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Abstract. Does every n-vertex Cayley graph have an orthonormal eigenbasis all of whose coor-
dinates are O(1/

√
n)? While the answer is yes for abelian groups, we show that it is no in general.

On the other hand, we show that every n-vertex Cayley graph (and more generally, vertex-
transitive graph) has an orthonormal basis whose coordinates are all O(

√
log n/n), and that this

bound is nearly best possible.
Our investigation is motivated by a question of Assaf Naor, who proved that random abelian

Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies
on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot
hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s
result to nonabelian groups.

1. Introduction

1.1. Bounded eigenbasis. It is a fundamental problem to understand the spectral decomposition
of a Cayley graph. Since every vertex in a Cayley graph has the same degree, it does not matter
whether we are talking about the adjacency matrix or the Laplacian matrix, but we will stick
with the adjacency matrix for concreteness. Enormous attention has been given to the eigenvalues
of Cayley graphs, especially the spectral gap, due to an intimate connection with the expansion
properties of the graph [12, 15]. In this paper, we study the complementary question of what can
arise as eigenvectors of Cayley graphs.

We adopt the following normalization1. Given a finite set S and a function x : S → C (sometimes
viewed as a vector x ∈ CS), we denote its Lp norm by

‖x‖Lp(S) := (Es∈S |x(s)|p)1/p .

The Hermitian inner product is defined by 〈x, y〉 = Es∈Sx(s)y(s). We say that x is C-bounded if
‖x‖L∞(S) ≤ C, and we say that a set of functions is C-bounded if all of its elements are C-bounded.
In a unitary or orthonormal eigenbasis, each eigenfunction x is normalized as ‖x‖L2(S) = 1.

Below is the main question that we study. Here our Cayley graphs are unweighted and undirected.
A Cayley graph on a finite group G with symmetric generator S = S−1 (not containing the identity)
has edges of form (g, sg) ranging over all g ∈ G and s ∈ S.

Question 1.1. What is the minimum C(n) so that every n-vertex Cayley graph has a C(n)-bounded
unitary (or orthonormal) eigenbasis?

Every abelian Cayley graph has a 1-bounded unitary eigenbasis. Indeed, given an abelian group
G, the basis of Fourier characters of G forms an eigenbasis for every Cayley graph on G. In
particular, all coordinates of such a Fourier basis are are roots of unity. The existence of a bounded
eigenbasis is useful in certain applications. In fact, the initial motivation for this work is a result
of Naor [16] that proves a certain small-set expansion property of random abelian Cayley graphs,
extending a classic result of Alon–Roichman [1] that random Cayley graphs on arbitrary groups are

Zhao was supported by NSF Award DMS-1764176, a Sloan Research Fellowship, and the MIT Solomon Buchsbaum
Fund.

1This normalization, viewing x as a function on a set or group equipped with the averaging measure, is different
from the normalization used in the abstract, where we use the usual Euclidean distance in Rn.
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expanders. Naor’s argument uses that every abelian Cayley graph has a 1-bounded eigenbasis. He
asks whether his results also hold for nonabelian groups. Here we show that general Cayley graphs
do not always have a bounded eigenbasis, therefore exhibiting an obstruction to Naor’s argument
for nonabelian groups. On the other hand, we provide an alternative argument showing that Naor’s
theorem indeed extends to general groups. See Theorem 1.7 below for a precise statement.

Our first result below implies that Cayley graphs do not always have a bounded unitary eigenbasis.
It gives a lower bound C(n) &

√
log n/ log log n for Question 1.1 for infinitely many n. (Notation:

we write A . B and A = O(B) to mean that A ≤ CB for some constant C > 0.)

Theorem 1.2. There exist infinitely many Cayley graphs G whose adjacency matrix has an eigenspace
all of whose eigenfunctions x : G → C satisfy ‖x‖L∞(G) ≥ c ‖x‖L2(G)

√
log n/ log log n, where n is

the number of vertices and c > 0 is some absolute constant.

The next result gives a nearly matching upper bound of C(n) .
√

log n for Question 1.1.

Theorem 1.3. Every Cayley graph has an orthonormal C
√

log n-bounded eigenbasis, where n is the
number of vertices and C is some absolute constant.

More generally, the same upper bound holds for vertex-transitive graphs.

Theorem 1.4. Every vertex-transitive graph has an orthonormal C
√

log n-bounded eigenbasis, where
n is the number of vertices and C is some absolute constant.

It remains an intriguing open problem to close the gap between the upper and lower bounds.
This problem appears to be related to a recent deep and difficult result of Green [8], who showed
that the maximum possible width of a finite transitive subset of the unit sphere in Rd is on the
order of 1/

√
log d (in sharp constrast to infinite subsets, e.g., the entire sphere has width 1). Green’s

theorem answers a question of the third author, which was in turn prompted by [5] and this work.
Green’s proof relies on the classification of finite simple groups.

Let us mention a few directions worth further investigation. First, our construction proving
Theorem 1.2 uses graphs of increasing degree. Can one also find bounded degree Cayley graphs
without a bounded eigenbasis?

Conjecture 1.5. There exists some d such that for every C there exists a d-regular Cayley graph
without an orthonormal C-bounded eigenbasis.

Another direction worth exploring further is to understand what families of groups always have
bounded eigenbasis. Extending the example of abelian groups, it is not hard to show using non-
abelian Fourier analysis that in a group where every irreducible representation has dimension at
most d, every Cayley graph has a

√
d-bounded unitary eigenbasis. Given these examples, a natural

question is if for more natural classes of “nearly abelian” groups, every Cayley graph has a bounded
eigenbasis.

Question 1.6. Do Cayley graphs on nilpotent groups of bounded step always have bounded eigen-
basis? What about affine groups?

The general problem of characterizing groups with the bounded eigenbasis property is somewhat
reminiscent of the characterization of approximate groups by Breuillard, Green, and Tao [4], which
unifies classic theorems of Freiman on sets of bounded doubling [7] and Gromov on groups of
polynomial growth [10].

Let us mention that another instance where a bounded eigenbasis came in handy was in studying
the relationship between discrepancy and eigenvalues of Cayley graphs. Kohayakawa, Rödl, and
Schacht [13] showed that for abelian Cayley graphs, having small discrepancy is equivalent to having
small second eigenvalues, with a spectral proof suggested by Gowers. The proof relies on the
bounded eigenbasis of abelian Cayley graphs. The abelian hypothesis was later removed by Conlon
and Zhao [5] via an application of Grothendieck’s inequality.
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(a) G = S3 n (Z/2Z)3 (b) G = S4 n (Z/2Z)4

Figure 1. Some spectral drawings of Cayley graphs used in the proof of Theo-
rem 1.2, corresponding to the group G = Sd n (Z/2Z)d, drawn for d ∈ {3, 4}. Such
a spectral drawing requires a canvas of side-lengths on the order of

√
d/ log d, where

vertices have uncorrelated x and y coordinates each having variance 1. See the
remark at the end of Section 3.3 on how these figures were generated.

The boundedness of eigenfunctions has an appealing interpretation for spectral graph drawings.
Hall’s spectral drawing of a graph [11] (also see Spielman’s survey [18], which contains some nice
figures) places each vertex v at (x(v), y(v)) ∈ R2, where x and y are eigenfunctions corresponding
to the second and third eigenvalues of the graph Laplacian (here x and y are assumed orthogonal
and properly scaled). This drawing has the property that it minimizes the sum of squared edge-
lengths among all drawings of the graph in R2 with the vertices in isotropic position (so that x
and y coordinates each have variance 1 and are uncorrelated). Every abelian Cayley graph has a
spectral drawing where all the coordinates are bounded. On the other hand, Theorem 1.2 gives us an
example of a Cayley graph where no spectral drawing can fit inside a disk of radius c

√
log n/ log log n

(provided that the eigenspace in the theorem corresponds to the second and third eigenvalues, which
can be achieved; see the end of Section 3 for further details). Some examples of spectral drawings
of Cayley graphs used in the proof of Theorem 1.2 are shown in Figure 1.

1.2. Random Cayley graphs are small-set expanders. A classic result due to Alon and Roich-
man [1] shows that in a random Cayley graph of a group G generated by k > Cε−2 log |G| indepen-
dent and uniform random group elements, all eigenvalues other than the top one has absolute value
at most kε. In particular, via the expander mixing lemma, it implies that for every ∅ 6= X ( G,∣∣∣∣∣ e(X,G \X)

2k
|G| |X| |G \X|

− 1

∣∣∣∣∣ ≤ ε,
where e(A,B) counts the number of edges with one endpoint in A and the other in B.
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Naor [16] developed a new Banach space-valued Azuma inequality and proved more refined small-
set isoperimetry inequalities in random Cayley graphs of abelian groups, and he asked whether his
result can be extended to all groups. Here we answer his question affirmatively. In the following
theorem, by “the Cayley (multi)graph associated k independent uniformly chosen random group
elements” we mean the following: select random g1, . . . , gk and take the Cayley graph generated by
g1, g

−1
1 , . . . , gk, g

−1
k , taken with multiplicity. Allowing multiplicities makes the result a bit easier to

state, and is a technicality that one should feel free to ignore (in many parameter ranges multiplicities
are unlikely to occur).

Theorem 1.7. There exists a universal constant C > 0 such that for every positive integer k and
every group G, with probability at least 1/2, the Cayley (multi)graph associated to k independent
uniformly chosen random group elements has the property that for every X ⊆ G with 1 < |X| ≤
|G| /2, the number of edges e(X,G \X) between X and G \X satisfies∣∣∣∣∣ e(X,G \X)

2k
|G| |X| |G \X|

− 1

∣∣∣∣∣ ≤ C
√

log |X|
k

.

Naor proved Theorem 1.7 for abelian groups. His proof relies on a bounded eigenbasis of abelian
Cayley graphs. In Section 5 we explain how to bypass this obstacle in order to prove the result for
nonabelian groups.

Acknowledgments. Zhao thanks Assaf Naor for discussions and for encouraging him to work on
this problem. We thank Shengtong Zhang for pointing out some typographical errors.

2. Preliminaries

2.1. Nonabelian Fourier transform. We begin by summarizing some standard facts on non-
abelian Fourier analysis (e.g., [9]). Given a finite group G, let Ĝ denote the set of irreducible
unitary representations of G. For each representation ρ ∈ Ĝ, call its dimension dρ, and call the
space that it acts on Wρ

∼= Cdρ . For any f : G→ C and ρ ∈ Ĝ, its Fourier transform evaluated at
ρ is given by

f̂(ρ) = Eg∈Gf(g)ρ(g),

which is an endomorphism of Wρ (i.e., f̂(ρ) ∈ EndWρ). There is an inversion formula, namely

f(g) =
∑
ρ∈Ĝ

dρ〈ρ(g), f̂(ρ)〉HS

where 〈A,B〉HS = Tr(A†B) is the Hilbert–Schmidt inner product, which is just the entry-wise
Hermitian product of matrices. The Hilbert–Schmidt norm is written as ‖A‖HS =

√
Tr(A†A). We

have Parseval’s identity

〈f1, f2〉L2(G) = Eg∈Gf1(g)f2(g) =
∑
ρ∈Ĝ

dρ〈f̂1(ρ), f̂2(ρ)〉HS,

and in particular,
Eg∈G|f(g)|2 =

∑
ρ∈Ĝ

dρ‖f̂(ρ)‖2HS.

Finally, we define a convolution of two functions f1, f2 : G→ C via

(f1 ∗ f2)(g) = Eh∈Gf1(gh−1)f2(h).

The Fourier transform turns convolution into matrix multiplication:

f̂1 ∗ f2(ρ) = f̂1(ρ)f̂2(ρ)

for all ρ ∈ Ĝ.
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2.2. Eigendecomposition. Given a function f : G → C, we consider the operator Mf acting on
CG, the space of functions G→ C, via

Mfx = f ∗ x,

i.e., (Mfx)(g) = Eh∈Gf(gh−1)x(h) for all x : G → C and g ∈ G. Equivalently, one can also view
Mf as a matrix with rows and columns indexed by G, whose entry in position (g, h) ∈ G × G is
f(gh−1)/ |G|. Then, viewing x ∈ CG as a vector, the matrix productMfx agrees with the definition
above. The matrix can be thought of as the adjacency matrix (after suitable normalization) of a
Cayley graph. Let us explain how to analyze the eigendata of Mf using the Fourier transform.

Assume from now on that f(g−1) = f(g) for every g ∈ G. Then

f̂(ρ) = Eg∈Gf(g)ρ(g)

is Hermitian. For any x : G→ C, applying the Fourier transform, we see that x is an eigenfunction
of Mf with eigenvalue λ (i.e., f ∗ x = λx) if and only if

f̂(ρ)x̂(ρ) = λx̂(ρ) for all ρ ∈ Ĝ,

i.e., all columns of x̂(ρ) (when viewed as a dρ×dρ matrix) lie in the eigenspace of f̂(ρ) corresponding
to the eigenvalue λ.

Let Vρ be the subspace of functions whose Fourier transform is supported on ρ:

Vρ = {x ∈ L2(G) : supp x̂ ⊆ {ρ}}
= {x ∈ L2(G) : x(g) = dρ 〈ρ(g), A〉 for some A ∈ EndWρ}. (2.1)

For any column vector v ∈Wρ, we define

Vρ,v = {x ∈ Vρ : every column of x̂(ρ) is a multiple of v}

= {x ∈ L2(G) : x(g) = dρ〈ρ(g),vw†〉HS for some w ∈Wρ} ⊆ Vρ. (2.2)

In particular, if f̂(ρ)v = λv for some λ ∈ R, then Mfx = λx for all x ∈ Vρ,v (as can be seen by
taking the Fourier transform). Furthermore, if v,v′ ∈ Wρ with v†v′ = 0, then 〈x, x′〉 = 0 for all
x ∈ Vρ,v and x′ ∈ Vρ,v′ .

To summarize, we have an orthogonal decomposition (the orthogonality is easy to check via the
Fourier transform)

CG =
⊕
ρ

Vρ.

For each ρ ∈ Ĝ, let vρ1, . . . ,v
ρ
dρ
∈Wρ be an eigenbasis of f̂(ρ) ∈ EndWρ, and call the corresponding

eigenvalues λρ,1, . . . , λρ,dρ . We have an orthogonal decomposition

Vρ =

dρ⊕
j=1

Vρ,vρj

and Mfx = λρjx for each x ∈ Vρ,vρj . Thus the eigenvalues of Mf consists of λρ,j with multiplicity

dρ, ranging over all ρ ∈ Ĝ and j ∈ [dρ]. The eigenspace of Mf corresponding to an eigenvalue λ is
the direct sum of all Vρ,vρj ranging over all ρ ∈ Ĝ and j ∈ [dρ] with λρ,j = λ.
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2.3. Schatten norms. The Schatten p-norm ‖A‖Sp of a matrix A ∈ Cn×n is defined via

‖A‖pSp =
n∑
i=1

σi(A)p,

where σ1(A), . . . , σn(A) are the singular values of A.
The Schatten p-norm satisfies a noncommutative Hölder’s inequality (e.g., [3, Corollary IV.2.6]):

for 1 ≤ p ≤ q ≤ ∞ with 1/p+ 1/q = 1, we have

〈A,B〉HS ≤ ‖A‖Sp‖B‖Sq . (2.3)

Given a function f : G → C on a finite group G, we define its Schatten p-norm ‖f‖Sp to be the
Schatten p-norm of its associated matrix Mf (giving the linear map x 7→ f ∗ x on CG):

‖f‖Sp =

(∑
i

σi(Mf )p

)1/p

=

(∑
ρ

dρ‖f̂(ρ)‖pSp

)1/p

. (2.4)

3. Construction

In this section, we prove Theorem 1.2 by constructing a Cayley graph on a group G with an
eigenspace all of whose eigenfunctions satisfy ‖x‖L∞(G) & ‖x‖L2(G)

√
log |G|/ log log |G|.

To motivate our construction, we first explain in Section 3.1 what happens for the unitary group
G = U(d), which is simpler to analyze although it is not finite. Then, in Section 3.2, we explain
how to construct an edge-weighted Cayley graph on a certain finite subgroup of U(d). We then
explain in Section 3.3 how to convert the edge-weighted construction to an unweighted construction
via sampling, and show that eigenvectors maintain their desired properties. Only Section 3.3 is
required for the proof of Theorem 1.2, and the earlier subsections are solely for motivation, but we
hope that they are helpful to the readers.

3.1. Unitary group. Let G = U(d). Let ρ denote the standard representation of G on Cd,
which is irreducible. Let Vρ denote the subspace of L2(G) consisting of all x ∈ L2(G) of the
form x(g) = d〈ρ(g), A〉HS for some A ∈ Cd×d , i.e., the Fourier transform x̂ is supported at ρ and
x̂(ρ) = A. Note that this definition of Vρ agrees with our earlier definition in (2.1) for finite groups.

Claim 3.1. For any x ∈ Vρ, we have ‖x‖L∞(G) ≥
√
d‖x‖L2(G).

Proof. Let A ∈ Cd×d be such that x(g) = d〈ρ(g), A〉HS. By Fourier inversion and Parseval,
‖x‖L2(G) =

√
d‖A‖HS. Thus we have

‖x‖L∞(G) = d sup
U∈U(d)

〈U,A〉HS = d‖A‖S1 ≥ d‖A‖S2 = d‖A‖HS =
√
d‖x‖L2(G)

by definition of ρ and duality of the Schatten norms. �

For a sufficiently generic f : G→ C (assuming no unwanted eigenvalue collisions), the subspace Vρ
is a direct sum of eigenspaces of the operatorMf , there by giving a continuous analog of Theorem 1.2.
The actual construction proving Theorem 1.2 will involve a discretization of this construction.

3.2. Weighted construction. In this section we prove a weighted analogue of Theorem 1.2 which
serves as a stepping stone towards the entire proof. Recall from earlier that for a function f : G→ C
we have Mf (g, h) = f(gh−1)/ |G|.

Theorem 3.2. There exist some constant c > 0 and infinitely many groups G and functions f :
G→ R such that Mf has an eigenspace all of whose elements x satisfy

‖x‖L∞(G) ≥ c
√

log |G|
log log |G|

‖x‖L2(G) .
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Let G = Sd n (Z/2Z)d, where Sd acts on (Z/2Z)d by permuting coordinates. The group has a
natural d-dimensional representation on Cd, which we call ρ, where Sd permutes the coordinates
and (Z/2Z)d flips the signs of the coordinates. It is easy to check that ρ is irreducible.

We need a G-orbit on the unit sphere in Cd with large width in every direction. The next lemma
serves as a finitary analogue of Claim 3.1. This lemma also appears in [8] and we include its proof
here for the convenience of the reader.

Lemma 3.3. Let a be the unit vector in the direction of (1, 1/
√

2, . . . , 1/
√
d). Then for any v ∈ Cd

we have

sup
g∈G
|〈v, ρ(g)a〉| & |v|√

log d
.

Remark. A difficult recent result of Green [8], confirming a conjecture of Zhao, showed that for
every finite subgroup G of U(d) and every unit vector a ∈ Cd, there is some unit vector v such
that supg∈G |〈v, ρ(g)a〉| . 1/

√
log d (i.e., a tight upper bound on the width of every finite transitive

subset of a sphere). In contrast, the width of an infinite transitive subset of the sphere can be as
large as 1 (e.g., the entire sphere). It is initially quite counterintuitive that a finiteness assumption
implies such a dramatic reduction in the width of an orbit.

Proof. Let us first assume that v ∈ Rd, so

sup
g∈G
|〈v, ρ(g)a〉| = sup

g∈G
|〈ρ(g)v,a〉| ≥ 〈w,a〉,

where w is the vector obtained by making the coordinates of v nonnegative and then rearranging
them in nonincreasing order. Let w = (w1, . . . , wd) with w1 ≥ · · · ≥ wd ≥ 0. Then d∑

j=1

1

j

 〈w,a〉2 =

 d∑
j=1

wj√
j

2

& w2
1 +

w2√
2

(
w1 +

w2√
2

)
+
w3√

3

(
w1 +

w2√
2

+
w3√

3

)
· · ·

& w2
1 +

w2
2√
2

(
1 +

1√
2

)
+
w2
3√
3

(
1 +

1√
2

+
1√
3

)
+ · · ·

& w2
1 + · · ·+ w2

d = |w|2 = |v|2.

Thus

sup
g∈G
|〈v, ρ(g)a〉| & |v|√

log d
.

Finally, when v ∈ Cd, we can reduce to the real case. Assume without loss of generality (since ρ
is real) that |Rev| ≥ | Imv|. Then

sup
g∈G
|〈v, ρ(g)a〉| ≥ sup

g∈G
|〈Rev, ρ(g)a〉| & |Rev|√

log d
≥ |v|√

2 log d
. �

Proof of Theorem 3.2. Let a be as in Lemma 3.3 (viewed as a column vector). Define f : G → R
via

f(g) = d〈ρ(g), aaᵀ〉HS.

Therefore, by Fourier inversion, f̂ is supported at ρ and f̂(ρ) = aaᵀ. That is, f ∈ Vρ (as in (2.1)).
As in (2.2), let Vρ,a denote the subspace of L2(G) consisting of all x ∈ L2(G) of the form

x(g) = d〈ρ(g), av†〉HS for some v ∈ Cd. From the discussions in Section 2.2, we see that Mf has
exactly one nonzero eigenvalue, namely 1, and its eigenspace is Vρ,a.
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We claim that

‖x‖L∞(G) &

√
d

log d
‖x‖L2(G)

for all x ∈ Vρ,a. Letting x(g) = d〈ρ(g), av†〉HS, we have

‖x‖L∞(G) = d sup
g∈G
|〈ρ(g), av†〉HS| = d sup

g∈G
|〈v, ρ(g)a〉| & d√

log d
|v|,

where the last inequality is Lemma 3.3. Furthermore, by Parseval,

‖x‖L2(G) =
√
d ‖x̂(ρ)‖HS =

√
d‖av†‖HS =

√
d|v|.

Since |G| = 2dd!, we have d = (1 + o(1)) log |G|/ log log |G|, which completes the proof. �

3.3. Unweighted construction. Let us first explain the setup for this entire subsection. Let G be
any finite group (later on we will specialize to G = Sd n (Z/2Z)d). Let ρ ∈ Ĝ be a real irreducible
representation of G of dimension d = dρ, i.e., ρ : G→ O(d) is a homomorphism. Finally, we assume
that

√
|G| / log |G| > 15d.

Fix a unit vector a ∈ Rd and let

f(g) =
1− aᵀρ(g)a

2
. (3.1)

By Cauchy–Schwarz, f(g) ∈ [0, 1]. Furthermore, f(g−1) = f(g) since ρ(g) has real entries.
Note that f is quite similar to the example given in the proof of Theorem 3.2, but shifted and

scaled so that its values lie in [0, 1]. The idea is to sample a random Cayley graph from f . Then
its eigenvalues will be close to the original. Furthermore, we will show that the top nontrivial
eigenspace (which corresponds to ρ) does not change much, so the estimate Lemma 3.3 will remain
valid.

We now sample a random function h based on f . Let G′ be the set of elements g ∈ G with
g = g−1 and G′′ be a subset of G \ G′ containing exactly one element of each set {g, g−1} ∈

(
G
2

)
such that g 6= g−1. For g ∈ G′, let h(g) be 1 with probability f(g) and zero otherwise. For g ∈ G′′,
let h(g) = h(g−1) = 1 with probability f(g) and 0 otherwise. The choices are independent across
G′ ∪G′′. Note that f(e) = 0, so h(e) = 0.

For each g ∈ G, let Pg denote the matrix with columns and columns indexed by G×G with entry
1/ |G| at position (gx, x) for each x ∈ G and zero elsewhere. Viewing Mf and Mh as matrices (as
described in Section 2.2), we have

Mh =
∑
g∈G′

h(g)Pg +
∑
g∈G′′

h(g)(Pg + Pg−1)

=
∑
g∈G′

(h(g)− f(g))Pg +
∑
g∈G′′

(h(g)− f(g))(Pg + Pg−1) +
∑
g∈G

f(g)Pg.

We first compute the spectrum of E[Mh] = Mf .

Lemma 3.4. Let h be as above. The spectrum of E[Mh] is 1/2 with multiplicity 1, −1/(2d) with
multiplicity d, and 0 with multiplicity |G| − d− 1.

Proof. By linearity of expectation, E[Mh] = Mf . Furthermore, since

f(g) =
1− aᵀρ(g)a

2
=

1

2
− 1

2d
(d〈ρ(g), aaᵀ〉HS),

we see that f̂(trivG) = 1/2 and f̂(ρ) = −aaᵀ/(2d) by Fourier inversion, with f̂ only supported at
these two representations (here trivG is the trivial representation of G).

The analysis in Section 2.2 therefore shows that Mf has eigenvalues 1/2 with multiplicity 1,
−1/(2d) with multiplicity d, and 0 for the rest. �
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In order to establish quantitative concentration bounds regarding our sampling, we use the matrix
Hoeffding inequality by Tropp [19]. Recall that for self-adjoint A,B, the notation A � B means
that B −A is positive semidefinite.

Theorem 3.5 ([19, Theorem 1.3]). Consider a finite sequence {Xk} of independent, random, self-
adjoint matrices with dimension d, and let {Ak} be a sequence of fixed self-adjoint matrices. Assume
that each random matrix satisfies

EXk = 0 and X2
k � A2

k almost surely.

Then, for all t ≥ 0,

P
(
λmax

(∑
k

Xk

)
≥ t
)
≤ d · e−t2/(8σ2) where σ2 :=

∥∥∥∥∥∑
k

A2
k

∥∥∥∥∥
op

.

Remark. The constant 8 can be replaced by 2 if Xk and Ak commute almost surely, which will hold
true in our application. See [19, Remark 7.4].

Lemma 3.6. Let h be as above. Then

P

[
‖Mh − E[Mh]‖op ≤ 4

√
log(6 |G|)
|G|

]
≥ 2

3
.

Proof. Note that when g = g−1 we have that P 2
g = I/ |G|2. Otherwise note that

(Pg + Pg−1)2 = 2I/ |G|2 + Pg2 + Pg−2 � 4I/ |G|2

as
−2I/ |G|2 + Pg2 + Pg−2 = (Pg − Pg−1)2 � 0.

Here we are using that Pg − Pg−1 is antisymmetric.
Using that |h(g)− f(g)| ≤ 1 almost surely, and applying Theorem 3.5 to

Mh − E[Mh] =
∑
g∈G′

(h(g)− f(g))Pg +
∑
g∈G′′

(h(g)− f(g))(Pg + Pg−1)

we find that

P
(
λmax

(
Mh − E[Mh]

)
≥ t
)
≤ |G| exp

(
−t2 |G|

16

)
for all t ≥ 0. Applying the same inequality to −Mh yields

P
(
‖Mh − E[Mh]‖op ≥ t

)
≤ 2 |G| exp

(
−t2 |G|

16

)
.

Setting t = 4 |G|−1/2 (log 6 |G|)1/2 yields the lemma. �

This allows us to control the spectrum of Mh.

Corollary 3.7. With h as above, we have that with probability at least 2/3 the number of eigenvalues
of Mh in [−1/d,−1/(3d)] is exactly d.

Proof. This is an immediate consequence of Weyl’s inequality on deviation of eigenvalues along with
Lemmas 3.4 and 3.6.

More specifically, we have thatMh and E[Mh] are self-adjoint and ‖Mh − E[Mh]‖op ≤ 4
√

log(6 |G|)/ |G|
with probability at least 2/3. Thus, writing ν1 ≥ · · · ≥ ν|G| for the eigenvalues of E[Mh] (which
we know to be 1/2, 0, . . . , 0,−1/(2d), . . . ,−1/(2d) with d copies of −1/(2d) by Lemma 3.4) and
µ1 ≥ · · · ≥ µ|G| for the eigenvalues of Mh, we have

|µj − νj | ≤ 4

√
log(6 |G|)
|G|

≤ 1

6d
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for all 1 ≤ j ≤ |G| byWeyl’s inequality. The final inequality uses the assumption that
√
|G| / log |G| >

15d. �

We now show that ĥ(ρ) and f̂(ρ) = E[ĥ(ρ)] are close.

Lemma 3.8. Let h and ρ be as above. Then

P

[
‖ĥ(ρ)− E[ĥ(ρ)]‖op ≤ 4

√
log(6d)

|G|

]
≥ 2

3
.

Proof. The proof is essentially identical to the proof of Lemma 3.6. Note that if g = g−1 then
ρ(g)2 = Id. Otherwise

(ρ(g) + ρ(g−1))2 = 2Id + ρ(g2) + ρ(g−2) � 4Id

as
(ρ(g)− ρ(g−1))2 � 0.

Here we are using that ρ(g)− ρ(g−1) = ρ(g)− ρ(g)ᵀ is antisymmetric.
Then, using the matrix Hoeffding bound Theorem 3.5, it immediately follows that

P
(∥∥∥ĥ(ρ)− E[ĥ(ρ)]

∥∥∥
op
≥ t
)
≤ 2d exp

(
−t2 |G|

16

)
.

Setting t = 4 |G|−1/2 (log 6 |G|)1/2 yields the lemma. �

We now show that the top eigenvector of ĥ(ρ) and f̂(ρ) = E[ĥ(ρ)] are close. This is a special
case of the Davis–Kahan Theorem [6]. We include a proof (adapted from [17, Theorem 5.9]) for
completeness. Recall that ĥ(ρ) is real so its eigenvectors are real.

Lemma 3.9. Let h, ρ, a be as above. Let b be a real unit eigenvector of the top eigenvalue of ĥ(ρ).
With probability at least 2/3 we have

min{|a + b|, |a− b|} ≤ 16
√

2d

√
log(6d)

|G|
.

Proof. Let

Σ = E[ĥ(ρ)] = f̂(ρ) = −aaᵀ

2d
and

Σ′ = ĥ(ρ).

Then we have that

aᵀΣa− bᵀΣb = aᵀΣ′a− bᵀΣb− aᵀ(Σ′ − Σ)a

≤ bᵀΣ′b− bᵀΣb− aᵀ(Σ′ − Σ)a

= 〈Σ− Σ′,aaᵀ − bbᵀ〉HS

≤
∥∥Σ′ − Σ

∥∥
op
· ||aaᵀ − bbᵀ||S1

≤
√

2
∥∥Σ′ − Σ

∥∥
op
· ‖aaᵀ − bbᵀ‖HS .

The second inequality is an application of (2.3), noting that ‖·‖op = ‖·‖S∞ . The last step uses that
for a matrix M of rank at most 2, one has ‖M‖S1

≤
√

2 ‖M‖S2
=
√

2 ‖M‖HS.
Furthermore we have

aᵀΣa− bᵀΣb =
1− (b · a)2

2d
and

‖aaᵀ − bbᵀ‖2HS = Tr((aaᵀ − bbᵀ)2) = 2− 2(b · a)2.
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Therefore we have that
(1− (b · a)2)1/2 ≤ 4d

∥∥Σ′ − Σ
∥∥
op
.

Then
(a · b)2 ≥ 1− 16d2

∥∥Σ′ − Σ
∥∥2
op
.

Negating b if necessary so that a · b ≥ 0, we have

|a− b|2 = 2− 2(a · b) ≤ 2

(
1−

√
1− 16d2 ‖Σ′ − Σ‖2op

)
≤ 32d2

∥∥Σ′ − Σ
∥∥2
op
.

By Lemma 3.8, with probability at least 3/4, one has ‖Σ′ −Σ‖2op ≤ 16 log(6d)/ |G|, and the lemma
follows. �

We combine the concentration results derived so far.

Proposition 3.10. Let h,a be defined as above. For |G| sufficiently large, we have with probability
at least 1/3 that all of the following hold:

• Mh has exactly d eigenvalues in the interval [−1/d,−1/(3d)].
• ĥ(ρ) has exactly one eigenvalue λ in [−1/d,−1/(3d)].
• There is a real unit eigenvector b of ĥ(ρ) of eigenvalue λ with

|a− b| ≤ 16
√

2d

√
log(6d)

|G|
.

Proof. This is an immediate application of Corollary 3.7 and Lemmas 3.8 and 3.9. Note that
although we are union-bounding over the failures of three statements (with failure rate at most 1/3
each), the event used in Lemma 3.9 is precisely that of Lemma 3.8. �

We are now in position to prove Theorem 1.2. The proof will mimic that of Theorem 3.2.

Proof of Theorem 1.2. As in Section 3.2, let G = Sdn (Z/2Z)d and ρ be its standard representation
on Cd (permuting and negating coordinates), which is easily seen to be real. Furthermore let a be
the unit vector in the direction of (1, 1/

√
2, . . . , 1/

√
d), viewed as a column.

We sample h as in the beginning of this subsection (the assumption
√
|G| / log |G| > 15d holds

for sufficiently large d). Let our graph be the Cayley graph with adjacency matrix |G|Mh. As we
care only about scale-invariant properties of eigenspaces, we restrict attention to Mh, which acts on
V = CG.

By Proposition 3.10, for |G| large enough, with probability at least 2/3 there are exactly d

eigenvalues of Mh in [−1/d,−1/(3d)], and ĥ(ρ) has one eigenvalue λ in this range with a unit
eigenvector b satisfying

|a− b| ≤ 16
√

2d

√
log(6d)

|G|
. (3.2)

By the characterization of eigenspaces of Cayley graphs in Section 2.2, we see that ĥ(ρ) contributes
a d-dimensional eigenspace toMh for each of its eigenvalues. Therefore we see that the d eigenvalues
of Mh in [−1/d,−1/(3d)] are precisely d copies of this eigenvalue λ.

In particular, Mh has an eigenvalue λ which has eigenspace precisely Vρ,b, which recall from (2.2)
is

Vρ,b = {x ∈ L2(G) : x(g) = d〈ρ(g),bw†〉HS for some w ∈ Cd}.
Now to show the construction satisfies the conclusion of the theorem. Let x ∈ Vρ,b. We wish to

show that (recall |G| = 2dd! so that d = (1 + o(1)) log |G|/ log log |G|)

‖x‖L∞(G) &

√
d

log d
‖x‖L2(G) = (1 + o(1))

√
log |G|

log log |G|
‖x‖L2(G) .
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If x(g) = d
〈
ρ(g),bv†

〉
HS

= dv†ρ(g)b for some v ∈ Cd, then by Parseval,

‖x‖L2(G) =
√
d‖bv†‖HS =

√
d|v|.

Furthermore,

‖x‖L∞(G) = sup
g∈G
|d〈ρ(g),bv†〉HS|

≥ sup
g∈G
|d〈ρ(g), av†〉HS| − sup

g∈G
|d〈ρ(g), (a− b)v†〉HS|

&
d|v|√
log d

− d|a− b||v|

&

√
d

log d
‖x‖L2(G).

for sufficiently large d, by Lemma 3.3 and (3.2). �

Remark. To produce the graphs in Figure 1, we produce a Cayley graph on G = Sd n (Z/2Z)d

with each possible generator g 6= e included with probability C(1 − f(g)). (C = 2/3 for the first
figure and C = 1/7 for the second; these constants merely serve to sparsify the graphs for aesthetic
purposes.)

In the proof of Theorem 1.2 above, we sample a graph via a similar procedure and deduce that
with positive probability it has an unbounded eigenspace of dimension d. In fact, we can further
deduce that this unbounded eigenspace has negative eigenvalue, and is the largest eigenvalue in
magnitude after the trivial eigenvalue. Thus, a similar proof shows that the graph we sampled
above, with positive probability, has an unbounded eigenspace of multiplicity d ≥ 2 which contains
the second and third eigenvalues. Therefore any possible spectral drawing of such a graph will have
width at least c

√
log |G|/log log |G|, as required.

Finally, in practice, we only sampled the small values d = 3 and d = 4. In this situation there is
a decent probability of sampling a graph not satisfying the desired properties, namely of having the
second and third eigenvalues come from the standard representation ρ ofG, and that their eigenspace
is precisely d-dimensional. To produce Figure 1, we check for these properties and resample until
they hold.

4. Upper Bound

In this section we prove Theorems 1.3 and 1.4, showing that all Cayley graphs (Section 4.1) and
transitive graphs (Section 4.2) on n vertices have an O(

√
log n)-bounded orthonormal eigenbasis.

4.1. Cayley graphs.

Lemma 4.1. Given a set S of n unit vectors in Rd (resp. Cd) we can find an orthonormal (resp.
unitary) basis L of Rd (resp. Cd) such that

max
w∈L,v∈S

|〈w,v〉| .
√

log(dn)

d
.

Furthermore, when S ⊆ Cd we can choose L to have all real vectors.

Proof. Let us first do the real case. Recall the following standard bound on the volume of spherical
caps in high dimensions (e.g., [2, Lemma 2.2]): for a uniformly random unit vector w ∈ Rd and
fixed unit vector v ∈ Rd, one has

P(〈w,v〉 ≥ ε) = P(|w − v|2 ≤ 2− 2ε) ≤ e−dε2/2. (4.1)
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Let ε =
√

2 log(4dn)/d. Then applying union bound with (4.1), we find that an orthonormal
basis L = {w1, . . . ,wd} uniformly at random satisfies

P
(

max
w∈L,w∈S

|〈w,v〉| ≥ ε
)
≤ 2dne−dε

2/2 ≤ 1

2
.

So there is some L such that 〈w,v〉 < ε .
√

log(dn)/d for all w ∈ L and v ∈ S.
For the complex case, for each v ∈ S write v = v1 + iv2 for v1,v2 ∈ Rn. We apply the real case

of this lemma to the set

S′ =

{
v1

‖v1‖2
: v ∈ S

}
∪
{

v2

‖v2‖2
: v ∈ S

}
to obtain a basis L of Rd ⊆ Cd. Then for each w ∈ L and v ∈ S, we have

|〈w,v〉| ≤ |〈w,v1〉|+ |〈w,v2〉| ≤
∣∣∣∣〈w, v1

‖v1‖2

〉∣∣∣∣+

∣∣∣∣〈w, v2

‖v2‖2

〉∣∣∣∣ .
√

log(dn)

d
. �

Now we are ready to prove Theorem 1.3. In essence our argument amounts to choosing a random
unitary basis (via Lemma 4.1) for each eigenspace coming from the representation theory of the
group G of the Cayley graph. However, in order to choose a real orthonormal eigenbasis, we
essentially pair up conjugate irreducible representations. This technicality is unnecessary if we only
wish to find a unitary eigenbasis.

Proof of Theorem 1.3. Let S be the symmetric generating set of the Cayley graph and 1S be the
corresponding indicator function. Recall, from Section 2.2, the orthogonal decomposition of V = CG
as

V =
⊕
ρ∈Ĝ

Vρ =
⊕
ρ∈Ĝ

dρ⊕
j=1

Vρ,vρj . (4.2)

See Section 2.2 for the definitions of Vρ and Vρ,v. Here the vectors vρj , j ∈ [dρ], form a unitary
eigenbasis of 1̂S(ρ) with respective eigenvalues λρ,j . The eigenspace of M1S corresponding to some
eigenvalue λ is a direct sum of all components Vρ,vρj with λρ,j = λ. Using this decomposition, we
shall construct a real-valued unitary eigenbasis for the operator M1S on V as follows:

• For each conjugate pair (ρ, ρ) and eigenvector b of 1̂S(ρ), we will find a real-valued unitary
basis of Vρ,b ⊕ Vρ,b.
• For each irreducible representation ρ ∈ Ĝ such that ρ and ρ are isomorphic (such rep-
resentations are called self-dual), we will find a special eigenbasis of 1̂S(ρ), and a specific
construction giving a unitary basis of Vρ that will depend on whether the matrix Q satisfying
ρQ = Qρ is symmetric or antisymmetric.

Note that the second case includes ρ which can be realized as a real representation, but not all
self-dual representations are of this form (e.g. the two-dimensional irreducible representation of the
quaternion group Q8). Furthermore, we will ensure that all the functions x chosen as basis elements
above satisfy

‖x‖L∞(G) .
√

log |G| ‖x‖L2(G) .

As a model case we consider ρ ∈ Ĝ a real irreducible representation of dimension d = dρ, acting
on Rd. We will not, strictly speaking, need this analysis in the final argument as our treatment of
self-dual representations is strictly more general. Let b ∈ Rd be a real eigenvector of 1̂S(ρ). Recall

Vρ,b = {x ∈ L2(G) : x(g) = d〈ρ(g),bw†〉HS for some w ∈ Cd}.



14 SAH, SAWHNEY, AND ZHAO

Similar to in the proof of Theorem 1.2, writing xv : G→ C for the function xv(g) = d〈ρ(g),bv†〉HS =
d〈ρ(g)v,b〉, we have

‖xv‖L∞(G) = d · sup
g∈G
|〈v, ρ(g)b〉|

and
‖xv‖L2(G) =

√
d|b||v| =

√
d|v|.

By the real version of Lemma 4.1 applied to S = {ρ(g)b : g ∈ G}, there is an orthonormal basis L
of Rd such that (note that d2 ≤ |G|)

sup
v∈L,g∈G

|〈v, ρ(g)b〉| .
√

log(d |G|)
d

.

√
log |G|
d

.

Then for each v ∈ L we have

‖xv‖L∞(G) .
√

log |G|‖xv‖L2(G).

By Parseval’s identity, we see that {xv/
√
d : v ∈ L} forms a unitary basis of Vρ,b. Also note that

xv is real-valued for each v ∈ Rd. This completes the case of real ρ.
Next, let (ρ, ρ) be a conjugate pair of irreducible representations with ρ and ρ not isomorphic

to each other. Again let d = dρ. For each eigenvector b ∈ Cd of 1̂S(ρ), by the complex version of
Lemma 4.1, we find a unitary basis L of Cd so that supv∈L,g∈G |〈v, ρ(g)b〉| .

√
(log |G|)/d. Again

writing xv(g) = d〈ρ(g),bv†〉, we find that {xv/
√
d : v ∈ L} is a unitary basis of Vρ,b and

‖xv‖L∞(G) .
√

log |G|‖xv‖L2(G).

Likewise, taking conjugates, we see that {xv/
√
d : v ∈ L} is a unitary basis of Vρ,b. Recall that if

M1Sxv = λxv then M1Sxv = λxv as M1S is symmetric and hence λ is real.
The collection of 2d vectors

y0v =
xv + xv√

2d
and y1v =

xv − xv
i
√

2d
,

as v ranges over L, forms a real-valued unitary basis of Vρ,b ⊕ Vρ,b. Furthermore,

‖y0v‖L∞(G) ≤
√

2

d
‖xv‖L∞(G) .

√
log |G|
d
‖xv‖L2(G) =

√
log |G|

∥∥y0v∥∥L2(G)

and similarly for y1v. This completes the case of non-self-dual complex irreducible representations.
Finally, let ρ be a self-dual irreducible representation. Again let d = dρ. Note that 1̂S(ρ) is

Hermitian, hence we can choose coordinates on the representation so that it is a real diagonal
matrix. Having done so, we now note that g 7→ ρ(g) and g 7→ ρ(g) are isomorphic representations
on the same space, since ρ is self-dual (where complex conjugation is done in the natural way with
respect to the coordinates chosen on the space). Hence there is a unitary operator Q so that

ρ(g)Q = Qρ(g)

for all g ∈ G. Thus
ρ(g)QQ = Qρ(g)Q = QQρ(g)

for all g ∈ G. By Schur’s lemma, we deduce that

QQ = ωI

for some ω ∈ C. Since Q is unitary, QQ† = I (we use † to denote Hermitian transpose and ᵀ for
transpose), which yields

Q = ωQᵀ = ω2Q.

Since Q is invertible, we deduce ω2 = 1, and hence ω ∈ {±1}.
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From 1̂S(ρ) =
∑

g∈S ρ(g)/ |G| and ρ(g)Q = Qρ(g) we obtain

Q†1̂S(ρ)Q = 1̂S(ρ) = 1̂S(ρ),

since 1̂S(ρ) is a real diagonal matrix, as noted earlier. Therefore Q and 1̂S(ρ) commute. Now choose
a unitary simultaneous eigenbasis of Q and 1̂S(ρ), which can be done by the spectral theorem as
both operators are normal.

We will actually take a specific basis with more structure. First, note that if b is an eigenvector
of Q with eigenvalue λ then

Q−1b = Q†b = QTb = ω−1Qb = ω−1λb.

Thus b is an eigenvector of Q with eigenvalue (ω−1λ)−1 = ωλ, using |λ| = 1 since Q is unitary.
Now we break into sub-cases depending on the value of ω ∈ {±1}.

If ω = −1, then we see that our unitary simultaneous eigenbasis of Q and 1̂S(ρ) can be chosen
so that if b is in it, then so is b, since b and b lie in distinct orthogonal eigenspaces of Q. For
such an eigenvector b, as earlier we can apply Lemma 4.1 to obtain a unitary basis L of Cd so
that supv∈L,g∈G |〈v, ρ(g)b〉| .

√
(log |G|)/d. Again writing xv(g) = d〈ρ(g),bv†〉, we find that

{xv/
√
d : v ∈ L} is a unitary basis of Vρ,b and ‖xv‖L∞(G) .

√
log |G|‖xv‖L2(G).

Note that xv ∈ Vρ,b since

xv(g) = d〈ρ(g)v,b〉 = d〈ρ(g)v,b〉 = d〈Q†ρ(g)Qv,b〉 = d〈ρ(g)Qv, Qb〉 = d〈ρ(g)Qv, ωλb〉.

This shows that Vρ,b = Vρ,b. Furthermore, as M1Sxv = λxv, we have M1Sxv = λxv since λ is real.
Then, as v varies over L, the functions

y0v =
xv + xv√

2d
and y1v =

xv − xv
i
√

2d

form a real-valued unitary basis of Vρ,b ⊕ Vρ,b. This completes the proof of the case ω = −1.
If ω = 1, then for every eigenvector b of Q with eigenvalue λ, b is another eigenvector of Q

also with the same eigenvalue λ. Thus every eigenspace U of Q satisfies U = U . A C-vector space
U satisfying U = U is always the C-extension of the R-vector space ReU = {(Reu1, . . . ,Reud) :
(u1, . . . , ud) ∈ U} (since every v ∈ U can be written as x+iy with x = (v+v)/2 and y = (v−v)/(2i)
both having real coordinates). Thus we can choose an orthonormal basis of Rd consisting of real-
valued eigenvectors b of Q.

Fix such a real eigenvector b of Q. For any v ∈ Cd, setting xv(g) = d〈ρ(g),bv†〉 as before, we
have xv ∈ Vρ,b since

xv(g) = d〈ρ(g)v,b〉 = d〈ρ(g)v,b〉 = d〈Q†ρ(g)Qv,b〉 = d〈ρ(g)Qv, Qb〉 = d〈ρ(g)Qv, λb〉.

Thus Vρ,b = Vρ,b, which then must be the C-extension of the d-dimensional R-vector space ReVρ,b.
We now apply Lemma 4.1 to find a unitary basis L of the d-dimensional R-vector space {v ∈

Cd : xv ∈ ReVρ,b} satisfying supv∈L,g∈G |〈v, ρ(g)b〉| .
√

(log |G|)/d. Then {xv/
√
d : v ∈ L} is a

real-valued unitary basis of Vρ,b with ‖xv‖L∞(G) .
√

log |G|‖xv‖L2(G). �

4.2. Vertex-transitive graphs. We now extend Theorem 1.3 to vertex-transitive graphs; the idea
is the same as before, except we first lift to a Cayley graph on the automorphism group G of the
original. This trick is closely related to the proof of [5, Theorem 2.2].

Proof of Theorem 1.4. Let G denote the automorphism group of the given vertex-transitive graph,
acting on the vertex-set from the right. Fix a vertex as the root of the graph. Let H denote the
stabilizer of the root. Then the vertices of the graph are given by right cosets Hg, g ∈ H\G, with
the root corresponding to the trivial coset H. Thus |H\G| = n.
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Let f : H\G → C denote the edge-weights from the root to other vertices of the graph. Since
G induces automorphisms on the graph, the edgeweight of (H,Hg) equals that of (Hh,Hgh) =
(H,Hgh) for all h ∈ H. Hence f(gh) = f(g) for all g ∈ G and h ∈ H. So we can view f as a
function f : G→ C that is H-invariant from both the left and right.

A function on the vertex set is represented as x : H\G → C, which we will view as a left-H-
invariant x : G→ C, i.e., x(hg) = x(g) for all g ∈ G and h ∈ H.

A function x : G→ C satisfies x(hg) = x(g) for all g ∈ G and h ∈ H (i.e., it is left-H-invariant)
if and only if x̂(ρ) = ρ(h)x̂(ρ) for all ρ ∈ Ĝ and h ∈ H. The latter condition is equivalent to saying
that the column-space of x̂(ρ) lies in Uρ, the 1-eigenspace of ρ|H :

Uρ := {v ∈Wρ : ρ(h)v = v for all h ∈ H}.

The forward implication follows from the Fourier transform formula x̂(ρ) = Eg∈Gx(g)ρ(g), while
the reverse implication follows from the inversion formula x(g) =

∑
ρ dρ tr(ρ(g)†x̂(ρ)).

Let mρ = dimUρ. By counting the dimension of the space of all left-H-invariant functions, we
obtain ∑

ρ∈Ĝ

dρmρ = |H\G| = n. (4.3)

Indeed, the condition that x̂(ρ) has column-space contained within Uρ restricts x̂(ρ) to a dρmρ-
dimensional subspace of EndWρ.

Since f : G → C is both left- and right-H-invariant, f̂(ρ) = ρ(h)f̂(ρ)ρ(h′) for all h, h′ ∈ H. So
f̂(ρ) leaves Uρ invariant. Let vρ1 , . . . , v

ρ
mρ ∈ Uρ be an eigenbasis of the action of f̂(ρ) on Uρ.

For each ρ ∈ Ĝ, choose a unitary basis aρ1, . . . , a
ρ
dρ

of Wρ, and for each j ∈ [dρ] and k ∈ [mρ],

define xρj,k : G→ C by setting x̂ρj,k(ρ) = vρk(aρj )
†/
√
dρ and x̂(ρ′) = 0 for all ρ′ 6= ρ.

The functions xρj,k, with ρ ∈ Ĝ, j ∈ [dρ], k ∈ [mρ] satisfy the following properties.

(1) xρj,k is left-H-invariant, i.e., are functions H\G→ C (since the columns of x̂ρj,k are in Uρ),

(2) xρj,k is an eigenfunctions of Mf (since f̂(ρ)x̂ρj,k(ρ) is a scalar multiple of x̂ρj,k(ρ))
(3) The functions xρj,k are pairwise orthogonal and ‖xρj,k‖2 = 1. Indeed, by Parseval, one has

〈xρj,k, x
ρ′

j′,k′〉HS = 0 if ρ 6= ρ′, and

〈xρj,k, x
ρ
j′,k′〉 = dρ〈x̂ρj,k(ρ), x̂ρj′,k′(ρ)〉HS = 〈aρj′ , a

ρ
j 〉〈v

ρ
k, v

ρ
k′〉 = 1j=j′1k=k′ .

(4) They form a basis of all functions H\G → C (by orthogonality and dimension counting
(4.3)).

Furthermore, we have for each ρ, j ∈ [dρ], and k ∈ [mρ] that

xρj,k(g) = dρ

〈
ρ(g), x̂ρj,k(ρ)

〉
HS

=
√
dρ

〈
ρ(g), vρk(aρj )

†
〉
HS

=
√
dρ

〈
ρ(g)aρj , v

ρ
k

〉
.

For each fixed ρ ∈ Ĝ, set Sρ = {ρ(g)vρk : g ∈ G, k ∈ [mρ]}. Now since ρ(h)vρk = vρk for all k ∈ [mρ]
(because Mρ is the 1-eigenspace of ρ|H), we see that |S| ≤ |G/H|mρ ≤ n2. By the complex version
of Lemma 4.1, there exists a choice of the unitary basis aρ1, . . . , a

ρ
dρ

in the definition of xρj,k(g) earlier
so that

sup
j∈[dρ],k∈[mρ]

sup
g∈G
|xρj,k(g)| = sup

j∈[dρ],k∈[mρ]

√
dρ

〈
ρ(g)aρj , v

ρ
k

〉
.
√

log n.

Thus the functions xρj,k, ranging over all irreducible representations ρ and indices j ∈ [dρ] and
k ∈ [mρ], form a unitary

√
log n-bounded eigenbasis.

To obtain a real orthonormal eigenbasis, we can repeat the technique in the proof of Theorem 1.3
in the previous subsection. We omit the details. �
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5. Small-set expansion in random Cayley graphs

In this section we prove Theorem 1.7, extending Naor’s theorem [16] on small-set expansion for
random Cayley graphs to nonabelian groups. Recall the definition of the Schatten p-norm ‖·‖Sp from
Section 2.3. We state below a Hausdorff–Young inequality for groups, which is standard though we
include its short proof (see [14] for a proof for locally compact unimodular groups).

Lemma 5.1 (Hausdorff—Young inequality for groups). Let G be a finite group and f : G→ C. For
any 1 ≤ p ≤ 2 ≤ q ≤ ∞ with 1/p+ 1/q = 1, one has

‖f‖Sq ≤ ‖f‖Lp(G) .

Proof. By the Riesz—Thorin interpolation theorem, it suffices to check the inequality for (p, q) =
(2, 2) and (1,∞). For (p, q) = (2, 2), we have ‖f‖S2 = ‖f‖2 by Parseval. For (p, q) = (1,∞) we
have

‖f‖S∞ = max
ρ∈Ĝ
‖f̂(ρ)‖op = max

ρ∈Ĝ
‖Egf(g)ρ(g)‖op ≤ Eg∈G |f(g)| = ‖f‖1

as ‖ρ(g)‖op = 1 for all g ∈ G. �

Lemma 5.2. Let G be a finite group. For functions f, x : G→ C and real p ≥ 1, one has

|〈x, f ∗ x〉| ≤ ‖f‖Sp ‖x‖
2
2p/(p+1) .

Proof. For each ρ ∈ Ĝ we have∣∣∣〈x̂(ρ), f̂(ρ)x̂(ρ))
〉
HS

∣∣∣ =
∣∣∣Tr
(
x̂(ρ)†f̂(ρ)x̂(ρ)

)∣∣∣ =
∣∣∣Tr
(
x̂(ρ)x̂(ρ)†f̂(ρ))

)∣∣∣
≤ ‖f̂(ρ)‖Sp‖x̂(ρ)x̂(ρ)†‖Sp/(p−1)

= ‖f̂(ρ)‖Sp‖x̂(ρ)‖2S2p/(p−1)
. (5.1)

Here the inequality step uses the matrix Hölder inequality (2.3): Tr(AB) ≤ ‖A‖Sp ‖B‖Sp/(p−1)
for

all p ∈ [1,∞]. The last step uses that the singular values of a matrix A are the square roots of the
singular values of AA†.

Thus, applying the convolution and Parseval identities for the nonabelian Fourier transform
(Section 2.1), we have

|〈x, f ∗ x〉| =

∣∣∣∣∣∣
∑
ρ∈Ĝ

dρ

〈
x̂(ρ), f̂(ρ)x̂(ρ))

〉
HS

∣∣∣∣∣∣ [Convolution & Parseval]

≤
∑
ρ∈Ĝ

dρ‖f̂(ρ)‖Sp‖x̂(ρ)‖2S2p/(p−1)
[by (5.1)]

≤

(∑
ρ

dρ‖f̂(ρ)‖pSp

)1/p(∑
ρ

dρ‖x̂(ρ)‖2p/(p−1)S2p/(p−1)

)(p−1)/p

[Hölder’s inequality]

= ‖f‖Sp ‖x‖
2
S2p/(p−1)

[by (2.4)]

≤ ‖f‖Sp ‖x‖
2
2p/(p+1) . [by Lemma 5.1]

This proves the desired inequality. �

Naor proved the following uniform bound on the Schatten norms of random Cayley graphs via a
novel Azuma-type concentration inequality in uniformly smooth normed spaces.

Lemma 5.3 ([16, Lemma 4.1]). There exists a universal constant C > 0 with the following property.
For any positive integer k and any finite group G, if g1, . . . , gk ∈ G are chosen independently and
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uniformly at random, then, with probability at least 1/2, the function f : G→ R given by

f = 1{g1} + 1{g−1
1 }

+ · · ·+ 1{gk} + 1{g−1
k }
− 2k

|G|
(5.2)

satisfies
‖f‖Sp ≤ C |G|

−1+1/p
√
pk

simultaneously for every integer p ≥ 2.

Using this concentration lemma, we can now prove Theorem 1.7. Unlike the proof in [16] for
abelian groups, we do not need to rely on a bounded eigenbasis.

Proof of Theorem 1.7. Let g1, . . . , gk ∈ G be the random group elements generating the Cayley
(multi)graph. Define f : G→ R as in (5.2).

Let X ⊆ G with 1 < |X| ≤ |G| /2. Define a function x : G→ R by

x = |G \X|1X − |X|1G\X .
It is straightforward to check that

〈x, f ∗ x〉 =
2k

|G|
|X| |G \X| − e(X,G \X).

We also have

‖x‖2p/(p+1) =

(
|X| |G \X|

2p
p+1 + |X|

2p
p+1 |G \X|

|G|

) p+1
2p

.

Applying the inequality |〈f ∗ x, x〉| ≤ ‖f‖Sp ‖x‖
2
2p/(p+1) from Lemma 5.2, and with the upper bound

‖f‖Sp . |G|
−1+1/p√pk from Lemma 5.3, we obtain that with probability at least 1/2, one has

∣∣∣∣ 2k

|G|
|X| |G \X| − e(X,G \X)

∣∣∣∣ . |G|−1+1/p
√
pk

(
|X| |G \X|

2p
p+1 + |X|

2p
p+1 |G \X|

|G|

) p+1
p

simultaneously for all positive integers p. Dividing both sides by 2k |X| |G \X| / |G|, we obtain∣∣∣∣∣ e(X,G \X)
2k
|G| |X| |G \X|

− 1

∣∣∣∣∣ . |G|1/p
√
p

k

(
|X|

1
p+1 |G \X|

p
p+1 + |X|

p
p+1 |G \X|

1
p+1

|G|

) p+1
p

. |X|1/p
√
p

k
,

where in the last step we apply the inequality xt(1 − x)1−t + x1−t(1 − x)t ≤ xt + x1−t ≤ 2xt for
x = |X| / |G| ≤ 1/2 and t = 1/(p + 1) ∈ [0, 1/2]. Finally, setting p = dlog |X|e, we see the final
expression has an upper bound of O(

√
(log |X|)/k). �
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