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Abstract. In this paper, we study the classification of κ-noncollapsed
ancient solutions to three-dimensional Ricci flow on S3. We prove that
such a solution is either isometric to a family of shrinking round spheres,
or the Type II ancient solution constructed by Perelman.
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1. Introduction

Consider a solution to the Ricci flow ∂
∂tg(t) = −2 Ricg(t) on a compact

three-manifold which exists for all t ∈ (−∞, T ]. Such a solution is called an
ancient solution. The goal in this work is to provide a classification of such
solutions under natural geometric assumptions.

Ancient compact solutions to the two-dimensional Ricci flow were classi-
fied by Daskalopoulos, Hamilton, and Šešum [13]. It turns out that in this
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case, the complete list contains only the shrinking spheres (which are non-
collapsed) and the King solution (which is collapsed). The King solution is
not self-similar, but it can be written in closed form. It was first discovered
by King [17] in the context of the logarithmic fast diffusion equation on R2

and later independently by Rosenau [20] in the same context. It also appears
as the sausage model in the context of quantum field theory (see [14]). Let
us remark that the classification work in [13] classifies both collapsed and
noncollapsed solutions.

We now turn our attention to the three-dimensional Ricci flow. In [10],
it was shown that any three-dimensional ancient solution on S3 with uni-
formly pinched curvature is a family of shrinking round spheres. In [18],
Perelman established the existence of a rotationally symmetric ancient solu-
tion on S3 which is κ-noncollapsed and which is not a soliton. This ancient
solution is of Type II backwards in time, namely its scalar curvature sat-
isfies lim supt→−∞(−t)Rmax(t) = ∞. Going forward in time, the solution
forms a Type I singularity, and shrinks to a round point. Perelman’s an-
cient solution has backward limits which are either the Bryant soliton or the
round cylinder S2 ×R, depending on how we choose the sequence of points
about which we rescale. Perelman’s ancient solution can be viewed as the
three-dimensional analogue of the King solution. However, unlike the King
solution, Perelman’s ancient solution is noncollapsed.

The noncollapsing property plays a crucial role in the study of the Ricci
flow. In fact, in [18] Perelman proved that every ancient solution arising
as a blow-up limit at a finite-time singularity on a compact manifold is κ-
noncollapsed for some κ > 0. Moreover, in dimension 3, the well-known
Hamilton-Ivey pinching estimate tells us that any such blow-up limit has
nonnegative sectional curvature. Following Perelman, we say that (M, g(t))
is an ancient κ-solution if (M, g(t)) is defined on (−∞, T ], is non-flat and
κ-noncollapsed, and has bounded nonnegative curvature. It follows from
Hamilton’s Harnack estimate (see [15]) that Rt ≥ 0 on an ancient κ-solution.
In [18], Perelman proposed the following conjecture:

Conjecture 1.1 (Perelman [18]). Let (M, g(t)) be a noncompact ancient
κ-solution to the Ricci flow in dimension 3 with positive curvature. Then
(M, g(t)) is the Bryant soliton.

This conjecture was proved in [6] in the class of steady gradient Ricci
solitons, and in full generality in [7]. The proof in [7] has two main parts. In a
first step, it is shown that the Bryant soliton is the only noncompact ancient
κ-solution which has positive curvature and is rotationally symmetric. In
a second step, it is shown that every noncompact ancient κ-solution with
positive curvature must be rotationally symmetric.

The following is the analogue of Perelman’s conjecture in the compact
setting:
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Conjecture 1.2. Let (S3, g(t)) be a compact ancient κ-solution to the Ricci
flow on S3. Then g(t) is either a family of shrinking spheres or Perelman’s
ancient solution.

As announced in [7], the techniques in that paper can also be applied
to show that any ancient κ-solution on S3 is rotationally symmetric. We
include the proof of this fact in Section 1.3.

Theorem 1.3. Let (S3, g(t)) be an ancient κ-solution on S3. Then (S3, g(t))
is rotationally symmetric.

After this result was announced in [7], an alternative approach to Theorem
1.3 was proposed in [4].

Next, we give a complete classification of all ancient κ-solutions on S3

with rotational symmetry:

Theorem 1.4. Let (S3, g1(t)) and (S3, g2(t)) be two ancient κ-solutions
on S3 which are rotationally symmetric. Assume that neither (S3, g1(t))
nor (S3, g2(t)) is a family of shrinking round spheres. Then (S3, g1(t)) and
(S3, g2(t)) coincide up to a reparametrization in space, a translation in time,
and a parabolic rescaling.

Combining Theorem 1.3 and Theorem 1.4, we can draw the following
conclusion:

Theorem 1.5. Let (S3, g(t)) be an ancient κ-solution on S3 which is not
a family of shrinking round spheres. Then (S3, g(t)) coincides with Perel-
man’s solution up to diffeomorphisms, translations in time, and parabolic
rescalings.

Let us mention some related work in the mean curvature flow setting.
Compact, convex ancient solutions to the curve shortening flow were classi-
fied in [12]. In [8],[9], it was shown that the bowl soliton is the only ancient
solution to mean curvature flow which is noncompact, noncollapsed, strictly
convex, and uniformly two-convex. In [2],[3], it was shown that every ancient
solution to mean curvature flow which is compact, noncollapsed, strictly con-
vex, and uniformly two-convex is either the family of shrinking spheres or
the family of ancient ovals constructed by White (cf. [21]) and Haslhofer-
Hershkovits (cf. [16]). Collapsed ancient solutions to mean curvature flow
were studied in [5].

The outline of the paper is as follows. In Section 2, we recall some qual-
itative properties of ancient κ-solutions on S3. In particular, an ancient
κ-solution on S3 is either a family of shrinking round spheres, or it has
the structure of two caps joined by a tube (in which the solution is nearly
cylindrical). In Section 3, we give the proof of Theorem 1.3.

In Section 4, we establish various a-priori estimates for rotationally sym-
metric solutions, building on our earlier work [1].

In Section 5, we introduce two weight functions µ+(ρ, τ) and µ−(ρ, τ) in
the tip regions. This will be needed to prove the tip region estimates (see
Proposition 6.5).
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In Section 6, we give the proof of Theorem 1.4. The proof is inspired
by the argument in [3]. Let us sketch the main ideas. Suppose we are
given two ancient κ-solutions (S3, g1(t)) and (S3, g2(t)) which satisfy the
assumptions of Theorem 1.4. These ancient solutions can be described by
profile functions F1(z, t) and F2(z, t). As in [1], the profile function gives
the radius of a sphere of symmetry which has signed distance z from some
reference point. The results in Section 4 (and our earlier results in [1]) give
precise asymptotic estimates for the profile functions F1(z, t) and F2(z, t).

We work on a time interval (−∞, t∗], where −t∗ is very large. We intro-

duce a three-parameter family of profile functions Fαβγ2 (z, t). These differ
from the original profile function F2(z, t) by a change of the reference point
(represented by the parameter α); a translation in time (represented by the
parameter β); and a parabolic dilation (represented by the parameter γ).
Our goal is to show that there exists a time t∗ and parameters α, β, γ such

that F1(z, t) = Fαβγ2 (z, t) for all t ∈ (−∞, t∗].
To prove this, we consider two regions, the tip region and the cylindrical

region. Roughly speaking, the tip region consists of points in space-time
where the radius of the sphere of symmetry is . θ

√
−2t, while the cylindrical

region consists of point in space-time where the radius of the sphere of
symmetry is & θ

√
−2t. Here, θ is a small positive constant which will be

chosen later.
The first main ingredient is a weighted estimate for the difference of two

solutions in the tip region (see Proposition 6.5). This estimate uses the
weight functions µ+(ρ, τ) and µ−(ρ, τ) introduced in Section 5. The tip
region estimate works as long as we choose the parameter θ small enough.
From this point on, we fix θ sufficient sufficiently small, so that the tip region
estimate holds. We next analyze the difference of the two solutions in the
cylindrical region. To that end, it is useful to perform a rescaling. We define

G1(ξ, τ) := e
τ
2 F1(e−

τ
2 ξ,−e−τ )−

√
2,

Gαβγ2 (ξ, τ) := e
τ
2 Fαβγ2 (e−

τ
2 ξ,−e−τ )−

√
2,

and
Hαβγ(ξ, τ) := G1(ξ, τ)−Gαβγ2 (ξ, τ).

Moreover, we introduce a cutoff in space which allows us to localize the
function Hαβγ to the cylindrical region. We put

Hαβγ
C (ξ, τ) := χC((−τ)−

1
2 ξ)Hαβγ(ξ, τ),

where χC denotes a smooth, even cutoff function satisfying χC = 1 on

[0,
√

4− θ2

2 ] and χC = 0 on [
√

4− θ2

4 ,∞). Finally, we write t∗ = −e−τ∗ .
Given a time τ∗, we choose the parameters α, β, γ such that the function

Hαβγ
C (·, τ∗) is orthogonal to the Hermite polynomials of degree 0, 1, and

2. This gives three orthogonality relations for the three parameters α, β, γ.
Note that the orthogonality relations depend on θ, but this does not pose a
problem, as we have already fixed θ at this stage.
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For this choice of the parameters α, β, γ, we are able to prove an en-

ergy estimate for the function Hαβγ
C (see Proposition 6.7). The estimate in

Proposition 6.7 contains a term

sup
τ≤τ∗

∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 Hαβγ(ξ, τ ′)2 dξ dτ ′

which arises from the cutoff. Crucially, this term can be controlled using
the tip region estimate (cf. Proposition 6.5). The upshot is that, for this

particular choice of α, β, γ, we can control the function Hαβγ
C in terms of a

scalar function aαβγ , which represents the orthogonal projection of Hαβγ
C to

the Hermite polynomial of degree 2 (see Proposition 6.8).
The final ingredient is an ODE for the function aαβγ (see Proposition 6.9).

Using this ODE together with the relation aαβγ(τ∗) = 0, we can conclude
that aαβγ(τ) = 0 for all τ ∈ (−∞, τ∗]. From this, we deduce that G1(ξ, τ) =

Gαβγ2 (ξ, τ) for all (−∞, τ∗]. This finally gives F1(z, t) = Fαβγ2 (z, t) for all
t ∈ (−∞, t∗].

2. Structure of compact ancient κ-solutions

In this section, we recall some basic facts about the structure of compact
ancient κ-solutions. Throughout this section, we assume that (M, g(t)) is
a three-dimensional ancient κ-solution which is compact and simply con-
nected. Moreover, we assume that (M, g(t)) is not a family of shrinking
round spheres. Note that M is diffeomorphic to S3 by work of Hamilton.

Proposition 2.1. The asymptotic shrinking soliton associated with (M, g(t))
is isometric to the cylinder S2 × R.

Proof. By Perelman’s classification of shrinking gradient Ricci solitons
in dimension 3 (cf. [19]), the asymptotic shrinking soliton associated with
(M, g(t)) either has constant sectional curvature, or it locally splits as a
product. If the asymptotic shrinking soliton associated with (M, g(t)) has
constant sectional curvature, then, by Hamilton’s curvature pinching esti-
mates, the solution (M, g(t)) has constant sectional curvature for each t,
contrary to our assumption. Therefore, the asymptotic shrinking soliton
associated with (M, g(t)) must be isometric to either the cylinder S2×R, or
a quotient of the cylinder S2 ×R. The asymptotic shrinking soliton cannot
be a compact quotient of S2 ×R. Furthermore, if the asymptotic shrinking
soliton is isometric to a Z2-quotient of the cylinder S2×R, then it contains
an embedded RP2, but this is impossible since M is diffeomorphic to S3.
Therefore, the asymptotic shrinking soliton must be isometric to the cylin-
der S2 × R.

Proposition 2.2. Let (xk, tk) be an arbitrary sequence of points in space-
time satisfying limk→∞ tk = −∞. Let us perform a parabolic rescaling
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around the point (xk, tk) by the factor R(xk, tk). After passing to a sub-
sequence, the rescaled flows converge to a limit which is either a family of
shrinking cylinders or the Bryant soliton.

Proof. By Perelman’s work [18], the rescaled manifolds converge to an
ancient κ-solution. If the limiting ancient solution is noncompact, then, by
[7], it must be either a family of shrinking cylinders or the Bryant soliton,
and we are done. Hence, it remains to consider the case when the limiting
ancient solution is compact. In this case, we have

lim sup
k→∞

Rmax(tk) diamg(tk)(M)2 <∞.

This implies that (M, g(tk)) cannot contain arbitrarily long necks. On the
other hand, since the asymptotic shrinking soliton is a cylinder by Propo-
sition 2.1, we know that (M, g(tk)) must contain arbitrarily long necks if k
is sufficiently large. This is a contradiction. This completes the proof of
Proposition 2.2.

In the next step, we fix a small number ε1 > 0. For later purposes, it
is important that we choose ε1 small enough so that the conclusion of the
Neck Improvement Theorem in [7] holds. Moreover, we fix a small number
θ > 0 with the following property: if (x, t) is a point in space-time satisfying
λ1(x, t) ≤ θR(x, t), then the point (x, t) lies at the center of an evolving
ε1-neck. Here, λ1(x, t) denotes the smallest eigenvalue of the Ricci tensor at
(x, t).

Definition 2.3. We say that p is a tip of (M, g(t)) if λ1(p, t) > 1
6 R(p, t)

and ∇R(p, t) = 0.

By work of Hamilton, every neck admits a canonical foliation by CMC
spheres. This will be referred to as Hamilton’s CMC foliation.

Proposition 2.4. Consider a sequence of times tk → −∞. If k is suffi-
ciently large, we can find two disjoint compact domains Ω1,k and Ω2,k with
the following properties:

• Ω1,k and Ω2,k are diffeomorphic to B3.
• For each point x ∈M \ (Ω1,k ∪ Ω2,k), we have λ1(x, tk) < θR(x, tk).

In particular, the point (x, tk) lies at the center of an evolving ε1-
neck.
• For each point x ∈ Ω1,k ∪ Ω2,k, we have λ1(x, tk) >

1
2 θR(x, tk).

• ∂Ω1,k and ∂Ω2,k are leaves of Hamilton’s CMC foliation in (M, g(tk)).
• For each k, there exists a leaf Σk of the CMC foliation with the

property that Ω1,k and Ω2,k lie in different connected components of

M \ Σk, and supx∈Σk
λ1(x,tk)
R(x,tk) → 0.

• The domains (Ω1,k, g(tk)) and (Ω2,k, g(tk)) converge to the corre-
sponding subset of the Bryant soliton after rescaling.
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Proof. By Proposition 2.1, the asymptotic shrinking soliton associated
with (M, g(t)) is a cylinder. Hence, we can find a sequence of points qk ∈
M such that λ1(qk,tk)

R(qk,tk) → 0. In particular, qk lies at the center of an ε1-

neck if k is sufficiently large. Let Σk denote the center sphere of this neck.
Since M is diffeomorphic to S3, the complement M \Σk has two connected
components. Let us follow Hamilton’s CMC foliation outward to either
side of the neck, until we encounter a point where λ1 ≥ 2

3 θR. Therefore,

we can find points q1,k and q2,k such that λ1(q1,k, tk) = 2
3 θR(q1,k, tk) and

λ1(q2,k, tk) = 2
3 θR(q2,k, tk). Moreover, q1,k and q2,k lie in different connected

components of M \Σk. By our choice of θ, the point q1,k lies at the center of
an ε1-neck, and q2,k also lies at the center of an ε1-neck. Let Σ1,k denote the
leaf of Hamilton’s CMC foliation passing through q1,k, and let Σ2,k denote
the leaf of Hamilton’s CMC foliation passing through q2,k. Moreover, let
Nk denote the tube bounded by Σ1,k and Σ2,k. Clearly, Σk ⊂ Nk, and
λ1(x, tk) < θR(x, tk) for all x ∈ Nk.

If we rescale the flow around the point (q1,k, tk), then the rescaled flows
must converge to the Bryant soliton by Proposition 2.2. Consequently, there
exists a compact domain Ω1,k such that ∂Ω1,k = Σ1,k, Ω1,k is diffeomorphic

to B3, and λ1(x, tk) >
1
2 θR(x, tk) for all x ∈ Ω1,k. Similarly, there exists a

compact domain Ω2,k such that ∂Ω2,k = Σ2,k, Ω2,k is diffeomorphic to a ball,

and λ1(x, tk) >
1
2 θR(x, tk) for all x ∈ Ω2,k. Since supx∈Σk

λ1(x,tk)
R(x,tk) → 0, it fol-

lows that Ω1,k∪Ω2,k ⊂M\Σk if k is sufficiently large. Since q1,k and q2,k lie in
different connected components of M\Σk, we conclude that Ω1,k and Ω2,k are
contained in different connected components of M \ Σk. In particular, Ω1,k

and Ω2,k are disjoint. Finally, the complement M \ (Ω1,k∪Ω2,k) is contained
in the tube Nk; therefore, λ1(x, tk) < θR(x, tk) for all x ∈M \ (Ω1,k ∪Ω2,k).
This completes the proof of Proposition 2.4.

Corollary 2.5. If k is sufficiently large, then the manifold (M, g(tk)) has
exactly two tips. One of these points lies in Ω1,k and the other lies in Ω2,k.
In particular, these points are contained in different connected components
of M \ Σk.

Proof. On the Bryant soliton, the scalar curvature has exactly one crit-
ical point (namely, the tip), and this critical point is non-degenerate. By
Proposition 2.4, the domains (Ω1,k, g(tk)) converge to a domain in the Bryant
soliton. Hence, if k is sufficiently large, then the set {x ∈ Ω1,k : λ1(x, tk) >
1
6 R(x, tk), ∇R(x, tk) = 0} consists of exactly one element. An analogous ar-

gument shows that the set {x ∈ Ω2,k : λ1(x, tk) >
1
6 R(x, tk), ∇R(x, tk) = 0}

consists of exactly one element. Since {x ∈ M : λ1(x, tk) >
1
6 R(x, tk)} ⊂

Ω1,k∪Ω2,k, we conclude that {x ∈M : λ1(x, tk) >
1
6 R(x, tk), ∇R(x, tk) = 0}

consists of exactly two elements.
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Proposition 2.6. Consider a sequence of times tk → −∞. Let p1,tk and
p2,tk denote the tips in (M, g(tk)). If we rescale the flow around (p1,tk , tk)
or (p2,tk , tk), then the rescaled flows converge to the Bryant soliton in the
Cheeger-Gromov sense.

Proof. This follows immediately from Proposition 2.2.

Proposition 2.7. Consider a sequence of times tk → −∞. Let p1,tk and
p2,tk denote the tips in (M, g(tk)). Then R(p1,tk , tk) dg(tk)(p1,tk , p2,tk)2 →∞
and R(p2,k, tk) dg(tk)(p1,tk , p2,tk)2 →∞.

Proof. Suppose that lim supk→∞R(p1,tk , tk) dg(tk)(p1,tk , p2,tk)2 <∞. By
Corollary 2.5, p1,tk and p2,tk are contained in different connected components
of M \Σk. Consequently, we can find a sequence of points yk ∈ Σk such that
lim supk→∞R(p1,tk , tk) dg(tk)(p1,tk , yk)

2 <∞. By Perelman’s longrange cur-

vature estimate, we obtain lim supk→∞R(p1,tk , tk)
−1R(yk, tk) <∞. Putting

these facts together yields lim supk→∞R(yk, tk) dg(tk)(p1,tk , yk)
2 < ∞. On

the other hand, λ1(yk,tk)
R(yk,tk) → 0 since yk ∈ Σk. From this, we deduce that

λ1(p1,tk ,tk)

R(p1,tk ,tk) → 0. This contradicts the fact that λ1(p1,tk , tk) >
1
6 R(p1,tk , tk)

for each k. This completes the proof of Proposition 2.7.

Proposition 2.8. Consider a sequence of points (xk, tk) in spacetime such
that tk → −∞. Let p1,tk and p2,tk denote the tips of (M, g(tk)). If both
R(p1,tk , tk) dg(tk)(p1,tk , xk)

2 →∞ and R(p2,tk , tk) dg(tk)(p2,tk , xk)
2 →∞, then

λ1(xk,tk)
R(xk,tk) → 0.

Proof. Suppose that lim supk→∞
λ1(xk,tk)
R(xk,tk) > 0. Let us rescale the flow

around the point (xk, tk) by the factor R(xk, tk), and pass to the limit as k →
∞. By Proposition 2.2, the limit must be the Bryant soliton. Consequently,
there exists a sequence of points yk ∈ M such that λ1(yk, tk) >

1
6 R(yk, tk),

∇R(yk, tk) = 0, and lim supk→∞R(xk, tk) dg(tk)(xk, yk)
2 < ∞. Perelman’s

longrange curvature estimate implies lim supk→∞R(xk, tk)
−1R(yk, tk) <∞.

All the above together yield lim supk→∞R(yk, tk) dg(tk)(xk, yk)
2 <∞. Since

R(p1,tk , tk) dg(tk)(p1,tk , xk)
2 → ∞ and R(p2,tk , tk) dg(tk)(p2,tk , xk)

2 → ∞, it
follows that yk /∈ {p1,tk , p2,tk} if k is sufficiently large. Therefore, the set
{x ∈ M : λ1(x, tk) > 1

6 R(x, tk), ∇R(x, tk) = 0} contains at least three
elements if k is sufficiently large. This contradicts Corollary 2.5. This com-
pletes the proof of Proposition 2.8.

By combining Corollary 2.5, Proposition 2.6, Proposition 2.7, and Propo-
sition 2.8, we can draw the following conclusion:

Corollary 2.9. (i) If −t is sufficiently large, then the manifold (M, g(t))
has exactly two tips p1,t and p2,t, and these vary smoothly in t.
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(ii) Suppose that a large number A is given. If −t is sufficiently large (de-

pending on A), then the balls Bg(t)(p1,t, AR(p1,t, t)
− 1

2 ) and Bg(t)(p2,t, AR(p2,t, t)
− 1

2 )
are disjoint.
(iii) Suppose that a large number A and a small number ε > 0 are given.
If −t is sufficiently large (depending on A and ε), then the solution in the

ball Bg(t)(p1,t, AR(p1,t, t)
− 1

2 ) is (after a suitable rescaling) ε-close to the cor-
responding piece of the Bryant soliton in the Cheeger-Gromov sense. Sim-

ilarly, the solution in the ball Bg(t)(p2,t, AR(p2,t, t)
− 1

2 ) is (after a suitable
rescaling) ε-close to the corresponding piece of the Bryant soliton in the
Cheeger-Gromov sense.
(iv) Given ε > 0, we can find a time T ∈ (−∞, 0] and a large constant A

with the following property. If t ≤ T and x /∈ Bg(t)(p1,t, AR(p1,t, t)
− 1

2 ) ∪
Bg(t)(p2,t, AR(p2,t, t)

− 1
2 ), then (x, t) lies at the center of an evolving ε-neck.

3. Rotational symmetry of compact ancient κ-solutions and
proof of Theorem 1.3

In this section, we give the proof of rotational symmetry. Throughout
this section, we assume that (M, g(t)) is a three-dimensional ancient κ-
solution which is compact and simply connected. Moreover, we assume
that (M, g(t)) is not a family of shrinking round spheres. We claim that
(M, g(t)) is rotationally symmetric. The proof is by contradiction. We will
assume throughout this section that (M, g(t)) is not rotationally
symmetric.

As in the previous section, we fix a small number ε1 > 0 and a large
number L so that the conclusion of the Neck Improvement Theorem in [7]
holds. Moreover, we fix a small number θ > 0 with the following property:
if (x, t) is a point in space-time satisfying λ1(x, t) ≤ θR(x, t), then the point
(x, t) lies at the center of an evolving ε1-neck.

We begin with a definition, which is adapted from [7]:

Definition 3.1. We say that the flow is ε-symmetric at time t̄ if there exist a
compact domain D ⊂M and time-independent vector fields U (1), U (2), U (3)

which are defined on an open set containing D such that the following state-
ments hold:

• The domain D is a disjoint union of two domains D1 and D2, each
of which is diffeomorphic to B3.
• λ1(x, t̄) < θR(x, t̄) for all points x ∈M \D.
• λ1(x, t̄) > 1

2 θR(x, t̄) for all points x ∈ D.
• ∂D1 and ∂D2 are leaves of Hamilton’s CMC foliation of (M, g(t̄)).
• For each x ∈ M \D, the point (x, t̄) is ε-symmetric in the sense of

Definition 8.2 in [7].

• supD1×[t̄−ρ21,t̄]
∑2

l=0

∑3
a=1 ρ

2l
1 |Dl(LU(a)(g(t)))|2 ≤ ε2, where ρ−2

1 :=

supx∈D1
R(x, t̄).
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• supD2×[t̄−ρ22,t̄]
∑2

l=0

∑3
a=1 ρ

2l
2 |Dl(LU(a)(g(t)))|2 ≤ ε2, where ρ−2

2 :=

supx∈D2
R(x, t̄).

• If Σ ⊂ D1 is a leaf of the CMC foliation of (M, g(t̄)) satisfying

supx∈Σ dg(t̄)(x, ∂D1) ≤ 10 areag(t̄)(∂D1)
1
2 , then supΣ

∑3
a=1 ρ

−2
1 |〈U (a), ν〉|2 ≤

ε2, where ν denotes the unit normal vector to Σ in (M, g(t̄)).
• If Σ ⊂ D2 is a leaf of the CMC foliation of (M, g(t̄)) satisfying

supx∈Σ dg(t̄)(x, ∂D2) ≤ 10 areag(t̄)(∂D2)
1
2 , then supΣ

∑3
a=1 ρ

−2
2 |〈U (a), ν〉|2 ≤

ε2, where ν denotes the unit normal vector to Σ in (M, g(t̄)).
• If Σ ⊂ D1 is a leaf of the CMC foliation of (M, g(t̄)) satisfying

supx∈Σ dg(t̄)(x, ∂D1) ≤ 10 areag(t̄)(∂D1)
1
2 , then

3∑
a,b=1

∣∣∣∣δab − areag(t̄)(Σ)−2

∫
Σ
〈U (a), U (b)〉g(t̄) dµg(t̄)

∣∣∣∣2 ≤ ε2.

• If Σ ⊂ D2 is a leaf of the CMC foliation of (M, g(t̄)) satisfying

supx∈Σ dg(t̄)(x, ∂D2) ≤ 10 areag(t̄)(∂D2)
1
2 , then

3∑
a,b=1

∣∣∣∣δab − areag(t̄)(Σ)−2

∫
Σ
〈U (a), U (b)〉g(t̄) dµg(t̄)

∣∣∣∣2 ≤ ε2.

Remark 3.2. Each tip in (M, g(t̄)) is contained in D. Moreover, the two
tips lie in different connected components of {x ∈M : λ1(x, t̄) > 1

2θR(x, t̄)};
in particular, the tips lie in different connected components of D. Hence, af-
ter relabeling D1 and D2 if necessary, we have p1,t̄ ∈ D1 and p2,t̄ ∈ D2. With

this understood, we have diamg(t̄)(D1) ≤ C R(p1,t̄, t̄)
− 1

2 and diamg(t̄)(D2) ≤
C R(p2,t̄, t̄)

− 1
2 . This gives 1

C R(p1,t̄, t̄) ≤ R(x, t̄) ≤ C R(p1,t̄, t̄) for all x ∈ D1,

and 1
C R(p2,t̄, t̄) ≤ R(x, t̄) ≤ C R(p2,t̄, t̄) for all x ∈ D2.

Lemma 3.3. Suppose that the flow is ε-symmetric at time t̄. If t̃ is suffi-
ciently close to t̄, then the flow is 2ε-symmetric at time t̄.

Proof. The proof is analogous to the proof of Lemma 9.5 in [7].

Proposition 3.4. Let ε > 0 be given. If −t is sufficiently large (depending
on ε), then the flow is ε-symmetric at time t.

Proof. This follows from Corollary 2.9.

We next consider an arbitrary sequence εk → 0. For k large, we define

tk = inf{t ∈ (−∞, 0] : The flow is not εk-symmetric at time t}.

If lim supk→∞ tk > −∞, it follows that (M, g(t)) is rotationally symmetric
for −t sufficiently large, and this contradicts our assumption. Therefore,
lim supk→∞ tk = −∞.
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For −t sufficiently large, we denote by p1,t and p2,t the tips of (M, g(t)).
Since tk → −∞, Proposition 2.6 implies that, if we rescale the solution
around (p1,tk , tk) by the factor r−2

1,k := R(p1,tk , tk), then the rescaled flows

converge to the Bryant soliton. Similarly, if we rescale the solution around
(p1,tk , tk) by the factor r−2

2,k := R(p2,tk , tk), then the rescaled flows converge

to the Bryant soliton.
Hence, we can draw the following conclusion:

Proposition 3.5. There exists a sequence δk → 0 such that the following
statements hold when k is sufficiently large:

• For each t ∈ [tk − δ−1
k r2

1,k, tk], we have dg(t)(p1,tk , p1,t) ≤ δkr1,k and

1− δk ≤ r2
1,k R(p1,t, t) ≤ 1 + δk.

• For each t ∈ [tk − δ−1
k r2

2,k, tk], we have dg(t)(p2,tk , p2,t) ≤ δkr2,k and

1− δk ≤ r2
2,k R(p2,t, t) ≤ 1 + δk.

• The scalar curvature satisfies r2
1,k R(x, t) ≤ 4 and 1

2K (r−1
1,k dg(t)(p1,tk , x)+

1)−1 ≤ r2
1,k R(x, t) ≤ 2K (r−1

1,k dg(t)(p1,tk , x) + 1)−1 for all points

(x, t) ∈ Bg(tk)(p1,tk , δ
−1
k r1,k)× [tk − δ−1

k r2
1,k, tk].

• The scalar curvature satisfies r2
2,k R(x, t) ≤ 4 and 1

2K (r−1
2,k dg(t)(p2,tk , x)+

1)−1 ≤ r2
2,k R(x, t) ≤ 2K (r−1

2,k dg(2,t)(p2,tk , x) + 1)−1 for all points

(x, t) ∈ Bg(tk)(p2,tk , δ
−1
k r2,k)× [tk − δ−1

k r2
2,k, tk].

• There exists a nonnegative function f1 : Bg(tk)(p1,tk , δ
−1
k r1,k)× [tk −

δ−1
k r2

1,k, tk] → R such that |Ric − D2f1| ≤ δkr
−2
1,k, |∆f1 + |∇f1|2 −

r−2
1,k| ≤ δkr

−2
1,k, and | ∂∂tf1+|∇f1|2| ≤ δkr−2

1,k. Moreover, the function f1

satisfies 1
2K (r−1

1,k dg(t)(p1,tk , x)+1) ≤ f1(x, t)+1 ≤ 2K (r−1
1,k dg(t)(p1,tk , x)+

1) for all points (x, t) ∈ Bg(tk)(p1,tk , δ
−1
k r1,k)× [tk − δ−1

k r2
1,k, tk].

• There exists a nonnegative function f2 : Bg(tk)(p2,tk , δ
−1
k r2,k)× [tk −

δ−1
k r2

2,k, tk] → R such that |Ric − D2f2| ≤ δkr
−2
2,k, |∆f2 + |∇f2|2 −

r−2
2,k| ≤ δkr

−2
2,k, and | ∂∂tf2+|∇f2|2| ≤ δkr−2

2,k. Moreover, the function f2

satisfies 1
2K (r−1

2,k dg(t)(p2,tk , x)+1) ≤ f2(x, t)+1 ≤ 2K (r−1
2,k dg(t)(p2,tk , x)+

1) for all points (x, t) ∈ Bg(tk)(p2,tk , δ
−1
k r2,k)× [tk − δ−1

k r2
2,k, tk].

Here, K is a universal constant.

Proof. By Proposition 2.6, the solution looks like the Bryant soliton near
each tip. From this, the assertion follows.

Lemma 3.6. By a suitable choice of δk, we can arrange that the follow-
ing holds. If t ∈ [tk − δ−1

k r2
1,k, tk] and dg(t)(p1,tk , x) ≤ δ−1

k r1,k, then 0 ≤
− d
dtdg(t)(p1,tk , x) ≤ 80 r−1

1,k. Similarly, if t ∈ [tk−δ−1
k r2

2,k, tk] and dg(t)(p2,tk , x) ≤
δ−1
k r2,k, then 0 ≤ − d

dtdg(t)(p2,tk , x) ≤ 80 r−1
2,k.
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Proof. By Proposition 2.6, the solution looks like the Bryant soliton near
each tip. From this, the assertion follows.

Lemma 3.7. By a suitable choice of δk, we can arrange that the balls

Bg(t)(p1,t, δ
−2
k R(p1,t, t)

− 1
2 ) and Bg(t)(p2,t, δ

−2
k R(p2,t, t)

− 1
2 ) are disjoint for each

t ∈ (−∞, tk].
Proof. Since tk → −∞, the assertion follows from Corollary 2.9.

Lemma 3.8. If t ∈ (−∞, tk), then the flow is εk-symmetric at time t.
In particular, if (x, t) ∈ M × (−∞, tk) is a point in spacetime satisfying
λ1(x, t) < 1

2θR(x, t), then the point (x, t) is εk-symmetric in the sense of
Definition 8.2 in [7].

Proof. The first statement follows directly from the definition of tk. The
second statement follows from Definition 3.1.

Recall that L has been defined as the constant in the Neck Improvement
Theorem in [7]. By Corollary 2.9, we can find a time T ∈ (−∞, 0] and a
large constant Λ with the following properties:

• L
√

4K
Λ ≤ 10−6.

• If (x̄, t̄) ∈ M × (−∞, T ] satisfies dg(t̄)(p1,t̄, x̄) ≥ Λ
2 R(p1,t̄, t̄)

− 1
2 and

dg(t̄)(p2,t̄, x̄) ≥ Λ
2 R(p2,t̄, t̄)

− 1
2 , then λ1(x, t) < 1

2θR(x, t) for all points

(x, t) ∈ Bg(t̄)(x̄, LR(x̄, t̄)−
1
2 )× [t̄− LR(x̄, t̄)−1, t̄].

Lemma 3.9. If (x̄, t̄) ∈M × (−∞, tk] satisfies dg(t̄)(p1,t̄, x̄) ≥ Λ
2 R(p1,t̄, t̄)

− 1
2

and dg(t̄)(p2,t̄, x̄) ≥ Λ
2 R(p2,t̄, t̄)

− 1
2 , then (x̄, t̄) is εk

2 -symmetric.

Proof. By our choice of Λ, every point in the parabolic neighborhood

Bg(t̄)(x̄, LR(x̄, t̄)−
1
2 )×[t̄−LR(x̄, t̄)−1, t̄] satisfies λ1(x, t) < 1

2θR(x, t). By our

choice of θ, every point in the parabolic neighborhood Bg(t̄)(x̄, LR(x̄, t̄)−
1
2 )×

[t̄ − LR(x̄, t̄)−1, t̄] lies at the center of an evolving ε1-neck. Moreover, by

Lemma 3.8, every point in the parabolic neighborhoodBg(t̄)(x̄, LR(x̄, t̄)−
1
2 )×

[t̄−LR(x̄, t̄)−1, t̄) is εk-symmetric. Hence, the Neck Improvement Theorem
in [7] implies that (x̄, t̄) is εk

2 -symmetric.

Lemma 3.10. If (x̄, t̄) ∈M×[tk−δ−1
k r2

1,k, tk] satisfies Λr1,k ≤ dg(t̄)(p1,tk , x̄) ≤
δ−1
k r1,k, then dg(t̄)(p1,t̄, x̄) ≥ Λ

2 R(p1,t̄, t̄)
− 1

2 and dg(t̄)(p2,t̄, x̄) ≥ Λ
2 R(p2,t̄, t̄)

− 1
2 .

Similarly, if (x̄, t̄) ∈ M × [tk − δ−1
k r2

2,k, tk] satisfies Λr2,k ≤ dg(t̄)(p2,tk , x̄) ≤
δ−1
k r2,k, then dg(t̄)(p1,t̄, x̄) ≥ Λ

2 R(p1,t̄, t̄)
− 1

2 and dg(t̄)(p2,t̄, x̄) ≥ Λ
2 R(p2,t̄, t̄)

− 1
2 .

Proof. Suppose that (x̄, t̄) ∈ M × [tk − δ−1
k r2

1,k, tk] satisfies Λr1,k ≤
dg(t̄)(p1,tk , x̄) ≤ δ−1

k r1,k. Using Proposition 3.5, we obtain (Λ − δk) r1,k ≤
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dg(t̄)(p1,t̄, x̄) ≤ (δ−1
k + δk) r1,k and 1 − δk ≤ r2

1,k R(p1,t̄, t̄) ≤ 1 + δk. Putting

these facts together, we obtain Λ
2 R(p1,t̄, t̄)

− 1
2 ≤ dg(t̄)(p1,t̄, x̄) ≤ 2δ−1

k R(p1,t̄, t̄)
− 1

2

if k is sufficiently large. By Lemma 3.7, the balls Bg(t̄)(p1,t̄, δ
−2
k R(p1,t̄, t̄)

− 1
2 )

andBg(t̄)(p2,t̄, δ
−2
k R(p2,t̄, t̄)

− 1
2 ) are disjoint. Since dg(t̄)(p1,t̄, x̄) < δ−2

k R(p1,t̄, t̄)
− 1

2 ,

we conclude that dg(t̄)(p2,t̄, x̄) ≥ δ−2
k R(p2,t̄, t̄)

− 1
2 ≥ Λ

2 R(p2,t̄, t̄)
− 1

2 . This
proves the assertion.

Proposition 3.11. If (x̄, t̄) ∈M× [tk−2−jδ−1
k r2

1,k, tk] satisfies 2
j

400 Λr1,k ≤
dg(t̄)(p1,tk , x̄) ≤ (400KL)−j δ−1

k r1,k, then (x̄, t̄) is 2−j−1εk-symmetric. Simi-

larly, if (x̄, t̄) ∈M×[tk−2−jδ−1
k r2

2,k, tk] satisfies 2
j

400 Λr2,k ≤ dg(t̄)(p2,tk , x̄) ≤
(400KL)−j δ−1

k r2,k, then (x̄, t̄) is 2−j−1εk-symmetric.

Proof. The proof is by induction on j. We first verify the assertion
for j = 0. Suppose that (x̄, t̄) ∈ M × [tk − δ−1

k r2
1,k, tk] satisfies Λr1,k ≤

dg(t̄)(p1,tk , x̄) ≤ δ−1
k r1,k. By Lemma 3.10, we know that dg(t̄)(p1,t̄, x̄) ≥

Λ
2 R(p1,t̄, t̄)

− 1
2 and dg(t̄)(p2,t̄, x̄) ≥ Λ

2 R(p2,t̄, t̄)
− 1

2 . Hence, Lemma 3.9 implies
that (x̄, t̄) is εk

2 -symmetric. This proves the assertion for j = 0.
The inductive step is analogous to the proof of Proposition 9.16 in [7].

Suppose that j ≥ 1 and the assertion holds for j − 1. We claim that the
assertion holds for j. To that end, we consider a point (x̄, t̄) ∈ M × [tk −
2−jδ−1

k r2
1,k, tk] such that 2

j
400 Λr1,k ≤ dg(t̄)(p1,tk , x̄) ≤ (400KL)−j δ−1

k r1,k.

Lemma 3.10 implies that dg(t̄)(p1,t̄, x̄) ≥ Λ
2 R(p1,t̄, t̄)

− 1
2 and dg(t̄)(p2,t̄, x̄) ≥

Λ
2 R(p2,t̄, t̄)

− 1
2 . In view of our definition of Λ, we obtain λ1(x̄, t̄) < 1

2θR(x̄, t̄).
Hence, by our choice of θ, (x̄, t̄) lies at the center of an evolving ε1-neck.
For abbreviation, we put R(x̄, t̄) = r−2. By Proposition 3.5, 1

4 r
2
1,k ≤ r2 ≤

4K r1,k dg(t̄)(p1,tk , x̄). This implies

t̄− Lr2 ≥ t̄− 4KLr1,k dg(t̄)(p1,tk , x̄)

≥ t̄− 4KL (400KL)−j δ−1
k r2

1,k

≥ t̄− 2−j δ−1
k r2

1,k

≥ tk − 2−j+1 δ−1
k r2

1,k.
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Furthermore, r2 ≤ 4K r1,k dg(t̄)(p1,tk , x̄) ≤ 4K
Λ dg(t̄)(p1,tk , x̄)2. Since L

√
4K
Λ ≤

10−6, we obtain r ≤
√

4K
Λ dg(t̄)(p1,tk , x̄) ≤ 10−6 L−1 dg(t̄)(p1,tk , x̄). Conse-

quently,

dg(t̄)(p1,tk , x) ≥ dg(t̄)(p1,tk , x̄)− Lr
≥ (1− 10−6) dg(t̄)(p1,tk , x̄)

≥ (1− 10−6) 2
j

400 Λr1,k

≥ 2
j−1
400 Λr1,k

for all x ∈ Bg(t̄)(x̄, Lr). Moreover, using the inequalities 1
2 r1,k ≤ r and

r2 ≤ 4K r1,k dg(t̄)(p1,tk , x̄), we obtain

dg(t̄)(p1,tk , x) + 80Lr2r−1
1,k ≤ dg(t̄)(p1,tk , x̄) + Lr + 80Lr2r−1

1,k

≤ dg(t̄)(p1,tk , x̄) + 82Lr2r−1
1,k

≤ 400KLdg(t̄)(p1,tk , x̄)

≤ (400KL)−j+1 δ−1
k r1,k

for all x ∈ Bg(t̄)(x̄, Lr). Lemma 3.6 implies

dg(t̄)(p1,tk , x) ≤ dg(t)(p1,tk , x) ≤ dg(t̄)(p1,tk , x) + 80Lr2r−1
1,k,

hence

2
j−1
400 Λr1,k ≤ dg(t)(p1,tk , x) ≤ (400KL)−j+1 δ−1

k r1,k

for all (x, t) ∈ Bg(t̄)(x̄, Lr)× [t̄−Lr2, t̄]. Therefore, the induction hypothesis

guarantees that every point in Bg(t̄)(x̄, Lr)× [t̄−Lr2, t̄] is 2−jεk-symmetric.

By the Neck Improvement Theorem in [7], the point (x̄, t̄) must be 2−j−1εk-
symmetric. This completes the proof.

Proposition 3.12. If k is sufficiently large, then the flow is εk
2 -symmetric

at time tk.

Proof. The arguments in Section 9 of [7] go through unchanged.

Proposition 3.12 contradicts the definition of tk. This completes the proof
of Theorem 1.3.

4. A priori estimates for compact ancient κ-solutions with
rotational symmetry

We first recall some basic facts about the Bryant soliton.

Proposition 4.1 (R. Bryant [11]). Consider the Bryant soliton, normalized
so that the scalar curvature at the tip is equal to 1. Then the metric can be



UNIQUENESS OF COMPACT ANCIENT SOLUTIONS 15

written in the form Φ(r)−1 dr ⊗ dr + r2 gS2, where Φ(r) satisfies the ODE

Φ(r)Φ′′(r)− 1

2
Φ′(r)2 + r−2 (1− Φ(r)) (rΦ′(r) + 2Φ(r)) = 0.

Moreover, Φ(r) = 1− r2

6 +O(r4) as r → 0 and Φ(r) = r−2 + 2r−4 +O(r−6)
as r →∞.

Proof. See [11], Theorem 1 on p. 17.

Proposition 4.2. Let η > 0 be given. If |s| is sufficiently small (depending
on η), then ∣∣Φ((1 + s)r)−1 − Φ(r)−1

∣∣ ≤ η (Φ(r)−1 − 1
)

for all r ≥ 0.

Proof. We define χ(r) = r−2 (Φ(r)−1 − 1). Note that χ(r) is a positive
smooth function. Moreover, χ(r) satisfies the asymptotic expansions χ(r) =
1
6 +O(r2) as r → 0 and χ(r) = 1 +O(r−2) as r →∞. In particular, χ(r) is
uniformly bounded above and below by positive constants. Hence, if |s| is
sufficiently small (depending on η), then

|χ((1 + s)r)− χ(r)| ≤ η

2
χ(r)

for all r > 0. Therefore, if |s| is sufficiently small (depending on η), then

|(1 + s)2 χ((1 + s)r)− χ(r)| ≤ (1 + s)2 |χ((1 + s)r)− χ(r)|+ |(1 + s)2 − 1|χ(r)

≤ η χ(r)

for all r > 0. This gives∣∣Φ((1 + s)r)−1 − Φ(r)−1
∣∣ ≤ η (Φ(r)−1 − 1

)
for all r > 0.

Corollary 4.3. Consider the Bryant soliton, normalized so that the scalar
curvature at the tip is equal to 1. Let us write the metric in the form dz ⊗
dz+B(z)2 gS2. Then there exists a large constant L0 such that d2

dz2
B(z)2 < 0

if B(z)2 ≥ L2
0

4 .

Proof. Since rΦ′(r) + 2Φ(r) = −4r−4 + O(r−6) as r → ∞, we con-
clude that rΦ′(r) + 2Φ(r) < 0 for r sufficiently large. We next observe that(
d
dzB(z)

)2
= Φ(B(z)). Differentiating this identity with respect to z gives

2 d2

dz2
B(z) = Φ′(B(z)). Thus, we conclude that d2

dz2
B(z)2 = B(z) Φ′(B(z)) +

2Φ(B(z)) < 0 if B(z) is sufficiently large.

Corollary 4.4. Consider the Bryant soliton, normalized so that the scalar
curvature at the tip is equal to 1. Let us write the metric in the form dz ⊗
dz +B(z)2 gS2. Then B(z) d

dzB(z)→ 1 as z →∞.
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Proof. Note that rΦ(r)
1
2 → 1 as r →∞. Using the identity

(
d
dzB(z)

)2
=

Φ(B(z)), we obtain B(z) d
dzB(z) = B(z) Φ(B(z))

1
2 → 1 as z →∞.

We now assume that (S3, g(t)) is an ancient κ-solution which is not a
family of shrinking round spheres. Let q ∈ S3 be a reference point chosen
as in [1]. Recall that q is chosen so that lim supt→−∞(−t)R(q, t) ≤ 100 (see
Proposition 3.1 in [1]). In the same paper we showed that if tj → −∞ and

if we dilate the flow around the point (q, tj) by the factor (−tj)−
1
2 , then the

rescaled manifolds converge to a cylinder of radius
√

2. Let F (z, t) denote
the radius of a sphere of symmetry in (S3, g(t)) which has signed distance z
from point q. The function F (z, t) satisfies the PDE

Ft(z, t)− Fzz(z, t) = −F (z, t)−1 (1− Fz(z, t)2)− 2Fz(z, t)

∫ z

0

Fzz(z
′, t)

F (z′, t)
dz′.

For abbreviation, let H(z, t) := 1
2 F (z, t)2 + t.

Lemma 4.5. Let L0 be the constant in Corollary 4.3. There exists a time

T0 < 0 with the following property. If t ≤ T0 and F (z, t)2 = L2
0

(−t)
log(−t) , then

Hzz(z, t) < 0.

Proof. Suppose this is false. Then there exists a sequence of times

tj → −∞ and a sequence of points zj such that F (zj , tj)
2 = L2

0
(−tj)

log(−tj) and

Hzz(zj , tj) ≥ 0. By the result in [1], the curvature in the tip region behaves

like (2+o(1))
log(−tj)

(−tj) . Since F (zj , tj)
2 = L2

0
(−tj)

log(−tj) , it follows that the point

(zj , tj) has distance at most C(L0)
√

(−tj)
log(−tj) from one of the tips. Hence,

if we rescale around the point (zj , tj), the rescaled metrics converge to the
Bryant soliton. Passing to the limit, we find a point z∞ on the Bryant

soliton such that B(z∞)2 = L2
0 and d2

dz2
B(z)2

∣∣
z=z∞

≥ 0. This contradicts

Corollary 4.3.

Lemma 4.6. The function Hzz(z, t) satisfies the evolution equation

Hzzt(z, t)−Hzzzz(z, t)

≤ −2Hzzz(z, t)

∫ z

0

Fzz(z
′, t)

F (z′, t)
dz′ − 2F (z, t)−1 Fz(z, t)Hzzz(z, t).

Proof. The function H(z, t) satisfies

Ht(z, t)−Hzz(z, t) = −2Hz(z, t)

∫ z

0

Fzz(z
′, t)

F (z′, t)
dz′.
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This implies

Hzzt(z, t)−Hzzzz(z, t)

= −2Hzzz(z, t)

∫ z

0

Fzz(z
′, t)

F (z′, t)
dz′ − 2F (z, t)−1 Fz(z, t)Hzzz(z, t)

− 4Fzz(z, t)
2 + 4F (z, t)−1 Fz(z, t)

2 Fzz(z, t).

Since Fzz(z, t) ≤ 0, the assertion follows.

Proposition 4.7. Let L0 be chosen as in Corollary 4.3 and let T0 be chosen

as in Lemma 4.5. If t ≤ T0 and F (z, t)2 ≥ L2
0

(−t)
log(−t) , then Hzz(z, t) ≤ 0.

Proof. Suppose this is false. Then we can find a point (z0, t0) such that

t0 ≤ T0, F (z0, t0)2 ≥ L2
0

(−t0)
log(−t0) , and Hzz(z0, t0) > 0. In view of Lemma 4.5

and Lemma 4.6, the maximum principle gives

sup
F (z,t)2≥L2

0
(−t)

log(−t)

Hzz(z, t) ≥ Hzz(z0, t0) > 0

for each t ≤ t0. Let us consider a sequence tj → −∞. For j large, we can find

a point zj such that F (zj , tj)
2 ≥ L2

0
(−tj)

log(−tj) and Hzz(zj , tj) ≥ Hzz(z0, t0) >

0. Using the inequality Fzz ≤ 0, we obtain Fz(zj , tj)
2 ≥ Hzz(zj , tj) ≥

Hzz(z0, t0) > 0 for j large. Hence, if we rescale around the points (zj , tj)
and pass to the limit, then the limit cannot be a cylinder. Consequently, the
limit of these rescalings must be the Bryant soliton. Hence, after passing to
the limit, we obtain a point z∞ on the Bryant soliton such that B(z∞)2 ≥ L2

0

and d2

dz2
B(z)2

∣∣
z=z∞

≥ 0. This contradicts Corollary 4.3.

We next recall a crucial estimate from [1].

Proposition 4.8 (cf. [1]). Fix a small number θ > 0 and a small number
η > 0. Then ∣∣∣1

2
F (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η z2 − t
log(−t)

if F (z, t) ≥ θ
400

√
−t and −t is sufficiently large (depending on η and θ).

Proof. By Proposition 6.3 and Proposition 6.4 in [1], we can find a large
number M (depending on η and θ) with the property that∣∣∣1

2
F (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η z2

log(−t)
whenever |z| ≥M

√
−t, F (z, t) ≥ θ

400

√
−t, and −t is sufficiently large. Hav-

ing fixed M , Propositon 5.10 in [1] implies that∣∣∣1
2
F (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η (−t)
log(−t)
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whenever |z| ≤ M
√
−t and −t is sufficiently large. Putting these facts

together, we conclude that∣∣∣1
2
F (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η z2 − t
log(−t)

whenever F (z, t) ≥ θ
400

√
−t and −t is sufficiently large.

Proposition 4.9. Let us fix a small number θ > 0 and a small number
η > 0. Then ∣∣∣F (z, t)Fz(z, t) +

z

2 log(−t)

∣∣∣ ≤ η |z|+√−t
log(−t)

if F (z, t) ≥ θ
200

√
−t and −t is sufficiently large (depending on η and θ).

Proof. Let θ ∈ (0, 1
2) and η ∈ (0, 1

2) be given. We can find a small positive
number µ ∈ (0, η) and time T0 with the property that F ((1 + µ)z, t) ≥
θ

400

√
−t whenever F (z, t) ≥ θ

200

√
−t and t ≤ T0. Moreover, by Proposition

4.8, we can find a time T ≤ T0 such that∣∣∣1
2
F (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η µ z2

16 log(−t)
whenever z ≥ 2

√
−t0, F (z, t) ≥ θ

400

√
−t, and t ≤ T .

Suppose now that (z0, t0) is a point in spacetime satisfying z0 ≥ 4
√
−t0,

F (z0, t0) ≥ θ
200

√
−t0, and t0 ≤ T . Then F (z, t0) ≥ θ

400

√
−t0 for all z ∈

[(1− µ)z0, (1 + µ)z0]. Consequently,∣∣∣1
2
F (z, t0)2 + t0 +

z2 + 2t0
4 log(−t0)

∣∣∣ ≤ η µ z2
0

4 log(−t0)

for all z ∈ [(1− µ)z0, (1 + µ)z0]. This implies

inf
z∈[(1−µ)z0,z0]

(
F (z, t0)Fz(z, t0) +

z

2 log(−t0)

)
≤ η z0

2 log(−t0)

and

sup
z∈[z0,(1+µ)z0]

(
F (z, t0)Fz(z, t0) +

z

2 log(−t0)

)
≥ −η z0

2 log(−t0)

By Proposition 4.7, the function z 7→ FFz is monotone decreasing in the
relevant region. This gives

F (z0, t0)Fz(z0, t0) +
(1− µ)z0

2 log(−t0)
≤ η z0

2 log(−t0)

and

F (z0, t0)Fz(z0, t0) +
(1 + µ)z0

2 log(−t0)
≥ −η z0

2 log(−t0)
.

Since µ ∈ (0, η), it follows that∣∣∣F (z0, t0)Fz(z0, t0) +
z0

2 log(−t0)

∣∣∣ ≤ (η + µ)
z0

2 log(−t0)
≤ η z0

log(−t0)
.
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To summarize, we have verified the assertion for z ≥ 4
√
−t. An analo-

gous argument shows that the assertion holds for z ≤ −4
√
−t. Finally, if

|z| ≤ 4
√
−t, then the assertion follows from Proposition 5.10 in [1]. This

completes the proof of Proposition 4.9.

Corollary 4.10. Let us fix a small number θ > 0. Then

|Fz(z, t)| ≤
C(θ)√
log(−t)

if F (z, t) ≥ θ
200

√
−t and −t is sufficiently large (depending on θ).

Proof. The asymptotic estimates in [1] imply that |z| ≤ (2+o(1))
√

(−t) log(−t).
Hence, the assertion follows from Proposition 4.9.

Proposition 4.11. Let us fix a small number θ > 0. Then

F (z, t) |Fzz(z, t)|+ F (z, t)2 |Fzzz(z, t)| ≤
C(θ)√
log(−t)

if F (z, t) ≥ θ
100

√
−t and −t is sufficiently large (depending on θ).

Proof. Let us fix a small number ε > 0. Moreover, we consider a point
(p0, t0) in space-time with the property that the sphere of symmetry passing
through (p0, t0) has radius r0 ≥ θ

100

√
−t0 at (p0, t0). If −t0 is sufficiently

large (depending on θ and ε), then the point (p0, t0) lies at the center of an

evolving ε-neck. Let F̃ (z, t) denote the radius of the sphere of symmetry

which has signed distance z from the point p0. By assumption, F̃ (0, t0) =
r0 ≥ θ

100

√
−t0. Since the point (p0, t0) lies on a neck, we have 1

2 r0 ≤
F̃ (z, t) ≤ 100 r0 and |F̃z(z, t)| + r0 |F̃zz(z, t)| + r2

0 |F̃zzz(z, t)| ≤ 1 for all
(z, t) ∈ [−r0, r0] × [t0 − r2

0, t0]. Moreover, since (p0, t0) lies on a a neck, we
obtain

F̃ (z, t)2 ≥
√

1

4
F̃ (0, t0)2 + (t0 − t) ≥

√( θ

200

)2
(−t0) + (t0 − t) ≥

θ

200

√
−t

for all (z, t) ∈ [−r0, r0]×[t0−r2
0, t0]. Hence, Corollary 4.10 implies |F̃z(z, t)| ≤

C(θ)√
log(−t)

for all (z, t) ∈ [−r0, r0]× [t0 − r2
0, t0].

The function F̃ satisfies the same PDE as the original function F . In
other words,

F̃t(z, t)− F̃zz(z, t) = −F̃ (z, t)−1 (1 + F̃z(z, t)
2)

+ 2 F̃z(z, t)

[
F̃ (0, t)−1 F̃z(0, t)−

∫ z

0

F̃z(z
′, t)2

F̃ (z′, t)2
dz′
]
.
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Differentiating this equation with respect to z gives

F̃zt(z, t)− F̃zzz(z, t) = F̃ (z, t)−2 F̃z(z, t) (1− F̃z(z, t)2)

− 2 F̃ (z, t)−1 F̃z(z, t) F̃zz(z, t)

+ 2 F̃zz(z, t)

[
F̃ (0, t)−1 F̃z(0, t)−

∫ z

0

F̃z(z
′, t)2

F̃ (z′, t)2
dz′
]

and

F̃zzt(z, t)− F̃zzzz(z, t) = −2 F̃ (z, t)−3 F̃z(z, t)
2 (1− F̃z(z, t)2)

+ F̃ (z, t)−2 F̃zz(z, t) (1− 3 F̃z(z, t)
2)

− 2 F̃ (z, t)−1 F̃zz(z, t)
2 − 2 F̃ (z, t)−1 F̃z(z, t) F̃zzz(z, t)

+ 2 F̃zzz(z, t)

[
F̃ (0, t)−1 F̃z(0, t)−

∫ z

0

F̃z(z
′, t)2

F̃ (z′, t)2
dz′
]
.

For (z, t) ∈ [−r0, r0] × [t0 − r2
0, t0], we have |F̃z(z, t)| ≤ C(θ)√

log(−t0)
, hence

r2
0 |F̃zt(z, t) − F̃zzz(z, t)| ≤ C(θ)√

log(−t0)
. Using standard interior estimates

for parabolic equations, we obtain r0 |F̃zz(z, t)| ≤ C(θ)√
log(−t0)

for all (z, t) ∈

[− r0
2 ,

r0
2 ] × [t0 −

r20
4 , t0]. This implies r3

0 |F̃zzt(z, t) − F̃zzzz(z, t)| ≤
C(θ)√

log(−t0)

for all (z, t) ∈ [− r0
2 ,

r0
2 ]× [t0−

r20
4 , t0]. Hence, standard interior estimates for

parabolic equations give r2
0 |F̃zzz(z, t)| ≤

C(θ)√
log(−t0)

for all (z, t) ∈ [− r0
4 ,

r0
4 ]×

[t0 −
r20
16 , t0].

Thus, r0 |F̃zz(0, t0)| + r2
0 |F̃zzz(0, t0)| ≤ C(θ)√

log(−t0)
. This finally implies

F |Fzz| + F 2 |Fzzz| ≤ C(θ)√
log(−t0)

at the point (p0, t0). This completes the

proof of Proposition 4.11.

Proposition 4.12. Let us fix a small number θ > 0. Then

|1 + FFt| ≤
C(θ)√
log(−t)

whenever F ≥ θ
100

√
−t, and −t is sufficiently large (depending on θ).

Proof. Using the evolution equation for F , we obtain

1 + F (z, t)Ft(z, t)

= F (z, t)Fzz(z, t)− Fz(z, t)2

+ 2F (z, t)Fz(z, t)

[
F (0, t)−1 Fz(0, t)−

∫ z

0

Fz(z
′, t)2

F (z′, t)2
dz′
]
.



UNIQUENESS OF COMPACT ANCIENT SOLUTIONS 21

The asymptotic estimates in [1] imply that, for −t sufficiently large, the
domain of definition of the function z 7→ F (z, t) is contained in the interval

[−4
√

(−t) log(−t), 4
√

(−t) log(−t)]. Moreover, if F (z, t) ≥ θ
100

√
−t, then

F (z′, t) ≥ θ
100

√
−t for all z′ between 0 and z. Using Corollary 4.10, we

obtain ∣∣∣∣ ∫ z

0

Fz(z
′, t)2

F (z′, t)2
dz′
∣∣∣∣ ≤ C(θ)

(−t) log(−t)
|z| ≤ C(θ)√

(−t) log(−t)

whenever F (z, t) ≥ θ
100

√
−t, and −t is sufficiently large. Using Corollary

4.10 and Proposition 4.11, we conclude that

|1 + F (z, t)Ft(z, t)| ≤
C(θ)√
log(−t)

whenever F ≥ θ
100

√
−t, and −t is sufficiently large. This completes the

proof.

Proposition 4.13. Let ε > 0 be given. Then there exists a large number
L (depending on ε) and a time T such that the following holds. If F ≥
L
√

(−t)
log(−t) and t ≤ T at some point in space-time, then that point lies at the

center of an evolving ε-neck.

Proof. This follows from the fact, established in [1], that the scalar cur-

vature at each tip is (1 + o(1)) log(−t)
(−t) .

Corollary 4.14. Let η > 0 be given. Then there exists a large number
L (depending on η) and a time T such that |Fz| + F |Fzz| + F 2 |Fzzz| ≤ η

whenever F ≥ L
√

(−t)
log(−t) and t ≤ T .

Proof. This follows directly from Proposition 4.13.

Proposition 4.15. Let η > 0 be given. Then there exist a large number
L ∈ (η−1,∞) and a small number θ ∈ (0, η) (depending on η), and a time
T with the property that ∣∣∣∣1−

√
log(−t)

(−t)
F |Fz|

∣∣∣∣ ≤ η
whenever L

√
(−t)

log(−t) ≤ F ≤ 100θ
√
−2t and t ≤ T .

Proof. By Corollary 4.4, we can find a large number L ∈ (η−1,∞) such
that

∣∣1 − B(z) d
dzB(z)

∣∣ ≤ η
2 for z ≥ L

2 . Recall that the solution looks like
the Bryant soliton near each tip, and the scalar curvature at each tip equals
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(1 + o(1)) log(−t)
(−t) . Consequently,∣∣∣∣1−

√
log(−t)

(−t)
F |Fz|

∣∣∣∣ ≤ η
if F = L

√
(−t)

log(−t) and −t is sufficiently large. On the other hand, for each

θ ∈ (0, 1
1000), Proposition 4.8 implies

z2 = (4 + o(1)) (1− (100θ)2) (−t) log(−t)
if F = 100θ

√
−2t. Using Proposition 4.9, we obtain

F |Fz| = (1 + o(1))
|z|

2 log(−t)
if F = 100θ

√
−2t. Consequently,

1−

√
log(−t)

(−t)
F |Fz| = 1−

√
1− (100θ)2 + o(1)

if F = 100θ
√
−2t. Therefore, if we choose θ sufficiently small (depending

on η), then we obtain ∣∣∣∣1−
√

log(−t)
(−t)

F |Fz|
∣∣∣∣ ≤ η

if F = 100θ
√
−2t and −t is sufficiently large. Hence, the assertion follows

from the fact that the function z 7→ FFz is monotone decreasing in the rel-
evant region (see Proposition 4.7). This completes the proof of Proposition
4.15.

In the remainder of this section, we define functions U+(r, t) and U−(r, t)
so that

U+(r, t) =
( ∂
∂z
F (z, t)

)2

for r = F (z, t) and z ≥ 2
√
−t and

U−(r, t) =
( ∂
∂z
F (z, t)

)2

for r = F (z, t) and z ≤ −2
√
−t. Let us consider the rescaled functions

V+(ρ, τ) :=

√
U+(e−

τ
2 ρ,−e−τ ),

V−(ρ, τ) :=

√
U−(e−

τ
2 ρ,−e−τ ).

For each ρ ∈ (0, 1), we denote by ξ+(ρ, τ) the unique positive solution of

the equation F (e−
τ
2 ξ,−e−τ ) = e−

τ
2 ρ; moreover, we denote by ξ−(ρ, τ) the

unique negative solution of the equation F (e−
τ
2 ξ,−e−τ ) = e−

τ
2 ρ.
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Proposition 4.16. Let us fix a small number θ > 0. If −τ is sufficiently

large (depending on θ), then 1
C(θ) (−τ)−

1
2 ≤ V+(ρ, τ) ≤ C(θ) (−τ)−

1
2 and∣∣ ∂

∂ρV+(ρ, τ)
∣∣ ≤ C(θ) for every ρ ∈ [ θ

100 , 100θ].

Proof. Proposition 4.9 implies that 1

C(θ)
√

log(−t)
≤ |Fz(z, t)| ≤ C(θ)√

log(−t)

whenever θ
100

√
−t ≤ F (z, t) ≤ 100θ

√
−t. Moreover, Proposition 4.11 gives

|Fzz(z, t)| ≤ C(θ)√
(−t) log(−t)

whenever θ
100

√
−t ≤ F (z, t) ≤ 100θ

√
−t. From

this, the assertion follows easily.

Proposition 4.17. Fix a small number η > 0. Then we can find a small
number θ ∈ (0, η) (depending on η) such that, for −τ sufficiently large, we
have

|V+(ρ, τ)−2 − Φ((−τ)
1
2 ρ)−1| ≤ η (V+(ρ, τ)−2 − 1)

in the region {ρ ≤ 100θ}. Here, Φ denotes the profile of the Bryant soliton.

Proof. By Proposition 4.15, we can find a large number L ∈ (η−1,∞)
and a small number θ ∈ (0, η) with the property that∣∣∣∣1−

√
log(−t)

(−t)
F |Fz|

∣∣∣∣ ≤ η

32

whenever L
√

(−t)
log(−t) ≤ F ≤ 100θ

√
−t and −t is sufficiently large. This

implies ∣∣1− (−τ)
1
2 ρ V+(ρ, τ)

∣∣ ≤ η

32

whenever L (−τ)−
1
2 ≤ ρ ≤ 100θ and −τ is sufficiently large. On the other

hand, we can find a number L̃ ≥ L such that∣∣(−τ)
1
2 ρΦ((−τ)

1
2 ρ)

1
2 − 1

∣∣ ≤ η

32

whenever ρ ≥ L̃ (−τ)−
1
2 and −τ is sufficiently large. Putting these facts

together, we conclude that∣∣Φ((−τ)
1
2 ρ)

1
2 − V+(ρ, τ)

∣∣ ≤ η

16
(−τ)−

1
2 ρ−1 ≤ η

8
V+(ρ, τ)

whenever L̃ (−τ)−
1
2 ≤ ρ ≤ 100θ and −τ is sufficiently large. This gives∣∣V+(ρ, τ)−2 − Φ((−τ)

1
2 ρ)−1

∣∣ ≤ η

2
V+(ρ, τ)−2 ≤ η (V+(ρ, τ)−2 − 1)

whenever L̃ (−τ)−
1
2 ≤ ρ ≤ 100θ and −τ is sufficiently large.

On the other hand, since the solution looks like the Bryant soliton near
each tip, we know that∣∣V+(ρ, τ)−2 − Φ((−τ)

1
2 ρ)−1

∣∣ ≤ η (V+(ρ, τ)−2 − 1)
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whenever ρ ≤ L̃ (−τ)−
1
2 and −τ is sufficiently large. Putting these facts

together, the assertion follows.

Proposition 4.18. Fix a small number η > 0. Then we can find a large
number L (depending on η) such that, for −τ sufficiently large, we have

V+(ρ, τ) ≤ η,∣∣∣ ∂
∂ρ
V+(ρ, τ)

∣∣∣ ≤ η ρ−1 V+(ρ, τ)−1

and ∣∣∣ ∂2

∂ρ2
V+(ρ, τ)

∣∣∣ ≤ η ρ−2 V+(ρ, τ)−3

in the region {L (−τ)−
1
2 ≤ ρ ≤ 1

4}.

Proof. By Corollary 4.14, we can find a large number L (depending on

η) such that |Fz| + F |Fzz| + F 2 |Fzzz| ≤ η whenever F ≥ L
√

(−t)
log(−t) . This

implies

V+(ρ, τ) ≤ η,∣∣∣ρ V+(ρ, τ)
∂

∂ρ
V+(ρ, τ)

∣∣∣ ≤ η,
and ∣∣∣ρ2 V+(ρ, τ)2 ∂2

∂ρ2
V+(ρ, τ) + ρ2 V+(ρ, τ)

( ∂
∂ρ
V+(ρ, τ)

)2∣∣∣ ≤ η
in the region {L (−τ)−

1
2 ≤ ρ ≤ 1

4}. From this, the assertion follows.

Corollary 4.19. Fix a small number η > 0. Then, for −τ sufficiently large,
we have ∣∣∣ ∂

∂τ
V+(ρ, τ)

∣∣∣ ≤ η ρ−2 (V+(ρ, τ)−1 − 1)

in the region {ρ ≤ 1
4}.

Proof. By Proposition 4.18, we can find a large number L (depending
on η) such that, for −τ sufficiently large, we have

V 2
+

∣∣∣∂2V+

∂ρ2
+ ρ−2 (V −2

+ − 1)
(
ρ
∂V+

∂ρ
+ V+

)∣∣∣ ≤ η

2
ρ−2 (V −1

+ − 1)

and ∣∣∣ρ ∂V+

∂ρ

∣∣∣ ≤ η (V −1
+ − 1)

in the region {L (−τ)−
1
2 ≤ ρ ≤ 1

4}. On the other hand, since the solution
looks like the Bryant soliton near each tip, we know that

V 2
+

∣∣∣∂2V+

∂ρ2
+ ρ−2 (V −2

+ − 1)
(
ρ
∂V+

∂ρ
+ V+

)∣∣∣ ≤ η

2
ρ−2 (V −1

+ − 1)
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and ∣∣∣ρ ∂V+

∂ρ

∣∣∣ ≤ C (V −1
+ − 1)

whenever ρ ≤ L (−τ)−
1
2 and −τ is sufficiently large. Putting these facts

together, we conclude that

V 2
+

∣∣∣∂2V+

∂ρ2
+ ρ−2 (V −2

+ − 1)
(
ρ
∂V+

∂ρ
+ V+

)∣∣∣ ≤ η

2
ρ−2 (V −1

+ − 1)

and ∣∣∣ρ ∂V+

∂ρ

∣∣∣ ≤ η ρ−2 (V −1
+ − 1)

whenever ρ ≤ 1
4 and −τ is sufficiently large. Using the equation

∂V+

∂τ
+
ρ

2

∂V+

∂ρ
= V 2

+

(∂2V+

∂ρ2
+ ρ−2 (V −2

+ − 1)
(
ρ
∂V+

∂ρ
+ V+

))
,

we conclude that ∣∣∣∂V+

∂τ

∣∣∣ ≤ η ρ−2 (V −1
+ − 1)

ihenever ρ ≤ 1
4 and −τ is sufficiently large. This completes the proof of

Corollary 4.19.

Proposition 4.20. Fix a small number η > 0. Then we can find a small
number θ ∈ (0, η) (depending on η) such that, for −τ sufficiently large, we
have ∣∣∣ ∂

∂ρ

(ξ+(ρ, τ)2

4

)
+ ρ−1 (V+(ρ, τ)−2 − 1)

∣∣∣ ≤ η ρ−1 (V+(ρ, τ)−2 − 1)

in the region { θ8 ≤ ρ ≤ 2θ}.

Proof. In the following, θ > 0 will denote a small positive number which
will be specified later. Proposition 4.8 and Proposition 4.9 imply

ξ+(ρ, τ)2 = (2 + o(1)) (2− ρ2) (−τ)

and

ρFz(e
− τ

2 ξ+(ρ, τ),−e−τ ) = −(1 + o(1))
ξ+(ρ, τ)

(−2τ)

in the region { θ8 ≤ ρ ≤ 2θ}. On the other hand, differentiating the relation

F (e−
τ
2 ξ+(ρ, τ),−e−τ ) = e−

τ
2 ρ with respect to ρ gives

∂

∂ρ
ξ+(ρ, τ) = Fz(e

− τ
2 ξ+(ρ, τ),−e−τ )−1.
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This implies

∂

∂ρ

(ξ+(ρ, τ)2

4

)
=

1

2
ξ+(ρ, τ)Fz(e

− τ
2 ξ+(ρ, τ),−e−τ )−1

= −(1 + o(1))
(

1− ρ2

2

)
ρ−1 Fz(e

− τ
2 ξ+(ρ, τ),−e−τ )−2

= −(1 + o(1))
(

1− ρ2

2

)
ρ−1 V+(ρ, τ)−2

in the region { θ8 ≤ ρ ≤ 2θ}. Hence, if we choose θ sufficiently small (de-
pending on η), then∣∣∣ ∂

∂ρ

(ξ+(ρ, τ)2

4

)
+ ρ−1 (V+(ρ, τ)−2 − 1)

∣∣∣ ≤ η ρ−1 (V+(ρ, τ)−2 − 1)

in the region { θ8 ≤ ρ ≤ 2θ}. This completes the proof of Proposition 4.20.

Proposition 4.21. Fix a small number θ > 0. Then, for −τ large, we have∣∣∣ ∂
∂ρ

(ξ+(ρ, τ)2

4

)∣∣∣ ≤ C(θ) (−τ)

and ∣∣∣ ∂2

∂ρ2

(ξ+(ρ, τ)2

4

)∣∣∣ ≤ C(θ) (−τ)
3
2

in the region { θ8 ≤ ρ ≤ 2θ}.

Proof. Differentiating the relation F (e−
τ
2 ξ+(ρ, τ),−e−τ ) = e−

τ
2 ρ with

respect to ρ gives

∂

∂ρ
ξ+(ρ, τ) = Fz(e

− τ
2 ξ+(ρ, τ),−e−τ )−1

and

∂2

∂ρ2
ξ+(ρ, τ) = −e−

τ
2 Fz(e

− τ
2 ξ+(ρ, τ),−e−τ )−3 Fzz(e

− τ
2 ξ+(ρ, τ),−e−τ ).

Using Proposition 4.11, we obtain∣∣∣ ∂
∂ρ
ξ+(ρ, τ)

∣∣∣ ≤ C(θ) (−τ)
1
2

and ∣∣∣ ∂2

∂ρ2
ξ+(ρ, τ)

∣∣∣ ≤ C(θ) (−τ)

in the region { θ8 ≤ ρ ≤ 2θ}. This finally implies∣∣∣ ∂
∂ρ

(ξ+(ρ, τ)2

4

)∣∣∣ ≤ C(θ) (−τ)

and ∣∣∣ ∂2

∂ρ2

(ξ+(ρ, τ)2

4

)∣∣∣ ≤ C(θ) (−τ)
3
2
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in the region { θ8 ≤ ρ ≤ 2θ}. This proves the assertion.

Proposition 4.22. Fix a small number θ > 0. Then, for −τ large, we have∣∣∣ ∂
∂τ

(ξ+(ρ, τ)2

4

)∣∣∣ ≤ o(1) (−τ)

in the region { θ8 ≤ ρ ≤ 2θ}.

Proof. Let us fix a small number θ > 0. Differentiating the relation
F (e−

τ
2 ξ+(ρ, τ),−e−τ ) = e−

τ
2 ρ with respect to τ gives

−1

2
ρ = e−

τ
2 Ft(e

− τ
2 ξ+(ρ, τ),−e−τ )

+
( ∂
∂τ
ξ+(ρ, τ)− 1

2
ξ+(ρ, τ)

)
Fz(e

− τ
2 ξ+(ρ, τ),−e−τ ).

Using Proposition 4.12, we obtain

e−
τ
2 Ft(e

− τ
2 ξ+(ρ, τ),−e−τ ) = −(1 + o(1)) e−

τ
2 F (e−

τ
2 ξ+(ρ, τ),−e−τ )−1

= −(1 + o(1)) ρ−1

for θ
8 ≤ ρ ≤ 2θ. Moreover,

Fz(e
− τ

2 ξ+(ρ, τ),−e−τ ) = −(1 + o(1))
(

1− ρ2

2

) 1
2
ρ−1 (−τ)−

1
2

for θ
8 ≤ ρ ≤ 2θ. Putting these facts together, we obtain

∂

∂τ
ξ+(ρ, τ)− 1

2
ξ+(ρ, τ) = −(1 + o(1))

(
1− ρ2

2

) 1
2

(−τ)
1
2

for θ
8 ≤ ρ ≤ 2θ. Moreover,

ξ+(ρ, τ) = (2 + o(1))
(

1− ρ2

2

) 1
2

(−τ)
1
2

for θ
8 ≤ ρ ≤ 2θ. Thus, we conclude that

∂

∂τ
ξ+(ρ, τ) = o(1) (−τ)

1
2

for θ
8 ≤ ρ ≤ 2θ. This finally implies

∂

∂τ

(ξ+(ρ, τ)2

4

)
= o(1) (−τ)

for θ
8 ≤ ρ ≤ 2θ.
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5. The tip region weights µ+(ρ, τ) and µ−(ρ, τ)

In this section, we define weights µ+(ρ, τ) and µ−(ρ, τ) which will be
needed in the analysis of the linearized equation in the tip region. Let θ > 0
be a small positive number, and let ζ : R → [0, 1] be a smooth, monotone
increasing cutoff function satisfying ζ(ρ) = 0 for ρ ≤ θ

8 and ζ(ρ) = 1 for

ρ ≥ θ
4 . We define the weight µ+(ρ, τ) by

µ+(ρ, τ) = −ζ(ρ)
ξ+(ρ, τ)2

4
−
∫ θ

ρ
ζ ′(ρ̃)

ξ+(ρ̃, τ)2

4
dρ̃

−
∫ θ

ρ
(1− ζ(ρ̃)) ρ̃−1

(
Φ((−τ)

1
2 ρ̃)−1 − 1

)
dρ̃,

where Φ denotes the profile of the Bryant soliton. We can define a weight
µ−(ρ, τ) in analogous fashion. Of course, the cutoff function ζ and the
weights µ+(ρ, τ) and µ−(ρ, τ) depend on the choice of the parameter θ, but
we suppress that dependence in our notation.

Lemma 5.1. The weight µ+(ρ, τ) satisfies µ+(ρ, τ) = − ξ+(ρ,τ)2

4 for ρ ≥ θ
4 .

Moreover, µ+(ρ, τ) ≤ 0 for all ρ ≤ θ
4 .

Proof. This follows immediately from the definition of µ+(ρ, τ).

Lemma 5.2. Fix a small number η > 0. Then we can find a small number
θ ∈ (0, η) (depending on η) such that, for −τ sufficiently large, we have∣∣∣∂µ+

∂ρ
(ρ, τ)− ρ−1 (V+(ρ, τ)−2 − 1)

∣∣∣ ≤ η ρ−1 (V+(ρ, τ)−2 − 1)

in the tip region {ρ ≤ 2θ}.

Proof. We compute

∂µ+

∂ρ
(ρ, τ) = −ζ(ρ)

∂

∂ρ

(ξ+(ρ, τ)2

4

)
+ (1− ζ(ρ)) ρ−1

(
Φ((−τ)

1
2 ρ)−1 − 1

)
.

This gives

∂µ+

∂ρ
(ρ, τ)− ρ−1 (V+(ρ, τ)−2 − 1)

= −ζ(ρ)
( ∂
∂ρ

(ξ+(ρ, τ)2

4

)
+ ρ−1 (V+(ρ, τ)−2 − 1)

)
− (1− ζ(ρ)) ρ−1

(
V+(ρ, τ)−2 − Φ((−τ)

1
2 ρ)−1

)
.

Hence, the assertion follows from Proposition 4.17 and Proposition 4.20.
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Lemma 5.3. If we choose θ > 0 sufficiently small, then the following holds.
If −τ is sufficiently large (depending on θ), then

∂2µ+

∂ρ2
(ρ, τ) ≤ 1

4

(∂µ+

∂ρ
(ρ, τ)

)2
+
K∗
4
ρ−2

in the tip region {ρ ≤ 2θ}. Here, K∗ is a universal constant which is inde-
pendent of θ.

Proof. We compute

∂2µ+

∂ρ2
(ρ, τ) = −ζ(ρ)

∂2

∂ρ2

(ξ+(ρ, τ)2

4

)
− ζ ′(ρ)

∂

∂ρ

(ξ+(ρ, τ)2

4

)
− [1− ζ(ρ) + ρ ζ ′(ρ)] ρ−2

(
Φ((−τ)

1
2 ρ)−1 − 1

)
− (1− ζ(ρ)) (−τ)

1
2 ρ−1 Φ((−τ)

1
2 ρ)−2 Φ′((−τ)

1
2 ρ).

Recall that 0 ≤ ζ ≤ 1 and ζ ′ ≥ 0. Moreover, we have Φ(r)−1 − 1 ≥ 1
K r2

and |Φ(r)−2 Φ′(r)| ≤ Kr for all r ∈ [0,∞), where K is a universal constant.
This implies

∂2µ+

∂ρ2
(ρ, τ) ≤ −ζ(ρ)

∂2

∂ρ2

(ξ+(ρ, τ)2

4

)
− ζ ′(ρ)

∂

∂ρ

(ξ+(ρ, τ)2

4

)
+K (1− ζ(ρ)) (−τ),

where K is a universal constant which is independent of θ. Using Proposition
4.21, we obtain

∂2µ+

∂ρ2
(ρ, τ) ≤ o(1) (−τ)2

in the region { θ8 ≤ ρ ≤ 2θ}, and

∂2µ+

∂ρ2
(ρ, τ) ≤ K (−τ)

in the region {ρ ≤ θ
8}. In the next step, we apply Proposition 4.17 and

Lemma 5.2 with η = 1
2 . If we choose θ > 0 sufficiently small, then Proposi-

tion 4.17 and Lemma 5.2 imply

∂µ+

∂ρ
(ρ, τ) ≥ 1

2
ρ−1 (V+(ρ, τ)−2 − 1)

≥ 1

4
ρ−1 (Φ((−τ)

1
2 ρ)−1 − 1)

≥ 1

4K
(−τ) ρ

in the region {ρ ≤ 2θ}, where again K is a universal constant independent
of θ. Hence, if −τ is sufficiently large (depending on θ), then we have

∂2µ+

∂ρ2
(ρ, τ) ≤ 1

4

(∂µ+

∂ρ
(ρ, τ)

)2
+ 16K4 ρ−2
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in the region {ρ ≤ 2θ}. This completes the proof of Lemma 5.3.

Lemma 5.4. Let us fix a small number θ > 0. Then, for −τ large, we have∣∣∣∂µ+

∂τ
(ρ, τ)

∣∣∣ ≤ o(1) (−τ)

in the tip region {ρ ≤ 2θ}.

Proof. We compute

∂µ+

∂τ
(ρ, τ) = −ζ(ρ)

∂

∂τ

(ξ+(ρ, τ)2

4

)
−
∫ θ

ρ
ζ ′(ρ̃)

∂

∂τ

(ξ+(ρ̃, τ)2

4

)
dρ̃

− 1

2
(−τ)−

1
2

∫ θ

ρ
(1− ζ(ρ̃)) Φ((−τ)

1
2 ρ̃)−2 Φ′((−τ)

1
2 ρ̃) dρ̃.

Note that |Φ(r)−2 Φ′(r)| ≤ Kr for all r ∈ [0,∞). This gives∣∣∣∂µ+

∂τ
(ρ, τ)

∣∣∣ ≤ ∣∣∣ζ(ρ)
∂

∂τ

(ξ+(ρ, τ)2

4

)∣∣∣+

∣∣∣∣ ∫ θ

θ
8

ζ ′(ρ̃)
∂

∂τ

(ξ+(ρ̃, τ)2

4

)
dρ̃

∣∣∣∣
+K

∫ θ

θ
8

(1− ζ(ρ̃)) ρ̃ dρ̃

for ρ ≤ 2θ. Here, K is constant which is independent of θ. Using Proposition
4.22, we obtain ∣∣∣∂µ+

∂τ
(ρ, τ)

∣∣∣ ≤ o(1) (−τ)

for ρ ≤ 2θ. This completes the proof.

In the remainder of this section, we establish a weighted Poincaré inequal-
ity.

Proposition 5.5. If we choose θ > 0 sufficiently small, then the following
holds. If −τ is sufficiently large (depending on θ), then∫ 2θ

0

(∂µ+

∂ρ

)2
f2 e−µ+ dρ ≤ 8

∫ 2θ

0

(∂f
∂ρ

)2
e−µ+ dρ+K∗

∫ 2θ

0
ρ−2 f2 e−µ+ dρ

for every smooth function f which is supported in the region {ρ ≤ 2θ}. Here,
K∗ is the constant in Lemma 5.3; in particular, K∗ is a universal constant
which is independent of θ. Note that the right hand side is infinite unless
f(0) = 0.

Proof. We compute

∂

∂ρ

(∂µ+

∂ρ
f2 e−µ+

)
=
∂2µ+

∂ρ2
f2 e−µ+ + 2

∂µ+

∂ρ
f
∂f

∂ρ
e−µ+ −

(∂µ+

∂ρ

)2
f2 e−µ+ .

Using Young’s inequality, we obtain

∂

∂ρ

(∂µ+

∂ρ
f2 e−µ+

)
≤ ∂2µ+

∂ρ2
f2 e−µ+ + 2

(∂f
∂ρ

)2
e−µ+ − 1

2

(∂µ+

∂ρ

)2
f2 e−µ+ .
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Hence, Lemma 5.3 gives

∂

∂ρ

(∂µ+

∂ρ
f2 e−µ+

)
≤ 2

(∂f
∂ρ

)2
e−µ+ − 1

4

(∂µ+

∂ρ

)2
f2 e−µ+ +

K∗
4
ρ−2 f2 e−µ+ .

From this, the assertion follows.

6. Overview of the proof of Theorem 1.4

We now consider two ancient κ-solutions (S3, g1(t)) and (S3, g2(t)). We
assume throughout that neither (S3, g1(t)) nor (S3, g2(t)) is a family of
shrinking round spheres. We know that both solutions are rotationally sym-
metric. Let us choose reference points q1, q2 ∈ S3 such that

lim sup
t→−∞

(−t)Rg1(t)(q1) ≤ 100 and lim sup
t→−∞

(−t)Rg2(t)(q2) ≤ 100.

Let F1(z, t) denote the radius of a sphere of symmetry in (S3, g1(t)) which
has signed distance z from the reference point q1. Similarly, let F2(z, t)
denote the radius of a sphere of symmetry in (S3, g1(t)) which has signed
distance z from the reference point q2.

The functions F1(z, t) and F2(z, t) satisfy the PDE

Ft(z, t) = Fzz(z, t)− F (z, t)−1 (1− Fz(z, t)2)

− 2Fz(z, t)

∫ z

0

Fzz(z
′, t)

F (z′, t)
dz′.

In the next step, we replace the function F2(z, t) by a new function Fαβγ2 (z, t).
Here, (α, β, γ) is a triplet of real numbers satisfying the following admissi-
bility condition:

Definition 6.1. Given a real number ε ∈ (0, 1
2), we say that the triplet

(α, β, γ) is ε-admissible with respect to time t∗ if

|α| ≤ ε
√
−t∗, |β| ≤ ε (−t∗)

log(−t∗)
, |γ| ≤ ε log(−t∗).

In the following, we consider a time t∗ < 0, where −t∗ is very large.
Suppose that (α, β, γ) is a triplet of real numbers which is ε-admissible with
respect to time t∗ for some ε ∈ (0, 1

2). For each t ≤ t∗, we consider the
rescaled metrics

gβγ2 (t) := eγ g2(e−γ(t− β)).

Moreover, let F βγ2 (z, t) denote the profile function associated with the metric

gβγ2 (t). In other words, F βγ2 (z, t) denotes the radius of a sphere of symme-

try in (S3, gβγ2 (t)) which has signed distance z from the reference point q2.
Clearly,

F βγ2 (z, t) = e
γ
2 F2(e−

γ
2 z, e−γ(t− β)).
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Note that the metrics gβγ2 (t) form a solution to the Ricci flow, and the profile

function F βγ2 (z, t) satisfies the same PDE as the original profile function

F2(z, t). In the next step, we choose a new base point qαβγ2 with the property

that the sphere of symmetry passing through qαβγ2 has signed distance α from

the point q2 with respect to the metric gβγ2 (t∗). For each time t ≤ t∗, we
denote by sαβγ(t) the signed distance of the sphere of symmetry passing

through qαβγ2 from the point q2 with respect to the metric gβγ2 (t). The
function sαβγ(t) can be characterized as the solution of the ODE

d

dt
sαβγ(t) = 2

∫ sαβγ(t)

0

F βγ2,zz(z
′, t)

F βγ2 (z′, t)
dz′, sαβγ(t∗) = α.

For each time t ≤ t∗, we denote by Fαβγ2 (z, t) the radius of the sphere

of symmetry in (S3, gβγ2 (t)) which has signed distance z from the point

qαβγ2 . Clearly, the function Fαβγ2 (z, t) satisfies the same PDE as the func-

tion F2(z, t). Moreover, the function Fαβγ2 (z, t) is related to the function

F βγ2 (z, t) by the formula

Fαβγ2 (z, t) = F βγ2 (z + sαβγ(t), t) = e
γ
2 F2

(
e−

γ
2 (z + sαβγ(t)), e−γ(t− β)

)
.

In other words, the modified solution Fαβγ2 (z, t) differs from F βγ2 (z, t) by a
translation in space. In particular, for t = t∗, we obtain

Fαβγ2 (z, t∗) = F βγ2 (z + α, t∗) = e
γ
2 F2(e−

γ
2 (z + α), e−γ(t∗ − β)).

Lemma 6.2. If −t∗ is sufficiently large, then the following holds. Suppose
that the triplet (α, β, γ) is ε-admissible with respect to time t∗, where ε ∈
(0, 1

2). Let sαβγ(t) denote the solution of the ODE

d

dt
sαβγ(t) = 2

∫ sαβγ(t)

0

F βγ2,zz(z
′, t)

F βγ2 (z′, t)
dz′

with terminal condition sαβγ(t∗) = α. Then |sαβγ(t)| ≤ ε
√
−t for all t ≤ t∗.

Proof. Recall that the reference point q2 has been chosen such that the
blow-down limit of (S3, g2(t)) around q2 is a cylinder. Hence, if we choose
−t∗ is sufficiently large, then

0 ≤ −F2,zz(z, t)

F2(z, t)
≤ 1

(−8t)

whenever t ≤ −1
2

√
−t∗ and |z| ≤

√
−2t. In the next step, we replace t by

e−γ(t− β), and we replace z by e−
γ
2 z. This gives

0 ≤ −
F βγ2,zz(z, t)

F βγ2 (z, t)
≤ 1

(−8(t− β))

whenever t − β ≤ −1
2 e

γ
√
−t∗ and |z| ≤

√
−2(t− β). The condition |γ| ≤

ε log(−t∗) ≤ 1
2 log(−t∗) implies t∗ ≤ −eγ

√
−t∗. Moreover, the condition
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|β| ≤ ε (−t∗)
log(−t∗) ≤

1
2

(−t∗)
log(−t∗) ensures that t − β ≤ 1

2 t for all t ≤ t∗. Conse-

quently,

0 ≤ −
F βγ2,zz(z, t)

F βγ2 (z, t)
≤ 1

(−4t)

whenever t ≤ t∗ and |z| ≤
√
−t. Hence, if sαβγ(t) is a solution of the ODE

above, then ∣∣∣ d
dt
sαβγ(t)

∣∣∣ ≤ 1

(−2t)
|sαβγ(t)|

whenever t ≤ t∗ and |sαβγ(t)| ≤
√
−t. From this, we deduce that

d

dt

(
(−t)−1 (sαβγ(t))2

)
= (−t)−2 (sαβγ(t))2 + 2 (−t)−1 sαβγ(t)

d

dt
sαβγ(t) ≥ 0

whenever t ≤ t∗ and |sαβγ(t)| ≤
√
−t. By assumption, (−t∗)−1 (sαβγ(t∗))

2 =
(−t∗)−1 α2 ≤ ε2. Since ε ∈ (0, 1

2), we conclude that (−t)−1 (sαβγ(t))2 ≤ ε2

for all t ≤ t∗. This completes the proof of Lemma 6.2.

Using the admissibility conditions in Definition 6.1 and Lemma 6.2, we

can estimate the modified profile function Fαβγ2 :

Proposition 6.3. Fix a small number θ > 0 and a small number η > 0.
Then there exists a small number ε > 0 (depending on θ and η) with the
following property. If the triplet (α, β, γ) is ε-admissible with respect to time
t∗ and −t∗ is sufficiently large, then∣∣∣1

2
Fαβγ2 (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η z2 − t
log(−t)

and ∣∣∣Fαβγ2 (z, t)Fαβγ2z (z, t) +
z

2 log(−t)

∣∣∣ ≤ η |z|+√−t
log(−t)

whenever Fαβγ2 (z, t) ≥ θ
10

√
−t and t ≤ t∗.

Proof. Using Proposition 4.8 and Proposition 4.9, we obtain∣∣∣1
2
F2(z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η

4

z2 − t
log(−t)

and ∣∣∣F2(z, t)F2z(z, t) +
z

2 log(−t)

∣∣∣ ≤ η

4

|z|+
√
−t

log(−t)
whenever F2(z, t) ≥ θ

20

√
−t and −t is sufficiently large. We now replace t

by e−γ(t− β) and z by e−
γ
2 z. This gives∣∣∣1

2
F βγ2 (z, t)2 + (t− β) +

z2 + 2(t− β)

4 log(−(t− β))− 4γ

∣∣∣ ≤ η

4

z2 − (t− β)

log(−(t− β))− γ
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and ∣∣∣F βγ2 (z, t)F βγ2z (z, t) +
z

2 log(−(t− β))− 2γ

∣∣∣ ≤ η

4

|z|+
√
−(t− β)

log(−(t− β))− γ

whenever F βγ2 (z, t) ≥ θ
20

√
−(t− β) and −e−γ(t−β) is sufficiently large. By

assumption, the triplet (α, β, γ) is ε-admissible with respect to time t∗. If
ε is sufficiently small (depending on θ and η) and −t∗ is sufficiently large
(depending on θ and η), then we obtain∣∣∣1

2
F βγ2 (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η

2

z2 − t
log(−t)

and ∣∣∣F βγ2 (z, t)F βγ2z (z, t) +
z

2 log(−t)

∣∣∣ ≤ η

2

|z|+
√
−t

log(−t)
whenever F βγ2 (z, t) ≥ θ

10

√
−t and t ≤ t∗. By Lemma 6.2, |sαβγ(t)| ≤ ε

√
−t

for t ≤ t∗. Hence, we obtain∣∣∣1
2
Fαβγ2 (z, t)2 + t+

z2 + 2t

4 log(−t)

∣∣∣ ≤ η z2 − t
log(−t)

and ∣∣∣Fαβγ2 (z, t)Fαβγ2z (z, t) +
z

2 log(−t)

∣∣∣ ≤ η |z|+√−t
log(−t)

whenever Fαβγ2 (z, t) ≥ θ
10

√
−t and t ≤ t∗. This completes the proof of

Proposition 6.3.

We define functions U1+(r, t) and U1−(r, t) by

U1+(r, t) =
( ∂
∂z
F1(z, t)

)2

for r = F1(z, t) and z ≥ 2
√
−t and

U1−(r, t) =
( ∂
∂z
F1(z, t)

)2

for r = F1(z, t) and z ≤ −2
√
−t. Similarly, we define functions U2+(r, t)

and U2−(r, t) by

U2+(r, t) =
( ∂
∂z
F2(z, t)

)2

for r = F2(z, t) and z ≥ 2
√
−t and

U2−(r, t) =
( ∂
∂z
F2(z, t)

)2

for r = F2(z, t) and z ≤ −2
√
−t. Moreover, we define

Uβγ2+(r, t) := U2+(e−
γ
2 r, e−γ(t− β)),

Uβγ2−(r, t) := U2−(e−
γ
2 r, e−γ(t− β)).
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With this understood, we have

Uβγ2+(r, t) =
( ∂
∂z
Fαβγ2 (z, t)

)2

for r = Fαβγ2 (z, t), z ≥ 4
√
−t, and t ≤ t∗, and

Uβγ2−(r, t) =
( ∂
∂z
Fαβγ2 (z, t)

)2

for r = Fαβγ2 (z, t), z ≤ −4
√
−t, and t ≤ t∗.

In the next step, we perform the usual rescaling. We put t = −e−τ and
r = e−

τ
2 ρ. This gives functions V1+(ρ, τ), V1−(ρ, τ), V2+(ρ, τ), V2−(ρ, τ),

V βγ
2+ (ρ, τ), and V βγ

2− (ρ, τ), where

V1+(ρ, τ) :=

√
U1+(e−

τ
2 ρ,−e−τ ),

V1−(ρ, τ) :=

√
U1−(e−

τ
2 ρ,−e−τ ),

V2+(ρ, τ) :=

√
U2+(e−

τ
2 ρ,−e−τ ),

V2−(ρ, τ) :=

√
U2−(e−

τ
2 ρ,−e−τ ),

V βγ
2+ (ρ, τ) :=

√
Uβγ2+(e−

τ
2 ρ,−e−τ ),

V βγ
2− (ρ, τ) :=

√
Uβγ2−(e−

τ
2 ρ,−e−τ ).

A straightforward calculation gives

V βγ
2+ (ρ, τ) = V2+

( ρ√
1 + βeτ

, τ + γ − log(1 + βeτ )
)
,

V βγ
2− (ρ, τ) = V2−

( ρ√
1 + βeτ

, τ + γ − log(1 + βeτ )
)
.

Proposition 6.4. Fix a small number η > 0. Then we can find a small
number θ ∈ (0, η) (depending on η) and a small number ε > 0 (depending on
θ and η) with the following property. If the triplet (α, β, γ) is ε-admissible
with respect to time t∗ = −e−τ∗ and −τ∗ is sufficiently large, then

|V βγ
2+ (ρ, τ)−2 − Φ((−τ)

1
2 ρ)−1| ≤ η (V βγ

2+ (ρ, τ)−2 − 1)

for ρ ≤ 10θ and τ ≤ τ∗, and∣∣∣ ∂
∂τ
V βγ

2+ (ρ, τ)−2
∣∣∣ ≤ η ρ−2 (V βγ

2+ (ρ, τ)−1 − 1)

for ρ ≤ 1
8 and τ ≤ τ∗. Here, Φ denotes the profile of the Bryant soliton.

Proof. By Proposition 4.17, we can choose θ sufficiently small (depending
on η) so that

|V2+(ρ, τ)−2 − Φ((−τ)
1
2 ρ)−1| ≤ η

4
(V2+(ρ, τ)−2 − 1)
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whenever ρ ≤ 20θ and −τ is sufficiently large. We now replace τ by τ + γ−
log(1 + βeτ ) and ρ by ρ√

1+βeτ
. This gives∣∣∣∣V βγ

2+ (ρ, τ)−2 − Φ

(( 1

1 + βeτ
+
γ − log(1 + βeτ )

τ(1 + βeτ )

) 1
2

(−τ)
1
2 ρ

)−1∣∣∣∣
≤ η

4
(V βγ

2+ (ρ, τ)−2 − 1)

whenever ρ ≤ 20θ
√

1 + βeτ and −τ is sufficiently large.
By assumption, the triplet (α, β, γ) is ε-admissible with respect to time

t∗ = −e−τ∗ . If we choose ε sufficiently small (depending on η) and −τ∗
sufficiently large (depending on η), then Proposition 4.2 implies that∣∣∣∣Φ(( 1

1 + βeτ
+
γ − log(1 + βeτ )

τ(1 + βeτ )

) 1
2

(−τ)
1
2 ρ

)−1

− Φ((−τ)
1
2 ρ)−1

∣∣∣∣
≤ η

4
(Φ((−τ)

1
2 ρ)−1 − 1)

for all ρ and all τ ≤ τ∗. Hence, if we choose −τ∗ sufficiently large (depending
on θ and η), then we obtain

|V βγ
2+ (ρ, τ)−2 − Φ((−τ)

1
2 ρ)−1|

≤ η

4
(V βγ

2+ (ρ, τ)−2 − 1) +
η

4
(Φ((−τ)

1
2 ρ)−1 − 1)

≤ η

2
(V βγ

2+ (ρ, τ)−2 − 1) +
η

4
|V βγ

2+ (ρ, τ)−2 − Φ((−τ)
1
2 ρ)−1|

whenever ρ ≤ 10θ and τ ≤ τ∗. The last term on the right hand side can be
absorbed into the left hand side. This gives

|V βγ
2+ (ρ, τ)−2 − Φ((−τ)

1
2 ρ)−1| ≤ η (V βγ

2+ (ρ, τ)−2 − 1)

whenever ρ ≤ 10θ and τ ≤ τ∗. This proves the first statement.
We now turn to the second statement. Using Proposition 4.18 and Corol-

lary 4.19, we obtain∣∣∣ρ ∂

∂ρ
V2+(ρ, τ)

∣∣∣ ≤ C (V2+(ρ, τ)−1 − 1)

and ∣∣∣ ∂
∂τ
V2+(ρ, τ)

∣∣∣ ≤ η

2
ρ−2 (V2+(ρ, τ)−1 − 1)

whenever ρ ≤ 1
4 and −τ is sufficiently large. Using the identity

V βγ
2+ (ρ, τ) = V2+

( ρ√
1 + βeτ

, τ + γ − log(1 + βeτ )
)

and the chain rule, we conclude that∣∣∣ ∂
∂τ
V βγ

2+ (ρ, τ)
∣∣∣ ≤ η

2
ρ−2 (V βγ

2+ (ρ, τ)−1 − 1) + C
∣∣∣ βeτ

1 + βeτ

∣∣∣ (V βγ
2+ (ρ, τ)−1 − 1)

whenever ρ ≤ 1
8 and τ ≤ τ∗. Since the triplet (α, β, γ) is ε-admissible with

respect to time t∗ = −e−τ∗ , the second statement follows. This completes
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the proof of Proposition 6.4.

We next consider the difference between the two solutions:

W βγ
+ (ρ, τ) := V1+(ρ, τ)− V βγ

2+ (ρ, τ),

W βγ
− (ρ, τ) := V1−(ρ, τ)− V βγ

2− (ρ, τ).

For each τ , we know that 1 − V1+(ρ, τ) = O(ρ2), 1 − V1−(ρ, τ) = O(ρ2),

1− V βγ
2+ (ρ, τ) = O(ρ2), 1− V βγ

2− (ρ, τ) = O(ρ2) as ρ→ 0. Hence, for each τ ,

we have W βγ
+ (ρ, τ) = O(ρ2) and W βγ

− (ρ, τ) = O(ρ2) as ρ→ 0.
Let µ+(ρ, τ) and µ−(ρ, τ) denote the weights associated with the solution

(S3, g1(t)).

Proposition 6.5. We can choose θ > 0 and ε > 0 sufficiently small so that
the following holds. If −τ∗ is sufficiently large (depending on θ) and the
triplet (α, β, γ) is ε-admissible with respect to time t∗ = −e−τ∗, then

sup
τ≤τ∗

(−τ)−
1
2

∫ τ

τ−1

∫ θ

0
V −2

1+ (W βγ
+ )2 eµ+

≤ C(θ) (−τ∗)−1 sup
τ≤τ∗

(−τ)−
1
2

∫ τ

τ−1

∫ 2θ

θ
V −2

1+ (W βγ
+ )2 eµ+ .

An analogous estimate holds for W βγ
− .

We will give the proof of Proposition 6.5 in Section 7.

From this point on, we fix θ small enough so that the conclusion of Propo-
sition 6.5 holds. Let χC denote a smooth, even cutoff function satisfying

χC = 1 on [0,
√

4− θ2

2 ] and χC = 0 on [
√

4− θ2

4 ,∞). Moreover, we may

assume that χC is monotone decreasing on [0,∞). We define

G1(ξ, τ) := e
τ
2 F1(e−

τ
2 ξ,−e−τ )−

√
2,

G2(ξ, τ) := e
τ
2 F2(e−

τ
2 ξ,−e−τ )−

√
2,

Gαβγ2 (ξ, τ) := e
τ
2 Fαβγ2 (e−

τ
2 ξ,−e−τ )−

√
2.

Let

Hαβγ(ξ, τ) := G1(ξ, τ)−Gαβγ2 (ξ, τ)

and

Hαβγ
C (ξ, τ) := χC((−τ)−

1
2 ξ)Hαβγ(ξ, τ).

Using the PDEs for G1 and Gαβγ2 , we can derive a PDE for the function
Hαβγ . The leading term in that PDE is given by the operator

Lf := fξξ −
1

2
ξ fξ + f.
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To analyze this operator, we perform a spectral decomposition. As in [3],

we consider the Hilbert space H = L2(R, e−
ξ2

4 dξ). The Hilbert space H
has a natural direct sum decomposition H = H+ ⊕ H0 ⊕ H−. Here, H+

is a two-dimensional subspace spanned by the functions 1 and ξ; H0 is a
one-dimensional subspace spanned by the function ξ2 − 2; and H− is the
orthogonal complement of H+ ⊕ H0. Finally, let P+, P0, and P− denote
the projection operators associated to the direct sum decomposition H =
H+ ⊕H0 ⊕H−.

With this understood, we write

P0H
αβγ
C (ξ, τ) =

√
2 aαβγ(τ) (ξ2 − 2),

where

aαβγ(τ) :=
1

16
√

2π

∫
R
e−

ξ2

4 (ξ2 − 2)Hαβγ
C (ξ, τ) dξ.

Moreover, we put Ĥαβγ
C = P+H

αβγ
C + P−H

αβγ
C .

Proposition 6.6. Fix θ > 0 and ε > 0 small enough so that the conclusion
of Proposition 6.5 holds. Let δ ∈ (0, ε) be given. If −τ∗ is sufficiently
large (depending on δ), then we can find a triplet (α, β, γ) (depending on

τ∗) such that P+H
αβγ
C = 0 and P0H

αβγ
C = 0 at time τ∗. Moreover, if −τ∗ is

sufficiently large (depending on δ), then the triplet (α, β, γ) is δ-admissible
with respect to time t∗ = −e−τ∗.

Proof. Using the identity sαβγ(t∗) = α, we obtain

Fαβγ2 (z, t∗) = e
γ
2 F2(e−

γ
2 (z + α), e−γ(t∗ − β)).

Consequently,

Gαβγ2 (ξ, τ∗) =
√

1 + βeτ∗ G2

( ξ + αe
τ∗
2

√
1 + βeτ∗

, τ∗ + γ − log(1 + βeτ∗)
)

+
√

2 (
√

1 + βeτ∗ − 1).

The proof of Proposition 6.6 now proceeds as in [3]. This argument relies
only on the asymptotics of our solution in the cylindrical region. Since the
asymptotics of our ancient solutions to Ricci flow in the cylindrical region
are very similar to the cylindrical region asymptotics of ancient solutions to
mean curvature flow, the proof of Proposition 6.6 is identical to the proof
of the corresponding Proposition 4.1 in [3].

From this point on, we assume that the triplet (α, β, γ) is chosen as in
Proposition 6.6. In particular, this will ensure that aαβγ(τ∗) = 0. Note that
the triplet (α, β, γ) depends on τ∗ (which we have not yet fixed).
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Proposition 6.7. Fix θ > 0 small enough so that the conclusion of Propo-
sition 6.5 holds. Suppose that −τ∗ is sufficiently large, and that the triplet
(α, β, γ) is chosen as in Proposition 6.6. Then

(−τ∗) sup
τ≤τ∗

∫ τ

τ−1

∫
R
e−

ξ2

4 (Ĥαβγ
C,ξ (ξ, τ ′)2 + Ĥαβγ

C (ξ, τ ′)2) dξ dτ ′

≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1
aαβγ(τ ′)2 dτ ′

+ C(θ) sup
τ≤τ∗

∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 Hαβγ(ξ, τ ′)2 dξ dτ ′.

We will give the proof of Proposition 6.7 in Section 8.

By combining Proposition 6.5 and Proposition 6.7, we can show that in

the cylindrical region the norm of P0H
αβγ
C dominates over the norm of Ĥαβγ

C .
More precisely, we have the following result:

Proposition 6.8. Fix θ > 0 small enough so that the conclusion of Propo-
sition 6.5 holds. Suppose that −τ∗ is sufficiently large, and that the triplet
(α, β, γ) is chosen as in Proposition 6.6. Then

(−τ∗) sup
τ≤τ∗

∫ τ

τ−1

∫
R
e−

ξ2

4 (Ĥαβγ
C,ξ (ξ, τ ′)2 + Ĥαβγ

C (ξ, τ ′)2) dξ dτ ′

≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1
aαβγ(τ ′)2 dτ ′.

The proof of Proposition 6.8 will be given in Section 9.

Using Proposition 6.8, we are able to derive an ODE for the function
aαβγ(τ):

Proposition 6.9. Fix θ > 0 small enough so that the conclusion of Propo-
sition 6.5 holds. Let δ > 0 be given. Suppose that −τ∗ is sufficiently large
(depending on δ), and the triplet (α, β, γ) is chosen as in Proposition 6.6.
Let Qαβγ(τ) := d

dτ a
αβγ(τ)− 2 (−τ)−1 aαβγ(τ). Then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|Qαβγ(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
aαβγ(τ ′)2 dτ ′

) 1
2

.

The proof of Proposition 6.9 will be given in Section 10.

We now finish the proof of Theorem 1.4. Using the ODE d
dτ a

αβγ(τ) =

2 (−τ)−1 aαβγ(τ) + Qαβγ(τ) together with the fact that aαβγ(τ∗) = 0, we
obtain

(−τ)2 aαβγ(τ) = −
∫ τ∗

τ
(−τ ′)2Qαβγ(τ ′) dτ ′
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for all τ ≤ τ∗. This implies

(−τ) |aαβγ(τ)| ≤
∫ τ∗

τ
(−τ ′) |Qαβγ(τ ′)| dτ ′

≤
[τ∗−τ ]∑
j=0

∫ τ∗−j

τ∗−j−1
(−τ ′) |Qαβγ(τ ′)| dτ ′

≤ (−τ) max
0≤j≤[τ∗−τ ]

∫ τ∗−j

τ∗−j−1
(−τ ′) |Qαβγ(τ ′)| dτ ′

for all τ ≤ τ∗. We now divide by −τ , and take the supremum over all τ ≤ τ∗.
This implies

sup
τ≤τ∗
|aαβγ(τ)| ≤ sup

τ≤τ∗

∫ τ

τ−1
(−τ ′) |Qαβγ(τ ′)| dτ ′.

On the other hand, Proposition 6.9 gives the following estimate for Qαβγ :

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|Qαβγ(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗
|aαβγ(τ)|.

Hence, if we choose δ sufficiently small, and −τ∗ sufficiently large (depend-
ing on δ), then supτ≤τ∗ |a

αβγ(τ)| = 0. Thus, aαβγ(τ) = 0 for all τ ≤ τ∗.

Proposition 6.8 then implies Ĥαβγ
C (ξ, τ) = 0 for all τ ≤ τ∗. Putting these

facts together, we obtain Hαβγ
C (ξ, τ) = 0 for all τ ≤ τ∗. From this, we

deduce that W βγ
+ (ρ, τ) = 0 for ρ ∈ [θ, 2θ] and τ ≤ τ∗. Proposition 6.5

yields W βγ
+ (ρ, τ) = 0 for ρ ∈ [0, 2θ] and τ ≤ τ∗. Thus, we conclude that

F1(z, t) = Fαβγ2 (z, t) for all t ≤ t∗ = −e−τ∗ . In other words, the two ancient
solutions coincide for t ≤ t∗.

7. Energy estimates in the tip region and proof of Proposition
6.5

In this section, we give the proof of Proposition 6.5. Let ωT denote a
nonnegative smooth cutoff function satisfying ωT (ρ) = 1 for ρ ≤ θ and
ωT (ρ) = 0 for ρ ≥ 2θ. We define

W βγ
T+(ρ, τ) := ωT (ρ)W+(ρ, τ).

To simplify the notation, we will write W+ and WT+ instead of W βγ
+ and

W βγ
T+.

Proposition 7.1. The function W+(ρ, τ) satisfies the equation

V −2
1+

(∂W+

∂τ
+
ρ

2

∂W+

∂ρ

)
=
∂2W+

∂ρ2
+

∂

∂ρ

(
ρ−1 (V −2

1+ − 1)W+

)
− 2ρ−2W+ + V −2

1+ B+W+,
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where

B+ := ρ−2
(
1− V1+ (V βγ

2+ )−1
)

+ ρ−1
(

2V −1
1+

∂V1+

∂ρ
− (V βγ

2+ )−2 (V1+ + V βγ
2+ )

∂V βγ
2+

∂ρ

)
+ (V βγ

2+ )−2 (V1+ + V βγ
2+ )

(∂V βγ
2+

∂τ
+
ρ

2

∂V βγ
2+

∂ρ

)
.

Proof. The functions U1+(r, t), U1−(r, t), Uβγ2+(r, t), and Uβγ2−(r, t) all
satisfy the same PDE (see e.g. [7]):

U−1 ∂U

∂t
=
∂2U

∂r2
− 1

2
U−1

(∂U
∂r

)2
+ r−2 (U−1 − 1)

(
r
∂U

∂r
+ 2U

)
.

Consequently, the functions V1+(ρ, τ), V1−(ρ, τ), V βγ
2+ (ρ, τ), and V βγ

2− (ρ, τ)
satisfy the following PDE:

V −2
(∂V
∂τ

+
ρ

2

∂V

∂ρ

)
=
∂2V

∂ρ2
+ ρ−2 (V −2 − 1)

(
ρ
∂V

∂ρ
+ V

)
.

The assertion now follows from a straightforward calculation.

Proposition 7.2. The function WT+(ρ, τ) satisfies

1

2

∂

∂τ

(
V −2

1+ W 2
T+ e

µ+
)
− ∂

∂ρ

[(∂WT+

∂ρ
+ ρ−1 (V −2

1+ − 1)WT+

)
WT+ e

µ+
]

+
∂

∂ρ

(
W 2

+ ω
′
T ωT e

µ+
)

≤ −1

2

(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)2
eµ+ − 2ρ−2W 2

T+ e
µ+

+ V −2
1+

(1

2

∂µ+

∂τ
− V −1

1+

∂V1+

∂τ
+
ρ

2

∂µ+

∂ρ
+ B+

)
W 2
T+ e

µ+

+
1

2

(∂µ+

∂ρ
− ρ−1 (V −2

1+ − 1)− ρ

2
V −2

1+

)2
W 2
T+ e

µ+

+
(∂µ+

∂ρ
− ρ−1 (V −2

1+ − 1) +
ρ

2
V −2

1+

)
W 2

+ ω
′
T ωT e

µ+ + (ω′T )2W 2
+ e

µ+ .

Proof. Using Proposition 7.1, we obtain

V −2
1+

(∂WT+

∂τ
+
ρ

2

∂WT+

∂ρ

)
=
∂2WT+

∂ρ2
+

∂

∂ρ

(
ρ−1 (V −2

1+ − 1)WT+

)
− 2ρ−2WT+ + V −2

1+ B+WT+

+
(
− 2ω′T

∂W+

∂ρ
− ω′′T W+ − ω′T ρ−1 (V −2

1+ − 1)W+ +
ρ

2
ω′T V

−2
1+ W+

)
.
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We next bring in the weight µ+(ρ, τ). A straightforward calculation gives

1

2

∂

∂τ

(
V −2

1+ W 2
T+ e

µ+
)
− ∂

∂ρ

[(∂WT+

∂ρ
+ ρ−1 (V −2

1+ − 1)WT+

)
WT+ e

µ+
]

+
∂

∂ρ

(
W 2

+ ω
′
T ωT e

µ+
)

= −
(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)2
eµ+ − 2ρ−2W 2

T+ e
µ+

+ V −2
1+

(1

2

∂µ+

∂τ
− V −1

1+

∂V1+

∂τ
+
ρ

2

∂µ+

∂ρ
+ B+

)
W 2
T+ e

µ+

+
(∂µ+

∂ρ
− ρ−1 (V −2

1+ − 1)− ρ

2
V −2

1+

)(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)
WT+ e

µ+

+
(∂µ+

∂ρ
− ρ−1 (V −2

1+ − 1) +
ρ

2
V −2

1+

)
W 2

+ ω
′
T ωT e

µ+ + (ω′T )2W 2
+ e

µ+ .

The assertion follows now from Young’s inequality.

Corollary 7.3. Fix a small number η > 0. Then we can find a small
number θ ∈ (0, η) and a small number ε ∈ (0, η) (both depending on η) with
the following property. If −τ∗ sufficiently large (depending on η and θ) and
the triplet (α, β, γ) is ε-admissible with respect to time t∗ = −e−τ∗, then we
have

1

2

∂

∂τ

(
V −2

1+ W 2
T+ e

µ+
)
− ∂

∂ρ

[(∂WT+

∂ρ
+ ρ−1 (V −2

1+ − 1)WT+

)
WT+ e

µ+
]

+
∂

∂ρ

(
W 2

+ ω
′
T ωT e

µ+
)

≤ −1

2

(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)2
eµ+ − 2ρ−2W 2

T+ e
µ+

+ η ρ−2 V −4
1+ W 2

T+ e
µ+ + η ρ−2 V −2

1+ W 2
+ e

µ+ 1{θ≤ρ≤2θ}

for ρ ≤ 2θ and τ ≤ τ∗.

Proof. By Proposition 4.17, Proposition 4.18, and Proposition 6.4, we
can choose θ ∈ (0, η) (depending on η) sufficiently small and −τ∗ sufficiently
large (depending on η and θ) such that

|B+| ≤ η ρ−2 V −2
1+

for ρ ≤ 2θ and τ ≤ τ∗. By Corollary 4.19, Lemma 5.2, and Lemma 5.4, we
can choose θ ∈ (0, η) sufficiently small (depending on η) and −τ∗ sufficiently
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large (depending on η and θ) such that∣∣∣1
2

∂µ+

∂τ
− V −1

1+

∂V1+

∂τ
+
ρ

2

∂µ+

∂ρ

∣∣∣ ≤ η ρ−2 V −2
1+ ,∣∣∣∂µ+

∂ρ
− ρ−1 (V −2

1+ − 1)− ρ

2
V −2

1+

∣∣∣ ≤ η ρ−1 V −2
1+ ,∣∣∣∂µ+

∂ρ
− ρ−1 (V −2

1+ − 1) +
ρ

2
V −2

1+

∣∣∣ ≤ η ρ−1 V −2
1+

for ρ ≤ 2θ and τ ≤ τ∗. Hence, the assertion follows from Proposition 7.2.

In the next step, we finalize our choice of θ.

Proposition 7.4. We can find small numbers θ > 0, λ > 0, and ε > 0 with
the following property. If −τ∗ is sufficiently large (depending on θ) and the
triplet (α, β, γ) is ε-admissible with respect to time t∗ = −e−τ∗, then

1

2

d

dτ

(∫ 2θ

0
V −2

1+ W 2
T+ e

µ+ dρ

)
≤ −λ (−τ)

∫ 2θ

0
V −2

1+ W 2
T+ e

µ+ dρ

+

∫ 2θ

θ
ρ−2 V −2

1+ W 2
+ e

µ+ dρ

for τ ≤ τ∗.
Proof. Let us fix a small number η > 0. In the following, we choose

θ and ε sufficiently small (depending on η), and we choose −τ∗ sufficiently
large (depending on η and θ). Using Corollary 7.3, we obtain

1

2

d

dτ

(∫ 2θ

0
V −2

1+ W 2
T+ e

µ+ dρ

)
≤ −1

2

∫ 2θ

0

(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)2
eµ+ dρ− 2

∫ 2θ

0
ρ−2W 2

T+ e
µ+ dρ

+ η

∫ 2θ

0
ρ−2 V −4

1+ W 2
T+ e

µ+ dρ+ η

∫ 2θ

θ
ρ−2 V −2

1+ W 2
+ e

µ+ dρ

for τ ≤ τ∗. Applying Proposition 5.5 to the function f := eµ+ WT+ gives

0 ≤ 8

∫ 2θ

0

(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)2
eµ+ dρ

+K∗

∫ 2θ

0
ρ−2W 2

T+ e
µ+ dρ−

∫ 2θ

0

(∂µ+

∂ρ

)2
W 2
T+ e

µ+ dρ

for τ ≤ τ∗. Using Lemma 5.2, we obtain (∂µ+∂ρ )2 ≥ 1
4 ρ
−2 (V −2

1+ − 1)2 for

ρ ≤ 2θ, hence

0 ≤ 128η

∫ 2θ

0

(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)2
eµ+ dρ

+ 16ηK∗

∫ 2θ

0
ρ−2W 2

T+ e
µ+ dρ− 4η

∫ 2θ

0
ρ−2 (V −2

1+ − 1)2W 2
T+ e

µ+ dρ
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for τ ≤ τ∗. Adding the two inequalities, we conclude that

1

2

d

dτ

(∫ 2θ

0
V −2

1+ W 2
T+ e

µ+ dρ

)
≤ −

(1

2
− 128η

)∫ 2θ

0

(∂WT+

∂ρ
+
∂µ+

∂ρ
WT+

)2
eµ+ dρ

− (2− 4η − 16ηK∗)

∫ 2θ

0
ρ−2W 2

T+ e
µ+ dρ

− η
∫ 2θ

0
ρ−2 [4 (V −2

1+ − 1)2 + 4− V −4
1+ ]W 2

T+ e
µ+ dρ

+ η

∫ 2θ

θ
ρ−2 V −2

1+ W 2
+ e

µ+ dρ

for τ ≤ τ∗. We assume that η > 0 is chosen small enough so that 1
2−128η > 0

and 2 − 4η − 16ηK∗ > 0. (Here, it is crucial that the constant K∗ in the
weighted Poincaré inequality does not depend on θ.) This ensures that the
first two terms on the right hand side have a favorable sign. To estimate the
third term on the right hand side, we observe that ρ−2 [4 (V −2

1+ − 1)2 + 4 −
V −4

1+ ] ≥ ρ−2 V −4
1+ . In view of Proposition 4.17, the term ρ−2 V −4

1+ is bounded

from below by a small positive multiple of (−τ)V −2
1+ . This completes the

proof of Proposition 7.4.

We now complete the proof of Proposition 6.5. Let θ, λ, and ε be chosen
as in Proposition 7.4. Let

I(τ) :=

∫ τ

τ−1

∫ 2θ

0
V −2

1+ W 2
T+ e

µ+

and

J(τ) :=

∫ τ

τ−1

∫ 2θ

θ
V −2

1+ W 2
+ e

µ+ .

If we choose −τ∗ sufficiently large, then Proposition 7.4 gives

1

2
I ′(τ) + λ (−τ) I(τ) ≤ θ−2 J(τ),

hence
d

dτ
(e−λτ

2
I(τ)) ≤ 2θ−2 e−λτ

2
J(τ)

for τ ≤ τ∗. Clearly, limτ→−∞ e
−λτ2 I(τ) = 0. Consequently,

e−λτ
2
I(τ) ≤ 2θ−2

∫ τ

−∞
e−λτ

′2
J(τ ′) dτ ′

≤ 2θ−2
(

sup
τ ′≤τ

(−τ ′)−1 J(τ ′)
) ∫ τ

−∞
e−λτ

′2
(−τ ′) dτ ′

≤ θ−2λ−1 e−λτ
2

sup
τ ′≤τ

(−τ ′)−1 J(τ ′)
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for τ ≤ τ∗. This finally gives

(−τ)−
1
2 I(τ) ≤ θ−2λ−1 (−τ)−

1
2 sup
τ ′≤τ

(−τ ′)−1 J(τ ′)

≤ θ−2λ−1 (−τ)−1 sup
τ ′≤τ

(−τ ′)−
1
2 J(τ ′)

for τ ≤ τ∗. Taking the supremum over τ ≤ τ∗ gives

sup
τ≤τ∗

(−τ)−
1
2 I(τ) ≤ θ−2λ−1 (−τ∗)−1 sup

τ≤τ∗
(−τ)−

1
2 J(τ).

From this, the conclusion of Proposition 6.5 follows immediately.

8. Energy estimates in the cylindrical region and proof of
Proposition 6.7

In this section, we give the proof of Proposition 6.7. Throughout this
section, we assume that θ is chosen as in Proposition 6.5. To simplify the

notation, we will write H, HC , ĤC , and a instead of Hαβγ , Hαβγ
C , Ĥαβγ

C , and

aαβγ .
Our goal is to study the evolution equation satisfied by the function H.

The linearized operator

Lf := fξξ −
1

2
ξ fξ + f

is the same as in [3], and hence the linear theory from [3] carries over to the
Ricci flow case as well. In order for this article to be self-contained, we will
state the results from [3] that we will use later, but for the proofs of the
same we refer the reder to [3].

As in [3], we consider the Hilbert space H = L2(R, e−
ξ2

4 dξ). The norm
on H is given by

‖f‖2H :=

∫
R
e−

ξ2

4 f(ξ)2 dξ.

Moreover, we denote by D ⊂ H the Hilbert space of all functions f such
that f ∈ H and f ′ ∈ H. The norm on D is given by

‖f‖2D :=

∫
R
e−

ξ2

4 (f ′(ξ)2 + f(ξ)2) dξ.

Let D∗ denote the dual space of D. Clearly, the dual space H∗ is a subspace
of D∗. After identifying H∗ with H in the standard way, we can view H as
a subspace of D∗. The restriction of ‖ · ‖D∗ to H is given by

‖f‖D∗ := sup

{∫
R
e−

ξ2

4 f(ξ) g(ξ) dξ : ‖g‖D ≤ 1

}
for f ∈ H. For later reference, we collect some basic facts from [3].

Proposition 8.1. The following statements hold:
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(i) The operators f 7→ ξ f , f 7→ f ′, f 7→ −f ′ + 1
2 ξ f are bounded from

D to H.
(ii) The operators f 7→ ξ f , f 7→ f ′, f 7→ −f ′ + 1

2 ξ f are bounded from
H to D∗.

(iii) The operators f 7→ ξ2 f , f 7→ ξ f ′, f 7→ f ′′ are bounded from D to
D∗.

(iv) The operator f 7→
∫ ξ

0 f is bounded from H to D.

Proof. Statements (i), (ii), and (iii) were proved in [3]. To prove state-

ment (iv), let us consider a function f ∈ H, and let g(ξ) :=
∫ ξ

0 f(ξ′) dξ′.

Then g(ξ)2 ≤ ξ
∫ ξ

0 f(ξ′)2 dξ′ for ξ ≥ 0. Using Fubini’s theorem, we obtain∫ ∞
0

e−
ξ2

4 g(ξ)2 dξ ≤
∫ ∞

0
e−

ξ2

4 ξ

(∫ ξ

0
f(ξ′)2 dξ′

)
dξ

=

∫ ∞
0

(∫ ∞
ξ′

e−
ξ2

4 ξ dξ

)
f(ξ′)2 dξ′

= 2

∫ ∞
0

e−
ξ′2
4 f(ξ′)2 dξ′.

An analogous argument gives
∫ 0
−∞ e

− ξ
2

4 g(ξ)2 dξ ≤ 2
∫ 0
−∞ e

− ξ
′2
4 f(ξ′)2 dξ′.

Therefore, ‖g‖H ≤ C ‖f‖H. Since g′ = f , it follows that ‖g‖D ≤ C ‖f‖H, as
claimed.

For a time-dependent function f , we introduce the following norms:

‖f‖2H,∞,τ∗ := sup
τ≤τ∗

∫ τ

τ−1
‖f(·, τ ′)‖2H dτ ′,

‖f‖2D,∞,τ∗ := sup
τ≤τ∗

∫ τ

τ−1
‖f(·, τ ′)‖2D dτ ′,

‖f‖2D∗,∞,τ∗ := sup
τ≤τ∗

∫ τ

τ−1
‖f(·, τ ′)‖2D∗ dτ ′.

The following energy estimate was proved in [3]:

Proposition 8.2. Let g : (−∞, τ∗] → D∗ be a bounded function. Let f :
(−∞, τ∗]→ D be a bounded function which satisfies the linear equation

∂

∂τ
f(τ)− Lf(τ) = g(τ).

Then the function f̂ := P+f + P−f satisfies the estimate

sup
τ≤τ∗
‖f̂(τ)‖H + Λ−1 ‖f̂‖D,∞,τ∗ ≤ ‖P+f(τ∗)‖H + Λ ‖g‖D∗,∞,τ∗ ,

where Λ is a universal constant.
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Proof. See [3], Lemma 6.6.

We now continue with the proof of Proposition 6.7. The functions G1(ξ, τ)

and Gαβγ2 (ξ, τ) satisfy the equation

Gτ (ξ, τ) = Gξξ(ξ, τ)− 1

2
ξ Gξ(ξ, τ)

+
1

2
(
√

2 +G(ξ, τ))− (
√

2 +G(ξ, τ))−1

− (
√

2 +G(ξ, τ))−1Gξ(ξ, τ)2

+ 2Gξ(ξ, τ)

[
Gξ(0, τ)√
2 +G(0, τ)

−
∫ ξ

0

Gξ(ξ
′, τ)2

(
√

2 +G(ξ′, τ))2
dξ′
]
.

Consequently, the difference H(ξ, τ) = G1(ξ, τ)−Gαβγ2 (ξ, τ) satisfies

Hτ (ξ, τ) = Hξξ(ξ, τ)− 1

2
ξ Hξ(ξ, τ) +H(ξ, τ) +

6∑
k=1

Ek(ξ, τ),

where

E1(ξ, τ) =
[
(
√

2 +G1(ξ, τ))−1(
√

2 +Gαβγ2 (ξ, τ))−1 − 1

2

]
H(ξ, τ)

E2(ξ, τ) = (
√

2 +G1(ξ, τ))−1(
√

2 +Gαβγ2 (ξ, τ))−1G1ξ(ξ, τ)2H(ξ, τ),

E3(ξ, τ) = −(
√

2 +Gαβγ2 (ξ, τ))−1 (G1ξ(ξ, τ) +Gαβγ2ξ (ξ, τ))Hξ(ξ, τ)

E4(ξ, τ) = 2

[
G1ξ(0, τ)√
2 +G1(0, τ)

−
∫ ξ

0

G1ξ(ξ
′, τ)2

(
√

2 +G1(ξ′, τ))2
dξ′
]
Hξ(ξ, τ),

E5(ξ, τ) = 2Gαβγ2ξ (ξ, τ)
Hξ(0, τ)√

2 +G1(0, τ)

− 2Gαβγ2ξ (ξ, τ)
Gαβγ2ξ (0, τ)H(0, τ)

(
√

2 +G1(0))(
√

2 +Gαβγ2 (0, τ))
,

E6(ξ, τ) = 2Gαβγ2ξ (ξ, τ)

[
−
∫ ξ

0

(G1ξ(ξ
′, τ) +Gαβγ2ξ (ξ′, τ))Hξ(ξ

′, τ)

(
√

2 +Gαβγ2 (ξ′, τ))2
dξ′

+

∫ ξ

0

(2
√

2 +G1(ξ′, τ) +Gαβγ2 (ξ′, τ))H(ξ′, τ)G1ξ(ξ
′, τ)2

(
√

2 +G1(ξ′, τ))2(
√

2 +Gαβγ2 (ξ′, τ))2
dξ′
]
.

Consequently, the function HC(ξ, τ) = χC((−τ)−
1
2 ξ)H(ξ, τ) satisfies

HC,τ (ξ, τ) = HC,ξξ(ξ, τ)− 1

2
ξ HC,ξ(ξ, τ) +HC(ξ, τ) +

10∑
k=1

EC,k(ξ, τ),
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where

EC,1(ξ, τ) =
[
(
√

2 +G1(ξ, τ))−1(
√

2 +Gαβγ2 (ξ, τ))−1 − 1

2

]
HC(ξ, τ),

EC,2(ξ, τ) = (
√

2 +G1(ξ, τ))−1(
√

2 +Gαβγ2 (ξ, τ))−1G1ξ(ξ, τ)2HC(ξ, τ),

EC,3(ξ, τ) = −(
√

2 +Gαβγ2 (ξ, τ))−1 (G1ξ(ξ, τ) +Gαβγ2ξ (ξ, τ))HC,ξ(ξ, τ),

EC,4(ξ, τ) = 2

[
G1ξ(0, τ)√
2 +G1(0, τ)

−
∫ ξ

0

G1ξ(ξ
′, τ)2

(
√

2 +G1(ξ′, τ))2
dξ′
]
HC,ξ(ξ, τ),

EC,5(ξ, τ) = 2χC((−τ)−
1
2 ξ)Gαβγ2ξ (ξ, τ)

Hξ(0, τ)√
2 +G1(0, τ)

− 2χC((−τ)−
1
2 ξ)Gαβγ2ξ (ξ, τ)

Gαβγ2ξ (0, τ)H(0, τ)

(
√

2 +G1(0))(
√

2 +Gαβγ2 (0, τ))
,

EC,6(ξ, τ) = 2χC((−τ)−
1
2 ξ)Gαβγ2ξ (ξ, τ)

·
[
−
∫ ξ

0

(G1ξ(ξ
′, τ) +Gαβγ2ξ (ξ′, τ))Hξ(ξ

′, τ)

(
√

2 +Gαβγ2 (ξ′, τ))2
dξ′

+

∫ ξ

0

(2
√

2 +G1(ξ′, τ) +Gαβγ2 (ξ′, τ))H(ξ′, τ)G1ξ(ξ
′, τ)2

(
√

2 +G1(ξ′, τ))2(
√

2 +Gαβγ2 (ξ′, τ))2
dξ′
]
,

EC,7(ξ, τ) = (
√

2 +Gαβγ2 (ξ, τ))−1 (G1ξ(ξ, τ) +Gαβγ2ξ (ξ, τ))

· (−τ)−
1
2 χ′C((−τ)−

1
2 ξ)H(ξ, τ),

EC,8(ξ, τ) = −2

[
G1ξ(0, τ)√
2 +G1(0, τ)

−
∫ ξ

0

G1ξ(ξ
′, τ)2

(
√

2 +G1(ξ′, τ))2
dξ′
]

· (−τ)−
1
2 χ′C((−τ)−

1
2 ξ)H(ξ, τ),

EC,9(ξ, τ) = (−τ)−1 χ′′C((−τ)−
1
2 ξ)H(ξ, τ)

+
1

2
(−τ)−

3
2 ξ χ′C((−τ)−

1
2 ξ)H(ξ, τ),

EC,10(ξ, τ) = −2 (−τ)−
1
2
∂

∂ξ

[
χ′C((−τ)−

1
2 ξ)H(ξ, τ)

]
+

1

2
(−τ)−

1
2 ξ χ′C((−τ)−

1
2 ξ)H(ξ, τ).

In the following, we will estimate the terms
∑6

k=1 ‖EC,k‖H,∞,τ∗ and
∑10

k=7 ‖EC,k‖D∗,∞,τ∗ .
To that end, we need the following estimates for the functions G1(ξ, τ) and

Gαβγ2 (ξ, τ):

Proposition 8.3. Fix a small number θ > 0 and a small number η > 0.
Then there exists a small number ε > 0 (depending on θ and η) with the
following property. If the triplet (α, β, γ) is ε-admissible with respect to time
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t∗ = −e−τ∗ and −τ∗ is sufficiently large, then∣∣∣(√2 +G1(ξ, τ))2 − 2 +
ξ2 − 2

(−2τ)

∣∣∣ ≤ η ξ2 + 1

(−τ)
,∣∣∣(√2 +Gαβγ2 (ξ, τ))2 − 2 +

ξ2 − 2

(−2τ)

∣∣∣ ≤ η ξ2 + 1

(−τ)

and ∣∣∣(√2 +G1(ξ, τ))G1ξ(ξ, τ) +
ξ

(−2τ)

∣∣∣ ≤ η |ξ|+ 1

(−τ)
,∣∣∣(√2 +Gαβγ2 (ξ, τ))Gαβγ2ξ (ξ, τ) +

ξ

(−2τ)

∣∣∣ ≤ η |ξ|+ 1

(−τ)

for |ξ| ≤
√

4− θ2

8 (−τ)
1
2 and τ ≤ τ∗.

Proof. This follows directly from Proposition 4.8, Proposition 4.9, and
Proposition 6.3.

In order to estimate the term ‖EC,6‖H,∞,τ∗ , we need the following point-
wise estimate:

Lemma 8.4. We have

|EC,6(ξ, τ)| ≤ C(θ) (−τ)−
1
2 |Gαβγ2ξ (ξ, τ)|

∣∣∣∣ ∫ ξ

0
|HC(ξ′, τ)| dξ′

∣∣∣∣
+ C(θ) (−τ)−

1
2 |Gαβγ2ξ (ξ, τ)| (|HC(ξ, τ)|+ |H(0, τ)|)

for all τ ≤ τ∗.

Proof. Proposition 4.11 implies

|G1ξξ(ξ, τ)|+ |Gαβγ2ξξ (ξ, τ)| ≤ C(θ) (−τ)−
1
2

for |ξ| ≤
√

4− θ2

4 (−τ)
1
2 . Using integration by parts, we obtain

∣∣∣∣ ∫ ξ

0

(G1ξ(ξ
′, τ) +Gαβγ2ξ (ξ′, τ))Hξ(ξ

′, τ)

(
√

2 +Gαβγ2 (ξ′, τ))2
dξ′

+

∫ ξ

0

(G1ξξ(ξ
′, τ) +Gαβγ2ξξ (ξ′, τ))H(ξ′, τ)

(
√

2 +Gαβγ2 (ξ′, τ))2
dξ′

− 2

∫ ξ

0

Gαβγ2ξ (ξ′, τ) (G1ξ(ξ
′, τ) +Gαβγ2ξ (ξ′, τ))H(ξ′, τ)

(
√

2 +Gαβγ2 (ξ′, τ))3
dξ′
∣∣∣∣

≤ C(θ) (−τ)−
1
2 (|H(ξ, τ)|+ |H(0, τ)|)
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for |ξ| ≤
√

4− θ2

4 (−τ)
1
2 . This gives∣∣∣∣ ∫ ξ

0

(G1ξ(ξ
′, τ) +Gαβγ2ξ (ξ′, τ))Hξ(ξ

′, τ)

(
√

2 +Gαβγ2 (ξ′, τ))2
dξ′
∣∣∣∣

≤ C(θ) (−τ)−
1
2

∣∣∣∣ ∫ ξ

0
|H(ξ′, τ)| dξ′

∣∣∣∣
+ C(θ) (−τ)−

1
2 (|H(ξ, τ)|+ |H(0, τ)|)

for |ξ| ≤
√

4− θ2

4 (−τ)
1
2 . Consequently,

|EC,6(ξ, τ)| ≤ C(θ) (−τ)−
1
2 |Gαβγ2ξ (ξ, τ)|χC((−τ)−

1
2 ξ)

∣∣∣∣ ∫ ξ

0
|H(ξ′, τ)| dξ′

∣∣∣∣
+ C(θ) (−τ)−

1
2 |Gαβγ2ξ (ξ, τ)|χC((−τ)−

1
2 ξ) (|H(ξ, τ)|+ |H(0, τ)|)

for |ξ| ≤
√

4− θ2

4 (−τ)
1
2 . Since χC is monotone decreasing on the interval

[0,∞), we obtain 0 ≤ χC((−τ)−
1
2 ξ) ≤ χC((−τ)−

1
2 ξ′) for |ξ′| ≤ |ξ|. Putting

these facts together, the assertion follows.

In order to estimate the term ‖EC,5‖H,∞,τ∗ , we need the following estimate
for Hξ(0, τ):

Lemma 8.5. We have

sup
τ≤τ∗

(∫ τ

τ−1
Hξ(0, τ

′)2 dτ ′
) 1

2

≤ C ‖HC‖H,∞,τ∗ + C
6∑

k=1

‖EC,k‖H,∞,τ∗ .

Proof. In the region {|ξ| ≤ 1}, we have ∂
∂τHC = LHC+

∑6
k=1EC,k. Using

the embedding of the Sobolev space H1([−1, 1]) into C0([−1, 1]) together
with standard interior estimates for linear parabolic equations, we obtain

sup
τ≤τ∗

(∫ τ

τ−1
HC,ξ(0, τ

′)2 dτ ′
) 1

2

≤ C sup
τ≤τ∗

(∫ τ

τ−1

∫ 1

−1
(HC,ξξ(ξ, τ

′)2 +HC,ξ(ξ, τ
′)2) dξ dτ ′

) 1
2

≤ C ‖HC‖H,∞,τ∗ + C
6∑

k=1

‖EC,k‖H,∞,τ∗ .

Since HC,ξ(0, τ) = Hξ(0, τ), the assertion follows.

Lemma 8.6. We have
6∑

k=1

‖EC,k‖H,∞,τ∗ ≤ C(θ) (−τ∗)−
1
2 ‖HC‖D,∞,τ∗ .
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Proof. Using Proposition 8.3, we obtain the pointwise estimate

|EC,1(ξ, τ)| ≤ C(θ) (−τ)−
1
2 (|ξ|+ 1) |HC(ξ, τ)|

for all τ ≤ τ∗. Consequently,

‖EC,1‖H,∞,τ∗ ≤ C(θ) (−τ∗)−
1
2 ‖HC‖D,∞,τ∗

by Proposition 8.1. In the next step, we estimate the terms ‖EC,k‖H,∞,τ∗ ,
where k ∈ {2, 3, 4, 5}. Using the embedding of the Sobolev space H1([−1, 1])
into C0([−1, 1]), we can bound |H(0, τ)| ≤ C ‖HC(·, τ)‖D. This implies

5∑
k=2

‖EC,k‖H,∞,τ∗ ≤ C(θ) (−τ∗)−
1
2 ‖HC‖D,∞,τ∗

+ C(θ) (−τ∗)−
1
2 sup
τ≤τ∗

(∫ τ

τ−1
Hξ(0, τ

′)2 dτ ′
) 1

2

.

Finally, using the pointwise estimate in Lemma 8.4 together with Proposi-
tion 8.1, we obtain

‖EC,6‖H,∞,τ∗ ≤ C(θ) (−τ∗)−
1
2 ‖HC‖D,∞,τ∗ .

Putting these facts together, we conclude that

6∑
k=1

‖EC,k‖H,∞,τ∗ ≤ C(θ) (−τ∗)−
1
2 ‖HC‖D,∞,τ∗

+ C(θ) (−τ∗)−
1
2 sup
τ≤τ∗

(∫ τ

τ−1
Hξ(0, τ

′)2 dτ ′
) 1

2

≤ C(θ) (−τ∗)−
1
2 ‖HC‖D,∞,τ∗

+ C(θ) (−τ∗)−
1
2

6∑
k=1

‖EC,k‖H,∞,τ∗ ,

where in the last step we have used Lemma 8.5. If −τ∗ is sufficiently large,
the last term on the right hand side can be absorbed into the left hand side.
From this, the assertion follows.

Lemma 8.7. We have
9∑

k=7

‖EC,k‖H,∞,τ∗ + ‖EC,10‖D∗,∞,τ∗

≤ C(θ) (−τ∗)−
1
2

∥∥∥H 1
{
√

4− θ2
2

(−τ)
1
2≤|ξ|≤

√
4− θ2

4
(−τ)

1
2 }

∥∥∥
H,∞,τ∗

.

Proof. Using Proposition 8.1, we obtain

‖EC,10‖D∗,∞,τ∗ ≤ C (−τ∗)−
1
2 ‖χ′C((−τ)−

1
2 ξ)H‖H,∞,τ∗ .
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This gives the desired estimate for EC,10. The estimates for EC,7, EC,8, and
EC,9 follow directly from the respective definitions. This completes the proof
of Lemma 8.7.

We now complete the proof of Proposition 6.7. To that end, we apply
Proposition 8.2 to the function HC . Since P+HC(τ∗) = 0, we obtain

sup
τ≤τ∗
‖ĤC(τ)‖H + Λ−1 ‖ĤC‖D,∞,τ∗ ≤ Λ

10∑
k=1

‖EC,k(ξ, τ)‖D∗,∞,τ∗ .

We use Lemma 8.6 and Lemma 8.7 to estimate the terms on the right hand
side. This implies

sup
τ≤τ∗
‖ĤC(τ)‖H + Λ−1 ‖ĤC‖D,∞,τ∗

≤ C(θ) (−τ∗)−
1
2 ‖ĤC‖D,∞,τ∗ + C(θ) (−τ∗)−

1
2 ‖P0HC‖D,∞,τ∗

+ C(θ) (−τ∗)−
1
2

∥∥∥H 1
{
√

4− θ2
2

(−τ)
1
2≤|ξ|≤

√
4− θ2

4
(−τ)

1
2 }

∥∥∥
H,∞,τ∗

.

If −τ∗ is sufficiently large (depending on θ), then the first term on the right
hand side can be absorbed into the left hand side. This completes the proof
of Proposition 6.7.

9. Analysis of the overlap region and proof of Proposition 6.8

In this section, we give the proof of Proposition 6.8. We remind the reader
that θ is chosen as in Proposition 6.5. As in the previous section, we write

H, HC , ĤC , and a instead of Hαβγ , Hαβγ
C , Ĥαβγ

C , and aαβγ . We begin with
an elementary lemma:

Lemma 9.1. Assume that 4 ≤ L1 < L2 < L3. Then

L2
2

∫
{L2≤ξ≤L3}

e−
ξ2

4 f(ξ)2 dξ ≤ C
∫
{L1≤ξ≤L3}

e−
ξ2

4 f ′(ξ)2 dξ

+ C (L2 − L1)−2

∫
{L1≤ξ≤L2}

e−
ξ2

4 f(ξ)2 dξ,

where C is a numerical constant that is independent of L1, L2, L3, and f .

Proof. Note that

d

dξ
(e−

ξ2

4 ξ f(ξ)2) = e−
ξ2

4

(
f(ξ)2 − ξ2

2
f(ξ)2 + 2ξ f(ξ) f ′(ξ)

)
≤ e−

ξ2

4

(
f(ξ)2 − ξ2

4
f(ξ)2 + 4 f ′(ξ)2

)
.
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Integrating over ξ ∈ [0, L3] gives

e−
L2
3
4 L3 f(L3)2 +

∫
{0≤ξ≤L3}

e−
ξ2

4

(ξ2

4
− 1
)
f(ξ)2 dξ

≤ 4

∫
{0≤ξ≤L3}

e−
ξ2

4 f ′(ξ)2 dξ.

Hence, if f vanishes for 0 ≤ ξ ≤ 4, then we obtain(L2
2

4
− 1
)∫
{L2≤ξ≤L3}

e−
ξ2

4 f(ξ)2 dξ ≤ 4

∫
{4≤ξ≤L3}

e−
ξ2

4 f ′(ξ)2 dξ.

Finally, we multiply the given function f by a smooth cutoff function which
is equal to 0 on the interval (−∞, L1], and which is equal to 1 on the interval
[L2,∞). This completes the proof of Lemma 9.1.

The following lemma relates the functionH(ξ, τ) to the functionW+(ρ, τ):

Lemma 9.2. If we choose −τ∗ sufficiently large (depending on θ), then∣∣Hξ(ξ, τ) +W+(
√

2 +G1(ξ, τ), τ)
∣∣ ≤ C(θ) |H(ξ, τ)|

provided that
√

4− 400 θ2 (−τ)
1
2 ≤ ξ ≤

√
4− θ2

100 (−τ)
1
2 and τ ≤ τ∗.

Proof. Suppose that
√

4− 400 θ2 (−τ)
1
2 ≤ ξ ≤

√
4− θ2

100 (−τ)
1
2 and

τ ≤ τ∗. Let

ρ1 := e
τ
2 F1(e−

τ
2 ξ,−e−τ ) =

√
2 +G1(ξ, τ),

ρ2 := e
τ
2 Fαβγ2 (e−

τ
2 ξ,−e−τ ) =

√
2 +Gαβγ2 (ξ, τ).

By Proposition 4.8 and Proposition 6.3, ρ1 ∈ [ θ20 , 20θ] and ρ2 ∈ [ θ20 , 20θ].

Moreover, ∂
∂ξG1(ξ, τ) = −V1+(ρ1, τ), ∂

∂ξG
αβγ
2 (ξ, τ) = −V βγ

2+ (ρ2, τ), and ρ1 −
ρ2 = H(ξ, τ). This implies

∂

∂ξ
H(ξ, τ) =

∂

∂ξ
G1(ξ, τ)− ∂

∂ξ
Gαβγ2 (ξ, τ)

= −V1+(ρ1, τ) + V βγ
2+ (ρ2, τ)

= −W+(ρ1, τ)− V βγ
2+ (ρ1, τ) + V βγ

2+ (ρ2, τ).

Using Proposition 4.16, we obtain
∣∣ ∂
∂ρV

βγ
2+ (ρ, τ)

∣∣ ≤ C(θ) for every ρ ∈
[ θ20 , 20θ] and every τ ≤ τ∗. This gives∣∣∣ ∂

∂ξ
H(ξ, τ) +W+(ρ1, τ)

∣∣∣ ≤ ∣∣V βγ
2+ (ρ1, τ)− V βγ

2+ (ρ2, τ)
∣∣

≤ C(θ) |ρ1 − ρ2|
≤ C(θ) |H(ξ, τ)|,

as claimed.



54 SIMON BRENDLE, PANAGIOTA DASKALOPOULOS, AND NATASA SESUM

Lemma 9.3. We have

(−τ)

∫
{
√

4− θ2
2

(−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ

≤ C(θ) (−τ)−
1
2

∫ θ

θ
4

V1+(ρ, τ)−2W+(ρ, τ)2 eµ+(ρ,τ) dρ

+ C(θ)

∫
{
√

4−θ2 (−τ)
1
2≤ξ≤

√
4− θ2

2
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ,

provided that τ ≤ τ∗ and −τ∗ is sufficiently large.

Proof. We apply Lemma 9.1 with L1 =
√

4− θ2 (−τ)
1
2 , L2 =

√
4− θ2

2 (−τ)
1
2 ,

L3 =
√

4− θ2

4 (−τ)
1
2 , and f(ξ) = H(ξ, τ). This implies

(−τ)

∫
{
√

4− θ2
2

(−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ

≤ C(θ)

∫
{
√

4−θ2 (−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 Hξ(ξ, τ)2 dξ

+ C(θ)

∫
{
√

4−θ2 (−τ)
1
2≤ξ≤

√
4− θ2

2
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ.

By Lemma 9.2, Hξ(ξ, τ)2 ≤ 4W+(
√

2 + G1(ξ, τ), τ)2 + C(θ)H(ξ, τ)2 for
√

4− θ2 (−τ)
1
2 ≤ ξ ≤

√
4− θ2

4 (−τ)
1
2 . This gives

(−τ)

∫
{
√

4− θ2
2

(−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ

≤ C(θ)

∫
{
√

4−θ2 (−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 W+(
√

2 +G1(ξ, τ), τ)2 dξ

+ C(θ)

∫
{
√

4−θ2 (−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ.

By Proposition 4.16, we have V1+(ρ, τ) ≤ C(θ) (−τ)−
1
2 for ρ ∈ [ θ4 , θ]. More-

over, Lemma 5.1 gives µ+(ρ, τ) = − ξ1+(ρ,τ)2

4 for ρ ∈ [ θ4 , θ]. Consequently,∫
{
√

4−θ2 (−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 W+(
√

2 +G1(ξ, τ), τ)2 dξ

≤
∫ θ

θ
4

V1+(ρ, τ)−1W+(ρ, τ)2 e−
ξ1+(ρ,τ)2

4 dρ

≤ C(θ) (−τ)−
1
2

∫ θ

θ
4

V1+(ρ, τ)−2W+(ρ, τ)2 eµ+(ρ,τ) dρ.
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Putting these facts together, we conclude that

(−τ)

∫
{
√

4− θ2
2

(−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ

≤ C(θ) (−τ)−
1
2

∫ θ

θ
4

V1+(ρ, τ)−2W+(ρ, τ)2 eµ+(ρ,τ) dρ

+ C(θ)

∫
{
√

4−θ2 (−τ)
1
2≤ξ≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 H(ξ, τ)2 dξ.

From this, the assertion follows easily.

Lemma 9.4. We have

(−τ)−
1
2

∫ 2θ

θ
V1+(ρ, τ)−2W+(ρ, τ)2 eµ+(ρ,τ) dρ

≤ C(θ)

∫
{
√

4−16θ2 (−τ)
1
2≤ξ≤

√
4−θ2 (−τ)

1
2 }
e−

ξ2

4 (Hξ(ξ, τ)2 +H(ξ, τ)2) dξ

provided that τ ≤ τ∗ and −τ∗ is sufficiently large.

Proof. By Proposition 4.16, we have V1+(ρ, τ) ≥ 1
C(θ) (−τ)−

1
2 for ρ ∈

[θ, 2θ]. Moreover, Lemma 5.1 gives µ+(ρ, τ) = − ξ1+(ρ,τ)2

4 for ρ ∈ [θ, 2θ].
Consequently,∫

{
√

4−16θ2 (−τ)
1
2≤ξ≤

√
4−θ2 (−τ)

1
2 }
e−

ξ2

4 W+(
√

2 +G1(ξ, τ), τ)2 dξ

≥
∫ 2θ

θ
V1+(ρ, τ)−1W+(ρ, τ)2 e−

ξ1+(ρ,τ)2

4 dρ

≥ 1

C(θ)
(−τ)−

1
2

∫ 2θ

θ
V1+(ρ, τ)−2W+(ρ, τ)2 eµ+(ρ,τ) dρ.

By Lemma 9.2, W+(
√

2 + G1(ξ, τ), τ)2 ≤ 4Hξ(ξ, τ)2 + C(θ)H(ξ, τ)2 for√
4− 16θ2 (−τ)

1
2 ≤ ξ ≤

√
4− θ2 (−τ)

1
2 . From this, the assertion follows.

Proposition 9.5. We have

sup
τ≤τ∗

(−τ)

∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′

≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1

∫
R
e−

ξ2

4 (HC,ξ(ξ, τ
′)2 +HC(ξ, τ

′)2) dξ dτ ′.
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Proof. Using Lemma 9.3, Proposition 6.5, and Lemma 9.4, we obtain

sup
τ≤τ∗

(−τ)

∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤ξ≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′

≤ C(θ) sup
τ≤τ∗

(−τ)−
1
2

∫ τ

τ−1

∫ θ

θ
4

V1+(ρ, τ ′)−2W+(ρ, τ ′)2 eµ+(ρ,τ ′) dρ dτ ′

+ C(θ) sup
τ≤τ∗

∫ τ

τ−1

∫
{
√

4−θ2 (−τ ′)
1
2≤ξ≤

√
4− θ2

2
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′

≤ C(θ) sup
τ≤τ∗

(−τ)−
1
2

∫ τ

τ−1

∫ 2θ

θ
V1+(ρ, τ ′)−2W+(ρ, τ ′)2 eµ+(ρ,τ ′) dρ dτ ′

+ C(θ) sup
τ≤τ∗

∫ τ

τ−1

∫
{
√

4−θ2 (−τ ′)
1
2≤ξ≤

√
4− θ2

2
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′

≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1

∫
R
e−

ξ2

4 (HC,ξ(ξ, τ
′)2 +HC(ξ, τ

′)2) dξ dτ ′.

An analogous argument works when ξ is negative. This completes the proof
of Proposition 9.5.

After these preparations, we now finish the proof of Proposition 6.8. Using
Proposition 9.5, we obtain

sup
τ≤τ∗

(−τ)

∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′

≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1
a(τ ′)2 dτ ′

+ C(θ) sup
τ≤τ∗

∫ τ

τ−1

∫
R
e−

ξ2

4 (ĤC,ξ(ξ, τ
′)2 + ĤC(ξ, τ

′)2) dξ dτ ′.

Combining this estimate with Proposition 6.7 gives

(−τ∗) sup
τ≤τ∗

∫ τ

τ−1

∫
R
e−

ξ2

4 (ĤC,ξ(ξ, τ
′)2 + ĤC(ξ, τ

′)2) dξ dτ ′

≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1
a(τ ′)2 dτ ′

+ C(θ) (−τ∗)−1 sup
τ≤τ∗

∫ τ

τ−1

∫
R
e−

ξ2

4 (ĤC,ξ(ξ, τ
′)2 + ĤC(ξ, τ

′)2) dξ dτ ′.

If −τ∗ is chosen sufficiently large (depending on θ), then the last term on
the right hand side can be absorbed into the left hand side. This completes
the proof of Proposition 6.8.
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10. Analysis of the neutral mode and proof of Proposition 6.9

In this final section, we give the proof of Proposition 6.9. As before, we

write H, HC , ĤC , and a instead of Hαβγ , Hαβγ
C , Ĥαβγ

C , and aαβγ .

Lemma 10.1. We have

sup
τ≤τ∗

(−τ)

∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′

≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1
a(τ ′)2 dτ ′.

Proof. This follows by combining Proposition 6.8 and Proposition 9.5.

We next establish an improved version of Lemma 8.5:

Lemma 10.2. We have

(−τ∗) sup
τ≤τ∗

∫ τ

τ−1
Hξ(0, τ

′)2 dτ ′ ≤ C(θ) sup
τ≤τ∗

∫ τ

τ−1
a(τ ′)2 dτ ′.

Proof. The function HC satisfies the evolution equation ∂
∂τHC = LHC +∑10

k=1EC,k. Consequently, the function ĤC satisfies the evolution equation
∂
∂τ ĤC = LĤC +

∑10
k=1EC,k −

∑10
k=1 P0EC,k. In particular, in the region

{|ξ| ≤ 1}, we have ∂
∂τ ĤC = LĤC +

∑6
k=1EC,k −

∑10
k=1 P0EC,k. Using the

embedding of the Sobolev space H1([−1, 1]) into C0([−1, 1]) together with
standard interior estimates for linear parabolic equations, we obtain

sup
τ≤τ∗

(∫ τ

τ−1
ĤC,ξ(0, τ

′)2 dτ ′
) 1

2

≤ C sup
τ≤τ∗

(∫ τ

τ−1

∫ 1

−1
(ĤC,ξξ(ξ, τ

′)2 + ĤC,ξ(ξ, τ
′)2) dξ dτ ′

) 1
2

≤ C ‖ĤC‖H,∞,τ∗ + C
6∑

k=1

‖EC,k‖H,∞,τ∗ + C
10∑
k=1

‖P0EC,k‖H,∞,τ∗

≤ C ‖ĤC‖H,∞,τ∗ + C

6∑
k=1

‖EC,k‖H,∞,τ∗ + C

10∑
k=7

‖EC,k‖D∗,∞,τ∗ .

Note that ĤC,ξ(0, τ) = HC,ξ(0, τ) = Hξ(0, τ) for each τ . In the next step,
we use Lemma 8.6 and Lemma 8.7 to estimate the terms on the right hand
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side. This gives

sup
τ≤τ∗

(∫ τ

τ−1
Hξ(0, τ

′)2 dτ ′
) 1

2

≤ C ‖ĤC‖H,∞,τ∗ + C(θ) (−τ∗)−
1
2 ‖HC‖D,∞,τ∗

+ C(θ) (−τ∗)−
1
2

∥∥∥H 1
{
√

4− θ2
2

(−τ)
1
2≤|ξ|≤

√
4− θ2

4
(−τ)

1
2 }

∥∥∥
H,∞,τ∗

≤ C(θ) (−τ∗)−
1
2 sup
τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

,

where in the last step we have used Proposition 6.8 and Lemma 10.1. This
completes the proof of Lemma 10.2.

After these preparations, we now study the evolution of the function a(τ).

Using the evolution equation ∂
∂τHC = LHC +

∑10
k=1EC,k, we obtain

d

dτ
a(τ) =

10∑
k=1

Ik(τ),

where Ik(τ) is defined by

Ik(τ) =
1

16
√

2π

∫
R
e−

ξ2

4 (ξ2 − 2)EC,k(ξ, τ) dξ

for τ ≤ τ∗. In the remainder of this section, we estimate the terms Ik(τ).

Lemma 10.3. Let δ > 0 be given. If −τ∗ is sufficiently large (depending on
δ), then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|I1(τ ′)− (−τ ′)−1 a(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

.

Proof. We define a function Î1(τ) by

Î1(τ) =
1

16
√

2π

∫
{|ξ|≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 (ξ2 − 2) ĤC(ξ, τ)

·
[
(
√

2 +G1(ξ, τ))−1(
√

2 +Gαβγ2 (ξ, τ))−1 − 1

2

]
dξ

for τ ≤ τ∗. Using the asymptotic estimates in Proposition 8.3 together with
the Cauchy-Schwarz inequality, we obtain

(−τ)

∫ τ

τ−1
|Î1(τ ′)| dτ ′ ≤ C(θ)

(∫ τ

τ−1

∫
R
e−

ξ2

4 ĤC(ξ, τ
′)2 dξ dτ ′

) 1
2

for all τ ≤ τ∗. Using Proposition 6.8, we conclude that

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|Î1(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

,
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provided that −τ∗ is sufficiently large (depending on δ). On the other hand,

using the identity HC(ξ, τ)− ĤC(ξ, τ) =
√

2 a(τ) (ξ2 − 2), we obtain

I1(τ)− Î1(τ) =
a(τ)

16
√
π

∫
{|ξ|≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 (ξ2 − 2)2

·
[
(
√

2 +G1(ξ, τ))−1(
√

2 +Gαβγ2 (ξ, τ))−1 − 1

2

]
dξ

for all τ ≤ τ∗. Using the asymptotic estimates in Proposition 8.3 and the

formula
∫
R e
− ξ

2

4 (ξ2 − 2)3 dξ = 128
√
π, we conclude that

|I1(τ)− Î1(τ)− (−τ)−1 a(τ)| ≤ δ (−τ)−1 |a(τ)|

for all τ ≤ τ∗. Putting these facts together, the assertion follows.

Lemma 10.4. Let δ > 0 be given. If −τ∗ is sufficiently large (depending on
δ), then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|I2(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

.

Proof. Using the Cauchy-Schwarz inequality, we obtain∫ τ

τ−1
|I2(τ ′)| dτ ′

≤ C(θ)

∫ τ

τ−1

∫
R
e−

ξ2

4 |ξ2 − 2| |G1ξ(ξ, τ
′)|2 |HC(ξ, τ ′)| dξ dτ ′

≤ C(θ)

(∫ τ

τ−1

∫
{|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 |ξ2 − 2|2 |G1ξ(ξ, τ
′)|4 dξ dτ ′

) 1
2

·
(∫ τ

τ−1

∫
R
e−

ξ2

4 HC(ξ, τ
′)2 dξ dτ ′

) 1
2

for all τ ≤ τ∗. To bound the term on the right hand side, we use the
asymptotic estimates in Proposition 8.3. This gives

(−τ)

∫ τ

τ−1
|I2(τ ′)| dτ ′ ≤ δ

(∫ τ

τ−1

∫
R
e−

ξ2

4 HC(ξ, τ
′)2 dξ dτ ′

) 1
2

for all τ ≤ τ∗. Therefore, the assertion follows from Proposition 6.8.

Lemma 10.5. Let δ > 0 be given. If −τ∗ is sufficiently large (depending on
δ), then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|I3(τ ′)− (−τ ′)−1 a(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

.
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Proof. We define a function Î3(τ) by

Î3(τ) = − 1

16
√

2π

∫
{|ξ|≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 (ξ2 − 2) ĤC,ξ(ξ, τ)

· (
√

2 +Gαβγ2 (ξ, τ))−1 (G1ξ(ξ, τ) +Gαβγ2ξ (ξ, τ)) dξ

for τ ≤ τ∗. Using the asymptotic estimates in Proposition 8.3, we obtain

(−τ)

∫ τ

τ−1
|Î3(τ ′)| dτ ′ ≤ C(θ)

(∫ τ

τ−1

∫
R
e−

ξ2

4 ĤC,ξ(ξ, τ
′)2 dξ dτ ′

) 1
2

for all τ ≤ τ∗. Using Proposition 6.8, we conclude that

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|Î3(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

,

provided that −τ∗ is sufficiently large (depending on δ). On the other hand,

using the identity HC,ξ(ξ, τ)− ĤC,ξ(ξ, τ) = 2
√

2 a(τ) ξ, we obtain

I3(τ)− Î3(τ) = −a(τ)

8
√
π

∫
{|ξ|≤

√
4− θ2

4
(−τ)

1
2 }
e−

ξ2

4 (ξ2 − 2) ξ

· (
√

2 +Gαβγ2 (ξ, τ))−1 (G1ξ(ξ, τ) +Gαβγ2ξ (ξ, τ)) dξ

for all τ ≤ τ∗. Using the asymptotic estimates in Proposition 8.3 and the

formula
∫
R e
− ξ

2

4 (ξ2 − 2) ξ2 dξ = 16
√
π, we conclude that

|I3(τ)− Î3(τ)− (−τ)−1 a(τ)| ≤ δ (−τ)−1 |a(τ)|

for all τ ≤ τ∗. Putting these facts together, the assertion follows.

Lemma 10.6. Let δ > 0 be given. If −τ∗ is sufficiently large (depending on
δ), then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|I4(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

.

Proof. Using Proposition 8.3, we obtain |G1ξ(0, τ)| ≤ o(1) (−τ)−1. This
implies

|EC,4(ξ, τ)| ≤ o(1) (−τ)−1 |HC,ξ(ξ, τ)|+ C(θ) (−τ)−2 (|ξ|4 + 1) |HC,ξ(ξ, τ)|

for all τ ≤ τ∗. Using the Cauchy-Schwarz inequality, we conclude that

(−τ)

∫ τ

τ−1
|I4(τ ′)| dτ ′ ≤ δ

(∫ τ

τ−1

∫
R
e−

ξ2

4 HC,ξ(ξ, τ
′)2 dξ dτ ′

) 1
2

for all τ ≤ τ∗. Hence, the assertion follows from Proposition 6.8.
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Lemma 10.7. Let δ > 0 be given. If −τ∗ is sufficiently large (depending on
δ), then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|I5(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

.

Proof. Using the asymptotic estimates in Proposition 8.3, we obtain∫ τ

τ−1
|I5(τ ′)| dτ ′

≤ C(θ) (−τ)−1

∫ τ

τ−1
|Hξ(0, τ

′)| dτ ′ + C(θ) (−τ)−2

∫ τ

τ−1
|H(0, τ ′)| dτ ′

for all τ ≤ τ∗. The first term on the right hand side can be estimated
using Lemma 10.2. To estimate the second term on the right hand side,
we use Proposition 6.8 together with the embedding of the Sobolev space
H1([−1, 1]) into C0([−1, 1]). Putting these facts together, the assertion fol-
lows.

Lemma 10.8. Let δ > 0 be given. If −τ∗ is sufficiently large (depending on
δ), then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1
|I6(τ ′)| dτ ′ ≤ δ sup

τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

.

Proof. For abbreviation, let M(ξ, τ) :=
∣∣ ∫ ξ

0 |HC(ξ
′, τ)| dξ′

∣∣+ |HC(ξ, τ)|+
|H(0, τ)|. Proposition 8.1 implies∫ τ

τ−1

∫
R
e−

ξ2

4 M(ξ, τ ′)2 dξ dτ ′ ≤ C
∫ τ

τ−1

∫
R
e−

ξ2

4 (HC,ξ(ξ, τ
′)2+HC(ξ, τ

′)2) dξ dτ ′

for all τ ≤ τ∗. Using Lemma 8.4, we obtain

(−τ)
1
2 |EC,6(ξ, τ)| ≤ C(θ) |Gαβγ2ξ (ξ, τ)|M(ξ, τ)

for all τ ≤ τ∗. This gives

(−τ)
1
2

∫ τ

τ−1
|I6(τ ′)| dτ ′

≤ C(θ)

∫ τ

τ−1

∫
{|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 |ξ2 − 2| |Gαβγ2ξ (ξ, τ ′)|M(ξ, τ ′) dξ dτ ′
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for all τ ≤ τ∗. Using the Cauchy-Schwarz inequality, we conclude that

(−τ)
1
2

∫ τ

τ−1
|I6(τ ′)| dτ ′

≤ C(θ)

(∫ τ

τ−1

∫
{|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 |ξ2 − 2|2 |Gαβγ2ξ (ξ, τ ′)|2 dξ dτ ′
) 1

2

·
(∫ τ

τ−1

∫
R
e−

ξ2

4 (HC,ξ(ξ, τ
′)2 +HC(ξ, τ

′)2) dξ dτ ′
) 1

2

for all τ ≤ τ∗. To bound the term on the right hand side, we use the
asymptotic estimates in Proposition 8.3. This gives

(−τ)

∫ τ

τ−1
|I6(τ ′)| dτ ′ ≤ δ

(∫ τ

τ−1

∫
R
e−

ξ2

4 (HC,ξ(ξ, τ
′)2 +HC(ξ, τ

′)2) dξ dτ ′
) 1

2

for all τ ≤ τ∗. Therefore, the assertion follows from Proposition 6.8.

Lemma 10.9. Let δ > 0 be given. If −τ∗ is sufficiently large (depending on
δ), then

sup
τ≤τ∗

(−τ)

∫ τ

τ−1

10∑
k=7

|Ik(τ ′)| dτ ′ ≤ δ sup
τ≤τ∗

(∫ τ

τ−1
a(τ ′)2 dτ ′

) 1
2

.

Proof. We first observe that∫ τ

τ−1

10∑
k=7

|Ik(τ ′)| dτ ′

≤ C(θ)

∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 |ξ|10 |H(ξ, τ ′)| dξ dτ ′

for all τ ≤ τ∗. Indeed, the estimates for I7, I8, and I9 follow directly from
the respective definitions. The estimate for I10 follows by integration by
parts.

Using the Cauchy-Schwarz inequality, we obtain∫ τ

τ−1

10∑
k=7

|Ik(τ ′)| dτ ′

≤ C(θ)

(∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 |ξ|20 dξ

) 1
2

·
(∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′
) 1

2
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for all τ ≤ τ∗. Consequently,

(−τ)

∫ τ

τ−1

10∑
k=7

|Ik(τ ′)| dτ ′

≤ C(θ)

(∫ τ

τ−1

∫
{
√

4− θ2
2

(−τ ′)
1
2≤|ξ|≤

√
4− θ2

4
(−τ ′)

1
2 }
e−

ξ2

4 H(ξ, τ ′)2 dξ dτ ′
) 1

2

for all τ ≤ τ∗. Hence, the assertion follows from Lemma 10.1. This com-
pletes the proof of Lemma 10.9.

Proposition 6.9 follows immediately from Lemma 10.3 – Lemma 10.9 to-
gether with the identity d

dτ a(τ) =
∑10

k=1 Ik(τ).
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cient solutions to the mean curvature flow, Ann. of Math. 192, 353–436 (2020)

[4] R. Bamler and B. Kleiner, On the rotational symmetry of 3-dimensional κ-solutions,
arxiv:1904.05388

[5] T. Bourni, M. Langford, and G. Tinaglia, Collapsing ancient solutions of mean cur-
vature flow, arxiv:1705.06981

[6] S. Brendle, Rotational symmetry of self-similar solutions to the Ricci flow, Invent.
Math. 194, 731–764 (2013)

[7] S. Brendle, Ancient solutions to the Ricci flow in dimension 3, Acta Math. 225, 1–102
(2020)

[8] S. Brendle and K. Choi, Uniqueness of convex ancient solutions to mean curvature
flow in R3, Invent. Math. 217, 35–76 (2019)

[9] S. Brendle and K. Choi, Uniqueness of convex ancient solutions to mean curvature
flow in higher dimensions, to appear in Geom. Topol.

[10] S. Brendle, G. Huisken, and C. Sinestrari, Ancient solutions to the Ricci flow with
pinched curvature, Duke Math. J. 158, 537–551 (2011)

[11] R.L. Bryant, Ricci flow solitons in dimension three with SO(3)-symmetries, available
at

www.math.duke.edu/~bryant/3DRotSymRicciSolitons.pdf

[12] P. Daskalopoulos, R. Hamilton, and N. Šešum, Classification of compact ancient
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