SOBOLEV INEQUALITIES IN MANIFOLDS WITH
NONNEGATIVE CURVATURE

SIMON BRENDLE

ABSTRACT. We prove a sharp Sobolev inequality on manifolds with non-
negative Ricci curvature. Moreover, we prove a Michael-Simon inequal-
ity for submanifolds in manifolds with nonnegative sectional curvature.
Both inequalities depend on the asymptotic volume ratio of the ambient
manifold.

1. INTRODUCTION

Let M be a complete noncompact manifold of dimension k with nonneg-
ative Ricci curvature. The asymptotic volume ratio of M is defined as

o H{peM:dp,q) <rj
o=l | BF| 1k ’

where ¢ is some fixed point in M and B* denotes the unit ball in R¥. The
Bishop-Gromov relative volume comparison theorem implies that the limit
exists, and that 8 < 1. Note that # does not depend on the choice of the
point q.

Our first result gives a sharp Sobolev inequality on manifolds with non-
negative Ricci curvature.

Theorem 1.1. Let M be a complete noncompact manifold of dimension n
with nonnegative Ricci curvature. Let D be a compact domain in M with
boundary 0D, and let f be a positive smooth function on D. Then
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where 0 denotes the asymptotic volume ratio of M.
Moreover, we are able to characterize the case of equality in Theorem 1.1:

Theorem 1.2. Let M be a complete noncompact manifold of dimension n
with nonnegative Ricci curvature. Let D be a compact domain in M with
boundary 0D, and let f be a positive smooth function on D. Suppose that
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where 0 denotes the asymptotic volume ratio of M. Then f is constant, M
is isometric to Euclidean space, and D is a round ball.

Putting f = 1 in Theorem 1.1, we obtain a sharp isoperimetric inequality.

Corollary 1.3. Let M be a complete noncompact manifold of dimension n
with nonnegative Ricci curvature. Let D be a compact domain in M with
boundary 0D. Then

0D] > n |B"[% 0% | D7,
where 0 denotes the asymptotic volume ratio of M.

Corollary 1.3 is similar in spirit to the Lévy-Gromov inequality for man-
ifolds with Ricci curvature at least n — 1 (cf. [10], Appendix C). The Lévy-
Gromov inequality was recently generalized in [13] and [8].

In the three-dimensional case, Corollary 1.3 was proved in a recent work
of V. Agostiniani, M. Fogagnolo, and L. Mazzieri (cf. [1], Theorem 6.1).
The proof of Theorem 6.1 in [1] builds on an argument due to G. Huisken
[12] and uses mean curvature flow.

We will present the proof of Theorem 1.1 in Section 2. The proof of
Theorem 1.1 uses the Alexandrov-Bakelman-Pucci method and is inspired in
part by an elegant argument due to X. Cabré [5] (see also [4],[6],[15],[16],[17]
for related work). The proof of Theorem 1.2 will be discussed in Section 3.

We next turn to Sobolev inequalities for submanifolds. In a recent pa-
per [3], we proved a Michael-Simon-type inequality for submanifolds in Eu-
clidean space. While the classical Michael-Simon inequality (cf. [2], [14])
is not sharp, our inequality is sharp if the codimension is at most 2. In
particular, the results in [3] imply a sharp isoperimetric inequality for min-
imal submanifolds in Euclidean space of codimension at most 2, answering
a question first studied by Torsten Carleman [7] in 1921.

The following theorem generalizes the main result in [3] to the Riemannian
setting.

Theorem 1.4. Let M be a complete noncompact manifold of dimension
n—+m with nonnegative sectional curvature. Let ¥ be a compact submanifold
of M of dimension n (possibly with boundary 0%), and let f be a positive
smooth function on . If m > 2, then

1
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where 0 denotes the asymptotic volume ratio of M and H denotes the mean
curvature vector of X.

Note that (n+2) |B"*2| = 2|B?||B"|. Hence, we obtain a sharp Sobolev
inequality for submanifolds of codimension 2:

Corollary 1.5. Let M be a complete noncompact manifold of dimension
n+ 2 with nonnegative sectional curvature. Let 3 be a compact submanifold
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of M of dimension n (possibly with boundary 0%.), and let f be a positive
smooth function on X. Then

[ R [ peaipher ([ )

where 0 denotes the asymptotic volume ratio of M and H denotes the mean
curvature vector of X.

Moreover, we can characterize the case of equality in Corollary 1.5:

Theorem 1.6. Let M be a complete noncompact manifold of dimension
n—+ 2 with nonnegative sectional curvature. Let 3 be a compact submanifold
of M of dimension n (possibly with boundary 0%.), and let f be a positive
smooth function on Y. Suppose that

n—1
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where 0 denotes the asymptotic volume ratio of M and H denotes the mean
curvature vector of X. Then f is constant, M 1is isometric to Fuclidean
space, and X is a flat round ball.

By putting f = 1 in Corollary 1.5, we obtain an isoperimetric inequality
for minimal submanifolds of codimension 2, generalizing the result in [3].

Corollary 1.7. Let M be a complete noncompact manifold of dimension
n + 2 with nonnegative sectional curvature. Let ¥ be a compact minimal
submanifold of M of dimension n with boundary 0. Then

0% > n|B"% 05 |25,
where 0 denotes the asymptotic volume ratio of the ambient manifold M.

Finally, the inequalities in Corollary 1.5 and Corollary 1.7 also hold in
the codimension 1 setting. Indeed, if ¥ is an n-dimensional submanifold of
an (n + 1)-dimensional manifold M, then we can view 3 as a submanifold
of the (n 4 2)-dimensional manifold M x R. Note that the product M x R
has the same asymptotic volume ratio as M itself.

The proof of Theorem 1.4 will be presented in Section 4. This argument
extends our earlier proof in the Euclidean case (cf. [3]), and relies on the
Alexandrov-Bakelman-Pucci technique. Moreover, the proof shares some
common features with the work of E. Heintze and H. Karcher [11] concerning
the volume of a tubular neighborhood of a submanifold. Finally, the proof
of Theorem 1.6 will be discussed in Section 5.

2. PROOF oF THEOREM 1.1

Throughout this section, we assume that (M, g) is a complete noncompact
manifold of dimension n with nonnegative Ricci curvature. Moreover, we
assume that D is a compact domain in M, and f is a positive smooth
function on D. Let R denote the Riemann curvature tensor of (M, g).
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It suffices to prove the assertion in the special case when D is connected.
By scaling, we may assume that

[vsie [ p=n g

Since D is connected, we can find a function v : D — R with the property
that

div(f Vu) = n fo-1 — |V /]
on D and (Vu,n) =1 at each point on 0D. Here, n denotes the outward-
pointing unit normal to dD. Standard elliptic regularity theory implies that

the function u is of class C?7 for each 0 < v < 1 (cf. [9], Theorem 6.30).
We define

U:={xeD\0D: |Vu(x)| < 1}.

For each r > 0, we denote by A, the set of all points £ € U with the property
that

ru(x) + %d(z,expf(r Vu(a_c)))2 > ru(z) + %7’2 |Vu(z)|?
for all x € D. Moreover, for each r > 0, we define a map ®,.: D — M by
B,(x) = exp, (r Vu(x))
for all z € D. Note that the map @, is of class C17 for each 0 < v < 1.

Lemma 2.1. Assume that x € U. Then Au(z) < nf(m)ﬁ

Proof. Using the inequality |Vu(z)| < 1 and the Cauchy-Schwarz in-
equality, we obtain

—(Vf(z), Vu(z)) < |Vf(2)].
Moreover, div(f Vu) =n f AT — |V f| by definition of w. This implies
F(x) Au(z) = n f(a)m1 — |Vf(x)| - (Vf(z), Vu(z)) < n fz)aT.

From this, the assertion follows.

Lemma 2.2. The set
{pe M :d(z,p) <rforall ze D}

1s contained in the set

{®,(z): x € A}

Proof. Fix a point p € M with the property that d(z,p) < r forallx € D.
Since (Vu,n) = 1 at each point on §D, the function = — ru(z) + 1 d(z,p)?
cannot attain its minimum on the boundary of D. Let us fix a point T €
D\ 0D where the function = — ru(z) + 3 d(z,p)? attains its minimum.
Moreover, let 4 : [0,7] — M be a minimizing geodesic such that 7(0) = z and
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3(r) = p. Clearly, r|5(0)| = d(&,p). For every smooth path v : [0,7] — M
satisfying v(0) € D and ~(r) = p, we obtain

1

rur(O) + 57 [ HOF dt = ru0) + 5 0.0

1
> (@) + 5 d(@, p)?

= ru(3(0)) + 5 7 O

=)+ 5 [ P

In other words, the path 4 minimizes the functional u(v(0))+3 f; |7/ (t)|* dt
among all smooth paths v : [0,7] — M satisfying v(0) € D and ~(r) = p.
Hence, the formula for the first variation of energy implies

Vu(z) = 7(0).
From this, we deduce that

0, (7) = expg(r Vu(Z)) = expy () (r7'(0)) = 5(r) = p.
Moreover,
r[Vu(@)| =r[7(0)] = d(z,p).
By assumption, d(z,p) < r. This implies |Vu(z)| < 1. Therefore, z € U.

Finally, for each point z € D, we have

ru(z) + %d(x,expin(r Vu(:E)))2 =ru(x)+ éd(w,p)2

1
> Tu(j) + 5 d(.’f,p)2

1
=ru(z)+ 3 2 |Vu(z)|?.

Thus, £ € A,. This completes the proof of Lemma 2.2.

Lemma 2.3. Assume that T € A,, and let 3(t) := expz(t Vu(z)) for all
t € [0,r]. If Z is a smooth vector field along 7 satisfying Z(r) =0, then

(D*u)(Z(0), 2(0)) + /OT (IDeZ(#)]* = R(Y (1), Z(t), 7 (1), Z(1))) dt > 0.
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Proof. Let us consider an arbitrary smooth path ~ : [0,r] — M satisfying
~v(0) € D and 7(r) = 4(r). Since T € A,, we obtain

1

ruOO) + 57 [ W ORd = ruG0) + 5 d0 0,

— ru(s(0)) + £ d(2(0),expu(r Vu(a)’
> ru(z) + %rz Vu(z)[?

=ru(7(0)) + ;r/or |7 ()% dt.

In other words, the path 4 minimizes the functional u(v(0))+ 2 Jo 1 (&) dt
among all smooth paths «y : [0,7] — M satisfying v(0) € D and v(r) = 3(r).
Hence, the assertion follows from the formula for the second variation of
energy.

Lemma 2.4. Assume that T € A, and let ¥(t) := exp;(t Vu(z)) for allt €
[0,7]. Moreover, let {e1,...,e,} be an orthonormal basis of Tz M. Suppose
that W is a Jacobi field along 7 satisfying (D;W(0), e;) = (D*u)(W(0), ¢;)
for each 1 < j < mn. If W(r) = 0 for some 7 € (0,r), then W wvanishes
identically.

Proof. Suppose that W (7) = 0 for some 7 € (0,7). By assumption,
(DWW (0), W(0)) = (D*u)(W(0), W(0)).

Since W is a Jacobi field, we obtain

| (0w R - ro.w 0.7 0. W) d
= (DW(7), W (7)) — (D:W(0), W(0))
= —(D*u)(W(0), W(0)).

Let us define a vector field W along 4 by

= JW(t) forte|0,7]
Wit = {0 for t € [r,7].

Clearly, W(r) = 0. Moreover,

/0 LDV — R (1), W (1), 7 (£), W (£)) d

= — (D) (W(0), W(0)).
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Using Lemma 2.3, we conclude that
Aamﬂmkﬂwwzwﬁwﬂm»ﬁ

> [0 OF - R O.70.70.70) d

for every smooth vector field Z along 7 satisfying Z(0) = W (0) and Z(r) =
W(T) By approximation, this inequality holds for every vector field Z which
is piecewise O and satisfies Z(0) = W (0) and Z(r) = W (r). In other words,
the vector field W minimizes the index form among all vector fields which
are piecewise C'! and have the same boundary values as . Consequently,
W must be of class C'. This implies D;W(7) = 0. Since W(7) = 0 and
DWW (1) = 0, standard uniqueness results for ODE imply that W vanishes
identically.

Proposition 2.5. Assume that x € A,. Then the function
t > (141 f(2)71) ™" [det DDy(z)|
is monotone decreasing for t € (0,7).

Proof. Fix an arbitrary point & € A,. Let {ey,...,e,} be an orthonormal
basis of Tz M, and let (x1, ..., z,) be a system of geodesic normal coordinates
around Z such that B%i =e; at T. Let J(¢t) := exp;(t Vu(z)) for all t € [0, r].
For each 1 <i < n, we denote by E;(t) the parallel transport of e; along #.
Moreover, for each 1 < i < n, we denote by X;(¢) the unique Jacobi field
along ¥ satisfying X;(0) = e; and

(D X;(0), ¢5) = (D*u)(ei ;)
for all 1 < j < n. It follows from Lemma 2.4 that X;(t),..., X, (t) are
linearly independent for each t € (0, 7).
Let us define an n x n-matrix P(t) by
Bij(t) = (Xi(t), E5(1))

for 1 <i,j < n. Moreover, we define an n x n-matrix S(¢) by

Sij(t) = R(Y' (), Ei(t),7'(t), E;(t))
for 1 < i,j < n. Clearly, S(t) is symmetric. Moreover, since M has non-

negative Ricci curvature, we know that tr(S(¢)) > 0. Since the vector fields
Xi1(t), ..., Xn(t) are Jacobi fields, we obtain

P"(t) = —P(t)S(t).

Moreover,
Pij(0) = 64
and

Pj;(0) = (D*u) (e, e;)-
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In particular, the matrix P’(0)P(0)7 is symmetric. Moreover, the matrix

%(P'(t)P(t)T) = P'(t)P(t)"+P'(t)P'(t)" = —P(t)S(t)P(t)" +P'(t)P'(t)"
is symmetric for each ¢. Thus, we conclude that the matrix P'(t)P(t)T is
symmetric for each t.

Since Xi(t),...,X,(t) are linearly independent for each ¢ € (0,7), the
matrix P(t) is invertible for each ¢ € (0, 7). Since P'(t)P(t)T is symmetric for
each t € (0,7), it follows that the matrix Q(t) := P(t)"!P'(t) is symmetric
for each t € (0,7). The matrix Q(t) satisfies the Riccati equation

Q'(t) = P(t)"'P"(t) - P(t) ' P'(t)P(t) "' P'(t) = —S(t) - Q(t)°

for all ¢ € (0,7). Moreover, since Q(t) is symmetric, we obtain tr(Q(¢)?) >
Ltr(Q(t))? for all t € (0,7). Since tr(S(t)) > 0, it follows that

d

Lir(QU) < —r(QH?) < — - tr(Q(1)?
for all t € (0,7). Clearly,

lim Qi (t) = (D*u)(ei, €;).

Using Lemma 2.1, we obtain

lim tr(Q()) = Au(@) < n f(7)7.

Hence, a standard ODE comparison principle implies

1
r(Qu) < I

L+t f(z)n—1
for all t € (0,7).

We next consider the determinant of P(¢). Clearly, det P(t) > 0 if ¢
is sufficiently small. Since P(t) is invertible for each t € (0,r), it follows
that det P(¢t) > 0 for all ¢ € (0,7). Using the estimate for the trace of
Q(t) = P(t)"1P'(t), we obtain

1
d T)n—1
L yogdet P(t) = tr(Q(t)) < LD
dt 1+t f(z)nT
for all t € (0,7). Consequently, the function
tis (L4t f(2)71)~" det P(t)
is monotone decreasing for ¢ € (0, 7).
Finally, we observe that
0P,
T) = X;(t
S @ = X.(0

for 1 < i < n. Consequently, |det D®,(Z)| = det P(t) for all t € (0,r).
Putting these facts together, the assertion follows.
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Corollary 2.6. The Jacobian determinant of ®, satisfies
| det D®, ()| < (1+7 f(a)71)"
for all x € A,.

Proof. Since lim;_,o |det D®,(z)| = 1, the assertion follows from Propo-
sition 2.5.

After these preparations, we now complete the proof of Theorem 1.1.
Using Lemma 2.2 and Corollary 2.6, we obtain

H{p € M :d(z,p) <r for all x € D}|

< / | det D®,.(x)| dvol(x)
Ar

< [ r sy dvla)

for all » > 0. Finally, we divide by "™ and send r — oo. This gives

‘ang/Ufnnls/Dfn"l,
/D\Vf|+/an=n/Df,£1Zn|Bn|i9i(/Dfﬂl)nnl‘

This completes the proof of Theorem 1.1.

Thus,

3. PROOF OF THEOREM 1.2

Let (M, g) be a complete noncompact manifold of dimension n with non-
negative Ricci curvature. Let D be a compact domain in M with boundary
0D, and let f be a positive smooth function on D satisfying

/D|Vf|+/an=nB"|i0i(/fol)T>o,

where 6 denotes the asymptotic volume ratio of M.

If D is disconnected, we may apply Theorem 1.1 to each connected com-
ponent of D, and take the sum over all connected components. This will
lead to a contradiction. Therefore, D must be connected.

By scaling, we may assume that

Lvn+ [ r=nime
/Dfn"l:|B"ye.

fvns [ p=nf 5

and

In particular,
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Since D is connected, we can find a function v : D — R such that
div(f V) = n f71 |V ]

on D and (Vu,n) = 1 at each point on dD. Moreover, u is of class C?7 for
each 0 < v < 1. Let us define U, A,, and ®,. as in Section 2.

Lemma 3.1. Assume that x € U. Then |det D®;(x)| > (1 +tf(3:)ﬁ)”
for each t > 0.

Proof. Let us fix a point z € U. Suppose that |det D®.(z)| < (1 +

1

t f(z)»=1)" for some ¢t > 0. Let us fix a real number € € (0,1) such that
| det D®,(7)| < (1 — ) (1+ ¢ f(z)7T1)".

By continuity, we can find an open neighborhood V' of the point Z such that
| det D&, (z)| < (1 — ) (L+t f(a)71)"

for all x € V. Using Proposition 2.5, we conclude that
|det DO, (2)] < (1= &) (147 f(2)71)"

for all » > ¢ and all x € A, NV. Using this fact together with Lemma 2.2
and Corollary 2.6, we obtain

H{p € M :d(z,p) <r for all x € D}|

S/ | det D®,.(x)| dvol(x)
Ay

< / (1—e-1y(x) (1 +r f(z)77)" dvol(x)
U

for all r > t. Finally, we divide by r™ and send r — oo. This gives
o< [-ea) s < [t =
U D

This is a contradiction.

Lemma 3.2. Assume that x € U. Then D*u(z) = f(ar:)ﬁ g.

Proof. Let us fix a point z € U. Let {ey, ..., ey} be an orthonormal basis
of Tz M. We define 4(t) := expz(t Vu(z)) for all ¢ > 0. For each 1 <1i < n,
we denote by E;(t) the parallel transport of e; along 4. Moreover, for each
1 < i < n, we denote by X;(t) the unique Jacobi field along ¥ satisfying
XZ(O) =€ and

(DiXi(0),¢5) = (D*u)(es e5)
for all 1 < j < n. Finally, we define an n x n-matrix P(t) by
Py;(t) = (Xi(t), E5(t))
for1<i4,5 <n.
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By Lemma 3.1, we know that | det P(¢)| > (1 + tf(:?:)ﬁ)” for all £ > 0.
Since det P(t) > 0 if ¢t > 0 is sufficiently small, we conclude that

det P(t) > (1 +t f(z)71)"

for all t > 0. In particular, P(¢) is invertible for each ¢ > 0.

We next define Q(t) := P(t)~'P'(t) for all t > 0. As in Section 2, we
can show that the matrix Q(¢) is symmetric for each ¢ > 0. The Riccati
equation for Q(t) gives

Cr(@Q() < ~(Q() < — (Q()?
for all ¢ > 0. Moreover,
lim tr(Q(1)) = Au(#) < n f(2)77

by Lemma 2.1. This implies

o) < I
1+t f(x)
hence )
ilogdet P@t) < L
dt 1+t f(z)m

for all ¢ > 0. Integrating this ODE gives

det P(t) < (1 4+t f(z)7T)"

for all ¢ > 0. )
Putting these facts together, we conclude that det P(t) = (14t f(Z)»—1)"
for all ¢ > 0. Differentiating this identity with respect to ¢, we obtain

nf(@)
1+ f(z)mt
for all t > 0. Using the Riccati equation for Q(¢), we conclude that tr(Q(¢)?) =

Ltr(Q(¢t))? for all t > 0. Consequently, the trace-free part of Q(t) vanishes
for each t > 0. Therefore,

tr(Q(t)) =

f(@)7

Qij(t) = T
1+t f(z)nT

for all ¢ > 0. In particular,
2 .
(D7u)(ei, ej) = }E%Qij(t) = f(
This completes the proof of Lemma 3.2.

I
S—
3
|
AR
>
<

Lemma 3.3. Assume that x € U. Then V f(z) =
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Proof. Let us consider an arbitrary point x € U. Using the definition of
u, we obtain

(@) Au(z) = n f(2)7T = |V f(2)| = (Vf(2), V().

On the other hand, Lemma 3.2 implies Au(z) = nf(:n)ﬁ Putting these
facts together, we conclude that (V f(z), Vu(x)) = —|V f(x)|. Since |Vu(z)]
1, it follows that V f(x) = 0. This completes the proof of Lemma 3.3.

N

Lemma 3.4. The set U is dense in D.

Proof. Suppose that U is not dense in D. Arguing as in Section 2, we

obtain
|Bn|9§/f$1</fﬁ1:|3n|9.
U D

This is a contradiction. This completes the proof of Lemma 3.4.

Since U is a dense subset of D, we conclude that Vf = 0 and D?*u =

f AT g at each point on D. Since D is connected, it follows that f is constant.
This implies |0D| =n \B”\% o \D]nT_l

Note that u is a smooth function on D. Each critical point of u lies in
the interior of D and is nondegenerate with Morse index 0. In particular,
the function u has at most finitely many critical points.

We next consider the flow on D generated by the vector field —Vu. Since
the vector field —Vu points inward along the boundary 0D, the flow is
defined for all nonnegative times. This gives a one-parameter family of
smooth maps s : D — D, where s > 0. Since D is connected, standard
arguments from Morse theory imply that the function u has exactly one
critical point, and u attains its global minimum at that point. It follows
that the diameter of ¥s(D) converges to 0 as s — 0.

Since D?u is a constant multiple of the metric, the isoperimetric ratio is
unchanged under the flow 5. This implies

[(9D)] = n |B" 0 |o(D)| "+
for each s > 0. If # < 1, this contradicts the Euclidean isoperimetric inequal-
ity when s is sufficiently large. Thus, we conclude that 8 = 1. Consequently,
M is isometric to Euclidean space.

Once we know that M is isometric to Euclidean space, it follows that D
is a round ball. This completes the proof of Theorem 1.2.

4. PROOF OF THEOREM 1.4

Throughout this section, we assume that (M, g) is a complete noncom-
pact manifold of dimension n + m with nonnegative sectional curvature.
Moreover, we assume that ¥ is a compact submanifold of M of dimension
n (possibly with boundary 0%), and f is a positive smooth function on X.
Let D denote the Levi-Civita connection on the ambient manifold (M, g),
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and let R denote the Riemann curvature tensor of (M, g). We denote by II
the second fundamental form of 3. For each point x € X, II is a symmetric
bilinear form on 7Y which takes values in the normal space T;%. If X
and Y are tangent vector fields on 3 and V is a normal vector field along
¥, then (II(X,Y),V) = (DxY,V) = —(DxV,Y).

It suffices to prove the assertion in the special case when X is connected.
By scaling, we may assume that

/2\/sz’2+f2|H|2+/azf—n/zfnnl.

Since X is connected, we can find a function u : 3 — R with the property
that

divs(f V¥u) = n f7 — \|V5f[2 + 12 |H]?

on ¥ and (V>u,n) = 1 at each point on 9%. Here, n denotes the co-normal
to 03. Standard elliptic regularity theory implies that the function u is of
class C%*7 for each 0 < < 1 (cf. [9], Theorem 6.30).

We define

Q:={zxeX\Ix: |VZu(z)| <1},
U:={(z,y) :x € L\ 0L, y € T,'S, |[V>u(x)]” + [y < 1}.

For each r > 0, we denote by A, the set of all points (z,y) € U with the
property that

1 1
ru(e) + 5 d(e,expa(r VEu(@) +15))° 2 ru(@) + 5 2 (VEu(@) + 1)
for all z € ¥. Moreover, for each r > 0, we define a map ®, : T+X — M by

O, (x,y) = exp, (r V>u(z) + ry)

for all z € ¥ and y € T;-%. Note that the map @, is of class C17 for each
0<vy<l1.

Lemma 4.1. Assume that x € Q and y € T;Y satisfy |V>u(x)|?+|y|> < 1.
1
Then Axu(x) — (H(x),y) <n f(z)»T.

Proof. Using the inequality |V=u(x)|?+|y|?> < 1 and the Cauchy-Schwarz
inequality, we obtain

— (V5 f(2), VZula)) — f(z) (H(2),y)
< IVE @) + f@)? [H@)2 \/[V5u()]? + Jy?
< JIVEF @) + f(2)? [H(@)]2.
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Moreover, divs(f VZu) = O VIVEFf|2 + f2|H|? by definition of u.
Consequently,

J(@) Asule) — f(2) (H(2),y) = n f2)7T - wvwm)r? T f(@)? |H ()2
(V2 (2), Vul) — f(@) (H(2).y)

<n flz)n1

1 .

From this, the assertion follows.

Lemma 4.2. For each 0 < o < 1, the set
{peM:or<d(x,p) <rforalzeX}
is contained in the set
{®r(2,9) : (2,y) € Ar, [VZu(@)? + [y* > 0%}

Proof. Let us fix a real number 0 < ¢ < 1 and a point p € M with
the property that or < d(z,p) < r for all z € ¥. Since (VZu,n) = 1
at each point on 9%, the function z — ru(z) + % d(z,p)? cannot attain
its minimum on the boundary of . Let us fix a point £ € ¥ \ 90X where
the function z — ru(z) + 1 d(z,p)? attains its minimum. Moreover, let
7 : [0,7] = M be a minimizing geodesic such that 7(0) = z and 7(r) = p.
Clearly, r|5'(0)| = d(z,p). For every smooth path + : [0,7] — M satisfying
v(0) € ¥ and v(r) = p, we obtain

rur(O) + 5 [ HOF dt 2 ruly0) + 5 dr 0,0
1

> ru(z) + 5 d(z,p)>

u(3(0)) + 5 2 Y O

= ru(3(0)) + ¢ v / ()2 dt.

In other words, the path 4 minimizes the functional u(v(0))+ % [ [7/(t) \2 dt
among all smooth paths v : [0,7] — M satisfying v(0) € E and ~y(r) =
Hence, the formula for the first variation of energy implies

VEu(z) - 7'(0) € TiY.
Consequently, we can find a vector i € T;3-% such that
Vu(z) + gy = 7(0).
From this, we deduce that
®,(2,7) = exp(r V>u(Z) + 1) = exps(g) (r7'(0)) = (r) = p.
Moreover,
2 (IVPu(@)? + [5) = r* [VZu(@) + 91> = 7 |7 (0) ) =

QU
~—
&
S
S~—
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By assumption, or < d(Z,p) < r. This implies 02 < |V>u(Z)? + |7]> < 1.
In particular (z,y) € U. Finally, for each point x € X, we have

ru(z) + = d(x exp, (1 VZu(z )+ry)) :7"21(36)—1—%d(;1:,p)2
1

> ru(z) + 5 d(z,p)?

_ 1
—TU(ZC)+§

Thus, (Z,y) € A,. This completes the proof of Lemma 4.2.

r (IVEu(@)* + |1%).

Lemma 4.3. Assume that (Z,9) € A,, and let 3(t) := exp;(t V>u(Z) +t )
for allt € [0,7]. If Z is a smooth vector field along 7 satisfying Z(0) € T2
and Z(r) =0, then

(D3u)(2(0), 2(0)) ~ (I(Z(0), Z(0)), 5)
+ [ (D20 - T 0. 20,70, 20) de >0

Proof. Let us consider an arbitrary smooth path 7 : [0,7] — M satisfying
~v(0) € ¥ and ~(r) = 7(r). Since (Z,y) € A,, we obtain

ruOO) + 57 [ W ORd = ruG0) + 5 d0 0 ()
= ru(y(())) + 1al( (0), expz(r Vzu(a?“) + 7“@))2
> ru(@) + 5 (IV5u(@)P + 5)

u(3(0 T/ 5 ()] dt.

In other words, the path 4 minimizes the functional u(v(0))+3 f; |/ (t)|* dt
among all smooth paths 7 : [0,7] — M satisfying v(0) € ¥ and ~y(r) =5(r).
Using the formula for the second variation of energy, we obtain

(DFu)(Z(0), Z(0)) — (I1(Z(0), Z(0)),7'(0))
+ /OT (IDeZ(t)]* = R(Y' (1), Z(t),7'(t), Z(1))) dt > 0.
On the other hand, the identity 5/(0) = V>u(Z) + 7 implies
(I1(2(0), Z(0)),7'(0)) = (I(Z(0), Z(0)), ).

Putting these facts together, the assertion follows.

Lemma 4.4. Assume that (Z,y) € A,. Then g+r DZu(z)—r (II(Z),y) > 0.
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Proof. As above, we define ¥(t) := expz(t Vu(z) + t ) for all t € [0,7].
Let us fix an arbitrary vector w € Tz%, and let W (¢) denote the parallel
transport of w along 4. Applying Lemma 4.3 to the vector field Z(t) :=
(r—t) W(t) gives

rg(w,w) + r? (D&u) (w, w) — r (Il (w, w), )

T
- [ =02 R0, W 0.5 0. W () de > 0.
0
Since M has nonnegative sectional curvature, it follows that
rg(w,w) + r? (D&u)(w, w) — r? (I (w,w),§) > 0,

as claimed.

Lemma 4.5. Assume that (Z,9) € Ay, and let 5(t) := expz(t VZu(z) +t7)
for all t € [0,7]. Moreover, let {e1,...,en} be an orthonormal basis of
Tz3. Suppose that W is a Jacobi field along 7 satisfying W(0) € Tz% and
(D:W(0),e;) = (DZu)(W(0),e;) — (II(W(0),¢e;),) for each 1 < j < n. If
W(r) =0 for some 7 € (0,r), then W wvanishes identically.

Proof. Suppose that W (r) = 0 for some 7 € (0,7). By assumption,
(DW(0), W (0)) = (DFu) (W (0), W(0)) — (LL(W(0), W(0)), 9).
Since W is a Jacobi field, we obtain
[ 1D O - Re/ 0. w05 0w 0) i
= (DW (1), W (1)) — (DWW (0), W(0))
—(D%u)(W(0), W(0)) + (II(W(0), W(0)), 7).
Let us define a vector field W along 7 by

s o JW(t) fortel0,T]
Wi = {0 for t € [r,7].

Clearly, W(0) = W(0) € T% and W (r) = 0. Moreover,
U OF = R o). W 0.7 0. 0)
—(DZu)(W(0), W(0)) + (II(W(0), W(0)),7).

Using Lemma 4.3, we conclude that

/ (D) — R (1), Z(1), 7 (). Z(t))) d
> [[ (DO - RG'0.7(0,7/0). W 0)

for every smooth vector field Z along ¥ satisfying Z(0) = W(0) and Z(r) =
W (r). By approximation, this inequality holds for every vector field Z which
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is piecewise C! and satisfies Z(0) = W (0) and Z(r) = W (r). In other words,
the vector field W minimizes the index form among all vector fields which
are piecewise C! and have the same boundary values as w. Consequently,
W must be of class C'. This implies D;W(r) = 0. Since W(r) = 0 and
DWW (7) = 0, standard uniqueness results for ODE imply that W vanishes
identically.

Proposition 4.6. Assume that (z, y) € A,. Then the function
t—t (1 —l—tf(x) )" | det DPy(x,y)]
is monotone decreasing for t € (0,r).

Proof. Fix an arbitrary point (Z, ) € A,. Let us choose an orthonormal
basis {e1,..., ey} of Tz M such that the n x n-matrix

(D3u)(es, e5) — (I (es, €5), )

is diagonal. Let (x1,...,z,) be a system of geodesic normal coordinates

on Y around the point . We can arrange that 8‘2 = e; at . Let

{Vn+1, -+, Vn+m} be alocal orthonormal frame for the normal bundle, cho-
sen so that (De,va,v3) = 0 at Z. We write a normal vector y as y =
ZZJFZ@_H YaVa. With this understood, (1, ..., ZTn, Yn+1,- - Yntm) is a local
coordinate system on the total space of the normal bundle T+3.

Let 5(t) := exp,(t V=u(z) + tg) for all t € [0,7]. For each 1 < i < n,
we denote by E;(t) the parallel transport of e; along 7. Moreover, for each
1 < i < n, we denote by X;(t) the unique Jacobi field along 7 satisfying
Xi(0) = e; and

(D1 X;(0), ¢5) = (D3u)(es, e5) — (L (es, €5), ),
(D X(0), v5) = (IT(e;, VZu), vg)

foralll<j<mnandalln+1<8<n+m. Foreachn+1<a<n+m,
we denote by N, (t) the parallel transport of v, along 4. Moreover, for
each n + 1 < o < n + m, we denote by Y, (¢) the unique Jacobi field along
7 satisfying Y,(0) = 0 and D;Y,(0) = v,. It follows from Lemma 4.5
that Xi(t),..., Xn(t),Ynt1,- .-, Ypim(t) are linearly independent for each
€ (0,7).
Let us define an (n 4+ m) x (n + m)-matrix P(t) by

Pij(t) = (Xi(t), E;(t)),  Pig(t) = (Xi(t), Ns(t)),
Faj(t) = (Ya(D), E( ), Pap(t) = (Ya(t), Ng(t))
< a

for 1 < 4,7 <nmandmn--+1
(n+m) X (n 4+ m)-matrix S(t) by

Sij(t) = R(Y'(t), Ei(), 7' (t), E;(t)),  Sig(t) = R(Y(t), Ei(t),7'(t), Na(t)),

(¢ i
Saj(t) = R(“‘/(t),Na(t) (1), é](t)) Sas(t) = R(Y'(t), Na(t),7'(t), N3(t))

,8 < n 4+ m. Moreover, we define an
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for 1 <i,j<nandn+1<apf < n+m. Clearly, S(t) is symmetric.
Moreover, S(t) > 0 since M has nonnegative sectional curvature. Since
the vector fields X (¢),..., X, (t), Yoi1(t),. .., Yaim(t) are Jacobi fields, we
obtain

P"(t) = —P(t)S(t).

Moreover,
o=y
and
P/(O) — (D%U)(ez, €j) — <II(€Z, 6]‘)7 g> <[[(€“ VZU), V,B>

0 dap '
In particular, the matrix P’(0)P(0)7 is symmetric. Moreover, the matrix

%(P'(t)P(t)T) = P'(t)P(t)"+P'(t)P'(t)" = —P(t)S(t)P(t)" +P'(t)P'(t)"
is symmetric for each ¢. Thus, we conclude that the matrix P'(t)P(t)T is
symmetric for each t.

Since X1(%), ..., Xn(t), Ynt1, .., Ynim(t) are linearly independent for each
t € (0,7), the matrix P(t) is invertible for each ¢ € (0,7). Since P'(t)P(t)T is
symmetric for each t € (0,7), it follows that the matrix Q(t) := P(t)~1P'(t)
is symmetric for each t € (0,7). The matrix Q(t) satisfies the Riccati equa-
tion

Q'(t) = P(t)"'P"(t) - P(t) ' P'(t)P(t) "' P'(t) = —S(t) — Q(t)°
for all t € (0,7). Since S(t) > 0, it follows that
Q'(t) < —Q(t)*

for all ¢ € (0,7). Using the asymptotic expansion
_ [0 + O(t) o(t)
P(t) = [ O(t)  tdap+O(?)|"
we obtain
o [6j+0@) o(1)
P = [ 01) 7 dus +O(1)
as t — 0. Moreover,
priay = [(PRu)(enes) = ((erne)).) +0) - O()
O(t) dap + O(t)
as t — 0. Consequently, the matrix Q(t) = P(t)~'P'(t) satisfies the asymp-

totic expansion

(D%u) (e, e5) — (L (ei, €5), ) + O(t) O(1)
Q) = [ - oy ! 1 5aﬁ+0(1)]
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By our choice of {e1,...,e,}, the matrix (DZu)(ei,e;) — (I(e;, e5),9) is
diagonal. Let us write
(D3w)(eis e5) — (I (eir e5), §) = Ni i
for 1 < 4,7 < n. It follows from Lemma 4.4 that 1 + r\; > 0 for each
1 < ¢ <n. Since
| Xy + O(71) 0(1)
Q) = [ O(1) 78,5+ 0(1)
as 7 — 0, we can find a small number 7y € (0,r) such that

am < [Ny 2]

for all 7 € (0,79). A standard ODE comparison principle implies

(Ait+V/7) 5 0
Q(t) < | IHE=T)Ai+/T) v
0 (t - %)_1 5aﬁ

for all 7 € (0,79) and all ¢ € (7,r). Passing to the limit as 7 — 0, we
conclude that

)\,
i 6 O
Q(t) < | 1+th 7
(t> - |: 0 ¢t (5a5:|

for all t € (0,7). In particular, the trace of Q(t) satisfies

i
1+t

tr(Q(t)) < ? + ;

for all t € (0,7). It follows from Lemma 4.1 that

1

D N =Asu(®) - (H(Z),9) <n f(z)" 1.
=1

Using the arithmetic-harmonic mean inequality, we obtain

n 2

Z 1 S n S n
Lt = L (L4 0) g payan

=1

hence
n

1
N 1 1 n f(z)n—1
Z1+m,~ *¥<"_Z1+mi) =

= .
i=1 i1 1+t f(2)nT
for all t € (0,r). Putting these facts together, we conclude that

1
m n f(x)r-1
tr(Q(t)) < T + %
1+t f(z)nT
for all ¢t € (0,7).
We next consider the determinant of P(t). Clearly, lim; ot~ det P(t) =
1. In particular, det P(¢t) > 0 if ¢ > 0 is sufficiently small. Since P(t) is
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invertible for each t € (0,7), it follows that det P(t) > 0 for all ¢ € (0,r).
Using the estimate for the trace of Q(t) = P(t)"1P'(t), we obtain

m nf ()71

t

4 logdet P(t) = tr(Q(t)) < — + i
1+t f(z)»T

dt
for all t € (0,7). Consequently, the function
1

tes t™™ (14t f(Z)7-1)"" det P(t)

is monotone decreasing for ¢ € (0, 7).
Finally, we observe that

(’*)<I>t aq)t — =\
9z, T%(x’y) =Y, (t)

for1 <i<mnand n+1 < a < n+m. Consequently, |det D®.(z,y)| =
det P(t) for all t € (0,r). Putting these facts together, the assertion follows.

(z,9) = Xi(t),

Corollary 4.7. The Jacobian determinant of ®, satisfies
| det DB, (z,y)| < r™ (1 + 7 f(z)71)"
for all (z,y) € A,.

Proof. Since lim;_,0t™™ | det D®(x,y)| = 1, the assertion follows from
Proposition 4.6.

After these preparations, we now complete the proof of Theorem 1.4.
Using Lemma 4.2 and Corollary 4.7, we obtain

H{p € M :or <d(z,p) <r for all z € ¥}

S/ (/ | det D®,(x,y)| 14, (x,y) dy) dvol(x)
Q \ J{yeTd 02 <|V¥u(x)2+y[2<1}

< / (/ ™ (1 + rf(:c)ﬁ)" dy) dvol(x)
Q \J{yeT} B:02<|V3u(2) 2 +|y[2 <1}
~ |B"| /Q (1= [V¥u(@)P)E — (02 = [V¥u(@)P)] |
™ (L4 7 f(a)7T)" dvol(x)
for all » > 0 and all 0 < o < 1. Since m > 2, the mean value theorem
implies b3 —a? < (b —a)for 0 <a<b< 1 Hence, we have the
pointwise inequality
(1~ [VZu(@)P)F ~ (0° - [VZu(@)P)F

< % (1= IVZu(@)P) = (0% = [VZu(2) )+ | < 5 (1 - 0?)
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for all x € Q and all 0 < o < 1. Therefore,

H{p € M :or <d(z,p) <r forall x € ¥}
m m 2 m L1 \n
§5|B |(1—0%) [ r™ (A +7rf(x)»T1)"dvol(x)
Q

for all r > 0 and all 0 < ¢ < 1. In the next step, we divide by »*™ and
send r — oo while keeping o fixed. This gives

B (1= ™) 0 < BT (1 - 02)/ T
Q
for all 0 < o < 1. Finally, if we divide by 1 — ¢ and send o — 1, we obtain
(0-+m) B0 < m 57| [ £75 <m(Bm| [ g7
Q by

Thus,

/E\/IVZfIZwa?IHPJr/aEf

n RN o\
B e

This completes the proof of Theorem 1.4.

5. PROOF OF THEOREM 1.6

Let (M, g) be a complete noncompact manifold of dimension n + 2 with
nonnegative sectional curvature. Let ¥ be a compact submanifold of M of
dimension n (possibly with boundary 9%), and let f be a positive smooth
function on X satisfying

n—1
[ e [ p=niprien ([ 5) 7 >0,
Y 10) b

where 6 denotes the asymptotic volume ratio of M.

If ¥ is disconnected, we may apply Corollary 1.5 to each connected com-
ponent of ¥, and take the sum over all connected components. This will
lead to a contradiction. Therefore, ¥ must be connected.

By scaling, we may assume that

Lz plps [ r=nims
/fnnl = |B"| 6.
3

/E\/\sz,2+f2|H|2+/62f:n/Efnnl'

and

In particular,
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Since ¥ is connected, we can find a function u : % — R such that

divs(f V™) = n f557 — \[|VSf2 + f2 |HP?

on ¥ and (V*¥u,n) = 1 at each point on d3. Moreover, u is of class C%7 for
each 0 < v < 1. Let us define Q, U, A,, and @, as in Section 4.

Lemma 5.1. Assume that x € Q and y € T} satisfy [V=u(x)|? +|y|? = 1.
1
Then | det D®y(z,y)| > t2 (1 +t f(x)"=1)" for each t > 0.

Proof. Let us fix a point £ € 2 and a vector § € T:EJ-E satisfying
1
|V>u(z)|? + |g|> = 1. Suppose that |det D®(z,7)| < t2(1 +t f(z)=—1)"
for some t > 0. Let us fix a real number ¢ € (0, 1) such that

| det DB, (7, 9)] < (1 — &) ¢2 (1 + ¢ f(z)71)".

By continuity, we can find an open neighborhood V' of the point (Z,¥) such
that

| det D®y(z, )| < (1— &) 2 (1 +¢ f(z)71)"
for all (x,y) € V. Using Proposition 4.6, we conclude that

|det D@, (z,y)] < (1 —¢) r? (14 rf(x)ﬁ)"

for all » > t and all (z,y) € A, N'V. Using this fact together with Lemma
4.2 and Corollary 4.7, we obtain

Hp € M :or <d(z,p) <r forall z € 3}

g/ (/ |det D®,.(z,y)| 14, (z,y) dy) dvol(x)
Q \ J{yeTt 2:02<|VEu(z) 2 +|y|2<1}
g/(/ (1—c-1y(zy))

Q \ J{yeTt:02<|VEu(z) 2 +|y|2<1}

(14 f(m)ﬁ)n dy) dvol(z)
1
<IB (=0 [ (4 r i) dvolie)
Q

— 8/ </ Ly (z,y)r* (1 + rf(x)ﬁ)” dy> dvol(z)
Q \ HyeTy 202 <|V3u(z) P +]y|? <1}

for all » > ¢t and all 0 < ¢ < 1. We now divide by 72 and send r — o0,
while keeping o fixed. This implies

|Bn+2’ (1 . 0_n+2) 0

<1 (1= ) [ f(@)7 dvol(w)

[ (] 1y (o) F2)75 dy ) dvol(e)
Q {YeTF2:02<|VZBu(x) |2 +(y|2 <1}
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for all 0 < o < 1. Dividing by 1 — ¢ and taking the limit as ¢ — 1 gives
(n+2)|B"2[0 < 2 B2|/ £ < 2|B2| B0
Q

This contradicts the fact that (n + 2)|B""2| = 2|B?| |B"|.

Lemma 5.2. Assume that v € Q and y € T satisfy [V=u(z)]? +|y|? =1
1
Then D%u(x) — (Il (x),y) = f(z)"1g.
Proof. Let us fix a point Z € Q and a vector § € T3 X satisfying

|V¥u(z)|? + |y|> = 1. Let {e1,...,en} be an orthonormal basis of Tz M
with the property that the n x n-matrix

(D3u)(es, €5) — (I (es, €5), )

is diagonal, and let {111, /n42} be an orthonormal basis of T:-%. We define
() := expz(t Vu(z) + ty) for all t > 0. For each 1 < i < n, we denote by
E;(t) the parallel transport of e; along 4. Moreover, for each 1 < i < n, we
denote by X;(t) the unique Jacobi field along ¥ satisfying X;(0) = e; and

(DeXi(0), e5) = (D3u)(ei, e) — (L (ei, €5), §),

(DeXi(0),v5) = (I(es, V™u), vp)
foralll1<j<nandalln+1<8<n+2. Foreachn+1<a<n+2,
we denote by N, (t) the parallel transport of v, along 7. Moreover, for each
n+1 < a<n+ 2, we denote by Y,(t) the unique Jacobi field along ¥

satisfying Y, (0) = 0 and D;Y,(0) = v4.
Finally, we define an (n + 2) x (n + 2)-matrix P(t) by

Bij(t) = (Xi(1), Ej(1)),  Pig(t) = (Xi(t), Ns(1)),
Faj(t) = (Ya(t), Ei(1)), Pas(t) = (Ya(t), Ns(1))

forl1<i,j<nandn+1<aq,<n+2.

By Lemma 5.1, we know that |det P(¢)| > t2 (1+t f(Z ) )" for all t > 0.
Since det P(t) > 0 if ¢t > 0 is sufficiently small, we conclude that

det P(t) > ¢ (1 + ¢ f(z)71)"

for all t > 0. In particular, P(t) is invertible for each ¢ > 0.
We next define Q(t) := P(t)"1P'(t) for all t > 0. Moreover, we write

(D%u)(ei,e]) (I (e, €5), ) = i 0ij

for 1 <4,j <n. Arguing as in Section 4, we obtain

2 =\
t)) < —
))_ +;1+t>\i
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for all ¢ > 0 satisfying minj<;<p(1 + tX;) > 0. Moreover, > " | \; <

nf (i)ﬁ by Lemma 4.1. As above, the arithmetic-harmonic mean inequal-
ity implies
1
z": A _nf@er
= 1
el S 2Y 14t f(z)n1
for all ¢ > 0 satisfying minj<;<y (1 + t);) > 0. Therefore,

n f(@)71

1+t f(7)m

t2(Q(t)) < % +

hence 1
d 2 7)1
— logdet P(t) < — + %
dt b1yt f(z)nrt
for all ¢ > 0 satisfying min;<;j<,(1 4 t);) > 0. Integrating this ODE gives
det P(t) < 2 (1 +t f(z)71)"
for all ¢t > 0 satisfying minj<;<,(1 4+ tA;) > 0.

Putting these facts together, we conclude that det P(t) = 2 (1+t¢ f(i)ﬁ)”
for all ¢ > 0 satisfying minj<;<,(1 4+ tA;) > 0. Differentiating this identity
with respect to t, we obtain

1
T)n—1
r(Q() = 2+ I
1+t f(z)nT
for all ¢ > 0 satisfying min;<j<,(1 4+ tA;) > 0. Consequently, we must
have equality in the arithmetic-harmonic mean equality, and furthermore
YA = nf(a_c)ﬁ Therefore, \; = f(;T:)ﬁ for each 1 < i < n. This
completes the proof of Lemma 5.2.

Lemma 5.3. Assume that x € Q. Then Diu(z) = f(av)ﬁ g and Il (z) = 0.

Proof. By Lemma 5.2, Du(z) — (II(z),y) = f(a:)ﬁg for all y €
T+Y satisfying [VZu(z)|?> + |y|*> = 1. Replacing y by —y gives DZu(z) +
(II(z),y) = f(x)ﬁg for all y € T;Y satisfying |V>u(z)? + |y|*> = 1.
Therefore, D&u(z) = f(ac)ﬁ g and (II(z),y) = 0 for all y € T;-% satisfy-
ing |[V>=u(x)|? + |y|> = 1. From this, the assertion follows easily.

Lemma 5.4. Assume that x € Q. Then V> f(z) = 0.

Proof. Let us consider an arbitrary point x € €. Using the definition of
u, we obtain

F(@) Axu(a) = n f(@)7T —\/|VEF @) + f(2)? [H()]?
— (V¥ f(2), Vou(x)).
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On the other hand, Lemma 5.3 implies Aypu(z) = nf(:v)ﬁ and H(x) =
0. Putting these facts together, we conclude that (V*f(z), V u(z)) =
—|VZf(z)|. Since |V>u(z)| < 1, it follows that V*f(x) = 0. This com-
pletes the proof of Lemma 5.4.

Lemma 5.5. The set §) is dense in .

Proof. Suppose that € is not dense in ¥. Arguing as in Section 4, we
obtain

(n+2) |B”+2|9g2\321/fn?1 <21321/fn’11 = 2|B?||B"|6.
Q b

This contradicts the fact that (n + 2)|B"*2| = 2|B2||B"|. This completes
the proof of Lemma 5.5.

Since  is a dense subset of ¥, we conclude that V¥ f = 0, Dy = fﬁ g,
and I = 0 at each point on X. Since X is connected, it follows that f is
constant. This implies |0X]| =n \B”\% On |E]nT_1

Note that u is a smooth function on .. Each critical point of u lies in the
interior of ¥ and is nondegenerate with Morse index 0. In particular, the
function w has at most finitely many critical points.

We next consider the flow on ¥ generated by the vector field —V>u.
Since the vector field —V*u points inward along the boundary 0, the flow
is defined for all nonnegative times. This gives a one-parameter family of
smooth maps ¥, : ¥ — X, where s > 0. Since X is connected, standard
arguments from Morse theory imply that the function u has exactly one
critical point, and u attains its global minimum at that point. It follows
that the diameter of ¢s(X) converges to 0 as s — oco.

Since D%u is a constant multiple of the metric, the isoperimetric ratio is
unchanged under the flow 1. This implies

|45(0)] = n|B"|w 07 [hy(2)| "%

for each s > 0. If § < 1, this contradicts the Euclidean isoperimetric inequal-
ity when s is sufficiently large. Thus, we conclude that § = 1. Consequently,
M is isometric to Euclidean space.

Once we know that M is isometric to Euclidean space, the arguments in
[3] imply that ¥ is a flat round ball. This completes the proof of Theorem
1.6.
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