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CAYLEY GRAPHS WITHOUT A BOUNDED EIGENBASIS

ASHWIN SAH, MEHTAAB SAWHNEY, AND YUFEI ZHAO

ABSTRACT. Does every n-vertex Cayley graph have an orthonormal eigenbasis all of whose coor-
dinates are O(1/4/n)? While the answer is yes for abelian groups, we show that it is no in general.

On the other hand, we show that every m-vertex Cayley graph (and more generally, vertex-
transitive graph) has an orthonormal basis whose coordinates are all O(y/logn/n), and that this
bound is nearly best possible.

Our investigation is motivated by a question of Assaf Naor, who proved that random abelian
Cayley graphs are small-set expanders, extending a classic result of Alon—Roichman. His proof relies
on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot
hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s
result to nonabelian groups.

1. INTRODUCTION

1.1. Bounded eigenbasis. It is a fundamental problem to understand the spectral decomposition
of a Cayley graph. Since every vertex in a Cayley graph has the same degree, it does not matter
whether we are talking about the adjacency matrix or the Laplacian matrix, but we will stick
with the adjacency matrix for concreteness. Enormous attention has been given to the eigenvalues
of Cayley graphs, especially the spectral gap, due to an intimate connection with the expansion
properties of the graph [12, 15]. In this paper, we study the complementary question of what can
arise as eigenvectors of Cayley graphs.

We adopt the following normalization'. Given a finite set S and a function z: S — C (sometimes
viewed as a vector x € C¥), we denote its L? norm by

2] 1) = (Bses a(s)[) /.

The Hermitian inner product is defined by (x,y) = Esesx(s)y(s). We say that x is C-bounded if
2] oo (s)y < C, and we say that a set of functions is C-bounded if all of its elements are C-bounded.
In a unitary or orthonormal eigenbasis, each eigenfunction z is normalized as ||z||2(s) = 1.

Below is the main question that we study. Here our Cayley graphs are unweighted and undirected.
A Cayley graph on a finite group G with symmetric generator S = S~! (not containing the identity)
has edges of form (g, sg) ranging over all g € G and s € S.

Question 1.1. What is the minimum C(n) so that every n-vertex Cayley graph has a C'(n)-bounded
unitary (or orthonormal) eigenbasis?

Every abelian Cayley graph has a 1-bounded unitary eigenbasis. Indeed, given an abelian group
G, the basis of Fourier characters of G forms an eigenbasis for every Cayley graph on G. In
particular, all coordinates of such a Fourier basis are are roots of unity. The existence of a bounded
eigenbasis is useful in certain applications. In fact, the initial motivation for this work is a result
of Naor [16] that proves a certain small-set expansion property of random abelian Cayley graphs,
extending a classic result of Alon-Roichman [1] that random Cayley graphs on arbitrary groups are

Zhao was supported by NSF Award DMS-1764176, a Sloan Research Fellowship, and the MIT Solomon Buchsbaum
Fund.
IThis normalization, viewing = as a function on a set or group equipped with the averaging measure, is different
from the normalization used in the abstract, where we use the usual Euclidean distance in R".
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expanders. Naor’s argument uses that every abelian Cayley graph has a 1-bounded eigenbasis. He
asks whether his results also hold for nonabelian groups. Here we show that general Cayley graphs
do not always have a bounded eigenbasis, therefore exhibiting an obstruction to Naor’s argument
for nonabelian groups. On the other hand, we provide an alternative argument showing that Naor’s
theorem indeed extends to general groups. See Theorem 1.7 below for a precise statement.

Our first result below implies that Cayley graphs do not always have a bounded unitary eigenbasis.
It gives a lower bound C(n) 2 v/logn/loglogn for Question 1.1 for infinitely many n. (Notation:
we write A < B and A = O(B) to mean that A < C'B for some constant C' > 0.)

Theorem 1.2. There exist infinitely many Cayley graphs G whose adjacency matriz has an eigenspace
all of whose eigenfunctions x: G — C satisfy [|z|| poo(qy = |2 12(q) VIogn/loglogn, where n is
the number of vertices and ¢ > 0 is some absolute constant.

The next result gives a nearly matching upper bound of C(n) < v/logn for Question 1.1.

Theorem 1.3. Every Cayley graph has an orthonormal C'v/log n-bounded eigenbasis, where n is the
number of vertices and C' is some absolute constant.

More generally, the same upper bound holds for vertex-transitive graphs.

Theorem 1.4. Every vertex-transitive graph has an orthonormal C+/log n-bounded eigenbasis, where
n is the number of vertices and C is some absolute constant.

It remains an intriguing open problem to close the gap between the upper and lower bounds.
This problem appears to be related to a recent deep and difficult result of Green [8], who showed
that the maximum possible width of a finite transitive subset of the unit sphere in R? is on the
order of 1/4/log d (in sharp constrast to infinite subsets, e.g., the entire sphere has width 1). Green’s
theorem answers a question of the third author, which was in turn prompted by [5] and this work.
Green’s proof relies on the classification of finite simple groups.

Let us mention a few directions worth further investigation. First, our construction proving
Theorem 1.2 uses graphs of increasing degree. Can one also find bounded degree Cayley graphs
without a bounded eigenbasis?

Conjecture 1.5. There exists some d such that for every C there exists a d-reqular Cayley graph
without an orthonormal C-bounded eigenbasis.

Another direction worth exploring further is to understand what families of groups always have
bounded eigenbasis. Extending the example of abelian groups, it is not hard to show using non-
abelian Fourier analysis that in a group where every irreducible representation has dimension at
most d, every Cayley graph has a v/d-bounded unitary eigenbasis. Given these examples, a natural
question is if for more natural classes of “nearly abelian” groups, every Cayley graph has a bounded
eigenbasis.

Question 1.6. Do Cayley graphs on nilpotent groups of bounded step always have bounded eigen-
basis? What about affine groups?

The general problem of characterizing groups with the bounded eigenbasis property is somewhat
reminiscent of the characterization of approximate groups by Breuillard, Green, and Tao [4], which
unifies classic theorems of Freiman on sets of bounded doubling [7] and Gromov on groups of
polynomial growth [10].

Let us mention that another instance where a bounded eigenbasis came in handy was in studying
the relationship between discrepancy and eigenvalues of Cayley graphs. Kohayakawa, R6dl, and
Schacht [13] showed that for abelian Cayley graphs, having small discrepancy is equivalent to having
small second eigenvalues, with a spectral proof suggested by Gowers. The proof relies on the
bounded eigenbasis of abelian Cayley graphs. The abelian hypothesis was later removed by Conlon
and Zhao [5] via an application of Grothendieck’s inequality.
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(a) G =83 x (Z/27)? (B) G =S4 % (2/27)*

FIGURE 1. Some spectral drawings of Cayley graphs used in the proof of Theo-
rem 1.2, corresponding to the group G = Sy x (Z/2Z)¢, drawn for d € {3,4}. Such
a spectral drawing requires a canvas of side-lengths on the order of /d/logd, where
vertices have uncorrelated z and y coordinates each having variance 1. See the
remark at the end of Section 3.3 on how these figures were generated.

The boundedness of eigenfunctions has an appealing interpretation for spectral graph drawings.
Hall’s spectral drawing of a graph [11] (also see Spielman’s survey [18], which contains some nice
figures) places each vertex v at (z(v),y(v)) € R?, where x and y are eigenfunctions corresponding
to the second and third eigenvalues of the graph Laplacian (here z and y are assumed orthogonal
and properly scaled). This drawing has the property that it minimizes the sum of squared edge-
lengths among all drawings of the graph in R? with the vertices in isotropic position (so that x
and y coordinates each have variance 1 and are uncorrelated). Every abelian Cayley graph has a
spectral drawing where all the coordinates are bounded. On the other hand, Theorem 1.2 gives us an
example of a Cayley graph where no spectral drawing can fit inside a disk of radius c¢y/log n/loglogn
(provided that the eigenspace in the theorem corresponds to the second and third eigenvalues, which
can be achieved; see the end of Section 3 for further details). Some examples of spectral drawings
of Cayley graphs used in the proof of Theorem 1.2 are shown in Figure 1.

1.2. Random Cayley graphs are small-set expanders. A classic result due to Alon and Roich-
man [1] shows that in a random Cayley graph of a group G generated by k > Ce~?log |G| indepen-
dent and uniform random group elements, all eigenvalues other than the top one has absolute value
at most ke. In particular, via the expander mixing lemma, it implies that for every § # X C G,

e(X,G\X)
ZX(e\x] |

)

where e(A, B) counts the number of edges with one endpoint in A and the other in B.
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Naor [16] developed a new Banach space-valued Azuma inequality and proved more refined small-
set isoperimetry inequalities in random Cayley graphs of abelian groups, and he asked whether his
result can be extended to all groups. Here we answer his question affirmatively. In the following
theorem, by “the Cayley (multi)graph associated k independent uniformly chosen random group
elements” we mean the following: select random g1, ..., gr and take the Cayley graph generated by
91,91 L s Ok gk_l, taken with multiplicity. Allowing multiplicities makes the result a bit easier to
state, and is a technicality that one should feel free to ignore (in many parameter ranges multiplicities
are unlikely to occur).

Theorem 1.7. There exists a universal constant C' > 0 such that for every positive integer k and
every group G, with probability at least 1/2, the Cayley (multi)graph associated to k independent
uniformly chosen random group elements has the property that for every X C G with 1 < |X| <
|G| /2, the number of edges e(X,G \ X) between X and G\ X satisfies

e(X,G\ X) _1‘ < o JloeIXT

2 X[|C\ X] k

Naor proved Theorem 1.7 for abelian groups. His proof relies on a bounded eigenbasis of abelian
Cayley graphs. In Section 5 we explain how to bypass this obstacle in order to prove the result for
nonabelian groups.

Acknowledgments. Zhao thanks Assaf Naor for discussions and for encouraging him to work on
this problem. We thank Shengtong Zhang for pointing out some typographical errors.

2. PRELIMINARIES

2.1. Nonabelian Fourier transform. We begin by summarizing some standard facts on non-
abelian Fourier analysis (e.g., [9]). Given a finite group G, let G denote the set of irreducible
unitary representations of G. For each representation p € @, call its dimension d,, and call the
space that it acts on W), = C%. For any f: G — C and p € CAJ, its Fourier transform evaluated at
p is given by R

F(0) = Egea s (9)ol9)

which is an endomorphism of W, ( o f(p) € EndW, ) There is an inversion formula, namely
(9) = >_ dplp(9). (o))
pEG

where (A, B)uys = Tr(A'B) is the Hilbert-Schmidt inner product, which is just the entry-wise
Hermitian product of matrices. The Hilbert-Schmidt norm is written as ||A|gs = /Tr(ATA). We

have Parseval’s identity

{f1, f2) 120y = Egec f1(9) =" d,(f1(p). F2(p))ms,
pEG

and in particular,

Egeclf(9)F =D dollf(p) s-

pEG
Finally, we define a convolution of two functions fi, fo : G — C via

(f1 = f2)(9) = Enecfi(gh™) fa(h).

The Fourier transform turns convolution into matrix multiplication:

Fix falp) = Fulp) falp)
for all p € G.
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2.2. Eigendecomposition. Given a function f : G — C, we consider the operator M acting on
CC, the space of functions G — C, via

Mix = fxu,

ie., (Mfz)(9) = Epeaf(gh™Ha(h) for all z: G — C and g € G. Equivalently, one can also view
My as a matrix with rows and columns indexed by G, whose entry in position (g,h) € G x G is
f(gh™1)/|G|. Then, viewing z € C% as a vector, the matrix product Mz agrees with the definition
above. The matrix can be thought of as the adjacency matrix (after suitable normalization) of a
Cayley graph. Let us explain how to analyze the eigendata of M; using the Fourier transform.

Assume from now on that f(g~!) = f(g) for every g € G. Then

F(p) = Egeaf(9)p(9)

is Hermitian. For any x : G — C, applying the Fourier transform, we see that x is an eigenfunction
of My with eigenvalue A (i.e., f * 2 = Az) if and only if

F(p)E(p) = Aa(p) forall p€ G,

o~

i.e., all columns of Z(p) (when viewed as a d, x d, matrix) lie in the eigenspace of f(p) corresponding
to the eigenvalue .
Let V, be the subspace of functions whose Fourier transform is supported on p:

V, = {z € L*(G) : suppZ C {p}}
= {r € L*(G) : x(g9) = d, {p(g), A) for some A € End W,}. (2.1)

For any column vector v € W,, we define

Vov = {x € V, : every column of Z(p) is a multiple of v}
= {z € L*(G) : z(g) = d,(p(g), vw')gs for some w € W,} C V. (2.2)

In particular, if f(p)v = Av for some A € R, then Myx = Az for all € V,,, (as can be seen by
taking the Fourier transform). Furthermore, if v,v’ € W, with viv/ =0, then (z,2') = 0 for all
zeV,yand 2’ €V, .

To summarize, we have an orthogonal decomposition (the orthogonality is easy to check via the

Fourier transform)
c’ =Hv,.
p

For each p € (A?, let v/, ... ,Vsp € W, be an eigenbasis of f(p) € End W,, and call the corresponding

eigenvalues A\, 1,..., A, 4, We have an orthogonal decomposition
dp
V, =PV,
j=1

and Myr = )\gac for each x € prf‘ Thus the eigenvalues of M consists of A\, ; with multiplicity

d,, ranging over all p € G and J € [d,]. The eigenspace of My corresponding to an eigenvalue A is
the direct sum of all Vp,vj ranging over all p € G and j € [d,] with A, ; = .
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2.3. Schatten norms. The Schatten p-norm [ Al|s, of a matrix A € C"*" is defined via
n
A1, = > oAy,
i=1

where 01(A),...,0,(A) are the singular values of A.
The Schatten p-norm satisfies a noncommutative Holder’s inequality (e.g., [3, Corollary IV.2.6]):
for 1 <p<qg<oowith1/p+1/q =1, we have

(4, B)us < [ Alls,[|Blls,- (2.3)
Given a function f: G — C on a finite group G, we define its Schatten p-norm || f|[g to be the
Schatten p-norm of its associated matrix My (giving the linear map = — f * 2 on CY):

1/p 1/p
I£1ls, = (Z Ui(Mf)p> = (Z dpnf(p)r\zp) : (2.4)
( p

3. CONSTRUCTION

In this section, we prove Theorem 1.2 by constructing a Cayley graph on a group G with an
eigenspace all of whose eigenfunctions satisty ||z( ) 2 1%l 12(g) V108 |G|/ loglog |G|.

To motivate our construction, we first explain in Section 3.1 what happens for the unitary group
G = U(d), which is simpler to analyze although it is not finite. Then, in Section 3.2, we explain
how to construct an edge-weighted Cayley graph on a certain finite subgroup of U(d). We then
explain in Section 3.3 how to convert the edge-weighted construction to an unweighted construction
via sampling, and show that eigenvectors maintain their desired properties. Only Section 3.3 is
required for the proof of Theorem 1.2, and the earlier subsections are solely for motivation, but we
hope that they are helpful to the readers.

3.1. Unitary group. Let G = U(d). Let p denote the standard representation of G on C?,
which is irreducible. Let V, denote the subspace of L?(G) consisting of all z € L?(G) of the
form z(g) = d{p(g), A)us for some A € C¥*? ie. the Fourier transform Z is supported at p and
z(p) = A. Note that this definition of V,, agrees with our earlier definition in (2.1) for finite groups.

Claim 3.1. For any x € V,,, we have ||| reo(q) > \/g||xHL2(G).

Proof. Let A € C% be such that x(g) = d(p(g), A)us. By Fourier inversion and Parseval,
1zl z2(q) = Vd||A|lgs. Thus we have
lzllzoo(ey =d sup (U, A)ms = d|Alls, > d||Alls, = d]| Allns = V2|2
UeU(d)
by definition of p and duality of the Schatten norms. O

For a sufficiently generic f: G — C (assuming no unwanted eigenvalue collisions), the subspace V,
is a direct sum of eigenspaces of the operator My, there by giving a continuous analog of Theorem 1.2.
The actual construction proving Theorem 1.2 will involve a discretization of this construction.

3.2. Weighted construction. In this section we prove a weighted analogue of Theorem 1.2 which
serves as a stepping stone towards the entire proof. Recall from earlier that for a function f: G — C
we have My (g, h) = f(gh™)/|G|.

Theorem 3.2. There exist some constant ¢ > 0 and infinitely many groups G and functions f :
G — R such that My has an eigenspace all of whose elements x satisfy

VIog |G

1] oo () = “loglog |G| 2]l 2@y -
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Let G = Sy x (Z/27Z)¢, where Sy acts on (Z/2Z)% by permuting coordinates. The group has a
natural d-dimensional representation on C%, which we call p, where Sy permutes the coordinates
and (Z/27)% flips the signs of the coordinates. It is easy to check that p is irreducible.

We need a G-orbit on the unit sphere in C* with large width in every direction. The next lemma
serves as a finitary analogue of Claim 3.1. This lemma also appears in [8] and we include its proof
here for the convenience of the reader.

Lemma 3.3. Let a be the unit vector in the direction of (1,1/v/2,..., 1/\/&) Then for any v € C?

we have
.
sup [(v, p(g)a)| 2 :
geG log

QU

Remark. A difficult recent result of Green [8], confirming a conjecture of Zhao, showed that for
every finite subgroup G of U(d) and every unit vector a € C¢, there is some unit vector v such
that sup e [(v, p(9)a)| < 1/+/Togd (i.e., a tight upper bound on the width of every finite transitive
subset of a sphere). In contrast, the width of an infinite transitive subset of the sphere can be as
large as 1 (e.g., the entire sphere). It is initially quite counterintuitive that a finiteness assumption
implies such a dramatic reduction in the width of an orbit.

Proof. Let us first assume that v € R%, so

sup |(v, p(g)a)| = sup [{p(g)v,a)| > (w,a),
geG geG

where w is the vector obtained by making the coordinates of v nonnegative and then rearranging
them in nonincreasing order. Let w = (w1, ..., wq) with wy; > -+ > wy > 0. Then

4 q d Wj
E ~ | (w,a)? = E —L
j:lj jzle]
w w w w w
2w%+2<w1+2>+3<w1+2+3>---

>2+%<1+1)+w§<1+1+1>+
NESTC T U Y SN SRS T DA
ARV VG 2 V3

_|_

2

> wi +wj = wl* = |v[?
Thus
. v
sup [(v, p(g9)a)| 2 :
9eG logd

Finally, when v € C%, we can reduce to the real case. Assume without loss of generality (since p
is real) that |Rev| > |Imv|. Then

|Rev| |v]
>

sup [{v, a)| > sup [(Rev, a)| = > . O
g€G|< p(g)a)l gegK p(g)a)| Jlogd = VRlogd

Proof of Theorem 3.2. Let a be as in Lemma 3.3 (viewed as a column vector). Define f: G — R
via

f(g) = d{p(g), aaT)ns.
Therefore, by Fourier inversion, fis supported at p and f(p) =aa'. That is, f € V, (as in (2.1)).
As in (2.2), let V,, denote the subspace of L?(G) consisting of all # € L?*(G) of the form

z(g) = d{p(g),av’)us for some v € C?. From the discussions in Section 2.2, we see that M has
exactly one nonzero eigenvalue, namely 1, and its eigenspace is V, 5.
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l#lz=) 2\ 1ogd Hl‘IIL

for all z € V, ». Letting z(g) = d(p(g), av')us, we have

We claim that

lzlloe (@) = dsup [{p(g), av')us| = dsup [(v, p(g)a)| 2 \/g@M’

geG geG
where the last inequality is Lemma 3.3. Furthermore, by Parseval,

lzllz2() = Vd[Z(p)lus = Vdllav!|ns = Vlvl.
Since |G| = 2%d!, we have d = (1 + o(1)) log |G|/ loglog |G|, which completes the proof. O

3.3. Unweighted construction. Let us first explain the setup for this entire subsection. Let G be
any finite group (later on we will specialize to G = Sy x (Z/2Z)%). Let p € G be a real irreducible
representation of G of dimension d = d,,, i.e., p: G — O(d) is a homomorphism. Finally, we assume

that /|G| /log |G| > 15d.

Fix a unit vector a € R? and let

_aT
flg) = =2 A9 an(g)a-
By Cauchy-Schwarz, f(g) € [0,1]. Furthermore, f(g~!) = f(g) since p(g) has real entries.

Note that f is quite similar to the example given in the proof of Theorem 3.2, but shifted and
scaled so that its values lie in [0, 1]. The idea is to sample a random Cayley graph from f. Then
its eigenvalues will be close to the original. Furthermore, we will show that the top nontrivial
eigenspace (which corresponds to p) does not change much, so the estimate Lemma 3.3 will remain
valid.

We now sample a random function h based on f. Let G’ be the set of elements ¢ € G with
g =g ! and G” be a subset of G\ G’ containing exactly one element of each set {g,g71} € (g)
such that g # g~1. For g € G, let h(g) be 1 with probability f(g) and zero otherwise. For g € G,
let h(g) = h(g~!) = 1 with probability f(g) and 0 otherwise. The choices are independent across
G’ UG". Note that f(e) =0, so h(e) =

For each g € G, let P, denote the matrix with columns and columns indexed by G x G with entry
1/|G| at position (gx,x) for each x € G and zero elsewhere. Viewing My and M), as matrices (as
described in Section 2.2), we have

My =Y h(g)Py+ Y h(g)(Py+ Py1)

(3.1)

geG geG"”
= > (i (@) P+ > (h( 9)(Py+ Pyr)+ > fg)P,
geG’ geG” geG

We first compute the spectrum of E[M},] = M.

Lemma 3.4. Let h be as above. The spectrum of E[My] is 1/2 with multiplicity 1, —1/(2d) with
multiplicity d, and 0 with multiplicity |G| — d — 1.

Proof. By linearity of expectation, E[M},] = M. Furthermore, since

1—aTp(g)a 1 1

flg) = =2 R — 0~ o (d{plg), aaN)us),

we see that f(trivG) =1/2 and ]?(,0) = —aaT/(2d) by Fourier inversion, with F only supported at
these two representations (here trive is the trivial representation of G).

The analysis in Section 2.2 therefore shows that M has eigenvalues 1/2 with multiplicity 1,
—1/(2d) with multiplicity d, and 0 for the rest. O
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In order to establish quantitative concentration bounds regarding our sampling, we use the matrix
Hoeffding inequality by Tropp [19]. Recall that for self-adjoint A, B, the notation A < B means
that B — A is positive semidefinite.

Theorem 3.5 ([19, Theorem 1.3]). Consider a finite sequence {Xy} of independent, random, self-
adjoint matrices with dimension d, and let { Ay} be a sequence of fixed self-adjoint matrices. Assume
that each random matrix satisfies

EX, =0 and X; < A? almost surely.
Then, for all t > 0,

P<)\max (Z Xk) - t) <d-e 07 where o = ‘ > AR
% p o

Remark. The constant 8 can be replaced by 2 if X and Aj commute almost surely, which will hold
true in our application. See [19, Remark 7.4].

Lemma 3.6. Let h be as above. Then

}P’[HMh—E[Mh]H WL CICHIEN

2
T |G| 3

Proof. Note that when g = g~! we have that P? = I/ |G|?. Otherwise note that
(Py+ Py1)> =21/ |G|* + Py + P2 < 4I/|G|?
as
—21/|G]* + Pp + Py2 = (Py — P,-1)? 2 0.
Here we are using that Py — P -1 is antisymmetric.
Using that |h(g) — f(g)| < 1 almost surely, and applying Theorem 3.5 to

My, —E[My] = > (h(g) = f(9)) Py + D (h(g) — f(9))(Py + Pym)
geG’ geG”’
we find that

P(MMAA%—JWN&DZt>§|G“mp<_fgﬂ>

for all ¢ > 0. Applying the same inequality to —Mj, yields

2|
B( My~ E[M )]y > t) < 21C|exp .

16
Setting t =4 |G|71/2 (log 6 |G|)'/? yields the lemma. O
This allows us to control the spectrum of Mj,.

Corollary 3.7. With h as above, we have that with probability at least 2/3 the number of eigenvalues
of My, in [-1/d,—1/(3d)] is exactly d.

Proof. This is an immediate consequence of Weyl’s inequality on deviation of eigenvalues along with

Lemmas 3.4 and 3.6.
More specifically, we have that Mj and E[M}] are self-adjoint and || M), — E[Mp]||,, < 44/1og(6|G|)/ |G|

with probability at least 2/3. Thus, writing v1 > -+ > g for the eigenvalues of E[Mj] (which
we know to be 1/2,0,...,0,—1/(2d),...,—1/(2d) with d copies of —1/(2d) by Lemma 3.4) and
p1 > -+ = pyg for the eigenvalues of My, we have

g — vl <4
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forall 1 < j < |G| by Weyl’s inequality. The final inequality uses the assumption that /|G| /log |G| >

15d. O
We now show that h(p) and f(p) = E[h(p)] are close.

Lemma 3.8. Let h and p be as above. Then

~ ~ log(64d)
P |[[h(p) = E[a(p)]llop < 4 Tel

2
> —.
-3

Proof. The proof is essentially identical to the proof of Lemma 3.6. Note that if g = g~' then
p(g)? = I. Otherwise

(p(g) + plg™))? =214+ p(g®) + p(g™2) =4Iy
(p(g) — plg™1))* < 0.

Here we are using that p(g) — p(g~!) = p(g) — p(g)T is antisymmetric.
Then, using the matrix Hoeffding bound Theorem 3.5, it immediately follows that

p( i) - o > ) < 2aexp (‘ZG'G‘)

Setting t =4 |G|_1/2 (log 6 |G[)'/? yields the lemma. O

We now show that the top eigenvector of ﬁ(p) and f(p) = E[/f;(p)] are close. This is a special
case of the Davis—Kahan Theorem [6]. We include a proof (adapted from [17, Theorem 5.9|) for

completeness. Recall that /H(p) is real so its eigenvectors are real.

Lemma 3.9. Let h, p,a be as above. Let b be a real unit eigenvector of the top eigenvalue of /f;(p)
With probability at least 2/3 we have

min{|a + b|,|a — b|} < 16v/2d loféjd) :
Proof. Let
~ ~ aaTl
E =E[h(p)] = f(p) = T o4
and

Then we have that
aT¥a—b'¥b=a"¥a—b’¥b-a’(X —¥)a
<b™S'b—bTEb —a’(¥ — D)a
= (X - Y aa — bbT)yg
<|IE- EHOP -||aaT — bbT|g,
< \@“E’ — EHOp - |laa™ — bbT || -
The second inequality is an application of (2.3), noting that ||-||,, = [[[ls__ . The last step uses that

for a matrix M of rank at most 2, one has [|M||g, < \@HMHS2 = V2 || M||js-
Furthermore we have )
1—(b-
aTSa - bixb = L= (B2
2d

and
|aaT — bbT|%g = Tr((aa — bbT)?) =2 —2(b-a)?.
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Therefore we have that
(1—-(b-a))? <dd| -3
Then
(a-b)?>1-16d° || - EHzp

Negating b if necessary so that a-b > 0, we have

la—b>=2-2(a-b) <2 <1 — \/1 —16d2 ||% — 2||§p> < 32d° |2 — zuip

By Lemma 3.8, with probability at least 3/4, one has [|X' — X||2, < 161log(6d)/ |G|, and the lemma
follows. O

We combine the concentration results derived so far.

Proposition 3.10. Let h,a be defined as above. For |G| sufficiently large, we have with probability
at least 1/3 that all of the following hold:

o My, has exactly d eigenvalues in the interval [—1/d, —1/(3d)].
® h(p) has exactly one eigenvalue A in [—1/d, —1/(3d)].

e There is a real unit eigenvector b of h( ) of eigenvalue A\ with

log(6d)

la—b| < 16v2d
G|

Proof. This is an immediate application of Corollary 3.7 and Lemmas 3.8 and 3.9. Note that
although we are union-bounding over the failures of three statements (with failure rate at most 1/3
each), the event used in Lemma 3.9 is precisely that of Lemma 3.8. g

We are now in position to prove Theorem 1.2. The proof will mimic that of Theorem 3.2.

Proof of Theorem 1.2. As in Section 3.2, let G = Sy x (Z/2Z)? and p be its standard representation
on C? (permuting and negating coordinates), which is easily seen to be real. Furthermore let a be
the unit vector in the direction of (1,1/v/2,...,1/3/d), viewed as a column.

We sample h as in the beginning of this subsection (the assumption /|G| /log|G| > 15d holds
for sufficiently large d). Let our graph be the Cayley graph with adjacency matrix |G| Mj. As we
care onéy about scale-invariant properties of eigenspaces, we restrict attention to M}, which acts on
V =C"%.

By Proposition 3.10, for |G| large enough, with probability at least 2/3 there are exactly d
eigenvalues of M}, in [—1/d,—1/(3d)], and /I{(p) has one eigenvalue A in this range with a unit
eigenvector b satisfying

log(6d)
Gl

By the characterization of eigenspaces of Cayley graphs in Section 2.2, we see that ?L(p) contributes
a d-dimensional eigenspace to M}, for each of its eigenvalues. Therefore we see that the d eigenvalues
of M, in [—1/d, —1/(3d)] are precisely d copies of this eigenvalue A.

In particular, M}, has an eigenvalue A which has eigenspace precisely V, 1, which recall from (2.2)

la—b| < 16v2d

(3.2)

is
Vb = {z € L*(G) : z(g) = d{p(g), bw')us for some w € C*}.
Now to show the construction satisﬁes the Conclusion of the theorem. Let x € V,1,. We wish to
show that (recall |G| = 2%d! so that d = )) log |G|/ loglog |G|)

/ Vlog |G|
||5'3”L<>o(c) H90||L2 (U)w ”$HL2(G)
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If x(g) =d <p bVT>HS = dvip(g)b for some v € C?, then by Parseval,
2]l 2() = Vabv'|us = Vd|v.

Furthermore,

2] oo ) = sup |d(p(g), bV )us|
geG

> sup |d(p(g), av’)us| — sup |d(p(g), (a — b)v )|
geG geG

dIVI

pe

for sufficiently large d, by Lemma 3.3 and (3.2). U

Remark. To produce the graphs in Figure 1, we produce a Cayley graph on G = Sy x (Z/27)%
with each possible generator g # e included with probability C(1 — f(g)). (C = 2/3 for the first
figure and C' = 1/7 for the second; these constants merely serve to sparsify the graphs for aesthetic
purposes.)

In the proof of Theorem 1.2 above, we sample a graph via a similar procedure and deduce that
with positive probability it has an unbounded eigenspace of dimension d. In fact, we can further
deduce that this unbounded eigenspace has negative eigenvalue, and is the largest eigenvalue in
magnitude after the trivial eigenvalue. Thus, a similar proof shows that the graph we sampled
above, with positive probability, has an unbounded eigenspace of multiplicity d > 2 which contains
the second and third eigenvalues. Therefore any possible spectral drawing of such a graph will have
width at least ¢y/log |G|/loglog |G|, as required.

Finally, in practice, we only sampled the small values d = 3 and d = 4. In this situation there is
a decent probability of sampling a graph not satisfying the desired properties, namely of having the
second and third eigenvalues come from the standard representation p of G, and that their eigenspace
is precisely d-dimensional. To produce Figure 1, we check for these properties and resample until
they hold.

4. UrPPER BOUND

In this section we prove Theorems 1.3 and 1.4, showing that all Cayley graphs (Section 4.1) and
transitive graphs (Section 4.2) on n vertices have an O(y/logn)-bounded orthonormal eigenbasis.

4.1. Cayley graphs.

Lemma 4.1. Given a set S of n unit vectors in R? (resp. C?) we can find an orthonormal (resp.
unitary) basis L of RY (resp. C¢) such that

log(dn)
<

Furthermore, when S C C we can choose L to have all real vectors.

Proof. Let us first do the real case. Recall the following standard bound on the volume of spherical
caps in high dimensions (e.g., [2, Lemma 2.2|): for a uniformly random unit vector w € R% and
fixed unit vector v € R?, one has

P((w,v) > €) = P(lw — v[> <2 — 2¢) < e %°/2, (4.1)
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Let € = /2log(4dn)/d. Then applying union bound with (4.1), we find that an orthonormal

basis L = {w1,...,wg} uniformly at random satisfies
1
IP’( max |[(w,v)| > 6) < 2dne /2 < —|
weL,weS 2

So there is some L such that (w,v) < e < y/log(dn)/d for all w € L and v € S.
For the complex case, for each v € S write v = vj 4+ ivy for vi, vy € R™. We apply the real case

of this lemma to the set
Sl—{ Vi :VES}U{ V2 :VES}
[vill2 [vall2

to obtain a basis L of R C C?. Then for each w € L and v € S, we have

\<w,v>|s\<wm>\+r<w,v2>rsKw,‘“>'+\<w,,”>]5 losldn) 2

[vill2 [vall2

Now we are ready to prove Theorem 1.3. In essence our argument amounts to choosing a random
unitary basis (via Lemma 4.1) for each eigenspace coming from the representation theory of the
group G of the Cayley graph. However, in order to choose a real orthonormal eigenbasis, we
essentially pair up conjugate irreducible representations. This technicality is unnecessary if we only
wish to find a unitary eigenbasis.

Proof of Theorem 1.3. Let S be the symmetric generating set of the Cayley graph and 1g be the
corresponding indicator function. Recall, from Section 2.2, the orthogonal decomposition of V = C¢
as

dp
V:@V:@@VN;. (4.2)
peG peG I=1
See Section 2.2 for the definitions of Vj, and V). Here the vectors v/, j € [d,], form a unitary
eigenbasis of ]l/;(p) with respective eigenvalues A, ;. The eigenspace of My corresponding to some
eigenvalue A is a direct sum of all components V,ve with A, ; = A. Using this decomposition, we
7
shall construct a real-valued unitary eigenbasis for the operator M, on V as follows:

e For each conjugate pair (p, p) and eigenvector b of i;(p), we will find a real-valued unitary
basis of V1, ® Vﬁg.

e For each irreducible representation p € G such that p and p are isomorphic (such rep-
resentations are called self-dual), we will find a special eigenbasis of 1g(p), and a specific
construction giving a unitary basis of V,, that will depend on whether the matrix () satisfying
pQ) = Qp is symmetric or antisymmetric.

Note that the second case includes p which can be realized as a real representation, but not all
self-dual representations are of this form (e.g. the two-dimensional irreducible representation of the
quaternion group @g). Furthermore, we will ensure that all the functions x chosen as basis elements

above satisfy
el ey S V1B 1G] 1] 26 -

As a model case we consider p € G a real irreducible representation of dimension d = d,, acting
on R%. We will not, strictly speaking, need this analysis in the final argument as our treatment of
self-dual representations is strictly more general. Let b € R? be a real eigenvector of 1g(p). Recall

V, = {z € L*(Q) : 2(9) = d{p(g), bw')xs for some w € C?}.
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Similar to in the proof of Theorem 1.2, writing x, : G — C for the function z(g) = d{p(g), bvi)gs =
d{p(g)v,b), we have

zv|lLoe(q) = d - sup [{v, p(g)b)|
geG

and

lavl| 22y = Valbl[v| = Vd|v].
By the real version of Lemma 4.1 applied to S = {p(¢g)b : g € G}, there is an orthonormal basis L
of R? such that (note that d? < |G|)

log(d |G log |G
sup_|(v.plo)b)] 5 /221G < flosE]
vel,geG

Then for each v € L we have
zvllLo (@) S Vieg|Glllzv|r2(q)-

By Parseval’s identity, we see that {z/V/d : v € L} forms a unitary basis of V, 3. Also note that
zy is real-valued for each v € R?. This completes the case of real p.

Next, let (p,p) be a conjugate pair of irreducible representations with p and p not isomorphic
to each other. Again let d = d,. For each eigenvector b € C? of ﬂtq(p), by the complex version of
Lemma 4.1, we find a unitary basis L of C% so that supycy seq [(v, p(9)b)| < v/(log|Gl)/d. Again
writing 2y (g) = d{p(g), bv'), we find that {zy/vd: v € L} is a unitary basis of V,1, and

zvlleo @y S Viog|Glllzv | r2(q)-

Likewise, taking conjugates, we see that {Zv/v/d : v € L} is a unitary basis of V- Recall that if
My gxy = Azy then My Ty = ATy as My is symmetric and hence A\ is real.
The collection of 2d vectors

as v ranges over L, forms a real-valued unitary basis of V1, & Vpg. Furthermore,

2 log |G
=i < ) 2 Ioelmier 5y B0 felini) = VIoBTE 48]

and similarly for yl. This completes the case of non-self-dual complex irreducible representations.

Finally, let p be a self-dual irreducible representation. Again let d = d,. Note that Il/g*(p) is
Hermitian, hence we can choose coordinates on the representation so that it is a real diagonal
matrix. Having done so, we now note that g — p(g) and g — @ are isomorphic representations
on the same space, since p is self-dual (where complex conjugation is done in the natural way with

respect to the coordinates chosen on the space). Hence there is a unitary operator @) so that

p(9)Q = Qp(9)
for all g € G. Thus

p(9)QQ = Qp(9)Q = QQp(9)
for all g € G. By Schur’s lemma, we deduce that
QQ = wI
for some w € C. Since @ is unitary, QQ' = I (we use T to denote Hermitian transpose and T for
transpose), which yields

Q =wQ" =w?Q.

Since @ is invertible, we deduce w? = 1, and hence w € {#1}.
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From T5(p) = 3 ,c5p(9)/ |G| and p(9)Q = Qp(g) we obtain

Q'Is(p)Q = Ls(p) = Ls(p),

since Il/g(p) is a real diagonal matrix, as noted earlier. Therefore  and Ig(p) commute. Now choose

a unitary simultaneous eigenbasis of ) and itq(p), which can be done by the spectral theorem as
both operators are normal.

We will actually take a specific basis with more structure. First, note that if b is an eigenvector
of Q) with eigenvalue A then

Q=0 =QTb=w"'Qb =w "\b.

Thus b is an eigenvector of @ with eigenvalue (w™'X)~! = w), using |A| = 1 since @ is unitary.
Now we break into sub-cases depending on the value of w € {£1}.
If w = —1, then we see that our unitary simultaneous eigenbasis of @) and 1g(p) can be chosen

so that if b is in it, then so is b, since b and b lie in distinct orthogonal eigenspaces of Q. For
such an eigenvector b, as earlier we can apply Lemma 4.1 to obtain a unitary basis L of C% so

that supycr geq (v, p(9)b)| < /(log|G|)/d. Again writing xy(g) = d(p(g),bv'), we find that
{zv/Vd:v € L} is a unitary basis of V,}, and |2yl @) S V9og Gllzv |l 126y

Note that 7+ € Vp}g since
Tv(g) = d{p(g)v,b) = d{p(g)v,b) = d(Q'p(9)Q¥V,b) = d{p(9)Q¥,Qb) = d(p(g)QV,wb).

This shows that V, 1, = Vp,E' Furthermore, as My 4zy = Azy, we have My Ty = AT since A is real.
Then, as v varies over L, the functions

y0:$v+ﬁ and ylzxv_ﬁ
Vo V2d Voivad
form a real-valued unitary basis of V,}, © Vp’g. This completes the proof of the case w = —1.

If w = 1, then for every eigenvector b of @ with eigenvalue )\, b is another eigenvector of @
also with the same eigenvalue . Thus every eigenspace U of @ satisfies U = U. A C-vector space
U satisfying U = U is always the C-extension of the R-vector space ReU = {(Reu1,...,Reuy) :
(ui,...,uq) € U} (since every v € U can be written as x+iy with x = (v+¥)/2 andy = (v—V)/(21)
both having real coordinates). Thus we can choose an orthonormal basis of R? consisting of real-
valued eigenvectors b of Q.

Fix such a real eigenvector b of Q. For any v € C%, setting =y (g) = d{p(g),bv') as before, we
have zy € V1, since

7v(g9) = d{p(g)v,b) = d(p(g)v,b) = d(Q"p(9)QV,b) = d{p(9)Q¥, Qb) = d{p(9)QV, Ab).

Thus V), =V, , which then must be the C-extension of the d-dimensional R-vector space ReV,y,.
We now apply Lemma 4.1 to find a unitary basis L of the d-dimensional R-vector space {v €

C?: 2y € ReV,p} satisfying SUPyer gec [(V, p(9)b)| S +/(log|Gl)/d. Then {zy/Vd:v e L}isa
real-valued unitary basis of V), p with ||z ||=q) S V108 |G|||lzv] 22(q)- O

4.2. Vertex-transitive graphs. We now extend Theorem 1.3 to vertex-transitive graphs; the idea
is the same as before, except we first lift to a Cayley graph on the automorphism group G of the
original. This trick is closely related to the proof of |5, Theorem 2.2].

Proof of Theorem 1.4. Let G denote the automorphism group of the given vertex-transitive graph,
acting on the vertex-set from the right. Fix a vertex as the root of the graph. Let H denote the
stabilizer of the root. Then the vertices of the graph are given by right cosets Hg, g € H\G, with
the root corresponding to the trivial coset H. Thus |H\G| = n.
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Let f: H\G — C denote the edge-weights from the root to other vertices of the graph. Since
G induces automorphisms on the graph, the edgeweight of (H, Hg) equals that of (Hh, Hgh) =
(H,Hgh) for all h € H. Hence f(gh) = f(g) for all g € G and h € H. So we can view f as a
function f: G — C that is H-invariant from both the left and right.

A function on the vertex set is represented as z: H\G — C, which we will view as a left-H-
invariant x: G — C, i.e., x(hg) = z(g) for all g € G and h € H.

A function z: G — C satisfies x(hg) = x(g) for all g € G and h € H (i.e., it is left-H-invariant)
if and only if Z(p) = p(h)Z(p) for all p € G and h € H. The latter condition is equivalent to saying
that the column-space of Z(p) lies in U, the 1-eigenspace of p|y:

Up:={veW,:p(h)v=wforal h € H}.

The forward implication follows from the Fourier transform formula Z(p) = Egeqz(g)p(g), while
the reverse implication follows from the inversion formula z(g) = 3_,d, tr(p(9)12(p)).
Let m, = dimU,. By counting the dimension of the space of all left- H-invariant functions, we
obtain
> dym, = [H\G| = n. (4.3)
pe@
Indeed, the condition that Z(p) has column-space contained within U, restricts Z(p) to a d,m,-
dimensional subspace of End W,,.
Since f: G — C is both left- and right- H-invariant, f(p) = p(h)f(p)p(h') for all h, n e H. So

f(p) leaves U, invariant. Let vf,... v, € U, be an eigenbasis of the action of f(p) on U,,.
For each p € @, choose a unitary basis af,... as of Wp, and for each j € [dy] and k € [m,],
define xﬁk: G — C by setting %97 (p) =vi(a T/«/ and Z(p') = 0 for all p' # p.

The functions xik, with p € G, j € [d,)], k: € [m,] satisty the following properties.

(1) mgk is left- H-invariant, i.e., are functions H\G — C (since the columns of x?k are in U,,),

(2) :U?k is an eigenfunctions of My (since f(p)xfk(p) is a scalar multiple of xfk(p))

(3) The functions 935 ,, are pairwise orthogonal and ||93]p ill2 = 1. Indeed, by Parseval, one has
<x§,k7'x§/7k/>HS = 0 lf p 7é p/7 a’nd

—_— —_—
<ij-7k,$]p.,’k,> = dp<ﬂ§‘]p-7k(p),$]p./’k,(p)>Hs = <a§,,a§><v£,v£/> = 1j:j’]~k’:k"

(4) They form a basis of all functions H\G — C (by orthogonality and dimension counting
(4.3)).

Furthermore, we have for each p, j € [d,], and k € [m,] that
20,9) = dp (p(9):274(0)). = /Ay (plg), (@) =/, (plg)af,ef).

For each fixed p € G, set S, ={p(g)v} : g € G,k € [m,]}. Now since p(h)vk = v} for all k € [m,)
(because M, is the 1-eigenspace of p|r), we see that |S| < |G/H|m, < n?. By the Complex version
of Lemma 4.1, there exists a choice of the unitary basis af, .. asp in the deﬁmtlon of 27 ik . (g) earlier

so that
sup  sup|zf (g)) = sup \/67p<p(g)ap vk> Vlogn.

JEldp)k€lm,] g€G h JEldp],k€[m,]

HS

Thus the functions x? > ranging over all irreducible representations p and indices j € [d,| and
k € [m,], form a unitary y/logn-bounded eigenbasis.

To obtain a real orthonormal eigenbasis, we can repeat the technique in the proof of Theorem 1.3
in the previous subsection. We omit the details. U
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5. SMALL-SET EXPANSION IN RANDOM CAYLEY GRAPHS

In this section we prove Theorem 1.7, extending Naor’s theorem [16] on small-set expansion for
random Cayley graphs to nonabelian groups. Recall the definition of the Schatten p-norm ||| Sy from
Section 2.3. We state below a Hausdorff-Young inequality for groups, which is standard though we
include its short proof (see [14] for a proof for locally compact unimodular groups).

Lemma 5.1 (Hausdorff—Young inequality for groups). Let G be a finite group and f: G — C. For
any 1 <p<2<qg<oo withl/p+1/q=1, one has

1flls, < 1o

Proof. By the Riesz—Thorin interpolation theorem, it suffices to check the inequality for (p,q) =
(2,2) and (1,00). For (p,q) = (2,2), we have || f|ls, = ||f|l2 by Parseval. For (p,q) = (1,00) we
have
1f1l s, = max|[f(p)llop = max|[Eyf(9)p(9)llo, < Egea |f(9)l =111
peCG peCG
as [|p(g)[lop, = L for all g € G. O

Lemma 5.2. Let G be a finite group. For functions f,z: G — C and real p > 1, one has
o, £ ) < 1 f s, N2 sy
Proof. For each p € G we have
& flo)7 — =N ()3 — (NN F
(30 Fzen) | = | (2 7)) | = |1 (70)30) Flo)) |
<1F s, 120)Z(0) 15,1y = 1FD)Is, 12D, ., - (B:D)

Here the inequality step uses the matrix Holder inequality (2.3): Tr(AB) < [|Allg, [|Bllg P for
p/(p—
all p € [1,00]. The last step uses that the singular values of a matrix A are the square roots of the
singular values of AAT.
Thus, applying the convolution and Parseval identities for the nonabelian Fourier transform

(Section 2.1), we have

|z, f*x)| = Z d, </x\(,0), f<p)/x\(p>)>HS [Convolution & Parseval]
peé
< S 4l f o)l EO)IE, . by (5.1)
peC
1/p (p=1)/p
< (Z d,| f(p) ]gp) (Z d,||z(p) ?21/75]()17 11)> [Holder’s inequality]
p
_ 2
115, Il by (2.0
< 1flls, I2l5p (o) - [by Lemma 5.1]
This proves the desired inequality. (|

Naor proved the following uniform bound on the Schatten norms of random Cayley graphs via a
novel Azuma-type concentration inequality in uniformly smooth normed spaces.

Lemma 5.3 (|16, Lemma 4.1|). There exists a universal constant C' > 0 with the following property.
For any positive integer k and any finite group G, if g1,...,9r € G are chosen independently and
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uniformly at random, then, with probability at least 1/2, the function f: G — R given by
2k
satisfies
Iflls, < CIGI7 P \/pk
simultaneously for every integer p > 2.
Using this concentration lemma, we can now prove Theorem 1.7. Unlike the proof in [16] for
abelian groups, we do not need to rely on a bounded eigenbasis.

Proof of Theorem 1.7. Let ¢1,...,9x € G be the random group elements generating the Cayley
(multi)graph. Define f: G — R as in (5.2).
Let X C G with 1 < |X| < |G| /2. Define a function z: G — R by

It is straightforward to check that

2k
<w,f*w>:@\X\\G\Xl—e(X,G\X)-
We also have
2p 2p L
[ X[IG\ X [P+ + [ X [P+ |G\ X]|
Hx”Qp/(erl) = ‘G‘ :

Applying the inequality [(f * z, z)| < || f[|g, ||:c||§p/(p+1) from Lemma 5.2, and with the upper bound
HfHSp S |G\_1+1/p Vpk from Lemma 5.3, we obtain that with probability at least 1/2, one has
2p 2p =
[(XTIG A\ X[+ + [ X[t |G X
|G|

2k
|G|

[XT1G\ X| —e(XvG\X)‘ Slae \/pk<

simultaneously for all positive integers p. Dividing both sides by 2k | X||G \ X| /|G|, we obtain
1 » e N
apr [P (\X\w G\ X[ 4 ]| rG\X\w) '

k |G|

<|x|/r /P
NN

where in the last step we apply the inequality z*(1 — 2)' =t + 21 7}(1 — 2)! < 2t 4+ 2!~% < 22 for
x=|X|/|G| <1/2and t =1/(p+ 1) € [0,1/2]. Finally, setting p = [log|X|], we see the final

expression has an upper bound of O(4/(log | X|)/k). O
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