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EQUIANGULAR LINES WITH A FIXED ANGLE

ZILIN JIANG, JONATHAN TIDOR, YUAN YAO, SHENGTONG ZHANG, AND YUFEI ZHAO

ABSTRACT. Solving a longstanding problem on equiangular lines, we determine, for each given fixed
angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by
the given angle.

Fix 0 < a < 1. Let Na(d) denote the maximum number of lines through the origin in R?
with pairwise common angle arccos . Let k denote the minimum number (if it exists) of vertices
in a graph whose adjacency matrix has spectral radius exactly (1 — «)/(2a). If k& < oo, then
Nao(d) = |k(d—1)/(k—1)] for all sufficiently large d, and otherwise N (d) = d+o(d). In particular,
Nijek—1y(d) = [k(d — 1)/(k — 1)] for every integer k > 2 and all sufficiently large d.

A key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected
bounded degree graph has sublinear second eigenvalue multiplicity.

1. INTRODUCTION

A set of lines passing through the origin in R? is called equiangular if they are pairwise separated
by the same angle. Equiangular lines and their variants appear naturally in pure and applied math-
ematics. It is an old and natural problem to determine the maximum number of equiangular lines
in a given dimension. The study of equiangular lines was initiated by Haantjes [12] in connection
with elliptic geometry and has subsequently grown into an extensively studied subject. Equiangular
lines show up in coding theory as tight frames [21]. Complex equiangular lines, also known under
the name SIC-POVM, play an important role in quantum information theory [20].

The problem of determining N (d), the maximum number of equiangular lines in R?, was formally
posed by van Lint and Seidel [18]. The exact value of N(d) has been determined for only finitely
many d (see [2, 10]). A general upper bound N(d) < (d'gl) was shown by Gerzon (see [17]). It had
remained open for some time whether there is a matching quadratic lower bound, until de Caen [4]
gave a remarkable construction showing N(d) > 2(d + 1)? for d of the form d = 6 - 4° — 1, which
in particular implies that N(d) = ©(d?) for all d. All examples of sets of ©(d?) equiangular lines
in R? have angles approaching 90° as d — oco. It turns out that a completely different behavior
emerges when the common angle is held fixed as d — oo, which is the focus of this paper.

Let N,(d) denote the maximum number of lines in R¢ through the origin with pairwise angle
arccos a. Equivalently, N4 (d) is the maximum number of unit vectors in R? with pairwise inner
products ta. Lemmens and Seidel [17] in 1973 initiated the problem of studying N, (d) for fixed o
and large d. They completely determined the values of N; /3(d) for all d, and in particular proved
that Ny/3(d) = 2(d — 1) for all d > 15. Neumann (see [17]) showed that N,(d) < 2d unless 1/«
is an odd integer. It was conjectured by Lemmens and Seidel [17] and subsequently proved by
Neumaier [19] that Ny/5(d) = [3(d —1)/2] for all sufficiently large d. Neumaier [19] writes that
“the next interesting case [« = 1/7] will require substantially stronger techniques.”

Jiang was supported by an AMS Simons Travel Grant and NSF Award DMS-1953946. Tidor was supported by
the NSF Graduate Research Fellowship Program DGE-1745302. Zhao was supported by NSF Award DMS-1764176,
the MIT Solomon Buchsbaum Fund, and a Sloan Research Fellowship.

1


http://arxiv.org/abs/1907.12466v5

2 JIANG, TIDOR, YAO, ZHANG, AND ZHAO

We focus on the problem for fixed o and large d and refer the readers to [7] for discussion on
bounds for smaller values of d.

Recently there were a number of significant advances giving new upper bounds on N, (d), starting
with the work of Bukh [3] who proved that N, (d) is at most linear in the dimension for every fixed
a.! Then came a surprising breakthrough of Balla, Driixler, Keevash, and Sudakov [1], who showed
that limsupy_,., No(d)/d, as a function of o € (0,1), is maximized at o = 1/3, and in fact this
limit is at most 1.93 unless o = 1/3, in which case the limit is 2. In addition to introducing many
new tools and ideas, their important paper presents an approach to the equiangular lines problem
that forms a bedrock for subsequent work.

An outstanding problem is to determine limg_,~ N4(d)/d for every a. The results in [17, 19]
suggest, and it is explicitly conjectured in [3, Conjecture 8], that Ny (g—1)(d) = kd/(k — 1)+ O(1)
as d — 0o. A conjectural value of limg_,o Ny (d)/d for every a was given in [13] in terms of the
following spectral graph quantity.

Definition 1.1 (Spectral radius order). Define the spectral radius order, denoted k()\), of a real
A > 0 to be the smallest integer k£ so that there exists a k-vertex graph G whose spectral radius
M (G) is exactly A. (When we say the spectral radius or eigenvalues of a graph we always refer to
its adjacency matrix.) Set k(\) = oo if no such graph exists.

Jiang and Polyanskii [13] conjectured that limg o Nu(d)/d = k/(k — 1) where k = k(\) with
A = (1 —a)/(2a). They proved their conjecture whenever A < /24 /5 ~ 2.058 (the cases
a = 1/3,1/5, corresponding to A = 1,2, were known earlier, as discussed). In particular, it was
shown that Ny /o 3 (d) = 3d/2+ O(1). Furthermore, it was shown that N, (d) < 1.49d for every
a ¢ {1/3,1/5,1/(1 + 2v/2)} and sufficiently large d > do(«), improving the earlier bound in [1].

There is a natural limitation to all previous techniques when A > /2 + v/5, which Neumaier
had already predicted at the end of his paper [19] (hence his comment about o = 1/7, i.e., A = 3,
mentioned earlier). We refer to [13] for discussion.

We completely settle all these conjectures in a strong form.

Theorem 1.2 (Main theorem). Fiz o € (0,1). Let A = (1 — «)/(2c) and k = k() be its spectral
radius order. The mazimum number No(d) of equiangular lines in R? with common angle arccos o
satisfies

(a) No(d) = |k(d—1)/(k —1)]| for all sufficiently large d > dy(c) if k < oo.

(b) No(d) =d+o(d) as d — oo if k = cc.

Remark. Our proof of (a) works for d > 22 with some constant C. For (b), it is known [13,

Propositions 15 and 23] that d < N,(d) < d + 2 unless A is a totally real algebraic integer that is
largest among its conjugates.? For the remaining values of o, we leave it as an open problem to
determine the growth rate of N, (d) —d.

If £ > 2 is an integer and aw = 1/(2k — 1), then A = k—1 and k(\) = k (the complete graph K}, is
the graph on fewest vertices with spectral radius k — 1), so the following corollary confirms Bukh’s
conjecture [3] in a stronger form, and extending the only two previously known cases of k = 2 [17]
and k = 3 [19].

Hn fact a stronger version of the inequality was shown by Bukh [3], namely that for every fixed S > 0 one cannot
have more than Cgd unit vectors in R? whose mutual inner products lie in [—1, —8] U {a}.

2The conjugates of an algebraic integer \ are the other roots of its minimal polynomial. We say that X is totally
real if all its conjugates are real.
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Corollary 1.3. For every fized integer k > 2, one has Nyjop—1y(d) = [k(d —1)/(k —1)] for all
sufficiently large d > dy(k).

2. PROOF IDEAS

In this section we summarize several key ideas used in the proof and discuss their origins.

Connection to spectral graph theory. Choose a unit vector in the direction of each line in the
equiangular set. By considering the Gram matrix, we recast the problem to one concerning the
spectrum of the adjacency matrix of an associated graph. The connection between equiangular
lines and spectral graph theory has been well known from early works, making equiangular lines
one of the foundational problems of algebraic graph theory (e.g., see [8, Chapter 11]).

Forbidden induced subgraphs. Using the fact that the Gram matrix is positive semidefinite, we
show that the associated graph cannot have certain induced subgraphs. This idea has appeared in
the early works of Lemmens and Seidel [18] and Neumaier [19], and it was reintroduced in recent
papers [1, 3, 13] under the guise of taking an orthogonal projection onto some subspace. In our
proof, we do not take projections; instead we simply verify the forbidden induced configurations by
testing positive semidefiniteness using appropriately chosen vectors.

Switching. Given a set of unit vectors representing an equiangular lines configuration, we may
negate some unit vector without changing the configuration of lines. The corresponding operation
on the associated graph picks some vertex and swaps the adjacency and non-adjacency relations
coming from that vertex. The idea of switching already appears in the early work of van Lint and
Seidel [18]. It was further used by Neumaier [19] together with an application of Ramsey’s theorem
to determine Ny /5(d).

A novel extension of the switching argument was introduced in [1], combining the knowledge of
forbidden induced subgraphs (mentioned above) with an application of Ramsey’s theorem. This
can be used to show that one can switch some of the vertices in the associated graph so that it has
bounded degree.

Theorem 2.1. For every o € (0, 1), there exists some A (depending only on «) so that for every
set of equiangular lines in R® with common angle arccos o, one can choose a set S of unit vectors,
with one unit vector in the direction of each line in the equiangular set, so that each unit vector in
S has inner product —a with at most A other vectors in S.

The proof of this theorem follows by combining Lemmas 2.7 and 2.8 of [1]. Since this result is
an important ingredient of our proof and does not appear explicitly in [1], we give a self-contained
and streamlined proof in Section 5.

Second eigenvalue multiplicity. Our most significant new contribution is an upper bound on the
second eigenvalue multiplicity of the associated graph. Let A1(G) > A2(G) > -+ > N(G) be the
eigenvalues of the adjacency matrix of G, accounting for multiplicities as usual. We call A\;(G) the
j-th eigenvalue of G.

Theorem 2.2. For every j and every A, there is a constant C = C(A, j) so that every connected n-
vertex graph with mazimum degree at most A has j-th eigenvalue multiplicity at most Cn/loglogn.

We only need j = 2 in this paper, though the proof for any fixed j is essentially the same. The
j-th eigenvalue multiplicity bound is used in a follow-up work on spherical two-distance sets [14].

We introduce a novel approach to bound eigenvalue multiplicity using the Cauchy interlacing
theorem along with comparing local and global spectral data via counting closed walks in the graph



4 JIANG, TIDOR, YAO, ZHANG, AND ZHAO

after deleting a small fraction of the vertices. See Section 4 for the proof as well as remarks on
bounds.

In contrast, the strategy in [1] and later adapted in [13] had the flavor of using projections to
exclude a finite set of subgraphs with spectral radii exceeding A, though this strategy runs into a
serious limitation when A > v/2 + /5, as foreseen by Neumaier [19], since the family of forbidden
subgraphs has infinitely many minimal elements [13]. Our method overcomes this significant barrier.

3. PROOF OF THE MAIN THEOREM

A set of N equiangular lines can be represented by unit vectors vy, ..., vy € R? with (v;, vj) = *a
for all ¢ # j. The Gram matrix ((v;,v;)); ; is a positive semidefinite matrix with 1’s on the diagonal
and +a everywhere else, so it is equal to (1 — a)I + a(J — 2A¢g), where I is the identity matrix, J
the all-1’s matrix, and Ag the adjacency matrix of an associated graph G on vertex set [IN]| where
ij is an edge whenever (v;,v;) = —a. Dividing by 2¢, we can rewrite this matrix as A\I — Ag + %J ,
where A = (1 — a)/(2a). Conversely, for every G and X for which the above matrix is positive
semidefinite and has rank d, there exists a corresponding configuration of N equiangular lines in
R?, one line for each vertex of G, with pairwise inner product +«. Thus the equiangular lines
problem has the following equivalent spectral graph theoretic formulation.

Lemma 3.1. There exists a family of N equiangular lines in R with common angle arccos a if and
only if there exists an N-vertex graph G such that the matric N\ — Ag + %J s positive semidefinite
and has rank at most d, where A = (1 — a)/(2a) and J is the all-1’s matriz. O

We first establish the lower bounds.

= (1 — a)/(2a). Let d be a positive integer. One has
> [k(d=1)/(k = 1)].

Proof. Let G be the empty graph on d vertices, so that Ag = 0 and A\ — Ag + %J is positive
semidefinite and has rank d. So N, (d) > d by Lemma 3.1.

Now assume k < co. Let H be a k-vertex graph with A\j(H) = \. Let G be the disjoint union of
|(d—1)/(k —1)] copies of H along with (d —1) — (k—1)|(d —1)/(k — 1)] isolated vertices. The
number of vertices in Gis (d—1)+ [(d—1)/(k—1)] = |[k(d—1)/(k —1)].

Since A is the spectral radius of G and the multiplicity of A in G is [(d — 1)/(k — 1)], the matrix
M — Ag is positive semidefinite and has rank d — 1. Because 2J is also positive semidefinite and
has rank 1, their sum A\ — Ag + %J is positive semidefinite and has rank at most d. By Lemma 3.1,

Na(d) > [k(d—1)/(k - 1)]. O

Proposition 3.2. Let a € (0,1) and A
Na(d) > d. If k = k(\) < oo, then Na(d)

We now prove the upper bounds in Theorem 1.2 assuming Theorems 2.1 and 2.2.

Proof of Theorem 1.2. The lower bounds follow from Proposition 3.2. For the upper bounds, con-
sider N equiangular lines in R?. By Theorem 2.1, there is some constant A = A(a) such that we
can choose one unit vector in the direction of each line so that the associated graph (whose edges
correspond to negative inner products) has maximum degree at most A. Let Ci,...,C; be the
connected components of G, numbered such that A\ (G) = A\ (Ch).

If X is not an eigenvalue of Ag, then A\l — Ag has full rank. As J has rank 1,

erank()\I—Ag—l—%J) >N —1.

Thus N < d+ 1, and Theorem 1.2 clearly holds. Therefore we may assume that A is an eigenvalue
of Ag.
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First consider the case A;(G) = A. By the definition of spectral radius order k = k(\) < oo.
Since both A\I — Ag and J are positive semidefinite,

ker(\] — Ag + 3J) = ker(A — Ag) Nker(J).

By the Perron—Frobenius theorem, there is a top eigenvector of G with nonnegative entries. This
vector lies in ker(Al — Ag) but not in ker(J), implying that dim ker(A] — Ag + %J) < dimker(A —
Ag) — 1. By the rank-—nullity theorem, we obtain

rank(A — Ag) < rank(A\] — Ag+1J)—1<d— 1.

Without loss of generality, suppose C1, ..., C; are the components of G with spectral radius exactly
A, and thus |C1],...,|C}| > k by the definition of spectral radius order. By the Perron-Frobenius
theorem, the multiplicity of A in each component is at most 1. Thus

dimker(A] — Ag) =j and rank(Al — Ag) > (k- 1)j.
Combining the upper and lower bounds on rank(A — Ag), we obtain j < (d —1)/(k — 1). Thus,

k(d— 1)

N =rank(M — Ag) +dimker(A] — Ag) <d—1+j < P

Therefore Theorem 1.2 holds in this case.

Now we consider the complementary case A\1(C7) > A. Since A\ — Ag+ %J is positive semidefinite
and J is a rank 1 matrix, A\l — A has at most one negative eigenvalue. Thus \y(G) < A.

We claim that this implies that the spectral radius of all the remaining components is strictly
less than A. By the Perron-Frobenius theorem, there are top eigenvectors w,wv for Cy,C; with
nonnegative entries (positive in the component under consideration and 0 outside it). Since both
17w and 1Tv are positive, we can choose ¢ # 0 such that w = u — cv satisfies 1Tw = 0. Now since
M —Ag + %J is positive semidefinite, we have

0<wT (M — Ag + 3J))w = wT (A — Ag)w.
FExpanding and using the fact that the supports of w and v are disconnected in G, we find
Mty + A wTo > uTAgu + AvTAgo = A(C)uTu + c2A1(Ci)vTv,

implying that A;(C;) < A for all i > 1. Therefore A\I — A¢, is invertible for all ¢ > 1, so dim ker(A] —
Ag) = dimker(A — Ag,). Since C7 has maximum degree at most A, Theorem 2.2 gives

dimker(AI — A¢cy) = Oa(|C1| /loglog|Ci|) = Oa(N/loglog N).
Also,
rank(A — Ag) < rank(M — Ag +3J)+1<d+1.
Thus
N =rank(A — Ag) + dimker(A — Ag) < Oa(N/loglog N) +d + 1.

This implies that N < d + Oa(d/loglogd). When k < oo, this is smaller than [k(d —1)/(k —1)]
for sufficiently large d. O
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4. BOUNDING EIGENVALUE MULTIPLICITY

In this section we prove Theorem 2.2, which bounds the j-th eigenvalue multiplicity of a connected
bounded degree graph.

Definition 4.1. The r-neighborhood of a vertex v in a graph G, denoted G, (v), is the subgraph of
G induced by all the vertices that are at most distance r away from v. An r-net in G is a subset
V' of the vertices such that all vertices in G are within distance r from some vertex in V.

Lemma 4.2. Let n and r be positive integers. Every n-vertex connected graph has an r-net with
size at most [n/(r +1)].

Proof. 1t suffices to prove the lemma in the case where G is a tree. Pick an arbitrary vertex w.
Take a vertex v at the maximum distance D from w. If D < r, then {w} is an r-net. Otherwise,
let u be the vertex on the path between w and v at distance r from v. Add u to the net and repeat
the argument on the component of w in G — u, which has at most n — r — 1 vertices. O

The next lemma tells us that removing an r-net from a graph significantly decreases its spectral
radius.

Lemma 4.3. Let r be a positive integer. If H (with at least 1 vertex) is obtained from a graph G
by deleting an r-net of G, then
M(H)? < M (G)F —1.

Proof. 1t suffices to prove the lemma in the case where G has no isolated vertices. The result then
follows from the Perron-Frobenius theorem and the observation that A% < Aé" — I entry-wise
(padding zeros to extend Ay to a |G| x |G| matrix). Indeed, for each vertex v of H, the number
of closed walks of length 2r starting from v is strictly more in G than in H, since in G one can
walk to a nearest vertex in the r-net and then walk back (and then walking back and forth along
a single edge to reach length 2r) and this walk is not available in H. O

The next lemma connects the spectrum of a graph with its local spectral radii.

Lemma 4.4. For every graph G and positive integer r,

IG|

DG D M(Grv)T

1=1 veV(G)
Proof. The left-hand side counts the number of closed walks of length 2r in G. The number of
such walks starting at v € V(G) is LT)A%TTT (v) Lo since such a walk must stay within distance from

v. This quantity is upper bounded by A{(G,(v))?", completing the proof. O

Proof of Theorem 2.2. Let GG be a connected n-vertex graph with maximum degree at most A. If
Aj(G) <0, the theorem holds as the graph has bounded size. Indeed, in this case,

n 7—1 n 2 j—1 j—1 2
2[B(G)] =) MG <D NG+ D NG| =D MG+ (Z /\i(G)> < j2A2
=1 i=1 1=J i=1 i=1

Now suppose A = \;(G) > 0. Let 1 = |cloglogn| and 7y = [clogn] where ¢ = ¢(A,j) > 0is a
sufficiently small constant. Let r = r{ 4+ 79.

Define U = {v € V(G) : \i(G,(v)) > A\}. We wish to bound the size of U. Let Uy be a maximal
subset of U such that the pairwise distance (in G) between any two elements of Uy is at least 2(r+1).
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Then the graph G,(Up) induced by the r-neighborhood of Uy has |Up| connected components each
with spectral radius greater than A. Hence Ay,|(G(Up)) > A = A\;(G), and thus [Up| < j by the
Cauchy interlacing theorem. Due to the maximality of Uy, its 2(r + 1)-neighborhood contains U,
and hence |U| < |Up| A2+D < jA2(r+D),

Let Vj be an rq-net of size at most [n/(r1 + 1)] in G obtained from Lemma 4.2. Let H be the
graph obtained from G after removing VoUU. For each v € V(H), the vertices in G, (v) not in Hy, (v)
form an ri-net of G,(v), and hence by Lemma 4.3, A\ (H,,(v))*" < A\ (G, (v))?™ —1 < A2 — 1.
By Lemma 4.4,

|H|
SONE)T < ST M (Hy (0)2 < (32 1)
i=1 veV (H)

Hence the multiplicity of A in H is at most

(1- )\_2T1)T2/r1 n < e Ay < omVigny

provided that ¢ is chosen to be small enough initially (here we note that A < A\ (G) < A). Since
Vol + U] < [n/(r1 +1)] + jA20+D = O, A(n/loglogn), the Cauchy interlacing theorem implies
that the multiplicity of A in G is at most O; a(n/loglogn). O

Remark. Theorem 2.2 fails for disconnected graphs since A\j(G) can be the spectral radius of many
identical small components.

It seems likely that the upper bound can be further improved. It cannot be improved beyond
O(nl/ 3) due to the following construction: let p > 5 be a prime and G the Cayley graph of PSL(2, p)
with two standard group generators. Then G is a connected 4-regular graph on p(p? —1)/2 vertices.
Since all non-trivial representations of PSL(2,p) have dimension at least (p — 1)/2, all eigenvalues
of G except A\i(G) have multiplicity at least (p — 1)/2 (see [6]). More generally, one can use
quasirandom groups [9], which are groups with no small irreducible non-trivial representations.

The claim is false without the maximum degree hypothesis. Paley graphs have p vertices and
second eigenvalue (,/p — 1)/2 with multiplicity (p — 1)/2. Other strongly regular graphs and
distance-regular graphs have similar properties.

5. SWITCHING TO A BOUNDED DEGREE GRAPH

It remains to prove Theorem 2.1, which says that one can choose the unit vectors for the equiangu-
lar lines so that the associated graph G has bounded degree. Recall that the edges of G correspond
to pairs of unit vectors with inner product —«. This argument essentially appears in [1] though
phrased differently. Here we give a self-contained and streamlined proof.

We begin by using the positive semidefiniteness of the Gram matrix to show that certain induced
subgraphs cannot appear in G.

Lemma 5.1. Let a € (0,1). Let G be the associated graph of a set of unit vectors with pairwise
inner products £a. Then the largest clique in G has size at most ' + 1.

Proof. Let v1,...,vp be unit vectors corresponding to a clique in G, so that (v;,v;) = —a for i # j.
Then 0 < [[vy ‘|‘“‘+UMH§ =M — M(M — 1)a. Hence M < o' + 1. 0

Definition 5.2. For a graph G and sets A C X C V(G), define Cx(A) to be the set of vertices in
V(G) \ X that are adjacent to all vertices in A and not adjacent to any vertices in X \ A.
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Lemma 5.3. Let o € (0,1) and A = (1 — a)/(2cv). There exist positive integers My, My depending
only on o such that the following holds. Let G be the associated graph of a set of unit vectors with
pairwise inmer products ta. If X is an independent set of G with at least My vertices, then

(a) the mazimum degree of the subgraph of G induced by Cx (&) (i.e., the non-neighbors of X )
is at most [\?], and
(b) |Cx(Y)| < My for every nonempty proper subset Y of X.

Proof. (a) Assume for contradiction that there exists a star K p in Cx (@) with vertex set V;
where D = [A?] 4 1. Consider the vector v that assigns v/D to the center of the star, 1 to all other
vertices in Vi, —(D 4 v/D)/ | X| to all vertices in X, and 0 to all other vertices of G. We have

vT (M —Ag+3J)v>0
due to positive semidefiniteness. Since Jv = 0,
D D)?
0 < Av™w) —vTAgv < A <2D + %) —2DVD.

As A < /D, this gives a contradiction when | X| > M, is sufficiently large.

(b) Write a = |Y|, b= |X \ Y|, and ¢ = |Cx(Y)|. For any real numbers «, /3,7, we consider the
vector v that assigns a to the vertices in Y, 3 to the vertices in X \ Y, 7 to the vertices in Cx(Y),
and 0 to all other vertices. We have

0<vT (M — A + 3J) v < Aaa® + bB% + ¢y?) — 2acay + $(aa + b3 + c7)?

for all real «, 8,v. Taking 5 = —(aa + ¢)/(b + 2)), we obtain

Mao? + ev?) — 2acary + (aa+cy)? >0

b+ 2\
for all real numbers o and ~. This is a quadratic form in « and «. For it to take nonnegative values
its discriminant must be nonpositive. Thus

b+A)? 5, Aa? Ac?
A 202 <
oot Mt ) (i) =Y

(b+ N)2ac < (Aa+ Ab + 203 (Ac + Ab + 2)0?).

Rearranging the inequality gives

which simplifies to

2
< A(a+b+2))
- ab — \2
Since a, b are positive integers, we have the easy bound ab > a+b— 1. Recalling that a+b = |X| >
M, we can take M; > 2\? 4 2 to give the somewhat crude bound
MNa+b+2)\) _ XNa+b+2)\) _ 2X%(a+b+2)) 5 AN3 5
< < < =2\" + —— <2\ + 2.
=TT Tatb-(2+1) " atb e =T
Choosing M, My appropriately, we conclude |Cx(Y')| = ¢ < My, as desired. O

Proof of Theorem 2.1. For a set of N equiangular lines in R? with common angle arccos a, choose
unit vectors vi,...,vyN in the directions of the lines arbitrarily. Let G be the associated graph,
whose vertex set is V' = {vy,...,vny} with an edge between two vectors if their inner product is
—a.
Let My = foz_lw + 2 and define My, Ms as in Lemma 5.3. By Ramsey’s theorem, there exists
R = R(My,2M,) such that if |V| > R, then G contains either a clique of size My or an independent
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set of size 2M;. As long as we choose A > R, the result is trivially true for |[V| < R. Thus we
may assume that |V| > R. By Lemma 5.1, G does not contain a clique of size My. Thus G must
contain an independent set of size 2M7, which we call V7.

We perform the following switching operation, modifying our set of vectors {vi,...,vn}. For
any vertex v; € V1 adjacent to more than half of the vertices in V4, replace v; by —v;.

Considering how each vertex in V \ Vj is attached to Vi, the set V' \ Vj can be partitioned
as a disjoint union of Cy,;(Y) as Y ranges over all subsets of V; with at most |V;|/2 elements,
since the above switching step ensures that Cy, (Y) is empty for |Y| > |V4] /2. By Lemma 5.3(b),
|Cv; (Y)| < Ms for each Y # @. Let Vo = Cy,(9), the non-neighbors of Vi. We know that
[V Vol < M = 2M; + 22Mi )y,

It remains to bound the degree of vertices in V. If v € Vi, then v is only adjacent to vertices in
V' \ Vo and thus has degree at most M. Now suppose v ¢ V;. Let Y be the set of non-neighbors
of v in V;. The switching ensures that |Y| > |V1| /2 = M;. Applying Lemma 5.3(a), the maximum
degree of the subgraph induced by Cy (@) is at most [A?]. This set Cy (@) includes V5 and v,
implying that v has degree at most D := [)\21 + M. Thus we have bounded the degree of every
vertex by D, a constant depending only on a. O

6. FURTHER REMARKS

Our main theorem completely determines N, (d) for sufficiently large d in the case k(\) < oc.
However, it is still open what happens exactly when k(\) = co. The construction in Proposition 3.2
only gives a lower bound N,(d) > d, whereas the proof of Theorem 1.2 shows N,(d) = d +
O, (d/loglogd). The following conjecture was made in [13] and has been verified except when X is
a totally real algebraic integer that is largest among its conjugates [13, Propositions 15 and 23].

Conjecture 6.1. Fiz o € (0,1), and let A = (1 — «)/(2a). If k() = 00, then No(d) = d+ O4(1).
Question 6.2. How large does d need to be for Theorem 1.2 to hold?
Many interesting questions can be asked regarding Theorem 2.2 as well.

Question 6.3. Fix A. What is the maximum possible second eigenvalue multiplicity of a connected
n-vertex graph with maximum degree at most A?

Theorem 2.2 shows that the Ay multiplicity is Oa(n/loglogn). On the other hand, it cannot be
better than O(n'/3) when A > 4 (see the remark at the end of Section 4).

Remark. Tt is interesting to ask the same question when restricted to Cayley graphs of finite groups.
For abelian or nearly abelian groups (e.g., nilpotent of bounded step), the problem of eigenvalue
multiplicities has interesting connections to deep results in Riemannian geometry. Following the
approach of Colding and Minicozzi [5] on harmonic functions on manifolds and Kleiner’s proof [15]
of Gromov’s theorem on groups of polynomial growth [11], Lee and Makarychev [16] showed that
in groups with bounded doubling constant K = maxpg~o|B(2R)| /|B(R)| (where B(R) is the ball
of radius R), the second eigenvalue multiplicity of such a Cayley graph is bounded, namely at most
KOUogK) Note that a Cayley graph on a nilpotent group of bounded step (e.g., an abelian group)
with a bounded number of generators has bounded doubling constant.

The above discussion gives a substantial improvement to Theorem 2.2 for non-expanding Cayley
graphs. On the other hand, for expander graphs (not necessarily Cayley), say, satisfying |[N(A)| >
(14 ¢)|A] for all vertex subsets A with |A| < n/2, the bound in Theorem 2.2 can be improved to
On.j.c(n/logn). Indeed, for such expander graphs Lemma 4.2 can be improved as follows. Every
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maximal r-separated set is necessarily an r-net, and the size of such a set in this expander graph
is at most n/(1 4 ¢)l"/2) as can be seen by considering the sizes of the |r/2]|-neighborhoods which
must necessarily be disjoint. However, there are Cayley graphs that expand at some scales and
have bounded doubling at other scales. Neither of these techniques applies to such graphs.

The following more refined question, where we fix A > 0, appears to be more relevant to the
problem of equiangular lines, especially in pinning down the asymptotics of the error term in
Theorem 1.2.

Question 6.4. Fix A, A > 0. What is the maximum multiplicity that A can appear as the second
eigenvalue of a connected n-vertex graph with maximum degree at most A?

If the answer is O(1) for some A and sufficiently large A, then our proof shows that Conjecture 6.1
holds for this A.

Finally, there are many similarly flavored questions regarding s-distance sets and codes in R™,
the sphere, and other spaces. Complex versions and higher dimensional analogs are also worth
exploring further. We state one of these questions here, which is partially addressed in a follow-up
work [14].

Question 6.5. Fix 1 > a > 0> f > —1. What is the maximum size of a spherical {«, §}-code
in R?? That is, what is the maximum number of unit vectors in R? such that all pairwise inner
products are a or 57
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