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Abstract

Let V∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector

spaces V and V∗. The Mackey Lie algebra g = glM (V , V∗) corresponding to this pairing

consists of all endomorphisms ϕ of V for which the space V∗ is stable under the dual endo-

morphism ϕ∗ : V ∗ → V ∗. We study the tensor Grothendieck category T generated by the

g-modules V , V∗ and their algebraic duals V ∗ and V ∗
∗ . The category T is an analogue of

categories considered in prior literature, the main difference being that the trivial module C
is no longer injective in T. We describe the injective hull I of C in T, and show that the

category T is Koszul. In addition, we prove that I is endowed with a natural structure of

commutative algebra. We then define another category I T of objects in T which are free as

I -modules. Our main result is that the category I T is also Koszul, and moreover that I T is

universal among abelian C-linear tensor categories generated by two objects X , Y with fixed

subobjects X ′ →֒ X , Y ′ →֒ Y and a pairing X ⊗ Y → 1 where 1 is the monoidal unit. We

conclude the paper by discussing the orthogonal and symplectic analogues of the categories

T and I T.

Keywords Mackey Lie algebra · Tensor module · Monoidal category · Koszulity ·

Grothendieck category · Semi-artinian
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1 Introduction

A tensor category for us is a symmetric, not necessarily rigid, C-linear monoidal abelian

category. In this paper we construct and study a tensor category which is universal as a

tensor category generated by two objects X , Y with fixed subobjects X ′ →֒ X , Y ′ →֒ Y and

endowed with a pairing X ⊗ Y → 1, the object 1 being the monoidal unit.

The simpler problem of constructing a universal tensor category generated just by two

objects X , Y endowed with pairing X ⊗ Y → 1 was solved several years ago, and explicit

constructions of such a category are given in [6,19]. The construction in [6] realizes this

category as a category Tsl(∞) of representations of the Lie algebra sl(∞), choosing X as

the natural sl(∞)-module V , and Y as its restricted dual V∗. Motivated mostly by a desire to

understand better the representation theory of the Lie algebra sl(∞), in [13] a larger category

was constructed, denoted T̃ enssl(∞), which contains also the algebraic dual modules V ∗ and

V ∗
∗ . It is clear that the category T̃ enssl(∞) has a completely different flavor as its objects

have uncountable length while Tsl(∞) is a finite-length category.

However, in [14] the observation was made that the four representations V , V∗, V ∗, V ∗
∗

generate a finite-length tensor category T4

glM (V ,V∗)
over the larger Lie algebra glM (V , V∗),

see Sect. 2. We call this latter Lie algebra a Mackey Lie algebra as its introduction has been

inspired by G. Mackey’s work [12]. The simple objects of T4

glM (V ,V∗)
were determined in [3].

Furthermore, in [5] the tensor category T3

glM (V ,V∗)
, generated by V , V∗, and V ∗, was studied

in detail. It was proved that T3

glM (V ,V∗)
is Koszul, and it was established that T3

glM (V ,V∗)
is

universal as a tensor category generated by two objects X , Y with a pairing X ⊗Y → 1, such

that X has a subobject X ′ →֒ X . Later, a vast generalization of the results of [5] was given

in [4]: here a universal tensor category with two objects X , Y , a paring X ⊗ Y → 1 and an

arbitrary (possibly transfinite) fixed filtration of X was realized as category of representations

of a certain large Lie algebra.

A main difference of the category T4

glM (V ,V∗)
with previously studied categories is that, as

we show in the present paper, the injective hulls of simple objects are not objects of T4

glM (V ,V∗)

but of a colimit-completion of T4

glM (V ,V∗)
which we denote simply by T. In particular, the

trivial module has an injective hull I in T of infinite Loewy length, i.e. with an infinite socle

filtration. Moreover, remarkably, I has the structure of a commutative algebra.
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Universal Tensor Categories Generated by Dual Pairs 917

This leads us to the idea of considering the category I T of I -modules internal to T. The

morphisms in this new category are morphisms of glM (V , V∗)-modules as well as of I -

modules. The simple objects of I T are of the form I ⊗ M where M is a simple module in

T.

A culminating result of the present paper is that the category I T has the universality

property stated in the first paragraph of this introduction. The pairs X ′ →֒ X and Y ′ →֒ Y

are realized respectively as I ⊗ V∗ ⊂ I ⊗ V ∗ and I ⊗ V ⊂ I ⊗ V ∗
∗ , I is the unity object in

I T, and the tensor product in I T is ⊗I .

Finally, in Sect. 4 we study analogues of the tensor categories To(∞) and Tsp(∞) considered

in [6,19]. Consider a tensor category generated by a single object X with a subobject X ′ →֒ X

and a pairing X ⊗ X → 1. After identifying V∗ and V , our construction of the category I T
yields a universal tensor category also in this setting. However, one can assume in addition

that the pairing X ⊗ X → 1 is symmetric or antisymmetric, which leads to new universality

problems for tensor categories. With this in mind, we introduce T2
o(V )

and T2
sp(V )

where o(V )

and sp(V ) are respective orthogonal and symplectic Lie algebras of a countable-dimensional

vector space V . In analogy with our previous constructions, we then produce appropriate

categories I ′T2 for I ′ = Io(V ) and I ′ = Isp(V ) and prove that these latter categories are

universal in the respective new settings. Moreover, the categories Io(V )
T2 and Isp(V )

T2 are

canonically equivalent as monoidal categories.

2 Preliminaries

2.1 Notation

All vector spaces are defined over C (more generally, we could work over an algebraically

closed field of characteristic zero); similarly, all abelian categories and all functors between

such are assumed C-linear, and we refer to [17] for general background on abelian/additive

categories.

By Sk X and �k X we denote respectively the k-th symmetric and exterior powers of a

vector space X , and Sn stands for the symmetric group on n letters.

Once and for all we fix a non-degenerate pairing V∗⊗C V → C of countable-dimensional

vector spaces V and V∗. This pairing defines embeddings V∗ ⊂ V ∗, V ⊂ V ∗
∗ , where V ∗ =

HomC(V , C), V ∗
∗ = HomC(V∗, C). For any vector space M we set M∗ = HomC(M, C).

We abbreviate ⊗C as ⊗. By ⊗ we denote also tensor product in abstract tensor categories in

the hope that this will cause no confusion.

Except in Sect. 4, g will be the Mackey Lie algebra glM (V , V∗) of [14] associated to the

pairing V∗ ⊗ V → C. By definition,

glM (V , V∗) = {ϕ ∈ End V | ϕ∗(V∗) ⊂ V∗},

where ϕ∗ : V ∗ → V ∗ is the operator dual to ϕ. We will describe g explicitly as a Lie algebra

of infinite matrices shortly.

We set

W∗ := V ∗/V∗, W := V ∗
∗ /V and F := W∗ ⊗ W .

There is an extension

0 → C → Q → F → 0 (2.1)
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918 A. Chirvasitu, I. Penkov

where Q is defined as the quotient of V ∗ ⊗ V ∗
∗ by the sum of the kernels of the pairings

V ∗ ⊗ V → C and V∗ ⊗ V ∗
∗ → C.

In Proposition 3.5 below we prove that the extension (2.1) is non-splitting.

We model the actions of g on various modules mentioned above as follows:

– V ∗
∗ consists of infinite column vectors with entries indexed by N = {0, 1, . . .}.

– V ⊂ V ∗
∗ consists of finite (or finitary) column vectors, i.e. those with at most finitely

many non-zero entries.

– Dually, V ∗ consists of N-indexed infinite row vectors.

– The elements of V∗ ⊂ V ∗ are precisely the finite row vectors.

– g consists of N × N-matrices with finite rows and columns, acting on V ∗
∗ by left multi-

plication.

– Similarly, g acts on V ∗ as minus right multiplication.

– V ∗ ⊗ V ∗
∗ consists of finite-rank N × N-matrices with infinite rows and columns, acted

upon by g by commutation.

We will frequently make use of Schur functors Sλ attached to Young diagrams λ. Often

we write Xλ instead of Sλ X for a vector space X . Moreover, Sk X = Sρ X , �k X = Sγ X ,

where ρ, γ are respectively a row and a column with k boxes.

For Young diagrams λ, μ, ν and π we write

Lλ,μ,ν,π := W∗λ ⊗ Vμ,ν ⊗ Wπ ,

Jλ,μ,ν,π := W∗λ ⊗ V ∗
μ ⊗ Vν ⊗ Wπ , (2.2)

and similarly, for non-negative integers l, m, n, p we set

Ll,m,n,p := W⊗l
∗ ⊗ Vm,n ⊗ W⊗p,

Jl,m,n,p := W⊗l
∗ ⊗ V ∗⊗m ⊗ V ∗⊗n

∗ ⊗ W⊗p, (2.3)

where Vm,n is the socle of V ∗⊗m ⊗ V⊗n , i.e.

Vm,n =
⊕

|μ|=m,|ν|=n

V
mμ,ν
μ,ν

for appropriate multiplicities mμ,ν . Here |λ| denotes the degree (number of boxes) of a Young

diagram λ. Finally, for any subscript s of the form (•, •, •, •) we set

Is := I ⊗ Js, (2.4)

where I is the object constructed below in Sect. 3.

Definition 2.1 We refer to objects involving only the two outside diagrams λ and π as purely

thick and those involving only the two middle diagrams as thin. Everything else is mixed. �

It is essential to recall Corollary 4.3 in [5] which claims that Lλ,μ,ν,π is a simple g-module,

and implies that Ll,m,n,p is a semisimple g-module.

The following remark will be used implicitly and repeatedly: given a short exact sequence

0 → x ′ → x → x ′′ → 0

in a tensor abelian category, the symmetric power Sk x has a filtration

0 = F−1 ⊂ F0 ⊂ · · · ⊂ Fn = Sk x
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Universal Tensor Categories Generated by Dual Pairs 919

with isomorphisms

F j/F j−1
∼= Sk− j x ′ ⊗ S j x ′′ for 0 ≤ j ≤ k.

2.2 Plethysm

Given that F = W ⊗W∗ and we have to work with symmetric and exterior powers of F , we

will have to understand how such powers decompose as direct sums of objects of the form

SλW ⊗SμW∗. The result applies to a tensor product W ⊗W∗ in any C-linear tensor category,

so we work in this generality throughout the present subsection.

We call a partition λ special if it satisfies the condition: all hooks of λ whose corner lies

on the diagonal of λ have horizontal and vertical arms (not counting the corner) of length

μi − 1 and μi , respectively, where μ1 > μ2 > . . . > 0 is a partition. We now recall the

following result.

Proposition 2.2 Let x and y be two objects in a C-linear tensor category. We have the

following decompositions:

(a) Sk(x ⊗ y) is the direct sum of all objects of the form Sλx ⊗ Sλy as λ ranges over all

Young diagrams of degree k.

(b) �k(x ⊗ y) is the direct sum of all objects of the form Sλx ⊗ Sλ⊥ y as λ ranges over all

Young diagrams of degree k, where λ⊥ denotes the conjugate partition.

(c) Sk S2x is the direct sum of all Sλx for partitions λ of degree 2k with even parts , i.e. even

partitions.

(d) Sk�2x is
⊕

even λ
|λ|=2k

Sλ⊥x.

(e) �k�2x is
⊕

special λ
|λ|=2k

Sλx.

(f) �k S2x is
⊕

special λ
|λ|=2k

Sλ⊥x.

Proof (a) and (b) are reformulations of the Cauchy identities in [18, (6.2.8)]. The other four

points paraphrase [11, Example I.8.6]. �

2.3 Ordered Grothendieck Categories

We recall the following notion from [4, Definition 2.3].

Definition 2.3 Let (P,�) be a poset. An ordered Grothendieck category with underlying

order (P,�) is a Grothendieck category C together with objects Xs , s ∈ P so that the

following conditions hold.

(a) The objects Xs are semi-artinian, in the sense that all of their non-zero quotients have

non-zero socles.

(b) Every object in C is a subquotient of a direct sum of copies of various Xs .

(c) The simple subobjects in

Ss := {isomorphism classes of simples in socXs} (2.5)

are mutually non-isomorphic for distinct s and they exhaust the simples in C.

(d) Simple subquotients of Xs outside the socle socXs are in the socle of some X t , t ≺ s.

(e) Each Xs is a direct sum of objects with simple socle.
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920 A. Chirvasitu, I. Penkov

(f) Let t ≺ s. The maximal subobject Xs≻t ⊂ Xs whose simple constituents belong to

various Sr for s � r � t is the common kernel of a family of morphisms Xs → X t .

�

Ordered Grothendieck categories are well behaved in a number of ways. For instance ([4,

Corollary 2.6]):

Proposition 2.4 The indecomposable injective objects in an ordered Grothendieck category

C are, up to isomorphism, precisely the indecomposable summands of the objects Xs in

Definition 2.3. �

Recall ([5, §3.2] or [4, Definition 2.8]):

Definition 2.5 For two elements i ≺ j in P the defect d(i, j) is the supremum of the set of

non-negative integers q for which we can find a chain

i = i0 ≺ · · · ≺ iq = j .

We put also d(i, i) := 0. In the context of an ordered Grothendieck category as in Defini-

tion 2.3 we adopt the simplified notation d(S, T ) for d(s, t) when S ∈ Ss and T ∈ St . �

According to [5, Proposition 2.9] ext functors in an ordered Grothendieck category exhibit

the following “upper triangular” behavior.

Proposition 2.6 Let S ∈ Ss and T ∈ St be two simple objects in an ordered Grothendieck

category. If Extq(S, T ) �= 0 then d(s, t) ≥ q. �

It is implicit in the statement that, in particular, we have s � t (see [5, Lemma 3.8]). One of

our goals will be to show that in the ordered Grothendieck category T introduced in Sect. 3.4

below, we actually have equality , and hence the category T is Koszul in the following sense.

Definition 2.7 An ordered Grothendieck category is Koszul if for every q ≥ 0 and every two

simple objects S ∈ Ss and T ∈ St the canonical Yoneda composition map
⊕

Ext1(S, U1)⊗ Ext1(U1, U2)⊗ · · · ⊗ Ext1(Uq−1, T ) → Extq(S, T )

is surjective, where the sum ranges over all isomorphism classes of simples Ui . �

This mimics one of the characterizations of Koszul connected graded algebras, namely

the requirement that the graded ext algebra Ext∗(k, k) of the ground field k be generated in

degree one ([16, §2.1]).

We introduce the following term to capture the desirable situation where defects precisely

measure non-vanishing exts.

Definition 2.8 An ordered Grothendieck category is sharp if it satisfies the conclusion of

Proposition 2.6 with equality rather than inequality. �

The relevance of the concept to the preceding discussion follows from

Theorem 2.9 Assume that C is an ordered Grothendieck category as in Definition 2.3, such

that

– the terms of the socle filtration of each indecomposable injective object have finite length;

– C is sharp in the sense of Definition 2.8.
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Universal Tensor Categories Generated by Dual Pairs 921

Then C is Koszul.

Proof Fix arbitrary simple objects S ∈ Ss , T ∈ St and a positive integer q ≥ 2. It will be

enough to show that the Yoneda composition
⊕

simple U

Extq−1(S, U )⊗ Ext1(U , T ) → Extq(S, T )

is onto, since we can then proceed by induction on q .

Let

0 → T → IT → RT → 0

be the short exact sequence resulting from the embedding of T into its injective hull IT . This

sequence constitutes an element of Ext1(RT , T ), and Yoneda multiplication by that element

induces an isomorphism

Extq−1(S, RT ) ∼= Extq(S, T ).

If Extq(S, T ) = 0 there is nothing to prove. Otherwise, our sharpness assumption shows

that d(S, T ) = q . Now, the simples in the socle of RT are smaller than T (with respect to

the ordering), and those that appear as subquotients of RT := RT /soc RT are smaller again.

It follows that

– if any simple subquotient U of RT were to satisfy d(S, U ) = q − 1 we would have

d(S, T ) ≥ (q − 1)+ 2 = q + 1 contradicting d(S, T ) = q ,

– and hence no such U can contribute to Extq−1(S, RT ).

In conclusion,

Extq−1(S, soc RT ) ∼= Extq−1(S, RT ). (2.6)

By sharpness again, (2.6) can be identified with
⊕

U

Extq−1(S, U )

with U ranging over those simple summands of soc RT with d(S, U ) = q−1. It follows that

every non-zero element of Extq(S, T ) will be contained in the image of the Yoneda map
⊕

U

Extq−1(S, U )⊗ Ext1(U , T ) → Extq(S, T )

where U ranges over all isomorphism classes of simple constituents of socRT . This finishes

the proof. �

2.4 Comodules

[20, Chapters I and II] will provide sufficient background on coalgebras and comodules. For

a coalgebra C over a ground field k we write MC for its category of right comodules and

M
C
f in for its category of finite-dimensional comodules. Since the Grothendieck categories

we are interested in will turn out to be of the form MC for coalgebras C , we record in this

short section a characterization of such categories from [21].

The following is a paraphrase of [21, Definition 4.1], adapted in the context of

Grothendieck (as opposed to plain abelian) categories.
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922 A. Chirvasitu, I. Penkov

Definition 2.10 A Grothendieck category is locally finite if it has a set of finite-length

generators. �

We then have the following recognition result for categories of comodules over fields ([21,

Theorem 5.1]):

Theorem 2.11 Let k be a field. A k-linear Grothendieck category is equivalent to MC for

a k-coalgebra C if and only if it is locally finite in the sense of Definition 2.10 and the

endomorphism ring of every simple object is finite dimensional over k.

Moreover, in this case M
C
f in can be identified with the subcategory of C consisting of

finite-length objects. �

The following notion (analogous to its dual- ring-theoretic version [1, discussion preceding

Theorem 2.1]) will also be relevant below.

Definition 2.12 A coalgebra C is left semiperfect if either of the following conditions, equiv-

alent by [9, Theorem 10], holds:

– every indecomposable injective right C-comodule is finite dimensional;

– every finite-dimensional left C-comodule has a projective cover.

�

2.5 Tensor Categories

The categories we are most interested in are typically monoidal. The latter, in full gener-

ality, are covered for instance in [10, Chapter XI]. In the context of abelian categories, we

briefly recall the relevant definitions (see also [5, §3.6], where we make the same linguistic

conventions).

Definition 2.13 A C-linear abelian category C is monoidal if its monoidal structure has the

property that x ⊗ • and • ⊗ x are exact endofunctors for every object x .

If in addition the monoidal structure is symmetric, (C,⊗) is a tensor category.

A tensor functor between tensor categories is a C-linear symmetric monoidal functor. �

Note that this differs from conventions made elsewhere in the literature. In [7, §1.2], for

instance, the term ‘catégorie tensorielle’ implies rigidity.

We occasionally write (C,⊗, 1) for a monoidal category to specify both the tensor product

bifunctor and the monoidal unit object 1.

3 The Categories T and IT

3.1 Definition of the Object I

For every nonnegative integer k we have a canonical embedding

Sk Q →֒ Sk+1 Q (3.1)

obtained as the composition

Sk Q ∼= Sk Q ⊗ C Sk Q ⊗ Q Sk+1 Q,
id⊗ι multiplication (3.2)
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Universal Tensor Categories Generated by Dual Pairs 923

where ι : C → Q is the embedding defining Q as an extension of F by C. This gives rise to

an exact sequence

0 Sk Q Sk+1 Q Sk+1 F 0.
ι π (3.3)

Taking the colimit (or simply union)

I := lim
−→

k

Sk Q, (3.4)

we obtain a g-module that has an infinite ascending filtration representable schematically as

S2 F

F

C

...

,

(3.5)

where the boxes indicate the layers (successive quotients) of the filtration.

The morphism

ψ : I → I/C → F ⊗ I (3.6)

to be defined below will play a central role in the sequel; we will occasionally write ψ for

the resulting factorization I/C → F ⊗ I as well, leaving it to context to separate the two

possible meanings.

We obtain the morphism ψ as a colimit lim
−→k

ψk where

ψk : Sk Q → (Sk Q)/C → F ⊗ Sk−1 Q. (3.7)

The latter map is defined as follows. First, recall that the symmetric algebra

S•Q =
⊕

k≥0

Sk Q

has a graded Hopf algebra structure [20, p. 228] making the degree-one elements primitive,

i.e. such that the comultiplication

� : S•Q → S•Q ⊗ S•Q (3.8)

is the unique algebra map defined by

S•Q ⊃ Q ∋ v �→ v ⊗ 1 ⊕ 1 ⊗ v ∈ (Q ⊗ C)⊕ (C⊗ Q) ⊂ S•Q ⊗ S•Q.

The comultiplication (3.8) is a morphism of g-modules. By definition, the map (3.7) is given

by

Sk Q

Q ⊗ Sk−1 Q

F ⊗ Sk−1 Q

(Sk Q)/C

π⊗id

ψk

(3.9)

where
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924 A. Chirvasitu, I. Penkov

– the upper left-hand arrow is the Q ⊗ Sk−1 Q-component of the comultiplication

� : Sk Q →

k⊕

i=0

Si Q ⊗ Sk−i Q

described above.

– π is the epimorphism fitting in (3.3).

To make sense of lim
−→k

ψk we would have to argue that the maps ψk are compatible with

the embeddings

ι : Sk Q →֒ Sk+1 Q

in (3.3), i.e. that the diagrams

Sk Q F ⊗ Sk Q

Sk+1 Q

F ⊗ Sk−1 Q

ι ψk+1

ψk id⊗ι

commute for arbitrary k. This can be seen by direct examination, fixing a basis {vα} for Q

with a distinguished element v0 = 1 ∈ C ⊂ Q and noting that the upper left-hand map in

(3.9) is defined on monomials by

vα1 · · · vαk
�→

k∑

i=1

vαi
⊗ vα1 · · · vαi−1

vαi+1
· · · vαk

. (3.10)

Lemma 3.1 The kernel of ψ : I → F ⊗ I is precisely C.

Proof The kernel of the upper right-hand map in (3.9) is

C⊗ Sk−1 Q ⊂ Q ⊗ Sk−1 Q, (3.11)

so we are in effect claiming that the preimage of (3.11) through the “partial comultiplication”

Sk Q → Q ⊗ Sk−1 Q (3.12)

is C ⊂ Sk Q.

This is easily seen from the explicit description (3.10) of the comultiplication (3.12). �

3.2 Order

Following (or rather amplifying) [5], we order the quadruples (l, m, n, p) of non-negative

integers by setting

(l, m, n, p) � (l ′, m′, n′, p′)

precisely if

l ≥ l ′, m ≤ m′, p ≥ p′, n ≤ n′

l + m ≤ l ′ + m′, p + n ≤ p′ + n′

l + m − n − p = l ′ + m′ − n′ − p′. (3.13)
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For a quadruple s = (l, m, n, p) we define a family �s of morphisms

Is = Js ⊗ I → Js′ ⊗ I = Is′

for various s′ ≺ s as follows:

– first, those of the form θ ⊗ idI where θ ∈ �s as in [5, §3.2];

– secondly, idJs ⊗ψ0 where

ψ0 : I → F ⊗ I (3.14)

is the morphism in (3.6).

The morphisms of the first type are such that their joint kernel is

Ll,m,n,p ⊗ I ⊆ Jl,m,n,p ⊗ I = Il,m,n,p.

On the other hand, the kernel of ψ0 is C ⊂ I and hence the joint kernel of �s is

Ll,m,n,p
∼= Ll,m,n,p ⊗ C ⊂ Jl,m,n,p ⊗ I = Il,m,n,p. (3.15)

We now want to argue that (3.15) is precisely the inclusion of the socle:

Proposition 3.2 For every choice of non-negative integers l, m, n, and p, the object Ll,m,n,p

is the socle of Il,m,n,p via the inclusion (3.15).

This will require some preparation. First, we have the following remark, in the spirit of

[5, Lemma 3.1].

Lemma 3.3 Let G be a Lie algebra and I ⊆ G an ideal. Suppose U ⊆ U ′ is an essential

inclusion of G/I -modules and D is a G-module on which I acts densely. Then the inclusion

U ⊗ D ⊆ U ′ ⊗ D

is also essential.

Proof Let w1, . . . , wk be linearly independent vectors in D (k ≥ 1), and consider an

element

f :=

k∑

i=1

ui ⊗ wi ∈ U ′ ⊗ D

with non-zero ui . We claim that for every x ∈ G/I , there is x ∈ G so that x is the image of

x and

x f =
∑

i

xui ⊗ wi .

To see this, first choose an arbitrary y ∈ G with image x in G/I , so that

y f =
∑

i

xui ⊗ wi +
∑

i

ui ⊗ ywi .

On the other hand, by the density assumption there is some a ∈ I satisfying awi = ywi for

all i , and we can simply set x = y − a.

Having settled the claim and fixed an element f as above, we can now proceed. The

density of U ⊆ U ′ means that we can find a in the universal enveloping algebra U (G/I )

such that
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– all aui belong to U , and

– at least one of them (au j , say) is non-zero.

Decomposing a as a polynomial in elements x ∈ G/I and lifting each of those to elements

x ∈ G as in the claim, we obtain an element a ∈ U (G) with

a f =
∑

i

aui ⊗ wi ∈ U ⊗ D.

Since wi are linearly independent and au j �= 0, this is a non-zero element of U ⊗ D, and

the proof is complete. �

The following result will require some additional conventions and elaboration. Recall that

Q is the quotient

V ∗ ⊗ V ∗
∗ /(traceless tensors in V ∗ ⊗ V + V∗ ⊗ V ∗

∗ ).

We noted above that we identify the space V ∗⊗V ∗
∗ with finite-rank infinite N×N-matrices,

and hence the quotient consists of equivalence classes of such matrices, where two are

declared equivalent whenever they differ by a traceless matrix (ai j ) such that ai j = 0 for

large enough i and j .

We fix a basis {eα}α∈A of Q as follows:

– e0 = 1 ∈ C;

– all other basis elements are classes of rank-1 matrices of the form v∗ ⊗ v for v∗ ∈ V ∗

and v ∈ V ∗
∗ .

Lemma 3.4 Let X ⊂ V ∗
∗ − V and X∗ ∈ V ∗ − V∗ be finite subsets, linearly independent

modulo V and respectively V∗. Fix x0 ∈ X and x∗0 ∈ X∗. There is an element g ∈ g such that

– gx ∈ V for all x ∈ X,

– gx∗ ∈ V∗ for all x∗ ∈ X∗,

– g(x∗0 ⊗ x0) has non-zero trace,

– g(x∗ ⊗ x) has zero trace for all other choices of x ∈ X and x∗ ∈ X∗.

Proof The conclusion will follow from the remark that g acts densely on sets X ∪X∗, i.e. that

given x ∈ X and x∗ ∈ X∗, the vectors gx ∈ V and gx∗ ∈ V∗ can be prescribed arbitrarily.

Keeping this in mind, we can then find g ∈ g such that

– gx = 0 for all x ∈ X ,

– gx∗ = 0 for all x ∈ X∗ \ {x∗0 },

– the inner product of gx∗0 with every x ∈ X \ {x0} vanishes,

– the inner product of gx∗0 with x0 does not vanish.

This choice will meet the requirements of the statement, hence the conclusion. �

Proposition 3.5 Let F ⊂ W ∪ W∗ be a finite set of vectors and

KF := AnngF ⊂ g

be the Lie subalgebra that annihilates all elements of F. Then for every positive integer k

the inclusion

C ⊂ Sk Q

is essential over K = KF .
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Proof We have to show that the K-submodule generated by any non-zero element of Sk Q

intersects C. We fix a basis {eα}α∈A for Q containing e0 = 1 ∈ C, as in the discussion

preceding the statement of the present result. If we put a total order ≤ on the index set A, the

elements

et = eα1 · · · eαk
:= σ(eα1 ⊗ · · · ⊗ eαk

) (3.16)

for tuples

t = (α1, . . . , αk), α1 ≤ · · · ≤ αk ∈ A

form a basis of Sk Q, where σ denotes the symmetrization operator on Q⊗k .

We assign 1 = e0 degree zero and every other eα degree 1, thus allowing us to define a

degree between 0 and k for each element (3.16) and by extension for each x ∈ Sk Q, as the

largest degree of a basis element (3.16) appearing in a decomposition of x .

We can now prove the claim that

C ⊆ U (K)x

by induction on the degree of x . Since the base case deg(x) = 0 requires no proof, we focus

on the induction step.

Decompose

x =
∑

ctet, ct �= 0, (3.17)

with deg(x) > 0. By Lemma 3.4 we can arrange for an element g ∈ K such that

– g annihilates all elements of F ⊂ W ∪ W∗,

– g sends one of the elements 1 �= eα appearing among the tensorands in (3.17) to a

non-zero scalar multiple of e0,

– g annihilates all other eα appearing in (3.17).

Clearly then

deg(gx) = deg(x)− 1,

and we can conclude the argument by using the induction hypothesis. �

Proof of Proposition 3.2 We know that Ll,m,n,p is semisimple by [5, Corollary 4.3], so it

suffices to show that (3.15) is essential.

Since W , W∗ and I are trivial as sl(∞)-modules and

Vm,n ⊂ V ∗⊗m ⊗ V⊗n

is the socle over sl(∞), it follows by restricting to the latter subalgebra of g that the inclusion

Ll,m,n,p ⊗ I ⊂ Jl,m,n,p ⊗ I

is essential, reducing the goal to proving that so is the inclusion

Ll,m,n,p ⊂ Ll,m,n,p ⊗ I . (3.18)

We can simplify this further: recall that

Ll,m,n,p = W⊗l
∗ ⊗ Vm,n ⊗ W⊗p.

Now apply Lemma 3.3 in the following setup:
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– G = g and I = sl(∞);

– the inclusion U ⊆ U ′ is

W⊗l
∗ ⊗ W⊗p ⊂ W⊗l

∗ ⊗ W⊗p ⊗ I ; (3.19)

– D is any of the simple direct summands Vμ,ν of Vm,n .

Lemma 3.3 then shows that the inclusion (3.18) is indeed essential, provided the inclusion

(3.19) is. In other words, it is enough to consider m = n = 0 in (3.18). Since I is the union

of Sk Q as k → ∞, it will furthermore be sufficient to argue that, for every l, p and k, the

inclusion

W⊗l
∗ ⊗ W⊗p ⊂ W⊗l

∗ ⊗ W⊗p ⊗ Sk Q (3.20)

is essential.

We can now conclude via Proposition 3.5: an arbitrary non-zero element of the right-hand

side of (3.20) is of the form

r∑

i=1

ei ⊗ vi

where ei =
∑

j ai, j ⊗ bi, j are linearly independent elements of W⊗l
∗ ⊗W⊗p and vi ∈ Sk Q.

Now let F ⊂ W ∪W∗ be the finite set of vectors {ai, j , bi, j } and consider the annihilator KF

of F , as in Proposition 3.5.

The Lie algebra KF leaves the subspace
(

r⊕

i=1

Cei

)
⊗ Sk Q

invariant and its action makes that space isomorphic to (Sk Q)⊕r . The conclusion thus follows

from Proposition 3.5.

3.3 Simple Objects and Their Endomorphism Algebras

The main result of the present subsection is the following (presumably expected) claim.

Theorem 3.6 The simple objects Lλ,μ,ν,π are mutually non-isomorphic and have scalar

endomorphism algebras.

The arguments, which require some groundwork, will be in the spirit of those used in the

proof of the analogous statement [5, Theorem 3.5]. First, recall [5, Lemma 3.1]:

Lemma 3.7 Let G be a Lie algebra and J ⊆ G be an ideal. Suppose U, U ′ are two G/J -

modules and D a G-module on which J acts densely and irreducibly with EndJ D = C.

Then, the inclusion

HomG(U , U ′) ∋ f �→ f ⊗ id ∈ HomG(U ⊗ D, U ′ ⊗ D)

is an isomorphism. �

Proposition 3.8 For any two non-negative integers l, p and Young diagrams μ, ν the endo-

morphism algebra in T of the object W∗l ⊗ Vμ,ν ⊗Wp is the group algebra C[Sl × Sp], with

the two symmetric-group factors acting on the two outer tensorands.
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Proof We apply Lemma 3.7 to the ideal

sl(∞) =: J ⊂ G := g,

with

U = U ′ = W∗l ⊗ Wp and D = Vμ,ν .

The density of the action of sl(∞) on Vμ,ν and the isomorphism Endsl(∞) Vμ,ν
∼= C follow

by realizing the object Vμ,ν as a colimit of irreducible sln-modules, while establishing an

isomorphism

Endg(W∗l ⊗ Wp) ∼= C[Sl × Sp]

is entirely parallel to [5, Proposition 3.2], whose proof we do not reprise here. Lemma 3.7

then implies the desired isomorphism

Endg(W∗l ⊗ Vμ,ν ⊗ Wp) ∼= Endg(W∗l ⊗ Wp) ∼= C[Sl × Sp].

�

Proof of Theorem 3.6 According to Proposition 3.8, the endomorphism algebra

Endg(W∗l ⊗ Vμ,ν ⊗ Wp) ∼= C[Sl × Sp] ∼= C[Sl ] ⊗ C[Sp] (3.21)

is semisimple. Since the tensor products cλ ⊗ cπ ∈ C[Sl ] ⊗ C[Sp] of Young projectors

ranging over diagrams with |λ| = l, |π | = p, form a complete system of equivalence

classes of minimal idempotents in (3.21) under inner conjugation, the semisimple object

W∗l ⊗ Vμ,ν ⊗ Wp has simple constituents isomorphic to

(cλ ⊗ cπ )
(
W∗l ⊗ Vμ,ν ⊗ Wp

)
∼= Lλ,μ,ν,π ,

with Lλ,μ,ν,π not isomorphic to Lλ′,μ,ν,π ′ for distinct pairs (λ, π) �= (λ′, π ′) because

cλ ⊗ cπ is not inner-conjugate to cλ′ ⊗ cπ ′ .

Furthermore, using Proposition 3.8, we calculate

Endg Lλ,μ,ν,π
∼= Endg

(
(cλ ⊗ cπ )

(
W∗l ⊗ Vμ,ν ⊗ Wp

))

∼= (cλ ⊗ cπ ) Endg

(
W∗l ⊗ Vμ,ν ⊗ Wp

)
(cλ ⊗ cπ )

∼= (cλ ⊗ cπ )C[Sl × Sp](cλ ⊗ cπ ).

Since (cλ ⊗ cπ )C[Sl × Sp] = X is a simple C[Sl × Sp]-module, we have (cλ ⊗ cπ )C[Sl ×

Sp](cλ ⊗ cπ ) = EndC[Sl×Sp] X = C, and the statement is proved.

3.4 The CategoryTTT

Definition 3.9 The category T is the smallest full tensor Grothendieck subcategory of the

category gMod of g-modules, closed under taking subquotients, and containing

– the objects V ∗ and V ∗
∗ (and hence also Js of (2.3) for quadruples s = (l, m, n, p));

– the object I of (3.4). �

The indices s = (l, m, n, p) form a poset (P,�) under the ordering introduced in § 3.2.

Keeping that in mind, we have
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Proposition 3.10 T is an ordered Grothendieck category in the sense of Definition 2.3.

Proof We have to check the conditions listed in Definition 2.3. Here, the objects Xs will be

the objects Is from (2.4) for s = (l, m, n, p).

Condition (a). This follows from the fact that all Is have countable filtrations whose

subquotients are simple objects of the form Lλ,μ,ν,π as in (2.2). The latter is clear as the

objects Js have finite length and I has the filtration (3.4).

Condition (b). This holds essentially by construction.

Condition (c) is a consequence of [5, Proposition 5.4].

Condition (d). Once more, we filter Is = Js ⊗ I by first refining the socle filtration

maximally of Js and then tensor by some maximal refinement of the filtration (3.4).

The successive subquotients

Sk+1 Q/Sk Q ∼= Sk+1 F = Sk+1(W ⊗ W∗)

of (3.4) can be decomposed as sums of objects of the form Wλ ⊗ W∗λ by part (a) of Propo-

sition 2.2. Hence, tensoring a simple subquotient S ∈ Ss of Js for some s = (l, m, n, p)

by such an object has the effect of increasing l and m by the same amount, thus resulting in

some t ≺ s according to our ordering (3.13).

It thus remains to argue for simple subquotients of

Js = Jl,m,n,p = W⊗l
∗ ⊗ V ∗⊗m ⊗ V ∗⊗n

∗ ⊗ W⊗p

instead. In this case though the filtration of Js is obtained either by surjecting one of the

tensorands V ∗ onto W∗ = V ∗/V∗ or similarly, one of the tensorands V ∗
∗ onto W , or by

evaluating some V∗ against some V .

All of these procedures map into Jt for t ≺ s, hence the conclusion.

Condition (e). Indeed, for s = (l, m, n, p) the object Is decomposes as

Is =
⊕

λ,μ,ν,π

Iλ,μ,ν,π

where the sum ranges over |λ| = l, |μ| = m, etc. The summands have simple respective

socles Lλ,μ,ν,π by Proposition 3.2.

Condition (f). The morphisms Is → It will be compositions of the obvious ones:

– projecting one of the tensorands V ∗ of Is = Js ⊗ I onto W∗;

– the dual analogue, V ∗
∗ → W ;

– the surjection defining Q,

V ∗ ⊗ V ∗
∗ → Q ⊂ I ; (3.22)

– applying the morphism I → F ⊗ I in (3.14) to the tensorand I of Is .

The verification that the joint kernel of these maps is as claimed is routine. �

In particular, [4, Proposition 2.5] and Proposition 3.2 together prove

Theorem 3.11 For every quadruple (λ, μ, ν, π) of Young diagrams, Iλ,μ,ν,π is an injective

hull in T of Lλ,μ,ν,π .

We record the following observation.

Lemma 3.12 Let i = (l, m, n, p) and i ′ = (l ′, m′, n′, p′) be two elements of the poset

described in (3.13). Then i � i ′ implies

d(i, i ′) = l − l ′ + n′ − n.
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Remark 3.13 The category T is symmetric with respect to the simultaneous interchange

V ↔ V∗, V ∗ ↔ V ∗
∗ . Numerically, this corresponds to l ↔ p and n ↔ m. Lemma 3.12 is

compatible with this transformation: according to the last condition in (3.13) we have

l − l ′ + n′ − n = p − p′ + m′ − m,

so we could have substituted p − p′ + m′ − m for l − l ′ + n′ − n in Lemma 3.12. �

3.5 Injective Resolutions

We will now show that C admits an injective resolution in T

0 → C → I0 → I1 → · · · (3.23)

with

I j
∼= � j F ⊗ I .

We will also see that I j/Im(I j−1) admits an ascending filtration with layers

S(3,1,...,1)F

S(2,1,...,1)F

S(1,1,...,1)F

...

where each diagram has j + 1 rows.

To streamline the notation, for such Young diagrams we denote by (l, j × 1) the diagram

with a row of length l and j single-box rows.

To define the maps

ψ j : �
j F ⊗ I → � j+1 F ⊗ I (3.24)

we mimic the procedure used in the definition of (3.14). In fact, that notation will be com-

patible with (3.24), in that we will recover that earlier map by setting j = 0 in the latter. As

before, (3.24) will be a colimit as k →∞ of maps

ψk
j : �

j F ⊗ Sk Q → � j+1 F ⊗ Sk−1 Q. (3.25)

The analogue of diagram (3.9) in this context is

� j F ⊗ Sk Q

� j F ⊗ Q ⊗ Sk−1 Q � j F ⊗ F ⊗ Sk−1 Q

� j+1 F ⊗ Sk−1 Q

ψk
j

(3.26)

where

– the upper left-hand map is id� j F ⊗� with

� : Sk Q → Q ⊗ Sk−1 Q,

the partial comultiplication also appearing in (3.9);

123



932 A. Chirvasitu, I. Penkov

– the upper middle map is id⊗π ⊗ id, with π : Q → F the canonical surjection (again as

in (3.9));

– the upper right-hand map is the multiplication

� j F ⊗ F → � j+1 F

in the exterior algebra �•F , tensored with the identity on Sk−1 Q.

To show that the maps (3.24) fit into a resolution (3.23), we begin with the following

simple observation.

Lemma 3.14 Let j, k be two positive integers and X be a vector space of dimension larger

than j + 1. The map

� j X ⊗ Sk X

� j X ⊗ X ⊗ Sk−1 X

� j+1 X ⊗ Sk−1 X

id
� j X

⊗� mult⊗id
Sk−1 X

(3.27)

with � : Sk X → X ⊗ Sk−1 X defined as in (3.10) annihilates the direct summand

S(k+1,( j−1)×1) X of � j X⊗Sk X and maps the complementary summand S(k, j×1) X of � j X⊗

Sk X isomorphically onto the corresponding summand of the codomain � j+1 X ⊗ Sk−1 X.

Proof That the domain and codomain decompose as

� j X ⊗ Sk X ∼= S(k+1,( j−1)×1) X ⊕ S(k, j×1) X

and

� j+1 X ⊗ Sk−1 X ∼= S(k, j×1) X ⊕ S(k−1,( j+1)×1) X

respectively, follows from the Littlewood-Richardson rule [8, Appendix A, (A.8)]. The claim

can be checked on finite-dimensional vector spaces first, where all four direct summands are

irreducible representations of the algebraic group GL(X), then passing to arbitrary X by

taking a colimit. �

Now consider one of the objects � j F ⊗ I , j ≥ 0 under discussion. Since I has the

filtration (3.5), the object � j F ⊗ I has a filtration by the subobjects � j F ⊗ Sk Q, with

consecutive quotients � j F ⊗ Sk F . Moreover, these quotients are decomposed as

� j F ⊗ Sk F ∼= S(k+1,( j−1)×1)F ⊕ S(k, j×1)F for j, k > 0

Sk F ∼= S(k)F for j = 0, k > 0

� j F ∼= S(1,...,1)F for k = 0. (3.28)

Moreover, these decompositions are canonical, i.e. the summands are unique.

We write

K j := ker
(
ψ j : �

j F ⊗ I → � j+1 F ⊗ I
)

(3.29)

for the kernel of the map (3.24) and

K k
j := K j ∩

(
� j F ⊗ Sk Q

)
= ker

(
ψ j : �

j F ⊗ Sk Q → � j+1 F ⊗ Sk−1 Q
)
;

by convention, we set K−1
j = {0}. We now have
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Lemma 3.15 For each k ≥ 0 the quotient

K k
j /K k−1

j ⊂ � j F ⊗
(

Sk Q/Sk−1 Q
)
∼= � j F ⊗ Sk F (3.30)

is the j-row summand of � j F ⊗ Sk F.

Proof The map ψ j respects the filtrations of its domain and codomain, by

� j F ⊗ Sk Q and � j+1 F ⊗ Sk−1 Q (3.31)

respectively, and the associated graded map gr ψ j , in degree k, is precisely (3.27) with

X = F . By Lemma 3.14 this means that the degree-k kernel of gr ψ j is the j-row summand

of � j F ⊗ Sk F . This verifies the statement at the associated-graded level.

To conclude, it will suffice to construct gradings on the domain and codomain of ψ j ,

compatible with ψ j , that give back the filtrations by (3.31). This would then prove that the

filtered map ψ j arises from a grading, and hence that its kernel is the direct sum of the kernels

of its homogeneous components.

We construct the requisite gradings as follows: as in the discussion preceding Lemma 3.1,

we fix a basis {vα} for Q with v0 = 1 ∈ C ⊂ Q, and assign

deg vα =

{
0 for α = 0

1 otherwise.

One checks easily that ψ j preserves degrees, finishing the proof as described above. �

We can now finally complete the discussion on the injective resolution (3.23).

Theorem 3.16 The morphisms (3.24) fit into an exact sequence (3.23).

Proof The maps ψ j fit into a sequence

0 → C → I
ψ0
−→ F ⊗ I

ψ1
−→ �2 F ⊗ I

ψ2
−→ · · · (3.32)

(not yet known to be exact) of filtered vector spaces. Lemma 3.14 applied to X = F shows

that the associated graded sequence is exact, and the conclusion follows from the fact that,

as seen in the proof of Lemma 3.15, the filtrations on the terms of (3.32) arise from gradings

compatible with the maps ψ j . �

Corollary 3.17 For a simple object X of T we have

Ext
j

T
(X , C) =

{
0 if X �≃ Lλ,∅,∅,λ⊥ for λ with |λ| = j

C if X ≃ Lλ,∅,∅,λ⊥ for λ with |λ| = j .

Proof The statement follows from the existence of the injective resolution (3.23) of the trivial

object C, since by Theorem 3.11

socI j = soc(� j F ⊗ I ) = � j F = � j (W∗ ⊗ W ),

which in turn, by Proposition 2.2, (b), decomposes as
⊕

|λ|= j

W∗λ ⊗ Wλ⊥ .

�
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3.6 Koszulity

We will eventually show that the category T is Koszul. To that end, we first need to strengthen

Proposition 2.6 to an equality:

Theorem 3.18 The Grothendieck category T is sharp in the sense of Definition 2.8: for any

two simples S, T ∈ T we have

Extq(S, T ) �= 0 ⇒ d(s, t) = q.

We do this in stages, considering the following particular case first.

Proposition 3.19 Theorem 3.18 holds when T is purely thick.

Proof Let T ∈ St . We have to argue that there is some injective resolution

0 → T → K0 → K1 → · · ·

so that the socle of Kq is a sum of simple objects S with d(S, T ) = q . This follows from

Definition 3.17 for the trivial object T = C and in general for purely thick T from Theo-

rem 3.11, which implies that we can obtain an injective resolution for T by simply tensoring

(3.23) with T . �

In order to push past purely thick objects we need a version of [5, Lemma 3.13], requiring

some notation: for a quadruple (λ, μ, ν, π)we write L+ℓ
λ,μ,ν,π for the direct sum of all Lλ,μ′,ν,π

with μ′ obtained by adding a box to μ. Here ℓ stands for left, and we have a similarly defined

object L+r
λ,μ,ν,π (for right) obtained by enlarging ν instead.

Lemma 3.20 Consider a simple object Lλ,μ,ν,π .

(a) We have an exact sequence

0 → L+ℓ
λ,μ,ν,π → V ∗ ⊗ Lλ,μ,ν,π → H → 0 (3.33)

where H is a sum of simple objects Lλ′,μ,ν,π with |λ′| = |λ| + 1 and Lλ,μ,ν′,π with

|ν′| = |ν| − 1.

(b) Tensoring Lλ,μ,ν,π with V ∗
∗ produces a similar exact sequence, containing L+r

λ,μ,ν,π

rather than L+ℓ
λ,μ,ν,π .

Proof We focus on (a), the other half being entirely analogous.

The proof follows the same line of reasoning as that of [5, Lemma 3.13]. We first tensor

the extension

0 → V∗ → V ∗ → W∗ → 0

with Lλ,μ,ν,π to obtain a sequence (3.33) with an as yet unidentified H , itself fitting into an

extension

0 → H̃ → H → W∗ ⊗ Lλ,μ,ν,π → 0, (3.34)

with H̃ being a direct sum of simples obtained by evaluating one tensorand V∗ against the

ν component of Lλ,μ,ν,π . It follows that H̃ is a direct sum of simple objects Lλ,μ,ν′,π with

|ν′| = |ν| − 1, and the splitting of (3.34) follows from Proposition 2.6 and the observation

that the indices of simple direct summands Lλ′,μ,ν,π of W∗ ⊗ Lλ,μ,ν,π and Lλ,μ,ν′,π of H̃

are not comparable with respect to the partial order (3.13). �
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Proof of Theorem 3.18 This too presents no substantial difficulties beyond those encountered

in [5, Theorem 3.11]. Setting s =: (λ, μ, ν, π) and t =: (λ′, μ′, ν′, π ′), the argument

proceeds by induction on q + |μ′| + |ν′|. The base case follows from Proposition 3.19 for

empty diagrams μ′ and ν′, and trivially for q = 0.

If μ′ and ν′ are empty we can fall back on Proposition 3.19. Otherwise, suppose for

instance that μ′ is non-empty. We can then embed T as a direct summand in L+ℓ
λ′,β,ν′,π ′ for

|β| = |μ′| − 1. The assumed non-vanishing of Extq(S, T ) and the long exact ext sequence

applied to the extension

0 → L+ℓ
λ′,β,ν′,π ′ → V ∗ ⊗ Lλ′,β,ν′,π ′ → H ′ → 0

provided by Lemma 3.20 forces us into one of two cases:

1: Extq−1(S, H ′) �= 0. By the induction hypothesis we have d(S, U ) = q − 1 for some

simple direct summand U of H ′, and the conclusion follows from this and the fact that

d(U , T ) = 1 for all such U (by the description of H ′ in Lemma 3.20 and the formula for the

defect provided by Lemma 3.12).

2: Extq(S, V ∗ ⊗ Lλ′,β,ν′,π ′) �= 0. This means that S is a direct summand of the socle of

Zq for any injective resolution

0 → V ∗ ⊗ Lλ′,β,ν′,π ′ → Z0 → Z1 · · · . (3.35)

By induction we know that the socle of the qth term of an injective resolution

0 → Lλ′,β,ν′,π ′ → Y0 → Y1 · · · (3.36)

consists of simples U with d(U , Lλ′,β,ν′,π ′) = q . Now note that an injective resolution (3.35)

can be obtained by tensoring (3.36) with V ∗. The simple direct summands of the socle of

V ∗ ⊗ Yq , including S, differ from those of Yq in that their μ diagrams have one extra box,

meaning that indeed

d(S, T ) = d(U , Lλ′,β,ν′,π ′) = q.

The case when μ′ is empty but ν′ is not proceeds analogously, making use of part (b) of

Lemma 3.20 rather than (a).

As a direct consequence of Theorems 2.9 and 3.18 we have

Theorem 3.21 The ordered Grothendieck category T is Koszul in the sense of Definition 2.7.

�

Furthermore, we have the following analogue of [5, Corollary 3.19] and [4, Corollary

4.25 (d)]. In the statement, T f in ⊂ T denotes the full subcategory consisting of finite-length

objects.

Theorem 3.22 The Grothendieck category T is equivalent to the category MC of comodules

over a Koszul graded coalgebra C, with T f in ≃ M
C
f in .

Proof The hypotheses of Theorem 2.11 are met (for the ground field C): T is generated by

the finite-length objects in T, since every object is isomorphic to a subquotient of a direct sum

of indecomposable injectives Is as defined in (3.9), and in turn the injectives Is are unions

of their finite-length truncations

Js ⊗ Sk Q for k ∈ Z>0.

Moreover, according to Theorem 3.6, the endomorphism ring of a simple object Lλ,μ,ν,π as

in (2.2) is the field C. ⊓⊔
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3.7 An Internal Commutative Algebra and Its Modules

The object I has a structure of commutative algebra internal to the tensor category gMod of

g-modules. To see this, we observe that I is isomorphic as a g-module to a quotient algebra

of the symmetric algebra S•Q. Indeed, denote by a the distinguished element 1 ∈ C ⊂ Q

of the degree-one component Q ⊂ S•Q and consider the commutative algebra

S•Q/(a − 1),

where 1 ist the unit of the symmetric algebra and (a−1) is the ideal generated by a−1. This

ideal is clearly g-stable and S•Q/(a − 1) is an algebra in gMod. Moreover, the definition of

I as lim
−→

Sk Q implies that there is an isomorphism of g-modules

I ∼= S•Q/(a − 1).

We will be interested in the category I T of I -modules internal to T. This is clearly a

Grothendieck category. Moreover, the forgetful functor

f orget : I T → T

fits into an adjunction

T I T.⊥

I⊗•

forget

(3.37)

We refer to I -modules in the image of the functor I ⊗ • as free. We will see that tensoring

with I has the effect of “partially semisimplifying” T, in the following sense.

Proposition 3.23 For every positive integer n, the filtration

0 ⊂ C ⊂ Q ⊂ S2 Q ⊂ · · · ⊂ Sn Q

splits in I T upon tensoring it with I . Consequently, for every n the object I ⊗Sn Q is injective

in T.

Proof We prove this inductively on n. For n = 1 the claim is that the embedding

I ∼= I ⊗ C ⊂ I ⊗ Q

splits in I T. To see this, consider the embedding

Q → f orget I

in T. It corresponds, via the adjunction (3.37), to a morphism in I T

σ : I ⊗ Q → I

that is clearly the identity on the I -submodule

I ∼= I ⊗ C ⊂ I ⊗ Q.

The morphism σ is the required splitting, concluding the base case n = 1 of the induction.

The argument also shows that we have a decomposition

I ⊗ Q ∼= I ⊕ (I ⊗ F) (3.38)
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in I T (and hence also in T), implying that I ⊗ Q is injective in T (by Theorem 3.11 for

instance, which shows that both summands in (3.38) are injective).

We regard Q as a subobject of S2 Q via the embedding Q →֒ S2 Q described in (3.2). By

the injectivity of I ⊗ Q ∈ T noted above, the embedding

Q ∼= C⊗ Q ⊂ I ⊗ Q

extends to a morphism in T

S2 Q → I ⊗ Q.

Once more, the adjunction (3.37) retrieves a morphism in I T

I ⊗ S2 Q → I ⊗ Q

that restricts to the identity on the submodule

I ⊗ Q ⊂ I ⊗ S2 Q, (3.39)

showing that the embedding Definition 3.39 splits in I T. This proves the main claim for

n = 2 and the fact that there is a splitting

I ⊗ S2 Q ∼= (I ⊗ Q)⊕
(
I ⊗ S2 F

)
,

meaning that I ⊗ S2 Q is injective in T. We now repeat the procedure recursively to complete

the inductive argument. ⊓⊔

Since it will be our goal to study the category I T along the same lines as T, we next turn

to simple objects therein.

Theorem 3.24 The simple objects in I T are (up to isomorphism) precisely the free I -modules

I ⊗ S for simples S ∈ T. For each of them, the endomorphism algebra in I T is C.

Proof We first prove that I ⊗ S is simple in I T. The simple objects of T are precisely the

various modules Lλ,μ,ν,π of (2.2), and according to Theorem 3.11 the injective hull S ⊂ IS

contains I ⊗ S (IS exists because I T is a Grothendieck category). Since the embedding

S ∼= C⊗ S ⊂ I ⊗ S

is essential in IS , it is also essential in I ⊗ S. It follows that any non-zero subobject

T ⊂ I ⊗ S

in I T contains S and hence the I -module I ⊗ S it generates, so T = I ⊗ S. This concludes

the proof of the claim that all I ⊗ S are simple.

The existence of an isomorphism

End
I T(I ⊗ S) ∼= C, (3.40)

follows from the observation that by the adjunction (3.37) there is an isomorphism

End
I T(I ⊗ S) ∼= HomT(S, I ⊗ S).

Indeed, since I ⊗ S is an injective hull of S in T, every morphism S → I ⊗ S factors through

the socle S ⊂ I ⊗ S, and therefore the isomorphism EndT S = C implies (3.40).

As for the fact that I ⊗ S are, up to isomorphism, all irreducible objects in I T, consider

an arbitrary object T and note that it must have a simple subobject S ∈ T. Hence T must be

a quotient of the (irreducible!) free object I ⊗ S ∈ I T. Consequently, we have T ∼= I ⊗ S as

desired. �
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938 A. Chirvasitu, I. Penkov

Since I is a commutative algebra in T, the category I T of internal modules has a natural

symmetric monoidal structure for which I is the unit object and ⊗I is the tensor product.

Whenever we refer to I T as a tensor category, this will be the structure we consider.

3.8 The Category IT

We are now ready to apply to I T the same treatment we subjected T to. We work with

precisely the same poset (P,�) of quadruples (l, m, n, p) of non-negative integers with the

ordering described in (3.13), and the corresponding objects Is = I ⊗ Js ∈ I T for s ∈ P , as

in Eqs. (2.2)–(2.4).

We will similarly consider the simple (by Theorem 3.24) objects of I T

Tλ,μ,ν,π := I ⊗ Lλ,μ,ν,π (3.41)

and the semisimple objects Tl,m,n,p := I ⊗ Ll,m,n,p, that are direct sums of the various

Tλ,μ,ν,π .

We now have the following analogue of Proposition 3.10.

Proposition 3.25 I T is an ordered Grothendieck category in the sense of Definition 2.3.

Proof Taking as above the objects Xs to be our Is (this time regarded as objects in I T rather

than just T), the argument proceeds much as in the proof of Proposition 3.10 with a small

difference in how we define the morphisms Is → It for t ≺ s from Definition 2.3, (f).

Once again, said morphisms will be tensor products and compositions of a few building

blocks:

– projecting one of the tensorands V ∗ of Is = Js ⊗ I onto W∗;

– the dual analogue, V ∗
∗ → W ;

– the “pairing”

I0,1,0,0 ⊗I I0,0,1,0 = (I ⊗ V ∗)⊗I (I ⊗ V ∗
∗ ) ∼= I ⊗ V ∗ ⊗ V ∗

∗ → I (3.42)

obtained via the adjunction (3.37) from the composition

V ∗ ⊗ V ∗
∗ → Q ⊂ I

in (3.22).

Everything else goes through as sketched in the proof of Proposition 3.10. �

The difference from T is that now the free I -modules generated by the full duals V ∗ and

V ∗
∗ admit the pairing (3.42) valued in the unit object I of the category I T under consideration.

We also have an I -module version of Theorem 3.11.

Theorem 3.26 For every quadruple (λ, μ, ν, π) of Young diagrams, the inclusion

Tλ,μ,ν,π = I ⊗ Lλ,μ,ν,π ⊆ Iλ,μ,ν,π = I ⊗ Jλ,μ,ν,π

obtained by applying the functor I ⊗ • to the inclusion

Lλ,μ,ν,π ⊆ Jλ,μ,ν,π

is an injective hull in I T. �
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Just as T, the category I T can be realized as comodules over a coalgebra (see Theo-

rem 3.22). As in that previous result, we denote by I T f in ⊂ I T the full subcategory of

finite-length objects. Note that the indecomposable injectives

Iλ,μ,ν,π = I ⊗ Jλ,μ,ν,π ∈ I T

have finite length: Jλ,μ,ν,π have finite filtrations with subquotients simple in T, and according

to Theorem 3.24 tensoring these simple objects by I produces simples in I T.

Theorem 3.27 The Grothendieck category I T is equivalent to the category MD of comodules

over a coalgebra D, with I T f in ≃ M
D
f in . Furthermore, the coalgebra D is left semiperfect

in the sense of Definition 2.12.

Proof The argument is largely parallel to that underpinning Theorem 3.22, via Theorem 2.11

(minus Koszulity, which we have not yet addressed for I -modules).

The additional remark, that D is semiperfect, follows directly from Definition 2.12 and the

fact that, as observed above, in I T the indecomposable injectives Iλ,μ,ν,π have finite length.

�

We also need the following remark, which parallels [5, Lemma 2.19] (the proof is virtually

identical, so we omit it).

Lemma 3.28 The tensor subcategory I T′ of I T generated by the morphisms described in the

proof of Proposition 3.25 is the full subcategory containing Il,m,n,p . �

We next turn to the Koszulity of I T. In keeping with the theme, the argument will be very

similar to what we saw in proving Theorems 3.18 and 3.21.

Theorem 3.29 The Grothendieck category I T is sharp in the sense of Definition 2.8: for any

two simples S, T ∈ T we have

Extq(S, T ) �= 0 ⇒ d(s, t) = q.

In particular, the ordered Grothendieck category I T is Koszul in the sense of Definition 2.7.

Proof The last claim follows from sharpness by Theorem 2.9, so we focus on proving the

sharpness claim. In turn, the latter follows as in the proof of Theorem 3.18, with the exact

sequence (3.33) replaced by its analogue, obtained by simply tensoring it with I . �

Remark 3.30 Note that in the present setting the proof of Koszulity is in fact simpler than in

§ 3.6: we do not need a version of Proposition 3.19, since for purely thick simple objects

Lλ,∅,∅,π the corresponding simple object of I T

Tλ,∅,∅,π = I ⊗ Lλ,∅,∅,π

is injective. �

As a consequence, we can supplement Theorem 3.27, fully bringing it in line with Theo-

rem 3.22.

Corollary 3.31 The coalgebra D in Theorem 3.27 can be chosen graded and Koszul. �
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We end the present subsection with description of one possible choice for the graded

coalgebra C from Theorem 3.22. This discussion parallels [5, §3.4], which in turn is analogous

to [6, §5].

Let T be the tensor algebra in I T of the object

(W∗ ⊗ I )⊕ (V ∗ ⊗ I )⊕ (V ∗
∗ ⊗ I )⊕ (W ⊗ I ) = I1,0,0,0 ⊕ I0,1,0,0 ⊕ I0,0,1,0 ⊕ I0,0,0,1

with Td denoting its degree-d component, and the non-unital algebra of endomorphisms

A :=
⊕

m,n∈Z≥0

Hom
I T(Tm, Tn) =

⊕

s,t∈P

Hom
I T(Is, It ).

The algebra A is naturally Z≥0-graded by means of the defect introduced in Definition 2.5:

Ad :=
⊕

s,t∈P

d(t,s)=d

Hom
I T(Is, It ).

Finally, the coalgebra C is simply the graded dual of A, with Cd = A
∗
d .

The fact that C (and hence A) is Koszul then implies

Proposition 3.32 The algebra A is quadratic.

Proof Koszul algebras are well known to be quadratic; see e.g. [2, §2.3]. �

3.9 Universality

We can now characterize I T as a universal category in the sense of [5, Theorem 4.23] and

[4, Theorem 5.2]. First, note that in I T there is a pairing

(I ⊗ V ∗)⊗I (I ⊗ V ∗
∗ ) ∼= I ⊗ V ∗ ⊗ V ∗

∗ → I (3.43)

corresponding to (3.22) through the adjunction (3.37). We will occasionally indicate tensoring

with I by a left-hand ‘I ’ subscript, as in I X := I ⊗ X .

Theorem 3.33 Let (D, ⊗, 1) be a (C-linear abelian) tensor category, x →֒ x∗∗ and x∗ →֒ x∗

be monomorphisms in D, and

p : x∗ ⊗ x∗∗ → 1

be a morphism in D.

(a) There is a unique (up to monoidal natural isomorphism) left exact symmetric monoidal

functor F : I T f in → D sending

– the pairing (3.43) to p;

– the surjection I V ∗
∗ → I W to x∗∗ → x∗∗/x;

– the surjection I V ∗
∗ → I W∗ to x∗ → x∗/x∗.

(b) if D is additionally a Grothendieck category then F extends uniquely to a coproduct-

preserving functor I T → D.

The argument will be analogous to that employed in the proof of [5, Theorem 3.23],

revolving around the fact that the algebra A in the preceding discussion is quadratic (Propo-

sition 3.32). For that reason, it will be necessary to understand its components of degree

≤ 2. In degree zero things are simple: the following result is the version of [5, Lemma 3.24]

appropriate here.
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Lemma 3.34 For (l, m, n, p) ∈ P the endomorphism algebra of the injective object Il,m,n,p ∈

I T is isomorphic to C[Sl × Sm × Sn × Sp], with the symmetric groups acting naturally on

the relevant tensorands of

Il,m,n,p = I ⊗ Jl,m,n,p

= I ⊗ W⊗l
∗ ⊗ (V ∗)⊗m ⊗ (V ∗

∗ )⊗n ⊗ W⊗p.

Proof We have

End
I T(I ⊗ Jl,m,n,p) ∼= HomT(Jl,m,n,p, I ⊗ Jl,m,n,p).

The quotient of Jl,m,n,p by its socle in T has a filtration by subquotients Lλ′,μ′,ν′,π ′ with

(|λ′|, |μ′|, |ν′|, |π ′|) ≺ (l, m, n, p) ∈ P,

which thus admit no non-zero morphisms to

soc(I ⊗ Jl,m,n,p) = socJl,m,n,p.

It follows that restricting an arbitrary morphism

Jl,m,n,p → I ⊗ Jl,m,n,p

in T to the socle induces an isomorphism

HomT(Jl,m,n,p, I ⊗ Jl,m,n,p) ∼= EndT

(
W⊗l
∗ ⊗ (V ∗)⊗m ⊗ (V ∗

∗ )⊗n ⊗ W⊗p
)

. (3.44)

We can see that the right-hand side of (3.44) is naturally identifiable with C[Sl×Sm×Sn×Sp]

as in Proposition 3.8. �

As for degree 1, we need an analogue of [5, Lemma 3.25]. Stating such an analogue will

require some notation. Degree-one morphisms between the objects Il,m,n,p ∈ I T come in

three flavors:

Il,m,n,p → Il,m−1,n−1,p,

Il,m,n,p → Il+1,m−1,n,p,

Il,m,n,p → Il,m,n−1,p+1.

We distinguish families of each flavor, as follows. The morphism

φi, j : Il,m,n,p → Il,m−1,n−1,p for 1 ≤ i ≤ m, 1 ≤ j ≤ n

executes the pairing

V ∗ ⊗ V ∗
∗ → I

of the i th tensorand V ∗ and the j th tensorand V ∗
∗ in

Il,m,n,p = I ⊗ W⊗l
∗ ⊗ (V ∗)⊗m ⊗ (V ∗

∗ )⊗n ⊗ W⊗p

and acts as the identity on all other tensorands.

Next, we have the map

i, jπ : Il,m,n,p → Il+1,m−1,n,p for 1 ≤ i ≤ m, 1 ≤ j ≤ n

which

– first permutes cyclically the first i tensorands V ∗;
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– maps the new first (old i th) tensorand V ∗ onto W∗ = V ∗/V∗;

– finally permutes the last m − j + 1 tensorands W ∗ cyclically so the newly-created W∗

becomes the j th.

Finally, we have the left-right mirror image

πi, j : Il,m,n,p → Il,m,n−1,p+1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n

of i, jπ , obtained by substituting V ∗
∗ for V ∗, W for W∗, reversing the directions of the cyclic

permutations, etc.

We write

Sl,m,n,p := Sl × Sm × Sn × Sp

for products of symmetric groups and, unless specified otherwise, morphism spaces in

Lemma 3.35 below are in the category I T.

Lemma 3.35 Let (l, m, n, p) ∈ P .

(a) Hom(Il,m,n,p, Il,m−1,n−1,p) is isomorphic to C[Sl,m,n,p] as a bimodule over

End Il,m−1,n−1,p
∼= C[Sl,m−1,n−1,p] and End Il,m,n,p

∼= C[Sl,m,n,p],

with any of the morphisms φi, j as a generator for the right C[Sl,m,n,p]-module structure

while identifing the subgroups

Sm−1 ⊂ Sm and Sn−1 ⊂ Sn

with the isotropy groups of i and j respectively.

(b) Hom(Il,m,n,p, Il+1,m−1,n,p) is isomorphic to the induced module

C[Sl+1,m,n,p] ∼= Ind
Sl+1

Sl
C[Sl,m,n,p] = C[Sl+1] ⊗C[Sl ] C[Sl,m,n,p]

as a bimodule over

End Il+1,m−1,n,p
∼= C[Sl+1,m−1,n,p] and End Il,m,n,p

∼= C[Sl,m,n,p],

with i, jπ as a generator for the right C[Sl,m,n,p]-module structure while identifying the

subgroups

Sl ⊂ Sl+1 and Sm−1 ⊂ Sm

with the isotropy groups of j and i respectively.

(c) The left-right mirror image of (b): Hom(Il,m,n,p, Il,m,n−1,p+1) is isomorphic to the

induced module

C[Sl,m,n,p+1] ∼= Ind
Sp+1

Sp
C[Sl,m,n,p] = C[Sp+1] ⊗C[Sp] C[Sl,m,n,p]

as a bimodule over

End Il,m,n−1,p+1
∼= C[Sl,m,n−1,p+1] and End Il,m,n,p

∼= C[Sl,m,n,p],

with πi, j as a generator for the right C[Sl,m,n,p]-module structure while identifying the

subgroups

Sp ⊂ Sp+1 and Sn−1 ⊂ Sn

with the isotropy groups of j and i respectively.
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Proof (a) Having fixed i and j as in the statement, we have a morphism

C[Sl,m,n,p] → Hom(Il,m,n,p, Il,m−1,n−1,p) (3.45)

of (C[Sl,m−1,n−1,p], C[Sl,m,n,p])-bimodules, sending 1 to φi, j . Lemma 3.28 implies that this

morphism is surjective, so it is the injectivity that we focus on.

Note that the morphism (3.45) factors as

C[Sl,m,n,p]

C[Sl,p] ⊗ C[Sm,n] (End Il,0,0,p)⊗ Hom(I0,m,n,0, I0,m−1,n−1,0)

Hom(Il,m,n,p, Il,m−1,n−1,p)

∼= (3.46)

where the downward arrow is the tensor product (over the unit object I ∈ I T) of morphisms

in I T. Since the vertical maps are injective, the bottom morphism (which is in our focus) will

be one-to-one if and only if the top arrow is. The left-hand tensorand

C[Sl,p] → End Il,0,0,p

of the top map in (3.46) is an isomorphism by Lemma 3.34, so it is enough to consider the

right hand tensorand

C[Sm,n] → Hom(I0,m,n,0, I0,m−1,n−1,0)

of that map; equivalently, it suffices to resolve the present discussion in the case l = p = 0.

But this follows from [5, Lemma 3.25 (a)] (which is analogous to the result being proven

here), by noting that the restrictions of the compositions

φi, j ◦ σ : I0,m,n,0 → I0,m−1,n−1,0, σ ∈ Sm,n

to

(V ∗)⊗m ⊗ V⊗n ⊂ (V ∗)⊗m ⊗ (V ∗
∗ )⊗n ⊂ I0,m,n,0

are precisely the morphisms proven linearly independent there.

(b) We again have an (C[Sl+1,m−1,n,p], C[Sl,m,n,p])-bimodule map

C[Sl+1,m,n,p] → Hom(Il,m,n,p, Il+1,m−1,n,p) (3.47)

sending 1 to i, jπ , and its surjectivity is a consequence of Lemma 3.28. The injectivity follows

as in part (a), by first decomposing (3.47) as a tensor product of maps

C[Sl+1,m] → Hom(Il,m,0,0, Il+1,m−1,0,0)

and

C[Sn,p] → End I0,0,n,p.

The latter is an isomorphism by Lemma 3.34, and the former is an injection as in the proof

of (a), by appealing to [5, Lemma 3.25 (b)].

(c) As noted in the statement, this is entirely parallel to part (b), interchanging the roles

of V ∗ and V ∗
∗ , l and p, m and n, etc. �

The composition map from the degree-one to the degree-two component of A comes

in several varieties, depending on the domain. Before listing the various options, it will be

convenient to introduce
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Notation 3.36 For a quadruple (l, m, n, p) ∈ P we write

Il,m↓,n↓,p := Hom
I T(Il,m,n,p, Il,m−1,n−1,p)

and similarly for other morphism spaces, with arrows indicating whether the respective index

increases or decreases, and multiple arrows to indicate the amount. Other examples are

Il,m↓↓,n↓↓,p := Hom
I T(Il,m,n,p, Il,m−2,n−2,p),

Il↑,m↓,n,p := Hom
I T(Il,m,n,p, Il+1,m−1,n−2,p)

and so on.

For composable morphism spaces in I T we denote by ‘⊙’ the tensor product over the

endomorphism algebra of the intermediate object. For example:

Il,(m−1)↓,(n−1)↓,p ⊙ Il,m↓,n↓,p := Il,(m−1)↓,(n−1)↓,p ⊗C[Sl,m−1,n−1,p] Il,m↓,n↓,p.

With this in place, the possibilities for composition of degree-1 morphisms are:

Il,(m−1)↓,(n−1)↓,p ⊙ Il,m↓,n↓,p → Il,m↓↓,n↓↓,p, (3.48)

which is mirror-self-dual,

I(l+1)↑,(m−1)↓,n,p ⊙ Il↑,m↓,n,p → Il↑↑,m↓↓,n,p

(3.49)

and its mirror image

Il,m,(n−1)↓,(p+1)↑ ⊙ Il,m,n↓,p↑ → Il,m,n↓↓,p↑↑, (3.50)

(Il↑,(m−1)↓,n−1,p ⊙ Il,m↓,n↓,p)⊕ (Il+1,(m−1)↓,n↓,p ⊙ Il↑,m↓,n,p)

→ Il↑,m↓↓,n↓,p (3.51)

and its mirror image

(Il,m−1,(n−1)↓,p↑ ⊙ Il,m↓,n↓,p)⊕ (Il,m↓,(n−1)↓,p+1 ⊙ Il,m,n↓,p↑)

→ Il,m↓,n↓↓,p↑, (3.52)

and finally, the self-dual morphism

(Il+1,m−1,n↓,p↑ ⊙ Il↑,m↓,n,p)⊕ (Il↑,m↓,n−1,p+1 ⊙ Il,m,n↓,p↑) → Il↑,m↓,n↓,p↑. (3.53)

The nine ‘⊙’ symbols above account for the nine possible ways of composing two mor-

phisms, each being of one of the three flavors listed in Lemma 3.35.

Remark 3.37 Note that in all cases the product ‘⊙’ conserves the total number of up as well

as down arrows. �

Proof of Theorem 3.33 (sketch) As in the proof of [5, Theorem 3.23], an appeal to [5, Theorem

2.22] together with Proposition 3.25 proves the statement as soon as we argue that the initial

data of

x →֒ x∗∗ , x∗ →֒ x∗ and p : x∗ ⊗ x∗∗ → 1

in the tensor category D extends to a linear monoidal functor

F : I T′ → D,
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where I T′ is, as in Lemma 3.28, the full subcategory of I T on the objects Il,m,n,p . Set

I T := T ⊗ I for any T ∈ T. Since the objects of I T′ are precisely the tensor powers

(over I ∈ I T) and the morphisms are tensor products and compositions of permutation of

tensorands, evaluations (3.43), inclusions I V∗ ⊂ I V ∗ and I V ⊂ I V ∗
∗ , etc., there is an obvious

candidate for such an extension F , sending

I V ∗
∗ �→ x∗∗ and I W �→ x∗∗/x,

I V ∗ �→ x∗ and I W∗ �→ x∗/x∗,

(3.43) �→ p,

etc. What we have to argue is that that extension is in fact well defined.

The fact that, by Proposition 3.32, the algebra A defined in Sect. 3.43 is quadratic, means

that it will be enough to check that the degree-two relations between degree-one morphisms

between the Il,m,n,p (i.e. the kernels of the maps (3.48) to (3.53)) vanish in D upon substituting

x for I V , x∗ for I V∗, etc. This would be a somewhat tedious and unenlightening check if

done exhaustively, so we exemplify the argument by treating (3.48) alone. In that regard, we

make the claim:

The kernel of the composition (3.48) is generated, as an (Sl,m−2,n−2,p, Sl,m,n,p)-bimodule,

by

φm−1,n−1 ⊗ φm,n − φm−1,n−1 ⊗ φm,n ◦ (m, m − 1)(n, n − 1), (3.54)

where (m, m − 1) is the respective transposition in Sm ⊂ Sl,m,n,p and similarly,

(n, n − 1) ∈ Sn ⊂ Sl,m,n,p.

Assuming the claim for now, we observe that the relations annihilated by (3.48) hold in

any tensor category. It follows that our candidate functor F is indeed compatible with the

quadratic relations imposed by composition, and hence is well defined. It thus remains to

prove the claim; this is the goal we focus on for the duration of the present proof, following

the layout of the proof of [5, Lemma 3.27 (a)].

First, note that the morphism (3.48) is surjective by Lemma 3.28. Secondly, the fact that

(3.54) belongs to the kernel of (3.48) is immediate: this is because

– evaluating the mth tensorand I V ∗ against the nth tensorand I V ∗
∗ , and then

– evaluating the (m − 1)st tensorand I V ∗ against the (n − 1)st tensorand I V ∗
∗

has the same effect as

– permuting the mth and (m − 1)st tensorands I V ∗,

– permuting the nth and (n − 1)st tensorands I V ∗
∗

and then repeating the two evaluations above.

The proof will thus be complete if we argue that the kernel of (3.48) is not strictly larger

than the bimodule generated by (3.54). We do this by a dimension count. Tensoring two

instances of Lemma 3.35, (a) over C[Sl,m−1,n−1,p], we conclude that the domain

Il,(m−1)↓,(n−1)↓,p ⊙ Il,m↓,n↓,p

of (3.48) is isomorphic to C[Sl,m,n,p] as an (C[Sl,m−2,n−2,p], C[Sl,m,n,p])-bimodule, with

– φm,n identified with the generator 1 ∈ C[Sl,m,n,p], and

– Sl,m−2,n−2,p ⊂ Sl,m,n,p being the subgroup fixing m, m − 1, n and n − 1.
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This identification turns the putative generator (3.54) of the kernel of (3.48) into

1 − (m, m − 1)(n, n − 1) ∈ C[Sl,m,n,p]. (3.55)

The (C[Sl,m−2,n−2,p], C[Sl,m,n,p])-bimodule generated by (3.55) coincides with the right

Sl,m,n,p-module generated by the same element. The dimension of that module is half that

of C[Sl,m,n,p], and hence

dim ker (3.48) =
1

2
l!m!n!p! =

1

2
(dim domain of (3.48)) .

The desired conclusion that the kernel of the surjection (3.48) cannot strictly contain the

bimodule generated by (3.54) will thus follow if we prove that

dim Il,m↓↓,n↓↓,p = dim Hom(Il,m,n,p, Il,m−2,n−2,p) ≥
1

2
l!m!n!p!.

Since we have an embedding

(End Il,0,0,p)⊗ I0,m↓↓,n↓↓,0 → Il,m↓↓,n↓↓,p

and the left-hand tensorand is isomorphic to C[Sl,p] by Lemma 3.34, it is enough to assume

that l = p = 0 and show that

dim Hom
I T

(
(I V ∗)⊗m ⊗I (I V ∗

∗ )⊗n, (I V ∗)⊗(m−2) ⊗I (I V ∗
∗ )⊗(n−2)

)
≥

1

2
m!n!,

or equivalently, via the adjunction (3.37), that

dim HomT

(
(V ∗)⊗m ⊗ (V ∗

∗ )⊗n, I ⊗ (V ∗)⊗(m−2) ⊗ (V ∗
∗ )⊗(n−2)

)
≥

1

2
m!n!.

This, however, follows by restricting the morphisms on the left to V⊗m
∗ ⊗ V⊗n and noting

that we already know the analogous inequality

dim HomT

(
V⊗m
∗ ⊗ V⊗n, V⊗(m−2)

∗ ⊗ V⊗(n−2)
)
≥

1

2
m!n!

from the computation carried out in [6, Lemma 6.3], or from [5, Lemma 3.27 (a)] (which is

analogous to the claim being proven here).

4 Orthogonal and Symplectic Analogues of the CategoriesTTT and ITITIT

In this final section we discuss briefly the orthogonal and symplectic versions of the categories

T and I T. The orthogonal and symplectic analogues of the Lie algebra glM (V , V∗) are the

Lie algebras o(V ) and sp(V ) where V is now equipped with a nondegenerate symmetric or

antisymmetric bilinear form 〈·, ·〉 : V×V → C, yielding a respective linear map S2V → C or

�2V → C. The Lie algebras o(V ) and sp(V ) are defined as the respective largest subalgebras

of glM (V , V ) for which the map S2V → C or �2V → C is a morphism of representations.

Let g = o(V ), sp(V ). Then V is a submodule of V ∗ (via the form 〈·, ·〉), and the g-module

W := V ∗/V is irreducible. This can be proved for instance by considering W over the family

of Lie subalgebras glM (V ′, V ′
∗) ⊂ g arising from varying decompositions of V as V ′ ⊕ V ′

∗

for maximal isotropic subspaces V ′, V ′
∗. Over each such subalgebra W is isomorphic to

V ′∗/V∗ ⊕ (V∗)
∗/V ,
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and hence has precisely two proper submodules. Since these submodules vary when V ′ and

V ′
∗ vary, the module W is irreducible over g.

Furthermore, for any Young diagram λ, the irreducible glM (V , V )-module Vλ restricts to

g yielding a generally reducible g-module. In all cases the socle of Vλ|g is simple, and we

denote it by V[λ] for g = o(V ) and by V〈λ〉 for g = sp(V ). It is clear that the Lie algebras

o(∞) and sp(∞) considered in [15] are subalgebras respectively of o(V ) and sp(V ), and

by [14, Theorem 7.10] the socle filtrations of Vλ|o(∞) and Vλ|sp(∞), described explicitly in

[15], coincide with the respective socle filtrations of Vλ|o(V ) and Vλ|sp(V ).

If λ, μ is a pair of Young diagrams, we set

Lλ,μ :=

{
Wλ ⊗ V[μ] for g = o(V ),

Wλ ⊗ V〈μ〉 for g = sp(V ).

Then Lλ,μ is a simple g-module. This can be seen by essentially the same argument as in the

case of W . Moreover,

Lλ,μ
∼= Lλ′,μ′ if and only if λ = λ′ and μ = μ′.

The analogue of the injective object I from Sect. 3.4 is constructed as follows. One sets

Fg :=

{
S2W for g = o(V ),

�2W for g = sp(V ).

Furthermore, the quotient Qg of S2V ∗ by the sum of kernels of the pairings V ∗ ⊗ V → C
and S2V → C admits a non-splitting exact sequence

0 → C → Qg → Fg → 0.

The socle filtration of I has the form

S2 Fg

Fg

C

...

.

Then the embedding (3.1) induces embeddings

Sk Qg →֒ Sk+1 Qg,

which allow us to define Ig as the colimit

Ig = lim
−→

Sk Qg.

Moreover, by the same construction as in Sect. 3.7, Ig is endowed with the structure of a

commutative algebra.

The category Tg is introduced in the same way as in Sect. 3.4, where now Js = W⊗l ⊗

V ∗⊗m for pairs s = (l, m), l, m ∈ N, and the object I is replaced by Ig. In the Introduction

we denoted this category by T2
g to emphasize that is generated as a tensor category by two

modules V and V ∗. In the rest of the paper we use the shorter notation Tg. We leave it to

the reader to check that Proposition 3.10 holds also for the category Tg, and that Ig is an

injective hull in Tg of the object C. The respective partial order (l, m) � (l ′, m′) on N × N
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is given by l ≥ l ′, m ≤ m′, l + m′ ≤ l ′ + m. The results of Sect. 3.3 also hold with obvious

modification.

The canonical injective resolution (3.23) stays the same with F replaced by Fg, however

now the socle of the object
(
Ig

)
j
= Ig ⊗� j Fg decomposes as

⊕
SλV for g = sp(V ) and⊕

Sλ⊥V for g = o(V ) where λ runs over all special partitions of degree 2 j .

Corollary 4.1 For any simple object X of To(V ) we have

Ext
j

To(V )
(X , C) =

{
0 if X ≇ Lλ,∅ for a special λ with |λ| = 2 j,

C if X ∼= Lλ,∅ for a special λ with |λ| = 2 j,

and for any simple object X of Tsp(V ) we have

Ext
j

Tsp(V )
(X , C) =

{
0 if X ≇ Lλ⊥,∅ for a special λ with |λ| = 2 j,

C if X ∼= Lλ⊥,∅ for a special λ with |λ| = 2 j .

Next, Theorem 3.18 and Proposition 3.19 stay valid with T replaced by Tg. We leave it

to the reader to modify Lemma 3.20 accordingly. Furthermore, Proposition 3.23, and The-

orem 3.24 also hold for Ig and Qg (instead of I and Q, respectively). The same applies

to Proposition 3.25, Theorem 3.26 (with Lλ,μ instead of Lλ,μ,ν,π ), Theorem 3.27, Theo-

rem 3.29, and Corollary 3.31.

The universality results from Sect. 3.9 also carry over to the cases g = o(V ), sp(V ). In

particular, the category IgT is defined in the same way as the category I T: it is the category

of internal Ig-modules in Tg.

Note also that the analogue

V ∗ ⊗ V ∗ → Qg ⊂ Ig

of the map (3.22) is well defined and factors through maps

S2V ∗ → Qg and �2V ∗ → Qg

in the respective cases g = o(V ) and g = sp(V ). This defines pairings

Ig ⊗ V ∗ ⊗Ig ⊗Ig ⊗ V ∗ → Ig ⊗ S2V ∗ → Ig (4.1)

and

Ig ⊗ V ∗ ⊗Ig ⊗Ig ⊗ V ∗ → Ig ⊗�2V ∗ → Ig, (4.2)

respectively.

Now we have

Theorem 4.2 Let (D, ⊗, 1) be a tensor category, and x →֒ x∗ be a monomorphism in D.

Assume that a morphism in D

p : x∗ ⊗ x∗ → 1

is given, satisfying p ◦ σ = p for g = o(V ) and p ◦ σ = −p for g = sp(V ), where σ

is the flip automorphism of x∗ ⊗ x∗ as an object of the tensor category D coming from the

assumption that D is a symmetric monoidal category.

(a) There is a unique (up to monoidal natural isomorphism) left exact symmetric monoidal

functor F : IgT f in → D, where g = o(V ) if p ◦ σ = p and g = sp(V ) if p ◦ σ = −p,

sending
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– the respective pairing (4.1) or (4.2) to p;

– the surjection Ig V ∗ → Ig W to x∗ → x∗/x.

(b) if D is additionally a Grothendieck category then F extends uniquely to a coproduct-

preserving functor IgT → D.

The universality of the tensor categories Io(V )
T and Isp(V )

T leads to the fact that they are

equivalent as monoidal categories. More precisely, consider the (symmetric) tensor category

T−
sp(V )

defined in the same way as Tsp(V ) but with the flip isomorphism

σ : V ∗ ⊗ V ∗ → V ∗ ⊗ V ∗, σ (v ⊗ w) = w ⊗ v

replaced by −σ . One checks that T−
sp(V )

is well-defined, i.e. that the new flip isomorphism

on V ∗ ⊗ V ∗ induces a well-defined structure of tensor category preserving the monoidal

structure on Tsp(V ).

In addition, one checks that there is a well-defined tensor category Isp(V )
T− of internal

I -modules in T−
sp(V )

which coincides with Isp(V )
T as a monoidal category.

Corollary 4.3 The tensor categories Io(V )
T and Isp(V )

T− are canonically equivalent.

Proof By Theorem 4.2, there are distinguished functors

F : Io(V )
T → Isp(V )

T−

F− : Isp(V )
T− → Io(V )

T

sending V ∗⊗ Io(V ) to V ∗⊗ Isp(V ), V∗⊗ Io(V ) to V∗⊗ Isp(V ) and W ⊗ Io(V ) to W ⊗ Isp(V ),

and vice versa. Again, by Theorem 4.2 the functors F and F− must be mutually inverse. ⊓⊔
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