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Abstract

Let V., ® V — C be a non-degenerate pairing of countable-dimensional complex vector
spaces V and V,. The Mackey Lie algebra g = g[M (V, V,) corresponding to this pairing
consists of all endomorphisms ¢ of V for which the space Vi is stable under the dual endo-
morphism ¢* : V* — V*, We study the tensor Grothendieck category T generated by the
g-modules V, V,, and their algebraic duals V* and V. The category T is an analogue of
categories considered in prior literature, the main difference being that the trivial module C
is no longer injective in T. We describe the injective hull / of C in T, and show that the
category T is Koszul. In addition, we prove that / is endowed with a natural structure of
commutative algebra. We then define another category ;T of objects in T which are free as
I-modules. Our main result is that the category ;T is also Koszul, and moreover that ;T is
universal among abelian C-linear tensor categories generated by two objects X, Y with fixed
subobjects X’ < X, Y’ <> Y and a pairing X ® ¥ — 1 where 1 is the monoidal unit. We
conclude the paper by discussing the orthogonal and symplectic analogues of the categories
T and ;T.
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1 Introduction

A tensor category for us is a symmetric, not necessarily rigid, C-linear monoidal abelian
category. In this paper we construct and study a tensor category which is universal as a
tensor category generated by two objects X, Y with fixed subobjects X’ < X, ¥’ < Y and
endowed with a pairing X ® ¥ — 1, the object 1 being the monoidal unit.

The simpler problem of constructing a universal tensor category generated just by two
objects X, Y endowed with pairing X ® ¥ — 1 was solved several years ago, and explicit
constructions of such a category are given in [6,19]. The construction in [6] realizes this
category as a category Tg(o0) Of representations of the Lie algebra sl(co), choosing X as
the natural sl(co)-module V, and Y as its restricted dual V... Motivated mostly by a desire to
understand better the representation theory of the Lie algebra sl(00), in [13] a larger category
was constructed, denoted T/e\/ns 5[(c0)» Which contains also the algebraic dual modules V* and

V. It is clear that the category Tenssi() has a completely different flavor as its objects
have uncountable length while T () is a finite-length category.

However, in [14] the observation was made that the four representations V, V., V*, V.*
generate a finite-length tensor category T* ot (v.ve) OV the larger Lie algebra g(™ (V, V),
see Sect. 2. We call this latter Lie algebra a Mackey Lie algebra as its introduction has been

inspired by G. Mackey’s work [12]. The simple objects of T* M (v.v,) Were determined in [3].

Furthermore, in [5] the tensor category T> ol s generated by V, V,, and V*, was studied

(V.Vi)

V.V is Koszul, and it was established that T> aM (V) is

universal as a tensor category generated by two objects X, Y with a pairing X ® Y — 1, such
that X has a subobject X’ < X. Later, a vast generalization of the results of [5] was given
in [4]: here a universal tensor category with two objects X, Y, a paring X ® ¥ — 1 and an
arbitrary (possibly transfinite) fixed filtration of X was realized as category of representations
of a certain large Lie algebra.

A main difference of the category T* oM

in detail. It was proved that T> ol

V.V with previously studied categories is that, as

we show in the present paper, the injective hulls of simple objects are not objects of ’]I‘ My vy

but of a colimit-completion of Tg which we denote simply by T. In partlcular the

MV, Vi)
trivial module has an injective hull / in T of infinite Loewy length, i.e. with an infinite socle

filtration. Moreover, remarkably, I has the structure of a commutative algebra.
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Universal Tensor Categories Generated by Dual Pairs 917

This leads us to the idea of considering the category ;T of /-modules internal to T. The
morphisms in this new category are morphisms of gl (V, V,)-modules as well as of I-
modules. The simple objects of ;T are of the form / ® M where M is a simple module in
T.

A culminating result of the present paper is that the category ;T has the universality
property stated in the first paragraph of this introduction. The pairs X’ < X and Y’ < Y
are realized respectivelyas I @ V, CI @ V*and I @ V C I ® V.5, I is the unity object in
1T, and the tensor product in ;T is ®;.

Finally, in Sect. 4 we study analogues of the tensor categories T (o0) and Tsp (o0 considered
in [6,19]. Consider a tensor category generated by a single object X with a subobject X’ < X
and a pairing X ® X — 1. After identifying V. and V, our construction of the category ;T
yields a universal tensor category also in this setting. However, one can assume in addition
that the pairing X ® X — 1is symmetric or antisymmetric, which leads to new universality
problems for tensor categories. With this in mind, we introduce ']I% (v and Tgp (vy Where o(V)
and sp(V) are respective orthogonal and symplectic Lie algebras of a countable-dimensional
vector space V. In analogy with our previous constructions, we then produce appropriate
categories /T2 for I’ = Io(v) and I’ = Isp(v) and prove that these latter categories are
universal in the respective new settings. Moreover, the categories j, (V)?IQ and 15P(V)'JI‘2 are
canonically equivalent as monoidal categories.

2 Preliminaries
2.1 Notation

All vector spaces are defined over C (more generally, we could work over an algebraically
closed field of characteristic zero); similarly, all abelian categories and all functors between
such are assumed C-linear, and we refer to [17] for general background on abelian/additive
categories.

By S¥X and AKX we denote respectively the k-th symmetric and exterior powers of a
vector space X, and S, stands for the symmetric group on n letters.

Once and for all we fix a non-degenerate pairing V,, ® c V — C of countable-dimensional
vector spaces V and V.. This pairing defines embeddings V. C V*, V C V¥, where V* =
Homc(V, C), Vf = Homc(Vy, C). For any vector space M we set M* = Homc¢ (M, C).
We abbreviate ®c as ®. By ® we denote also tensor product in abstract tensor categories in
the hope that this will cause no confusion.

Except in Sect. 4, g will be the Mackey Lie algebra g™ (V, V) of [14] associated to the
pairing V, ® V — C. By definition,

g™ (V, V) ={p € End V | 9*(Vy) C Vi),

where p* : V* — V* is the operator dual to ¢. We will describe g explicitly as a Lie algebra
of infinite matrices shortly.
We set

W, =V*V,, W:=V)/V and F:=W,QW.
There is an extension

0—-C—->Q0—-F—>0 2.1

@ Springer



918 A. Chirvasitu, I. Penkov

where Q is defined as the quotient of V* @ V* by the sum of the kernels of the pairings
V*@V —>C and V.,V — C.

In Proposition 3.5 below we prove that the extension (2.1) is non-splitting.
We model the actions of g on various modules mentioned above as follows:

V. consists of infinite column vectors with entries indexed by N = {0, 1, .. .}.

— V C VJ consists of finite (or finitary) column vectors, i.e. those with at most finitely
many non-zero entries.

— Dually, V* consists of N-indexed infinite row vectors.

— The elements of V,, C V* are precisely the finite row vectors.

— g consists of N x N-matrices with finite rows and columns, acting on V,* by left multi-
plication.

— Similarly, g acts on V* as minus right multiplication.

— V*® V. consists of finite-rank N x N-matrices with infinite rows and columns, acted

upon by g by commutation.

We will frequently make use of Schur functors S, attached to Young diagrams A. Often
we write X instead of S, X for a vector space X. Moreover, SkX = SpX, AYX = S, X,
where p, y are respectively a row and a column with £ boxes.

For Young diagrams A, p, v and m we write

Lk,u,v,ﬂ =W ® Vp.,v ® Wy,
Jk,u,v,n = Wu ® V: RV, ® Wp, (2.2)

and similarly, for non-negative integers /, m, n, p we set
Ll,m,n,p = W,:?[ ® Vm,n ® W®p»
Timnp = WE @ V" @ VIO @ WO, (2.3)

where V,, , is the socle of V*®" @ V& je.

my,v
Van= €O Vil

l|=m,|v|=n

for appropriate multiplicities i, . Here |A| denotes the degree (number of boxes) of a Young
diagram A. Finally, for any subscript s of the form (e, e, e, ) we set

I, :=1Q® Js, 2.4)
where [ is the object constructed below in Sect. 3.

Definition 2.1 We refer to objects involving only the two outside diagrams A and 7 as purely
thick and those involving only the two middle diagrams as thin. Everything else is mixed. 4

Itis essential to recall Corollary 4.3 in [5] which claims that L;, ;, ., » is a simple g-module,
and implies that L; j, ,,  is a semisimple g-module.
The following remark will be used implicitly and repeatedly: given a short exact sequence

0—-x"—>x—>x"=0
in a tensor abelian category, the symmetric power S¥x has a filtration

0=F ,CFyC-CF,=S5%
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Universal Tensor Categories Generated by Dual Pairs 919

with isomorphisms

Fj/Fj_ = Skix' @ §/x" for0 < j < k.

2.2 Plethysm

Given that FF = W ® W,, and we have to work with symmetric and exterior powers of F, we
will have to understand how such powers decompose as direct sums of objects of the form
S, W @S, W.. The result applies to a tensor product W ® W, in any C-linear tensor category,
so we work in this generality throughout the present subsection.

We call a partition A special if it satisfies the condition: all hooks of A whose corner lies
on the diagonal of A have horizontal and vertical arms (not counting the corner) of length
ni — 1 and p;, respectively, where ;11 > wo > ... > 0 is a partition. We now recall the
following result.

Proposition 2.2 Let x and y be two objects in a C-linear tensor category. We have the
following decompositions:

(@) SK(x ® y) is the direct sum of all objects of the form S;x ® S,y as X ranges over all
Young diagrams of degree k.

(b) AK(x ® y) is the direct sum of all objects of the form S;x ® S,y as A ranges over all
Young diagrams of degree k, where A+ denotes the conjugate partition.

(c) SKS2x is the direct sum of all Sy x for partitions A of degree 2k with even parts , i.e. even
partitions.

(d) S¥AZx is B evenr SyLx.

|21=2k
(e ARA2x s @specialk Syx.
|A|=2k

(f) AFS2x is Dipecia » Sy x.
|A|=2k

Proof (a) and (b) are reformulations of the Cauchy identities in [18, (6.2.8)]. The other four
points paraphrase [11, Example 1.8.6]. |

2.3 Ordered Grothendieck Categories

We recall the following notion from [4, Definition 2.3].

Definition 2.3 Let (P, <) be a poset. An ordered Grothendieck category with underlying
order (P, <) is a Grothendieck category C together with objects X, s € P so that the
following conditions hold.

(a) The objects X are semi-artinian, in the sense that all of their non-zero quotients have
non-zero socles.

(b) Every object in C is a subquotient of a direct sum of copies of various Xj.

(c) The simple subobjects in

Ss = {isomorphism classes of simples in socXj} 2.5

are mutually non-isomorphic for distinct s and they exhaust the simples in C.
(d) Simple subquotients of X outside the socle socX are in the socle of some X;, r < s.
(e) Each X is a direct sum of objects with simple socle.
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920 A. Chirvasitu, I. Penkov

(f) Let # < s. The maximal subobject X;.; C X; whose simple constituents belong to
various S, fors > r ﬁ t is the common kernel of a family of morphisms X; — X;.

¢

Ordered Grothendieck categories are well behaved in a number of ways. For instance ([4,
Corollary 2.6]):

Proposition 2.4 The indecomposable injective objects in an ordered Grothendieck category
C are, up to isomorphism, precisely the indecomposable summands of the objects X in
Definition 2.3. |

Recall ([5, §3.2] or [4, Definition 2.8]):

Definition 2.5 For two elements i < j in P the defect d(i, j) is the supremum of the set of
non-negative integers g for which we can find a chain

i=ig<--<ig=].

We put also d(i, i) := 0. In the context of an ordered Grothendieck category as in Defini-
tion 2.3 we adopt the simplified notation d(S, T') ford(s,t) when S € S;and T € S;. ¢

According to [5, Proposition 2.9] ext functors in an ordered Grothendieck category exhibit
the following “upper triangular” behavior.

Proposition 2.6 Let S € S; and T € S; be two simple objects in an ordered Grothendieck
category. IfExt?(S, T) # O thend(s,t) > q. [ ]

It is implicit in the statement that, in particular, we have s < ¢ (see [5, Lemma 3.8]). One of
our goals will be to show that in the ordered Grothendieck category T introduced in Sect. 3.4
below, we actually have equality , and hence the category T is Koszul in the following sense.

Definition 2.7 An ordered Grothendieck category is Koszul if for every g > 0 and every two
simple objects S € Ss and T € S; the canonical Yoneda composition map

P Ext' (5, U) @ Ext' (U1, U2) ® -+ @ Ext! (Uy -1, T) — Ext!(S, T)
is surjective, where the sum ranges over all isomorphism classes of simples U; . ¢

This mimics one of the characterizations of Koszul connected graded algebras, namely
the requirement that the graded ext algebra Ext*(k, k) of the ground field k be generated in
degree one ([16, §2.1]).

We introduce the following term to capture the desirable situation where defects precisely
measure non-vanishing exts.

Definition 2.8 An ordered Grothendieck category is sharp if it satisfies the conclusion of
Proposition 2.6 with equality rather than inequality. ¢

The relevance of the concept to the preceding discussion follows from

Theorem 2.9 Assume that C is an ordered Grothendieck category as in Definition 2.3, such
that

— the terms of the socle filtration of each indecomposable injective object have finite length;
— C is sharp in the sense of Definition 2.8.
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Universal Tensor Categories Generated by Dual Pairs 921

Then C is Koszul.

Proof Fix arbitrary simple objects S € S;, T € S; and a positive integer ¢ > 2. It will be
enough to show that the Yoneda composition

P Extt"'(5.U) ® Ext'(U. T) - Ext?(S, T)
simple U
is onto, since we can then proceed by induction on q.
Let

O—-T—Ir > Rr—>0

be the short exact sequence resulting from the embedding of T into its injective hull /7. This
sequence constitutes an element of Ext' (R, T'), and Yoneda multiplication by that element
induces an isomorphism

Ext?~1(S, Rr) = Ext?(S, T).

If Ext?(S, T) = 0 there is nothing to prove. Otherwise, our sharpness assumption shows
that d(S, T) = q. Now, the simples in the socle of Ry are smaller than 7 (with respect to
the ordering), and those that appear as subquotients of R := Ry /soc Ry are smaller again.
It follows that

— if any simple subquotient U of Ry were to satisfy d(S,U) = g — 1 we would have
d(S,T)>(q—1)+2=gqg+ 1 contradicting d(S, T) = ¢,
— and hence no such U can contribute to Ext?~1(S, Ry).

In conclusion,
Ext?~1(S, soc Ry) = Ext?~1(S, Ry). (2.6)

By sharpness again, (2.6) can be identified with
PExt~'(s.0)
U

with U ranging over those simple summands of soc Ry with d(S, U) = g — 1. It follows that
every non-zero element of Ext?(S, T) will be contained in the image of the Yoneda map

@Extq—‘ (S,U) ® Ext' (U, T) — Ext?(S, T)
U

where U ranges over all isomorphism classes of simple constituents of soc R7. This finishes
the proof. |

2.4 Comodules

[20, Chapters I and II] will provide sufficient background on coalgebras and comodules. For
a coalgebra C over a ground field k we write MC for its category of right comodules and
M?m for its category of finite-dimensional comodules. Since the Grothendieck categories
we are interested in will turn out to be of the form M€ for coalgebras C, we record in this
short section a characterization of such categories from [21].

The following is a paraphrase of [21, Definition 4.1], adapted in the context of
Grothendieck (as opposed to plain abelian) categories.
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922 A. Chirvasitu, I. Penkov

Definition 2.10 A Grothendieck category is locally finite if it has a set of finite-length
generators. ¢

We then have the following recognition result for categories of comodules over fields ([21,
Theorem 5.1]):

Theorem 2.11 Let k be a field. A k-linear Grothendieck category is equivalent to ME for
a k-coalgebra C if and only if it is locally finite in the sense of Definition 2.10 and the
endomorphism ring of every simple object is finite dimensional over k.

Moreover; in this case M?m can be identified with the subcategory of C consisting of
finite-length objects. |

The following notion (analogous to its dual- ring-theoretic version [ 1, discussion preceding
Theorem 2.1]) will also be relevant below.

Definition 2.12 A coalgebra C is left semiperfect if either of the following conditions, equiv-
alent by [9, Theorem 10], holds:

— every indecomposable injective right C-comodule is finite dimensional;
— every finite-dimensional left C-comodule has a projective cover.

2.5 Tensor Categories

The categories we are most interested in are typically monoidal. The latter, in full gener-
ality, are covered for instance in [10, Chapter XI]. In the context of abelian categories, we
briefly recall the relevant definitions (see also [5, §3.6], where we make the same linguistic
conventions).

Definition 2.13 A C-linear abelian category C is monoidal if its monoidal structure has the
property that x ® e and e ® x are exact endofunctors for every object x.

If in addition the monoidal structure is symmetric, (C, ®) is a tensor category.

A tensor functor between tensor categories is a C-linear symmetric monoidal functor. ¢

Note that this differs from conventions made elsewhere in the literature. In [7, §1.2], for
instance, the term ‘catégorie tensorielle’ implies rigidity.

We occasionally write (C, ®, 1) for a monoidal category to specify both the tensor product
bifunctor and the monoidal unit object 1.

3 The Categories T and ;T
3.1 Definition of the Object /

For every nonnegative integer k we have a canonical embedding
sk < sktlg (3.1)

obtained as the composition

id ®¢ multiplication

Sk+1Q,
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Universal Tensor Categories Generated by Dual Pairs 923

where ¢ : C — Q is the embedding defining Q as an extension of F' by C. This gives rise to
an exact sequence

0 SkQ ¢ Sk+1Q T, Sk+]F\>O. (3.3)
Taking the colimit (or simply union)
I :=h_;1)1SkQ, (3.4)

we obtain a g-module that has an infinite ascending filtration representable schematically as

F
C

’

where the boxes indicate the layers (successive quotients) of the filtration.
The morphism

Yv:Il—->1/C—>FQI 3.6)

to be defined below will play a central role in the sequel; we will occasionally write ¥ for
the resulting factorization //C — F ® I as well, leaving it to context to separate the two
possible meanings.

We obtain the morphism  as a colimit h_n)l ' Wk where

vk sk0 - (s¥0)/C - F® S5 0. (3.7)
The latter map is defined as follows. First, recall that the symmetric algebra
o=@t
k>0

has a graded Hopf algebra structure [20, p. 228] making the degree-one elements primitive,
i.e. such that the comultiplication

A:S°0— S0®S°0 (3.8
is the unique algebra map defined by
$°0205v—-vR101Rve(@®0)8(CR®QY) CS QRS 0.

The comultiplication (3.8) is a morphism of g-modules. By definition, the map (3.7) is given

by
/Q®Sk 1Qx®ld
\ F®S" o (3.9)

(SkQ)/C

where
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924 A. Chirvasitu, I. Penkov

— the upper left-hand arrow is the Q ® S¥~! Q-component of the comultiplication

k
A:Sfo—>Psoeso

i=0

described above.
— m is the epimorphism fitting in (3.3).

To make sense of lim ' ¥* we would have to argue that the maps /¥ are compatible with
the embeddings

L: SkQ s gkl (0]
in (3.3), i.e. that the diagrams

k+1
w-%—

' k+1
SkQ/S Q\
k\>F®Sk71Q—/

W id ®t

F®SskQ

commute for arbitrary k. This can be seen by direct examination, fixing a basis {vy} for Q
with a distinguished element v9p = 1 € C C Q and noting that the upper left-hand map in
(3.9) is defined on monomials by

k
Vg * - Vgy > E Vg; ® Vg *** Vo Vagjyy *** Ve (3.10)

i=1
Lemma 3.1 The kernel of v : I — F ® I is precisely C.
Proof The kernel of the upper right-hand map in (3.9) is
ces'ocoeso. 3.11)
so we are in effect claiming that the preimage of (3.11) through the “partial comultiplication”
sk0 - 0@ sk1o (3.12)
is C c skQ.

This is easily seen from the explicit description (3.10) of the comultiplication (3.12). Wl

3.2 Order

Following (or rather amplifying) [5], we order the quadruples (I, m, n, p) of non-negative
integers by setting

,m,n, p)y < (',m' 0, p)
precisely if

1> m<m', p>p, n<n
l+m<l'4m', p+n=<p +n
I+m—n—p=0I4+m—-n-p. (3.13)
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Universal Tensor Categories Generated by Dual Pairs 925

For a quadruple s = (I, m, n, p) we define a family ¥; of morphisms
IS=JS®I_>J3’®I=IS’
for various s’ < s as follows:

— first, those of the form # ® id; where 6 € O as in [5, §3.2];
— secondly, id j, ®o where

Yo:l > FQI (3.14)
is the morphism in (3.6).
The morphisms of the first type are such that their joint kernel is
Limnp @1 S Jmnp @1 =1 mn,p-
On the other hand, the kernel of ¥ is C C I and hence the joint kernel of X is
Limnp Z Limnp ®CC Imnp @I =1 mnp. (3.15)

We now want to argue that (3.15) is precisely the inclusion of the socle:

Proposition 3.2 For every choice of non-negative integers I, m, n, and p, the object Lj p n, p
is the socle of I} . n,p via the inclusion (3.15).

This will require some preparation. First, we have the following remark, in the spirit of
[5, Lemma 3.1].

Lemma3.3 Let & be a Lie algebra and I < & an ideal. Suppose U C U’ is an essential
inclusion of & /I-modules and D is a &-module on which I acts densely. Then the inclusion

U®DCU ®D
is also essential.

Proof Let wy, ..., wi be linearly independent vectors in D (k > 1), and consider an
element

k
f:=Zui®wi eU ®D
i=1
with non-zero u;. We claim that for every x € &/, there is x € & so that X is the image of
x and

xf = qui ® w;.
i
To see this, first choose an arbitrary y € & with image x in &/1, so that

yf = qui ® w; +Zui ® yw;.
i i

On the other hand, by the density assumption there is some a € [ satisfying aw; = yw; for
all i, and we can simply set x = y — a.

Having settled the claim and fixed an element f as above, we can now proceed. The
density of U C U’ means that we can find @ in the universal enveloping algebra U (&/1)
such that
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926 A. Chirvasitu, I. Penkov

— all au; belong to U, and
— at least one of them (au j, say) is non-zero.

Decomposing a as a polynomial in elements X € &/ and lifting each of those to elements
x € & as in the claim, we obtain an element a € U (®) with

af=ZEui®wi ceUQ®D.
i
Since w; are linearly independent and au; # 0, this is a non-zero element of U ® D, and
the proof is complete. |

The following result will require some additional conventions and elaboration. Recall that
Q is the quotient

V* @ VJ/(traceless tensors in V* @ V + V, ® V,J).

We noted above that we identify the space V* ® V,* with finite-rank infinite N x N-matrices,
and hence the quotient consists of equivalence classes of such matrices, where two are
declared equivalent whenever they differ by a traceless matrix (g;;) such that a;; = 0 for
large enough i and j.

We fix a basis {ey}qea of Q as follows:

- ep = 1e (C;
— all other basis elements are classes of rank-1 matrices of the form v* ® v for v* € V*
andv € V\.

Lemma3.4 Let X C V) — V and X* € V* — V, be finite subsets, linearly independent
modulo V and respectively V. Fix xo € X and x§ € X*. There is an element g € g such that

—gxeVjoralxelX,

— gx* € V forall x* € X*,

- g(x(*)< ® x0) has non-zero trace,

— g(x* ® x) has zero trace for all other choices of x € X and x* € X*.

Proof The conclusion will follow from the remark that g acts densely on sets X U X*, i.e. that
given x € X and x* € X*, the vectors gx € V and gx* € V, can be prescribed arbitrarily.
Keeping this in mind, we can then find g € g such that

— gx=0forallx € X,

- gx* =0forall x € X*\ {x§},

the inner product of gx; with every x € X \ {xo} vanishes,
the inner product of gx; with xo does not vanish.

This choice will meet the requirements of the statement, hence the conclusion. |
Proposition 3.5 Let FF C W U W, be a finite set of vectors and
Ar:=AmgF Cg

be the Lie subalgebra that annihilates all elements of F. Then for every positive integer k
the inclusion

Cc s¢o

is essential over R = RF.
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Proof We have to show that the &-submodule generated by any non-zero element of S¥Q
intersects C. We fix a basis {ey}qca for Q containing eg = 1 € C, as in the discussion
preceding the statement of the present result. If we put a total order < on the index set A, the
elements

et =¢ey ey =0(ey Q- Qey) (3.16)
for tuples
t=(ar,...,), 0 <--- <€A

form a basis of S¥Q, where o denotes the symmetrization operator on Q®*.

We assign 1 = ¢ degree zero and every other ¢, degree 1, thus allowing us to define a
degree between 0 and & for each element (3.16) and by extension for each x € SkQ, as the
largest degree of a basis element (3.16) appearing in a decomposition of x.

We can now prove the claim that

CcCURx

by induction on the degree of x. Since the base case deg(x) = 0 requires no proof, we focus
on the induction step.
Decompose

x =Y cter, ct #0, (3.17)
with deg(x) > 0. By Lemma 3.4 we can arrange for an element g € £ such that

— g annihilates all elements of ¥ C W U W,,

— g sends one of the elements 1 # e, appearing among the tensorands in (3.17) to a
non-zero scalar multiple of e,

— g annihilates all other e, appearing in (3.17).

Clearly then
deg(gx) = deg(x) — 1,

and we can conclude the argument by using the induction hypothesis. |

Proof of Proposition 3.2 We know that L; , ,, , is semisimple by [5, Corollary 4.3], so it
suffices to show that (3.15) is essential.
Since W, W, and [ are trivial as s[(co0)-modules and

Vi C VO g y&n
is the socle over s[(00), it follows by restricting to the latter subalgebra of g that the inclusion
Limn,p®1 C Jmpn,p @1
is essential, reducing the goal to proving that so is the inclusion
Limn,p CLimnp®I. (3.18)
We can simplify this further: recall that
Limnp =WE ® Vi ® WP,

Now apply Lemma 3.3 in the following setup:
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G =gand I = sl(c0);
the inclusion U C U’ is

we @ Wwe c W @ WP QI (3.19)
— D is any of the simple direct summands V,, , of Vy, .

Lemma 3.3 then shows that the inclusion (3.18) is indeed essential, provided the inclusion
(3.19) is. In other words, it is enough to consider m = n = 0 in (3.18). Since [ is the union
of Sk Q as k — oo, it will furthermore be sufficient to argue that, for every /, p and k, the
inclusion

we @ wer c w8 @ W @ skQ (3.20)

is essential.
‘We can now conclude via Proposition 3.5: an arbitrary non-zero element of the right-hand
side of (3.20) is of the form

.
D ®u
i=I

wheree; = Y jaij® b;,; are linearly independent elements of Wf’l ® W®P and v; € S* 0.
Now let F C W U W, be the finite set of vectors {a; ;, b;, ;} and consider the annihilator &f
of F, as in Proposition 3.5.

The Lie algebra fF leaves the subspace

<@ (Ce,-) ® Sko
i=1

invariant and its action makes that space isomorphic to (S* 0)®" . The conclusion thus follows
from Proposition 3.5.

3.3 Simple Objects and Their Endomorphism Algebras

The main result of the present subsection is the following (presumably expected) claim.

Theorem 3.6 The simple objects Ly v are mutually non-isomorphic and have scalar
endomorphism algebras.

The arguments, which require some groundwork, will be in the spirit of those used in the
proof of the analogous statement [5, Theorem 3.5]. First, recall [5, Lemma 3.1]:

Lemma3.7 Let & be a Lie algebra and J C & be an ideal. Suppose U, U’ are two &/ J -
modules and D a G-module on which J acts densely and irreducibly with End; D = C.
Then, the inclusion

Homg((U,U')> f— f®id € Homg (U ® D, U’ ® D)
is an isomorphism. |

Proposition 3.8 For any two non-negative integers I, p and Young diagrams u, v the endo-
morphism algebra in T of the object Wy ® V.., @ W), is the group algebra C[S; x S, with
the two symmetric-group factors acting on the two outer tensorands.
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Proof We apply Lemma 3.7 to the ideal
sl(o0) =1 J C & :=g,
with
U=U=Wy®W, and D=1V,,.

The density of the action of s[(co) on V,, ,, and the isomorphism Endg(so) Vv = C follow
by realizing the object V,, , as a colimit of irreducible sl[,-modules, while establishing an
isomorphism

Endg(Wy ® W),) = C[S; x Sp]

is entirely parallel to [5, Proposition 3.2], whose proof we do not reprise here. Lemma 3.7
then implies the desired isomorphism

Endg(Wa ® V., ® W) = Endg(Way ® W) = CIS; x S,1.

Proof of Theorem 3.6 According to Proposition 3.8, the endomorphism algebra
Endg(Wy ® V0 @ Wp) = CLS; x Sp] = CLS;] ® C[S)] (3.21)

is semisimple. Since the tensor products ¢; ® ¢ € C[S;] ® C[S,] of Young projectors
ranging over diagrams with [A| = [, |7| = p, form a complete system of equivalence
classes of minimal idempotents in (3.21) under inner conjugation, the semisimple object
Wi ® Viu,v ® W), has simple constituents isomorphic to

(€. ®cx) (Wag ® Vi ® Wp) = Ly v
with Lj_ v, not isomorphic to Ly, ,  for distinct pairs (A, ) # (A', ') because
¢, ® ¢y is not inner-conjugate to ¢’ & cy’.
Furthermore, using Proposition 3.8, we calculate

Endg Lj ;07 = Endg ((c2 ® ¢x) (Wit @ Viuw ® W)
= (cx ® cx) Endg (Wi ® Vi ® W) (1 ® c)
= (ex ® cr)CLS x Splen ® cx).
Since (cx ® ¢)C[S; x S,] = X is a simple C[S; x Sp,]-module, we have (¢ ® c;)C[S; x
Spl(c). ® ¢x) = Endgys; xs,1 X = C, and the statement is proved.

3.4 The Category T

Definition 3.9 The category T is the smallest full tensor Grothendieck subcategory of the
category gMod of g-modules, closed under taking subquotients, and containing

— the objects V* and V. (and hence also J; of (2.3) for quadruples s = (I, m, n, p));
— the object I of (3.4). ¢

The indices s = (I, m, n, p) form a poset (P, <) under the ordering introduced in § 3.2.
Keeping that in mind, we have
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Proposition 3.10 T is an ordered Grothendieck category in the sense of Definition 2.3.

Proof We have to check the conditions listed in Definition 2.3. Here, the objects X will be
the objects I from (2.4) for s = (I, m, n, p).

Condition (a). This follows from the fact that all I, have countable filtrations whose
subquotients are simple objects of the form Lj , , 5 as in (2.2). The latter is clear as the
objects J; have finite length and [ has the filtration (3.4).

Condition (b). This holds essentially by construction.

Condition (c) is a consequence of [5, Proposition 5.4].

Condition (d). Once more, we filter Iy = J; ® I by first refining the socle filtration
maximally of J; and then tensor by some maximal refinement of the filtration (3.4).

The successive subquotients

Sk+lQ/SkQ o~ Sk+lF — Sk+1(W ® W*)

of (3.4) can be decomposed as sums of objects of the form W) & W, by part (a) of Propo-
sition 2.2. Hence, tensoring a simple subquotient S € S; of J; for some s = (I, m, n, p)
by such an object has the effect of increasing / and m by the same amount, thus resulting in
some ¢t < s according to our ordering (3.13).

It thus remains to argue for simple subquotients of

Js — Jl,m,n,p — WPZ ® V*®m ® V**®ﬂ ® W®p

instead. In this case though the filtration of J; is obtained either by surjecting one of the
tensorands V* onto W, = V*/V, or similarly, one of the tensorands V., onto W, or by
evaluating some V, against some V.

All of these procedures map into J; for # < s, hence the conclusion.

Condition (e). Indeed, for s = (I, m, n, p) the object I; decomposes as

Is: @ I)\,u,,v,n
VTRV 4

where the sum ranges over |A| = [, |u| = m, etc. The summands have simple respective
socles L;, ;,,v,» by Proposition 3.2.
Condition (f). The morphisms Iy — I; will be compositions of the obvious ones:

projecting one of the tensorands V* of Iy = J; ® I onto W,;
the dual analogue, V. — W;
— the surjection defining Q,

VF*Q V> QCI; (3.22)

applying the morphism I — F ® [ in (3.14) to the tensorand / of I;.

The verification that the joint kernel of these maps is as claimed is routine. |
In particular, [4, Proposition 2.5] and Proposition 3.2 together prove

Theorem 3.11 For every quadruple (A, i, v, ) of Young diagrams, I v x is an injective
hullin T of Ly 0,7

We record the following observation.

Lemma3.12 Let i = (I,m,n,p) and i’ = (I',m',n’, p’) be two elements of the poset
described in (3.13). Then i < i’ implies

di,i'Y=1-1+n" —n.
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Remark 3.13 The category T is symmetric with respect to the simultaneous interchange
V < V,, V* < V. Numerically, this corresponds to / <> p and n <> m. Lemma 3.12 is
compatible with this transformation: according to the last condition in (3.13) we have

I—U'4+n—n=p—p +m —m,

so we could have substituted p — p’ +m’ —m forl — I’ +n’ — n in Lemma 3.12. ¢

3.5 Injective Resolutions

We will now show that C admits an injective resolution in T
0->-C—>Ihy—>1I — - (3.23)
with
[ =ANF®I

We will also see that /; /Im(/;_1) admits an ascending filtration with layers

Sai1,.. ) F
Se1,..nF
San,.nF

where each diagram has j + 1 rows.

To streamline the notation, for such Young diagrams we denote by (/, j x 1) the diagram
with a row of length / and j single-box rows.

To define the maps

Vi ANFRI— AT FeI (3.24)

we mimic the procedure used in the definition of (3.14). In fact, that notation will be com-
patible with (3.24), in that we will recover that earlier map by setting j = 0 in the latter. As
before, (3.24) will be a colimit as k — oo of maps

v ANF® st > AT P s, (3.25)

The analogue of diagram (3.9) in this context is
ANF® Q@S0 AFeF®si1o

A F ® s ATF® S50

0o e ——
“;

(3.26)
where

— the upper left-hand map is id, p @A with
A:SsFQ - 0w s,

the partial comultiplication also appearing in (3.9);
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— the upper middle map is id @7 ® id, with 7 : Q9 — F the canonical surjection (again as
in (3.9));
— the upper right-hand map is the multiplication

AF®F — NTF
in the exterior algebra A®F, tensored with the identity on S¥~' Q.

To show that the maps (3.24) fit into a resolution (3.23), we begin with the following
simple observation.

Lemma 3.14 Let j, k be two positive integers and X be a vector space of dimension larger
than j 4 1. The map

. .
id, ¢ ®A AX®X®SIX mult®id g1
AX®Skx -— AtIX @ sk—1x

with A : S¥X — X ® Sk=1x defined as in (3.10) annihilates the direct summand
Stk+1,G-Hx )X of AV X ® SkX and maps the complementary summand S(k_,j DX of AV X®
SkX isomorphically onto the corresponding summand of the codomain AJT'X @ SK~1X.

Proof That the domain and codomain decompose as
ATX ® S*X = Sger1,j—1yx )X ® S, jx1) X
and
AN x @ sy = Stk, jx )X ® Sk—1,(j+1)xnH X

respectively, follows from the Littlewood-Richardson rule [8, Appendix A, (A.8)]. The claim
can be checked on finite-dimensional vector spaces first, where all four direct summands are
irreducible representations of the algebraic group GL(X), then passing to arbitrary X by
taking a colimit. |

Now consider one of the objects AFQI, j = 0 under discussion. Since [ has the
filtration (3.5), the object A/F @ I has a filtration by the subobjects A/ F ® skQ, with
consecutive quotients A/ F ® S¥ F. Moreover, these quotients are decomposed as

AjF®SkF = S(kJrl’(j,])xl)F ® S(k.jxl)F forj,k >0
SKFox= S F for j =0, k>0
AF = Sq..nF for k = 0. (3.28)

Moreover, these decompositions are canonical, i.e. the summands are unique.
We write

Kji=ker (v, AFRT—> ANV F@I) (3.29)
for the kernel of the map (3.24) and
KX =K, n (AjF ® SkQ) = ker <l/fj AMNFQ S0 > AT F® S"*‘Q) :

by convention, we set K;l = {0}. We now have
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Lemma 3.15 For each k > 0 the quotient
KK C AR ® (SkQ/Sk_lQ) ~ AF@SF (3.30)
is the j-row summand of A/ F @ S¥F.
Proof The map v; respects the filtrations of its domain and codomain, by
AF®SQ and ATIF® S0 (331

respectively, and the associated graded map gr v}, in degree k, is precisely (3.27) with
X = F. By Lemma 3.14 this means that the degree-k kernel of gr v; is the j-row summand
of AJF ® S¥F. This verifies the statement at the associated-graded level.

To conclude, it will suffice to construct gradings on the domain and codomain of ;,
compatible with 1/, that give back the filtrations by (3.31). This would then prove that the
filtered map v; arises from a grading, and hence that its kernel is the direct sum of the kernels
of its homogeneous components.

We construct the requisite gradings as follows: as in the discussion preceding Lemma 3.1,
we fix a basis {vy} for Q with vg =1 € C C Q, and assign

d 0 fora=0
eg vy =
& la 1 otherwise.

One checks easily that y; preserves degrees, finishing the proof as described above. |
We can now finally complete the discussion on the injective resolution (3.23).
Theorem 3.16 The morphisms (3.24) fit into an exact sequence (3.23).

Proof The maps v, fit into a sequence

05Co1 Y Fer s A2Fe1 5 ... (3.32)

(not yet known to be exact) of filtered vector spaces. Lemma 3.14 applied to X = F shows
that the associated graded sequence is exact, and the conclusion follows from the fact that,
as seen in the proof of Lemma 3.15, the filtrations on the terms of (3.32) arise from gradings
compatible with the maps v/;. |

Corollary 3.17 For a simple object X of T we have

0 if X % Ly gy for A with A = j

Extp(X.C) =1 . . .
C ifX>L, 44,1 fordwith [A] = j.

Proof The statement follows from the existence of the injective resolution (3.23) of the trivial
object C, since by Theorem 3.11

socl; =soc(A/F@ 1) = AF = AN (W, ® W),

which in turn, by Proposition 2.2, (b), decomposes as

P W@ W,..
hl=J
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3.6 Koszulity

We will eventually show that the category T is Koszul. To that end, we first need to strengthen
Proposition 2.6 to an equality:

Theorem 3.18 The Grothendieck category T is sharp in the sense of Definition 2.8: for any
two simples S, T € T we have

Ext/(S,T) #0 = d(s,t) =q.
We do this in stages, considering the following particular case first.
Proposition 3.19 Theorem 3.18 holds when T is purely thick.

Proof Let T € S;. We have to argue that there is some injective resolution
0—-T—>Kyg—> Ki— -

so that the socle of K, is a sum of simple objects S with d(S, T) = g. This follows from
Definition 3.17 for the trivial object T = C and in general for purely thick 7 from Theo-
rem 3.11, which implies that we can obtain an injective resolution for 7 by simply tensoring
(3.23) with T'. |

In order to push past purely thick objects we need a version of [5, Lemma 3.13], requiring
some notation: for aquadruple (A, w, v, 7) we write L)tiﬁv’  forthedirectsumofall Ly ./ , »
with i’ obtained by adding a box to w. Here £ stands for left, and we have a similarly defined

object Li’fmv’n (for right) obtained by enlarging v instead.

Lemma 3.20 Consider a simple object L;, ;v .

(a) We have an exact sequence

0—Lf = V*®Liyvr—>H—0 (3.33)
where H is a sum of simple objects Ly ., with |[X| = |A| + 1 and L ,, /5 with
V| =|v -1

+r

(b) Tensoring Lj, v with V. produces a similar exact sequence, containing L

+£
rather than LML’WT.

VTRV 4

Proof We focus on (a), the other half being entirely analogous.
The proof follows the same line of reasoning as that of [5, Lemma 3.13]. We first tensor
the extension

0> V,—>V*>W,—0

with L), v to obtain a sequence (3.33) with an as yet unidentified H, itself fitting into an
extension

0> H—>H—>W,®Lyyvn—0, (3.34)

with H being a direct sum of simples obtained by evaluating one tensorand V, against the
v component of Ly, , . It follows that H is a direct sum of simple objects L, ,, ./ » with
[v'| = |v| — 1, and the splitting of (3.34) follows from Proposition 2.6 and the observation
that the indices of simple direct summands L;/ ;v 7 of Wi ® Ly 1y v and Ly ;v 5 of H
are not comparable with respect to the partial order (3.13). |
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Proof of Theorem 3.18 This too presents no substantial difficulties beyond those encountered
in [5, Theorem 3.11]. Setting s =: (A, u, v, ) and ¢ =: (M, u/,v', 7’), the argument
proceeds by induction on ¢ + || + |V/|. The base case follows from Proposition 3.19 for
empty diagrams u’ and v/, and trivially for g = 0.

If i/ and v’ are empty we can fall back on Proposition 3.19. Otherwise, suppose for

instance that p’ is non-empty. We can then embed T as a direct summand in L#ﬂ v for
|B] = || — 1. The assumed non-vanishing of Ext?(S, T) and the long exact ext sequence

applied to the extension

+¢
0— LA’,ﬁ,v’Jr

d v* ® Lk/,ﬂ,v’.n’ — H — 0
provided by Lemma 3.20 forces us into one of two cases:

1: Ext?~1(S, H') # 0. By the induction hypothesis we have d(S, U) = g — 1 for some
simple direct summand U of H’, and the conclusion follows from this and the fact that
d(U, T) = 1forall such U (by the description of H” in Lemma 3.20 and the formula for the
defect provided by Lemma 3.12).

2: Ext1(S, V* ® Ly g,v7,z/) # 0. This means that S is a direct summand of the socle of
Z, for any injective resolution

0—>V*® Ly gyva —> Zo—> Z1-. (3.35)
By induction we know that the socle of the gth term of an injective resolution
0— L)J,ﬂ,v’,n’ —->Yy—> Y- (3.36)

consists of simples U withd(U, Ly g,/ /) = q. Now note that an injective resolution (3.35)
can be obtained by tensoring (3.36) with V*. The simple direct summands of the socle of
V* ® Y, including S, differ from those of Y, in that their p diagrams have one extra box,
meaning that indeed

d(S,T)=dU,Lygvz)=4q-
The case when ' is empty but v’ is not proceeds analogously, making use of part (b) of
Lemma 3.20 rather than (a).
As a direct consequence of Theorems 2.9 and 3.18 we have

Theorem 3.21 The ordered Grothendieck category T is Koszul in the sense of Definition 2.7.
|

Furthermore, we have the following analogue of [5, Corollary 3.19] and [4, Corollary
4.25 (d)]. In the statement, T r;, C T denotes the full subcategory consisting of finite-length
objects.

Theorem 3.22 The Grothendieck category T is equivalent to the category MC of comodules
over a Koszul graded coalgebra C, with T 7, ~ ,/\/lc.m,

Proof The hypotheses of Theorem 2.11 are met (for the ground field C): T is generated by
the finite-length objects in T, since every object is isomorphic to a subquotient of a direct sum
of indecomposable injectives I; as defined in (3.9), and in turn the injectives I; are unions
of their finite-length truncations

J; @ SKQ fork € Z-o.

Moreover, according to Theorem 3.6, the endomorphism ring of a simple object Ly ;. , 5 as
in (2.2) is the field C. ]
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3.7 An Internal Commutative Algebra and Its Modules

The object I has a structure of commutative algebra internal to the tensor category ¢Mod of
g-modules. To see this, we observe that 7 is isomorphic as a g-module to a quotient algebra
of the symmetric algebra S® Q. Indeed, denote by a the distinguished element 1 € C C Q
of the degree-one component Q C S°®Q and consider the commutative algebra

§*Q/(a—1),

where 1 ist the unit of the symmetric algebra and (a — 1) is the ideal generated by @ — 1. This
ideal is clearly g-stable and S®Q/(a — 1) is an algebra in jMod. Moreover, the definition of
I as h_n)l §*Q implies that there is an isomorphism of g-modules

1=S5°0/(a— .

We will be interested in the category ;T of /-modules internal to T. This is clearly a
Grothendieck category. Moreover, the forgetful functor

forget : ;T - T
fits into an adjunction

IQe
T 1 =T (3.37)

FORGET

We refer to /-modules in the image of the functor / ® e as free. We will see that tensoring
with [ has the effect of “partially semisimplifying” T, in the following sense.

Proposition 3.23 For every positive integer n, the filtration
0cCcQcs?oc---cs"Q

splits in ;T upon tensoring it with I. Consequently, for every n the object I ® S Q is injective
in T.

Proof We prove this inductively on n. For n = 1 the claim is that the embedding
IZI®CCI®Q
splits in ; T. To see this, consider the embedding
Q0 — forgetl
in T. It corresponds, via the adjunction (3.37), to a morphism in ;T
c:I®Q0—1
that is clearly the identity on the /-submodule
I=Z1®CcCI®Q.

The morphism o is the required splitting, concluding the base case n = 1 of the induction.
The argument also shows that we have a decomposition

IRQ=Id(U®F) (3.38)
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in ;T (and hence also in T), implying that / ® Q is injective in T (by Theorem 3.11 for
instance, which shows that both summands in (3.38) are injective).

We regard Q as a subobject of $2Q via the embedding Q — 520 described in (3.2). By
the injectivity of / ® Q € T noted above, the embedding

0=C®QCI®Q
extends to a morphism in T
520 > IQ 0.
Once more, the adjunction (3.37) retrieves a morphism in ;T
I1®8°0—~>1®0
that restricts to the identity on the submodule
I®QCI®S*Q, (3.39)

showing that the embedding Definition 3.39 splits in ;T. This proves the main claim for
n = 2 and the fact that there is a splitting

1®820=(®0) & (I ®S*F),

meaning that / ® S%Q is injective in T. We now repeat the procedure recursively to complete
the inductive argument. O

Since it will be our goal to study the category ;T along the same lines as T, we next turn
to simple objects therein.

Theorem 3.24 The simple objects in [T are (up to isomorphism) precisely the free I[-modules
I ® S for simples S € T. For each of them, the endomorphism algebra in ;T is C.

Proof We first prove that / ® S is simple in ;T. The simple objects of T are precisely the
various modules Ly ;. v » of (2.2), and according to Theorem 3.11 the injective hull S C I
contains I ® S (I exists because ;T is a Grothendieck category). Since the embedding

S=ZCeScCI®S
is essential in Ig, it is also essential in / ® S. It follows that any non-zero subobject
TCI®S

in ;T contains S and hence the /-module / ® S it generates, so T = I ® S. This concludes
the proof of the claim that all / ® S are simple.
The existence of an isomorphism

End,7(I ® S) =C, (3.40)
follows from the observation that by the adjunction (3.37) there is an isomorphism
End,7( ® S) = Homt(S,I ® S).

Indeed, since I ® S is an injective hull of S in T, every morphism S — I ® S factors through
the socle S C I ® S, and therefore the isomorphism Endt S = C implies (3.40).

As for the fact that / ® S are, up to isomorphism, all irreducible objects in ; T, consider
an arbitrary object T and note that it must have a simple subobject S € T. Hence T' must be
a quotient of the (irreducible!) free object I/ ® S € ;T. Consequently, wehave T = I ® S as
desired. |
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Since I is a commutative algebra in T, the category ;T of internal modules has a natural
symmetric monoidal structure for which [ is the unit object and ®; is the tensor product.
Whenever we refer to ;T as a tensor category, this will be the structure we consider.

3.8 The Category |T

We are now ready to apply to ;T the same treatment we subjected T to. We work with
precisely the same poset (P, <) of quadruples (/, m, n, p) of non-negative integers with the
ordering described in (3.13), and the corresponding objects Iy = I ® J; € [T fors € P, as
in Egs. (2.2)—-(2.4).

We will similarly consider the simple (by Theorem 3.24) objects of ;T

T)\,,U.,U,?T =IQ LA,/L,U.JT (341

and the semisimple objects 7}y n,p := I ® Ljm,n,p, that are direct sums of the various

TA, LV, TT -
‘We now have the following analogue of Proposition 3.10.

Proposition 3.25 ;T is an ordered Grothendieck category in the sense of Definition 2.3.

Proof Taking as above the objects X to be our I (this time regarded as objects in ;T rather
than just T), the argument proceeds much as in the proof of Proposition 3.10 with a small
difference in how we define the morphisms Iy — I; for t < s from Definition 2.3, (f).

Once again, said morphisms will be tensor products and compositions of a few building
blocks:

— projecting one of the tensorands V* of Iy = J; ® I onto W,;
— the dual analogue, V) — W;
— the “pairing”

1010091 10,01,0=UQVHRURVHEIQV*QV; -1 (342
obtained via the adjunction (3.37) from the composition
V*eVi—>0cClI
in (3.22).
Everything else goes through as sketched in the proof of Proposition 3.10. |

The difference from T is that now the free /-modules generated by the full duals V* and
V¥ admit the pairing (3.42) valued in the unit object I of the category ; T under consideration.
We also have an /-module version of Theorem 3.11.

Theorem 3.26 For every quadruple (A, u, v, ) of Young diagrams, the inclusion
T)\,,U.,l),?‘[ =1 ® LA,/L.v,n g [)L,y_,v,n =1 ® JA,/L.V,H
obtained by applying the functor I @ e to the inclusion

L/\,u,v,ﬂ c Jk,u,v,ﬂ

is an injective hull in 'T. |
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Just as T, the category ;T can be realized as comodules over a coalgebra (see Theo-
rem 3.22). As in that previous result, we denote by ;Ty;, C ;T the full subcategory of
finite-length objects. Note that the indecomposable injectives

I)L,u,v,n =IQ® J)L,u,u,rr € IT

have finite length: J;, ,, , » have finite filtrations with subquotients simple in T, and according
to Theorem 3.24 tensoring these simple objects by I produces simples in ;T.

Theorem 3.27 The Grothendieck category ;T is equivalent to the category MP of comodules
over a coalgebra D, with [T i, >~ M][c)in. Furthermore, the coalgebra D is left semiperfect
in the sense of Definition 2.12.

Proof The argument is largely parallel to that underpinning Theorem 3.22, via Theorem 2.11

(minus Koszulity, which we have not yet addressed for /-modules).
The additional remark, that D is semiperfect, follows directly from Definition 2.12 and the
fact that, as observed above, in ; T the indecomposable injectives I, ;. » have finite length.
|

We also need the following remark, which parallels [5, Lemma 2.19] (the proof is virtually
identical, so we omit it).

Lemma 3.28 The tensor subcategory [T of | T generated by the morphisms described in the
proof of Proposition 3.25 is the full subcategory containing Iy j . p. |

We next turn to the Koszulity of ; T. In keeping with the theme, the argument will be very
similar to what we saw in proving Theorems 3.18 and 3.21.

Theorem 3.29 The Grothendieck category ;T is sharp in the sense of Definition 2.8: for any
two simples S, T € T we have

Ext?(S,T) 20 = d(s,t) =q.
In particular, the ordered Grothendieck category T is Koszul in the sense of Definition 2.7.

Proof The last claim follows from sharpness by Theorem 2.9, so we focus on proving the
sharpness claim. In turn, the latter follows as in the proof of Theorem 3.18, with the exact
sequence (3.33) replaced by its analogue, obtained by simply tensoring it with 7. |

Remark 3.30 Note that in the present setting the proof of Koszulity is in fact simpler than in
§ 3.6: we do not need a version of Proposition 3.19, since for purely thick simple objects
L) g.9.= the corresponding simple object of ;T

Doppx=1®Lyggx

is injective. ¢

As a consequence, we can supplement Theorem 3.27, fully bringing it in line with Theo-
rem 3.22.

Corollary 3.31 The coalgebra D in Theorem 3.27 can be chosen graded and Koszul. |
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We end the present subsection with description of one possible choice for the graded
coalgebra C from Theorem 3.22. This discussion parallels [5, §3.4], which in turn is analogous
to [6, §5].

Let T be the tensor algebra in ;T of the object

W@ D@ (V' RDOV, DSWRI) = 11,000 D 10.1,00 ® 10,0,1.0 ® 10,0,0.1
with T, denoting its degree-d component, and the non-unital algebra of endomorphisms

A= P Hom (L. T,) = € Hom, (I, I)).
m,nel=o s,teP
The algebra A is naturally Z--graded by means of the defect introduced in Definition 2.5:
Ag:= € Hom,r(, I).
s,teP
d(t,s)=d

Finally, the coalgebra C is simply the graded dual of A, with Cy = A}.
The fact that C (and hence .A) is Koszul then implies

Proposition 3.32 The algebra A is quadratic.

Proof Koszul algebras are well known to be quadratic; see e.g. [2, §2.3]. |

3.9 Universality

We can now characterize ;T as a universal category in the sense of [5, Theorem 4.23] and
[4, Theorem 5.2]. First, note that in ;T there is a pairing

IQVHRURVHZIQV QVF — 1 (3.43)
corresponding to (3.22) through the adjunction (3.37). We will occasionally indicate tensoring

with I by a left-hand ‘I’ subscript, asin ;X =1 ® X.

Theorem 3.33 Let (D, ®, 1) be a(C-linear abelian) tensor category, x — x} and x, ~— x*
be monomorphisms in D, and

p:x*exi—>1
be a morphism in D.

(a) There is a unique (up to monoidal natural isomorphism) left exact symmetric monoidal
Sfunctor F : [Ty, — D sending

— the pairing (3.43) to p;
— the surjection [V} — W to x} — x}/x;
— the surjection [V} — W, to x* — x%/x,.

(b) if D is additionally a Grothendieck category then F extends uniquely to a coproduct-
preserving functor ;T — D.

The argument will be analogous to that employed in the proof of [5, Theorem 3.23],
revolving around the fact that the algebra A in the preceding discussion is quadratic (Propo-
sition 3.32). For that reason, it will be necessary to understand its components of degree
< 2. In degree zero things are simple: the following result is the version of [5, Lemma 3.24]
appropriate here.
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Lemma3.34 For(l,m,n, p) € Ptheendomorphismalgebra ofthe injective object I} y, . p €
1T is isomorphic to C[S; x Sy, x Sy x Sy, with the symmetric groups acting naturally on
the relevant tensorands of

Limnp =1® Jimn.p

=1 QWE @ (VH®" @ (VH®" @ WoP.

Proof We have
End,v(I ® Ji,m,n,p) = Homt(Jrmn,ps I  Jimn,p)-
The quotient of Jj , p, p by its socle in T has a filtration by subquotients L;; ,/ /  With
(XL 'L V1 "D < @ myn, p) € P,

which thus admit no non-zero morphisms to

soc(d ® Jim,n,p) = SOCI1 m,n, p-
It follows that restricting an arbitrary morphism

Jimpnp =~ 1 Q Jimmn,p
in T to the socle induces an isomorphism
Homt (Jimn.pr I ® Jimn.p) = Endp (W*®l ® (VH®" @ (V)" ® W®P) . (3.44)

We can see that the right-hand side of (3.44) is naturally identifiable with C[S; x S,, x S, X Sp]
as in Proposition 3.8. |

As for degree 1, we need an analogue of [5, Lemma 3.25]. Stating such an analogue will
require some notation. Degree-one morphisms between the objects Ij 4, € ;T come in
three flavors:

Il,m,n,p - Il,m—l,n—l,p7
Il,m,n,p i Il+1,m71,n,p7

Iimn,p = Limn—1,p+1-
We distinguish families of each flavor, as follows. The morphism
i.j Lmn,p = Lm—1n—1,p forl <i<m,1<j=<n
executes the pairing
VRV - I
of the ith tensorand V* and the jth tensorand V in
Iy =1@WE ® (VH" @ (VH®" © WP

and acts as the identity on all other tensorands.
Next, we have the map

i Dimn,p = livt,m—1,n,p forl<i<m,1<j<n
which

— first permutes cyclically the first i tensorands V*;
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— maps the new first (old ith) tensorand V* onto W, = V*/V,;
— finally permutes the last m — j + 1 tensorands W* cyclically so the newly-created W,
becomes the jth.

Finally, we have the left-right mirror image
7, Dimn,p = I1mn—1,p+1 forl<i<m,1<j<n

of ; jm, obtained by substituting V. for V*, W for W,, reversing the directions of the cyclic
permutations, etc.
We write

Stmn,p =S X S X Sp X Sp

for products of symmetric groups and, unless specified otherwise, morphism spaces in
Lemma 3.35 below are in the category ;T.

Lemma3.35 Let (I, m,n, p) € P.
(a) Hom(ly s n,p» l1,m—1,n—1,p) is isomorphic to C[S; . n,p] as a bimodule over
End Il,mfl,nfl,p = (C[Sl,mfl,nfl,p] and End Il,m,n,p = (C[Sl,m,n,p]a

with any of the morphisms ¢; ; as a generator for the right C[S; . n, p]-module structure
while identifing the subgroups

Sn—1 C Spand S,—1 C Sy

with the isotropy groups of i and j respectively.
(b) Hom(d}, .5, p> li+1,m—1,n,p) is isomorphic to the induced module

~ S
(C[Sl+l,m,n,p] = Indsjﬂ(c[sl,m,n,p] = (C[Sl+]] ®(C[51] (C[Sl,m,n,p]
as a bimodule over
End Iiv1,m—1,n,p = C[Sl+l,m—],11,p] and End Iimon,p = (C[Sl,m,n,p]s

with ; ;7 as a generator for the right C[S; . n, pl-module structure while identifying the
subgroups

S; C Siy1and Spy—1 C Sy

with the isotropy groups of j and i respectively.
(c) The left-right mirror image of (b): Hom(dy . n,p, Ll m,n—1,p+1) IS isomorphic to the
induced module

.S
(C[Sl,m,n,p+l] = IndS:;HC[Sl,m,n,p] = (C[Sp-H] ®(C[Sp] (C[Sl,m,n,p]

as a bimodule over
End I mon—1,p+1 = C[Sl,m,n—l,p-H] and End Iimon,p = (C[Sl,m,n,p]s

with ; ; as a generator for the right C[S; . n, pl-module structure while identifying the
subgroups

Sp CSpy1and S,—1 C Sy

with the isotropy groups of j and i respectively.
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Proof (a) Having fixed i and j as in the statement, we have a morphism
(C[Sl,m,n,p] - Hom(ll,m,n,pa Il,m—l,n—l,p) (345)

of (C[S;,m—1,n—1,p1> C[Si,m,n, p])-bimodules, sending 1 to ¢; ;. Lemma 3.28 implies that this
morphism is surjective, so it is the injectivity that we focus on.
Note that the morphism (3.45) factors as

(C[Sl,p] ® (C[Sm,n] (End Il,O,O,p) &® Hom(IO,m,n,Ov IO,m—l,n—l,O)
= (3.46)
(C[Sl,m,n,p] Hom(ll,m,n,pa Il,m—l,n—l,p)

where the downward arrow is the tensor product (over the unit object I/ € ;T) of morphisms
in ; T. Since the vertical maps are injective, the bottom morphism (which is in our focus) will
be one-to-one if and only if the top arrow is. The left-hand tensorand

C[S;,p] = End 1100,

of the top map in (3.46) is an isomorphism by Lemma 3.34, so it is enough to consider the
right hand tensorand

(C[Sm,n] - Hom(IO,m,n,Oa IO,m—l,n—l,O)

of that map; equivalently, it suffices to resolve the present discussion in the case / = p = 0.
But this follows from [5, Lemma 3.25 (a)] (which is analogous to the result being proven
here), by noting that the restrictions of the compositions

@ijo0o lomn0—> lom—1,n-1,00 0 € Smn
to
(V92" @ VE C (VHE" @ (VH®" C Iomno

are precisely the morphisms proven linearly independent there.
(b) We again have an (C[S;41,m—1,n, p]» C[Si,m,n, p])-bimodule map

(C[SlJrl,m,n,p] - Hom(ll,m,n,pv Il+l,m71,n,p) (347)

sending 1 to; ;7, and its surjectivity is a consequence of Lemma 3.28. The injectivity follows
as in part (a), by first decomposing (3.47) as a tensor product of maps

CLS141,m1 = Hom(I} n,0,0, I14+1,m—-1,0,0)
and
C[Sz,p]l — End I o5, p-

The latter is an isomorphism by Lemma 3.34, and the former is an injection as in the proof
of (a), by appealing to [5, Lemma 3.25 (b)].

(c) As noted in the statement, this is entirely parallel to part (b), interchanging the roles
of V*and V), [ and p, m and n, etc. [ |

The composition map from the degree-one to the degree-two component of A comes
in several varieties, depending on the domain. Before listing the various options, it will be
convenient to introduce
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Notation 3.36 For a quadruple (I, m, n, p) € P we write
Il,mL,ni,p = Homﬂl‘(]l,m,n,pv Il,mfl,nfl,p)

and similarly for other morphism spaces, with arrows indicating whether the respective index
increases or decreases, and multiple arrows to indicate the amount. Other examples are

Il,m¢¢,n¢¢,p = HomlT(Il,nl,n,ps Il,m—2,n—2,p)y
it myon,p = Hom v(I1 mn,p» li+1,m—1,n-2,p)

and so on.
For composable morphism spaces in ;T we denote by ‘®’ the tensor product over the
endomorphism algebra of the intermediate object. For example:

lon=4,0=1)4,p © Limynt,p = L on=1)4, =11, p OCISm1.01,p) Tm ) np-
With this in place, the possibilities for composition of degree-1 morphisms are:

I im—1) 4, 0= 4, p O Ity p = liminil,ps (3.48)

which is mirror-self-dual,

Lo+ vt,m= 4 p © litmyn.p = l144miln.p

(3.49)
and its mirror image
I m n=1)4 . (p+1)1 © LLmny.pt = llmnyl.ptts (3.50)
Uit ,on—1)4n—1,p © limynl.p) ® Ur+1,60—1)4nl.p © lit,mion,p)
= it miyni.p (3.51)
and its mirror image
Urm=1,c0=04.p1r © ltmynl.p) ® Urm).(n—)4,p+1 © limon}.pt)
= D my iy, pts (3.52)

and finally, the self-dual morphism

(Il+1,m—1,n¢,pT © IlT,ml,n,p) S (IIT,mL,n—l,p—H o Il,m,ni,pT) g IlT,mi,ni,pT- (3.53)

The nine ‘®’ symbols above account for the nine possible ways of composing two mor-
phisms, each being of one of the three flavors listed in Lemma 3.35.

Remark 3.37 Note that in all cases the product ‘©’ conserves the total number of up as well
as down arrows. ¢

Proof of Theorem 3.33 (sketch) As in the proof of [5, Theorem 3.23], an appeal to [5, Theorem
2.22] together with Proposition 3.25 proves the statement as soon as we argue that the initial
data of

x> xi, x> xfandp:x*@xi > 1
in the tensor category D extends to a linear monoidal functor

F:IT/—>'D,
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where ;T’ is, as in Lemma 3.28, the full subcategory of ;T on the objects I; u »,p. Set
iT := T ®1I for any T € T. Since the objects of ;T are precisely the tensor powers
(over I € ;T) and the morphisms are tensor products and compositions of permutation of
tensorands, evaluations (3.43), inclusions ; Vi, C ;V*and ;V C ;V/}, etc., thereis an obvious
candidate for such an extension F, sending

Vi xi and (W x}/x,
(Vi x* and W, = x*/x,,
(3.43) > p,

etc. What we have to argue is that that extension is in fact well defined.

The fact that, by Proposition 3.32, the algebra A defined in Sect. 3.43 is quadratic, means
that it will be enough to check that the degree-two relations between degree-one morphisms
between the 1; ; n, p (i.€. the kernels of the maps (3.48) to (3.53)) vanish in D upon substituting
x for ;V, x, for ; V,, etc. This would be a somewhat tedious and unenlightening check if
done exhaustively, so we exemplify the argument by treating (3.48) alone. In that regard, we
make the claim:

The kernel of the composition (3.48) is generated, as an (S;,m—2,n—2, p» St,m,n, p)-bimodule,
by

¢m—l,n—1 ®¢m,n - ¢m—l,n—l ® ¢m,n o(m,m—1)(n,n—1), (3.54)
where (m, m — 1) is the respective transposition in Sy, C Sj m.n,p and similarly,
(n,n—1) € Sy, C Si,mn,p-

Assuming the claim for now, we observe that the relations annihilated by (3.48) hold in
any tensor category. It follows that our candidate functor F is indeed compatible with the
quadratic relations imposed by composition, and hence is well defined. It thus remains to
prove the claim; this is the goal we focus on for the duration of the present proof, following
the layout of the proof of [5, Lemma 3.27 (a)].

First, note that the morphism (3.48) is surjective by Lemma 3.28. Secondly, the fact that
(3.54) belongs to the kernel of (3.48) is immediate: this is because

— evaluating the mth tensorand ; V* against the nth tensorand ; V,*, and then
— evaluating the (m — 1)st tensorand ; V* against the (n — 1)st tensorand ; V,*

has the same effect as

— permuting the mth and (m — 1)st tensorands ; V*,
— permuting the nth and (n — 1)st tensorands ; V.

and then repeating the two evaluations above.

The proof will thus be complete if we argue that the kernel of (3.48) is not strictly larger
than the bimodule generated by (3.54). We do this by a dimension count. Tensoring two
instances of Lemma 3.35, (a) over C[S; ;,—1,,—1,p], we conclude that the domain

I m=1)4.=1)4.p © lim|n).p
of (3.48) is isomorphic to C[S; ;. p] as an (C[S; 12,42, p1, C[S;,m,n, p])-bimodule, with
— ¢m,, identified with the generator 1 € C[S; ., ], and

— Si,m—2.n—2,p C Si,m,n,p being the subgroup fixing m, m — 1, n and n — 1.
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This identification turns the putative generator (3.54) of the kernel of (3.48) into
I1—@m,m—1)n,n—1)€C[S nnpl (3.55)

The (C[S;,m—2,n—2,p]> CLS;,m,n,p])-bimodule generated by (3.55) coincides with the right
Si,m,n, p-module generated by the same element. The dimension of that module is half that
of C[S},m,n, pl, and hence

1 1
dimker (3.48) = El!m!n!p! =5 (dim domain of (3.48)) .

The desired conclusion that the kernel of the surjection (3.48) cannot strictly contain the
bimodule generated by (3.54) will thus follow if we prove that

. . 1
dim Iy 0y ), p = dimHom(y . p, Im—2,0—2,p) > El!m!n!p!.

Since we have an embedding

(End 1;,0,0,p) @ 10,m}4,n41,0 = Limiynid,p

and the left-hand tensorand is isomorphic to C[S;, ,] by Lemma 3.34, it is enough to assume
that / = p = 0 and show that

mn!,

N —

dim Hom, 7 (V" @7 (VH", (VI g, ((VHP0?) =
or equivalently, via the adjunction (3.37), that
1
dim Hom ((V*)®'” ® (VH®", 1@ (VHE" D g (v;)®<”*2>) > Sminl.

This, however, follows by restricting the morphisms on the left to V" @ V®" and noting
that we already know the analogous inequality

dim Homt (Vf”" ® Ve yem-2 g V®<"—2)) > %m!n!

from the computation carried out in [6, Lemma 6.3], or from [5, Lemma 3.27 (a)] (which is
analogous to the claim being proven here).

4 Orthogonal and Symplectic Analogues of the Categories T and ;T

In this final section we discuss briefly the orthogonal and symplectic versions of the categories
T and ;T. The orthogonal and symplectic analogues of the Lie algebra gi™ (V, V) are the
Lie algebras o(V) and sp(V) where V is now equipped with a nondegenerate symmetric or
antisymmetric bilinear form (-, -) : VxV — C,yielding arespective linear map S 2y — Cor
A%V — C.TheLiealgebras o(V) and sp(V) are defined as the respective largest subalgebras
of gt (V, V) for which the map SV — C or A>V — C is a morphism of representations.

Letg = 0(V),sp(V). Then V is a submodule of V* (via the form (-, -}), and the g-module
W := V*/V isirreducible. This can be proved for instance by considering W over the family
of Lie subalgebras gl (V/, V/) C g arising from varying decompositions of V as V' @& V.
for maximal isotropic subspaces V', V/. Over each such subalgebra W is isomorphic to

V* Ve ® (Vi)' /V,
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and hence has precisely two proper submodules. Since these submodules vary when V’ and
V! vary, the module W is irreducible over g.

Furthermore, for any Young diagram A, the irreducible g[M (V, V)-module V), restricts to
g yielding a generally reducible g-module. In all cases the socle of V|4 is simple, and we
denote it by V[ for g = o(V) and by V;, for g = sp(V). It is clear that the Lie algebras
0(o0) and sp(co) considered in [15] are subalgebras respectively of o(V) and sp(V), and
by [14, Theorem 7.10] the socle filtrations of V}|o(00) and Vi |sp(oo), described explicitly in
[15], coincide with the respective socle filtrations of Vj |o(vy and Vi |sp(v).

If A, p is a pair of Young diagrams, we set

I WL ® Vi forg =o(V),
Rt W5 ® Viw for g = sp(V).

Then L, , is a simple g-module. This can be seen by essentially the same argument as in the
case of W. Moreover,

Ly =L, ifandonlyif A =1"and u = .

The analogue of the injective object I from Sect. 3.4 is constructed as follows. One sets

g =

S2W for g = o(V),
AW for g = sp(V).

Furthermore, the quotient Q4 of $2V* by the sum of kernels of the pairings V* ® V — C
and $?V — C admits a non-splitting exact sequence

0->C— Qg— Fg— 0.

The socle filtration of / has the form

2
S2F,
FB
C

Then the embedding (3.1) induces embeddings
Sk Qg s Sk+] Qgs
which allow us to define I as the colimit
ok
Iy = h_r)n $0y.
Moreover, by the same construction as in Sect. 3.7, Iy is endowed with the structure of a
commutative algebra.

The category T is introduced in the same way as in Sect. 3.4, where now J; = we @
V*®M for pairs s = (I, m), I, m € N, and the object / is replaced by I4. In the Introduction
we denoted this category by ']I% to emphasize that is generated as a tensor category by two
modules V and V*. In the rest of the paper we use the shorter notation Ty. We leave it to
the reader to check that Proposition 3.10 holds also for the category Ty, and that I is an
injective hull in Ty of the object C. The respective partial order (I, m) < (I',m) on N x N
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isgivenbyl >1I',m <m’,l +m’ <1’ + m. The results of Sect. 3.3 also hold with obvious
modification.

The canonical injective resolution (3.23) stays the same with F replaced by Fy, however
now the socle of the object (Ig)j = Iy ® A/ Fy decomposes as @S, V for g = sp(V) and
PSS, 1V for g = o(V) where A runs over all special partitions of degree 2.

Corollary 4.1 For any simple object X of To(v) we have

Ext{r (X.C) = Oi.fX £ Lo foraspeci.al)» wi.th Al = 2j.,
o Cif X = L, o for a special A with [A| =27,

and for any simple object X of Tsp(v) we have

0if X 22 L, 1 4 for aspecial A with |A| =2,
Cif X = L, , foraspecial A with [A| = 2.

J _
Extp,, (X.C) =

Next, Theorem 3.18 and Proposition 3.19 stay valid with T replaced by T 3. We leave it
to the reader to modify Lemma 3.20 accordingly. Furthermore, Proposition 3.23, and The-
orem 3.24 also hold for Iy and Q4 (instead of I and Q, respectively). The same applies
to Proposition 3.25, Theorem 3.26 (with L, , instead of Lj , v ), Theorem 3.27, Theo-
rem 3.29, and Corollary 3.31.

The universality results from Sect. 3.9 also carry over to the cases g = o(V), sp(V). In
particular, the category 7, T is defined in the same way as the category ;T: it is the category
of internal /g-modules in Ty.

Note also that the analogue

V¥*@V* — Q4 C I
of the map (3.22) is well defined and factors through maps
§?V* — Qg and A*V* — Q,
in the respective cases g = 0o(V) and g = sp(V). This defines pairings
IRV ®, ®IgQV* — I;® SV — I (4.1)
and

IE®V* ®, ®lg @ V* — Ig® A*V* — I, 42)

respectively.
Now we have

Theorem 4.2 Let (D, ®, 1) be a tensor category, and x < x* be a monomorphism in D.
Assume that a morphism in D
p:ix*x*—1

is given, satisfying poo = p forg = o(V)and poo = —p for g = sp(V), where o
is the flip automorphism of x* ® x* as an object of the tensor category D coming from the
assumption that D is a symmetric monoidal category.

(a) There is a unique (up to monoidal natural isomorphism) left exact symmetric monoidal
Sunctor F 2 [, Tgin — D, whereg=0(V)if pooc =pandg=sp(V)ifpoo =—p,
sending
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— the respective pairing (4.1) or (4.2) to p;
— the surjection |, V* — 1, Wto x* — x*/x.

(b) if D is additionally a Grothendieck category then F extends uniquely to a coproduct-
preserving functor 1, T — D.

The universality of the tensor categories 7, ,, T and 7, ,, T leads to the fact that they are
equivalent as monoidal categories. More precisely, consider the (symmetric) tensor category
T;p (v defined in the same way as Tgp(v) but with the flip isomorphism

o V'RV S VIRV, cv@uw)=w®v

replaced by —o. One checks that T, W) is well-defined, i.e. that the new flip isomorphism
on V* ® V* induces a well-defined structure of tensor category preserving the monoidal
structure on Tsp(v).

In addition, one checks that there is a well-defined tensor category y,,,, T~ of internal

I-modules in T

sp(V) which coincides with 7, T as a monoidal category.

Corollary 4.3 The tensor categories 1,,,T and ., T~ are canonically equivalent.

Proof By Theorem 4.2, there are distinguished functors

F : Io(V)T—> Isp(v)T

F lsp(V)T_ — lo(V)T
sending V* ® Iovy to V*® Igp(v), Ve @ Iovyto Vi ® Isp(V) and W I,vytoW® Igp(v),

and vice versa. Again, by Theorem 4.2 the functors F and F~ must be mutually inverse. O
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