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THE REGULARITY METHOD FOR GRAPHS WITH FEW 4-CYCLES

DAVID CONLON, JACOB FOX, BENNY SUDAKOV, AND YUFEI ZHAO

Abstract. We develop a sparse graph regularity method that applies to graphs with few 4-cycles,
including new counting and removal lemmas for 5-cycles in such graphs. Some applications include:

• Every n-vertex graph with no 5-cycle can be made triangle-free by deleting o(n3/2) edges.
• For r ≥ 3, every n-vertex r-graph with girth greater than 5 has o(n3/2) edges.
• Every subset of [n] without a nontrivial solution to the equation x1+x2+2x3 = x4 +3x5 has

size o(
√
n).

1. Introduction

Szemerédi’s regularity lemma [52] is a rough structure theorem that applies to all graphs. The
lemma originated in Szemerédi’s proof of his celebrated theorem that dense sets of integers contain
arbitrarily long arithmetic progressions [51] and is now considered one of the most useful and
important results in combinatorics. Among its many applications, one of the earliest was the
influential triangle removal lemma of Ruzsa and Szemerédi [40], which says that any n-vertex graph
with o(n3) triangles can be made triangle-free by removing o(n2) edges. Surprisingly, this simple
sounding statement is already sufficient to imply Roth’s theorem, the special case of Szemerédi’s
theorem for 3-term arithmetic progressions, and a generalization known as the corners theorem.

Most applications of the regularity lemma, including the triangle removal lemma, rely on also
having an associated counting lemma. Such a lemma roughly says that the number of embeddings of
a fixed graph H into a pseudorandom graph G can be estimated by pretending that G is a random
graph. This combined application of the regularity lemma and a counting lemma is often referred
to as the regularity method and has had important applications in graph theory, combinatorial
geometry, additive combinatorics, and theoretical computer science. For surveys on the regularity
method and its applications, we refer the interested reader to [11, 30, 38].

The original version of the regularity lemma is only meaningful for dense graphs. However, many
interesting and challenging combinatorial problems concern sparse graphs, so it would be extremely
valuable to develop a regularity method that also applies to these graphs. The first step in this
direction was already taken in the 1990’s by Kohayakawa [28] and Rödl (see [24]), who proved an
analogue of Szemerédi’s regularity lemma for sparse graphs (see also [48]). The problem of proving
an associated sparse counting lemma has been a more serious challenge, but one that has seen
substantial progress in recent years.

It is known that one needs to make some nontrivial assumptions about a sparse graph in order
for a counting lemma to hold. Usually, that has meant that the graph is assumed to be a subgraph
of another well-behaved sparse graph, such as a random or pseudorandom graph. For subgraphs
of random graphs, proving such a counting lemma (or, more accurately in this context, embedding
lemma) was a famous problem, known as the KŁR conjecture [29], which has only been resolved
very recently [3, 10, 46] as part of the large body of important work (see also [9, 47]) extending
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classical combinatorial theorems such as Turán’s theorem and Szemerédi’s theorem to subsets of
random sets.

In the pseudorandom setting, the aim is again to prove analogues of combinatorial theorems, but
now for subsets of pseudorandom sets. For instance, the celebrated Green–Tao theorem [26], that
the primes contain arbitrarily long arithmetic progressions, may be viewed in these terms. Indeed,
the main idea in their work is to prove an analogue of Szemerédi’s theorem for dense subsets of
pseudorandom sets and then to show that the primes form a dense subset of a pseudorandom
set of “almost primes” so that their relative Szemerédi theorem can be applied. For graphs, a
sparse counting lemma, which easily enables the transference of combinatorial theorems from dense
to sparse graphs, was first developed in full generality by Conlon, Fox, and Zhao [13] and then
extended to hypergraphs in [14], where it was used to give a simplified proof of a stronger relative
Szemerédi theorem, valid under weaker pseudorandomness assumptions than in [26].

In this paper, we develop the sparse regularity method in another direction, without any assump-
tion that our graph is contained in a sufficiently pseudorandom host. Instead, our only assumption
will be that the graph has few 4-cycles and our main contribution will be a counting lemma that
lower bounds the number of 5-cycles in such graphs.1 Unlike the previous results on sparse regu-
larity, the method developed here has natural applications in extremal and additive combinatorics
with few hypotheses about the setting. We begin by exploring these applications.

Asymptotic notation. For positive functions f and g of n, we write f = O(g) or f . g to mean
that f ≤ Cg for some constant C > 0; we write f = Ω(g) or f & g to mean that f ≥ cg for some
constant c > 0; we write f = o(g) to mean that f/g → 0; and we write f = Θ(g) or f ≍ g to mean
that g . f . g.

1.1. Sparse graph removal lemmas. The famous triangle removal lemma of Ruzsa and Sze-
merédi [40] states that:

An n-vertex graph with o(n3) triangles can be made triangle-free by deleting o(n2)
edges.

One of the main applications of our sparse regularity method is a removal lemma for 5-cycles in
C4-free graphs. Since a C4-free graph on n vertices has O(n3/2) edges, a removal lemma in such
graphs is only meaningful if the conclusion is that we can remove o(n3/2) edges to achieve our goal,
in this case that the graph should also be C5-free. We show that such a removal lemma holds if our
n-vertex C4-free graph has o(n5/2) C5’s.

Theorem 1.1. An n-vertex C4-free graph with o(n5/2) C5’s can be made C5-free by removing o(n3/2)
edges.

This theorem is a special case of the following more general result.

Theorem 1.2 (Sparse C3–C5 removal lemma). An n-vertex graph with o(n2) C4’s and o(n5/2) C5’s

can be made {C3, C5}-free by deleting o(n3/2) edges.

Remark. Let us motivate the exponents that appear in this theorem. It is helpful to compare the
quantities with what is expected in an n-vertex random graph with edge density p. Provided that
pn → ∞, the number of Ck’s in G(n, p) is typically on the order of pknk for each fixed k. Moreover,
if p & n−1/2, then a second-moment calculation shows that G(n, p) typically contains on the order
of pn2 edge-disjoint triangles and so cannot be made triangle-free by removing o(pn2) edges. Hence,

the random graph G(n, p) with p ≍ n−1/2 shows that Theorem 1.2 becomes false if we only assume

that there are O(n5/2) C5’s and O(n2) C4’s.

1Longer cycles, as well as several other families of graphs, can also be counted using our techniques. We hope to
return to this point in a future paper.
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For a different example, we note that the polarity graph of Brown [6] and Erdős–Rényi–Sós [16]

has n vertices, Θ(n3/2) edges, no C4’s, Θ(n5/2) C5’s, and every edge is contained in exactly one
triangle (see [33] for the proof of this latter property). Thus, Theorem 1.2 is false if we relax

the hypothesis on the number of C5’s from o(n5/2) to O(n5/2). For another example, showing
that the hypothesis on the number of C4’s also cannot be entirely dropped, we refer the reader to
Proposition 1.5 below.

We state two additional corollaries of Theorem 1.2, the second being an immediate consequence
of the first. See Section 5 for the short deductions.

Corollary 1.3. An n-vertex graph with o(n2) C5’s can be made triangle-free by deleting o(n3/2)
edges.

Corollary 1.4. An n-vertex C5-free graph can be made triangle-free by deleting o(n3/2) edges.

We do not know if the exponent 3/2 in Corollary 1.4 is best possible, but the next statement,
whose proof can be found in Section 7, shows that the hypothesis on the number of C5’s in Corol-
lary 1.3 cannot be relaxed from o(n2) to o(n5/2).

Proposition 1.5. There exist n-vertex graphs with o(n2.442) C5’s that cannot be made triangle-free

by deleting o(n3/2) edges.

We also state a 5-partite version of the sparse 5-cycle removal lemma. This statement will be
used in our arithmetic applications.

Theorem 1.6 (Sparse removal lemma for 5-cycles in 5-partite graphs). For every ǫ > 0, there exists
δ > 0 such that if G is a 5-partite graph on vertex sets V1, . . . , V5 with |V1| = · · · = |V5| = n, all
edges of G lie between Vi and Vi+1 for some i (taken mod 5), and

(a) (Few 4-cycles between two parts) G has at most δn2 copies of C4 whose vertices lie in two
different parts Vi,

(b) (Few 5-cycles) G has at most δn5/2 copies of C5,

then G can be made C5-free by removing at most ǫn3/2 edges.

We note that the exponent 3/2 in the conclusion above is tight, as shown by the next statement,
whose proof can be found in Section 7.

Proposition 1.7. For every n, there exists a 5-partite graph on vertex sets V1, . . . , V5 with |V1| =
· · · = |V5| = n, where all edges lie between Vi and Vi+1 for some i (taken mod 5), such that the graph

is C4-free, every edge lies in exactly one 5-cycle, and there are e−O(
√
logn)n3/2 edges.

Related results. An earlier application of sparse regularity to C4-free (and, more generally, Ks,t-
free) graphs may be found in [1], where it was used to study a conjecture of Erdős and Simonovits [17]
in extremal graph theory. For instance, they show that if s = 2 and t ≥ 2 or if s = t = 3, then
the maximum number of edges in an n-vertex graph with no copy of Ks,t and no copy of Ck for
some odd k ≥ 5 is asymptotically the same as the maximum number of edges in a bipartite n-vertex
graph with no copy of Ks,t.

1.2. Extremal results in hypergraphs. In an r-graph (i.e., an r-uniform hypergraph), a (v, e)-
configuration is a subgraph with e edges and at most v vertices. A central problem in extremal
combinatorics is to estimate fr(n, v, e), the maximum number of edges in an n-vertex r-graph
without a (v, e)-configuration. For brevity, we drop the subscript when r = 3, simply writing
f(n, v, e) := f3(n, v, e).

The systematic study of this function was initiated almost five decades ago by Brown, Erdős, and
Sós [7, 50]. A famous conjecture that arose from their work [18, 15] asks whether f(n, e+3, e) = o(n2)
for any fixed e ≥ 3. For e = 3, this problem was resolved by Ruzsa and Szemerédi [40]. In fact, this
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(6, 3)-theorem, rather than the triangle removal lemma, was their original motivation for studying
such problems. Their result has been extended in many directions, but the problem of showing that
f(n, e+ 3, e) = o(n2) remains open for all e ≥ 4.

Our methods give the following new bound for a problem of this type, which turns out to be
equivalent to Corollary 1.4.

Corollary 1.8. f(n, 10, 5) = o(n3/2).

We next explain how to deduce Corollary 1.8 from Corollary 1.4. Suppose H is a 3-graph on n
vertices without a (10, 5)-configuration. We greedily delete vertices from H one at a time if they
are in at most four edges. In total, this process deletes at most 4n edges. The resulting induced
subgraph H ′ has the property that each vertex is in at least 5 edges. Furthermore, H ′ is linear, that
is, any two edges intersect in at most one vertex. Indeed, if there are two edges sharing vertices
u, v, then, by adding three additional edges touching v, we get a (10, 5)-configuration. If we now
let G be the underlying graph formed by converting all edges of H ′ to triangles, we see that G
is a union of edge-disjoint triangles. Moreover, it is C5-free, since otherwise it would contain a
(10, 5)-configuration. Hence, by Corollary 1.4, it has o(n3/2) edges. But this then implies that H ′

and, therefore, H has o(n3/2) edges. Conversely, to show that Corollary 1.8 implies Corollary 1.4,
it suffices to observe that the 3-graph formed by a collection of edge-disjoint triangles in a C5-free
graph does not have a (10, 5)-configuration.

A (Berge) cycle of length k ≥ 2 (or simply a k-cycle) in a hypergraph is an alternating sequence
of distinct vertices and edges v1, e1, . . . , vk, ek such that vi, vi+1 ∈ ei for each i (where indices are
taken modulo k). For example, a 2-cycle consists of a pair of edges intersecting in a pair of distinct
vertices. The girth of an r-graph is the length of the shortest cycle.

Let hr(n, g) denote the maximum number of edges in an r-graph on n vertices of girth larger
than g. The following observation, whose proof may be found in Appendix B, relates the Brown–
Erdős–Sós problem to that of estimating hr(n, g).

Proposition 1.9. For r ≥ 2 and e ≥ 2, there exists n0(r, e) such that fr(n, (r − 1)e, e) = hr(n, e)
for all n ≥ n0(r, e).

By Corollary 1.8, we thus have the following result for r = 3. Note that the general result follows
from the case r = 3. Indeed, if an r-graph has girth g, replacing each edge by a subset of size three,
we get a 3-graph on the same set of vertices with the same number of edges and girth at least g.

Corollary 1.10. Let r ≥ 3. Then hr(n, 5) = o(n3/2), i.e., every r-graph on n vertices of girth

greater than 5 has o(n3/2) edges.

Related results. Previously, upper bounds of the form hr(n, 5) ≤ crn
3/2 were known [33, 19].

In fact, Lazebnik and Verstraëte [33] showed that f(n, 8, 4) = h3(n, 4) = (1/6 + o(1))n3/2 for all
sufficiently large n.2 Bollobás and Győri [5] proved that the maximum number of edges in a 3-graph
on n vertices with no 5-cycle is Θ(n3/2), which implies that the maximum number of triangles in

an n-vertex C5-free graph is Θ(n3/2). In contrast, Corollary 1.4 says that the maximum number

of edge-disjoint triangles in a C5-free graph on n vertices is o(n3/2). See [2, 19, 20, 23] for further
improvements and simplifications of the Bollobás–Győri result.

Given a family F of r-graphs, we say that an r-graph is F-free if it contains no copy of any
element of F as a subgraph. Define ex(n,F) to be the maximum number of edges in an F-free

2Lazebnik and Verstraete [33] actually claim that f(n, 8, 4) = h3(n, 4) for all n. However, this is false for small
n. For instance, it is easy to see that f(6, 8, 4) = 3, while h3(6, 4) = 2. Nevertheless, their claim that f(n, 8, 4) =

(1/6 + o(1))n3/2 still stands by our Proposition 1.9 and their result that h3(n, 4) = (1/6 + o(1))n3/2.
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r-graph on n vertices. It is easy to see that

2ex(n,F) ≤ #{F-free r-graphs on n labeled vertices} ≤
ex(n,F)∑

m=0

((n
r

)

m

)
≤ 2ex(n,F)r logn.

In many instances it is known that the lower bound is closer to the truth. Early invesigations into
this and related problems led to the first seeds of the important container method, as developed by
Kleitman and Winston [27] and by Sapozhenkho [43, 44, 45]. More recently, influential works of
Balogh, Morris, and Samotij [3] and of Saxton and Thomason [46] pushed these ideas considerably
further and showed their broad applicability.

Using the container method, Palmer, Tait, Timmons, and Wagner [36] proved that the number

of r-graphs on n vertices with girth greater than 4 is at most 2crn
3/2

for an appropriate constant
cr. We improve this bound when the girth is greater than 5, strengthening Corollary 1.10. We refer
the reader to Appendix C for the proof.

Theorem 1.11. For every fixed r ≥ 3, the number of r-graphs on n vertices with girth greater than

5 is 2o(n
3/2).

1.3. Number-theoretic applications. It was already noted by Ruzsa and Szemerédi that their
results imply Roth’s theorem [39], the statement that every subset of [n] := {1, 2, . . . , n} without
3-term arithmetic progressions has size o(n). Here we discuss some number-theoretic applications
of our sparse removal results along similar lines. We first illustrate our results with two specific
applications, beginning with the following theorem.3

Theorem 1.12. Every subset of [n] without a nontrivial solution to the equation

x1 + x2 + 2x3 = x4 + 3x5 (1)

has size o(
√
n). Here a trivial solution is one of the form (x1, . . . , x5) = (x, y, y, x, y) or (y, x, y, x, y)

for some x, y ∈ Z.

Any set of integers without a nontrivial solution to (1) must be a Sidon set, with no nontrivial
solution to the equation x1 + x2 = x4 + x5, since any nontrivial solution automatically extends to
a nontrivial solution of (1) by setting x3 = x5. In particular, the upper bound for the size of Sidon
sets, (1+o(1))

√
n, is also an upper bound for the size of a subset of [n] without a nontrivial solution

to (1). Our Theorem 1.12 improves on this simple bound, though it remains an open problem to

determine whether the bound can be improved further to n1/2−ǫ for some ǫ > 0.
We now give a second number-theoretic application, this time restricting to Sidon sets.

Theorem 1.13. The maximum size of a Sidon subset of [n] without a solution in distinct variables
to the equation

x1 + x2 + x3 + x4 = 4x5

is at most o(
√
n) and at least n1/2−o(1).

In other words, we are simultaneously avoiding

(a) nontrivial solutions to the Sidon equation x1 + x2 = x3 + x4 and
(b) distinct variable solutions to the linear equation x1 + x2 + x3 + x4 = 4x5.

There exist Sidon sets of size (1+o(1))
√
n, as well as sets of size n1−o(1) avoiding (b) (by a standard

modification of Behrend’s construction [4] of large sets without 3-term arithmetic progressions).
However, Theorem 1.13 shows that by simultaneously avoiding nontrivial solutions to both equa-
tions, the maximum size is substantially reduced.

3Though we focus here on applications to linear equations with five variables, all of our results extend to linear
equations with more than five variables by using the counting lemma for longer cycles mentioned in an earlier footnote.
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This is the first example showing a lack of “compactness” for linear equations. In extremal graph
theory, the Erdős–Simonovits compactness conjecture [17] is a well-known conjecture saying that,
for every finite set F of graphs, ex(n,F) ≥ cF minF∈F ex(n, F ) for some constant cF > 0. The
analogous statement is false for r-graphs with r ≥ 3 (by the Ruzsa–Szemerédi theorem and a
simple generalisation to r-graphs noted in [15, Theorem 1.9]), but remains open for graphs. Our
Theorem 1.13 shows that it also fails for linear equations.

Theorem 1.13 also sheds some light on the fascinating open problem (see, for example, Gowers’
blog post [25]) of understanding the structure of Sidon sets with near-maximum size, say within a
constant factor of

√
n, showing that any such set must contain five distinct elements with one of

them being the average of the others. More generally, we have the following result, showing that a
large Sidon set must contain solutions to a wide family of translation-invariant linear equations in
five variables. We note that the lower bound of n1/2−o(1) simply comes from intersecting a Sidon set
of set (1 + o(1))n1/2 with a random translate of a subset of [n] of size n1−o(1) that avoids nontrivial
solutions to (2) (which again exists by a standard modification of Behrend’s construction [4]).

Theorem 1.14. Fix positive integers a1, . . . , a4. The maximum size of a Sidon subset of [n] without
a solution in distinct variables to the equation

a1x1 + a2x2 + a3x3 + a4x4 = (a1 + a2 + a3 + a4)x5 (2)

is at most o(
√
n) and at least n1/2−o(1).

Similarly, Theorem 1.12 is a special case of the following statement.

Theorem 1.15. Fix positive integers a and b. Every subset of [n] without a nontrivial solution to
the equation

ax1 + ax2 + bx3 = ax4 + (a+ b)x5 (3)

has size o(
√
n). Here a trivial solution is one of the form (x1, . . . , x5) = (x, y, y, x, y) or (y, x, y, x, y)

(or (y, y, x, x, y) if a = b) for some x, y ∈ Z.

Both Theorem 1.15 and the upper bound in Theorem 1.14 are special cases of the following more
robust theorem (applied with X1 = · · · = X5), whose proof can be found in Section 6. Indeed, to
prove the upper bound in Theorem 1.14, we apply Lemma 1.17 below to check that every Sidon
subset of [n] contains O(n) solutions to (2) where not all variables are distinct, thereby verifying

hypothesis (b) of Theorem 1.16 (with a O(n) bound instead of o(n3/2)). To prove Theorem 1.15, we
note, by setting x3 = x5 in (3), that the subset satisfying the hypothesis of Theorem 1.15 must be a
Sidon set. Finally, when X1 = · · · = X5, the removal statement in the conclusion of Theorem 1.16
implies that |X1| = o(

√
n) since x1 = · · · = x5 is always a solution due to a1 + · · ·+ a5 = 0.

Theorem 1.16. Fix nonzero integers a1, . . . , a5 with a1 + · · · + a5 = 0. Suppose that X1, . . . ,X5

are subsets of [n] satisfying

(a) each Xi has o(n) nontrivial solutions to x1 + x2 = x3 + x4
(a trivial solution here is one with (x1, x2) = (x3, x4) or (x4, x3)) and

(b) o(n3/2) solutions to a1x1 + · · ·+ a5x5 = 0 with x1 ∈ X1, . . . , x5 ∈ X5.

Then one can remove o(
√
n) elements from each Xi to remove all solutions to a1x1+ · · ·+a5x5 = 0

with x1 ∈ X1, . . . , x5 ∈ X5.

Lemma 1.17. Let a1, . . . , a4 be nonzero integers and X be a Sidon subset of [n]. Then X contains
O(n) solutions to the equation a1x1 + a2x2 + a3x3 + a4x4 = 0.

Since our proofs rely on the graph removal lemma, they give poor quantitative bounds, the best
bound on that lemma [21] having tower-type dependencies. However, for our number-theoretic
applications, it is possible to use the best bounds for the relevant Roth-type theorem, together
with a weak arithmetic regularity lemma and our C5-counting lemma to obtain reasonable bounds.
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This is similar in spirit to the arithmetic transference proof of the relative Szemerédi theorem given
in [53], though we omit the details. A follow-up work of Prendiville [37] giving a Fourier-analytic
proof of our number-theoretic results also yields comparable bounds.

As a final remark, we note that the results of this subsection carry over essentially verbatim
to arbitrary abelian groups. Following Král’–Serra–Vena [31] (see also [32, 49]), one may also use
our sparse graph removal lemma to derive a sparse removal lemma that is meaningful in arbitrary
groups. We again omit the details, but refer the interested reader to [12, Theorem 1.2] for a result
which is similar in flavor.

2. A weak sparse regularity lemma

In this section, we develop a sparse version of the Frieze–Kannan weak regularity lemma [22]. A
sparse version of Szemerédi’s regularity lemma was originally developed by Kohayakawa [28] and
Rödl (see [24]) under an additional “no dense spots” hypothesis, but Scott [48] showed that, with
a slight variation in the statement, this additional hypothesis is not needed. The approach we use
here for proving a sparse version of the weak regularity lemma will be similar to that of Scott. With
this result (and an appropriate counting lemma) in hand, we will then be able to “transfer” the
removal lemma from the dense setting to the sparse setting.

In order to give an analytic formulation of the weak regularity lemma, we first make some defini-
tions. Given a pair of probability spaces V1 and V2, which are usually vertex sets with the uniform
measure (or, if the vertices carry weights, then with the probability measure that is proportional
to the vertex weights), we define the cut norm for a measurable function f : V1 × V2 → R (we will
sometimes omit mentioning the measurability requirement when it is clear from context) by

‖f‖� := sup
A⊂V1
B⊂V2

|Ex∈V1,y∈V2f(x, y)1A(x)1B(y)| , (4)

where A and B range over all measurable subsets and x and y are chosen independently according
to the corresponding probability measures.

Given a partition P of some probability space V and a function f : V × V → R, we write
fP : V × V → R for the function obtained from f by “averaging” over blocks A×B where A and B
are parts of P, i.e., fP(x, y) = 1

µ(A)µ(B)

∫
A×B f for all (x, y) ∈ A×B, where µ(·) is the probability

measure on V . We may ignore zero-measure parts.
The weak regularity lemma of Frieze and Kannan may be rephrased in the following way (for

example, see [34, Corollary 9.13]), saying that all bounded functions can be approximated in terms
of the cut norm by a step function with a bounded number of blocks. Furthermore, the step function
can be obtained by averaging the original function over steps. This analytic perspective on the weak
regularity lemma has been popularized by the development of graph limits [35].

Theorem 2.1 (Weak regularity lemma, dense setting). Let ǫ > 0. Let V be a probability space and
f : V × V → [0, 1] be a measurable symmetric function (i.e., f(x, y) = f(y, x) for all x, y ∈ V ).

Then there exists a partition P of V into at most 2O(ǫ−2) parts such that

‖f − fP‖� ≤ ǫ.

For sparse graphs, one would like to have control on the error term that is commensurate with
the overall edge density of the graph. More explicitly, for an n-vertex graph with on the order of
pn2 edges for some p = pn → 0, one would like to have error terms of the form ǫp in the above
inequality. To capture this scaling, we renormalize f by dividing the edge-indicator function of the
graph by the edge density p. Thus, the sparse setting corresponds to unbounded functions f with
L1 norm O(1).

Our sparse weak regularity lemma is stated below. The proof follows an energy increment strategy,
as is usual with proofs of regularity lemmas. Since this is now fairly standard, we refer the reader
to Appendix A for the details.
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Theorem 2.2. Let ǫ > 0. Let V be a probability space and f : V × V → [0,∞) be a measurable

symmetric function. Then there exists a partition P of V into at most 232Ef/ǫ
2

parts such that

‖(f − fP)1fP≤1‖� ≤ ǫ.

Here (f − fP)1fP≤1 denotes the function with value f(x, y) − fP(x, y) if fP(x, y) ≤ 1 and 0
otherwise. The cutoff term 1fP≤1 means that we neglect those parts of the graph that are too
dense. Indeed, it would be too much to ask for ‖f − fP‖� to be small without this cutoff. For
example, if one had |V | = n, f(x, x) = n, and f(x, y) = 0 for all x 6= y, then one would not be able
to partition V into Oǫ(1) parts so that ‖f − fP‖� ≤ ǫ.

For our applications, it will be necessary to show that the cutoff has little effect on graphs with
few C4’s. In the next two lemmas, we show that such graphs have a negligible number of edges lying
between pairs of parts whose edge density greatly exceeds the average. A similar argument was also
presented in [1], though we include the complete proof here for the convenience of the reader.

Lemma 2.3. Let G be a bipartite graph with nonempty vertex sets A and B and m edges. If

m ≥ 4 |A| |B|1/2 + 4 |B|, then the number of 4-cycles in G is at least m4 |A|−2 |B|−2 /64.

Proof. Writing
(x
2

)
= x(x − 1)/2 for all real x, we have

(x
2

)
≥ x2/4 for all x ≥ 2 and so, by the

convexity of x 7→
(
x
2

)
,

∑

{x,y}∈(A2)

codeg(x, y) =
∑

v∈B

(
deg(v)

2

)
≥ |B|

(
m/ |B|

2

)
≥ m2

4 |B| ,

where codeg(x, y) is the number of common neighbors of x and y. Thus, the number of 4-cycles in
G is

∑

{x,y}∈(A2)

(
codeg(x, y)

2

)
≥

(|A|
2

)((|A|
2

)−1 m2

4|B|
2

)
≥ m4

64 |A|2 |B|2
. �

We write e(U,W ) for the number of pairs (u,w) ∈ U ×W forming an edge in the given graph G.

Lemma 2.4 (Dense pairs). Let G be an n-vertex graph and V (G) = V1∪V2∪· · ·∪VM be a partition
of the vertex set of G. Let q > 0 be a real number. Let T denote the number of 4-cycles in G. Then
the number of edges of G lying between parts Vi and Vj with e(Vi, Vj) ≥ q |Vi| |Vj | (here i = j is

allowed) is O((1/q +M2 +M1/4T 1/4)n).

Proof. For each i ∈ [M ], let Wi denote the union of all Vj such that e(Vi, Vj) ≥ q |Vi| |Vj|. Then
e(Vi,Wi) ≥ q |Vi| |Wi|. Let Ti denote the number of 4-cycles with the first and third vertices in Vi

and second and fourth vertices in Wi. We claim that

e(Vi,Wi) .
n

Mq
+

|Vi|
q

+Mn+ n1/2 |Vi|1/2 T 1/4
i . (5)

Indeed, if |Vi| ≤ 1/Mq, then e(Vi,Wi) ≤ |Vi| |Wi| ≤ n/Mq. So assume |Vi| > 1/Mq. If e(Vi,Wi) <

4 |Vi| |Wi|1/2 + 4 |Wi|, then e(Vi,Wi)
2 ≤ 32 |Vi|2 |Wi|+ 32 |Wi|2 and

e(Vi,Wi) ≤
e(Vi,Wi)

2

q |Vi| |Wi|
.

|Vi|
q

+
|Wi|
q |Vi|

≤ |Vi|
q

+Mn,

where in the final inequality we use |Wi| ≤ n and |Vi| > 1/Mq. Otherwise, by Lemma 2.3, we have

Ti & e(Vi,Wi)
4 |Vi|−2 |Wi|−2, so

e(Vi,Wi) . |Vi|1/2 |Wi|1/2 T 1/4
i ≤ n1/2 |Vi|1/2 T 1/4

i .
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This proves (5). Summing over all i, we obtain that the number of edges of G lying between parts
Vi and Vj with e(Vi, Vj) ≥ q |Vi| |Vj | is at most

M∑

i=1

e(Vi,Wi) .

M∑

i=1

(
n

Mq
+

|Vi|
q

+Mn+ n1/2 |Vi|1/2 T 1/4
i

)

≤ 2n

q
+M2n+ n1/2

(
M∑

i=1

1

)1/4 ( M∑

i=1

|Vi|
)1/2 ( M∑

i=1

Ti

)1/4

≤ 2n

q
+M2n+ 2M1/4T 1/4n,

where we applied Hölder’s inequality in the second step and also that
∑

i Ti ≤ 2T . �

Remark. We will apply this lemma with q = K/
√
n for some large constant K and T = o(n2).

3. A sparse counting lemma for 5-cycles

This section contains a novel counting lemma for 5-cycles in sparse graphs. As discussed in
the introduction, counting lemmas are often the key obstacles to the development of the sparse
regularity method. As such, our counting result, which says that if a graph does not have too many
copies of C4, then the number of copies of C5 is approximated by the C5 count in the weak regularity
approximation, may be seen as our main contribution.

Combinatorially, the intuition is that in a graph with few C4’s and edge density on the order of
n−1/2, the second neighborhood of a typical vertex has linear size, so that regularity ensures enough
edges within this second neighborhood to generate many 5-cycles. This observation was already
used to considerable effect in [1].

Let V be a probability space. Given a symmetric function f : V × V → [0,∞) (again symmetric
means f(x, y) = f(y, x)), the homomorphism density of H in f is given by

t(H, f) =

∫

V V (H)

∏

uv∈E(H)

f(xu, xv)
∏

v∈V (H)

dxv.

As in our formulation of the regularity lemma in Section 2, one should think of the function f as a
normalized edge-indicator function of the form p−11E(G). Our counting lemma is now as follows.

Theorem 3.1. Let 0 < ǫ < 1 and C ≥ 1. Let V be a probability space and let f : V × V → [0,∞)
and g : V ×V → [0, 1] be measurable symmetric functions satisfying t(C4, f) ≤ C and ‖f − g‖� ≤ ǫ4.
Then

t(C5, f) ≥ t(C5, g) − 11Cǫ.

In practice, we will prove a multipartite version of this counting lemma which will be useful for
applications. The two versions are essentially equivalent.

Notation and conventions. Let V1, . . . , V5 be probability spaces with indices considered mod 5.
Vertices in Vi are denoted by xi and, when appearing in the subscript of an expectation symbol
(e.g., Exi), it is assumed that xi varies independently over Vi according to its probability distribution
(e.g., a uniformly random vertex if Vi comes from an unweighted graph). For all i 6= j differing by
one in Z/5Z, we write fij = fi,j for a measurable function on Vi × Vj and assume that fij(xi, xj) =
fji(xj , xi). Given functions f12 : V1×V2 → R and f23 : V2×V3 → R, we write f12 ◦f23 : V1×V3 → R

for the function

(f12 ◦ f23)(x1, x3) = Ex2∈V2f12(x1, x2)f23(x2, x3),

which can be thought of as the number of 2-edge paths between the vertices x1 and x3, appropriately
normalized. The notation ◦ is used since it can be viewed as a composition of linear operators.
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Theorem 3.2. Let 0 < ǫ < 1 and C ≥ 1. Let V1, . . . , V5 be probability spaces. For each i (taken
mod 5), let fi,i+1, gi,i+1 : Vi × Vi+1 → [0,∞) with 0 ≤ gi,i+1 ≤ 1 pointwise, ‖fi,i+1 − gi,i+1‖� ≤ ǫ4,
and

‖fi−1,i ◦ fi,i+1‖22 ≤ C. (6)

Then

Ex1,...,x5

5∏

i=1

fi,i+1(xi, xi+1) ≥ Ex1,...,x5

5∏

i=1

gi,i+1(xi, xi+1)− 11Cǫ. (7)

Remark. For an n-vertex graph with edge density on the order of p, the hypothesis (6) translates
into a O(n4p4) upper bound on the number of 4-cycles with vertices in Vi−1, Vi, Vi+1, Vi in turn,
since

‖f01 ◦ f12‖22 = Ex0,x1,x′
1,x2

f01(x0, x1)f01(x0, x
′
1)f12(x1, x2)f12(x

′
1, x2).

Applying the Cauchy–Schwarz inequality, we have

‖f01 ◦ f12‖22 = Ex1,x′
1
[(Ex0f01(x0, x1)f01(x0, x

′
1))(Ex2f12(x1, x2)f12(x

′
1, x2))]

≤
(
Ex1,x′

1
[(Ex0f01(x0, x1)f01(x0, x

′
1))

2]
)1/2 (

Ex1,x′
1
[(Ex2f12(x1, x2)f12(x

′
1, x2))

2]
)1/2

=
(
Ex0,x′

0,x1,x′
1
[f01(x0, x1)f01(x

′
0, x1)f01(x0, x

′
1)f01(x

′
0, x

′
1)]

)1/2

·
(
Ex1,x′

1,x2,x′
2
[f12(x1, x2)f12(x

′
1, x2)f12(x1, x

′
2)f12(x

′
1, x

′
2)]

)1/2

= t(K2,2, f01)
1/2t(K2,2, f12)

1/2.

So we could replace (6) by the stronger condition that t(K2,2, fi,i+1) ≤ C for each i, i.e., a O(n4p4)
bound on the number of 4-cycles in the bipartite graph between Vi and Vi+1 for every i.

Let us collect some basic facts about the cut norm. It is a standard fact that the definition of
the cut norm (4) is equivalent to

‖f‖� = sup
a : V1→[0,1]
b : V2→[0,1]

|Ex∈V1,y∈V2f(x, y)a(x)b(y)| , (8)

where now a and b are measurable functions taking values in [0, 1]. The equivalence can be seen
since the expectation expression in (8) is bilinear in a and b and thus its extrema must occur when
a and b take values from the set {0, 1}. But then a and b may be thought of as indicator functions
of sets A and B, returning us to the earlier definition (4) of the cut norm.

Lemma 3.3. Let f12 : V1 × V2 → R and f23 : V2 × V3 → [0,∞) with Ex3∈V3f23(x2, x3) ≤ M for all
x2 ∈ V2. Then

‖f12 ◦ f23‖� ≤ M ‖f12‖� .

Proof. For any u1 : V1 → [0, 1] and u3 : V3 → [0, 1], one has

Ex1,x3u1(x1)(f12 ◦ f23)(x1, x3)u3(x3) = Ex1,x2,x3u1(x1)f12(x1, x2)f23(x2, x3)u3(x3)

= M · Ex1,x2u1(x1)f12(x1, x2)u2(x2),

where

u2(x2) =
1

M
Ex3f23(x2, x3)u3(x3) ≤

1

M
Ex3f23(x2, x3) ≤ 1.

The claim then follows from (8) since u1(x1) ∈ [0, 1] and u2(x2) ∈ [0, 1]. �

Lemma 3.4 (Triangle counting lemma for dense graphs). Let fij : Vi×Vj → R for ij ∈ {12, 13, 23}
and assume that f12 and f13 take only nonnegative values. Then

Ex1∈V1,x2∈V2,x3∈V3f12(x1, x2)f13(x1, x3)f23(x2, x3) ≤ ‖f12‖∞ ‖f13‖∞ ‖f23‖� .
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Proof. The above inequality is true if we fix any choice of x1 on the LHS, due to the definition of
‖f23‖� in (8), and hence it remains true if we take the expectation over x1. �

Proof of Theorem 3.2. For fixed i, j ∈ Z/5Z with i− j = ±1 and fij : Vi × Vj → [0,∞), write

f ′
ij(xi, xj) = fij(xi, xj)1Sij (xi),

where

Sij = {xi ∈ Vi : Exj∈Vjfij(xi, xj) ≤ ǫ−2}.
Since fij, gij ≥ 0, note that ‖fij‖1 − ‖gij‖1 = Exi,xj(fij − gij), which, by definition, is at most
‖fij − gij‖�. Hence, writing µ(·) for the measure of a subset of Vi (where µ(Vi) = 1), we have

µ(Vi \ Sij)ǫ
−2 ≤ ‖fij‖1 ≤ ‖gij‖1 + ‖fij − gij‖� ≤ 2.

Therefore, µ(Vi \ Sij) ≤ 2ǫ2 and

‖f ′
ij − gij‖� ≤ ‖(fij − gij)1Sij×Vj‖� + ‖gij1(Vi\Sij)×Vj

‖�
≤ ‖fij − gij‖� + µ(Vi \ Sij)

≤ 3ǫ2.

Let i, j, k be three consecutive elements of Z/5Z (in ascending or descending order). By Lemma 3.3,
∥∥(fij − gij) ◦ f ′

jk

∥∥
�
≤ ǫ−2 ‖fij − gij‖� ≤ ǫ2

and ∥∥gij ◦ (f ′
jk − gjk)

∥∥
�
≤

∥∥f ′
jk − gjk

∥∥
�
≤ 3ǫ2.

Putting the above two inequalities together, we obtain
∥∥fij ◦ f ′

jk − gij ◦ gjk
∥∥
�
≤

∥∥(fij − gij) ◦ f ′
jk

∥∥
�
+

∥∥gij ◦ (f ′
jk − gjk)

∥∥
�
≤ 4ǫ2.

For every A > 0 and any function h(z), define h≤A(z) = h(z) if h(z) ≤ A and 0 otherwise. Then
we have

∥∥(fij ◦ f ′
jk)≤A − gij ◦ gjk

∥∥
�
≤

∥∥fij ◦ f ′
jk − gij ◦ gjk

∥∥
�
+ ‖(fij ◦ fjk)>A‖1

≤ 4ǫ2 +A−1 ‖fij ◦ fjk‖22
≤ 4ǫ2 + CA−1.

In particular, setting A = ǫ−1, we obtain
∥∥(f34 ◦ f ′

45)≤ǫ−1 − g34 ◦ g45
∥∥
�
≤ 5Cǫ (9)

and setting A = ǫ−2, we obtain
∥∥(f32 ◦ f ′

21)≤ǫ−2 − g32 ◦ g21
∥∥
�
≤ 5Cǫ2. (10)

Repeatedly applying Lemma 3.4 in the 3rd, 4th and 5th inequalities, we have

LHS of (7) ≥ Ex1,x3,x5(f34 ◦ f ′
45)(x3, x5)(f32 ◦ f ′

21)(x3, x1)f51(x5, x1) [pointwise bound]

≥ Ex1,x3,x5(f34 ◦ f ′
45)≤ǫ−1(x3, x5)(f32 ◦ f ′

21)≤ǫ−2(x3, x1)f51(x5, x1) [pointwise bound]

≥ Ex1,x3,x5(f34 ◦ f ′
45)≤ǫ−1(x3, x5)(f32 ◦ f ′

21)≤ǫ−2(x3, x1)g51(x5, x1)− ǫ [since ‖f51 − g51‖� ≤ ǫ4]

≥ Ex1,x3,x5(f34 ◦ f ′
45)≤ǫ−1(x3, x5)(g32 ◦ g21)(x3, x1)g51(x5, x1)− 6Cǫ [by (10)]

≥ Ex1,x3,x5(g34 ◦ g45)(x3, x5)(g32 ◦ g21)(x3, x1)g51(x5, x1)− 11Cǫ [by (9)]

= RHS of (7). �
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4. Removal lemmas in sparse graphs

Our proof of the sparse removal lemma uses, as a black box, the usual graph removal lemma (for
dense graphs). We use the following formulation of the graph removal lemma allowing both vertex
and edge weights. A standard sampling argument shows that this formulation (at least with a finite
V ) is equivalent to the more usual version without weights. Alternatively, the standard proof of
the graph removal lemma using Szemerédi’s regularity lemma can easily be amended to give the
weighted version.

Theorem 4.1 (Weighted graph removal lemma, dense setting). For every graph F and ǫ > 0, there
exists some δ > 0 such that for a probability space V and measurable symmetric g : V × V → [0, 1]
with t(F, g) ≤ δ, there exists a measurable symmetric subset A ⊆ V ×V such that t(F, g1A) = 0 and
‖g − g1A‖1 ≤ ǫ.

Now we are ready to prove our main sparse removal lemma. We will first state and prove a
version which highlights the hypotheses involved and then show that it implies both Theorems 1.2
and 1.6.

Proposition 4.2 (Removal). For every ǫ,K,C > 0, there exist n0,M, δ > 0 such that if n > n0,
p ∈ (C−1n−1/2, 1], and G is an n-vertex graph satisfying

(a) (Dense pairs condition) for every partition of V (G) into M parts V1 ∪ · · · ∪ VM , at most a
total of ǫpn2/4 edges of G lie between pairs (Vi, Vj) with e(Vi, Vj) ≥ Kp |Vi| |Vj|,

(b) (Not too many 4-cycles) G has at most (Cpn)4 copies of C4, and
(c) (Few 5-cycles) G has at most δp5n5 copies of C5,

then G can be made C3-free and C5-free by removing at most ǫpn2 edges.

Proof. The value of δ = δ(ǫ,K,C) will be given later in the proof using Theorem 4.1. For now, we
simply assume that it has a fixed value.

Write V = V (G) and f = p−11G : V ×V → [0, p−1] for the normalized edge-indicator function of
G. Hypothesis (a) implies that G has at most (K + ǫ)pn2/2 edges. Hence, Ef ≤ K + ǫ.

Apply Theorem 2.2, the sparse weak regularity lemma, to the function f/K to obtain a partition
P of V into at most M = M(K, ǫ, δ) parts such that

‖(f − fP)1fP≤K‖
�
≤ Kδ4,

which can be rewritten as
‖f̃ − g̃‖� ≤ Kδ4,

where
f̃ = f1fP≤K and g̃ = f̃P = fP1fP≤K .

Note that g̃ can be obtained from f̃ by averaging over pairs of parts of P.
By hypothesis (a), G has at most ǫpn2/4 edges in {fP > K} ⊆ V ×V , since the latter is precisely

the union of pairs Vi × Vj of P with e(Vi, Vj) > Kp |Vi| |Vj |. The graph obtained after removing

these edges from G is represented by f̃ .
Now we would like to use the 5-cycle counting lemma (Theorem 3.2) to deduce that t(C5, g̃)

must be small from the fact that G has few 5-cycles. This is basically true, but one has to be a
bit careful in the application of the C5-counting lemma. The reason is that while we know that
G has few 5-cycles, we have not ruled out the possibility that the triangles of G give rise to many
homomorphic copies of C5. We address this somewhat technical issue by splitting each part of P
arbitrarily into five nearly equal parts labeled by elements of Z/5Z and only considering 5-cycles
where the i-th vertex is embedded into a part labeled by i, so that all five vertices of the cycle are
forced to be distinct. It is in this step that we need the n > n0 hypothesis in the statement of the
theorem, in order to guarantee that all five parts are nonempty. Indeed, the theorem as stated is
false without the n > n0 hypothesis, with G = K3 being a counterexample. On the other hand,
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if we only wish to obtain a C5-free graph, then the n > n0 hypothesis can be trivially removed by
taking δ small enough that for n ≤ n0 the hypothesis (c) would already imply that G is C5-free.

For the details, we begin by removing some more edges. Indeed, if some part Vi of the partition
P has at most 100 vertices, then we remove all edges from G with at least one vertex in Vi. We
delete at most 100MKpn ≤ ǫpn2/10 edges this way, provided that n > n0(ǫ, δ,K) is sufficiently
large. From now on, we may therefore assume that all parts of P have more than 100 vertices.

Partition each Vi ∈ P arbitrarily into five parts of nearly equal size (differing by at most 1),

Vi = V
(1)
i ∪ · · · ∪ V

(5)
i . Let V (r) =

⋃
i∈[M ] V

(r)
i for each r ∈ [5]. For each r, s ∈ [5], write

frs = K−1f̃1V (r)×V (s) and grs = K−1g̃1V (r)×V (s) (11)

(both functions V × V → [0,∞) with the latter taking values in [0, 1]). Then

‖frs − grs‖� = K−1‖(f̃ − g̃)1V (r)×V (s)‖� ≤ K−1‖f̃ − g̃‖� ≤ δ4.

By (b), G has at most (Cpn)4 copies of C4. We would actually like to upper bound the number of
homomorphic copies of C4 (i.e., closed walks of length 4). Let r(x, y) denote the number of walks
of length 2 from x to y in G. Then the number of homomorphic copies of C4 in G is at most (here
we use the inequality t2 ≤ 4

(t
2

)
+ 1 for all nonnegative integers t)

n2 + 2
∑

x,y∈V (G)
x 6=y

r(x, y)2 ≤ n2 + 2
∑

x,y∈V (G)
x 6=y

(
4

(
r(x, y)

2

)
+ 1

)
= 3n2 +O

(
(Cpn)4

)
= O

(
(Cpn)4

)
,

where the final step uses the hypothesis p ≥ C−1n−1/2. After normalization, we obtain t(C4, f) =
O(C4). Hence,

‖fr−1,r ◦ fr,r+1‖22 ≤ K−4t(C4, f) = O(C4K−4).

Applying the 5-cycle counting lemma (Theorem 3.2) to the functions fr,r+1 and gr,r+1, with r ∈
Z/5Z, we obtain

Ex1,...,x5∈V

5∏

r=1

fr,r+1(xr, xr+1) ≥ Ex1,...,x5∈V

5∏

r=1

gr,r+1(xr, xr+1)−O(C4K−4δ),

which, by (11), can be rewritten as

Ex1,...,x5∈V

5∏

r=1

f̃(xr, xr+1)1V (r)(xr) ≥ Ex1,...,x5∈V

5∏

r=1

g̃(xr, xr+1)1V (r)(xr)−O(C4Kδ). (12)

Each Vi has size at least 100, so each of its 5 parts V
(r)
i , r ∈ [5], has at least a 1/6-fraction of the

vertices. Thus, |V (r)| ≥ |V | /6 for each r ∈ [5]. Note that g̃ is constant on each Vi × Vj. It follows
that the RHS of (12) is at least 6−5t(C5, g̃) − O(C4Kδ). On the other hand, the LHS of (12) is

p−5n−5 times the number of 5-cycles in G with the r-th vertex in V (r) for each r ∈ [5] and so the
LHS of (12) is at most δ by hypothesis (c) that G has at most δn5p5 copies of C5. Putting these
two bounds together, we obtain

δ ≥ 6−5t(C5, g̃)−O(C4Kδ).

Thus, t(C5, g̃) . (1 + C4K)δ. Now apply Theorem 4.1, the graph removal lemma, for C5 and
choose δ = δ(ǫ,K,C) small enough so that the above upper bound on t(C5, g̃) guarantees that there
exists some symmetric A ⊆ V × V , which is a union of pairs of parts of the partition P, such that
‖g̃ − g̃1A‖1 ≤ ǫ/3 and t(C5, g̃1A) = 0. Note that we need to apply the dense removal lemma to the
weighted graph with vertices being the parts of P and vertex weights proportional to the sizes of
the parts so that the dense removal lemma outputs an A of the desired form.
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So t(C5, g̃1A) = 0 and, consequently, t(C3, g̃1A) = 0 as well. Thus, t(C5, f̃1A) = 0 and

t(C3, f̃1A) = 0, since if f takes some positive values on Vi × Vj, then so must g. Since g̃ is

obtained from f̃ by averaging over each pair of parts of P,

‖f̃ − f̃1A‖1 = ‖g̃ − g̃1A‖1 ≤ ǫ/3.

To conclude, the graph G can be made C3-free and C5-free by removing at most ǫpn2 edges: at
most ǫpn2/4 edges between pairs of parts (Vi, Vj) with e(Vi, Vj) ≥ Kp |Vi| |Vj |, at most ǫpn2/10
edges with at least one endpoint in some part with at most 100 vertices, and at most ǫpn2/3 edges
outside the set A in the last step above. �

Recall the following equivalent way of stating Theorem 1.2:

For every ǫ > 0, there exist n0 and δ > 0 such that, for every n ≥ n0, every n-vertex
graph with at most δn5/2 copies of C5 and at most δn2 copies of C4 can be made
C3-free and C5-free by deleting at most ǫn3/2 edges.

Proof of Theorem 1.2. Let G be an n-vertex graph with at most δn5/2 copies of C5 and at most δn2

copies of C4. Applying Lemma 2.4, we see that for every partition of V (G) into M parts V1∪· · ·∪VM ,
the number of edges of G that lie between “dense pairs” (Vi, Vj) with e(Vi, Vj) ≥ Kn−1/2 |Vi| |Vj |
is O(n3/2/K + M2n + M1/4δ1/4n3/2). For p = n−1/2, this is at most ǫpn2/4 provided that K
is a sufficiently large constant times 1/ǫ, δ is a sufficiently small constant times ǫ4/M , and n is
sufficiently large (depending on ǫ and M). Thus, condition (a) of Proposition 4.2 is satisfied.

Condition (b) of Proposition 4.2 is also automatically satisfied with C = 1 provided that δ < 1,
as is Condition (c) for δ sufficiently small. It thus follows from Proposition 4.2 that one can remove

at most ǫn3/2 edges to make G both C3-free and C5-free. �

Theorem 1.6 is the 5-partite version of the sparse C5-removal lemma, where we instead assume
that there are at most δn2 copies of C4 between any two consecutive vertex sets.

Proof of Theorem 1.6. The proof is nearly identical to the proof of Theorem 1.2. Set p = n−1/2 as
earlier. As before, we apply Lemma 2.4 to each bipartite graph Vi × Vi+1 to yield that at most
ǫpn2/4 edges lie between dense pairs for any partition into at most M parts. This verifies condition
(a) of Proposition 4.2.

To verify condition (b) of Proposition 4.2, note that the number of 4-cycles spanning three parts
Vi−1, Vi, Vi+1 is given by (the sums are taken over all unordered pairs of distinct vertices x, y ∈ Vi

and codegj(x, y) is the number of common neighbors of x and y in Vj)

∑

x 6=y∈Vi

codegi−1(x, y) codegi+1(x, y) ≤


 ∑

x 6=y∈Vi

codegi−1(x, y)
2




1/2 
 ∑

x 6=y∈Vi

codegi+1(x, y)




1/2

,

where the inequality follows from Cauchy–Schwarz. Using that t2 ≤ 1 + 4
(t
2

)
for all nonnegative

integers t and provided that δ < 1/8, we have

∑

x 6=y∈Vi

codegi−1(x, y)
2 ≤

(
n

2

)
+ 4

∑

x 6=y∈Vi

(
codegi−1(x, y)

2

)
≤

(
n

2

)
+ 4δn2 ≤ n2,

where we apply hypothesis (a) of Theorem 1.6 that there are at most δn2 C4’s between Vi−1 and
Vi. Likewise, ∑

x 6=y∈Vi

codegi+1(x, y)
2 ≤ n2.

Hence, the number of 4-cycles spanning the vertex sets Vi−1, Vi, Vi+1 is at most n2 for each i. Thus,
condition (b) of Proposition 4.2 is satisfied with C = 1.

Finally, condition (c) of Proposition 4.2 is satisfied due to hypothesis (b) of Theorem 1.6.
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The C5-removal claim thus follows. Note that the “sufficiently large n” condition is superfluous
here, since we can always make δ smaller to take care of the finite number of potentially exceptional
values of n. �

5. Removal lemma corollaries

Here we prove Corollary 1.3 of the sparse removal lemma Theorem 1.2, saying that an n-vertex
graph with o(n2) C5’s can be made triangle-free by removing o(n3/2) edges.

In each of the following proofs, we let G be the graph in the statement and G′ be a subgraph
of G whose edge set is the union of a maximal collection of edge-disjoint triangles in G. In order
to show that G can be made triangle-free by deleting o(n3/2) edges, it is sufficient to show that

G′ has o(n3/2) edge-disjoint triangles, which is in turn equivalent to showing that G′ can be made

triangle-free by deleting o(n3/2) edges. This last statement is what we will show.
Let us first prove a corollary of Theorem 1.2 that may be of independent interest. The house

graph is depicted below.

Corollary 5.1. An n-vertex graph with o(n2) C4’s that extend to houses and o(n5/2) C5’s can be

made triangle-free by deleting o(n3/2) edges.

Proof. It is easy to check that in an edge-disjoint union of triangles, every C4 extends to a house.
Following the notation above, since each C4 in G′ extends to a house in G′, G′ has o(n2) C4’s.

Moreover, G′ has o(n5/2) C5’s, since the same is true in G. Applying Theorem 1.2 then yields that

G′ can be made triangle-free by removing o(n3/2) edges. �

Proof of Corollary 1.3. Since G′ is an edge-disjoint union of triangles, every C4 in G′ extends to a
house, which contains a C5. Moreover, each C5 in G′ can arise from at most five different C4’s in
this way. Since G′ has o(n2) C5’s, we see that G′ has o(n2) C4’s. Thus, Theorem 1.2 implies that

G′ can be made triangle-free by removing o(n3/2) edges. �

6. Number-theoretic applications

Suppose that a1, . . . , a5 are fixed nonzero integers summing to zero and X1, . . . ,X5 are subsets of
[n] such that each Xi has o(n) nontrivial solutions to x1+x2 = x3+x4 and there are o(n3/2) solutions
to a1x1 + · · ·+ a5x5 = 0 with x1 ∈ X1, . . . , x5 ∈ X5. Then Theorem 1.16, which we now prove, says
that we can remove o(

√
n) elements from each Xi to remove all solutions to a1x1 + · · ·+ a5x5 = 0

with x1 ∈ X1, . . . , x5 ∈ X5.

Proof of Theorem 1.16. Embed X1, . . . ,X5 into Z/NZ, where N is the smallest integer greater than
(|a1|+ · · ·+ |a5|)n (to avoid wraparound issues) which is coprime to each of a1, . . . , a5. We consider
the 5-partite graph G with vertex sets V1, . . . , V5, each with elements indexed by Z/NZ, and edges
(s, s+ aixi) ∈ Vi × Vi+1 for all i (mod 5), s ∈ Z/NZ, and xi ∈ Xi.

Now we verify that G satisfies the hypotheses of the sparse 5-cycle removal lemma, Theorem 1.6:
(a) All 4-cycles lying between Vi and Vi+1 are of the form

s, s+ aix1, s+ ai(x1 − x2), s+ ai(x1 − x2 + x3)

and we must have s = s+ai(x1−x2+x3−x4) for some x4 to close off the cycle. In order for the 4-
cycle to have distinct vertices, (x1, x2, x3, x4) ∈ X4

i must be a nontrivial solution to x1+x3 = x2+x4.
But there are o(N) such 4-tuples, while the choice of s ∈ Z/NZ is arbitrary, so there are o(N2)
4-cycles between each pair (Vi, Vi+1).

(b) The number of 5-cycles in G equals N times the number of solutions to a1x1+ · · ·+a5x5 = 0

with x1 ∈ X1, . . . , x5 ∈ X5, so there are o(N5/2) C5’s.
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Thus, by Theorem 1.6, G can be made C5-free by removing o(N3/2) edges. In each Xi, we now
remove the element xi if at least N/5 edges of the form (s, s + aixi) have been removed. Since we

removed o(N3/2) edges from G, we remove o(
√
N) = o(

√
n) elements from each Xi. Let X ′

i denote
the remaining elements of Xi. For any solution to a1x1+ · · ·+a5x5 = 0 with x1 ∈ X1, . . . , x5 ∈ X5,
consider the N edge-disjoint 5-cycles in the graph G that arise from this solution. We must have
removed at least one edge from each of these 5-cycles and so we must have removed at least N/5
edges of the form (s, s + aixi) for some i, which implies that xi /∈ X ′

i. There must therefore be no
solution to a1x1 + · · ·+ a5x5 = 0 with x1 ∈ X ′

1, . . . , x5 ∈ X ′
5, as required. �

Recall that the following lemma, saying that a Sidon set has O(n) solutions to a1x1+a2x2+a3x3+
a4x4 = 0 for any nonzero integers a1, . . . , a4, was needed to derive Theorem 1.14 from Theorem 1.16.

Proof of Lemma 1.17. Writing

1̂X(t) =
∑

x∈X
e2πixt,

we have, by a standard Fourier identity (easy to see by expansion), that
∣∣{(x1, x2, x3, x4) ∈ X4 : a1x1 + a2x2 + a3x3 + a4x4 = 0

}∣∣

=

∫ 1

0
1̂X(a1t)1̂X(a2t)1̂X(a3t)1̂X(a4t) dt

≤
4∏

j=1

(∫ 1

0
|1̂X(ajt)|4 dt

)1/4

.

Moreover,
∫ 1

0
|1̂X(ajt)|4 dt =

∣∣{(x1, x2, x3, x4) ∈ X4 : x1 + x2 = x3 + x4
}∣∣ = 2 |X|2 − |X| = O(n),

since X ⊂ [n] is a Sidon set. �

7. Some constructions

In the previous section, we deduced our number-theoretic results by starting with a set of integers
avoiding solutions to certain equations and building an associated graph to which we could apply
our removal lemma. We now use this same idea to prove Proposition 1.7, which asserts the existence
of an n-vertex C4-free graph with n3/2−o(1) edges where every edge lies in exactly one 5-cycle.

Proof of Proposition 1.7 . First, we note that there exists a set X ⊆ [n] with |X| ≥ e−O(
√
logn)n1/2

with

(1) no nontrivial solutions to the equation a(x1 − x2) = b(x3 − x4) for all a, b ∈ {1, 2, 3, 4, 10}
(here a solution is called trivial if x1 = x2 and x3 = x4 or a = b, x1 = x3 and x2 = x4) and

(2) no nontrivial solutions to the equation x1 + 2x2 + 3x3 + 4x4 = 10x5
(here a solution is called trivial if x1 = · · · = x5).

The existence of such a set follows from two ingredients, both essentially noted by Ruzsa [41].

Indeed, sets of size e−O(
√
logn)n1/2 satisfying the first property can be constructed through a minor

modification of [41, Theorem 7.3], as noted in [8]. Moreover, a set of size e−O(
√
logn)n satisfying the

second property exists by a standard adaptation [41, Theorem 2.3] of Behrend’s construction [4].
Since the second property is translation invariant, taking the intersection of a random translation
of the second set with the first set gives a set with the claimed size satisfying both properties.

Let N = 60n + 1. Let V1, . . . , V5 be vertex sets each with vertices indexed by Z/NZ. Add a
5-cycle (s, s+x, s+3x, s+6x, s+10x) ∈ V1 × · · · × V5 to the graph for each s ∈ Z/NZ and x ∈ X.
This construction is similar to the construction used in the proof of Theorem 1.16.
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We now show that this graph has all of the required properties. First note that the cycles are edge-
disjoint, since if, for instance, s+3x = s′+3x′ and s+6x = s′+6x′, then s = s′ and x = x′, where
we used that N is coprime to {1, 2, 3, 4, 10}. Moreover, there are no further C5’s in this graph, since
any other such 5-cycle would give a nontrivial solution to the equation x1 +2x2+3x3 +4x4 = 10x5
in X.

To see that there are no C4’s, note that there are no C4’s between any pair of vertex sets since
X is Sidon. Moreover, there are no C4’s across three vertex sets, since, for instance, any 4-cycle
spanning V2, V3, V4 would induce a nontrivial solution to the equation 2(x1 − x2) = 3(x3 − x4). �

Remark. We do not know how to show that the exponent in Corollary 1.4 is best possible. Recall the
statement, that every n-vertex C5-free graph can be made triangle-free by deleting o(n3/2) edges.
To match this with a lower bound, we would like to construct a tripartite graph between sets of
order n which is the union of n3/2−o(1) edge-disjoint triangles but containing no C5. Following the
strategy above, this would require a set X ⊆ [n] of size n1/2−o(1) which satisfies properties similar
to (1) and (2), one particular case being that there should be no nontrivial solutions to the equation
x+2y+2z = 2u+3w. At present, we do not know how to construct such a set satisfying even this
latter property on its own. In fact, it is entirely plausible that no such set exists.

Finally, we prove Proposition 1.5, which says that there exist n-vertex graphs with o(n2.442) C5’s

that cannot be made triangle-free by deleting o(n3/2) edges.

Proof of Proposition 1.5. Let G be the m-th tensor power of a triangle. In other words, its vertices
can be labeled by F

m
3 and two vertices are adjacent iff they differ in every coordinate. Note that

every edge of G lies in a unique triangle and this graph has 6m−1 such triangles.
Write hom(H,G) for the number of homomorphisms from H to G. The number of closed walks

of length k in C3 is equal to the k-th moment of the eigenvalues of the adjacency matrix of C3 and
so hom(Ck, C3) = 2k + 2(−1)k. Thus,

hom(C3, G) = hom(C3, C3)
m = 6m,

hom(C4, G) = hom(C4, C3)
m = 18m,

and
hom(C5, G) = hom(C5, C3)

m = 30m.

Let G′ be the graph obtained from G by keeping every triangle independently with probability
p = (

√
3/2)m, so that in expectation p6m−1 = Θ(33m/2) triangles remain in G′.

To estimate the expected number of C5 in G′, note that the number of C5 that intersect ex-
actly four triangles of G is O(18m), since every such C5 extends to a house, which contains a
C4. Furthermore, it is impossible for a C5 in G to intersect at most three triangles, as ev-
ery edge of G is contained in exactly one triangle. Thus, the expected number of C5 in G′ is
O(p530m + p418m) = O((37/2 · 5/16)m) = o(32.442m).

Therefore, by Markov’s inequality, we see that with positive probability G′ is a graph on n = 3m

vertices with o(n2.442) C5’s which is an edge-disjoint union of Θ(n3/2) triangles. �
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Appendix A. Proof of the sparse weak regularity lemma

Here we prove Theorem 2.2, our sparse weak regularity lemma. As with nearly all proofs of
regularity lemmas, we keep track of some “energy” function and show, by using a certain defect
inequality, that the energy must increase significantly at every iteration of a partition refinement
process. As in Scott [48], the energy of a partition will be defined using the convex function

Φ(x) :=

{
x2 if 0 ≤ x ≤ 2

4x− 4 if x > 2.

The defect inequality is now captured by the following lemma.

Lemma A.1. Every real-valued random variable X ≥ 0 with expectation µ ≤ 1 satisfies

1

4
(E|X − µ|)2 ≤ EΦ(X)− Φ(EX).

Proof. Let p1 = P(X < µ) and p2 = P(X ≥ µ). Let µ1 = E[X|X < µ] and µ2 = E[X|X ≥ µ]
(setting µ1 = µ if p1 = 0). Note that µ = p1µ1 + p2µ2. We consider two cases.

Case 1: µ2 ≤ 2. By the convexity of Φ,

EΦ(X)− Φ(EX) ≥ p1Φ(µ1) + p2Φ(µ2)− Φ(µ) = p1µ
2
1 + p2µ

2
2 − µ2

= p1(µ− µ1)
2 + p2(µ2 − µ)2 ≥ (p1(µ− µ1) + p2(µ2 − µ))2 = (E|X − µ|)2.

Case 2: µ2 ≥ 2. Let Φµ(x) := Φ(x)−2µx+µ2, which is convex. Indeed, Φµ is a quadratic function
on [0, 2] with minimum at µ and is linear on [2,∞). Since 0 ≤ µ1 ≤ µ ≤ 1 and µ2 ≥ 2, we have
Φµ(µ1) ≤ Φµ(0) = µ2 ≤ 1 ≤ (2− µ)2 = Φµ(2) ≤ Φµ(µ2). Thus,

EΦ(X)− Φ(EX) = EΦµ(X) ≥ p1Φµ(µ1) + p2Φµ(µ2) ≥ Φµ(µ1) = (µ1 − µ)2

≥ 1

4
(2p1(µ− µ1))

2 =
1

4
(p1(µ− µ1) + p2(µ2 − µ))2 =

1

4
(E|X − µ|)2. �
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Lemma A.2. Let V be a probability space and f : V × V → [0,∞) be a measurable symmetric
function. Let P and Q be measurable partitions of V such that Q refines P. Then

E[Φ ◦ fQ]− E[Φ ◦ fP ] ≥
1

4
(E[|fQ − fP | 1fP≤1])

2.

Proof. For every pair (U,W ) of parts of P, the function fP is constant on U ×W with value the
average of f on U ×W , which is the same as the average of fQ on U ×W since Q is a refinement
of P. So, by the convexity of Φ, we always have EU×W [Φ ◦ fQ] ≥ EU×W [Φ ◦ fP ]. Furthermore, by
applying Lemma A.1 on those U ×W where fP ≤ 1, we deduce that

EU×W [Φ ◦ fQ]− EU×W [Φ ◦ fP ] ≥
1

4
(EU×W [|fQ − fP | 1fP≤1])

2

for all (U,W ) ∈ P × P. Finally, summing the above inequality over all pairs (U,W ) and applying
the Cauchy–Schwarz inequality, we have

E[Φ ◦ fQ]− E[Φ ◦ fP ] =
∑

U,W∈P
µ(U)µ(W ) (EU×W [Φ ◦ fQ]− EU×W [Φ ◦ fP ])

≥ 1

4

∑

U,W∈P
µ(U)µ(W )(EU×W [|fQ − fP | 1fP≤1])

2

≥ 1

4


 ∑

U,W∈P
µ(U)µ(W )EU×W [|fQ − fP | 1fP≤1]




2

=
1

4
(E[|fQ − fP | 1fP≤1])

2. �

Now we prove the sparse weak regularity lemma. Recall the statement, that, given ǫ > 0 and

f : V × V → [0,∞), there exists a partition P of V into at most 232Ef/ǫ
2

parts such that

‖(f − fP)1fP≤1‖� ≤ ǫ. (13)

Proof of Theorem 2.2. Starting with the trivial partition P0 of V (i.e., consisting of a single part),
consider the following iterative process: for each i ≥ 0, if (13) is satisfied for P = Pi, then we stop
the iteration; otherwise, by the definition of the cut norm, there exist measurable subsets A,B ⊂ V
such that |E[(f − fP)1fP≤11A×B ]| > ǫ and we set Pi+1 to be the common refinement of the partition
Pi and the four-part partition determined by A and B. Write

Φ(P) := E[Φ ◦ fP ] = Ex,y∈V [Φ(fP)]

for the “energy” of the partition P.
With P = Pi, Q = Pi+1, and A,B ⊂ V as above, we have, by Lemma A.2, that

Φ(Q)− Φ(P) ≥ 1
4(E[|fQ − fP | 1fP≤1])

2.

Since A and B are unions of parts of Q, we have

E[|fQ − fP | 1fP≤1] ≥ |E[(fQ − fP)1fP≤11A×B ]| = |E[(f − fP)1fP≤11A×B ]| > ǫ.

Thus, for every i ≥ 0, one has

Φ(Pi+1)− Φ(Pi) ≥ 1
4ǫ

2.

On the other hand, since 0 ≤ Φ(x) ≤ 4x for all x ≥ 0, for every partition P of V , we have

Φ(P) ≤ 4EfP = 4Ef.

Thus, the iteration must terminate after at most 16Ef/ǫ2 steps, at which point (13) is satisfied.
The number of parts increases by a factor of at most 4 in each iteration, so the final number of

parts is at most 232Ef/ǫ
2
. �
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Appendix B. Connecting Brown–Erdős–Sós to the extremal problem for girth

Here we prove Proposition 1.9, which says that fr(n, (r − 1)e, e) = hr(n, e) for sufficiently large
n ≥ n0(r, e). Recall that fr(n, v, e) is the maximum number of edges in an n-vertex r-graph
without a (v, e)-configuration, a subgraph with e edges and at most v vertices. Moreover, hr(n, g)
is the maximum number of edges in an n-vertex r-graph of girth greater than g.

Lemma B.1. An r-graph H on n vertices without an ((r − 1)e, e)-configuration and with a cycle
of length at most e has at most max{e− 1, n/(r − 1)} edges.

Proof. By assumption, H contains a cycle C of length ℓ ≤ e. The vertices of this cycle span at
most (r − 1)ℓ vertices. Growing the connected component containing C one edge at a time, we see
that each additional edge adds at most r − 1 new vertices. Let P0 be the connected component
containing C. In particular, if P0 has at least e edges, then it would contain e edges spanning at
most (r− 1)e vertices, contradicting that H has no ((r− 1)e, e)-configuration. Hence, P0 has fewer
than e edges. Let P1, . . . , Pj denote the remaining connected components of H. For 0 ≤ i ≤ j, let
ni and ei denote the number of vertices and edges, respectively, of Pi. Let pi = (r − 1)ei − ni and
assume, by reordering if necessary, that p1 ≥ · · · ≥ pj . By construction, p0 ≥ 0 and e0 < e.

We may assume that H has at least e edges, as otherwise we are done. Let k be the largest
index such that e0 + · · · + ek < e and so e0 + · · · + ek + ek+1 ≥ e, as H has at least e edges. Let
e′ = e− (e0 + · · ·+ ek). Let Q be a connected subset of Pk+1 with e′ edges formed by starting with
a single edge in Pk+1 and adding edges one at a time, keeping the resulting subset connected, until
we get exactly e′ edges. By construction, Q has at most (r− 1)e′ +1 vertices. Let U0 consist of the
union of the connected components P0, . . . , Pk together with Q, so that U0 has e edges and at most
((r − 1)e0 − p0)+ · · ·+((r − 1)ek − pk)+(r−1)(e− (e0 + · · ·+ek))+1 = (r−1)e+1−p0−· · ·−pk
vertices. As H has no ((r−1)e, e)-configuration, we must have p0+ · · ·+pk ≤ 0. As p1 ≥ · · · ≥ pj, it
follows that p0+ p1+ · · ·+ pj ≤ 0. Equivalently, the number of edges in H is at most n/(r− 1). �

Lemma B.2. For r ≥ 2 and g ≥ 2, there exists n0(r, g) such that hr(n, g) > n/(r − 1) for all
n ≥ n0(r, g).

Proof. Construct an r-graph by fixing two vertices u and v and adding edge-disjoint “paths” between
u and v, where each “path” consists of ⌊g/2⌋ + 1 edges, the first containing u, the last containing
v, and where consecutive edges share exactly one vertex. Add as many paths as one can without
exceeding n total vertices. Each new path uses (⌊g/2⌋+ 1)(r − 1)− 1 new vertices (not counting u
and v). The resulting r-graph has girth greater than g and

hr(n, g) ≥
⌊

n− 2

(⌊g/2⌋ + 1)(r − 1)− 1

⌋
(⌊g/2⌋ + 1)

edges, which exceeds n/(r − 1) for sufficiently large n. �

Proof of Proposition 1.9. If an r-graph has girth greater than e, then every subset of e edges contains
no cycle and hence spans more than (r − 1)e vertices. Thus, the r-graph has no ((r − 1)e, e)-
configuration and hr(n, e) ≤ fr(n, (r − 1)e, e) for all n.

Conversely, by the previous paragraph and Lemma B.2, we have that for sufficiently large n the
largest n-vertex r-graph with no ((r−1)e, e)-configuration has more than n/(r−1) edges. Therefore,
by Lemma B.1, it has no cycle of length at most e. Thus, fr(n, (r − 1)e, e) ≤ hr(n, e). �

Appendix C. Counting 3-graphs with girth greater than 5

Here we prove Theorem 1.11, which says that for every fixed r ≥ 3, the number of r-graphs on n

vertices with girth greater than 5 is 2o(n
3/2).
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Proof of Theorem 1.11. Let Fr(n) denote the number of r-graphs on n labeled vertices with girth
greater than 5.

First we show that, for every r ≥ 3, one has Fr(n) ≤ F3(n)
(r3), thereby reducing the problem

to r = 3. Indeed, given an r-graph H, color the triples contained in each edge of H arbitrarily
from 1 to

(r
3

)
, using one color for each triple. The color classes give a list H1, . . . ,H(r3)

of 3-graphs,

each with girth greater than 5, and thus there are at most F3(n)
(r3) possibilities for such a list.

Furthermore, one can recover H from the list H1, . . . ,H(r3)
since two triples in H1∪ · · · ∪H(r3)

share

two vertices if and only if they are contained in the same edge in H (recall that H has no 2-cycles).

Thus, there are at most F3(n)
(r3) possibilities for H.

Now it remains to show that F3(n) = 2o(n
3/2). Let H be a 3-graph with girth greater than 5.

By Corollary 1.10, H has o(n3/2) edges. Let G be the underlying shadow graph (a pair of vertices
form an edge of G if they are contained in a triple of H). Since H has girth greater than 5, every

edge in G lies in a unique triangle, and G is C4-free with o(n3/2) edges. Then, by Proposition C.1

below, there are 2o(n
3/2) possibilities for G. The 3-graph H can be recovered uniquely from G and

thus the number of such H is also 2o(n
3/2). �

Proposition C.1. The number of C4-free graphs on n vertices with o(n3/2) edges is 2o(n
3/2).

Proposition C.1 can be proved by modifying the proof of the following classic result of Kleitman
and Winston [27].

Theorem C.2 (Kleitman–Winston). The number of C4-free graphs on n vertices is 2O(n3/2).

We follow the exposition of Samotij [42, Theorem 8] in his survey on counting independent sets
in graphs via graph containers. We begin with the following key lemma.

Lemma C.3 ([42, Lemma 1]). Let G be an n-vertex graph. Suppose that an integer q and reals R
and β ∈ [0, 1] satisfy R ≥ e−βqn. Suppose that every subset U ⊂ V (G) with |U | ≥ R induces at

least β
(|U |

2

)
edges in G. Then, for every integer m ≥ q, the number of m-element independent sets

in G is at most
(
n
q

)(
R

m−q

)
.

As in [42], let gn(d) denote the maximum number of ways to attach a vertex of degree d to an
n-vertex C4-free graph with minimum degree at least d− 1 in such a way that the resulting graph
remains C4-free. In [42], it was proved that maxd≤n gn(d) ≤ eO(

√
n). We modify the proof of this

statement to obtain the following bound.

Lemma C.4. If i ≤ n and d = o(
√
n), then gi(d) = eo(

√
n).

Proof. If d ≤ √
n/(log n)2, then gi(d) ≤

(i
d

)
≤ nd = eo(

√
n). So assume d >

√
n/(log n)2.

Let G be an i-vertex C4-free graph with minimum degree at least d − 1. Let H be the square
of G, i.e., V (H) = V (G) and two vertices are adjacent in H if and only if they are connected by a
path of two edges in G. Note that attaching a new vertex to G will not create any 4-cycles if and
only if the neighborhood of the new vertex is an independent set in H. It remains to upper bound
the number of d-element independent sets in H using Lemma C.3.

Let R = 2n/(d − 1), β = (d − 1)2/2n, and q = ⌈3(log n)5⌉. Since d >
√
n/(log n)2, for n

sufficiently large we have βq ≥ log n and thus e−βqi ≤ e−βqn ≤ 1 ≤ R.
Since G has minimum degree at least d − 1, every B ⊆ V (H) satisfies

∑
z∈V (G) degG(z,B) ≥

(d− 1) |B|. Thus, if |B| ≥ R = 2n/(d− 1), then the number of edges that B induces in H is equal
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to
∑

z∈V (G)

(
degG(z,B)

2

)
≥ i

(∑
z∈V (G) degG(z,B)/i

2

)

≥ i · (d− 1) |B|
2i

(
(d− 1) |B|

i
− 1

)
≥ (d− 1)2

2n

(|B|
2

)
= β

(|B|
2

)
,

where the first inequality uses the convexity of x 7→
(x
2

)
= x(x−1)

2 .
Applying Lemma C.3, the number of d-element independent sets in H is at most

(
i

q

)(
R

d− q

)
≤ nq

(
eR

d− q

)d−q

≤ eO((log n)6)

(
2ne

(d− q)2

)d−q

.

Applying limx→0
√
x log(1/x) = 0 with x = (d − q)2/(2ne) = o(1), we see that the right-hand side

above is eo(
√
n). Thus, the number of d-element independent sets in H is eo(

√
n). �

Lemma C.5. A C4-free graph with minimum degree d must have more than d3/2− d2/2 edges.

Proof. Let G be a C4-free graph with minimum degree d and v a vertex of degree d. As G is C4-free,
each vertex in N(v) is adjacent to at most one vertex in N(v). Thus, each vertex in N(v) has at
least d− 2 neighbors not in {v} ∪N(v). As G is C4-free, each vertex not in {v} ∪N(v) has at most
one neighbor in N(v), so G has at least 1 + d+ d(d− 2) = d2 − d+ 1 vertices. Hence, the number
of edges in G is at least |V (G)|d/2 ≥ (d2 − d+ 1)d/2 > d3/2− d2/2. �

Proof of Proposition C.1. By iteratively peeling off lowest-degree vertices, we see that every n-vertex
graph has an ordering v1, . . . , vn of vertices (in reverse order of peeling) such that, for each i, vi is
a minimum-degree vertex in the subgraph Gi induced by {v1, . . . , vi}. Letting di denote the degree
of vi in Gi, we see that the minimum degree of Gi−1 is at least di − 1.

By Lemma C.5, every induced subgraph of a C4-free graph with m edges has minimum degree
O(m1/3). In particular, if the graph has n vertices and m = o(n3/2), then di = o(

√
n) for all i.

For each fixed ordering of the vertices (n! possibilities) and each fixed sequence d2, . . . , dn of
degrees (at most n! possibilities), noting that there are at most gi(di+1) ways to attach vi+1 to Gi,
we see that the number of C4-free graphs with these parameters is at most g1(d2)g2(d3) · · · gn−1(dn).

By Lemma C.4, this count is eo(n
3/2), even after summing over the at most n!2 possibilities for the

parameters. �

Conlon, Department of Mathematics, California Institute of Technology, Pasadena, CA, USA

Email address: dconlon@caltech.edu

Fox, Department of Mathematics, Stanford University, Stanford, CA, USA

Email address: jacobfox@stanford.edu

Sudakov, Department of Mathematics, ETH, Zurich, 8092, Switzerland

Email address: benjamin.sudakov@math.ethz.ch

Zhao, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Email address: yufeiz@mit.edu


	1. Introduction
	1.1. Sparse graph removal lemmas
	1.2. Extremal results in hypergraphs
	1.3. Number-theoretic applications

	2. A weak sparse regularity lemma
	3. A sparse counting lemma for 5-cycles
	4. Removal lemmas in sparse graphs
	5. Removal lemma corollaries
	6. Number-theoretic applications
	7. Some constructions
	Acknowledgments
	References
	Appendix A. Proof of the sparse weak regularity lemma
	Appendix B. Connecting Brown–Erdos–Sós to the extremal problem for girth
	Appendix C. Counting 3-graphs with girth greater than 5

