large. Hav-
ing fixed M, Propositon 5.10 in [1] implies that
2 _
22 4 2t ‘ < (—t)
4log(—t) log(—t)

1
‘iF(z,t)z—i—t—i—

1
‘§F(z,t)2+t+
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whenever |z| < M+/—t and —t is sufficiently large. Putting these facts
together, we conclude that
22+ 2t 22—t
| <N
4log(—t) log(—t)

whenever F(z,t) > & —t and —t is sufficiently large.

1
5F(,z,t)2+ze+

Proposition 4.9. Let us fix a small number 8 > 0 and a small number
n > 0. Then

R P e
2log(—t)| — K log(—t)
if F(z,t) > 2840 —t and —t is sufficiently large (depending on n and 0).

F(z,t) Fy(z,t) +

Proof. Let 0 € (0,3) andn € (0, 3) be given. We can find a small positive
number g € (0,n) and time Ty with the property that F((1 + u)z,t) >
% —t whenever F(z,t) > % —t and t < Ty. Moreover, by Proposition
4.8, we can find a time T" < T such that

1 22 4+ 2t 22
SF(z )P+t —— | <np
y P&+t e o | = 1 60—ty
whenever z > 2,/—ty, F(z,t) > 4%0 —t,and t <T.

Suppose now that (zg,to) is a point in spacetime satisfying zo > 41/—to,
F(z0,t9) > 2%0 —to, and tg < T. Then F(z,ty) > f&\/—to for all z €
[(1— p)zo, (1 + p)zp]. Consequently,

1 22 + 2t 22
—F(z,t 244 7‘ 0
‘2 (z:t0)" + 1o+ 4log(—to) ! — s 4log(—to)
for all z € [(1 — p)zo, (1 + p)zo]. This implies

lnf F Z7t FZ Z,t +
Ze[(l—u)zo7z0}<( 0) Fx (2, to)

z ) < )
2log(—to)) = " 2log(—to)

and
z 20
sup (F(z,to) F,(z,t) + 7> > —n—
z€[z0,(14p)20] - 2 IOg(—to) 2 1Og(—t0)
By Proposition 4.7, the function z — F'F, is monotone decreasing in the
relevant region. This gives
(- 20

F to) F. t
(ZO7 0) Z(zﬁv 0) + 210g(—t0) =N 210g(—t0)

and a )
+ 1)zo 20
F(z0,t0) Fx(20,t0) + oo > =0 5o .
(20, t0) F=(20,t0) + 2Tos(—to) = " Zlog(—1)
Since p € (0,7m), it follows that

Z Z Z
F(Zo,to) FZ(Zo,tQ) + 0 0 0

2tog(—t0)| = 1T Tiog (o) = Mlog(—t0)’




UNIQUENESS OF COMPACT ANCIENT SOLUTIONS 19

To summarize, we have verified the assertion for z > 44/—t. An analo-
gous argument shows that the assertion holds for z < —4+/—t. Finally, if
|z| < 4y/—t, then the assertion follows from Proposition 5.10 in [1]. This
completes the proof of Proposition 4.9.

Corollary 4.10. Let us fix a small number 8 > 0. Then

E(et) < 20

— /log(—t)
if F(z,t) > 2%0 —t and —t 1is sufficiently large (depending on 0).

Proof. The asymptotic estimates in [1] imply that |z| < (240(1))+/(—t) log(—t).
Hence, the assertion follows from Proposition 4.9.

Proposition 4.11. Let us fix a small number 6 > 0. Then

F(z,t) |Fou(z,t)| + F(z,t)2 |F,..(2,t)] < (o)

-~ Vlog(—t)
if F(z,t) > 1%0 —t and —t 1is sufficiently large (depending on 0).

Proof. Let us fix a small number € > 0. Moreover, we consider a point
(po, to) in space-time with the property that the sphere of symmetry passing
through (po,to) has radius ro > % —to at (po,to). If —tg is sufficiently
large (depending on 6 and ¢), then the point (pg,%o) lies at the center of an
evolving e-neck. Let F (z,t) denote the radius of the sphere of symmetry
which has signed distance z from the point pg. By assumption, F(0,ty) =
rog > 1%0\/—7150. Since the point (po,tp) lies on a neck, we have %ro <
F(z,t) < 10070 and |F,(z,t)| + 70 |Fua(2,t)] 4+ 13 |Foza(z,t)| < 1 for all
(2,t) € [=7T0,70] X [to — 73, t0]. Moreover, since (po,to) lies on a a neck, we
obtain

. 1 - 6 \2 0
F t2>\/F )2 t—t>\/() —to) + (to — 1) > ——/—1
for all (z,t) € [—ro,70] X [to—73, to]. Hence, Corollary 4.10 implies | F,(z, )| <

c(o
k)é()_t) for all (z,t) € [~7r0,70) X [to — 2, o).

The function F satisfies the same PDE as the original function F. In
other words,

Fy(z,t) — Fuoa(2,t) = —F(2,t) " (1 + Fy(2,1)?)

~ ~ z Fz / t 2
+2F,(2, ) F(O,t)lFZ(O,t)—/ F(z’)dz’].
0
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Differentiating this equation with respect to z gives
Fo(z,t) — Fuooy(z,t) = F(2,8) "2 Fy(2,1) (1 — Fu(2,1)?)
—2F(z,t) "L F.(2,t) F..(2,t)
(2, t)?
f( ) dz’]

B ~ ~ z P
+2F,,(2,t) |F(0,t)" ' F,(0,¢t —/ AR A
22(2,t) | F(0,)7 F2(0,2) o P 1)

o F(z,1)?
For (z,t) € [~7ro,70] X [to — 72,t0], we have |F,(z,t)| < %, hence
ogl—to
12 | Fu(z,t) — Foa(z,t)] < %. Using standard interior estimates
og(—to
for parabolic equations, we obtain rq |F.(z,t)| < % for all (z,t) €
og{—to
[0, 78] % [tg — "B #o]. This implies 73 |Fuse(2,8) — Foana(z,1)] < —CEO_
29 2 4 . 0 zZz ’ 22zz\~» — log(*to)
2
for all (z,t) € [-%, %] x [to — 2, to]. Hence, standard interior estimates for
parabolic equations give 72 |F,..(z,t)| < — O for all (z,t) € [-5, 2] x
log(—to) 474
2
[to — 15 tol-
Thus, 7o |F.2(0,t0)] + 78 | Frz2(0,t0)| < % This finally implies
0g{—to
FI|F,.| + F?|F...| < — 90 __ at the point (po,to). This completes the

/log(—to)

proof of Proposition 4.11.

Proposition 4.12. Let us fix a small number 8 > 0. Then

1+ FF,)| < ﬂ
log(—t)
whenever F > % —t, and —t is sufficiently large (depending on 0).

Proof. Using the evolution equation for F', we obtain
1+ F(z,t) Fi(z,t)
= F(2,t) F..(2,1) — Fy(z,1)?

+2F(2,t) F,(2,t) | F(0,t)"' F,(0,t) — /Z
0
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The asymptotic estimates in [1] imply that, for —t sufficiently large, the
domain of deﬁnition of the function z +— F(z,t) is contained in the interval
[—4./(—t log t),4/(—t log . Moreover, if F(z,t) > 18¥0\/—t, then
F(z ) > 100 Vv/—t for all 2/ between 0 and z. Using Corollary 4.10, we
c(o c(o
6) o OB

obtain
z FZ(Z/,t)2 Z/ _ceo _c
/0 F(2,t)? =) < (—t)log(—t) (—t)log(—t)

whenever F(z,t) > W —t, and —t is sufficiently large. Using Corollary
4.10 and Proposition 4.11, we conclude that

C(
14 Flet) Flet)] € —2
log(—t)
whenever F > % —t, and —t is sufficiently large. This completes the

proof.

Proposition 4.13. Let ¢ > 0 be given. Then there exists a large number
L (depending on €) and a time T such that the following holds. If F >

L 10(;5_(2&) and t < T at some point in space-time, then that point lies at the

center of an evolving e-neck.

Proof. This follows from the fact, established in [1], that the scalar cur-

vature at each tip is (1 4 o(1)) lo(g_(l)t)-

Corollary 4.14. Let n > 0 be given. Then there exists a large number
L (depending on n) and a time T such that |F,| + F |F..| + F?|F...| <7

whenever F' > L lo(g_(i)t) and t <T.

Proof. This follows directly from Proposition 4.13.

Proposition 4.15. Let n > 0 be given. Then there exist a large number
L e (nt,00) and a small number 0 € (0,7) (depending on 1), and a time
T with the property that

log(—t)
(=)

whenever L 4/ lo(g(i)t) < F <1000v—2t and t < T.

Proof. By Corollary 4.4, we can find a large number L € (=1, c0) such
that }1 — B(z) d%B(z)‘ < 3 for z > % Recall that the solution looks like
the Bryant soliton near each tip, and the scalar curvature at each tip equals

-

<1
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(I1+0(1)) oY) Consequently,

(=)
_[log(—1)
; e

if F=1L % and —t is sufficiently large. On the other hand, for each

0 € (0, 1955), Proposition 4.8 implies
22 = (44 0(1)) (1 — (1006)?) (—t) log(—t)
if ' = 1006y/—2t. Using Proposition 4.9, we obtain
||
2log(—t)

=7

F|F.| = (1+o0(1))

if F = 1000+/—2t. Consequently,
log(—
1 O(g(t)t) FIF.|=1—/1— (1000)2 + o(1)
if F' = 1006/ —2t. Therefore, if we choose # sufficiently small (depending

on 7n), then we obtain
log(—
(=)

if F = 10060+/—2t and —t is sufficiently large. Hence, the assertion follows
from the fact that the function z — F'F, is monotone decreasing in the rel-
evant region (see Proposition 4.7). This completes the proof of Proposition
4.15.

<7

In the remainder of this section, we define functions U, (r,t) and U_(r, t)
so that

o) 2
Us(rt) = (5 F(2,1)
for r = F(z,t) and z > 2y/—t and
o 2
U_(r,t) = (&F(z,t))
for r = F(z,t) and z < —24/—t. Let us consider the rescaled functions
Vi(p,7) i= \JU (e 5 p, —e),

Vo(p,7) i= JU_(e 5 p,—e).
For each p € (0,1), we denote by &, (p,7) the unique positive solution of

the equation F(e~2¢&,—e™ ") = e 2 p; moreover, we denote by £_(p,7) the
unique negative solution of the equation F(e™2¢,—e™7) = e 2 p.
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Proposition 4.16. Let us fit a small number 6 > 0. If —7 is sufficiently
large (depending on 0), then %( 7-)*% < Vi(p,7) < C(0) (—T)*% and

‘a%VJr(p,T)‘ < C(0) for every p € [1—00, 1006].

Proof. Proposition 4.9 implies that — L < |F,(z,1 <)
roof. Proposition implies tha 5@ Ve = < |Fi(z,t)] < =
whenever 1%0 V—t < F(z,t) <1000 /—t. Moreover, Proposition 4.11 gives

c®) 0 /= -
|z (z,1)] < sy whenever 155 v —t < F(z,t) < 1000+/—t. From
this, the assertion follows easily.

Proposition 4.17. Fiz a small number n > 0. Then we can find a small
number 6 € (0,n) (depending on n) such that, for —7 sufficiently large, we
have

_ 1 _
Vilp,m) 2 = @((=7)2p) " < (Vi(p, )72 = 1)
in the region {p < 1000}. Here, ® denotes the profile of the Bryant soliton.

Proof. By Proposition 4.15, we can find a large number L € (57!, o0)
and a small number 6 € (0,7n) with the property that

log(—?)
(—1)

whenever L 1O(g_(i)t) < F < 1000y/—t and —t is sufficiently large. This

-

=32

implies
1 n
1—(— V. < —

whenever L (—T)_% < p <1000 and —7 is sufficiently large. On the other
hand, we can find a number L > L such that

[(=n)E pa((=r)op)t —1] < 3

whenever p > E(—T)ié and —7 is sufficiently large. Putting these facts
together, we conclude that

1 n -1 _ n
‘Q) p)Q_V (pv )‘ 76(_7_) 2p 1§§V+(p77—)

Vilp,m) 2 = @((=7)2p) ! < 2 Vi(p, 1) 2 < (Vilpom) 2 = 1)

whenever L (—7‘)_% < p <1000 and —7 is sufficiently large. This gives

whenever L (—’7‘)_% < p <1000 and —7 is sufficiently large.
On the other hand, since the solution looks like the Bryant soliton near
each tip, we know that

1

Vilp,7) 2 = @((—-7)2p) | <n(Vi(p,7) > = 1)

l\)
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whenever p < E(—T)_% and —7 is sufficiently large. Putting these facts
together, the assertion follows.

Proposition 4.18. Fiz a small number n > 0. Then we can find a large
number L (depending on n) such that, for —7 sufficiently large, we have

Vi(p,T) <,

Vilp.r)| <no” Vilp,m)™!
’ap+l) ) <np H(p, )

and
0 2 -3
87p2v+(,0a7)‘ <np " Vi(p,T)

in the region {L (—7’)7% <p<ih

Proof. By Corollary 4.14, we can find a large number L (depending on

n) such that |F.| + F|F..| + F2|F...| <y whenever F' > L/ptts. This

implies
V—‘r(p’T) S mn,
0
pV P, T 7V va‘STh
o) Vi)
and

P2 Vi(p,7)? ;2 (o) + P Vilp,7) (;,)W(’”T))Q’SH

in the region {L (—7)~ 7 < p < 1}. From this, the assertion follows.

Corollary 4.19. Fiz a small number n > 0. Then, for —1 sufficiently large,
we have

0 _ _
’5‘4(1), T)’ <np? (Vi(p, 7)™ = 1)
in the region {p < 1}.
Proof. By Proposition 4.18, we can find a large number L (depending

on 7n) such that, for —7 sufficiently large, we have
0*V,

2
V+ 8p2

oy (p )| < 3o 0 -

and

e ELIUE

in the region {L (—7')_% < p < 1}. On the other hand, since the solution
looks like the Bryant soliton near each tip, we know that

0%V,

2
V—i— ap2

oy (p )| < 2ot -y
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and
oVy

‘p 5 ‘SC(Vilfl)

whenever p < L(—T)_% and —7 is sufficiently large. Putting these facts
together, we conclude that

0%V oV
2 + -2 v ,—2 + N —2/,,-1
‘/ ‘/ ‘/ < ‘/'
1 op? (Vi 1)<p ap +>’ 2P (Vi 1
and
vy -2 1
< 1%

whenever p < % and —7 is sufficiently large. Using the equation

Ve  pOVe (Ve s vy
or 2 dp +(8p2 (Vs 1) (p Op +V+>>’

we conclude that

ihenever p < % and —7 is sufficiently large. This completes the proof of
Corollary 4.19.

Proposition 4.20. Fiz a small number n > 0. Then we can find a small
number 6 € (0,n) (depending on n) such that, for —7 sufficiently large, we
have

0 (Ex(p,7)? “1 2 “1 2
15, C7) 7 Vo) = D) <07 (Vilpr) - )
in the region {g < p <26}

Proof. In the following, # > 0 will denote a small positive number which
will be specified later. Proposition 4.8 and Proposition 4.9 imply

Ex(p,7)? = (2+0(1) (2= p°) (—7)
and
er(P, 7-)
(—27)
in the region {g < p <20}, On the other hand, differentiating the relation
F(em2 &4 (p,7),—e ™) = e~ 2p with respect to p gives

sz(e_% §+(P, T)7 *G_T) = *(1 + 0(1))

%§+(p’ T) = Fz(e_% E+(p7 T)7 _e_T>_l'
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This implies

7)? T
aap<€+<€£ ) ) = %§+(p,7') FZ(e_§€+(pv7_)7_€_T)_1
2
= —(1+0(1) (1= 2) p7  Fule E &(p,7), )
2
= —(1+0) (1-5) ' Vilp,r)

in the region {g < p < 20}. Hence, if we choose 6 sufficiently small (de-
pending on 7), then

0 rE.(p,T)? _ _ _ _

2 (ST | o) - 1| < 0 (Vo) 2 )
op 4

in the region {% < p < 26}. This completes the proof of Proposition 4.20.

Proposition 4.21. Fix a small number 8 > 0. Then, for —7 large, we have
0 §+ (p7 T)2
(>N )| <« _
‘8/)( 4 >‘_C(0)( 7)

and

(;9;(&(/;,7)2)‘ < C(0) (—r)}

in the region {% < p < 26},

Proof. Differentiating the relation F(e™2 &4 (p,7),—e™ ") = e~ 2p with
respect to p gives

%§+<p, T) = Fz(e_% €+(P7 7_)7 _e_T)_l

and

o2 . : .
87p2§+(:0a 7-) =—e 2 FZ(6_§ £+(p> T)’ 76—7')—3 FZZ(6_§ §+(p7 T)7 *6_7—)'

Using Proposition 4.11, we obtain

o) < C®) (-7)

=

and o
5t )] < C0) (-7)

in the region {% < p < 26}. This finally implies
0 £+(pa T)2
Z (BT )| <« _
5 ()00
and

2 (EE < ) (-
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in the region {% < p < 26}. This proves the assertion.

Proposition 4.22. Fiz a small number 8 > 0. Then, for —7 large, we have

2 (S0 <utin

in the region {% < p < 26},
Proof. Let us fix a small number 6 > 0. Differentiating the relation
F(e 2 &4 (p,7),—€e"T) = e~ 2p with respect to 7 gives
1

_5 p= 6_% Ft(e_% f-l—(pa’r)’ _6_7—)

=+ (887_5+(p77_) - %§+(P,T>) FZ(e_% £+(p7 7—)7 _e_T>'

Using Proposition 4.12, we obtain

T T

¢ E R (e E4(p7),—e ) = —(L+ o(1)) e F F(eF €4 (p,7), ¢ T) !
= (1 +o(1))p"!

for % < p < 20. Moreover,
T p2 % 1 1
F(e 3 &(pym)i =) = =(1+0(1) (1= &) p7 (-r) 3
for % < p < 20. Putting these facts together, we obtain
0 1 ,02 1 1
S-€ () = 5 & (p,7) = —(L+0(1) (1= 5 ) (=)
for % < p < 26. Moreover,
P\ 3 1
&x(p,7) = 2+0() (1= )" ()2
for % < p < 20. Thus, we conclude that
2 €4(p,7) = o(1) (1)
for § < p < 20. This finally implies

2 (&) o) ()

for £ < p < 26.
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5. THE TIP REGION WEIGHTS fi4(p,7) AND p—(p, 7)

In this section, we define weights p(p,7) and p—(p,7) which will be
needed in the analysis of the linearized equation in the tip region. Let § > 0

be a small positive number, and let { : R — [0, 1] be a smooth, monotone

increasing cutoff function satisfying ((p) = 0 for p < g and ((p) = 1 for

p> % We define the weight u(p,7) by

T 2 0 5T 2
) _/ C/(ﬁ) §+(p,7) dp
o

p(p ) = =Clp) = 1

0
- / (- C(p) 7 (@)} o) — 1) dp,
o

where ® denotes the profile of the Bryant soliton. We can define a weight
p—(p,7) in analogous fashion. Of course, the cutoff function ¢ and the
weights py(p, 7) and pu—(p,7) depend on the choice of the parameter 6, but
we suppress that dependence in our notation.

Lemma 5.1. The weight uy(p, ) satisfies ui(p,7) = —% for p> 2.
Moreover, 4 (p,7) <0 for all p < %.

Proof. This follows immediately from the definition of u4(p, 7).

Lemma 5.2. Fiz a small number n > 0. Then we can find a small number
0 € (0,m) (depending on n) such that, for —7 sufficiently large, we have

0 _ _ _ _
oy o) =7 (Vo) 2o 1) <npt (Vilp,r) - 1)
in the tip region {p < 20}.

Proof. We compute

T 2 1
T 0.1 = =€) 5 (L) 4 (1= Gl (=) ) - 1),
This gives

) = (Vi) 2 = 1)

=) (s () 4 )2 - 1)

—(1—=Cp) p 7 (Vi) 2 = ((—m)2 p) 7).

Hence, the assertion follows from Proposition 4.17 and Proposition 4.20.
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Lemma 5.3. If we choose 8 > 0 sufficiently small, then the following holds.
If —71 is sufficiently large (depending on 0), then

Oy 1 Opy 2 Ko
< (2T 0
3,2 (p,7) < 4(8,) (/M)) TP

in the tip region {p < 20}. Here, K, is a universal constant which is inde-
pendent of 0.

Proof. We compute
Oy _ 0% (&4 (p,7)? oy 0 (Ex(pT)?

5o () = =€) 5y (PR ) = <o g (PR
—[L=Cp) +pl(P]p 2 (2((-7)2p) " = 1)
—(1=¢(p) (—7)2 p L @((=7)Z p) 2 @/ ((—7)% p).

Recall that 0 < ¢ < 1 and ¢’ > 0. Moreover, we have ®(r)~t —1 > %TQ

and |®(r)2®/(r)| < Kr for all 7 € [0,0), where K is a universal constant.
This implies
0’p 9% (&4(p,7)° 0 (&4(p,T)?
0. < ~6(0) s (2R ) - ) o (ST
+ K (1-C(p) (=7),

where K is a universal constant which is independent of . Using Proposition
4.21, we obtain

N

2
) < o) (-7

in the region {% < p <20}, and

& puy
Op?

in the region {p < g}. In the next step, we apply Proposition 4.17 and

(p;7) < K (1)

Lemma 5.2 with n = % If we choose 6 > 0 sufficiently small, then Proposi-
tion 4.17 and Lemma 5.2 imply
('9,u+ 1

Tp(’”) > p  (Vilp,r) 2= 1)

in the region {p < 20}, where again K is a universal constant independent
of 6. Hence, if —7 is sufficiently large (depending on 6), then we have

&t L/ Opy 2 4 2
< Z (2T
3,2 (p,7) < 4<ap (p,T)) +16K"p
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in the region {p < 20}. This completes the proof of Lemma 5.3.

Lemma 5.4. Let us fix a small number 8 > 0. Then, for —t large, we have

Ot (5,7 < o(1) ()

in the tip region {p < 20}.
Proof. We compute

1 s ) 3520 35)dp
=5 (=7)” 2/,;( —C(P) ((=7)2 p)"" @' ((=7)2 p) dp-
Note that |®(r)~2®'(r)| < Kr for all r € [0,00). This gives
8,u+ §+ P, ‘S—i— ) ~
‘ - ‘C ( }/ NC 37‘ 4 ) ’
+K/ (1—=C(p)) pdp

for p < 26. Here, K is constant which is independent of . Using Proposition
4.22, we obtain

op
(o) < o) (=1)
for p < 26. This completes the proof.

In the remainder of this section, we establish a weighted Poincaré inequal-
ity.
Proposition 5.5. If we choose 8 > 0 sufficiently small, then the following
holds. If —7 is sufficiently large (depending on 0), then

20 2 20 2 20
/ <%) fPetrdp < 8/ (ﬁ) e Mt dp+ K, / p 2 fre M+ dp
0 op 0o \Op 0

for every smooth function f which is supported in the region {p < 20}. Here,
K, is the constant in Lemma 5.3; in particular, K, is a universal constant
which is independent of 8. Note that the right hand side is infinite unless

£(0) =0.

Proof. We compute

O (Ops o _u\ _ Pt o0 . 3N+ 8f - Opt\2 12
— (T = 9 2t [ i an p
ap((?pfe ) 0p? fre + f (8p>fe
Using Young’s inequality, we obtain

ai(%ﬂ; 12 e‘“*) < aamr fPe h+ 42 (gf))Qe—M -3 (a;;) f2e i+,
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Hence, Lemma 5.3 gives

({fp(izﬂp—i— f2 e—,u+> <2 (gi)ze—lu _ % (86/1;*')2f2 e H+ 4 %p—z f2 e M+

From this, the assertion follows.

6. OVERVIEW OF THE PROOF OF THEOREM 1.4

We now consider two ancient k-solutions (83, g1(t)) and (S3, g2(t)). We
assume throughout that neither (S3,g1(t)) nor (S3,g2(t)) is a family of
shrinking round spheres. We know that both solutions are rotationally sym-
metric. Let us choose reference points ¢, g2 € S? such that

lim sup(—t) Ry, +)(q1) < 100 and lim sup(—t) Ry, 1) (q2) < 100.

t——o0 t——o00
Let Fy(z,t) denote the radius of a sphere of symmetry in (S3, g1(¢)) which
has signed distance z from the reference point ¢;. Similarly, let Fy(z,t)
denote the radius of a sphere of symmetry in (S2,g;(¢)) which has signed
distance z from the reference point ¢o.

The functions Fi(z,t) and Fy(z,t) satisfy the PDE

Fi(z,t) = Fos(2,8) — F(2,0) (1 — Fu(2,1)?)

_ R /Fzzzt

In the next step, we replace the function F»(z,t) by a new function FQO"BW(Z, t).
Here, (o, 8,7) is a triplet of real numbers satisfying the following admissi-
bility condition:

Definition 6.1. Given a real number ¢ € (0, %), we say that the triplet
(a, B,7) is e-admissible with respect to time ¢, if

(—t+)
al < ev—t., <e——, < elog(—t4).

In the following, we consider a time ¢, < 0, where —t, is very large.
Suppose that («a, 3,7) is a triplet of real numbers which is e-admissible with
respect to time t, for some ¢ € (0, %) For each t < t,, we consider the
rescaled metrics

957 (1) = €V ga(e7(t — B)).

Moreover, let FQB 7(z,t) denote the profile function associated with the metric
gg 7(t). In other words, Ff 7(2,t) denotes the radius of a sphere of symme-
try in (53, g5 ' (t)) which has signed distance z from the reference point gs.
Clearly,

F(2,t) = 2 Fy(e 22,e 7 (t — B)).
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Note that the metrics g’B 7(t) form a solution to the Ricci flow, and the profile
function F, 57 (2,t) satisfies the same PDE as the original profile function

F5(z,t). In the next step, we choose a new base point ¢, oy

with the property
that the sphere of symmetry passing through ¢, P has signed distance « from

the point g2 with respect to the metric gﬁw(t*). For each time t < t,, we
denote by s57(t) the signed distance of the sphere of symmetry passing
through qQﬁ 7 from the point ¢o with respect to the metric gﬁ 7(t). The
function s*#7(t) can be characterized as the solution of the ODE

aBy (¢ By
d sEV(E) FPY (2t
= sPV() = 2/ % dz, s*P(t,) = a.
dt 0 Fy7 (2t

For each time ¢ < ¢, we denote by Fy' p 7(2,t) the radius of the sphere
of symmetry in (53,g2 (t)) which has signed distance z from the point
5 . Clearly, the function Fj, of 7(z,t) satisfies the same PDE as the func-
tion Fy(z,t). Moreover, the function FO‘B 7(z,t) is related to the function
FJ7(2,t) by the formula

FyP(z,0) = By (2 + 8°7(1), 1) = 2 Fy(e 2 (2 + s*7(t)), e 7 (t = B)).

In other words, the modified solution F;M(z, t) differs from ng(z, t) by a
translation in space. In particular, for t = ¢,, we obtain

FyD(2,t) = Fy) (2 + a,t,) = 3 Fy(e73 (2 + a), e 7 (t — ).
Lemma 6.2. If —t, is sufficiently large, then the following holds. Suppose

that the triplet («, 8,7) is e-admissible with respect to time t., where ¢ €
(0,1). Let s*9(t) denote the solution of the ODE

apy BY (1
d s BT (2t
75a57( ) — 2/ 2{,322( )dzl
dt 0 FJ (2 t)

with terminal condition s*%7(t,) = a. Then |V (t)| < ey/—t for all t < t,.

Proof. Recall that the reference point ¢o has been chosen such that the
blow-down limit of (S3, g2(t)) around g is a cylinder. Hence, if we choose
—t, is sufficiently large, then

F:
0= - gézt)t) = (—18t)
whenever ¢ < —1 /=, and |z| < \/j In the next step, we replace t by
e~ 7(t — ), and we replace z by e~ % 2. This gives
CBLGED
(et (-8(t—0))
whenever t — 3 < —3¢e7/=t, and |z| < \/=2(t — 8). The condition |y| <

elog(—t.) < Jlog(—t,) implies t, < —e7/=t,. Moreover, the condition
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18] < e 10;—(1:)*) < % lo(g_(t_*t)*) ensures that t — 8 < %t for all ¢t < t,. Conse-
quently,

CRLGD 1

F(z,t) — (—4t)

whenever ¢ < t, and |z| < /—t. Hence, if s*?7(t) is a solution of the ODE
above, then

1

2 gapy t ‘ < afy t

57 0] s e
whenever t < t, and [s*?7(t)| < v/—t. From this, we deduce that
d d
(=07 (s°(1)?) = (=) 2 (s (1)* + 2 (=)' s*(1) @Sam(t) >0
whenever ¢ < t, and |7 ()| < v/—t. By assumption, (—t,) "' (s57(t,))? =
(—t.)"La? < &% Since € € (0,3), we conclude that (—t)~! (s*%7(¢))? < &2

for all ¢t < t,. This completes the proof of Lemma 6.2.

Using the admissibility conditions in Definition 6.1 and Lemma 6.2, we

can estimate the modified profile function Fy' .,

Proposition 6.3. Fix a small number 6§ > 0 and a small number n > 0.
Then there exists a small number € > 0 (depending on 6 and n) with the
following property. If the triplet (c, B8,7) is e-admissible with respect to time
t. and —t, is sufficiently large, then

1 2ot 2 ¢
bF;ﬁV(z,t)2+t+Z+ ‘< i

4log(—t) 1 — g log(—t)
and
+v=i
FO‘B'Y t FO‘B'Y t ‘ ‘Z‘
’ 2 (58 By (2, 0) + 2log(—t) 1 — g log(—t)
whenever F, ’Bv(z t) > —t and t < t,.

Proof. Using Proposmon 4.8 and Proposition 4.9, we obtain
22 4+ 2t ‘ n 22—t
4log(—t) ! — 4 log(—t)

I P B A
2log(—t)! — 4 log(—t)
whenever Fy(z,t) > 2%\/—715 and —t is sufficiently large. We now replace ¢
by e 7(t — ) and z by e~ %z. This gives

225 | 0 St
dlog(—(t = B)) — 4!~ 4 log(—(t — B)) —

1
‘§F(z,t)2+t+

and

‘FQ(Z, 1) Fo(2,1) +

SE )+
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and

v z 77 2| + \/ti_
FV (2,t) F2 (2,1) + 2log(—(t — B)) — 27| = =] log(—(t = B)) —~

whenever Fffy(z, t) > 20 —(t — p) and —e~7(t — () is sufficiently large. By
assumption, the triplet (a, 3,7) is e-admissible with respect to time ¢,. If
¢ is sufficiently small (depending on 6 and 7) and —t, is sufficiently large
(depending on 6 and 7), then we obtain

22492t

By (z,0)% -t 7‘
2 (20 t) + +4log(—t) ~ 2 log(—t)

2
and
| <! I+ vt
2log(—t)! — 2 log(—t)
whenever FQM(z,t) > 1% —t and t < t,. By Lemma 6.2, |s*?7(t)| < ey/—t
for t < t,. Hence, we obtain

’Ff”(z, 1) F2(2,t) +

22+ 2t ’ 22—t
4log(—t) | = Tlog(—1)

‘ |z| + v/t

21og(—1) | =" Tog(—1)

whenever F;BV(z,t) > % —t and t < t,. This completes the proof of
Proposition 6.3.

|
‘iF;”ﬂ”(z,t)MH

and

]Faf”(z £) B9 (2, 1) +

We define functions Uy (r,t) and Uy_(r,t) by

Uy (r,t) = (%Fﬂz,t))z

for r = Fy(z,t) and z > 2y/—t and

Ur_(rt) = (iﬂ(z,t))z

for r = Fi(z,t) and z < —24/—t. Similarly, we define functions Us, (7, t)
and Us_(r,t) by

Us (r,t) = <862F2(z,t))2
for r = Fy(2,t) and z > 2¢/—t and
U (1) = (o Ba(z,))
for r = Fy(z,t) and 2 < —2y/—. Moreover, we define
UYL (rt) = Uai(e"2r,e 7 (t = B),
UD (r,t) := Us_(e” 27, e (t — B)).
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With this understood, we have

Uy (r,t)

0 o 2
(@FQ 57(2’75))
for r = Fgﬁw(z,t), 2z > 4+y/—t, and t < t,, and

0 o 2
(5:57 )

for r = F;‘m(z,t), 2 < —4y/—t, and t < t,.

In the next step, we perform the usual rescaling. We put t = —e™" and
r = 67%/). This giVGS functions ‘/Yl-i-(pu T)u Vl—(ﬂa T)a ‘/2-5-(/)’ T)’ VvZ—(va)y
szi;’(p, 7), and ij(p, 7), where

U (r, )

Vie(p,7) = /UL (73 p,—e ),
Vie(p.7) = \Ui_(e 3 p, ),
Vi (p.7) = \/Uns(e 3 p, ),
Var(p,7) =\ Up (¢ 5p, ),
Vi (p,7) = \JUST (e F p.—e ),

VI (p,7) = \JUS (e 5 p, —e ).

A straightforward calculation gives
‘/26—: <p7 7—) = ‘/24— (

Vi (p, ) = V2—<

\/%Warr +’7 - IOg(l +567)>7
% W,T + v —log(1+ /367)>.

Proposition 6.4. Fiz a small number n > 0. Then we can find a small
number 6 € (0,n) (depending on n) and a small number € > 0 (depending on
0 and n) with the following property. If the triplet («, 3,7) is e-admissible
with respect to time t, = —e™ ™ and —Ty is sufficiently large, then
_ 1 _
Ve (o) = @((=m)2) M <0 (Y (o) 2 = 1)

for p <100 and T < 7, and

0 _ _ _

87‘/2’63(077) l<np 2 (B o) = 1)
for p < % and T < 1y. Here, ® denotes the profile of the Bryant soliton.

Proof. By Proposition 4.17, we can choose 6 sufficiently small (depending
on 1) so that

Voi(p,7) 2 = @((—7)7p) ' < T (Var(p,7) 2 = 1)

~
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whenever p < 200 and —7 is sufficiently large. We now replace 7 by 74~y —
log(1 4+ Se”) and p by ﬁ. This gives
—1
/)

s o2 1y lm(esend s
V2—:(pa7') - (I)<<1 + BeT + 7(1+ BeT) ) (=7)

n _
< 1 (VQT(PW) - 1)

1=

whenever p < 200+/1 + e and —7 is sufficiently large.

By assumption, the triplet («, 3,7) is e-admissible with respect to time
te = —e ™. If we choose ¢ sufficiently small (depending on 7) and —7,
sufficiently large (depending on 7), then Proposition 4.2 implies that

(e = ) o) e
< @) )

[N

for all p and all 7 < 7. Hence, if we choose —7 sufficiently large (depending
on # and 1), then we obtain

Vi (0,7) 7 = @((=7)2p) |
< TV (pr) 2 =D+ 1 (@((-7)2p) 7 — 1)

n - n — 1
<5 V()2 = 1)+ L V3 (. 7) 2 = @((-7)7p) 7|

whenever p < 1060 and 7 < 7,. The last term on the right hand side can be
absorbed into the left hand side. This gives

_ 1 _
Vi (p,7) 2 = ((=7)2p) | < (V3 (p,7) 2 = 1)
whenever p < 100 and 7 < 7. This proves the first statement.

We now turn to the second statement. Using Proposition 4.18 and Corol-
lary 4.19, we obtain

0 _
]pa—pvz+<p,r>\ <O (Vaylp,r)t = 1)
and 5
n _9 —1
— < 1 _
|5V (0.7)] < 397 (Vas(p, 1) = 1)

whenever p < i and —7 is sufficiently large. Using the identity

B _ p T
Vol (p,7) = V2+<\/ﬁa T+ —log(1 + Be ))

and the chain rule, we conclude that

9 vy n 21,8y -1 pe”
5 Var )| < 507 e =0 |
whenever p < % and 7 < 7. Since the triplet («, ,7) is e-admissible with

respect to time t, = —e~ ", the second statement follows. This completes

(Ve (p, 1)~ = 1)




UNIQUENESS OF COMPACT ANCIENT SOLUTIONS 37

the proof of Proposition 6.4.

We next consider the difference between the two solutions:

W—E’y(pv T) = ‘/1+(p7T) - VQﬁ-{-y(va)a
W2 (p,7) = Vi_(p,7) = Vol (p, 7).

For each 7, we know that 1 — Vi, (p,7) = O(p?), 1 — Vi_(p,7) = O(p?),
1-— Vf_;’(p, 7)=0(p?), 1 — ij(p, 7) = O(p?) as p — 0. Hence, for each T,
we have wa(p,T) = O(p?) and W (p,7) = O(p?) as p — 0.

Let pu4(p,7) and pu—(p, 7) denote the weights associated with the solution
(5%, 91 (1))

Proposition 6.5. We can choose 0 > 0 and € > 0 sufficiently small so that
the following holds. If —7. is sufficiently large (depending on 0) and the

triplet (o, B,7y) is e-admissible with respect to time t, = —e™ ™, then
i B2 et
sup (—7)" 2 V1+ W ) €
T<Tx
1 26
< C(0) (=)~ sup (—7)~3 / / Vi (W2 ettt
T<Tx T—1

An analogous estimate holds for wh.

We will give the proof of Proposition 6.5 in Section 7.

From this point on, we fix 6 small enough so that the conclusion of Propo-
sition 6.5 holds. Let y¢ denote a smooth, even cutoff function satisfying

Xc = 1 on [0,4/4— %] and xc = 0 on [{/4 — %,oo). Moreover, we may
assume that yc¢ is monotone decreasing on [0,00). We define

Gl(&,7):=e2 Fi(e7 2, —e™T) — /2,

Go(€,7) 1= €% Fy(e” 26, —e7T) — V2,

Ggﬁy(ﬁ,ﬂ = e2 F, ﬂv(ff?f, —e ) — V2.

Let

HV(E 1) = G (€,7) — G571 (6,7)
and

HE™ (6,7) = xe((=7) 726 H*P (&, 7).

Using the PDEs for G and GS"B 7, we can derive a PDE for the function
H*37. The leading term in that PDE is given by the operator

£f = fee— 5Efe+ T,
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To analyze this operator, we perform a spectral decomposition. As in [3],

2
we consider the Hilbert space H = L3(R, e~ T d¢). The Hilbert space H
has a natural direct sum decomposition H = Hy & Ho & H—. Here, Hy
is a two-dimensional subspace spanned by the functions 1 and &; Hy is a
one-dimensional subspace spanned by the function £? — 2; and H_ is the
orthogonal complement of Hy @ Hp. Finally, let Py, Py, and P_ denote
the projection operators associated to the direct sum decomposition H =
Hy ®HoDH-.
With this understood, we write

P HET (€,7) = V2P (7) (€2 — 2),
where

a®?(r) = 2) HY (€, 7) de.

1
164/ 27
Moreover, we put ﬁg‘ﬁy = P+Hg‘ﬁ7 + P,Hgm.

Proposition 6.6. Fiz 6 > 0 and ¢ > 0 small enough so that the conclusion
of Proposition 6.5 holds. Let 6 € (0,e) be given. If —7. is sufficiently
large (depending on §), then we can find a triplet (o, 3,7v) (depending on
T« ) such that P+HCO‘B'Y =0 and Pngﬁﬂ’ =0 at time T«. Moreover, if —Ty is
sufficiently large (depending on ¢ ), then the triplet («, 3,7) is d-admissible
with respect to time t, = —e™7*.

Proof. Using the identity s*#7(t,) = «, we obtain
FP(z,t.) = €2 Fy(e 2 (2 + a),e 77 (t — ).

Consequently,

a’BV (&, ) = /14 Be™ Gg(% T*+fy—log(1+ﬂe”))

+vV2 (/14 Bem —1).

The proof of Proposition 6.6 now proceeds as in [3]. This argument relies
only on the asymptotics of our solution in the cylindrical region. Since the
asymptotics of our ancient solutions to Ricci flow in the cylindrical region
are very similar to the cylindrical region asymptotics of ancient solutions to
mean curvature flow, the proof of Proposition 6.6 is identical to the proof
of the corresponding Proposition 4.1 in [3].

From this point on, we assume that the triplet (o, 3,7) is chosen as in
Proposition 6.6. In particular, this will ensure that a®?¥(7,) = 0. Note that
the triplet (o, 3,7) depends on 7, (which we have not yet fixed).
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Proposition 6.7. Fiz 0 > 0 small enough so that the conclusion of Propo-
sition 6.5 holds. Suppose that —7y is sufficiently large, and that the triplet
(o, B,7) is chosen as in Proposition 6.6. Then

) sup / / O"BV /)2 + f]gm(f, T/)2) d¢ dr’
T<Tx JT—1
<c@sw [ an@Rar
T<Tx —1

2
sup e~ HOPV (e, 7)) de dr'.

T<7'*/T 1/,/492 2 <lg[<y /21— (—r) 2}

We will give the proof of Proposition 6.7 in Section 8.

By combining Proposition 6.5 and Proposition 6.7, we can show that in
the cylindrical region the norm of Py H g A7 dominates over the norm of H, g A,
More precisely, we have the following result:

Proposition 6.8. Fiz 6 > 0 small enough so that the conclusion of Propo-
sition 6.5 holds. Suppose that —Ty is sufficiently large, and that the triplet
(o, B,7) is chosen as in Proposition 6.6. Then

psw [ [ S D € B de i
T<T% JT—1
< C(0) sup / a1 ()2 7
T<T% JT—1

The proof of Proposition 6.8 will be given in Section 9.

Using Proposition 6.8, we are able to derive an ODE for the function
aO‘BV(T):

Proposition 6.9. Fiz 6 > 0 small enough so that the conclusion of Propo-
sition 6.5 holds. Let § > 0 be given. Suppose that —, is sufficiently large
(depending on &), and the triplet («, 3,7) is chosen as in Proposition 6.6.
Let QA (1) := La*¥ (1) — 2(—7)"1a®?V(7). Then

1
T T 2
sup(—T)/ QP (7')| dr’ < & sup </ a®P(1")? ClT/> :
T<Tx T—1 T<Ts —1
The proof of Proposition 6.9 will be given in Section 10.

We now finish the proof of Theorem 1.4. Using the ODE % aaﬁ“f( )

2(—7)"La® (1) + Q*PY(1) together with the fact that aaﬁV( w) = 0,
obtain

(_7_)2 aaﬁv(T) _ /T*(_T/)Q Qaﬁv(T/) dr'
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for all 7 < 7. This implies

T

(-n)la ) < [T 1 ) ar

T

[Te—T] Te—j

Z / ) 1QU ()] dr’

«—J— 1
e / By (! dr'
< _ _ «
<(=7) OSJ'HS%?K(—T] /T*jl< QT dr

for all 7 < 7. We now divide by —7, and take the supremum over all 7 < 7.
This implies

sup [a®%(r)| < sup / ) QU () dr.

T<Tx T<T% JT—1
On the other hand, Proposition 6.9 gives the following estimate for Q®57:
T
sup (—7) / QP (') dr’ < & sup [a®?(1)].
T<Ts T—1 T Ts

Hence, if we choose ¢ sufficiently small, and —7, sufficiently large (depend-
ing on §), then sup, 1a®PY(1)| = 0. Thus, a®?(r) = 0 for all 7 < T..

Proposition 6.8 then implies H ’87(5, 7) = 0 for all 7 < 7. Putting these
facts together, we obtain Hgm(ﬁ, 7) = 0 for all 7 < 7.. From this, we
deduce that va(p, 7) = 0 for p € [0,20] and 7 < 7. Proposition 6.5
yields va(p,T) = 0 for p € [0,20] and 7 < 7. Thus, we conclude that

Fi(z,t) = anﬁ'y(z, t) for all t < t, = —e~ ™. In other words, the two ancient
solutions coincide for ¢ < ..

7. ENERGY ESTIMATES IN THE TIP REGION AND PROOF OF PROPOSITION
6.5

In this section, we give the proof of Proposition 6.5. Let wp denote a
nonnegative smooth cutoff function satisfying wr(p) = 1 for p < 6 and
wr(p) =0 for p > 20. We define

Wi (p,7) = wr(p) Wi (p, 7).

To simplify the notation, we will write W, and Wr, instead of W_EV and
WB’Y
T+

Proposition 7.1. The function W (p, T) satisfies the equation

8W+ B 8W+ N 82W+ 2 1 _92
Vi ( ar 2 ap ) = 22 T op (r v =)
—2p Wy + Vi 2By Wy,
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where

B 8V/3’Y
NUARURREOR S

8Vﬁ’y a‘fﬂ’y
VAN -2 (v, VB 24+ | P YVay
( 2+) ( 1+ 2—‘,—)( 87— 2 8p )

Proof. The functions Uy4(r,t), Ui_(r,t), Uf_:(r, t), and Ugj(r, t) all
satisfy the same PDE (see e.g. [7]):

oUu  9*U 1 oU
1oV _oU 1o 0V
v U (81“

ot or2 2
Consequently, the functions Viy(p,7), Vi—(p,7), ij(p, 7), and 1/26_7(;), T)
satisfy the following PDE:

o0V p oV v,
o (OV. p0VYN _ OV 5o oV
v (8T+2 ap> 0p? oV 1)<p8p+v

The assertion now follows from a straightforward calculation.

>2—i—r_2 U=t -1) (r%ngQU).
oV )

Proposition 7.2. The function Wr(p,T) satisfies

10 99 0 1/0Wry 1 e,
5 g(VH Wiy e') — ap [( ap +p (ViZ7 = 1) WT+) Wry 6’”*}
0
+ %(Wi W wr e“*)
1 aWT+ 8,u+ 2 _9 2
< —= T Ht Mt
S 73 ( ap ap WT+> e 207" Wrye
571 0u _1 0V 0
2 (2 Y+ 19Vi+ | p Oy 2 u
Vi (2 ot o T dp * BJF) Wi e
A R Pr—2\2 12
+3 (T~ O -G Vi) R e

0
+ <8L; —p ! (Vlf -1+ g Vlf) W3 whwr et + ()2 W2 el

Proof. Using Proposition 7.1, we obtain

oW oW
_92 T+ P T+
Vis < or + 2 0Op )

PWry 0/ 1 , .
T o2 + afp(p iy =1 WT+) — 20" Wy + V" By Wry
oW o .
+<_2w% ap+_w%W+_wé“p I(VY1+2_1)W++§W§"‘/1+2W+)
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We next bring in the weight p4(p, 7). A straightforward calculation gives

DN | =

o /oW _ _
(V1+ Wi, e't) - op {(Tpﬂ +p (V-1 WT+> Wry 6”*}

+ (VVJQr wp wy elt)

SR

:_(3WT++3M+
ap op
o (1 0p 1 OViy | pOu
2 (L OHy -1 0Vit +
V1+(2 or Y Tor T2 op

Opt 112 P2\ (OWry | Oug s
+<8p -t v -0 = 2v?)( P = Wrs) Wiy e

2 2 1172
WT+) et —2p7 " Wi, et

+ B+) WT+ €M+

0 1 -
(G o O 0 V) Wi e () e

The assertion follows now from Young’s inequality.

Corollary 7.3. Fiz a small number n > 0. Then we can find a small
number 6 € (0,n) and a small number € € (0,n) (both depending on n) with
the following property. If —7. sufficiently large (depending on n and ) and

the triplet (cv, B,7) is e-admissible with respect to time t, = —e™ ™, then we
have

1 8 8 aWT+ -1 —9

B} af(VH Wiy elt) — op K ap +p (ViZ7 1) WT+> Wry 6”*}

0
+ 87) (W3 wpwrett)
aWT+ 8,u+ 2 _9 9
=73 ( dp * TPWTJr) et = 2p7 Wi et*

+np VI WE e+ p T V2 WE € Lipe penn)
for p <20 and T < 7.

Proof. By Proposition 4.17, Proposition 4.18, and Proposition 6.4, we

can choose 6 € (0,7) (depending on 7) sufficiently small and —7, sufficiently
large (depending on 7 and 6) such that

By <np Vi

for p < 20 and 7 < 7. By Corollary 4.19, Lemma 5.2, and Lemma 5.4, we
can choose 6 € (0, n) sufficiently small (depending on ) and —7 sufficiently
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large (depending on 7 and 6) such that

1 Opy 4 OViy  p 8N+‘ S
- 2B+ P OB+ | o

2 or o Ty op s Vi
O ) Py,—2 —17,—2
op " (V1+—1)—§V1+‘S77,0 Vi
ou _ _ P e
Ty " LV -+ v et v

for p < 26 and 7 < 7. Hence, the assertion follows from Proposition 7.2.

In the next step, we finalize our choice of 6.

Proposition 7.4. We can find small numbers 0 > 0, A\ > 0, and ¢ > 0 with
the following property. If —7. is sufficiently large (depending on 0) and the
triplet (o, B,7y) is e-admissible with respect to time t, = —e™ ™, then

1 d 20 Ly ) s 260 L ) "
2d7-</0 Vi W e dp) < A (=) ) Viy" Wiy et dp

26
+ /9 p2 Vlf VVJQr e+ dp
for 7 < 7.

Proof. Let us fix a small number > 0. In the following, we choose
0 and ¢ sufficiently small (depending on 7), and we choose —7, sufficiently
large (depending on 7 and 6). Using Corollary 7.3, we obtain

Ld ([ 5 s

1 /29 (8WT+ 8M+ 2 20 Ly )
< —= —|——WT) e“+dp—2/ p “Wr, et dp
o N\ dp Op T 0 i

20 260
+77/0 p VI WE, et dp+n/9 pPViE Wi el dp
for 7 < 7. Applying Proposition 5.5 to the function f := e#+ Wy gives

20
OWry | Opy 2
< M/ M+
0—8/0 ( dp * dp T+> e dp

% —2 7172 20Oy 2 2
—I—K*/ P WT+e“+dp—/ (T) Wi, el dp
0 0 P
for 7 < 7. Using Lemma 5.2, we obtain (ag—;)z > 1
p < 20, hence

20
8WT+ 8,u+ 2
0<128 — W b+ d
< T]/O ( ap + op T+> e D

p2 (V2 — 1)% for

20 26
+ 16nK, / p2 W%+ et+ dp — 477/ p 2 (Vlf —1)? W%Jr et+ dp
0 0
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for 7 < 7. Adding the two inequalities, we conclude that

Ld( [* 5
2d7'</0 ‘/11WT+€“+dP>

< —(% - 12877) /026 (algpr+ + 85"; WT+)2eu+ dp

20
—(2—477—1677]{*)/ p 2 WE, et dp
0
2 2 2 2 4 2
—77/0 p T [A(Viy — 1) + 4= Vi T Wry et dp

20
+n /e p PV 2Wiett dp

for 7 < 7. We assume that 1 > 0 is chosen small enough so that %—12877 >0
and 2 — 4n — 16nK, > 0. (Here, it is crucial that the constant K, in the
weighted Poincaré inequality does not depend on .) This ensures that the
first two terms on the right hand side have a favorable sign. To estimate the
third term on the right hand side, we observe that p=—2 [4 (Vll2 —1)2+4-

Vlf] > p2 \/'114. In view of Proposition 4.17, the term p~2 Vljr4 is bounded

from below by a small positive multiple of (—7) Vljf This completes the

proof of Proposition 7.4.

We now complete the proof of Proposition 6.5. Let 6, A, and ¢ be chosen

as in Proposition 7.4. Let

T 26
I(1) ::/ 1/0 ‘/112W721+e“+

and
T 20
J(1) = / Vlf W3 ek+.
T—1J6
If we choose —7, sufficiently large, then Proposition 7.4 gives

S 1)+ A (=) () < 072.0()

hence d

E(ewz I(r) <2072 J(7)
for 7 < 7,. Clearly, lim, e T (1) = 0. Consequently,
e I(7) < 2072 / e J(r') dr’

—00

<2072 ( sup (—7') 71 J(T')) /T e " (—7")dr’

T'<T —00

<P 2\l sup (—7")"L J(7)

' <r
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for 7 < 7. This finally gives
(=) "2 I(7) <672\ (=7) "2 sup(—7') L J(+)

'<r
<02\ (=)L sup(—7) "z J()
'<T
for 7 < 7. Taking the supremum over 7 < 7, gives
sup (—7)"2 I(r) < 072\ (—1) "t sup (—7) "2 J(7).
T<Tx T<Tx

From this, the conclusion of Proposition 6.5 follows immediately.

8. ENERGY ESTIMATES IN THE CYLINDRICAL REGION AND PROOF OF
PROPOSITION 6.7

In this section, we give the proof of Proposition 6.7. Throughout this
section, we assume that 6 is chosen as in Proposition 6.5. To simplify the
notation, we will write H, He, He, and a instead of HYP7, Hgﬁv’ ﬁcaﬁ'y, and
a®b,

Our goal is to study the evolution equation satisfied by the function H.
The linearized operator

Lf=fe— g€+ T

is the same as in [3], and hence the linear theory from [3] carries over to the
Ricci flow case as well. In order for this article to be self-contained, we will
state the results from [3] that we will use later, but for the proofs of the
same we refer the reder to [3].

2
As in [3], we consider the Hilbert space H = L?(R, e d€). The norm
on H is given by
£2

1712, = /R 5 F(6)? de.

Moreover, we denote by D C H the Hilbert space of all functions f such
that f € H and f’ € H. The norm on D is given by

112 = /R T (F(2 + F(©)%) de.

Let D* denote the dual space of D. Clearly, the dual space H* is a subspace
of D*. After identifying H* with H in the standard way, we can view H as
a subspace of D*. The restriction of || - ||p~ to H is given by

1fllpe = sup{ [ 1o s oo < 1}

for f € H. For later reference, we collect some basic facts from [3].

Proposition 8.1. The following statements hold:
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(i) The operators f— Ef, f—= f, f— —f + %ff are bounded from

D toH.

(ii) The operators f— Ef, f—= f', f— —f + %Ef are bounded from
H to D*.

(iii) The operators f s &2 f, f > &f', f+— f" are bounded from D to

D*.
(iv) The operator f fog f is bounded from H to D.

Proof. Statements (i), (ii), and (iii) were proved in [3]. To prove state-
ment (iv), let us consider a function f € H, and let g(§) = fog f(&)d¢'.

Then g(€)? < ﬁfog (€2 de for € > 0. Using Fubini’s theorem, we obtain
o0 2 o 2 3
—% 2d —% / 2d /) d
[T S aerass [Tt [ rera)
. o > —% N2 g¢!
= [T [ eae) rerna
o [T e pe2ae
| rera
An analogous argument gives f?oo e‘§ g(6)?d¢ < QfEOO e_§ (€2 ae.

Therefore, ||g|lx < C||f|l%. Since ¢’ = f, it follows that ||g||lp < C'||f]|x, as
claimed.

For a time-dependent function f, we introduce the following norms:

:
2 = sup / Gy

TSTx

T
T —— / 1) B dr,

T JT—1

:
11 . i= sup [ ) dr

7T JT—1

The following energy estimate was proved in [3]:

Proposition 8.2. Let g : (—o0, 7] — D* be a bounded function. Let f :
(—00, 7] = D be a bounded function which satisfies the linear equation

2 1)~ £1(7) = 9(r).

Then the function f = P f+ P_f satisfies the estimate
sup [[f(M)lw + A7 fllp oo < IPHf (Tl + Alg]

T< Ty

D*,00,Tx s

where A 1s a universal constant.
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Proof. See [3], Lemma 6.6.

We now continue with the proof of Proposition 6.7. The functions G1 (&, 7)
and Gg‘ﬁv(ﬁ, 7) satisfy the equation

GrlE7) = Gel6,7) — 5 6 Gl )
+ 3 (VEHG(ET) -~ (VE+G(Em)™
~ (V34 G ) Gl 7Y

Ge(0.7) 5 Ge(€7)? /
+2Ge(§,7) [\/§+G(0,7) /0 (\@-FG(f/aT))Q dg]

Consequently, the difference H(¢,7) = G1(€,7) — G;‘ﬁw(f, 7) satisfies

6

H(6,7) = Hegl6,7) — 5 EHe(,m) + H(E ) + 3 Bule,m),

k=1

where

Bi(6,m) = [(VB+ Gal6,m) (VB + G5P(E ) - | HGem)

By(&,7) = (V2+ G1(6,7) T (V2 + G376, 7)) 7 Guel€, 7)? H(E, ),
Bs(&,7) = —(V2+ G357 (6,7) 7 (Gre(6,7) + G50 (6, 7)) He(&, 7)

) = G1§(07T) . ¢ Glf(g/aT)Q ’ -
Bilem =2 [\/5+G1(0,r) /0 (V2+Gi(¢,7))? dé] Hel& 7).
Bae.r) = 2650 (6,7) ﬂlfg(o))

G527(0,7) H(0, 7)
(V2 +G1(0)(v2 + G57(0,7))
e [ € (Grel€m) + GET(E 7)) He(€'7)
B 7 =203 | - [T s
. /f (2v2+Gr(€,7) + G3 (¢ 7)) H(E,T) Gael€), 7)? dg,] |
0 (VZ+Gi(¢,7))* (V2 + G57(¢, 7))

—2G37(&,7)

de’

Consequently, the function He (€, 7) = Xc((—T)_%f) H (&, 1) satisfies

10
Her(6,7) = Hege(6,7) — %ﬁHC,g(é, )+ He(€,7) + > Eer(&,7),
k=1
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where

Fea(67) = [(VE+Gil6,m) ' (VB + G576, m) " - 5] Hele,m),

7)
Eca(€,7) = (V2+ G1(&,7) " (V2 + G577 (6,7)) 7  Gue(€,7)* He (€, 7),
Eea(6,m) = —(V2+ G57(6,7) 7 (Gae(&,7) + G5V (€,7)) Heg(€,7),

B Gie(0,7) ¢ Gl€,7)? / .
Ec,4(§,7)—2[\[+G1(0 e v ewene d¢ | Hete. ),
Besl6,m) = 2xe((—m) 36) G2 (6, >\/§Ifg(3)

G3.7(0,7) H(0,7)
(V2 + G1(0) (V2 + G57(0, 7))

—2xc((~7)"26) G (€,7)

Ees(€,m) = 2xc((—7)72€) G3 (€,7)
| [_ / (G, 7) + G52 (€, 7)) He(€',7)
0 (V2+ G537 (¢,7m))?
. /£ (22 + G1(¢,7) + G5 (€,7)) H(E, 7) Gre(€,7)° dg,] |
0 (V2+G1(€,7)2(V2 + G5™(¢, 7))
Eeq(6,7) = (V2+G57(6,7) 7 (Gael€,m) + G (6,7))
(=7)7E XG((~7)73E) HE,7T),

) = — G1¢(0,7) . ¢ G1§(§/77—)2 /
Besltm) = =2 [\/i-f-Gl(O T) / (\/>+G1(§/,T))2 df]

(=) TE X ((—T)T2E) HE,T),
EC79(§aT):(_T) 1Xg(( )7§§>H(§77)

dg’'

In the following, we will estimate the terms 35 _, || Ec.x|#.00,r. and Z,{zoﬂ | Ec k|l D* 00,r. -
To that end, we need the following estimates for the functions G1(§, 7) and

Gs7 (€, 7):

Proposition 8.3. Fix a small number § > 0 and a small number n > 0.
Then there exists a small number ¢ > 0 (depending on 6 and n) with the
following property. If the triplet (o, B,7) is e-admissible with respect to time
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t, = —e™ ™ and —7, s sufficiently large, then
2 £ -2 £+1
(V2 +Giem)? -2+ (_27)( <1y
af3 52 €2 +1
)(\/5+G2 7(67 )) _2+( 27_)‘§77 (_7_)
and
(V24 Gale, ) Gl ) + (| <0 S
of Gas &l +1
(V2 G e GE D) + | <0y

for €] < 4/4— % (—7‘)% and 7 < Ty

Proof. This follows directly from Proposition 4.8, Proposition 4.9, and
Proposition 6.3.

In order to estimate the term ||E¢ /7,007, We need the following point-
wise estimate:

Lemma 8.4. We have

a6, )] < C(6) (—r) % G2, 7 \\ / Hele

+C(0) (—7)72 |G (€. 7)| (|He (6, 7)| + |H (0, 7))

for all T < 7.

Proof. Proposition 4.11 implies

|Gree(€,7)| + |Gote (€, 7)| < C(6) (=)~

N[

for || < /4 — % (—7‘)%. Using integration by parts, we obtain

d¢’

/6 (Gae(€',7) + G (7)) He(€',7)

0 (V2 + 657 (¢, 7))

. /f (Gree(€,m) + Go (€,7) H(E',7)
0 (VZ+ G537 (¢, 7))

_2 /f G (€,7) (Grel€,7) + G (€, 7) H(E7)
0 (VZ+ G537 (¢, 7))

< C(0) (=) 72 (|H(E,7)| + [H(0,7)])

¢’

d¢’
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for |¢] < y/4— & (=7)7. This gives

‘ / (Gre(&',7) + G (€, 7)) He(€',7)
f +GW5’ 7))2

| fomes

+C(0) (=7)72 (|H (&, 7)] + [H(0,7)])

for |¢| < m (— )% Consequently,

(Eeo(6,m)] < C0) (—7)~ G526, ) xel(~ 25] / (e
) (

dg¢’

1

<C -2

1

+C(0) (-7)72 |G (6. 7) xe((—7) 72

for |£] < /4 — % (—7')%. Since x¢ is monotone decreasing on the interval

[0,00), we obtain 0 < xe((—7)72€) < xe((—7)"2&') for |¢/] < |€]. Putting
these facts together, the assertion follows.

H(E,7)| +[H(0,7)])

In order to estimate the term || E¢ 5(|74,00,-. , We need the following estimate
for He(0,7):

Lemma 8.5. We have

1
o ([ me.rar)’ < C el + €3 | Fenlrmn

T<Tx k=1

Proof. In the region {|{| < 1}, we have 8%Hc = EHC—i—Zg:l Ec¢ ). Using
the embedding of the Sobolev space H'(|-1,1]) into C°([—1,1]) together
with standard interior estimates for linear parabolic equations, we obtain

1
sup(/ He ¢(0,7)? d7'>
T<T«

<0sup(/1/ (He.ce(6,7)? + Hee(6,7 ))d&dT)Q

T<Ty

<C ”HC”’H,OO,T* +C Z HEC,kH’H,oo,T*-
k=1

Since He¢(0,7) = H¢(0,7), the assertion follows.

Lemma 8.6. We have

_1
> I Eeallror. < C6) (~7)7% [ Hellp.oor.
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Proof. Using Proposition 8.3, we obtain the pointwise estimate
_1
|Ee1 (& 7)| < C0) (—=7) 2 ([€] + 1) [He (€, 7)]
for all 7 < 7. Consequently,
1
H,00,Tx < 0(9) (_7-*)7§ HHCH'DPO:T*

by Proposition 8.1. In the next step, we estimate the terms || E¢ k|7 00,7,
where k € {2,3,4,5}. Using the embedding of the Sobolev space H'([—1,1])
into CY([~1,1]), we can bound |H(0,7)| < C ||Hc(:,7)||p. This implies

5
Z | Ec k
k=2

| Ecq

Hooms < C(0) (—7.)72 || Hel

D,00,Tx

w0 (s ([ a2

TS Tx T—1

Finally, using the pointwise estimate in Lemma 8.4 together with Proposi-
tion 8.1, we obtain

1
1 Ec.6ll#.00,7 < C(0) (—7) "2 |[Hel
Putting these facts together, we conclude that

D,00,Tx -

6
1
S B illrocr. < CO) (—r) 2 ||Hel
k=1

D,00,T«

[

1
+C(0) (—7«)" 2 sup (/ He(0,7)? dT/> i
T<Tx 7—1

< C(0) (—m) "7 || He|

D,00,T«

6
_1
+00) (=1)72 Y I Ee oo
k=1

where in the last step we have used Lemma 8.5. If —7, is sufficiently large,
the last term on the right hand side can be absorbed into the left hand side.
From this, the assertion follows.

Lemma 8.7. We have
9

> I Eekl#t.00m. + 1Ee10lDx 00m,
k=7

<C0) (—m)"2 ||H1

1 1 .
(V4-2 (1) 2<)g< 4*%(*7)7}‘%0077*

2

Proof. Using Proposition 8.1, we obtain

1 _1
1Ec10llD7 oo < C (=) 72 lIxe((=7)72€) Hllpt,00,.
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This gives the desired estimate for E¢ 19. The estimates for F¢ 7, Ecg, and
E¢ o follow directly from the respective definitions. This completes the proof
of Lemma, 8.7.

We now complete the proof of Proposition 6.7. To that end, we apply
Proposition 8.2 to the function H¢. Since Py He(7i) = 0, we obtain

10
sup | He ()|l + A7 [ Hellp oo <A 1Ee k(€ 7)]Dr 00,

T<Tx k=1

We use Lemma 8.6 and Lemma 8.7 to estimate the terms on the right hand
side. This implies

sup || He(r) [l + A" | Hellp oo,

TSTx

< C(0) (—72) "2 | Hellpsor. + C(0) (—72) "2 | PoHe|Doorr,

_1
FOO R 7w b e o by

If —7, is sufficiently large (depending on 6), then the first term on the right
hand side can be absorbed into the left hand side. This completes the proof
of Proposition 6.7.

"H,oo,'r* '

9. ANALYSIS OF THE OVERLAP REGION AND PROOF OF PROPOSITION 6.8

In this section, we give the proof of Proposition 6.8. We remind the reader
that 6 is chosen as in Proposition 6.5. As in the previous section, we write
H, He, He, and a instead of H*P7, Hgﬁv’ f[gﬁv’ and a®?7. We begin with
an elementary lemma:

Lemma 9.1. Assume that 4 < L1 < Ly < L3. Then

i | T erae<c | 5 P de
{L2<¢<L3} {L1<¢<L3}
+C(L2—L1)2/ = f(&)?d¢,
{L1<6< Lo}

where C' is a numerical constant that is independent of L1, Lo, L3, and f.

Proof. Note that

2 2
T e =¥ (107~ § 12 + 219 11©)

62
4

(£ = 5 F©* +45©)?).
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Integrating over & € [0, L3] gives
12 2
Lt [ e (1) st
{0<¢<Ls}

4 -5 2 de.
: /{OﬁﬁsLs}e f(f) ¢

Hence, if f vanishes for 0 < £ < 4, then we obtain

Lig o —% 2d —% / 2d
( 4 1> /{L2S§SL3} ‘ f(é) = 4/{4S5§L3} ‘ / (E) ¢

Finally, we multiply the given function f by a smooth cutoff function which
is equal to 0 on the interval (—oo, L], and which is equal to 1 on the interval
[L2,00). This completes the proof of Lemma 9.1.

The following lemma relates the function H (&, 7) to the function W4 (p, 7):

Lemma 9.2. If we choose —T, sufficiently large (depending on 0), then
|[He(&,7) + Wi (V2+ Ga(&,7),7)| < C(0) [H(&,7)]
provided that \/4—470002(—7')% <E<W /44— 1%20 (—7')% and T < Ty.
Proof. Suppose that \/m(—ﬂ% < & < /44— %20 (—7')% and
T < T, Let
pri= e Fi(em2¢,—e7T) = V2 4+ Gi(&,7),
pa = €2 F;BV(e_%f, —e ) =V2+ Gaﬁv(é,T).
By Proposition 4.8 and Proposition 6.3, pi € [45,200] and ps € [£,206].

MOI‘GOVBI‘, %Gl(é’T) = _‘/i+(p17 )7 (%Gaﬁ’y(é’ ) - _‘/Qﬁy(pQ’T)v and P1 —
= H(¢, ) This implies
0

aﬁv
(57 )_ §G1(§7 ) 85 (57 )

- _VH—(Pl;T) ‘éﬂ-{j(pQ’T)
— Wi (p1,7) = VI (p1,7) + Vi (pa, 7).

Using Proposition 4.16, we obtain ‘B%VQ’B:(/), 7)| < C(0) for every p €

,5

[290,200] and every 7 < 7. This gives

SEHET) + Wl 7)| < VT (pr,7) = Vi . 7)
cw)\pl—pzr
CO)|H(E ),

as claimed.
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Lemma 9.3. We have

-7
| )/{\/4—"5(—T)%<£<\/4—€f(—r)%}

0
<CO ) [ Vi o) 2 Wl et 0 dp

5 H(E, ) de

N

2
+C®) / 1 T HE
{Va=02 (—7)2<e< /4% (-7)2}

provided that 7 < 7, and —Ty is sufficiently large.
Proof. We apply Lemma 9.1 with L1 = v/4 — 62 (—7‘)%, Ly = 2 (—7)
Ls = - % (—7‘)%, and f(§) = H(&, 7). This implies

5 H(E,7)? de

—T
( >/{\/@(—7)%<§<M(—T)%}
<C(# /

) {M(—T)%st\/@(—f)%}

+ (0 /
) {M(ff)%éfg\/@(ﬁ)%}
By Lemma 9.2, He(€,7)° < 4Wi (V2 + Gi(§,7),7)* + C(0) H(E,7)? for
\/m(_T)% << \/—7%(—7)%. This gives
52
—T e T H 577- 2d§
) S b ohyt O

< c) e WL (Va + Gy(6,7), 72 de

1

(VIT02 (-1) 2 <6<\ 45 (-1}

§2
+00/ e” T H(E, ) dE.
) (VI—0? (-n) b e\ [a- 2 (-} &)

By Proposition 4.16, we have Vi1 (p,7) < C(0) (—7’)_% for p € [4,6]. More-

over, Lemma 5.1 gives puy(p,7) = —W for p € [%, 6]. Consequently,

S WL (VB + Gi(€, ), 7)2 de

/{m<—f>%sss\/4—ej (-1)%}

0 €14 (p7)?
S[) Vie(p, )" Wilp,7)?e” 1 dp

4
0
<CO) (=) [ Vi) Wi, 07 dp
1
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Putting these facts together, we conclude that

(—T)/{ — ) =55 H(E, 72 de

From this, the assertion follows easily.

Lemma 9.4. We have

20
(=7)72 | Vis(p,7) 2 Walp,7)? e+ 07 dp
0

2
() / 5 (He(€.7)? + H(E,7)?) d
(VA—T60% (—7) 3 <e<VA—02 (1) %)

provided that T < 7 and —T, is sufficiently large.

Proof. By Proposition 4.16, we have Viy(p,7) > ﬁ (—7‘)_% for p €

[0,20]. Moreover, Lemma 5.1 gives puy(p,7) = —W for p € [0,26)].
Consequently,

2
/ 1 1 6_% W+(\/§+Gl(£77—)77—)2 dé-
{VA4-166% (—7)2 <6€<V4—6% (—7)2}

26 §1+(p,f)2

Vie(p,7) " Wa(p,7)?e” 1 dp

1 1 20 B .
o - /9 Vis (0, 7) "2 Wy (p,7)2 07 dp,

>

S

v

By Lemma 9.2, W.(V2 + Gi(§,7),7)* < 4He(§,7)* + C(6) H(E,7)* for
V4 —1660% (— )2 <E<VA—-02(— ) From this, the assertion follows.

Proposition 9.5. We have

2
sup (— % H(¢, 7'/)2 d¢ dr’

r<r /Tl/wf e ﬁ—w)z}
) sup / 1 / (Hee(6,7')? + He(€,7')?) dE dr'.

T<Ty
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Proof. Using Lemma 9.3, Proposition 6.5, and Lemma 9.4, we obtain

2
sup (—

g
e T H(¢ 7)) dgdr’
r<T /T 1/{\/4 )2 <e<y /14— 2 (—r1) 2} &)

< C(8) sup (— / / Vis (o, 1) 2 Wi (p, )2 €07 dp dr’
T—1

T<Tx

wh—‘

+ C(6) sup

T<T« /Tl ~/{\/W(T’)%§§§\/ 4*% (*T/)%}

2
e~ T H(¢,7)2de dr’

D=

< C(0) Sgp( )"

T 26
/ Vig(p, ™) 2 Wi(p, )2 et 0™) dp dr’

sup

‘r<‘r*/7— 1/{\/W(—T 2<£<\/@(_7—/)%}
) sup / / (Hee(6,7')? + He(€,7')?) dE dr'.
T—1

T<T«

2
e_% H(¢, 7")2 d¢ dr’

An analogous argument works when £ is negative. This completes the proof
of Proposition 9.5.

After these preparations, we now finish the proof of Proposition 6.8. Using
Proposition 9.5, we obtain

§2
su e~ T H(E )2 dedr
r<7I-)* /T 1/./4—92 N2 <lg|<\/4-2 (=) 2} &) dt
<c@sw [ a(Par
T—1

T<Tx

) sup / 1 / (Hee(6,7) + He(6,7')?) d dr'.

T<Tx

Combining this estimate with Proposition 6.7 gives

) sup / 1 / T (Hee(6,7)? + Hel&, 7)) dé dr’

T<Tx

< C(0) sup/ 1a(7)2d/

T<Tx

L C(0) (—r)"" sup / 1 / (e, 7)? + He(e, 7)) de dr.

T<T«

If —7, is chosen sufficiently large (depending on ), then the last term on
the right hand side can be absorbed into the left hand side. This completes
the proof of Proposition 6.8.
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10. ANALYSIS OF THE NEUTRAL MODE AND PROOF OF PROPOSITION 6.9

In this final section, we give the proof of Proposition 6.9. As before, we
write H, He, He, and a instead of H*87, Hgﬁﬂ’, Hgﬁw’ and a®87.

Lemma 10.1. We have

sup (—7
= )l—l/{@(—f’)ésslsﬂ(—w)%}

< C(6) sup / a(t)?dr'.
7—1

T<T«
Proof. This follows by combining Proposition 6.8 and Proposition 9.5.
We next establish an improved version of Lemma 8.5:

Lemma 10.2. We have

(—74) sup He(0,7)?dr’ < O(0) sup / a(r')*dr'.

7T« JT—1 T<1e J7—1

Proof. The function H¢ satisfies the evolution equation %HC = LHg +

’16():1 E¢ . Consequently, the function He satisfies the evolution equation
%ﬁc = LH; + 211{021 Ecy — 211{021 PyEc . In particular, in the region
{|¢] < 1}, we have 8%]:[@ = LHe + Y0 Eep — 342, PyEcy. Using the
embedding of the Sobolev space H'([—1,1]) into C°(|—1,1]) together with
standard interior estimates for linear parabolic equations, we obtain

1
T 3
sup </ HC’E(O,T/)2 dTI)
T<Tx T—1

T 1 R .
< Csup (/_1 /_1(Hc,55(§,7')2 + Hee(6,7)%) dg dT'>
6 1

2

T<Tx
0
< C|Hellnoor. +C Y N1 Beklrsor. +C Y | PoEeu

‘H,OO,T*
k=1 k=1
6 10
< C|Hellnoor +C Y N1 Beklroor. + C Y I Eerlpr cor.-
k=1 k=7

Note that ﬁcf(O,T) = He(0,7) = He(0,7) for each 7. In the next step,
we use Lemma 8.6 and Lemma 8.7 to estimate the terms on the right hand
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side. This gives

1
d 2
sup (/ He(0,7')? d7">
T<Tx T—1

< C||He|lmp0.r. +C(8) (=) "2 | Hel|p o,
+C0) (—7) 7

<o) (-r) s ([ ;awda)%,

T<Tx

where in the last step we have used Proposition 6.8 and Lemma 10.1. This
completes the proof of Lemma 10.2.

After these preparations, we now study the evolution of the function a(7).
Using the evolution equation %HC =LHe + Z}le Ec 1, we obtain

d 10
Lalr) =3 1o,
k=1
where Ij(7) is defined by

Iir) = —

e,
16\/%/]1{6 (5 2) EC,k’(faT)dg

for 7 < 7. In the remainder of this section, we estimate the terms Ix (7).

Lemma 10.3. Let § > 0 be given. If —y is sufficiently large (depending on
J), then

1

sup (—7) /TTl |1 (7)) — (—7")*1 a(t)|dr’ < § sup </TT a(7')2 dT/> 5.

T<Tx T<Tx —1

Proof. We define a function I;(7) by

T (€2~ 2) Ho(e,7)

N

1
Li(r :/
RRNTNG {lel<y/4-2 (-2}

[+ e waasTe ) - 5 de

for 7 < 7. Using the asymptotic estimates in Proposition 8.3 together with
the Cauchy-Schwarz inequality, we obtain

0 [ near oo ([ e a2 m’)é

for all 7 < 7. Using Proposition 6.8, we conclude that

1
sup (_7')/ |f1(7'/)| dr’ <6 sup (/ a(r')? d7_/> 27
T—1 -

T<Tx T<Tx —1
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provided that —7, is sufficiently large (depending on §). On the other hand,
using the identity He(€,7) — He(€,7) = V2a(r) (€2 — 2), we obtain

; a(r)

H = =6 lel<y/2-2Z (-3
(V24 Gie ) T (VR G (6 )

e (€ -2

1
——|d
5 d¢
for all 7 < 7. Using the asymptotic estimates in Proposition 8.3 and the
2
formula [ e T (€2 — 2)3d¢ = 128/, we conclude that

11(7) = Li(m) = (=7) " a(r)| < 6 (=) fa(7)]

for all 7 < 7. Putting these facts together, the assertion follows.

Lemma 10.4. Let § > 0 be given. If —7y is sufficiently large (depending on
), then

1
sup (—7‘)/ |I(7")| dr" < § sup </ a(T')QdT') 2.
TST* 71 TST* 7—1

Proof. Using the Cauchy-Schwarz inequality, we obtain

/Tl |Ix(7")| d7’
<co) [ [ eI = 2iGrele P el o) de

T _é
gow)( I . 4|£2—2|2|G15(£,T’)I4d£d7’>
=1 J{|g]<\ /4= (=) 2}

for all 7 < 7. To bound the term on the right hand side, we use the
asymptotic estimates in Proposition 8.3. This gives

(—71) /TT1 |I(7)|dr' <6 (/TTl /Re542 He (€, 7')% d¢ dT’> :

for all 7 < 7. Therefore, the assertion follows from Proposition 6.8.

[N

2

Lemma 10.5. Let § > 0 be given. If —y is sufficiently large (depending on
d), then

sup (—7) /TT1 |I3(7") — (=) "La(r)|dr’ <6 sup </TT a(t')? dT/> %.

T<Tx T<Tx —1



60 SIMON BRENDLE, PANAGIOTA DASKALOPOULOS, AND NATASA SESUM

Proof. We define a function I3(7) by

i) = e (€2 - 2) Hel€,m)

1
16v27 /{as\/ﬁwﬁ}
(V24 GSPI(E )T (Gl ) + G (€ 7)) de

for 7 < 7. Using the asymptotic estimates in Proposition 8.3, we obtain

(—T)/T |f3(7/)\ dr’ < C(0) </71 /Re_i I{Ic’g(é,’rl)2 dg d7/> i

-1
for all 7 < 7. Using Proposition 6.8, we conclude that
1
T R T §
sup (—T)/ |I3(7")|d7" < & sup (/ a(T')2d7’> ,
T T T—1 T<Tx T—1
provided that —7, is sufficiently large (depending on §). On the other hand,
using the identity He¢(€,7) — Hee(€,7) = 2v/2a(7) €, we obtain

~

I3(t) — I3(1) = —

a(r) —% 2_9
8ﬁ/{|f§ CE by o

(V24 G576 7)) (Grelé,m) + G (6 7)) de
for all 7 < 7. Using the asymptotic estimates in Proposition 8.3 and the
2
formula [ e T (€2 — 2) €2 d¢ = 164/, we conclude that

| I3(7) = Is(r) = (=7) " a(r)| < 6 (=) |a(7)]

for all 7 < 7. Putting these facts together, the assertion follows.

Lemma 10.6. Let § > 0 be given. If —7y is sufficiently large (depending on
d), then

1
T T 2
sup (—T)/ |Iy(7")|d7" < § sup </ a(T/)QdT/> .
7T T—1 T<Tx 7—1

Proof. Using Proposition 8.3, we obtain |G1¢(0,7)| < o(1) (—7)~!. This
implies

|Bea(§,7)| < o(1) (=7) 7 [Hee(€,7)| + C(0) (=7) 72 (€] +1) [Heg (€, 7)]

for all 7 < 7. Using the Cauchy-Schwarz inequality, we conclude that

(—7) /7—1 |[Ly(7")|dr" < & (/7-—1 /Re_i Hc’g(f,’i'/)2 dg dT/> i

for all 7 < 7. Hence, the assertion follows from Proposition 6.8.
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Lemma 10.7. Let § > 0 be given. If —7y is sufficiently large (depending on
5), then

1

T T 5

sup(—T)/ |I5(7")| dr’ < 6 sup (/ a(r')? d7_/> ‘
T<Tx T—1 T<T T—1

Proof. Using the asymptotic estimates in Proposition 8.3, we obtain

/il |I5(7'/)| dr’
< () (=) /_1 He(0,7)| dr’ + C(8) (—) 2 / \H(0,7)] dr’

-1

for all 7 < 7. The first term on the right hand side can be estimated
using Lemma 10.2. To estimate the second term on the right hand side,
we use Proposition 6.8 together with the embedding of the Sobolev space
H'([-1,1]) into C°([—1,1]). Putting these facts together, the assertion fol-
lows.

Lemma 10.8. Let § > 0 be given. If —7y is sufficiently large (depending on

J), then
T T %
sup(—T)/ |Ig(7")| dr’ < 6 sup </ a(r')? d7_/> .
T<Tx 7—1 T<Tx T—1

Proof. For abbreviation, let M (£, 7) := ’f(f |He (¢, 7)1 d€'| + [He (&, 7)| +
|H(0,7)|. Proposition 8.1 implies

/ / S M) dedr’ < O/ / (Heg (6, 72+ He(¢,7)2) dé dr’
7—1 7—1
for all 7 < 7. Using Lemma 8.4, we obtain
(=7)% |Ees(€,7) < C0) |G (€, 7)| M(€,7)
for all 7 < 7. This gives
(- 7)5/ \To(r")] dir”
/ / 1€ — 2] |G (6, )| M€, 1) de
71 {|£|< 4= (- }
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for all 7 < 7. Using the Cauchy-Schwarz inequality, we conclude that
1 T
(=) [ mlar
1

2
<cor([ | I 2R G TP )
r—1J{jg)<\/1-2 (—r)2}

1

(Hee(&,7')2 + He(&, 7)?) dgdr' )
([ L )

for all 7 < 7. To bound the term on the right hand side, we use the
asymptotic estimates in Proposition 8.3. This gives

(_T)/T |I(7")| dr’ <5</T 1/ T (Hee(€,7)?2 +HC(§,T')2)d§d7—’>2

for all 7 < 7. Therefore, the assertion follows from Proposition 6.8.

Lemma 10.9. Let § > 0 be given. If —y is sufficiently large (depending on
d), then

1

T 2

sup (— / Z]Ik ) dr' <6 sgp </ a(t')? dT/> :
T— T<Tx 7—1

T<Tx 1 k=7

Proof. We first observe that

2
}ei €0 | H (¢, )| dé d’

Indeed, the estimates for I7, Ig, and Ig follow directly from

for all 7 < 7.
The estimate for Iy follows by integration by

the respective definitions.

parts.
Using the Cauchy-Schwarz inequality, we obtain

/T Zuk )| dr’

Lg—r
1

20d
<~/T 1/\/F Nh<e S\/ﬁ % €] 5)

¢ 3
' - V2 de dr!
(/T—l/{\/@<—r’>%<§|<ﬂ(_m%}e (67" de T)
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for all 7 < 7. Consequently,

10

(—7) / S 1)

—1p—7

1
' _e o A
<
_C(e)</T1/{ -2 (_ryb << 4772(77/)%}6 T H(,T) d{dr)
2 =Isl= 1

for all 7 < 7,. Hence, the assertion follows from Lemma 10.1. This com-
pletes the proof of Lemma 10.9.

A

Proposition 6.9 follows immediately from Lemma 10.3 — Lemma 10.9 to-
gether with the identity %a(T) = Z,lgozl Ii(1).
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