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Time-dependent density functional theory (TDDFT) based approaches have been developed in recent years to model
the excited-state properties and transition processes of the molecules in gas-phase and in a condensed medium such as
in solution and protein microenvironment or near semiconductor and metal surfaces. In the latter case, usually classical
embedding models have been adopted to account for the molecular environmental effects, leading to the multi-scale
approaches of TDDFT/PCM and TDDFT/MM, where a molecular system of interest is designated as the quantum
mechanical region and treated with TDDFT, while the environment is usually described using either a polarizable con-
tinuum model (PCM) or a (non-polarizable or polarizable) molecular mechanics (MM) force fields. In this perspective,
we briefly review these TDDFT-related multi-scale models, with a specific emphasis on the implementation of ana-
Iytical energy derivatives such as the energy gradient and Hessian, the nonadiabatic coupling, the spin-orbit coupling
and the transition dipole moment as well as their nuclear derivatives for various radiative and radiativeless transition
processes among electronic states. Three variations of the TDDFT method, the Tamm-Dancoff approximation (TDA)
to TDDFT, spin-flip DFT, and spin-adiabatic TDDFT, are discussed. Moreover, using a model system (pyridine—Agy
complex), we emphasize that caution is needed to properly account for system-environment interactions within the
TDDFT/MM models. Specifically, one should appropriately damp the electrostatic embedding potential from MM
atoms and carefully tune the van der Waals interaction potential between the system and the environment. We also
highlight the lack of proper treatment of charge transfer between the QM and MM regions as well as the need for

accelerated TDDFT modelings and interpretability, which call for new method developments.
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I. INTRODUCTION

To study the systems at the atomic and molecular levels,
one has to follow the principles of quantum mechanics (QM).
Even though the first-principles electronic structure theory
and the quantum dynamics methods have achieved great suc-
cess in describing the ground state of molecular systems, com-
puting excited electronic state still faces many challenges be-
cause it implies not only to find higher-energy solution of
the electronic Schrodinger equation, but also to solve many
challenging conceptual and technical problems such as the
electron-nuclear coupling, the state mixing of the same spin
and different spin multiplicities, or the entangled optical and
dark processes, which usually require one to abandon the ap-
proximations like the adiabatic Born—Oppenheimer(BO) and
to calculate the accurate structure properties such as potential
energy surfaces, nuclear forces, harmonic and non-harmonic
vibrational frequencies, nonadiabatic couplings (NAC), and
spin-orbit couplings (SOC).! Furthermore, most of the pho-
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tophysical and photochemical processes of technological and
biological interest take place in the condensed phase or in
presence of an environment surrounding the molecular sys-
tem such as solvents, protein scaffolds, and near semiconduc-
tor or metal surfaces. In this case, one has to account for the
system-environment interaction for properly describing these
processes.’

For composite systems like solute-solvent systems, flu-
orescent proteins, and even nanostructures which inte-
grate molecules or semiconductors with metal nanoparticles
(MNPs), a small region of the system plays a predominant
role in the excited-state properties and processes of the whole
system. Thus, the total system can usually be partitioned into
an active region ranging from a single molecule to a molec-
ular aggregate and an embedding environment. The former
is mainly responsible for the observed process or property
and the latter does not take a direct part in the process but
acts as a perturbation affecting the electronic structure and
the dynamics of the core active system. The active region
is then treated by a high-level QM method, whereas the rest
is described by a lower-level approach such as molecular me-
chanical force fields and continuum models. The integration
of QM methods with classical descriptions within multiscale
models provides a natural way to focus the computation on a
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small area in a larger environment without significantly in-
creasing the computational cost.> Currently, scientists have
developed a family of multiscale theoretical models such as
QM/MM (the hybrid QM and molecular mechanics (MM)
approach),*> QM/PCM (the hybrid QM and the polarizable
continuum model),®” QM/MM/PCM,? and QM/EM (the hy-
brid QM and electromagnetic mechanics or electrodynamics
method).?12

The QM methods for describing the molecular electronic
systems can be divided into three categories: semi-empirical
quantum chemistry methods, ab initio wavefunction-based
methods, and density functional theory (DFT) methods.'® The
post-Hartree-Fock(HF) methods have been very successful
in describing the ground and excited-state electronic states
of small molecules, especially when the molecules are near
the equilibrium configuration. The semi-empirical methods
are much faster than the ab initio ones. However, they re-
quire a couple of atom-specified parameters and are thus
only suitable for parameterized systems. For a medium and
even large sized molecular system, the most widely used
method is DFT. The last two decades have witnessed an ex-
plosion of DFT-based calculations in the field of computa-
tional chemistry.'*1® The modeling of ground state processes
such as chemical,!” surface,'® and enzyme 1reactions,19 are
mostly carried out using Kohn-Sham DFT (KS-DFT)?*2! cal-
culations. Meanwhile, excited-state processes (such as UV-
vis abs.01‘pti0n,22‘25 fluorescence,20-27 phosphorescence,zg_30
chemiluminescence,?! bioluminescence,>>* and energy
transfer processes in natural and artificial photosynthetic
systems, organic and dye-sensitized solar cells,>> 0 etc.)
have been modeled extensively using time-dependent DFT
(TDDFT),**2 which is the excited-state counterpart of the
KS-DFT.

The vast popularity of KS-DFT and TDDFT -calcula-
tions arises from three factors. The first is their cost-
effectiveness. They are simply orders of magnitudes cheaper
than highly reliable quantum chemistry methods such as
coupled-cluster methods,*** equation-of-motion coupled-
cluster methods,*#° and multi-configurational and multi-
reference wavefunction methods.’*>? Moreover, the high-
order energy derivatives, transition couplings, or molecular
properties from DFT and TDDFT are relatively simple to be
implemented and cost-efficient, which are essential for study-
ing the rich chemical and physical events we are interested in,
e.g., the evaluation of spectroscopic intensities and rates and
quantum yields of excited-state processes. The second is their
reasonable accuracy, if a suitable exchange-correlation (XC)
functional is employed for the particular problem at hand. For
example, a valence electronic excitation might be best de-
scribed with a conventional hybrid functional (such as B3LYP
and PBEQ), whereas a charge-transfer or Rydberg excitation
necessitates the use of range-separated hybrid functionals.>3-*
Besides the above two factors, the DFT/TDDFT methods have
also been implemented in many efficient and user-friendly
commercial or noncommercial software packages that were
developed and made accessible to a wide community of re-
searchers. This wide availability of DFT/TDDFT methods
in modern computational chemistry programs, combined with

versatile and user-friendly visualization tools, makes them ac-
cessible to researchers with no sophisticated background in
theoretical chemistry.

Two versions of TDDFT implementation have been famil-
iar to the quantum chemistry community. One is to numeri-
cally solve the time-dependent Kohn-Sham equations directly
in real-time domain (RT-TDDFT).>> RT-TDDFT approach has
been implemented in the real space, in plane wave bases and
in atomic orbital basis sets, and has been used to calculate the
linear and nonlinear spectra, describe the photochemistry by
combining the Ehrenfest or surface hopping nuclear dynam-
ics, etc. Many review articles have summarized the recent
progress of RT-TDDFT approaches (e.g. Refs. 56—60 and ref-
erences therein). The other is the implementation of TDDFT
at the linear response level (LR-TDDFT),®!-% which looks
like the standard implementation of LR-TDHF already avail-
able in most quantum chemistry codes. A set of static Casida’s
equations was derived and solved to obtain the molecular ex-
citation energies and transition vectors, as well as the oscil-
lator strengths. Within the framework of LR-TDDFT, nu-
clear gradient®’~% and Hessian’"7! of excited-state energies,
and the nonadiabatic coupling between electronic states’>~74
have all been implemented. Consequently, this LR-TDDFT
scheme has become the most widely-used one to extract the
energies of low-lying excited states, optimize excited-state ge-
ometries, calculate Stokes shifts, and explore the excited-state
potential energy surfaces. Here, we only focus on review-
ing approaches based on LR-TDDFT, with a specific empha-
sis on their applications to the calculation of electronic struc-
ture quantities required by describing molecular excited-state
properties and processes.

Most earlier TDDFT calculations were focused on gas-
phase excited states. But as mentioned earlier, there has been
an ever-growing interest to extend these calculations to com-
posite systems for the modeling of excited-state processes
of a single or a few molecules embedded in a condensed-
phase medium such as solvents,” "7 macromolecules,’8-30
and metal nanoparticles.!%81-8* For these system-environment
complexes, multiscale modeling approaches have been pro-
posed with different level of theories for the different re-
gions. There are generally two categories of embedding meth-
ods for TDDFT calculations within the environment: den-
sity embedding and classical embedding. Within the cate-
gory of density-embedding schemes, recent efforts include
the projection-based embedding theory,®%¢ frozen-density
embedding,’’ polarized many-body expansion scheme,® etc.
When the excited states of molecular aggregates are con-
sidered, the subsystem TDDFT methods have shown ac-
curacy and efficiency for large systems®® and inter-region
charge-transfer excitations.’>®! On the other hand, the hybrid
QM/MM method has been more commonly used in TDDFT
calculations with the aforementioned classical embedding,
such as QM/MM, QM/PCM, QM/MM/PCM, and QM/EM. In
the following, we mainly focus on TDDFT calculations with
a classical embedding description of the environment using
either PCM®7 or polarizable MM force fields (MMpol).*?

While tremendous progress has been made in
TDDFT/PCM and TDDFI/MM methodologies, the ap-



plication of these methods to model excited-state properties
and processes in a condensed-phase medium still faces three
great challenges (in addition to the choice of suitable DFT
XC functionals):

o System-environment interactions. For each system-
environment complex, there lacks a standard protocol
for tuning the QM/MM electrostatic and van der Waals
interactions between the system and its environment,
which is critical to avoid over-polarization and geom-
etry distortions. Also missing are approaches for de-
scribing full charge transfer excitations that move sys-
tem electrons into the environment or partial charge
transfer excitations where the participating system or-
bitals extend into the environment.

e Computational cost. Standard single-point TDDFT ex-
citation energy calculations and geometry optimizations
are currently limited to systems with up to a couple
of hundred atoms. To theoretically study a variety of
molecular excited-state properties and processes, one
has to calculate the derivatives of excitation energies
with respect to perturbation parameters such as the nu-
clear coordinates and external fields, the NACs, the nu-
clear derivatives of the transition dipole or SOC ma-
trix element, etc. These quantities require even much
higher computational cost than the excitation energy
calculation. Another bottleneck in TDDFT/MMpol cal-
culations arises from the need to solve for polarizable
charges or dipoles, which can become rather expensive
with a large polarizable MM region.”>%*

e [nterpretability. While numerous TDDFT calculations
are routinely performed on new dye molecules, bio-
luminescence probes, etc., few analysis tools beyond
electron (difference and transition) densities, atomic
partial charges, and excited-state and transition dipole
moments are available for helping directly interpret
the observed photochemical properties.”> New analy-
sis procedures and design principles only started to
emerge recently for predicting the substituent, solvent,
and macromolecular effects on the measured spectra
and quantum yield.?®-100

This perspective is organized as follows. In Section II, we
briefly introduce a variety of electronic structure quantities re-
quired by the evaluation of molecular properties, which are
closely related to the calculations of the derivatives of the en-
ergy or wavefunction with respect to the nuclear coordinates
or other perturbation parameters. The current development of
hybrid TDDFT with MM and PCM are summarized in Sec-
tion III, which is followed by a discussion on the choice of
TDDFT methods in Section IV. We then elaborate in Section
V on the three challenges listed above for the TDDFT mod-
eling of excited-state processes in complex environments. A
summary statement will be given in Section VI.

Il. A VARIETY OF ELECTRONIC STRUCTURE
QUANTITIES FOR EVALUATION OF MOLECULAR
PHOTOPHYSICAL AND PHOTOCHEMICAL PROPERTIES

A. Quantities for Describing Properties of a Specific
Electronic Excited State

Molecular properties characterize molecules and their be-
haviors, and they represent the link between experimental ob-
servable quantities and theoretical calculations. There are a
wide variety of molecular properties, which are related to nu-
merous physical phenomena. At first we address a variety
of properties of molecules at a given electronic state which
are related with the calculations of energy derivatives with re-
spect to the perturbation parameters.!?’-1> For example, the
forces and the force constants are given as the first and second
derivatives of the molecular energy with respect to the nuclear
coordinates, respectively,®”-193 and the infrared intensities can
be computed as the cross second derivatives of the molecular
energy with respect to the components of a static electric field
and nuclear coordinates.!%1% As such, formulating energy
derivatives with respect to the external perturbation variables
yields a wealth of time-independent molecular properties.

1. The Excited-State Energy Gradient and Hessian within
TDDFT

The energy gradient and hessian with respect to nuclear co-
ordinates have been widely used to explore molecular poten-
tial energy surfaces and to calculate vibrational spectra and
thermochemical parameters. For a given molecular geometry,
the energy of the /-th excited state can be expressed as the sum
of the ground-state energy and the excitation energy

E;=E,+ oy, (D

where E; is the ground-state energy and @y is the TDDFT
excitation energy of the /-th excited state. Then, the energy
derivatives of a given excited state / can be evaluated as the
sum of the ground-state energy derivatives and the derivatives
of the corresponding TDDFT excitation energy.

In the framework of LR-TDDFT, the excitation energy is
defined as the pole of the LR function to an external perturba-
tion. The excitation energies and the corresponding transition
vectors can be obtained from an usual non-Hermitian eigen-
value equation*?

A B X 1 0 X
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The matrix representations of A and B in molecular orbital

(MO) basis are written as
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Here, €, is the p-th 6 (0 = a or B) spin Kohn-Sham MO
energy. The indices i,j,k,...; a,b,c,...; and p,q,r,... de-
note occupied, virtual, and generic MOs, respectively. The
transition vectors |X) and |Y) are defined on the same Hilbert
spaces of occ ® vir, which satisfy the following biorthonormal
condition

(X1, Y11X7,=Yy) = 6. &)

After these transition vectors are solved, the excitation en-
ergy of the /-th TDDFT excited state can be expressed as

1
oy = E(XI‘FYI)T'(A"'B)'(XI“FYI)

F2 YD) (A B)- (X - V). (6)

Direct differentiation of @; in Eq. (6) with respect to the nu-
clear coordinates (R) requires one to calculate first-order nu-
clear derivatives of molecular orbital coefficients (C) and tran-
sition vectors (X and Y). In order to avoid these calculations,
one would define an auxiliary energy functional as®®

Z[X,0q,C,Z,W] = Eg + oy — A (Tr(X; —Y7) — 1)
+ ZZaiG aic T Z quc (qua - 6pq)' (7)

aioc pqo

With the construction of the Lagrangian .Z,, one has
dE; 0%,
dR;  OR;’

since %, is stationary with respect to all the variational pa-

rameters, including C, X, and Y. The Lagrange multipliers Z
and W are determined by the condition

2,
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and the equation derived thereof is called the z-vector equa-
tion.'%” Once the energy gradient of an excited state is for-
mulated, one can straightforwardly differentiate the energy
gradient to derive the excited-state Hessian. The calcula-
tion of excited-state Hessian requires one to calculate the
first-order nuclear derivatives of molecular orbital coefficients
(CR) and transition vectors (XX and YX) explicitly, which can
be obtained by solving the coupled perturbed self-consistent
field (CPSCF) equations'®? and CP-TDDFT equations’, re-
spectively. A detailed formulation of the energy Hessian of
TDDEFT excited states can be found in Refs. 70 (with TDA)
and 71 (full TDDFT). The reader is referred to Refs. 69—
71,108-116 for additional details.

®)
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2. Electric Dipole Moments, Polarizabilities, and
Infrared/Raman Intensities

The molecular dipole moment and polarizability of a given
electronic state are defined as

JE
“x**Tan (10)
2
oty o IE (11)
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where F;/F, are the x/y components of the perturbing electric
field. The expectation value of the electric dipole moment of
a specific electronic state [ is usually calculated as

Al = (W0 |Pr) = Tr(Pru,). (12)

For the I-th excited state, its one-electron reduced density ma-
trix, Py, is composed of 70.71.116,117

P =Py +AP;+Z;. (13)

Here Py is the reduced one-electron density matrix of the
ground state; AP; is the unrelaxed difference density ma-
trix: AP; = SCy(X;+Y,) (X +Y) ' Ch 4+ 1Cy (X — o) (X —
Y;) € — 1Co (X + Y1) T (X; + Y1) C — 1Co (X — Y1) T (Xs —
YI)C;E, where C, and C, are the occupied and virtual MO co-
efficient matrices, respectively; Z; corresponds to the z-vector,
denoting the relaxed part of the excited-state density matrix.

Moreover, the I-th electronic state’s polarizability tensor
can be calculated as,

~I Fy

axy - Tr(PI ‘LLX), (14)
where P? denotes the derivative of the one-electron density
matrix of a given electronic excited state with respect to the y
component of an external field. This expression indicates that
it is much easier and faster to calculate the polarizability than
the nuclear Hessian because the former is merely related to
the energy derivatives with respect to external electric fields
so that the explicit derivatives of atomic orbitals in one- and
two-electron integrals with respect to nuclear coordinates are
not required.

One may be further interested in the nuclear derivatives of
the above two quantities (i and &) since they are closely re-
lated to the calculations of infrared (IR) and Raman intensi-
ties, respectively.!'#-120 In the harmonic approximation, the
transition electric dipole moment, (u}i>, and the polarizabil-

ity, (Oc]’ci>, between the initial and final vibronic states, which
enter the expressions of IR absorption and Raman scattering
intensities, can be expanded in a power series of the molecular
normal coordinates Q as

a—[
(i) = B 0)(AsslAm) + ) (g) (Arr|Qel )+
k k/o
(15)
I ~ 1 da
(o) = O dulan)+ X (o) (Nl
k k/o
(16)

Under the dipole approximation, the IR intensity correspond-
ing to the transition from the i-th vibrational state associated
with the electronic state / to the f-th vibrational state within

I\ 2
the same electronic state is proportional to (g—gk) , and the
0

Raman intensity is closely related to the calculation of nu-
clear derivatives of molecular polarizability.!!%12! Here we
assume that the pure-spin BO (psBO) wavefunctions of ini-
tial and final vibronic states can be written as products of an



electronic wavefunction ¥ and a vibrational wavefunction A
like °®,,(¢,0) =° ¥n(q, Q)Ann(Q), with normal coordinates
Or= Z?iv 1 lirqi. The g;’s denote the mass-weighted Cartesian
coordinates and the transformation coefficients /;; are chosen
such that the potential energy does not depend on cross prod-
ucts.

B. Quantities for Describing Transitions between Electronic
States

Transition couplings between different electronic states
play central roles in many physical and chemical processes.
To characterize a photophysical process such as optical ab-
sorption and radiative emission (fluorescence and phosphores-
cence) or radiativeless transition such as internal conversion
(IC), intersystem crossing (ISC), and decay through conical
intersection (CI), one usually has to account for simultaneous
changes in the vibrational and electronic states. Within the
perturbation theory framework, one will need to combine the
electronic structure theories and the quantum dynamics meth-
ods. The former is adopted to obtain the electronic structure
parameters and the latter is used to describe the nuclear dy-
namics.

According to the Fermi’s golden rule,'?? the transition rate

(k) from the initial state i to a dense manifold of final states f
can be defined as

2 N
ki= =Y (|| @)’ 8 (o~ (E;~E)), (D)
;

where ®; and P are the wavefunctions of the initial and final
vibronic states, respectively, m is the frequency of the external
radiation. H' = H — H¢ (the electronic Hamiltonian) denotes
the perturbation Hamiltonian and can be written as

A'=—ji- f+ 1y +HAso, (18)

where the first, second, and third operators correspond to
the matter-field interaction, the nuclear kinetic energy, and
spin-orbit interaction, respectively. The radiative transition
like electronic absorption or emission is usually governed by
the matrix element of (@ |f1|®;) while the nonradiative pro-
cesses like IC and ISC or reversed ISC (RISC) are determined
by the matrix elements of the latter two operators, respec-
tively. For example, if we restrict ourselves up to second-order
terms, the coupling matrix element of an ISC process can be

expressed as
Hy = (@s |Hso | '®;)
+ Y [Cy [ Aso | ' @) (' Pu | I | '®1)/(Ei — En)]

m#i
+ Y [C@s | Tn | P®y) @, | Hso | '@:)/(Ef — En),
nZf

= H{ lo=0 (Arp(Q)AL(Q))

3N=6 FI
+ ¥ <8H50 lo=0 <AFf(Q/)Qk|AIi(Q)>>

k=1 90k
%[y |
k=1 |M#I (Er _EM> NZF (EF —EN) o
d
X <AFf(Q/)\TQk|A1i(Q)> (19)

Here the summations extend over the complete sets of psBO
vibronic states of the given multiplicity and the psBO wave-
functions of the initial and final vibronic states have been writ-
ten as products of an electronic wavefunction ¥ and a vibra-
tional wavefunction A. The relation

3N—6
(C®, | Tn | D) ~ —1* Y (O | Vi | WR) (A (Q)|ViAr-(Q))
k=1
(20)
has been applied, and
dipo=("¥E | 0/0Q:°¥r) 1)

is defined as the NAC vector between two excited states of
the given spin multiplicity 6. The spin-orbit coupling ma-
trix element (SOCME) has been assumed to be normal mode-
dependent, and it reads

. JHI!
H{b = (¥r|Hso|¥r) = H§H(Q =0) + 850 lo=0Q+ -+,

(22)
which thus includes the Franck-Condon (FC) and Herzberg-
Teller (HT) contributions. Although Eq. (19) specifically
refers to a S—T crossing, the corresponding expression for
the RISC is readily written down.

The transition dipole moment between pure So and T
states is zero. In the case of phosphorescence, one has to resort
to perturbation theory by considering the SOC perturbation to
give rise to admixtures of states with opposite spin.

It is clear that to quantitatively describe the radiative and
radiationless processes such as the molecular vibronic spec-
tra'?® and the transition rates within the perturbation theory
framework, one has to know the geometric and electronic
structure parameters at first. More specifically, the energy
gradients of ground and excited states are required to reach
the minimum on each potential energy surface. Meanwhile,
Hessians of the ground- and excited-state energies are indis-
pensable for acquiring the normal modes for each electronic
state, establishing the Duschinsky relation,'?* as well as in-
corporating the FC/HT and HT contributions.



1. Non-Adiabatic Coupling

The nonadiabatic coupling (NAC) is needed as long as the
psBO approximation breaks down, which is quite common for
radiationless processes such as IC,'> decay through CI,126:1%7
and potentially ISC and RISC.! These nonadiabatic transi-
tions are governed by Ty mentioned in Eq. (18), and the NAC
between two vibronic states could be derived as'?

H @ q7Q - _ @ q7Q

o)

where Ty is split into two momentum operators for electronic
and vibrational states, respectively, and

0¥, (q,0) >
90k

is the derivative coupling (DC). The DC associated with
TDDFT excited states can be formulated using the equation-
of-motion (EOM) and response theory’>’>!? or pseudo-
wavefunction approach.”*!3 The DC implementations with
different DFT methods are summarized in Table 1. In short,
it is not necessary to explicitly solve for either orbital re-
sponses or amplitude derivatives in the computation of d%;
only one z-vector needs to be solved for instead. One may re-
fer to Ref. 131 for a review about the derivative couplings in
TDDFT.

~ 1Y dy, <Am<Q>‘ (23)
k

dy, = <‘Pm(q, Q)‘ (24)

2. Transition Dipole Moment and Its Nuclear Derivatives

For studying radiative transitions, the transition dipole mo-
ment u and frequently its nuclear derivative need to be cal-
culated. Like SOCME in Eq. (22), u can also be expanded
as

<AGg|.UGK|AKk> = .UGK(Q = 0)(Acg|Axk) +

ducK
X750 lo=o (Aael @)l + -+ 29)
j J

FC approximation just keeps the first term above and takes
u% = (Ws||¥x) as a constant. The contribution of the
second term could also be significant especially when pu©X
is small. In these situations, one must invoke the FCHT ap-
proximation to take the first two terms into account.

The nuclear derivatives of the transition dipole moments
between the ground and excited states can be evaluated as
use = Tr(6p*u) 4+ Tr(6pu*). Here Sp and p are the tran-
sition density matrix and the dipole moment matrix, respec-
tively, in the basis of molecular or atomic orbitals. Observ-
ably, ug is the reference geometry-dependent. The 6p* has
already been evaluated during the analytical calculation of the
excited-state Hessian, as showed in Refs. 70 (with TDA) and
71 (full TDDFT). Therefore, the computational time will be
saved if one obtains g, as a byproduct of the calculation of
excited-state Hessian.

3. SOC Matrix Element between Different Electronic States
and Its Nuclear Derivatives

The SOC operator acts on both the angular and spin com-
ponents of electronic states, leading to its defining charac-
teristics of mixing the orbital and spin degrees of freedom,
thus allowing electronic states of different multiplicities to
couple. It plays an essential role in photoinduced phenom-
ena that involve change in the spin multiplicities of electronic
states, as it governs the rates of phosphorescence emission'>?
and ISC/RISC processes.'*3 Since TDDFT has been routinely
used in studying photoexcited molecular systems, it is desir-
able to calculate SOC at the TDDFT level of theory.

Given that SOC stems from relativistic Dirac theory, the
SOC effects can be taken into account naturally in relativistic
TDDFT,!3* such as the four- and two-component relativistic
theories. This type of treatment is rigorous and of high qual-
ity, but computational demanding. For molecules in which
the SOC is weak and therefore serves as a perturbation, the
perturbative approaches are readily applicable.'3*!133 In this
case, the pure-spin states are first obtained from scalar rela-
tivistic or non-relativistic LR-TDDFT,'3¢-1** then one could
calculate SOC matrix elements among these excited states.

The perturbational treatment is not so accurate as the vari-
ational approaches are. But the perturbative SOC approach
is less computational demanding and allows one to identify
the weights of singlet and triplet characters in a spin-adiabatic
state.!*> Beyond the linear-response regime, the calculation of
SOCMEs has also been performed within quadratic-response
TDDFT, which can be viewed as implicit sum-over-states
compared to perturbation theory.!6:147 Tt is worth noting that
Li et al. proposed a novel procedure to calculate SOCMEs
from variational relativistic electronic structure theory. 48

As shown in Eq. (19), the calculation of ISC or RISC
rate usually requires one to account for both the HT-type vi-
bronic and the spin-vibronic effects.!:'4° The former vibronic
effect requires one to know the nuclear derivatives of SOCME,
whose analytical implementation is currently under develop-
ment.

I1l.  ELECTRONIC EXCITED STATES WITHIN
TDDFT/PCM AND TDDFT/MM

When a system of interest is embedded into a condensed-
phase medium, its potential energy surfaces are perturbed,
which can potentially cause a substantial change to the molec-
ular properties, spectral profiles, and various transition rates
and the corresponding quantum yield.

Due to the formidable computational cost of the realistic
complexity, a full-QM modeling of the electronic structure
of a system and its environment is usually infeasible. For
instance, QM modeling, especially plane-wave density func-
tional theory, has been employed to describe plasmonic metal
surfaces and adsorbed reactants in studies of photon-driven
catalysis.!®3-185 However, given its steeply increasing cost,
routine ab initio QM modeling is typically limited to systems
(or subsystems) smaller than 2 or 3 nm. This has inspired



TABLE I. Development of Analytical Gradient, Hessian, and Nonadiabatic Coupling (NAC) of Various TDDFT and TDDFT/Classical Em-

bedding Methods.
Method Energy Gradient Hessian NAC
TDDFT Ref. 61 Refs. 67,68,108,110,150-154 Refs. 70,71 Refs. 72-74,155-159
SF-DFT Refs. 160-163 Refs. 164,165 Refs. 166,167
SA-TDDFT Refs. 130,168 Ref. 168 Refs. 130,169
TDDFT/PCM Refs. 22,75,170-174 Refs. 69,114,115 Ref. 116
TDDFT/MM Many Refs. 175 Ref. 175 Refs. 176,177
TDDFT/MMpol Refs. 83,92,178-181 Refs. 111-113,182

the development of methods for capturing the environment ef-
fects via lower-level theories such as classical analytical mod-
els (specifically for metal nanoparticles),'3¢-1°! implicit sol-
vation models, polarizable or nonpolarizable MM force fields,
and coarse-grained models.'"?

When a chemical system is immersed in liquid solutions,
its properties may change significantly, especially in polar sol-
vents. The solvent effects are usually accounted for by a con-
tinuum solvent description, such as the family of PCM,%7 or
a mixed treatment that integrates different descriptions of the
solvent, for example, representing the first solvation shell with
explicit solvent molecules while using a continuum model
for the bulk. In the PCM method, the electrostatic polariza-
tion interaction between solute and solvent is determined via
the induced apparent surface charge method, for which one
needs to specify a surface that defines the continuum bound-
ary. TDDFT coupled with PCM for excitation energy cal-
culations has become as a general routine in most quantum
chemistry software packages. The implementation of analyti-
cal gradient®®!!%115 and Hessian!'® of TDDFT/PCM excited
states has also been realized by several groups. TDDFT/PCM
has been shown to be successful in supporting the analysis of
experimental data, providing useful insights for a better un-
derstanding of photophysical and photochemical pathways in
solution.

The PCM has also been applied to model nanoparticles
(NPs), leading to the PCM-NP approach. In the quasi-static
limit, the NP experiences an electrostatic potential at a given
frequency, which induces polarization charges on the nanopar-
ticle surface. The QM/PCM-NP approach, which explicitly
includes mutual polarization effects between the molecule and
NP, has been applied to calculate the absorption factor as well
as the radiative and nonradiative decay rates.’

The all-atom polarizable molecular mechanical models
have emerged in the last decades. Through introducing in-
duced charges and/or dipoles at each atom site of MM re-
gion, these MMpol models can efficiently capture the elec-
tronic motion in solvents, proteins, and large MNPs (>
10 nm)."*3>!%* Among the MMpol models for MNPs, of
particular interest to us is the discrete interaction model
(DIM)33193:19 and its coordination-dependent variant (cd-
DIM),'*? with the induced charges and dipoles representing
polarization effects. Several similar all-atom MMpol mod-
els have also been developed such as the point-dipole interac-
tion model'®”-1%® (including its combination with either elec-
tronegativity equalization'”® or charge-transfer’™), charge-

dipole interaction model,?°!->° and atomic dipole approxima-
tion model.!** Using a polarizable force field in QM/MM cal-
culations is advantageous in light of the fact that the electronic
polarization of the MM region can be described, especially on
the occasion when electronic excitation is involved in the QM
region.

Comparing with the QM/PCM methods, QM/MM or
QM/MMpol approaches, which allow us to incorporate the ex-
plicit atomic or molecular details of surrounding molecules,
can be applied to more complex environments. There are
three embedding schemes for QM/MM, namely, mechani-
cal, 203 electrostatic, and polarizable.204 It is essential to com-
bine TDDFT with MM to explore the molecular excited-state
structures and dynamical properties in complex condensed-
phase systems. Table I summarizes the current status of
TDDFT-related approaches. Currently the analytic nuclear
gradients of TDDFT/MM and TDDFT/MMpol excited states
are made available by a few groups. The implementation of
analytic second-order energy derivatives!”> for TDDFT/MM
with a non-polariable force field has also been realized. The
newly proposed hybrid methods, TDDFT/DIM (for metal
nanopa1’ticles)83’178 and TDDFT/FQFD (for solvents),'8! have
only been made available for excitation energy calculations.
Note that within the hybrid schemes, NAC calculations have
only been carried out using non-polarizable AMOEBA,!76-177
and the incorporation of the environment effect in this model
needs to be reviewed carefully.

IV. CHOICE OF TDDFT MODELS

In the TDDFT modeling of electronic transitions, one can
choose among several variations of TDDFT methodology for
the problem in hand.

A. TDA versus Ful-TDDFT

Tamm-Dancoff approximation (TDA) amounts to the neg-
ligence of the Casida B matrix in the TDDFT working equa-
tions. As a result, all Y amplitudes become zero. Using per-
turbation theory, it is easy to show that TDA excitation ener-
gies would always be larger than corresponding TDDFT val-

ues, with the leading difference being second-order: @PA —

2
ofPPFT ~ 7, |XTPA . B XTPA | /(0fPA 4 ©TPA). In gen-

m
eral, B matrix elements are relatively small, so TDA pro-



duces results that closely resemble TDDFT values. When
using pure functionals (such as BLYP and PBE) or conven-
tional hybrid functionals (such as B3LYP and PBEO), how-
ever, full TDDFT tends to systematically underestimate the
energy of excited states with a small charge-transfer or Ryd-
berg character. In those cases, as shown in a recent TDDFT
benchmarking study,”>> TDA can produce slightly more accu-
rate excitation energies than full TDDFT as shown in Fig. 1.
On the other hand, for range-separated hybrid functionals, full
TDDFT can produce more accurate results (compared to CC2
values). Full TDDFT usually encounters problems with triplet
states, because the DFT ground state is used as the reference,
which in many cases even leads to triplet instabilities. The
TDA can be used to circumvent the triplet instabilities. Fur-
thermore, TDDFT obeys the Thomas-Reiche-Kuhn sum rule
of the oscillator strengths,?% therefore yields more precise
results for the oscillator strength and other related physical
quantities. The TDA violates the sum rule, which leads to
poor results in the calculated oscillator strengths. Interest-
ingly, it is found that the TDA performs better in the calcula-
tion of NACs than the full TDDFT, contrary to the conjecture
that the TDA might cause the NAC results to deteriorate and
violate the sum rule.?®’ For the excited-state harmonic vibra-
tional frequencies, however, full TDDFT does not seem to be
advantageous since the numerical tests demonstrate that the
accuracy of TDDFT with and without TDA are comparable to
each other.”!

CIS/RPA

BHLYP
CAM-B3LYP
CAMh-B3LYP —=—
BP86
PBE

® RMS(TDDFT)

ERMS(TDA)
0BI7X-D
MO06 2X uMSA(TDA)
M ——
Mit=L
T T T T T
-1.5 -1 -05 0 0.5 1 1.5

Error relative to CC2 (eV)

FIG. 1. Root-mean-square (RMS) and mean-signed-average (MSA)
differences (in eV) between vertical excitation energies calculated at
the TDDFT, TDA, and CC22%8 Jevels using the def2-TZVP2% basis
set. Excitation energies of the five lowest excited states of the 11
chromophores are included. Reproduced with permission from J.
Chem. Theory Comput. 16, 587 (2019). Copyright 2019 American
Chemical Society.

B. Spin-Flip DFT

Spin-flip (SF) DFT, which can be viewed as a special ver-
sion of TDA, 90162 handles up to four lowest electronic states

of a system with an even number of electrons (two closed-
shell singlets, an open-shell singlet, and a m, = O triplet)
on the same footing, thus offering a balanced description for
these states. These states are obtained by using a high-spin
(m, =1 triplet) reference state and solving the eigenproblem
within spin-flip excitations, where an electron is excited from
an o occupied molecular orbital to a § virtual orbital. In gen-
eral, for a system whose ground state has a total spin quan-
tum number S (multiplicity 25 + 1), the reference needs to be
in an S+ 1 state in order to target the lowest-energy states
with total spin quantum number S and S+ 1 via spin-flip exci-
tations. Compared to standard TDA and TDDFT, the spin-
flip TDA model usually provides more accurate results for
diradicals and other systems with multi-reference characters.
After the proposition of the original SF-DFT,!'®", there have
been various improved variations such as the spin-adapted

SF-DFT method aiming to eliminate the spin-contamination
issue, 163.210.211

When CI appears between the electronic ground state and
an excited state, there is an advantage to use SF method to pro-
vide a balanced description of the two electronic states. Gor-
don et al.'® used the SF-DFT combined with the effective
fragment potential (EFP) and illustrated that polar solvents
could change the CI geometry dramatically and strongly sta-
bilize its energy. Herbert et al.'® studied the CI point of the
Dy and D; surfaces of the H; molecule. They have demon-
strated that the SF-CIS and SF-BH&HLYP methods could lo-
cate CI points that involve the reference (ground) state cor-
rectly, which are problematic for the spin-conserved counter-
parts of these methods.?!> What’s more, equipped with ana-
Iytic derivative couplings, their method could substantially re-

duce the cost of locating minimum-energy crossing points. '

Analytic gradient'*!%5 and nonadiabatic coupling!®®167

have been developed for gas-phase SF-DFT calculations,
while the analytical Hessian is still under development. As
far as we know, there has been no much discussion on
SFE-DFT/PCM or SF-DFT/MMpol models. Within a linear-
response framework, however, a PCM or MMpol modeling
of the complex environment is expected to yield no addi-
tional contribution to the A matrix (due to a transition density
in the aff block). So, theoretically, it reduces to a “zeroth-
order” model, where PCM surface charges or MMpol perma-
nent/induced moments affect the results only by polarizing the
KS orbitals.

C. Spin-Adiabatic DFT/TDDFT States

Spin-adiabatic (SA) TDDFT has gained attention only in
recent years.' 3198 Compared with the spin-diabatic states,
the spin-adiabatic counterparts have shown advantages'3? in
Tully’s fewest switches surface hopping (FSSH) dynamics?!3
to evaluate the rates and branching ratios of ISC processes
where spin multiplicity changes. For a system with an even
number of electrons, there are 4n + 1 spin-diabatic states: the
ground state, the lowest n open-shell singlet excited-states and
the lowest 3n triplet excited-states (with my = —1,0,1). They



could be coupled together via the SOC operator:

Es, 0 Vg3 - 0 Vgg
0 0
go Essé Ysin go Vsﬁ(g’ '
HO 4SO — VTIS() VT151 Er - VT]Sn VT1 T, (26)
SO SO
go go VSs"g' Essé Vs,
VTnSo VT,ISI VTnTl Vn 3 Er,

Note that the couplings between different triplet states could
be nonzeros. Formally, all the spin-adiabatic states can be
obtained by diagonalizing this (4n+ 1) x (4n+ 1) matrix.

Subotnik and coworkers!3%198 implemented an efficient it-

erative procedure for diagonalizing the above coupling matrix
between TDA singlets and triplets, but without including the
ground state. Furthermore, they formulated the analytical gra-
dient of the obtained spin-adiabatic TDA states,'®® and devel-
oped the nonadiabatic couplings between the spin-adiabatic
TDA states.'3% This new and substantial advance is expected
to facilitate the study of ISC and allow for a balanced treat-
ment between ISC and IC events.

On the other hand, a future extension of this methodol-
ogy to include the ground state as well in the coupling (Eq.
(26)) would be desirable, which will provide a general frame-
work for, for instance, the study of phosphorescence decay
and the construction of spin-adiabatic potential energy sur-
faces for modeling spin-crossing reactions.”!# Furthermore,
in the study of spin-crossing reactions, it was found to be a
poor approximation to describe the lowest singlet and triplet
states using the same set of molecular orbitals.>'* Therefore,
it should be more suitable to have one set of optimized orbitals
for the singlet state and another for the triplet state.

V. CHALLENGES WITH TDDFT MODELING OF
EXCITED STATES IN THE CONDENSED PHASE

A. Challenges with the Modeling of System-Environment
Interactions

To illustrate the challenges in describing several QM-MM
interactions of an actual system, a pyridine—Agyo complex in
Fig. 2 is used as a showcase. As shown below, this is a highly
challenging system for classical embedding due to the strong
interaction between the pyridine molecule and the metal clus-
ter. Our primary focus is on the effect of the metal cluster on
electronic excitations within the pyridine molecule. This com-
plex is handled using a QM/DIM model adopted from Jensen
et al. 3384178215 which combines a DIM description for the
Agyg cluster and a DFT or TDDFT description for pyridine.
All calculations are carried out using a preliminary implemen-
tation2!® of the QM/DIM model within the Q-CHEM software
package.?!”

FIG. 2. Scheme of pyridine-silveryo (Py—Agzg) configuration.

1. Charge transfer between QM and MM regions

As indicated by charge populations in Table II, for the
electronic ground state of Py—Agy, there is a charge mi-
gration (0.16-0.30 e™) from the pyridine molecule to the
Agyo cluster. Energy decomposition analysis (EDA) based
on absolutely localized molecular orbitals (ALMO)>!® for this
complex also shows a substantial charge-transfer stabilization
(—49.09 kJ/mol) together with a similar amount of polariza-
tion energy (—38.83 kJ/mol).

TABLE II. Net charges on the pyridine molecule within
Merz-Kollman ESP2'® ChEIPG,??" and fragment-based Hirshfeld
(FBH)?2! charge partitioning schemes and energy decomposition
analysis of the ground-state energy of pyridine—silveryq complex cal-
culated with the ®B97X-D??? functional and 6-31G(d) basis set and
SRSC ECP.

Qpy (a.u.) AE (kJ/mol)
QESP QChE]PG QFBH AEFozen AEPOI AECT AETolal
0.30 0.22 0.16 7.68 —38.83 —49.09 —-80.23

Starting from this ground state with partial charge transfer,
the lowest 200 excited states from a full-TDDFT calculation
are mostly local excitations on the metal cluster, with a few
states featuring charge transfer between the molecule and the
metal cluster. None of these low-lying states correspond to
local excitations on the pyridine molecule. This poses a se-
rious challenge to the modeling of electronic excitations in
these complexes, since full or partial charge-transfer excita-
tions are not incorporated into the existing hybrid QM/MM
approaches such as TDDFT/DIM. Here, state-selective opti-
mization schemes?>3>-225 might help capture the local excited
states in large systems.

2. Proper damping of QM/MM Electrostatics

To show the effect of the damped QM/MM electrostatics
in the QM/DIM modeling of the Py—Agyg complex, several
frontier molecular orbital energies are plotted in Fig. 3. The
orbital energies for the gas-phase pyridine and the Py—Agyg
complex are obtained from DFT/DIM and ALMO-DFT??¢
calculations, respectively.

As shown in Fig. 3, all frontier MO energies of the pyridine
molecule are shifted down upon its adsorption onto the Agyg
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FIG. 3. Frontier orbital energies (3 occupied orbitals and 2 unoccupied orbitals) from DFT calculations of the gas-phase pyridine, DFT/DIM
calculations (with Gaussian exponents of 0.4, 0.6, 0.8, and 1.0 a.u.), and ALMO-DFT calculations for the Py—Agy complex. All calculations

used the @B97X-D functional, 6-31G(d) basis set, and SRSC ECP.

cluster. The highest occupied molecule orbital (HOMO),
which is the only o-orbital out of the five orbitals, is sub-
jected to the largest decrease in its energy, thus becoming
HOMO-1 or HOMO-2 in DFT/DIM and ALMO-DFT cal-
culations. Overall, we find that using a damping factor ()
of 0.6 or 0.8 a.u. for the induced dipoles in the DIM model
best reproduces the relative energies between these frontier
orbitals obtained from the ALMO-DFT reference. The five
lowest excitation energies show a similar trend as the fron-
tier orbitals with the increasing damping factor (see Fig. 4).
In fact, TDDFT-TDA/DIM calculations with a damping fac-
tor a,;, of 1.0 au would best reproduce the results of the
ALMO-TDDFT-TDA calculations,””-??” which can be used as
the benchmark of the local excited states.

3. Description of QM/MM van der Waals Interactions

The van der Waals (vdW) interactions between the QM and
MM regions are crucial for obtaining accurate potential en-
ergy profiles. In our implementation of the QM/DIM method,
a distance-dependent Lennard-Jones (i.e., 12—6) potential pro-
posed by Jensen and coworkers?!® is adopted with a small
modification. Without the repulsive interaction, the optimized
Py—Ag bond would become too short due to a strongly attrac-
tive QM/MM electrostatic interaction.

To avoid a system-dependent tuning of QM/MM vdW pa-
rameters, as we have done with the & and € parameters
for the nitrogen atom, one should make the vdW param-
eters of the QM atoms dependent on the electronic struc-
ture (densities, molecular orbitals, or atomic charges) of
the QM region.??®230 Within the ab initio QM/MM frame-
work, one can tap into the Tkatchenko—Scheffler disper-
sion model, 3! where the Ce parameter of an atom is com-
puted from its Hirshfeld-weight-based atomic volume in the
molecule. This has led to two density-dependent QM/MM
vdW models by Cappelli and coworkers??® and by Mennucci
and coworkers,”? respectively. We expect that these mod-
els be further tested and developed before becoming widely

adopted in condensed-phase QM/MM simulations. Alterna-
tively, one can predefine localized molecular orbitals on the
MM atoms and interact them with orbitals from the QM re-
gion to acquire dispersion and repulsion interactions. This
has been implemented in DFT/EFP models.?32-234

B. Challenges with the Computational Costs

TDDFT modeling of condensed-phase excited-state pro-
cesses can become very expensive, especially with a large
QM region or a long simulation (1 ps or longer). The first
bottleneck of these modelings come from the QM calcula-
tion itself, namely the computation of DFT and TDDFT en-
ergy gradient/Hessian and state-to-state derivative couplings.
It is time-consuming to evaluate many Fock-like or Fock-
derivative-like matrices, with some of them involving the third
and fourth derivatives of the exchange-correlation functional.
Two ways can be pursued to accelerate these calculations.
First, following Grimme and coworkers, one can approximate
the two-electron integrals and transition density, which has led
to the simplified TDA scheme for large system.?>237 Sec-
ond, one should be able to extrapolate SCF orbitals, TDDFT
amplitudes, and z-vectors from previous geometries during
a geometry optimization or molecular dynamics simulation.
To extrapolate SCF orbitals, the Fock matrix extrapolation
scheme from Pulay, Herbert, and others?3%:239 and extended
Lagrangian from Niklasson and coworkers>*%?*! can already
reduce the SCF cycles. For excited state simulations with
TDDFT energies/forces, one should also be able to extrapo-
late amplitudes and z-vectors in a way similar to the handling
of MP2 z-vectors by Steele and Tully.>*?

For TDDFT/MMpol with an extended (solvent, protein, or
metal-cluster) environment, a second bottleneck comes from
the solution of a large number of induced charges/dipoles dur-
ing each SCF iteration.>7%243-244 Several efforts have been de-
voted to the reduction of this computational cost.”>** First,
in order to avoid the ¢(N?) complexity associated with di-
rectly solving linear equations for induced charges or dipoles,
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FIG. 4. First five excitation energies from TDDFT-TDA calculations of the gas-phase pyridine, TDDFT-TDA/DIM calculations (with Gaussian
exponents of 0.4, 0.6, 0.8, and 1.0 a.u.), and ALMO-TDDFT-TDA calculations for the Py—Agso complex. All calculations used the @B97X-D

functional, 6-31G(d) basis, and SRSC ECP.

iterative solvers can be employed, such as Jacobi iterations
(J1)>»-247 and preconditioned conjugate gradient (PCG),>*8
and the truncated version of JI>** and PCG.?>*23! For large
systems, Nocito and Beran proposed a divide-and-conquer Ja-
cobi iterations (DA-JI) method?%%33 and also modified an al-
ways stable predictor-corrector (ASPC) algorithm.254 Second,
one can truncate the mutual polarization among MM atoms
such as in the 3-AMOEBA scheme.?5? Lastly, the extended
Lagrangian method can be employ to remove the need to fully
converge MM induced dipoles at each geometry.>30-28

C. Challenges with the Interpretability of Computational
Results

Fundamentally, we are interested in the effects of vari-
ous internal and external perturbations on excited-state pro-
cesses, namely how they shift absorption/emission wave-
lengths and how they modulate the radiative/nonradiative tran-
sition rates and thus change the overall quantum yield. In-
ternally, a system can be “perturbed” by chemical modifi-
cations, such as substitutions and combination of different
donors/bridges/acceptors. Externally, a system can be placed
in different solvents, protein mutants, or metal clusters of var-
ious shapes, sizes, and compositions.

TDDFT modeling has proven to be extremely valuable in
these studies. In addition to the TDDFT calculations them-
selves, many efforts have been devoted to the challenging task
of analyzing the results of these calculations. Given a com-
puted TDDFT excited state, one can now readily (a) visualize
the density change from the ground state, and compute the
corresponding charge populations; (b) visualize the canoni-
cal orbitals and natural transition orbitals associated with the
excitation; and (c) characterize it as being a local excitation,
charge-transfer excitation, or a hybrid.

The characterization of the lowest excited states of a sys-
tem is especially important in many design problems, such
as new TADF molecules for which a hybridized local and
intramolecular charge-transfer (HLCT) excitation might op-

timally enhance the reverse internal system crossing while re-
taining a decent fluorescence intensity. The A values from
Peach and coworkers®? and charge transfer numbers (CTN)
from Plasser and coworkers?®*2°! have been widely used for
such characterizations.

While the electronic density change upon an excitation is
commonly visualized, it was only until recently when one can
start to analyze the excitation energy distribution, which can
also be of interest. For several example systems, we showed
that it is feasible to compute and visualize the LR-TDDFT
excitation energy density.”%? It has also provided a way for
one to formulate the effective energies of the hole and particle
for a charge-transfer excitation.

In the design of new fluorophores/dyes, guiding principles
or inexpensive tools are needed to help quickly predict how a
chemical modification or environmental change (as mentioned
above) might affect the photophysical properties of a fluo-
rophore (dye) molecule. As for many of these fluorophores
the HOMO—LUMO transition or other transitions between
frontier orbitals play the dominant role, we expect the ALMO-
based orbital interaction analysis”®!? to be increasingly used
to analyze or predict substituent effects or donor-acceptor in-
teractions. On the other hand, the substitution/mutation ef-
fects on the rate of radiative and non-radiative transitions are
less well-studied and poorly understood, thus providing op-
portunities for the development of new analysis tools.

V. SUMMARY

In this perspective, we have provided an overview on the
successes and challenges of TDDFT-related approaches for
modeling the excited-state properties and processes. A par-
ticular emphasis is placed on which electronic structure prop-
erties are accessible with which methods, rather than on one
single topic like the accuracy of excitation energies.

Firstly, we introduced the main electronic structure quan-
tities required by the description of molecular excited-state



properties and processes, such as the analytic energy deriva-
tives of TDDFT excited state, the NAC and SOC matrix ele-
ments, etc. Secondly, we gave a summary of the recent devel-
opment of hybrid embedding methods for the description of
molecular excited states in complex environments, noting that
the evaluation of NAC and SOCME accounting for the envi-
ronment effects, the analytic nuclear derivative of SOCME,
and the analytic Hessian of TDDFT/MMpol have not been
successfully implemented into the electronic structure pack-
ages. Thirdly, we discussed the advantages of three variations
of the TDDFT methods. Specifically, TDA might slightly out-
perform full TDDFT with pure or conventional hybrid func-
tionals; spin-flip DFT is useful for systems with some multi-
reference characters (such as regions around conical interac-
tions); and spin-adiabatic TDDFT could be helpful for study-
ing spin-crossing reactions or the intersystem crossing events.
In the end, we elaborated on the challenges in accurately de-
scribing interactions between the QM and MM regions, re-
ducing the computational costs associated with modeling ex-
cited states in complex environments, and making the results
of excited-state calculations physically more transparent and
easier to interpret. These challenges have afforded many new
opportunities for the development of advanced computational
and analysis techniques to treat excited-state-involved pro-
cesses in complex environments in the future.
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