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Abstract—We present a threshold-based cardinality minimiza-
tion formulation for the security-constrained economic dispatch
problem. The model aims to minimize the operating cost of the
system while simultaneously reducing the number of lines oper-
ating in emergency operating zones during contingency events.
The model allows the system operator to monitor the duration
for which lines operate in emergency zones and ensure that they
are within the acceptable reliability standards determined by
the system operators. We develop a continuous difference-of-
convex approximation of the cardinality minimization problem
and a solution method to solve the problem. We also present
mixed-integer programming reformulation of the cardinality
minimization problem. Our numerical experiments demonstrate
that the cardinality minimization approach reduces the overall
system operating cost as well as avoids prolonged periods of high
electricity prices during contingency events.

Index Terms—Economic dispatch, thermal rating, cardinality
minimization, difference-of-convex optimization.

I. INTRODUCTION

The independent system operators (ISOs) and regional
transmission organizations (RTOs) oversee the non-
discriminatory access to transmission assets, operate the
transmission system independently, and foster competitive
generation among wholesale market participants. The
ISO/RTOs use bid-based markets arranged hierarchically
over multiple timescales. The lowest timescale of the market
scheduling process is the real-time Security-Constrained
Economic Dispatch (SCED). SCED is used to determine
generation across the power system to satisfy the electricity
demand at the least cost while meeting the system reliability
requirements.

SCED aims to balance the intrinsically competing goals of
system efficiency and reliability. While system efficiency is
realized by fully utilizing the available transmission capacity,
system reliability requires conserving transmission capacity
to handle contingency scenarios. Maintaining this balance in
real-time poses a significant challenge to the system operators
in normal operating conditions, let alone system operations
in extreme weather events such as the Texas winter storm
in February 2021. The large-scale integration of intermittent
renewable resources such as wind and solar also exasperates
system operations.

SCED is modeled as a single-period or multiperiod opti-
mization model. Since it was first proposed in [1], the SCED
optimization models have evolved significantly. See [2] for a
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review of early and [3], [4] for a review of more recent works.
This evolution is driven by the desire to include more detailed
system operations (e.g., inclusion of AC optimal power flow
[5]), reliability requirements (e.g., transient stability [6]), and
market considerations (e.g., flexible ramping [7]), as well as
computational considerations.

SCED can be performed either in preventive or corrective
forms [8]. The preventive approach aims to determine a
base-case dispatch solution that can withstand contingency
scenarios without any adjustments. On the other hand, the
corrective approach allows the base-case dispatch solution to
deviate cost-effectively. While the preventive approaches are
more secure, they tend to be overly conservative. Therefore,
approaches that aim to determine a base-case dispatch solution
that minimizes deviation under presumed contingency are
preferred. In these approaches, it is also desirable to treat
transmission as a flexible asset. In this regard, SCED base-case
dispatch solutions can be determined by considering corrective
transmission switching or corrective rescheduling.

Corrective transmission switching allows a transmission el-
ement to be switched out of service shortly after a contingency
occurs to avoid post-contingency violations. Transmission
switching has many benefits such as improved reliability [9],
[10], congestion management [11], and ease the incorporation
of renewable resources [12]. In the context of SCED, correc-
tive transmission switching has been studied recently in [13].

Corrective rescheduling using mathematical optimization
was first proposed in [14]. The underlying assumption of
this approach is that the operational limit violations (e.g.,
thermal limits of transmission lines) can be endured for limited
periods. For example, a given power line can have a normal
rating (denoting the most desirable thermal rating), a long-term
emergency (LTE) rating, and a short-term emergency (STE)
rating [15]. Prior corrective rescheduling works have focused
on the contingency filtering that aims to reduce the number
of contingency scenarios to be considered for determining the
base-case dispatch solution [16], [17]. More recently, a multi-
stage contingency response model was proposed in [18]. Since
corrective rescheduling is undertaken as a reactive measure,
the models proposed in these works implicitly consider the
knowledge of when the contingency occurs. Moreover, these
models impose a bound on the deviation from the base case at
a given period and ignore the duration of time for which the
limit violations occur. For instance, New England ISO requires
the line flow to return to less than the LTE rating within 15
minutes [19]. Incorporating these reliability requirements in
SCED results in a non-convex optimization problem (even
when we consider linear/direct current approximations or
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convex relaxations of the power flow). In light of these, the
main contributions of our work are as follows:

1) SCED as a cardinality minimization problem. We intro-
duce a SCED formulation with an objective function that
includes the operational costs and a reliability term that
penalizes operating the transmission lines in emergency
zones. The model is intended for corrective rescheduling
following a contingency event. The model accommo-
dates differential penalties for operating in tiered emer-
gency operating zones and includes strict constraints on
the duration of time a particular line operates in an
emergency zone. The resulting model is a threshold-
based cardinality minimization problem (CMP), a non-
convex, non-smooth optimization problem.

2) Solution Approaches. We develop a continuous approx-
imation of the threshold-based CMP formulation of
SCED using the principles of difference-of-convex opti-
mization (DCO). We express the differential thresholds
of individual emergency operating zones as a difference
of two piecewise convex functions. Such an approx-
imation allows for the use of a difference-of-convex
algorithm (DCA) to solve the program that exhibits
desirable convergence and performance guarantees. Our
approximation in conjunction with our DCO formulation
for the SCED problem resolves the difficulty typically
present in threshold-based CMP settings. We also de-
velop a mixed-integer programming (MIP) formulation
of the CMP, suitable for use with off-the-shelf MIP
solvers.

3) Numerical experiments. The computational experiments
are the first of their kind that demonstrate the advantages
of using the CMP formulation of SCED. The exper-
iments reveal that the CMP-based model reduces the
overall operating cost and avoids prolonged periods of
high electricity prices during contingency events.

The CMP captures the presence of emergency rating by
employing a discrete indicator function called the `0-function.
Widely used in machine learning applications, `0-function
counts the number of nonzero-valued components and per-
forms variable selection to reconstruct an intrinsic sparse
representation of the model. In practice, problems involving
the `0-function have been solved using reformulation and
approximation techniques to avoid computational intractability
coming from the discreteness and utilize existing optimization
tools. The alternative formulations include MIP [20], [21],
complementarity constraints [22], [23], [24], and penalization
methods. The complementarity approaches introduce auxiliary
variables to formulate binary states of the variables (having
zero and nonzero values) as orthogonality constraints. The
penalization method introduces continuous `0 surrogates to set
the values of insignificant variables to zero through penaliza-
tion. Existing surrogates include the convex `1-norm [25] and
nonconvex penalty functions [26], [27].

In this paper, we propose an approximate formulation that
addresses the discrete property of CMP by introducing a con-
tinuous difference-of-convex surrogate function, then solve the
problem using the DCA. The DCO approaches offer several

advantages. The well-developed convex analysis supports the
DCO and the associated algorithms are guaranteed to identify
stationary points for nonconvex optimization problems. It has
been shown that DCA produces a decreasing sequence of
iterates that converge to a critical point where zero belongs
to the subdifferential of the objective function, and to a
directional stationary solution for specialized problems [28].
The subproblems of DCA have been solved by utilizing
efficient computational tools of convex programming. These
reasons have kindled an interest in applying DCO for power
systems operations problems. For instance, the optimal power
flow (OPF) problem can be recast with constraints that are
difference-of-convex quadratic functions. DCA was used in
[29], [30] to solve the OPF problem for mesh networks and
in [31] for radial networks. These works have demonstrated
that the computational proficiency and scalability of DCO are
comparable to alternative interior-point methods.

SCED is an important component used for contingency
analysis. Contingency analysis ensures that the economic
dispatch solution simultaneously meets a set of contingency
scenarios corresponding to system component failures. Typ-
ically, operators consider sets of contingencies that include
scenarios with at most one component failure (known as N�1
contingency analysis). A feasible solution to SCED must,
upon a component failure, be able to redistribute the power
flows across the system without overloading the remaining
components. While the SCED model presented in this paper
can be used for contingency analysis, we do not undertake
such an endeavor. Instead, we focus on applying the model
for corrective rescheduling following a contingency event.

The remainder of the paper is organized as follows. In §II
we present the details of our CMP formulation of SCED.
We first present the formulation in a single-period setting and
later address the multiperiod setting through a rolling-horizon
implementation. In §III we develop a difference-of-convex
approximation of the SCED formulation and present a solution
method. We also present a MIP reformulation of SCED in
this section. Finally, in §IV, we illustrate the performance of
the proposed models and solution methods through numerical
experiments. We present our conclusions and future research
directions in §V.

II. PROBLEM FORMULATION

In this section, we present a formulation of the economic
dispatch problem that captures the operational as well as
system reliability requirements. We will first present a single-
period formulation of the dispatch problem, and then extend
it to a multi-period setting.

A. Single-period Formulation

We consider a day-ahead or an hour-ahead operations prob-
lem of a power system denoted by (B,L), where B and L
are the sets of buses and lines, respectively. The goal of the
operations problem is to minimize the total cost of operations.
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This problem is often stated with the following nominal (base-
case) objective function:

F1(x, ⇠) :=
X

g2G
cgpg +

X

g2R
sg(⇠g � pg)+ +

X

d2D
sd(⇠d � pd)+.

(1)

Here, x is a consolidated decision vector that includes deci-
sions corresponding to generation quantities (pg)g2G , utilized
renewable generation (pg)g2R, satisfied demand (pd)d2D,
line power flows (fij)(i,j)2L, and any additional variables
necessary to represent the power flows. The total cost of
operations in (1) includes three terms corresponding to the
total generation cost, opportunity cost associated with renew-
able curtailment, and load shedding penalties, respectively.
We consider a setting where curtailing renewable generation
is undesirable, and hence, the unutilized renewable genera-
tion (⇠g � pg)+ = max{⇠g � pg, 0} is penalized at a rate
of sg ($/MWh) for all g 2 R. Similarly, unmet demand
(⇠d � pd)+ = max{⇠d � pd} is also penalized at a rate of sd
($/MWh) for all d 2 D. From an operational point of view, sg
can be interpreted as the cost of lost opportunity for renewable
generators and sd as the loss of load penalty.

The operations problem is considered in light of several
requirements. These requirements are modeled as constraints
in an optimization problem. The first set of constraints includes
the following.

X

j:(j,i)2L

fji �
X

j:(i,j)2L

fij +
X

g2Gi[Ri

pg

�
X

i2Di

pd = 0 8i 2 B (2a)

pmin
g  pg  pmax

g g 2 G (2b)
0  pg  ⇠g g 2 R (2c)
0  pd  ⇠d d 2 D (2d)
(fij)(i,j)2L 2 F. (2e)

The flow balance equation in (2a) ensures that the net injection
at all buses B in the power network is zero. The constraint
(2b) ensures that the generation amounts of all the generators
that are operational, indexed by the set G, are within their
respective minimum and maximum capacities. The constraint
(2c) restricts the amount of generation from renewable re-
sources (indexed by the set R) utilized to be less than the
total available generation ⇠g . Similarly, the demand met at
load location d is bounded from above by the actual demand
⇠d for all d 2 D. This is captured by constraint (2d).

The set F captures the physical requirements of the network.
These include the active and the reactive flows, and the active
and reactive power capacities for each line (i, j) 2 L in the
power network. These requirements also include the lower and
upper limits on the voltage magnitude and voltage phase angle
(Vi\✓i) at each bus i 2 B of the power network. For instance,
when one uses the linear direct-current approximation of the

power flow, the set F is a polyhedron given by

F =

8
><

>:
((fij)(i,j)2L
(Vi, ✓i)i2B)

�������

fij =
ViVj

Xij
(✓i � ✓j) 8(i, j) 2 L

fmin
ij  fij  fmax

ij 8(i, j) 2 L
✓min
i  ✓i  ✓max

i 8i 2 B

9
>=

>;
.

(3)

Alternatively, one could employ the recently developed convex
relaxations of the power flow such as the quadratic convex
relaxation [32], the second-order conic relaxation [33], and the
semidefinite programming relaxation [34]. When these convex
relaxations are employed, the set F reduces to a convex com-
pact set. The solution method presented in §III-A is designed
for convex feasible sets, and therefore, it is impervious to the
particular modeling approach employed for the power flows.

The power flow on a transmission line is additionally limited
by the thermal ratings that are determined by the ISO/RTO’s
reliability standards. Under normal conditions, the system
operates such that the transmission line and the corresponding
equipment loading do not exceed a normal thermal rating.
However, in the event of a contingency, the ISO operating
procedures allow the use of less restrictive ratings for brief
periods of time. These ratings are represented as operating
zones marked by increasing levels of thresholds. For instance,
the California ISO imposes 24 hour (normal), 4 hour (STE),
and 15 minute (LTE) ratings [19]. Similar operating practices
are in place at other ISOs, albeit, the exact duration approved
for operating in a zone and the threshold levels may differ
based on rating methodologies. Along these practices, we
adopt similar three-tier operating zones for line (i, j) 2 L
that are characterized by upper thresholds ⇣nij < ⇣`ij < ⇣sij .

• Normal: Flow is within the upper threshold of ⇣n. Flow
in this range, i.e., |fij |  ⇣nij is considered acceptable
system performance.

• Long-term emergency: Flow is beyond ⇣nij , but within the
upper threshold of ⇣`ij , i.e., ⇣nij  |fij |  ⇣`ij . Flow in this
range for at most 4 hours is acceptable.

• Short-term emergency: Flow is beyond ⇣`ij , but within
the threshold of ⇣sij . This flow is captured by ⇣`ij 
|fij |  ⇣sij . Flow in this range for at most 15 minutes
is acceptable.

These operating zones are illustrated in Figure 1.

NormalLTE LTE STESTE
f

0 ⇣n�⇣n ⇣`�⇣` ⇣s�⇣s

Fig. 1: Operating zones based on thermal ratings of lines

Ordinarily, the SCED problem is formulated by restricting
the flows to be within the normal operating zone. This is
done by including constraints of the form: |fij |  ⇣n for
all (i, j) 2 L. Since the system can operate reliably even
if the flow on transmission lines is outside the normal zone
for short periods, accommodating the ability to operate out-
side the normal zone can help reduce the overall cost of
operations. The perceived economic advantages are higher in
power systems where a significant portion of the generation
is from intermittent generators such as wind and solar. With
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large variability in the intermittent generation, the flows within
the system exhibit large fluctuations, thereby increasing the
probability of lines operating in emergency zones. A SCED
model can accommodate the ability to operate outside the
normal zone by simply relaxing the constraint |fij |  ⇣n

and penalizing the amount of flow beyond the limit ⇣n for
all (i, j) 2 L. However, such an approach fails to account for
the presence of different operating zones that dictate a power
systems operator’s response in case of a failure. Therefore,
explicitly capturing the zone of operation of each line is
desirable. Furthermore, since operating outside the normal
zone increases the failure risk of a line, we desire to minimize
the total number of lines operating in emergency zones. With
this in mind, we present a SCED formulation which aims
to minimize the number of lines operating in the emergency
zones in addition to minimizing the operating cost.

In this regard, we consider that the flow beyond ⇣sij is unac-
ceptable from a system reliability perspective. This restriction
is imposed in our dispatch model as explicit constraints:

|fij |  ⇣sij 8(i, j) 2 L. (4)

To capture the number of lines operating in the emergency
zones, we denote by E` and Es the sets of lines that are operat-
ing beyond the normal and LTE threshold values, respectively.
These sets are defined as

E` := {(i, j) 2 L | |fij | � ⇣nij}, and (5a)
Es := {(i, j) 2 L | |fij | � ⇣`ij}, (5b)

respectively. The additional system reliability requirement of
minimizing the number of lines that do not operate in the
normal zone is captured by the following function.

F2(x, ⇠) = �`|E`|+ �s|Es|. (6)

Here, �`, �s > 0 are parameters that ensure that the STE zone
is less desirable compared to LTE zone. Using the operational
cost F1(·) and system reliability objective F2(·), defined in
(1) and (6), respectively, the single period dispatch model can
be stated as follows

min F1(x, ⇠) + F2(x, ⇠) (7)
subject to (2), (4).

When flows are limited to operate within the normal threshold
⇣n, the resulting SCED models are either convex or linear
programs based on the approach adopted to model the power
flows (i.e., the set F). However, in the presence of reliability
objective F2(·), the optimization program in (7) is a CMP. The
CMP is a non-smooth non-convex optimization problem, and
therefore, directly solving (7) is a computationally challenging
undertaking. In order to tackle this difficulty, we present
a computationally viable approximation of (7) and a MIP
reformulation in §III.

B. CMP-based Rolling-horizon SCED

The system reliability requirements additionally mandate
that an equipment return to normal operating zone within a

fixed period of time. In order to incorporate these require-
ments, we extend the CMP-based SCED formulation to a
multiperiod setting.

Denote by T := {1, . . . , T} the set of decision epochs in the
multiperiod horizon. A time index t will appear in the subscript
for the applicable parameters and variables defined previously.
Let T ` and T s denote the acceptable number of time periods
that a line can operate in LTE and STE zones, respectively. At
any decision epoch t 2 T we denote the state of the system
by a vector st that includes the following components: (i) the
generation level for conventional generators, (pgt�1)g2G , (ii)
the flow on each line (fijt�1)(i,j)2L, and (iii) the number of
epochs since entering an emergency operating zone z = ` or
s, denoted as (⌧zijt�1)(i,j)2L. A line operating in normal zone
in time period t will have ⌧ijt set to zero.

Across multiple time periods, a SCED model must capture
the generator ramp rate restrictions, by including constraints
of the form:

�min
g + pgt�1  pgt  �max

g + pgt�1 8g 2 G, t 2 T , (8)

where �min
g /�max

g are minimum/maximum ramp limits. The
system reliability requirements are captured by the following
constraint for all t 2 T :

|fijt|  ⇣n1(⌧`
ijt�1=T `) + ⇣`1(⌧s

ijt�1=T s) 8(i, j) 2 L, (9)

where 1(·) is the indicator function. The above constraint
enforces that the flow on line (i, j) is within the LTE upper
threshold, i.e., |fijt|  ⇣` if the time since entering the STE
zone is equal to the acceptable amount T s. Similarly, the flow
is forced to return to normal zone once the acceptable amount
of time for operating in LTE (T `) is reached.

Let [t] ⇢ T denote the subset of decision epochs starting
at time period t and ending at time period t + T 0. That is,
[t] := t, t+ 1, · · · , t+ T 0. For a given state st and realization
⇠t, the multiperiod CMP-based SCED problem for time period
t is stated as

ht(st, ⇠t) = min
X

t02[t]

�
F1,t0(x, ⇠t0) + F2,t0(x, ⇠t0)

�
, (10)

subject to (2), (4), (8), (9) 8t0 2 [t].

For a given st, the right-hand side quantity in (9) can be
computed easily for t0 = t and the constraints appear as simple
variable bounds.

In the rolling-horizon setting, an instance of the model in
(10) is solved for every time period t. While the optimal
solution for the first time period (t0 = t) is implemented, the
solutions for the remaining time periods t0 2 [t] \ {t} are
advisory in nature. These advisory decisions are overwritten
by optimal solutions of instances solved in later time periods.

The optimal solution for t0 = t is also used to update the
state vector. In particular, the third component of the state
vector is updated as follows:

⌧ `ijt+1 =

⇢
⌧ `ijt if |f?

ijt|  ⇣nij ,
⌧ `ijt + 1 if |f?

ijt| > ⇣nij
(11)

for all (i, j) 2 L. The component ⌧ sijt is updated in a similar
manner. A model instance is then setup using the updated state
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|fij |

kmax{|fij |� ⇣nij , 0}k0

1

⇣nij

Normal LTE

|fij |

�"(fij ; ⇣nij)

1

⇣nij ⇣
n
ij + "

|fij |

Components of �"(fij ; ⇣nij)

g h
1

⇣nij ⇣
n
ij + "

Fig. 2: Illustration of difference-of-convex approximation

vector st+1 and solved for time period (t+1). The procedure
is continued until the end of the horizon.

Finally, state variable usage also allows us to include the
ability to monitor line cooling requirements. We define line
cooling period, denoted by T c, as the minimum number of
time periods that the line is required to operate in normal zone
after it is operated in one of the emergency operating zone for
the designated maximum amount of time. In other words, a
line that operates in LTE zone for T ` time periods or STE
zone for T s time periods must operate in normal zone for T c

time periods. After T c time periods, we reset the state variables
⌧ `ijt+1 = ⌧ sijt+1 = 0, for a line (i, j) 2 L that required cooling.

III. DIFFERENCE-OF-CONVEX APPROXIMATION

The CMP-based SCED models in (7) and (10) are non-
smooth and non-convex optimization problems. The sets E`

and Es in (7) consist of all lines with flow beyond the desired
capacity and the cardinality of the sets |E`| and |Es| represent
the number of lines operating in the emergency zones. In this
section, we present an exact formulation of such cardinalities,
and introduce a computationally viable approximation of the
quantities for the CMP formulation of SCED.

We illustrate the principal technique on a line (i, j) in
the set E`. For line (i, j), it is not difficult to see that the
line is operating in the LTE zone if |fij | � ⇣nij > 0, or
equivalently, if max{|fij | � ⇣nij , 0} > 0. For such a scenario,
we can express the emergency operation of the line exactly by
kmax{|fij | � ⇣nij , 0}k0 = 1, where the `0-function, denoted
by k · k0, is defined as ktk0 = 1 if t 6= 0 and ktk0 = 0 if
t = 0. The right-side of the equation becomes 0 if the line
is operating under the normal zone. Hence the formulation
indicates whether or not a flow exceeds the normal threshold
⇣n; we refer the reader to the leftmost pane in Figure 2 for an
illustration. A similar technique is applied to other lines in the
set E` and the lines in the set Es. The cardinality of the sets
containing lines operating in the emergency zones can then be
expressed as

|E`| =
X

(i,j)2L

kmax{|fij |� ⇣nij , 0}k0 (12a)

|Es| =
X

(i,j)2L

kmax{|fij |� ⇣`ij , 0}k0. (12b)

We note that the notation k · k0 in (12) is referred to as
the `0 norm for the special case of vector input. A common
practice of solving the special case is replacing the function by
continuous surrogates such as the `1 norm [25] and nonconvex
penalty functions [26], [27] that are the sum of univariate
symmetric folded concave functions.

As depicted in Figure 2, the exact formulation of the
cardinalities requires employing a discontinuous function,
making any optimization problem involving such expressions
a discrete problem. Extending the mentioned reformulation
methods, we propose to approximate each summand in (12)
by a piecewise linear function to remove the discontinuity of
the original formulation by connecting the two disjoint pieces
of the function; the central pane of Figure 2 illustrates the
continuous piecewise linear approximation for a single line.
An advantage of using a surrogate, as opposed to directly
solving a discrete optimization problem, is computational
efficiency.

Let us denote the approximation function for the summands
in (12) by �"(·; ·). The approximation function is defined for
a variable (flow) and a parameter (threshold). For a given line
(i, j) 2 E` and the threshold ⇣nij , we formally introduce the
function:

�"(fij ; ⇣
n
ij) = max

⇢
1

"
(|fij |� ⇣nij), 0

�

�max

⇢
1

"
(|fij |� ⇣nij)� 1, 0

�
(13)

=

8
>>><

>>>:

0 if |fij |  ⇣nij

1

"
(fij � ⇣nij) if ⇣nij < |fij |  ⇣nij + "

1 if ⇣nij + " < |fij |.

The positive scalar " in the above definition is an approxima-
tion parameter that can be pre-selected or tuned in practice.
The function is defined by three pieces – the constant value
of 0 indicates that the flow is with the threshold, a value
of 1 indicates that the flow clearly exceeds the threshold,
and a value between 0 and 1 indicates that the line just
entered the emergency zone. Table I lists the exact and the
approximate functions for all operating zones. We note that
each of the approximations in the table is a difference-of-
convex function; a function f(x) is a difference-of-convex
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Zone Exact formulation Approximation

Normal kmax{|f |� ⇣n, 0}k0 = 0 �"(f ; ⇣n) = 0

LTE
kmax{|f |� ⇣n, 0}k0 = 1 0 < �"(f ; ⇣n)  1

kmax{|f |� ⇣`, 0}k0 = 0 �"(f ; ⇣`) = 0

STE
kmax{|f |� ⇣n, 0}k0 = 1 �"(f ; ⇣n) = 1

kmax{|f |� ⇣`, 0}k0 = 1 0 < �"(f ; ⇣`)  1

TABLE I: Exact and approximate formulations for different
operating zones

function if there exist two convex functions g(x) and h(x)
such that f(x) = g(x) � h(x). To see this, consider the
definition of �"(·; ·) given in (13). Each term in the right-hand
side is a convex function since the max-operator preserves
convexity given by the absolute value function.

Applying the approximate function to all lines, the surro-
gates for the set cardinalities in (12) can be written as

|E`| ⇡
X

(i,j)2L

�"(fij ; ⇣
n
ij) and |Es| ⇡

X

(i,j)2L

�"(fij ; ⇣
`
ij).

Using the above construction, we introduce the approxima-
tion that reformulates (7) by applying the surrogates of the
cardinalities as:

min F1(x, ⇠)

+ �`
X

(i,j)2L

�"(fij ; ⇣
n
ij) + �s

X

(i,j)2L

�"(fij ; ⇣
`
ij) (14)

subject to (2), (4).

We recall that �` > 0 and �s > 0 are the weighting parameters
that control the number of lines operating in the emergency
zones. We will refer to the SCED formulation in (14) as CMP
with difference-of-convex approximation (CMP-DC).

A. Solution Method

The problem (14) has a difference-of-convex objective func-
tion and convex constraints. A popular approach to solve a
problem with such structure is to apply DCA. Introduced
by Le Thi and Pham Dinh [35], the DCA iteratively solves
a convex program which is given by a local approximation
of the objective function. At each iteration, the algorithm
linearizes concave components of the objective function using
the current point, and solves the resulting convex problem
producing decreasing sequence of iterates.

Employing DCA to solve the problem (14), we linearize
each concave part of the objective given by �"(·; ·). For ease
of presentation of the algorithm, let us denote g and h for the
two functions shown in the definition of �(·; ·) in (13), i.e.,

g(fij ; ⇣
n
ij) = max

⇢
1

"
(|fij |� ⇣nij), 0

�
(17)

h(fij ; ⇣
n
ij) = max

⇢
1

"
(|fij |� ⇣nij)� 1, 0

�
.

Algorithm 1 Difference-of-convex algorithm for (14)

1: Input: Reliability parameters {⇣nij} and {⇣`ij} for all
(i, j) 2 L, and hyperparameters ", c,�, �`, �s > 0.

2: Initialization: Set k = 0. fk = (fk
ij)(i,j)2L

3: while |F (xk�1, ⇠k�1)� F (xk, ⇠k)|/|F (xk, ⇠k)| > � do
4: Compute the subgradient:

vk,nij =

8
>>>><

>>>>:

� 1
" if fk

ij < ⇣nij � "⇥
� 1

" , 0
⇤

if fk
ij = ⇣nij � "

0 if ⇣nij � " < fk
ij < ⇣nij + "⇥

0, 1
"

⇤
if fk

ij = ⇣nij + "
1
" if ⇣nij + " < fk

ij .

(15)

5: Solve the subproblem

min F (x, ⇠) , F1(x, ⇠) +
c

2
kf � fkk22

+ �`
X

(i,j)2L

n
g(fij ; ⇣

n
ij)� vk,nij fij

o

+ �s
X

(i,j)2L

n
g(fij ; ⇣

s
ij)� vk,`ij fij

o

subject to (2), (4); (16)

6: Let xk denote the optimal solution of (16) with vector
fk = (fk

ij)(i,j)2L corresponding to the flow variables.
7: k = k + 1
8: end while
9: Output: The optimal solution x⇤ = xk.

Given a current point fk
ij at the k-th iteration, we approximate

the latter function using its subgradient.

h(fij ; ⇣
n
ij) ⇡ h(fk

ij ; ⇣
n
ij) + vkij(fij � fk

ij)

where vk,nij 2 @h(fk
ij , ⇣

n
ij). We note that the approximation

shown on the right-hand side is a linear function with some
constant terms. Since minimizing without constant terms does
not affect the solution of the problem, we discard the constant
terms in the algorithm. Incorporating the linear approximation,
we present Algorithm 1 to solve the problem (14). The
algorithm computes iterates with decreasing objective values.
We stop the algorithm when the relative difference between
two consecutive objective values is within a prescribed value
as shown in [36] and [37].

B. Mixed-Integer Programming Formulation

The optimization problem in (7) also admits a MIP reformu-
lation. To present this reformulation, we use binary decision
variables to identify the lines in each of the emergency zones.
Let z`ij and zsij denote the binary variables that take a value of
one if the line operates in the LTE and STE zones, respectively,
and zero otherwise. The single-period MIP reformulation is
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stated as

min F1(x, ⇠) +
X

(i,j)2L

�
�`z`ij + (�` + �s)zsij

�
(18a)

s.t. (2), (8),
|fij |  ⇣`ijz

`
ij + ⇣sijz

s
ij , 8(i, j) 2 L, (18b)

z`ij , z
s
ij 2 {0, 1} (i, j) 2 L. (18c)

Notice that the above formulation includes two binary vari-
ables for every line. The constraint (18b) enforces limits on
capacity on power flows through line (i, j) 2 L. For instance,
when z`ij = 1, the line capacity is restricted to the LTE limit
⇣`ij . Similarly, zsij = 1 relaxes the capacity to the STE limit ⇣sij .
We will refer to the formulation in (18) as CMP-MIP. Note that
the MIP reformulation is a mixed-integer linear program when
direct-current approximation is employed in the description of
F used in (2). When convex relaxations of optimal power flow
are employed, the resulting optimization problem is a mixed-
integer nonlinear program. Further, the multiperiod mixed-
integer extension of (18) includes the ramping constraints (8)
and the system reliability requirements (9). The latter can be
implemented efficiently similar to the minimum generator up-
time and down-time constraints in a unit commitment problem
(see [5], [11], for example). The resulting model is a mixed-
integer variant of (10).

IV. NUMERICAL EXPERIMENTS

In this section, we report the results from the numerical
experiments with the CMP formulations of SCED. We use
three test power systems available in the literature for our
numerical experiments. The first test system is an updated
version of the RTS-96 test system [38]. The test system
comprises of 73 buses, 108 lines, and 158 generators. The
other two test systems are IEEE 118 and IEEE 300 from
[39]. The IEEE 118 test system has 118 buses, 179 lines, and
54 generators. The corresponding numbers for IEEE 300 test
system are 300, 409, and 57, respectively. The experiments
were conducted on a computer using a 2.7 GHz Intel Core i5
processor with 8GB of RAM, running macOS Sierra version
10.12.6. Gurobi Optimizer version 9.0.0 through CVX was
used in MATLAB.

We consider a time resolution of 15 minutes that cor-
responds to the acceptable time limits for the LTE rating.
Following this choice, the parameters T ` = 16 and T s = 1
(number of 15-minute time intervals in 4 hours). In our
experiments, we consider a rolling-horizon length of 24 hours
resulting in a total of T = 96 decision epochs over the horizon.
Individual optimization problems solved in our rolling-horizon
setting use T 0 = 0. This is consistent with the practice at ISOs
where only here-and-now problems are solved for each t 2 T
(see for e.g., CAISO operations manual [40]).

The original load data that has a time resolution of 5-
minutes was transformed into 15-minute intervals by averaging
over corresponding three time intervals. Additionally, the load
time series was multiplied by a constant factor to emulate
a contingency scenario in the system. For our experiments,
we consider scenarios where the system is stressed for a

prolonged period of time (multiple hours). We assume that
the set of generators is committed and no additional resources
can be brought online in real time. This assumption is made to
focus the experiments on illustrating the ability of the CMP to
efficiently utilize the available line capacities. The generation
cost data is included in the data set. Estimating the opportunity
cost is challenging in general [41]. These costs range between
$50�$500/MWh (see [42] for lost opportunity cost payments
at Pennsylvania-New Jersey-Maryland (PJM) ISO). The value
of lost-load varies between $0 � $42000 based on the nature
of load (residential v. industrial) and the system operator (see
[43]). In our experiments we set sg = $300 and sd = $1000.
These penalties are applied uniformly for all the generators
and loads, respectively.

In our experiments, we use two additional models to serve as
benchmark to the CMP models. The first model is the “strict”
model that does not use cardinality minimization and imposes
all the lines to operate within the normal zone for every time
period. This model is stated as

min {F1(x, ⇠) | (2), (8), |fij |  ⇣nij}. (19)

The second model is a “relaxed” model that disregards the
thermal rating of the lines and imposes the lines to operate
within their capacity limits for every time period. This model
is stated as

min {F1(x, ⇠) | (2), (8), fmin
ij  fij  fmax

ij }. (20)

Since the CMP models (CMP-DC in (14) and CMP-MIP in
(18)), the strict model (19), and the relaxed model (20) adhere
to the physical requirements and limitations, viz., (2) and (8),
their total operating costs are comparable. In our experiments,
we use the direct-current approximation of power flows in the
description of F in (2).

Before we present the results that compare the above models
with the CMP formulation of SCED, we will present the
steps undertaken to identify the hyperparameters used in the
difference-of-convex approximation.

A. Hyperparameter Tuning
Recall that the difference-of-convex Algorithm 1 requires

hyperparameters ", �`, and �s as input. A 3-dimensional
grid search between ", �`, and �s was performed to choose
hyperparameter values for the CMP-DC formulation. Five
values of " were compared across 10 different values for both
�` and �s. The 5 tested values for " were powers of 10 evenly
spaced from 10�4 to 100. Tested values for �`, and �s ranged
from 0.1 to 1.0 in increments of 0.1. For each combination of
", �`, and �s, the total operating cost that includes the cost
of generation plus the shedding costs, detailed in equation
(1), was recorded. The number of power lines within each
operating zones at the end of each 15-minute interval were
also recorded.

Our analysis reveals a tradeoff between number of lines in
the normal zone and total operating cost. When " = 10�4, the
total operating cost greatly increases, but there are more power
lines operating within the desirable thermal rating. We see the
operating cost and subsequent number of lines operating in
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desirable thermal ratings both decrease as " increases. The
harsher penalties associated with small " values lead to more
demand shedding, as the penalty for each threshold violation
begins to outweigh shedding penalties. Because the overall
objective of the SCED problem is to minimize the total cost
while still satisfying physical and thermal rating requirements,
hyperparameter values associated with low costs are chosen for
our experiments. The hyperparameter values for the CMP-DC
formulation subsequently discussed uses " = 10�1, �` = 0.5,
�s = 0.5, and c = 0.

B. Model Comparison
We applied Algorithm 1 to solve CMP-DC and used

Gurobi’s MIP solver to solve CMP-MIP. We compare the
results obtained from the CMP models with the strict and
relaxed models. For this comparison, we performed the exper-
iment on eight different contingency scenarios, with two days
corresponding to each of the four seasons in the RTS-96 test
system. The results are shown in Table II. The table shows the
total operating cost, the units of demand shed, and the average
number of lines operating within the normal zone for all the
models. The total operating costs include the generation and
shedding costs (if any).

The table shows that operating costs are the highest during
summer contingency events. The high contingency summer
days also result in the lowest number of lines operating in
the normal zone for the CMP-DC (97.45 and 97.14 out of
108, respectively). When compared to the strict model, the
CMP models that accommodate the flexibility of operating the
lines outside the normal zone result in lower total operating
costs. For instance, The operating costs resulting from CMP-
DC formulation were lower by as much as 6.14% (Winter-1)
when compared to the strict model. The added flexibility also
results in reducing the total demand shed (between 2� 7%).

The relaxed model, as expected, achieves the lowest total
operating costs in all instances by overusing emergency ther-
mal ratings. This is observed even on the winter and spring
days that have lower demand. However, the lower operating
costs come with an increased number of lines operating in
the emergency zones (see the last column in Table II that
shows the average number of lines operating in the normal
zone). The results in Table II also show that the CMP-DC
model results in a lower total operating cost uniformly across
all scenarios compared to the CMP-MIP model. The largest
difference (0.59%) between the two models was observed on
day Winter-2.

To study the scalability of the CMP models, we performed
experiments with three test power systems with varying sizes.
Table III summarizes the results of this study. The table shows
the total operating cost and computational time for Winter-1 of
RTS-96, and an arbitrarily chosen day of IEEE 118 and IEEE
300 systems. We see the CMP-DC model results in equal or
lower costs when compared to the CMP-MIP model for all
the systems tested. The relative behavior of strict and relaxed
models on the larger test systems was similar to those reported
in Table II.

While the CMP-DC’s computation time is larger than the
CMP-MIP, we note that the computational performances be-

come more comparable as the system size increases. The
CMP-DC computation time is more than two folds higher for
RTS-96, this reduces to 8.38% for the larger IEEE 300 test
system. The higher computational time for CMP-DC model is
attributed to the time used to setup the problem on the CVX
solver. On the other hand, the setup time on the commercial
Gurobi solver was minimal.

C. Cost Performance and Prices
Figure 3 shows more detailed performance of the CMP

models for Winter-1 of RTS-96 test system in terms of the
number of lines in each of the operating zones and the total
cost of operations. In this study, the CMP models additionally
require each line that exits an emergency zone to stay in the
normal zone for the duration of line cooling period. The line
cooling period was arbitrarily set to 60 minutes (four time
periods).

Figure 3a shows the number of lines operating in different
zones when CMP-DC model is used for RTS-96 system.
The behavior of CMP-MIP model was similar. We see that
the model utilizes its flexibility as early as possible. The
constraints (9) ensure that the time duration that an individual
line operates outside the normal zone without cooling is within
the acceptable reliability parameters. Therefore, the number
of lines operating outside the normal zone decreases with
time. However, once the lines have met the cooling period
requirement, they once again operate in an emergency zone. To
illustrate this behavior, note that there are 6 lines in LTE zone
at 11:45 A.M. that reduces to 3 by 12:00 P.M. The number of
lines in LTE again reaches 6 at 12:45 P.M. Therefore, we see
an oscillating pattern in the number of lines where the period
of oscillation aligns with the line cooling period T c. The added
flexibility of allowing the lines to operate outside the normal
zone results in efficient utilization of resources to address
contingency. This is reflected in the lower operating costs
when compared to the strict model that lacks this flexibility
as seen in Figure 3b. The oscillating behavior is also evident
in the total operating costs.

Figure 4 shows the location marginal price obtained from
the strict and CMP-DC models at Bus 57 which corresponds
to the 75th percentile of demand in the network. The figure
also shows the system demand over the 24 hour horizon under
the scenario corresponding to Winter-1. The location marginal
prices are the optimal dual solution (shadow prices) associated
with the flow balance equation (2a). The strict model results
in a scarcity price of $1000 for prolonged periods of time,
once between 9:30 A.M. – 3:15 P.M. and again between 4:30
P.M. – 9:00 P.M. On the other hand, the CMP-DC model
reduces the intervals of scarcity prices during a contingency.
Note the CMP-MIP model does not provide a direct means
to compute the location marginal prices. This marks a critical
distinction between CMP-DC and CMP-MIP models that is of
significance from a systems operators’ perspective.

D. Effect of Line Cooling Period
The line cooling period has a direct impact on the degree

of flexibility offered by the CMP formulation of SCED. To
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Day
Total Cost for the Day (in 108 $) Total Units of Demand Shed (in 105 MW) Average # Lines in Normal Zone

CMP-DC CMP-MIP Strict Relaxed CMP-DC MIP-MIP Strict Relaxed CMP-DC CMP-MIP Strict Relaxed

Winter-1 1.613 1.620 1.712 1.339 1.337 1.343 1.430 1.066 102.46 103.05 108 95.36

Winter-2 1.514 1.523 1.607 1.251 1.242 1.247 1.326 0.982 102.635 102.938 108 95.50

Spring-1 1.343 1.348 1.414 1.105 1.074 1.078 1.137 0.842 103.15 103.65 108 96.92

Spring-2 1.274 1.278 1.348 1.042 1.006 1.006 1.071 0.779 103.05 103.82 108 96.99

Summer-1 7.201 7.201 7.284 7.055 6.933 6.933 7.015 6.788 97.45 102.86 108 96.10

Summer-2 7.627 7.628 7.712 7.478 7.360 7.360 7.443 7.211 97.14 103.12 108 97.01

Fall-1 4.302 4.310 4.404 4.147 4.023 4.029 4.122 3.871 98.70 103.91 108 98.13

Fall-2 3.955 3.961 4.058 3.387 3.677 3.680 3.776 3.510 98.83 103.46 108 97.91

TABLE II: Comparison across different models for various days on RTS-96 test system

(a) Number of lines in each operating zone for CMP-DC (b) Total operating cost comparison

Fig. 3: Performance of the CMP models with cooling on RTS-96 system.

System
Total Operating Cost Computation Time

CMP-DC CMP-MIP CMP-DC CMP-MIP
RTS-96 1.613⇥ 108 1.620⇥ 108 56.95 sec 26.51 sec
IEEE 118 7.880⇥ 106 7.880⇥ 106 93.34 sec 59.67 sec
IEEE 300 3.786⇥ 107 3.795⇥ 107 22.25 min 20.53 min

TABLE III: Comparison between CMP-DC and CMP-MIP
models for different test systems

Fig. 4: Location marginal price at Bus-57

examine this impact, we compare two settings that differ only
in the line cooling period. In setting-I, the line cooling period
is set to 60 minutes. In setting-II, we impose that the lines can
be in LTE/STE zones for their respective maximum periods
only once in T . The operating cost in settings I and II are
1.613⇥ 108 and 1.656⇥ 108, respectively.

We examine the activity of individual power lines through

heatmaps presented in Figure 5. Each row of grid represents a
power line, and each column represents a time period in T . A
green square indicates that the line operates within the normal
zone, i.e., |fij |  ⇣n, while yellow and red squares indicate
the line operates in the LTE and STE zones, respectively. In
setting II, we see that the model utilizes much of its flexibility
for critical lines early in the day and later with other power
lines as demand increases. On the other hand, in setting I, the
model allows the same, critical lines to re-enter emergency
zone - after the line cooling period requirement is met - as
long as a cumulative hour (as T c = 60 minutes) has been
spent in the normal zone.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the CMP formulation of SCED
that explicitly accounts for the number of transmission lines
that are operating in the emergency zones during a contingency
event. The objective function in this new formulation included
the total operating cost as well as differential penalties on
the number of lines operating in different emergency zones.
Constraints ensured that the duration of operation in emer-
gency zones was within the acceptable reliability standards
set by the system operators. The CMP is a non-convex, non-
smooth optimization problem. We presented two alternative
approaches to solve the CMP. The first approach resulted in a
difference-of-convex approximation of the CMP and we used
the DCA to obtain its solution. The second approach resulted
in a MIP formulation. The numerical experiments illustrated
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(a) Setting I: each line has cooling period of 60 minutes (b) Setting II: a line can stay in LTE(STE) zone for up to 16(1) time
periods

Fig. 5: Heatmap of each power line for RTS96 System showing their operating zones (Winter-1). The colors green, yellow,
and red indicate that the line operates in normal, LTE, and STE zones respectively.

the advantages of using the CMP models in reducing the total
operating cost.

The model and the rolling-horizon setup presented in §II-B
accommodate any choice of model resolution and horizon
length T 0. The CMP model instances used in our experiments
used T 0 = 0. While this reflects the current practice at the
ISOs (see [40]), determining an appropriate choice of T 0 is
critical to harness the full potential of lookahead models. A
thorough investigation of the SCED model horizon, in general,
and the CMP model horizon in particular, is a fruitful research
direction.

The current CMP formulation of SCED considers static
thermal ratings and therefore, results in a deterministic op-
timization problem. Several recent studies have shown the
advantage of using dynamic thermal rating of transmission
lines (e.g., [44] and [45]). Inclusion of dynamic thermal rating
in the CMP model has the potential to further improve system
operations. However, this inclusion will result in non-convex,
non-smooth stochastic optimization problems. The stochastic
difference-of-convex optimization is in its infancy and is the
subject of our ongoing work. We will undertake the CMP
formulation of SCED with dynamic thermal rating in our
future research endeavors.
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