
ar
X

iv
:1

91
0.

06
43

6v
2 

 [m
at

h.
C

O
]  

15
 D

ec
 2

02
0

COMMON AND SIDORENKO LINEAR EQUATIONS

JACOB FOX, HUY TUAN PHAM, AND YUFEI ZHAO

Abstract. A linear equation with coefficients in Fq is common if the number of monochromatic
solutions in any two-coloring of Fn

q
is asymptotically (as n → ∞) at least the number expected

in a random two-coloring. The linear equation is Sidorenko if the number of solutions in any
dense subset of Fn

q
is asymptotically at least the number expected in a random set of the same

density.
In this paper, we characterize those linear equations which are common, and those which are

Sidorenko. The main novelty is a construction based on choosing random Fourier coefficients
that shows that certain linear equations do not have these properties. This solves problems
posed in a paper of Saad and Wolf.

1. Introduction

Sidorenko’s conjecture [20] (also conjectured earlier in a stronger form by Erdős and Si-
monovits [22]) is a major open problem in extremal graph theory. We say that a bipartite
graph H is Sidorenko if the density of copies of H in a graph with fixed edge density is
asymptotically minimized by the random graph with the same edge density. Sidorenko’s con-
jecture says that all bipartite graphs H are Sidorenko. Many graphs are known to have the
Sidorenko property, including bipartite graphs with a vertex complete to the other part, see
[4, 5, 6, 7, 16, 17, 18, 23]. A coloring variant of Sidorenko’s conjecture, the Burr-Rosta conjec-
ture [2] (extending an earlier conjecture of Erdős [8]), claims that the density of monochromatic
copies of any fixed graph H in any coloring of Kn is asymptotically minimized by the random
coloring. While the Burr-Rosta conjecture was disproved by Thomason [24] and Sidorenko [21],
many graphs H are known to satisfy the Burr-Rosta conjecture; such graphs are called common
graphs.

Saad and Wolf [19] explored various analogues of Sidorenko and common graphs in the
arithmetic setting. In this setting, we consider the minimum density of solutions to a system of
linear equations in a subset of given density in a finite abelian group, or the minimum density
of monochromatic solutions to a system of linear equations in a two-coloring of the abelian
group. In particular, we consider the setting of a fixed linear system L with coefficients in some
finite field Fq. We say that a system of linear equations L = 0 is common if the density of
monochromatic solutions to this system in any two-coloring of Fn

q is asymptotically at least what
we expect from a random coloring. Likewise, we say that a linear system L = 0 is Sidorenko if
the density of solutions to this system in any dense subset of Fn

q is asymptotically at least what
we expect from a random set with the same density. The formal definitions for single linear
homogeneous equations are given below. While the above arithmetic problems do not directly
correspond with graph problems, they share many common features. We refer the reader to
[19] for more details.
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Award DMS-1764176, the MIT Solomon Buchsbaum Fund, and a Sloan Research Fellowship.
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Definition 1.1. Given a linear form L(x1, . . . , xk) = a1x1 + · · · + akxk with a1, . . . , ak ∈ Fq,
we say that the equation L = 0 is Sidorenko if for every n and every A ⊆ Fn

q , the number

of solutions to L(x1, . . . , xk) = 0 with x1, . . . , xk ∈ A is at least |A|k/qn. We say that the
equation L = 0 is common if for every n and every coloring of Fn

q with two colors, the number

of monochromatic solutions (x1, . . . , xk) ∈ (Fn
q )

k to L(x1, . . . , xk) = 0 is at least 21−kqn(k−1).

Note that if we choose a random subset S of Fn
q by picking each element independently

with probability |A|/qn, then the expected number of solutions to L(x1, . . . , xk) = 0 with
x1, . . . , xk ∈ S is qn(k−1)(|A|k/qnk + on→∞(1)) where the on→∞(1) term accounts for the density
of solutions of L(x1, . . . , xk) = 0 with xi = xj for some i 6= j. Here, we denote by on→∞(1) a
term which tends to 0 uniformly in A as n → ∞. Similarly, in a random two-coloring of Fn

q

where the color of each element is chosen independently and uniformly, the expected number of
monochromatic solutions to L(x1, . . . , xk) = 0 is qn(k−1)(21−k+on→∞(1)). Moreover, by a simple
argument given at the beginning of Section 2, we can show that if for every A ⊆ Fn

q , the number

of solutions to L(x1, . . . , xk) = 0 with x1, . . . , xk ∈ A is at least qn(k−1)(|A|k/qnk + on→∞(1)),
then in fact L = 0 is Sidorenko. Similarly, if the number of monochromatic solutions to
L(x1, . . . , xk) = 0 is at least qn(k−1)(21−k + on→∞(1)), then L = 0 is common.

Cameron, Cilleruelo, and Serra [3] proved using a cancellation argument that, in an abelian
group G, given a linear equation L = 0 with an odd number of variables and whose coefficients
are coprime to |G|, the number of monochromatic solutions to L = 0 in any 2-coloring of
G depends only on the size of the color classes. It easily follows that the linear equation is
common in this case. Saad and Wolf [19, Conjecture 5.2] made the following conjecture for
linear equations with an even number of variables.

Conjecture 1.2 ([19]). Let k ≥ 2 be an integer. A linear equation of the form

a1x1 + · · ·+ a2kx2k = 0

is common in Fn
q if and only if we can partition {a1, ..., a2k} into k pairs, each summing to 0.

Saad and Wolf [19] noted that the “if” direction of their conjecture follows easily from an
application of the Cauchy-Schwarz inequality.

The following question was attributed to Alon [19, Question 4.1].

Question 1.3. Is it true that adding sufficiently many free variables makes any linear system
not common?

In this paper, we characterize all linear homogeneous equations (i.e., systems with one equa-
tion) that are common as well as those that are Sidorenko, resolving the above conjecture and
question. In the theorem below, part (b) is new, which we prove by constructing a function
with randomly chosen Fourier coefficients. Parts (a) and (c) are previously known [19], though
we include their proofs for completeness.

Theorem 1.4. Let L(x1, . . . , xk) = a1x1+ · · ·+akxk be a linear form with a1, . . . , ak ∈ Fq \{0}.

(a) If a1, . . . , ak can be partitioned into pairs each summing to zero, then the equation L = 0
is Sidorenko and common.

(b) If k is even and a1, . . . , ak cannot be partitioned into pairs each summing to zero, then
the equation L = 0 is not common and not Sidorenko.

(c) If k is odd, then the equation L = 0 is common but not Sidorenko.



COMMON AND SIDORENKO LINEAR EQUATIONS 3

Adding a free variable to a linear equation is the same as adding a variable with coefficient 0
to the equation. Hence, the density of solutions to the new equation (with ℓ coefficients being
0) is simply the density of solutions to the original equation (with only nonzero coefficients),
multiplied by the set density to the power ℓ. The following theorem answers Question 1.3.

Theorem 1.5. Let L(x1, . . . , xk) = a1x1 + · · · + akxk be a linear form with a1, . . . , ak ∈ Fq \
{0}. Let L′ be the linear form obtained by adding ℓ ≥ 1 free variables to L (equivalently,
L′(x1, . . . , xk+ℓ) = a1x1 + · · · + akxk + 0xk+1 + · · · + 0xk+ℓ). If a1, . . . , ak can be partitioned
into pairs each summing to zero, the equation L′ = 0 is Sidorenko and common, and otherwise
L′ = 0 is not common and not Sidorenko.

It is natural to study the same problems for inhomogeneous linear equations.

Definition 1.6. Let L(x1, . . . , xk) = a1x1+· · ·+akxk be a linear form with a1, . . . , ak ∈ Fq\{0}.
We say that the linear form L is inhomogeneous-Sidorenko if for every n, every nonzero b ∈ Fn

q ,
and every A ⊆ Fn

q , the number of solutions to L(x1, . . . , xk) = b with x1, . . . , xk ∈ A is at least

|A|k/qn. We say that the linear form L is inhomogeneous-common if for every n, every nonzero
b ∈ Fn

q , and every coloring of Fn
q with two colors, the number of monochromatic solutions

(x1, . . . , xk) ∈ (Fn
q )

k to L(x1, . . . , xk) = b is at least 21−kqn(k−1).

We remark that the choice of nonzero b above is inconsequential, since for any n, if the
properties in Definition 1.6 are satisfied for any nonzero b ∈ Fn

q , then they are satisfied for
every nonzero b ∈ Fn

q . Indeed, for any nonzero b, b′ ∈ Fn
q , we can find an invertible linear

transformation C such that Cb = b′. Then a1x1 + · · · + akxk = b if and only if a1Cx1 +
· · · + akCxk = b′, so the solutions to L = b in A and the solutions to L = b′ in CA are in
one-to-one correspondence via the invertible transformation C. The next result gives a simple
characterization of the inhomogeneous-common linear forms, and shows that no linear form is
inhomogeneous-Sidorenko.

Theorem 1.7. Let L(x1, . . . , xk) = a1x1+ · · ·+akxk be a linear form with a1, . . . , ak ∈ Fq \{0}.
Let L′ be the linear form obtained by adding ℓ ≥ 0 free variables to L.

Then L′ is never inhomogeneous-Sidorenko, and L′ is inhomogeneous-common if and only if
k is odd and ℓ = 0.

We note that Leo Versteegen [25] has generalized our results to arbitrary abelian groups.

2. Proofs

We will use two different notations for expectation: E and E. First, the symbol E denotes
averaging. For example, for a function f : Fn

q → R, we write Ef = E
x
f(x) = E

x∈Fn
q
f(x) to

denote the average value of f(x) as x varies uniformly over its domain (we omit the subscripts
when there is no confusion). Second, as we will be constructing a random set A, we write EA

to denote the expectation over this probability distribution.
We note that the Sidorenko property is equivalent to its functional version, where we replace

the subset A ⊆ Fn
q by a function f : Fn

q → [0, 1]. Indeed, given a linear form L(x1, . . . , xk) =
a1x1 + · · ·+ akxk and a function f : Fn

q → [0, 1], we write

ΛL=0(f) := E
x=(x1,...,xk)∈(Fn

q )
k :L(x)=0 [f(x1) · · ·f(xk)] .
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Then the equation L = 0 is Sidorenko if and only if for every n and every f : Fn
q → [0, 1],

ΛL=0(f) ≥ (Ef)k. (1)

Indeed, being Sidorenko in the sense of Definition 1.1 is equivalent to (1) for all f of the
form 1A with A ⊆ Fn

q . Conversely, suppose (1) fails for some f : Fn
q → [0, 1]. We can extend

f to a function on Fn+n′

q by forgetting the n′ new coordinates when evaluating f . We can

now sample a random subset A ⊆ Fn+n′

q by independently including each x ∈ Fn+n′

q with
probability f(x). We have EA[E1A] = E[f ], and EAΛL=0(1A) = ΛL=0(f) + on′→∞(1), where
the on′→∞(1) term accounts for the proportion of x ∈ (Fn+n′

q )k with L(x) = 0 and not all k

coordinates distinct, which goes to 0 as n′ → ∞. Since EA[(E1A)
k] ≥ (EA[E1A])

k = E[f ]k by
the convexity of t 7→ tk, it follows that if (1) fails for some f , then for n′ large enough, there
exists A ⊆ Fn+n′

q that such that (1) fails for f = 1A. Thus the set version and the functional
formulations of the property of being Sidorenko are equivalent. The same argument shows that
if ΛL=0(A) ≥ (|A|/qn)k + on→∞(1) for every A, where the on→∞(1) term tends to 0 as n → ∞
uniformly in A, then in fact ΛL=0(A) ≥ (|A|/qn)k.

Likewise, the property of being common also has an equivalent functional formulation: given
a k-variable linear form L over Fq, the equation L = 0 is common if and only if for every
f : Fn

q → [0, 1],

ΛL=0(f) + ΛL=0(1− f) ≥ 21−k.

We denote the Fourier transform of a function f : Fn
q → C by

f̂(r) = Ex∈Fn
q
f(x)r(x), r ∈ F̂n

q

where F̂n
q is the group of characters of Fn

q , i.e., homomorphisms r : Fn
q → C×. The groups F̂n

q

and Fn
q are isomorphic by associating y ∈ Fn

q with the character γy ∈ F̂n
q defined by γy(x) =

exp(2πi tr 〈x, y〉 /p) where p is the characteristic of Fq and tr : Fq → Fp is the standard trace

map. We write the dual group F̂q additively, so that, e.g., 0 ∈ F̂n
q is the constant-1 function γ0,

and aγy = γay ∈ F̂n
q for any a ∈ Fq and y ∈ Fn

q .
Recall the following identity which relates a twisted convolution with the Fourier transform:

given L(x1, . . . , xk) = a1x1 + · · ·+ akxk,

ΛL=0(f) =
∑

r∈F̂n
q

f̂(a1r) · · · f̂(akr). (2)

Since f̂(0) = Ef and ̂(1− f)(r) = −f̂(r) for all r 6= 0, we have

ΛL=0(f) + ΛL=0(1− f) = (Ef)k + (1− Ef)k + (1 + (−1)k)
∑

r∈F̂n
q \{0}

f̂(a1r) · · · f̂(akr). (3)

Next, we give the proof of Theorem 1.4. We remark that part (a) of Theorem 1.4 has already
been proven in [19].
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Proof of Theorem 1.4. (a) Write m = k/2 and L(x1, x
′
1, . . . , xm, x

′
m) = a1(x1 − x′

1) + · · · +
am(xm − x′

m). For f : F
n
q → [0, 1], we have

ΛL=0(f) = Ez (Ex1,...,xm:z=a1x1+···+amxm
f(x1) · · ·f(xm))

2

≥ (EzEx1,...,xm:z=a1x1+···+amxm
f(x1) · · ·f(xm))

2

= (Ex1,...,xm
f(x1) · · ·f(xm))

2

= (Ef)2m.

Thus L = 0 is Sidorenko, which then implies that it must be common, since ΛL=0(f)+ΛL=0(1−
f) ≥ (Ef)k + (1− Ef)k ≥ 21−k by the convexity of t 7→ tk.

(b) It suffices to show that L = 0 is not common, since as we just noted, every Sidorenko
equation is automatically common. It suffices to show that there exists f : Fq → [0, 1] such that

ΛL=0(f) + ΛL=0(1− f) < 21−k.

In particular, the Sidorenko condition fails for n = 1 (also see the comments at the beginning
of this section).

Since k is even, using (3), it remains to exhibit some f : Fq → [0, 1] such that Ef = 1/2 and

such that
∑

r∈F̂n
q \{0}

f̂(a1r) · · · f̂(akr) < 0. We shall do it by choosing random values for f̂ .

For each r ∈ F̂q \ {0}, let ξr be a random unit complex number. If q is odd, we choose the

ξr’s subject to ξr = ξ−r but i.i.d. uniform otherwise. If q is even, we choose each ξr ∈ {−1, 1}

uniformly i.i.d. Construct a random function f : Fq → [0, 1] by setting f̂(0) = 1/2 and f̂(r) =

ξr/(2q) for every r ∈ F̂q \ {0}. By the inverse transform f(x) =
∑

r∈F̂q
f̂(r)r(x), we see that

such f takes real values in [0, 1].

Then, for every r ∈ F̂q \ {0}, the product f̂(a1r) · · · f̂(akr) has expectation zero over this
random f , since a1, . . . , ak cannot be partitioned into “canceling” pairs each summing to zero.
Thus, the expectation of (3) over this random f is equal to 21−k.

Observe that for a sufficiently small choice of ǫ > 0, if we have |ξr−1| < ǫ for all r ∈ F̂n
q \{0},

then ℜ(ξa1r · · · ξakr) >
1
2
for all r 6= 0. With positive probability, we have that |ξr − 1| < ǫ for

all r ∈ F̂q \ {0}. Under this event, noting that the value of (3) is a real number, we have

∑

r∈F̂q\{0}

f̂(a1r) · · · f̂(akr) =
∑

r∈F̂q\{0}

ξa1r · · · ξakr
(2q)k

>
q − 1

2(2q)k
.

Hence, the value of (3) is greater than 21−k + q−1
2(2q)k

with positive probability. Since the expec-

tation of (3) is 21−k, it follows that there is some f such that the value of (3) is strictly less
than 21−k, as desired.

(c) Since k is odd, by (3) and the convexity of t 7→ tk,

ΛL=0(f) + ΛL=0(1− f) = (Ef)k + (1− Ef)k ≥ 21−k,

and thus L = 0 is common.
On the other hand, setting f̂(0) = 1/2 and f̂(r) = −1/(2q) for all r ∈ F̂n

q \{0}, we see from (2)

that ΛL=0(f) < (Ef)k, so that L = 0 is not Sidorenko. (Alternatively, we can set A = Fq \ {0}
and deduce by the inclusion-exclusion principle that ΛL=0(1A) = (1−1/q)k+(−1/q)k(q−1).) �
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Proof of Theorem 1.5. When a1, . . . , ak can be partitioned into pairs each summing to zero, the
proof that L′ = 0 is Sidorenko and common follows from 1.4(a) since in this case ΛL′=0(f) =
(Ef)ℓΛL=0(f) ≥ (Ef)k+ℓ.

Now consider the case when k is odd. It suffices to exhibit a function f : Fq → [0, 1] such
that ΛL′=0(f) + ΛL′=0(f) < 21−k−ℓ. Consider the function f : Fq → [0, 1] defined by

f(x) =

{
1
2
+ c− (q − 1)β if x = 0,

1
2
+ c+ β if x 6= 0.

(4)

where β = 1/(2q) is a constant and c > 0 is sufficiently small. Its Fourier transform is given by

f̂(r) =

{
1
2
+ c if r = 0,

−β if r 6= 0,
and ̂(1− f)(r) =

{
1
2
− c if r = 0,

β if r 6= 0.
(5)

From (2), we find that

ΛL=0(f) = (1
2
+ c)k + (q − 1)(−β)k

and

ΛL=0(1− f) = (1
2
− c)k + (q − 1)βk.

Since ΛL′=0(f) = (Ef)ℓΛL=0(f) and ΛL′=0(1 − f) = (1 − Ef)ℓΛL=0(1− f), and recall that k is
odd, we have

ΛL′=0(f) + ΛL′=0(1− f) =
(
1
2
+ c

)ℓ ((1
2
+ c

)k
− (q − 1)βk

)
+
(
1
2
− c

)ℓ ((1
2
− c

)k
+ (q − 1)βk

)

=
(
1
2
+ c

)k+ℓ
+
(
1
2
− c

)k+ℓ
− (q − 1)βk

((
1
2
+ c

)ℓ
−
(
1
2
− c

)ℓ)

= 21−k−ℓ − (q − 1)βk2−ℓ+1ℓc+O(c2),

which is less than 2−k−ℓ+1 as long as c is small enough.
Finally, suppose k is even but a1, . . . , ak cannot be partitioned into pairs summing to zero.

In the proof of Theorem 1.4(b) we constructed an f : Fq → [0, 1] with Ef = 1/2 such that
ΛL=0(f) + ΛL=0(f) < 21−k. Then this f has ΛL′=0(f) = (Ef)ℓΛL=0(f) = 2−ℓΛL=0(f) and
likewise ΛL′=0(f) = 2−ℓΛL=0(f), and hence ΛL′=0(f) + ΛL′=0(f) < 21−k−ℓ, so that L′ is not
Sidorenko and not common. �

Proof of Theorem 1.7. The equation L′(x) = b with b 6= 0 has no solutions with all k coor-
dinates of x = (x1, . . . , xk) lying in a subspace of Fn

q not containing b. Thus L′ cannot be
inhomogeneous-Sidorenko.

Let us define

ΛL=b(f) := E
x=(x1,...,xk)∈(Fn

q )
k :L(x)=b[f(x1) · · ·f(xk)].

An extension of (2) for inhomogeneous equations gives

ΛL=b(f) =
∑

r∈F̂n
q

f̂(a1r) · · · f̂(akr)r(b). (6)

Similar to (3), we have

ΛL=b(f) + ΛL=b(1− f) = (Ef)k + (1− Ef)k + (1 + (−1)k)
∑

r∈F̂n
q \{0}

f̂(a1r) · · · f̂(akr)r(b). (7)
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Thus when ℓ = 0 and k is odd, then the above expression is at least (Ef)k + (1 − Ef)k ≥ 21−k

by the convexity of t 7→ tk, so that L is inhomogeneous-common, and L′ = L since ℓ = 0.
Now we turn to the negative cases. To show that L′ is not inhomogeneous-common, it suffices

to exhibit a function f : Fq → [0, 1] such that ΛL′=1(f) + ΛL′=1(1− f) < 21−k−ℓ.

When k is even, set Ef = 1/2 and f̂(r) = 1/(2q) for all r ∈ F̂n
q \ {0}, say, so that f takes

values in [0, 1], and then the value of (7) is less than 21−k since
∑

r∈F̂n
q \{0}

r(b) = −1, so that

ΛL=1(f)+ΛL=1(1−f) < 21−k. Adding ℓ free variables in this case gives ΛL=1(f)+ΛL=1(1−f) =
(Ef)ℓΛL=1(f) + (1− Ef)ℓΛL=1(1− f) < 21−k−ℓ.

Finally, suppose ℓ > 0 and k is odd. Take f as in (4) except that now we set β = −1/(2q).
Then, using (5) and (6), and using that

∑
r∈F̂n

q \{0}
r(1) = −1, we have

ΛL=1(f) =
(
1
2
+ c

)k
− (−β)k

and
ΛL=1(1− f) =

(
1
2
− c

)k
− βk.

Since ΛL′=1(f) = (Ef)ℓΛL=1(f) and ΛL′=1(1 − f) = (1 − Ef)ℓΛL=1(1− f), and recall that k is
odd, we have

ΛL′=1(f) + ΛL′=1(1− f) =
(
1
2
+ c

)ℓ ((1
2
+ c

)k
− (−β)k

)
+
(
1
2
− c

)ℓ ((1
2
− c

)k
− βk

)

=
(
1
2
+ c

)k+ℓ
+
(
1
2
− c

)k+ℓ
+ βk

((
1
2
+ c

)ℓ
−

(
1
2
− c

)ℓ)

= 21−k−ℓ + βk21−ℓℓc+O(c2),

which is less 21−k−ℓ if c > 0 is small enough (recall that β = −1/(2q) and k is odd). �

3. Concluding Remarks

In this paper, we characterized which linear equations are common and which are Sidorenko.
It is natural to try to characterize which systems of linear equations satisfy these properties,
and Saad and Wolf [19] proved several results on this. To be more precise, a system of linear
equations xM = 0 in k variables is Sidorenko if the density of solutions to xM = 0 in a set A
is at least the k-th power of the density of A. Here, we think of x as a matrix whose columns
are x1, . . . , xk. A system of linear equations xM = 0 in k variables is common if the density of
monochromatic solutions to xM = 0 in any two-coloring of Fn

q is at least 21−k. We currently
don’t have a guess for a characterization of these properties for general linear systems. One
reason why this is of interest is that it might lead to a better understanding of the analogous
properties for graphs and hypergraphs.

Question 3.1. Which systems of linear equations are Sidorenko? Which are common?

While the linear homogeneous equation x1 − 2x2 + x3 = 0 giving three-term arithmetic
progressions is not Sidorenko, Green [13] introduced a weakening of the Sidorenko property
which this equation does satisfy. Green proved that, for each ǫ > 0 there is N(ǫ) such that if G
is an abelian group with |G| ≥ N(ǫ) and A ⊆ G has density α, then there is a nonzero d ∈ G
such that the density of three-term arithmetic progressions with common difference d is at least
α3 − ǫ. That is, while the total density of three-term arithmetic progressions can be much
less than given by the random bound, there is a nonzero d for which the density of three-term
arithmetic progressions with common difference d is at least almost the random bound. The
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proof uses an arithmetic regularity lemma, and consequently gives a tower-type bound on N(ǫ).
The authors later proved that such a tower-type bound is needed (see [10, 11, 12]).

It is natural to try to see whether other systems of linear equations satisfy such a popular
differences property. Green and Tao [14, 15] proved that the linear system giving four-term
arithmetic progressions has this property, while Ruzsa [1] proved that for any longer length
arithmetic progression, the corresponding linear system does not have this property.

We say that a single linear homogeneous equation L = 0 is popular if, for each ǫ > 0 there
is nL(ǫ) such that if n ≥ nL(ǫ) and A ⊆ Fn

q has density α, then there are nonzero and distinct
d1, . . . , dk−1 such that the density of solutions to L = 0 with xi+1 − x1 = di for i = 1, . . . , k − 1
is at least αk − ǫ. We refer to d1, . . . , dk−1 as the popular differences. A linear homogeneous
equation L = 0 is translation-invariant if and only if the sum of the coefficients is zero. If
the equation L = 0 is popular, then it must be translation-invariant. Indeed, if L = 0 is
not translation-invariant, then the affine subspace S of codimension one (so density α = 1/q)
consisting of those elements whose first coordinate is one is such that L = 0 has no solution in
S. Hence, it follows that nL(ǫ) does not exist for ǫ < 1/qk.

For a translation-invariant linear equation, the reader may compare the above definition of
popular differences to the discussion of popular difference for three-term arithmetic progressions,
where the popular difference is a single parameter d = x2 − x1 instead of the tuple (d, 2d) =
(x2−x1, x3−x1). Indeed, in the general case, fixing d1, . . . , dk−2 would determine a unique choice
of dk−1 for which there exists a solution to L(x) = 0 with xi+1 − x1 = di for i = 1, . . . , k − 1.
However, in the case of three-term arithmetic progressions over abelian groups of odd order,
fixing x2 − x1 = d 6= 0 ensures that x3 − x1 = 2d 6= 0, whereas fixing nonzero and distinct
(d1, . . . , dk−2) in the general case does not guarantee that xk − x1 = dk−1 is nonzero or distinct
from d1, . . . , dk−2. Thus, the inclusion of dk−1 in the definition of popular differences does not
correspond to a degree of freedom, but only serves to ensure that x1, . . . , xk are distinct when
xi+1 − x1 = di for 1 ≤ i ≤ k − 1.

Note that if L = 0 is Sidorenko, then simply by averaging, it is also popular and furthermore,
nL(ǫ) is bounded above by O(log(1/ǫ)). Green’s theorem shows that the equation x1−2x2+x3 =
0 is popular. More generally, Green’s argument in [13] can be extended to show that L = 0
is popular if and only if it is translation-invariant. Indeed, we showed above that if L = 0 is
not translation-invariant, then it is not popular. If L = 0 is translation-invariant, then the
arithmetic regularity lemma proof of Green’s theorem goes as follows. For each subset A ⊆ Fn

q

of density α, by a Szemerédi type lemma, there is a regular subspace H of bounded codimension,
and the counting lemma and Jensen’s inequality gives that the density of solutions to L = 0
with x1, . . . , xk all in the same translate of H is at least almost αk. By throwing out the
solutions with x1, . . . , xk not all distinct (which is of smaller order for n sufficiently large) and
averaging, we get that there exists nonzero and distinct d1, . . . , dk−1 ∈ H for which the density
of solutions to L = 0 with xi+1 − x1 = di for 1 ≤ i ≤ k − 1 is at least αk − ǫ. This proof gives
an upper bound on nL(ǫ) which is a tower of height ǫ−O(1).

The first two authors [10] showed, in the case L = 0 corresponding to three-term arithmetic
progressions, nL(ǫ) is in fact bounded above and below by a tower of height Θ(log(1/ǫ)). We can
directly adapt the proof of the upper bound in [10] to show that for all translation invariant
L = 0, we have nL(ǫ) is bounded above by a tower of height Θ(log(1/ǫ)), using a density
increment argument with the mean k-th power density, defined as bk(H) = E[fH(x)

k], where
fH(x) is the average value of f on the affine translate of H containing x.
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The lower bound construction in [10] heavily depends on the fact that the equation x1 −
2x2 + x3 = 0 is not Sidorenko, as a crucial ingredient of our construction is a model function
with relatively low density of three-term arithmetic progressions. As mentioned above, if L = 0
is Sidorenko, then nL(ǫ) is not of tower-type, but in fact, only O(log(1/ǫ)).

The converse does not hold. Indeed, we next exhibit a linear homogeneous equation in eight
variables which is not Sidorenko but nL(ǫ) = O(log(1/ǫ)). For example, we may take L = 0
with

L(x1, x2, x3, x4, x5, x6, x7, x8) = −6x1 + 3x2 + x3 + 7x4 + 2x5 − 4x6 − 2x7 − x8. (8)

A Hilbert cube of dimension t is a sequence of 2t numbers x1 +
∑t

i=1 ǫidi with ǫi ∈ {0, 1}. The
Hilbert cubes of dimension t are the solution set to a system xMt = 0 of linear equations in
2t variables. It follows from repeated application of the Cauchy–Schwarz inequality that the
system xMt = 0 is Sidorenko (see Example 2.5 in [19]). It follows that if n > C log(1/ǫ)
for a large enough constant C > 0, and A ⊆ Fn

q , then, letting t = 3 and averaging, there is
a set {d1, d2, d3} such that all eight subsets of this set have nonzero and distinct sums, and
the density of Hilbert cubes of dimension three in A with this choice of d1, d2, d3 is at least
E[1A]

8 − ǫ. Let d4 = d1 + d2, d5 = d1 + d3, d6 = d2 + d3, and d7 = d1 + d2 + d3. The Hilbert
cubes (x1, x1 + d1, x1 + d2, x1 + d3, x1 + d1 + d2, x1 + d1 + d3, x1 + d2 + d3, x1 + d1 + d2 + d3)
of dimension three with differences d1, d2, d3 are precisely the solutions to the example L = 0
in eight variables above which further satisfy xi+1 − x1 = di for i = 1, . . . , 7. Thus there are
equations L = 0 like the one above which are not Sidorenko but nL(ǫ) = O(log(1/ǫ)).

We do not know if there is a translation-invariant linear equation L = 0 with at least four
variables for which nL(ǫ) has tower-type growth. It would be further interesting to characterize
them. For equations L = 0 with three variables which are translation-invariant, we can show a
tight tower-type lower bound on nL(ǫ) by a direct generalization of the argument in [10].

Question 3.2. Characterize the growth rate of nL(ǫ) for linear equations L = 0 with at least
four variables.

Related to the previous question, it would be interesting to know for which linear equations
L = 0 can we prove nL(ǫ) = O(log(1/ǫ)) through the above technique by finding a linear system
which is Sidorenko and whose solution set is a subset of the set of solutions to L = 0.

Question 3.3. For which linear equation L = 0 can we find a Sidorenko linear system of
equations xM = 0 whose solutions are also solutions of L = 0?

Note that the proof of the popular differences theorem using the regularity lemma yields the
stronger result that there exists a subspace H of bounded codimension such that the density of
solutions to L = 0 with x1, . . . , xk all in the same translate of H is at least αk − ǫ. Motivated
by this result and the example (8) showing that nL(ǫ) may not have tower-type growth for
equations L which are not Sidorenko, we consider a stronger notion of popular differences,
replacing differences by subspaces. Call a translation-invariant linear homogeneous equation
L = 0 in k variables subspace popular if for each ǫ > 0 there exists ñL(ǫ) such that the following
holds. If A ⊆ Fn

q has density α, then there is a subspace H of Fn
q of codimension at most ñL(ǫ)

such that the density of solutions in A to L(x1, . . . , xk) = 0 for which x1, . . . , xk lie in the same
translate ofH is at least αk−ǫ. The regularity proof shows that if L = 0 is translation-invariant,
then ñL(ǫ) exists and is at most tower-type in ǫ−1. By averaging, an upper bound on ñL(ǫ)
easily yields an upper bound on nL(ǫ). While the example (8) given above shows that nL(ǫ)
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may not have tower-type growth even for equations L = 0 which are not Sidorenko, it does
not rule out a tower-type bound for ñL(ǫ). If L = 0 is translation-invariant but not Sidorenko,
must ñL(ǫ) have tower-type growth?

Question 3.4. For each translation-invariant L = 0, what is the growth rate of ñL(ǫ)?

Acknowledgments. We thank the referees for helpful comments that improved the exposition
of the paper.
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