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Abstract
In topology optimization, the finite-element analysis of the problem is gener-
ally the most computationally demanding task of the solution process. In order
to improve the efficiency of this phase, in this article we propose to represent
regions with zero density gradient by a coarser analysis mesh. The design is
instead represented in a uniform mesh. We motivate the density gradient-based
adaptive refinement by discussing the topological meaning of the density gra-
dient and how it can help avoid loss of information during projections or
interpolations between design and analysis meshes. We also study the adaptive-
ness of the mesh and its ability to detect the topology change of the design. An
a posteriori error analysis is performed as well. Furthermore, we provide theo-
retical and numerical considerations on the reduction of the number of degrees
of freedoms of the adaptive analysis mesh with respect to the uniform case. This
translates into a faster solution of the analysis, as we show numerically. Finally,
we solve several test problems, including large 3D problems that we solve in par-
allel on computer cluster, demonstrating the applicability of our procedure in
large scale computing and with iterative solvers.
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Topology optimization (TO) allows to compute optimized designs in a variety of different situations.1 Thanks to its
versatility, TO is used also in applied contexts and to solve large problems. This makes the efficiency of the computation
of the solution particularly important, especially when large-scale problems need to be solved.

In this regard, many ways exist to reduce the computational cost, including the use of parallel computing,2,3 the
employment of fast iterative solvers,4,5 and approximate reanalysis procedures.6 Another popular approach consists in
using adaptive meshes. For instance, adaptive mesh refinement has been used to solve problems in stress-constrained
optimization,7,8 and anisotropic adaptive meshes can also allow to reduce or even skip the postprocessing phase.9,10

A common feature to many adaptive meshing approaches is that void regions are generally represented by a coarser
mesh than other zones, in order to save asmany elements as possible. For instance,11 refines zones at the interface between
solid and void regions, while12 refines solid regions and interfaces with the void, while simultaneously de-refining void
regions. In both these cases, a single mesh is used, so that the adaptivity is present in the representation of the design,
in the optimization, and in the finite element analysis. However, a typical TO process can be seen as made by at least

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

Int J Numer Methods Eng. 2022;123:465–504. wileyonlinelibrary.com/journal/nme 465

https://orcid.org/0000-0002-9779-7647
https://orcid.org/0000-0002-9159-9877
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.6863&domain=pdf&date_stamp=2021-11-17


466 MEZZADRI and QIAN

two phases: one where the finite element analysis is performed and the physical response is computed, and one where
the optimization is conducted. This latter phase is generally less expensive, but it requires a fine discretization whenever
high-resolution designs are required. Thus, while typical TO approaches employ the same discretization in both phases
of the procedure, various methods have been proposed in recent years that decouple the discretizations of analysis and
design in order to improve the efficiency. In particular, while the idea of separating the grids that are used to model the
geometrical and physical response can be traced back to articles like,13-15 one of the first works primarily devoted to the
study of procedureswhere analysis and designmeshes are decoupled is.16 In particular, in Reference 16 the computational
cost is reduced by adaptively regulating the number of design variables, while the analysis mesh is kept fixed. Thus,
while the cost of the finite element analysis is fixed, the number of KKT equations and all computations linked to the
optimization are reduced. Reference17 focused, instead, on reducing the number of analysis variables. In particular,17
considered three different meshes: a displacement mesh (coarser, where the analysis is performed), a design variable mesh
(fine, where the optimization is conducted) and a density mesh (the finest mesh, where the densities are represented). In
Reference,17 the name ofmultiresolution topology optimization (MTO) was also introduced to name these approaches that
employ more than one mesh. As the finite element analysis is the most computationally onerous step, many other works
followed the idea of reducing the resolution of the analysis mesh with respect to the design, including, for instance,.18-23
The time saving can be remarkable: for instance, in Reference 23, it is remarked that MTO can be approximately up
to 3 times faster than traditional TO in 2D settings and up to 30 times faster in 3D problems. Multiresolution topology
optimization has been employed also in applied problems.24,25

In this context, efficient analyses meshes are often adaptive, and can be built by using a variety of refinement criteria
that identify which elements need to be refined. Refinements based on a posteriori evaluation of the error are common
(both in MTO and in “standard” adaptive mesh refinement strategies), like in References 20 and 23. For instance, in the
recent work,23 three indicators are used to define which elements to refine: an analysis-based refinement indicator (based
on the Kelly a posteriori error estimator26), a density-based refinement indicator (which aims at reducing intermediate
densities) and a QR-error indicator. Finally, geometry criteria are also possible, as, for instance, has been recently done
in TO based on hierarchical B-splines.27

In this article, we propose an adaptive analysis mesh that is built on the basis of the gradient of the density function
(hereafter named, for compactness, density gradient). This refinement criterion is fundamentally geometry-based, but it
inherently contains important physical information. For instance, the density gradient has been recently used to impose
design-dependent boundary loadings28 and manufacturability constraints.29,30 Furthermore, it allows to easily detect the
solid-void interfaces of the design, which are the regions where the topological change occurs at every iteration. Finally,
it is easy to compute. We further improve the efficiency of the proposed density gradient-based mesh by introducing a
measure of the change of density distribution, whichwe use to decide if we can skip the remeshing at a given iteration. The
construction of the adaptive analysismesh is, therefore, simple and inexpensivewith respect to the finite-element analysis.
Furthermore, we provide practical and mathematical justifications to the use of the density gradient as a refinement
indicator, andwe shownumerically, by an a-posteriori error analysis, that we can obtain sufficiently accurate results of the
finite-element analysis in our density gradient-based analysis mesh. We also provide theoretical and practical estimates
of the expected savings and solve various numerical experiments, including large-scale 3D problemswith several millions
of design variables.

More precisely, in our approach we use a fine and uniform design mesh, while the analysis mesh is fine only where
the density gradient is nonzero, that is, along solid-void interfaces and in gray regions. In all other regions, the analysis
mesh is coarser. In this, our choice is similar to Reference 27, where the user-defined refinement criterion was based on
refining the interfaces between solid and void regions. However, beyond the obvious differences in the general setting
(Reference 27 uses the extended finite-element method and hierarchical B-splines), the refinement in Reference 27 is
based on evaluating whether the level set function in an element corresponds to solid, void, or solid-void interface. All
three instances are treated differently, and the criterion is geometrical. Furthermore, in practice, the maximum refine-
ment level for interface and solid elements is equal in the numerical experiments, and the solid has a uniform mesh.
We, on the other hand, consider a traditional nodal-based finite-element setting, and base our refinement uniquely on
the density gradient. Thus, no additional distinction between solid and void is performed, and the density gradient con-
veys also a physical meaning. Furthermore, we avoid remeshing at each iteration by a measure of the change of density
distribution. Finally, using the density gradient, we provide estimates of the expected computational saving for a given
design.

To build this adaptive analysismesh, we start from a uniform, coarse grid. Then, solid-void interfaces are progressively
refined by a sequence of density gradient-based refinements, until they have the same resolution as the design mesh.
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This process is illustrated in Figure 1 for a 2D design. The figure also reports the final data of the analysis and design
grids.

The main novelties and peculiarities of our approach are, then, the following.

• The construction of our analysis mesh is directly based on the design, and evolves with it, possibly at each iteration.
This is done avoiding an explicit error analysis, but by employing directly the density gradient as a refinement indicator;

• The analysis resolution is regulated by a sequence of density gradient-based refinements, and the zones where the
analysis mesh is fine are thus governed uniquely by the “topological” importance of the region. Although we here set
the finest analysis resolution to be the same as the design, the procedure is general and other choices can be made, if
needed. For instance, it is possible to require that the analysis mesh is finer than the design in regions with nonzero
density gradient if a high-resolution analysis is necessary.

• By its reliance only on density gradient information, the analysis mesh is simple and relatively inexpensive to compute,
also for large 3D problems. Moreover, we further improve the efficiency by avoiding to remesh at every iteration, on
the basis of a measure of the change of density distribution.

• Our procedure can be easily adapted to different contexts. For instance, we use it also in combination of parallel
computing and of iterative solvers. Furthermore, when the elements to be refined have been chosen by our density
gradient-based strategy, any refinement algorithm can be used to actually build the mesh, with possible additional
efficiency improvements.

Our mesh is competitive with respect to recently proposed approaches. For instance, in the recent paper,23 a 2D can-
tilever beam problem at the last refinement cycle allowed to reduce the number of design variables by over 50%. In our
2D experiments, we achieve a saving in terms of analysis variables between 50% and 70% in most cases, depending on the
problem. Smaller efficiency (around 30%) is registered only for small test problems, while larger problems are associated
to higher efficiency (exceeding 80% in the largest 2D problem we solved). The saving in the 3D experiments is even more
significant: the estimates of the achieved speed-up suggest a 10 times improvement of the computational cost for analysis
when the density gradient-based mesh is used in the largest problem, with a peak of over 20 times improvement at some
iterations.

The article is structured as follows. In Section 1 we describe the general idea behind the proposed density
gradient-based analysis mesh, andmotivate it especially by topological considerations. In Section 2 we then describe how
our mesh is built. In this regard, we here formulate also the above-mentioned measure of the change of density distribu-
tion and we provide an algorithmic form of the mesh construction. In Section 3 we analyze the proposed analysis mesh,
devoting particular attention to its ability to detect the topology change and to nucleate all the features of the design. We
also discuss the advantages that our mesh has for the projections and interpolations between design and analysis meshes,
and provide an a posteriori error analysis that confirms the good behavior of the density gradient-basedmesh. In Section 4

F IGURE 1 Progressive local refinement of the analysis mesh based on the gradient of the density distribution
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we analyze the computational saving. We especially focus on the reduction of the variables of the analysis problems, but
we also provide various remarks on computational times. All considerations are extended to 3D problems as well. In
Section 5 we then solve several numerical experiments, including large 3D problems. Finally, Section 6 concludes this
work.

1 GENERAL IDEA OF DENSITY GRADIENT-BASED ANALYSIS MESH

We work with two meshes throughout the optimization process:

• a uniform design mesh, whose resolution is denoted by rd. This is the mesh where the density “lives”.
• an adaptive analysis mesh, where the analysis (i.e., the solution of the primal and adjoint problems) is performed and
whose resolution is denoted by ra. The analysis mesh is computed starting from an initial uniform mesh of resolution
ra0.

Throughout the article, the resolutions refer globally to the entire mesh when we refer to a uniform mesh.
When, instead, we refer to an adaptive mesh, the actual resolution changes depending on the considered region of
the domain. Therefore, when we discuss ra, we refer to specific regions of a domain, and not to a global, constant
resolution.

Employing two meshes is motivated by the fact that analysis is, generally, the most computationally expensive
task. Thus, we will try to coarsen the analysis mesh as much as possible. On the other hand, a high-resolution design
mesh is needed to represent the finer features of the topology. Therefore, we may want to use a fine design mesh.
The aim is to obtain a final design with the high resolution of the design mesh, but with a smaller cost to solve
analysis.

In order to do this, at every iteration orwhen a suitable condition is satisfied, the analysismesh is created in accordance
with the following criteria:

1. the analysis mesh must satisfy ra = rd in every region where some topology change is happening;
2. to improve the efficiency, the analysis mesh must satisfy ra < rd in regions that are not topologically active;
3. multiple local refinements (or coarsenings, depending on the implementation) are employed, with the aim to coarsen

ra as much as possible in zones that are less topologically active.

For instance, an example of our adaptive analysis mesh over a design is reported in Figure 2. In topologically active
zones, themesh has been refined up to rd by four successive local refinements, starting from a uniformmesh of resolution
ra0. These multiple refinements are visible in the zoom in reported in Figure 2C. In larger void and solid regions, the
resolution remains, instead, unaltered, and equal to ra0.

1.1 Topological relevance of the different parts of the design

In order to satisfy the above-described requirements, we need to evaluate how “topologically important” the different
parts of the design are. In this regard, we distinguish among solid-void interfaces, zones involved in the nucleation of
holes, and solid and void regions.

1.1.1 Solid-void interfaces

The regions between solid and void parts of the design (henceforth called “solid-void interfaces”) are extremely important
in forming the final design. Indeed, they can be seen as the regions where most of the topology change actually happens:
evidently, if the solid-void interfaces do not change, the design does not change and the optimization process has stopped.
If, instead, solid-void interfaces are evolving, they guide the evolution of the design. Thus, it is crucial that these zones
are characterized by a high-resolution analysis mesh in order to correctly detect the topology change.



MEZZADRI and QIAN 469

1.1.2 Zones involved in hole formation

Evidently, if a hole is immediately nucleated,we just have a new solid-void interface and fall in the previous case.However,
holesmay also nucleate over the course of various iterations: first, a zonewith intermediate densitiesmay appear in a solid
region and, then, progressively nucleate a hole. During this hole formation, there is not an actual solid-void interface, but
the zone is evidently topologically active.

1.1.3 Solid and void zones

The solid and void regions are less critical. In particular, the analysis mesh can be coarsened significantly in void
regions, as is done also in other approaches in the literature and not only in multiresolution TO (like, for instance, in
Reference 12).

Also solid regions, although more important, can be viewed as topologically inactive and can have a coarser anal-
ysis mesh. Indeed, solid regions that are far from a solid-void interface can, arguably, become topologically active only
if a hole is nucleated. In this case, however, either a new solid-void interface or a new gray region appears. As soon as
this happens, we fall into one of the previously analyzed topologically relevant cases and the analysis mesh is refined.
Therefore, it is enough that the analysis mesh is sufficiently accurate to start the hole formation (i.e., to detect a local
increase of intermediate densities). Regarding solid regions that are close to a solid-void interface, instead, they are already
characterized by a fine analysis mesh, as long as the analysis mesh is coarsened gradually as we get farther from a
solid-void interface. This can be observed also in Figure 2. Thus, if the solid-void interface gets closer to a solid (or void)
node, the analysis mesh will be gradually refined, ensuring a sufficient accuracy. Conversely, if the solid-void interface
gets farther from a solid (or void) node, the analysis mesh will be coarsened, in order to improve the efficiency of the
procedure. In this regard, it is worth noticing that, in other contexts, also some error-based meshes for topology opti-
mization exhibit quite coarse mesh in solid regions, as it happens, for instance, in some anisotropic meshes (e.g., see
References 9 and 10).

F IGURE 2 A design and the corresponding density gradient-based analysis mesh
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1.2 Identifying topologically relevant regions: a density gradient-based approach

Throughout the article, for simplicity and with no loss of generality, we assume to use nodal-based densities and material
interpolation. It is easy to notice that the previously described topologically important zones are generally characterized by
some degree of intermediate densities. This is particularly evident at earlier iterations, where the grayness between solid
and void can involve great part of the domain. Then, during the iterations, the grayness is gradually reduced (possibly,
also by the use of suitable filters), but it remains, generally, present, at least on a numerical level. In the limit case where
intermediate densities are completely suppressed, we nonetheless have elements where some nodes have void densities
and others have solid densities. Analogously to intermediate densities, this can be used to detect topologically relevant
zones.

Indeed, in all these cases,wehave elements that are characterized by a nonzero gradient of the density function. In fact,
in the solid and void regions, the density is evidently constant and its gradient is zero. The regions which are topologically
active are, instead, characterized by a nonconstant density. The gradient is, thus, nonzero, as illustrated in Figure 3.

Then, denoting by 𝛾 the density function, we can use its gradient as a measure which defines the zones where the
analysis mesh should be refined:

∇𝛾 ≠ 0 → topologically active region,
∇𝛾 = 0 → not topologically active region. (1)

Furthermore, setting ra = rd at solid-void interfaces gives an additional advantage. Indeed, if we use two different
meshes for design and for analysis, at some point we are going to have to project or interpolate the density from the
design onto the analysis mesh, in order to perform the analysis. Zones with intermediate densities are very sensitive to
such operations. Indeed, if ra < rd where intermediate densities are present, we are going to lose information, as we later
describe in Section 3.3. However, regions characterized by intermediate densities will have, in general, a nonzero density
gradient. Therefore, our density gradient-based analysis mesh avoids loss of information in projections and interpolations
between meshes. Instead, in solid and void regions, the density is exactly one or zero, respectively. We can then afford for
a coarser mesh without loss of information.

2 DESCRIPTION OF THE DENSITY GRADIENT-BASED ANALYSIS MESH

Let us now formalize our approach more precisely. In this regard, let us consider a topology optimization problem in
some domain Ω of boundary Γ. As density filtering or additional constraints would not affect the following analysis, let
us focus on a simplified form of the problem, where we only have the objective functional and the state equation. Thus,
in variational form, we consider the problem

F IGURE 3 A design and the corresponding gradient of density. The gradient is zero in solid and void regions, while it is nonzero in
topologically active regions
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minimize J(u), (2)

s.t. a(u, ũ) = l(ũ), ∀ũ ∈ ̃
d
, (3)

which is often supplied with also a volume constraint and where 𝛾 ∈ [0, 1] is the design variable (possibly filtered), J(u)
is the objective functional, a(u, ũ) is a bilinear form, l(ũ) is the linear form, and ̃d denotes the space of the test functions
for a d-dimensional domain. More precisely, we define the following trial and test spaces.

Scalar trial space:  = {v ∈ H1(Ω) ∶ v = v0 on ΓD}, (4)

Scalar test space: ̃ = {ṽ ∈ H1(Ω) ∶ ṽ = 0 on ΓD}, (5)

Vector trial space: d = {v ∈ [H1(Ω)]d ∶ v = v0 on ΓD}, (6)

Vector test space: ̃
d = {ṽ ∈ [H1(Ω)]d ∶ ṽ = 0 on ΓD}, (7)

where d is the dimension of the domain, ΓD denotes the parts of the boundary where Dirichlet boundary conditions hold,
and v0 and v0 are some given boundary values.

Typically, a topology optimization problem of this kind is first discretized by finite element schemes and is then
solved iteratively. The iterative solution of the problem consists, at each iteration, in computing the solution of the primal
problem, which allows to compute the cost. The adjoint problem is then solved, and this, together with the primal solu-
tion, allows to compute the cost sensitivity. The sensitivity can finally be used to compute the new density distribution
by some optimizer, such as optimality criteria or the method of moving asymptotes (MMA).31 We here assume that the
representation of densities is nodal based and that the discretization is performed with elements of order, at least, one.

In this procedure, we can identify two different parts:

• a design step, which involves the computation of the sensitivity and of the new density 𝛾 . If also other constraints are
present, their sensitivities are here computed as well;

• an analysis step, which consists in computing the primal and adjoint solutions of the state equation.

The analysis step, in particular, can be very onerous. Indeed, the solution of the primal and adjoint problems must be
carried out at each iteration, and may involve large vectors and matrices, depending on the discretization. Furthermore,
while wemay need highmesh resolution in the design in order to represent fine features, in the analysis it may be enough
to compute an approximation of the primal and adjoint solutions that is sufficiently accurate to allow the correct detection
of any topological change.We then aim at increasing the efficiency of the analysis by distinguishing between a fine design
mesh and an adaptive analysis mesh, which we build as described in the following.

2.1 Building the analysis mesh

At any iteration it of the topology optimization procedure, let the design be given in a uniform design mesh of resolution
rd. Furthermore, let itref be a parameter that represents the iteration after which the adaptive mesh is started*. When
it ≥ itref , we build the density gradient-based analysis mesh by first initializing it as a uniformmesh of constant resolution
ra0. We are going to apply successive density gradient-based refinements to this mesh, and, as discussed above, we want
that the final resolution of the analysis mesh is the same as that of the uniform design mesh. Therefore, denoting by nref
the number of adaptive refinements that we want to perform and by k the value by which the resolution increases in the
elements that are refined after one refinement, we define ra0 as

ra0 =
rd
knref

, (8)

For instance, if, by the chosen refinement technique, the resolution is doubled in an element that is refined, (8) holds
with k = 2.

For discrete variational problems in each of these meshes, we formulate finite-dimensional test and trial spaces that
are contained in the spaces in (4)–(7). In particular, we define
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a0 ⊂  → Discrete trial space in the starting analysis mesh
̃a0 ⊂ ̃ → Discrete test space in the starting analysis mesh
d ⊂  → Discrete trial space in the design mesh
̃d ⊂ ̃ → Discrete test space in the design mesh (9)

and we denote analogously the corresponding vector spaces d
a0, ̃

d
a0,

d
d , ̃

d
d.

Next, we use (1) to determine whether an element belongs to a topologically active region and we refine only these
elements in the analysis mesh. Thus, in order to compute ∇𝛾 in the analysis mesh, we first need to either project or
interpolate the density from the design onto the initial analysis mesh. In particular, if we use a projection, we look for a
𝛾a0 ∈ a0 such that

a(𝛾a0, 𝛾̃a) = 𝓁(𝛾̃a) ∀𝛾̃a ∈ ̃a0, (10)

where

a(𝛾a0, 𝛾̃a) = ∫Ω
𝛾a0 ⋅ 𝛾̃a dx and 𝓁(𝛾̃a) = ∫Ω

𝛾 ⋅ 𝛾̃a dx. (11)

For projections, there are no essential boundary conditions, anda0, ̃a0 are defined without any Dirichlet boundary
ΓD. For interpolations, we would proceed similarly and interpolate 𝛾 onto the initial analysis mesh.

We can now compute the gradient of 𝛾a0, in order to determine which elements of the analysis mesh need to be refined
according to the topology change criterion (1). In this regard, in practice, for numerical reasons we may have small,
nonzero values also where the gradient should be exactly zero. Therefore, in our implementation we employ a tolerance
𝜖ref , which must be selected to be sufficiently close to zero. Thus, we refine the elements in accordance with the following
criterion:

if
|
|
|
|

𝜕𝛾a0

𝜕xi
|
|
|
|

≥ 𝜖ref in an element for some i = 1,… , d → refine the analysis mesh in that element,

if
|
|
|
|

𝜕𝛾a0

𝜕xi
|
|
|
|

< 𝜖ref in an element ∀i = 1,… , d → do not refine the analysis mesh in that element. (12)

Evidently, we could equivalently use some norm of ∇𝛾a0 or any other measure that allows to detect elements where
∇𝛾a0 has a non-negligible magnitude.

At this point, we have performed one density gradient-based adaptive refinement, and the resolution of the newly
computed mesh is ra1. If nref = 1, we have obtained our final analysis mesh, and we set ra = ra1. If, instead, nref > 1, we
proceed with additional refinements. Thus, by (10)–(11), we project/interpolate 𝛾 from the design onto the analysis mesh
obtained after the first refinement and we perform another gradient-based refinement in accordance with the criterion
(12). We then proceed analogously until we have performed a total of nref refinements.

Notice that (8) implies that, after performing nref refinements, we have ra = rd in all topologically active
regions.

Remark 1. It is worth noticing that the magnitude of the gradients tends to change during the optimization process.
Indeed, the design is less sharp at earlier iterations and, therefore, the magnitude of the derivatives is generally smaller.
Conversely, at later iterations, the design is sharper and the density derivatives are larger. Therefore, it is generally suitable
to modify 𝜖ref by continuation methods during the optimization process. In this regard, we will use a small 𝜖ref at earlier
iterations, in order to detect all zones where intermediate densities are present. As the optimization progresses, we will
then increase 𝜖ref to avoid unnecessary refinements where the gradients are numerically zero . Nonetheless, the selection
of 𝜖ref is not problematic, as the results are not very sensitive to its choice (provided that 𝜖ref is sufficiently small to detect
the nonzero gradients).

Remark 2. Provided that the degree of the interpolation is sufficiently high, the results of the procedure arguably do not
change significantly depending on whether projections or interpolations are used, or on which interpolation functions
are chosen. For instance, in the numerical experiments we are going to use projections or interpolations depending on
what is more convenient to implement (see Section 5.1 for more information), without inconsistencies in the results.
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Instead, issues may evidently arise if the degree of the interpolation is too small to correctly reproduce the forms that are
interpolated.

Remark 3. For simplicity, we have here described an implementation where we start from a coarse initial analysis mesh
and we obtain the final analysis mesh by a sequence of adaptive refinements. However, we can also equivalently start
from a fine and uniformmesh with ra0 = rd and apply a sequence of adaptive coarsenings. In this case, at each coarsening
step, we would coarsen every element where | 𝜕𝛾a

𝜕xi
| < 𝜖ref ∀i = 1,… , d, while leaving all the other elements at resolution rd.

Remark 4. Finally, we remark that it is possible to modify the procedure to refine also other elements that are important
for the analysis. This could be, for instance, the case of the elements containing the nodes where loads and boundary
conditions are applied. In practice, however, in our experiments we did not find it to be necessary. Therefore, when not
otherwise specified, we have employed only the density gradient-based criterion to govern the refinements.

2.2 Solution of the primal and adjoint problems and projection of the results

Once we have obtained the final analysis mesh, we perform a last projection/interpolation of 𝛾 by (10)–(11). We call 𝛾a the
representation of the density function in the final analysis mesh. We can then compute the primal and adjoint solutions
in the analysis mesh, which we denote, respectively, by ua ∈ d

a andwa ∈ d
a , where the function spaces are defined with

the essential boundary conditions of the state problem.
These solutions are needed to compute the sensitivity of the cost function.Nonetheless, they are defined in the analysis

mesh, while we need the sensitivity in the design mesh. Indeed, the sensitivity needs to be passed to the optimizer to
compute the new density distribution in the design mesh. Therefore, we again need a map between density and analysis
meshes (e.g., using projections/interpolations or by applying the chain rule in the computation of sensitivities).

Nonetheless, these passages are generally required by the very idea of multiresolution TO, and are common to several
approaches. Thus, contrarily to the projections and interpolations that, in the previous subsection, we need to perform the
density gradient-based refinements, they are not characteristic to our mesh and their study is then beyond the scope of
this article. Later, we will then limit ourselves to briefly discuss (in Section 4.3) how these projections and interpolations
benefit from having ra = rd at solid-void interfaces, as ensured by our gradient-based mesh.

2.3 Avoiding unnecessary remeshing by evaluating the change of density distribution

The previous two sections contain the core of the proposed gradient-based adaptive meshing. Nonetheless, some
improvements can be made to optimize its efficiency.

In particular, in the previous setting, the remeshing is done at each iteration, but this is not always necessary. For
instance, if the design does not change, proceeding as in Section 2.1 will produce exactly the same analysis mesh. Further-
more, in practice, topologically active regions will still be in a high-resolution mesh also if we do not update the analysis
mesh when there are small changes to the design. Indeed, buffer regions are present around the elements flagged for
refinement in order to pass gradually from fine to coarse mesh and improve the conditioning. This is particularly signif-
icant at the later stages of the optimization process, when the design is sharp and does not change much between one
iteration and the other.

In order to exploit this fact, we can evaluate how much the design has changed to decide whether we need to remesh
or not. In this regard, we can evaluate the change of density distribution inexpensively by simply considering differences
between density distributions. Thus, let 𝛾 (k) be the density at some iteration k and let 𝛾 (old) be the density distribution
at the last iteration when the analysis mesh was updated. We can evaluate how 𝛾

(k) differs from 𝛾
(old) by computing the

measure of the change of density distribution

Mcd ∶=
||𝛾

(k) − 𝛾
(old)

||

||𝛾 (old)||
, (13)

where || ⋅ || denotes the Euclidean norm. The normalization by 𝛾 (old) is performed to makeMcd more independent of the
problem. Indeed, in absence of any normalization, the value ofMcd would change when the size or other characteristics
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of the problem are changed. The normalization with respect to 𝛾 (old) relates, instead, the change to the old density distri-
bution, makingMcd less dependent on factors such as the volume fraction or the dimension of the problem. Nonetheless,
if the change of the volume fraction is a concern, a more conservative normalization can be defined by replacing the
denominator of (13) by ||min{𝛾 (old), 𝛾 (k)}||, where the minimum operator is meant to apply component-wise.

If the measure of the change of density distribution satisfies

Mcd < 𝜖cd, (14)

where 𝜖cd is a given tolerance, the analysismesh is not updated and the computations of Section 2.1 need not be performed.
If, instead,Mcd ≥ 𝜖cd, we update the analysis mesh and we set 𝛾 (old) = 𝛾

(k).
In the following, when not otherwise specified, it is assumed that we are using (14) to regulate remeshing.

2.4 Algorithm

We finally summarize the above-described procedures by two algorithms. In particular, in Algorithm 1 we describe how
the density gradient-based mesh is built at a given iteration. In the algorithm, nai denotes the number of elements of the
analysis mesh after i refinements, i = 0,… ,nref . In Algorithm 2, we then describe how the computed mesh fits into the
iteration of a topology optimization process.

Algorithm 1. Density gradient-based analysis mesh

Require: density 𝛾 , number refinements nref , initial resolution analysis mesh ra0, tolerance 𝜖ref
1: Build uniform mesh of resolution ra0
2: for i = 1,… ,nref do
3: Compute 𝛾ai−1 projecting (or interpolating) 𝛾 from the design mesh onto the analysis mesh at the previous

refinement
4: Compute the gradient of 𝛾ai−1
5: for j = 1,… ,nai−1 do
6: Compare the derivatives of 𝛾ai−1 and 𝜖ref according to (12)
7: If refinement criterion is satisfied, flag element j for refinement
8: end for
9: Refine mesh in all flagged elements
10: end for

Algorithm 2. One iteration of the optimization process with density gradient-based analysis mesh

Require: starting iteration for adaptiveness itref , tolerance 𝜖cd
1: if it < itref then
2: Solve analysis in the design mesh
3: else if it ≥ itref then
4: ComputeMcd as in (13), or setMcd = 𝜖cd if it = itref
5: if Mcd ≥ 𝜖cd then
6: Compute density gradient-based analysis mesh in accordance to Algorithm 1
7: Project/interpolate the density from the design mesh onto the density gradient-based analysis mesh
8: Solve analysis in the adaptive analysis mesh
9: Compute sensitivities, mapping them onto the density mesh
10: end if
11: end if
12: Pass sensitivities to an optimizer and compute the new density distribution



MEZZADRI and QIAN 475

3 ANALYSIS OF THE DENSITY GRADIENT-BASED ADAPTIVE MESH

3.1 Adaptiveness

The proposedmesh adapts to the topology both spatially (given a design, it is fine only where it is needed) and temporally
(it changes as the design evolves during the iterations of the optimization process).

In particular, Figure 4 shows how the mesh exploits the information of the density gradient, achieving a spatial adap-
tiveness. In particular, starting from the design and the initial uniformmesh of Figure 4A,we observe, for each refinement
i = 1,… ,nref ,

• the density gradient ∇𝛾ai−1;
• the elements that are flagged to be refined (based on ∇𝛾ai−1), which are in red. The elements that will not be refined
are in blue. The mesh (in yellow) is still the one at the previous refinement, i − 1;

• the resulting density gradient-based analysis mesh, after the marked elements have been refined.

Considering many refinements, at the beginning the analysis mesh is not able to accurately detect the design and the
density gradient. In this case, the projected density tends to change in almost all neighboring nodes, and the corresponding
gradient is zero only in very large solid and void regions. In all other zones, the mesh is refined. This also ensures that, if
the initial analysis mesh is too coarse to represent the design, we will eventually reach a sufficiently fine analysis mesh.
At most, the first refinements will be almost useless to the extent of increasing efficiency (but they will also be very
inexpensive, as they involve very coarse meshes).

Then, the representations of the density and of the gradient becomeprogressivelymore precise, asmore gradient-based
refinements are performed. This eventually leads to amesh that is fine only in the neighborhood of elements with∇𝛾 ≠ 0.

It is also worth noticing that the analysis mesh is not refined symmetrically in Figure 4. This is particularly evident
at early refinements and in buffer zones between parts of the mesh characterized by different resolutions. Nonetheless,
the proposed adaptive mesh is not expected to introduce significant nonsymmetrical features in the optimized design.
Indeed, we notice that the regions containing solid-void interfaces in the design of Figure 4A are refined at all refine-
ments. Therefore, the final analysis mesh in these zones has a resolution ra = rd, that is, the final resolution remains as

F IGURE 4 Spatial adaptivity: density gradient, marked elements to refine (red), and density gradient-based analysis mesh at various
refinements
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symmetrical as the design along these interfaces. The regions where the final resolution is not symmetrical are instead
characterized by solid or void densities, which, based on the considerations of Section 1, are not topologically active and
less critical for the computation of the optimized design. Numerical experiments in later sections confirm that the final
result does not change significantly when the adaptive mesh is employed.

Regarding the temporal adaptiveness, the adaptive mesh is updated with the design, which, in turn, is modified by
the topology optimization. In particular, this temporal adaptiveness is shown in Figure 5, which shows how the mesh
evolves with the design during the optimization.

Figure 5A shows the design and the analysis mesh at an early iteration of the optimization process. The design is still
gray, and the mesh is fine in the great part of the domain. Nonetheless, we can already see that the mesh is coarser in
the zones where large void and full regions start to stabilize. The fine mesh in gray regions allows a sufficiently accurate
computation of the solutions of the analysis problems. Thus, grayness is progressively reduced in the following iterations,
and is replaced by finer features that gradually form. Indeed, in Figure 5B–D, we can see that the zones where the anal-
ysis mesh is fine become progressively smaller and “pressed” against the solid-void interfaces of the design. During this
process, the analysis mesh is updated whenever the design changes enough, in accordance with (14). This is sufficient to
detect possible changes of density distribution and to reduce the number of elements in topologically stable zones.

3.2 Formation of holes and of new solid regions

In this context, it is particularly interesting to focus on the nucleation of holes and of new solid regions. Indeed, it is
important to ensure that these features can be created andmodified when the analysis is performed in the adaptive mesh.

Figure 6 represents a zoom-in of the same upper part of the structure in Figure 5 at different iterations. Holes are
progressively nucleated from a gray region. Simultaneously, new solid regions appear, and the solid-void interface evolves
analogously, moving toward previously void or solid zones.

For instance, between Figure 6B,C, on the right of the design a branch of the structuremoves leftwards, and previously
void regions pass to solid. At the same time, on the left of the domain, holes, and new structures are nucleated from

F IGURE 5 Temporal adaptivity: topological evolution of the design and the corresponding adaptivemesh as the optimization progresses
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the grayness of Figure 6A. In particular, holes become progressively larger and sharper. Consequently, the analysis mesh
changes, following the evolution of the topology. For instance, while, at iteration 25 (Figure 6A), almost the entire region
is characterized by grayness and a fine analysis mesh, at iteration 100 (Figure 6C) the mesh coarser meshes in the formed
holes and solid areas.

3.3 Analysis of projection of density in solid and void regions

In addition to the “topological” reason behind the idea of setting ra = rd where the gradient of density is nonzero,
there is also a mathematical reason related to the necessity to relate the design and analysis meshes by projections or
interpolations.

In particular, projections/interpolations of the density onto the analysis mesh are necessary when the analysis is per-
formed on a mesh different from the design. When the projection involves void or solid regions, it is easy to verify that
we do not lose any information on the density function even if the analysis mesh is significantly coarser. Indeed, in these
regions, the density is constant and equal, in every node, to zero (in void) or to one (in solid). This fact is irrespective of
whether the mesh is fine or coarse. Instead, this is not true where the gradient of density is different from zero. Indeed,
in these regions, the value of the density function changes and the projection onto a coarser mesh would imply the loss
of information on the value of 𝛾 .

For instance, Figure 7 reports an example of what happens when a design represented in a uniformmesh of resolution
r = 256 is interpolated onto a coarser uniformmeshwith r = 32.We notice that solid and void regions are still represented
exactly in the coarser mesh, while the solid-void interfaces appear significantly rougher. It is also interesting to notice the
presence of QR-patterns (i.e., numerical artifacts that consist of disconnected features with artificially high stiffness) in
several regions of the design represented in a coarsermesh. This issue is common inmultiresolution topology optimization
and has been recently studied in Reference 32, where it was attributed to the limitations of the used modeling scheme
(extending also earlier considerations reported in Reference 22). In particular, in Figure 7 the QR-patterns arise because
the mesh is too coarse to represent without disconnections the thinnest features of the design.

In Figure 8 we show that the loss of information at solid-void interfaces is eliminated if the resolution of the two
meshes is the samewhere∇𝛾 ≠ 0. Evidently, if themesh is coarse along the interface, much information on 𝛾 is lost along
the entire boundary, as in the top-right figure. When, instead, the analysis mesh has the same resolution as the design

F IGURE 6 Nucleation of holes and of new solid regions from a gray area. From top to bottom: design, density gradient, elements
marked to be refined at the last density gradient-based refinement (red), final analysis mesh
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F IGURE 7 Loss of information in projections and interpolations of density onto a coarser mesh

F IGURE 8 The projection of the density onto a coarse analysis mesh leads to loss of information if ra < rd at solid void boundaries
(top-right), while it preserves the information if ra = rd at solid void boundaries (bottom-right)
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TABLE 1 Error estimate (15) of the solution of the primal problem in adaptive and uniform meshes

nref = 1 nref = 2 nref = 3 nref = 4 nref = 4 Uniform

||err||1 1.0320e-4 1.0354e-4 1.0354e-4 1.0356e-4 1.0356e-4 1.0388e-4

at the interface, we have the same nodes where the density changes. Thus, the density gradient-based mesh with ra = rd
at solid-void interfaces preserves all the information contained in the design mesh when we project/interpolate onto the
analysis mesh. This also helps solve the issue of QR-patterns: indeed, if the resolution is sufficiently high along solid-void
interfaces (and, consequently, in thin features), we can avoidmisrepresentations and disconnections in the features of the
design. We further discuss this in Section 5.2, where we also comment on the maximum coarsening that we can perform
on the initial analysis mesh.

Regarding the mapping of sensitivities from the analysis to the design mesh, the advantage regards the fact that we
have a direct mapping between sensitivities in all elements where the density gradient is nonzero. Indeed, having ra = rd
in these regions, we can map every topologically active node of the analysis mesh to exactly one node in the design mesh.

3.4 A posteriori error analysis

Finally, we employ an a posteriori error analysis to estimate the error of the analysis performed in the adaptive mesh and
to compare it with the error in the uniform mesh. In this regard, we estimate the error as

eT = (hT||res||L2(T))
2
, (15)

where h is a representative size for an element T and res is the residual. In practice, first we compute u by solving the
primal problem, while hT is the diameter of the cell in the considered mesh (the diameter of a cell T is to be intended
as supx,y∈T |x − y|). Alternative estimates that employ the total residual or that consider also other contributions coming
from errors on edges and faces behaved similarly.

Given a design, let us compute this error estimate when the analysis is solved in density gradient-based adaptive
meshes with different number of refinements nref . We compare the results with the error estimate obtained by solving
the analysis in a uniform mesh of the same resolution as the design mesh. This case is denoted as “uniform” in the
following. In this regard, we did not use directly the design mesh, but we refined a starting uniform mesh everywhere to
a resolution rd. This way, we ensure that we are considering only the effect of the density gradient-based adaptiveness in
our comparisons. In all cases, the primal problem is solved by the same direct solver.

The error estimates for the solution of the primal problem for the design of Figure 1A are given in Table 1, which
reports the numerical values of the sum of the elemental errors in the entire design, ||err||1. These results show that the
error does not change significantly in the different cases, confirming that the density gradient-based meshes allow to
compute the solution of the primal problem in a sufficiently accurate way, irrespective of nref . Figure 9 then shows where
the error is larger for nref = 4 and for the uniform case. The errors are almost identical, although some differences can
be noted close to application points of loads and boundary conditions. This is reasonable, since these are points where
an accurate analysis is evidently important, but they can also be characterized by a coarse analysis mesh when they are
far from the solid-void interfaces. In order to reduce these differences and as already noticed in Remark 4, it is possible
to refine the adaptive mesh also in these points, if needed. However, this was not required in our experiments, where the
errors in uniform and adaptivemeshes did not differ significantly and never led to the computation of different topologies
when the adaptive mesh was used.

Finally, Figure 9 also shows that the largest errors are concentrated at solid-void interfaces both in uniform and in
adaptive meshes. This confirms the necessity of high resolution at solid-void interfaces and that it is reasonable to use
coarser discretizations in the regions that are not topologically active.

Proceeding with the finite-element analysis, in a topology optimization problem we will then have to compute the
solution of the adjoint equation and the cost sensitivity. Finally, we will have to project the result onto the design mesh.
To verify that also these steps are performed correctly, Figure 10 represents the projected sensitivity computed in the
uniform mesh for various choices of nref . The color-bar has been scaled to improve the readability, but no postprocessing
was performed on the data.
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F IGURE 9 Error in uniform mesh (left) versus error with nref = 4 (right), rescaled (in the same range) for visibility

F IGURE 10 Plot of the cost sensitivity (projected onto the same design mesh) in density gradient-based and uniform meshes

In all cases, the computed sensitivities are very similar. Indeed, the sign of the sensitivity is the same everywhere
in the domain and the values are always indistinguishable in the figure. Analogously to the error distribution, also for
sensitivities we can nonetheless notice some differences between uniform and analysis meshes in a few solid regions
close to the application points of the loads and boundary conditions. In particular, the sensitivity there appears as if it
were at a lower resolution in the adaptive mesh, especially when multiple refinements are performed. However, these
differences involve only limited zones where the design is not topologically active, and the signs and the overall values of
the sensitivity are the same as in the uniformmesh. Therefore, we can expect that these differences do not lead to changes
of the optimized topology. We later show that this is indeed what happens in the numerical experiments.

4 ANALYSIS OF THE COMPUTATIONAL SAVING

In this section, we analyze and estimate the expected computational savingwhen the density gradient-basedmesh is used.
In this regard, we are particularly interested in estimating how many elements we can save and how many refinements
it is reasonable to make to maximize the efficiency. Thus, first we find theoretical bounds of the minimum number of
elements of our analysis mesh. Then, we use these bounds to perform some considerations and formulate a more precise
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heuristic estimate. Finally, we provide some numerical results that link the saving in terms of elements to the saving in
terms of computational times.

4.1 Maximum theoretical saving of elements in limit cases for a 2Dmesh

The final analysis resolution has two limit thresholds:

• ra = ra0 everywhere if the entire design has constant density (e.g., if it is all solid or all void). Indeed, in this case,
∇𝛾ai = 0 everywhere at each refinement;

• ra = rd everywhere if the entire design is made of regions where 𝛾 is never constant. Indeed, in this case, ∇𝛾ai ≠ 0
everywhere at each refinement.

In a typical topology optimization design, we are in between these situations. Nonetheless, these limit cases give us
some information on the maximum computational saving that we may expect, and lead to some considerations on how
many refinements it is reasonable to perform.

Let us then analyze them, considering, for themoment, a 2Dmesh of triangular elements in a square domain. Assume,
for simplicity, that every refinement doubles the resolution, like in Figure 11. If the entire mesh were refined, the number
of elements, which we denote by n, would quadruple, as represented in the figure. This is due to the fact that, along every
axial dimension, the number of discretization intervals is doubled, so that n increases by 2 ⋅ 2 = 4.

More in general, a density gradient-based adaptive analysismesh is initialized by a uniformmesh as in (8). If the entire
mesh were refined, repeating the same considerations as above, the number of elements would increase by a factor k2.
Furthermore, since each element has three nodes, each of which is shared by six elements in inner parts of the mesh and
by fewer elements along the boundaries of the domain, the number of nodes is nn > 1∕2n. The inequality approaches the
equality for large meshes, where the effect of the boundary nodes becomes negligible. Finally, considering a 2Dmesh and
nodal-based optimization, we have two DOFs in each node. The total number of DOFs is, then, nDOF = 2nn.

Therefore, if we have a mesh that is refined everywhere nref times starting from an initial resolution ra0, the number
of elements, nodes, and DOFs can be estimated as follows:

n = kgr2a0k
2nref ,

nn ≈
1
2
n,

nDOF ≈ n, (16)

where kg is a parameter that relates the resolution ra0 to the geometry of the domain (for instance, if the domain is a
square of side 1, kg = 2, as the domain is split into two elements if ra0 = 1, like in Figure 11A).

By the choice of ra0 as in (8), the numbers of elements, nodes, and DOFs in Equation 16 in an analysis mesh that is
refined everywhere coincide with the uniform design mesh. Thus, the values in (16) describe n in the limit case ra = rd.

F IGURE 11 Example of a refinement that doubles the resolution
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The opposite limit case ra = ra0 can instead be interpreted as the theoretical lower threshold to the number of elements
of the analysis mesh, for a given choice of ra0 and nref . In this case, the number of elements, nodes, and DOFs can be
computed again by (16) with nref = 0.

Comparing these limit cases, we can determine the maximum computational gain that we may theoretically have for
any choice of ra0 and nref . In particular, denoting the minimum number of elements of the analysis mesh by n̂a and the
number of elements of the design mesh by nd, the maximum theoretical saving in terms of elements (and, hence, DOFs)
that can be obtained by the proposed density gradient-based technique is

n̂a =
1

k2nref
nd. (17)

Equation 17 suggests that, in most cases, 3–4 refinements are enough to achieve most of the computational
savings because the main gains are at the first refinements. As an example, consider a square design mesh
with nd = 65,536. Table 2 reports the thresholds to the maximum theoretical saving as computed by (17) with
k = 2.

The maximum saving ratio given by the generic ith refinement can also be computed exactly by

ŝi = (k2 − 1)
nref
∑

i=1

1
k2i

. (18)

Evidently, ŝi after the first refinements.

4.2 Estimating the DOF saving in real 2D designs

In practice, however, we will always have some parts of the analysis mesh that are refined. Thus, the analysis of the
previous subsection applies directly only to solid and void regions that are sufficiently far from zones with intermediate
densities. The saving will then be smaller than the threshold of the previous subsection.

Nonetheless, the general behavior is quite similar. For instance, Figure 12 represents the adaptive analysis meshes
obtained for a realistic TO design, considering different choices of nref . The corresponding results regarding the number
of elements of the design, nd, and of the analysis, na, are reported in Table 3, together with the relative saving in terms of
elements

𝛿n ∶= nd − na
nd

%. (19)

We notice that we now have a bound on the minimum number of elements, which is directly linked to the number of
elements with nonzero density gradient. The saving is, nonetheless, distributed analogously to the ideal case, with larger
savings concentrated at the first refinements. This is reasonable and confirms that performing 3–4 refinements allows to
achieve most of the possible savings.

In order to make more precise estimates, we can exploit the formulation of the density gradient-based mesh. In
particular, by the definition of our refinement criterion, we will have

TABLE 2 Threshold to saving in terms of number of elements with the density gradient-based adaptive mesh

nref nd n̂a %maximum saving

1 65,536 16,384 75%

2 65,536 4096 93.7%

3 65,536 1024 98.4%

4 65,536 256 99.6%
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F I GURE 12 An example of the progressive local refinement of the analysis mesh

TABLE 3 Saving in terms of number of elements and nodes with the density gradient-based adaptive mesh on a real design

nref nd na 𝜹n

1 1,638,400 666,027 59.3%

2 1,638,400 450,118 72.5%

3 1,638,400 404,534 75.3%

4 1,638,400 395,148 75.9%

5 1,638,400 393,684 76.0%

6 1,638,400 393,085 76.0%

na ∝ ∇𝛾a (20)

and the number of elements of the final analysis mesh will increase with the overall perimeter and the amount of inter-
mediate densities. In addition, we will also have a contribution given by the shape of the design and by the refinement
technique. Indeed, since the passage from fine to coarse mesh is not abrupt, gray regions that are close to one another will
be included in a single high-resolution region, which involves, in general, less elements than the separate high-resolution
regions that we would have if the gray zones were far from one another. This latter contribution, however, cannot be
evaluated a priori, since it strongly depends on the design and on the extension of the buffer zone of the used refine-
ment technique. Thus, we do not consider it explicitly in our theoretical estimates, but we will include it in later heuristic
evaluations. For the moment, we instead focus on the number of elements coming directly from (20).

4.2.1 Theoretical estimates

Consider a density gradient-based adaptive mesh, built with nref refinements. By na0,na1,… ,na we denote the number of
elements of the analysis mesh after 0, 1,… ,nref refinements, respectively. Analogously, 𝛾a0, 𝛾a1,… , 𝛾a denote the density
𝛾 projected onto the analysis mesh after 0, 1,… ,nref refinements. Furthermore, considering the refinement criterion (12),
we define di as a mesh function which, in each element, is defined as
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di =
⎧

⎪

⎨

⎪
⎩

1 where
|
|
|
|

𝜕𝛾ai
𝜕xj

|
|
|
|

≥ 𝜖ref for at least one j = 1, 2

0 elsewhere,
(21)

for i = 0,… ,nref − 1.
Starting from the initial analysis mesh of na0 elements, at each refinement the analysis mesh will be refined at least

in every element where di = 1. Therefore, the least number of elements of the final analysis mesh will be given by

n̂a = na0 + (k2 − 1)dT0 e0 + (k2 − 1)dT1 e1 + · · · + (k2 − 1)dTnref−1enref−1, (22)

where e0, e1,… , enref−1 are vectors of ones of dimension na0,na1,… ,na(nref−1), respectively. In (22), the terms -1 are used to
avoid counting twice the elements that are refined.

Since the design does not change during the refinements, we may roughly assume, for the moment, that if an element
is refined at some refinement i, then it has already been refined at the previous refinements and it will again be refined
at the following. By this assumption, we can link the functions di together. For instance, if we further define

da =
⎧

⎪

⎨

⎪
⎩

1 where
|
|
|
|

𝜕𝛾a
𝜕xj

|
|
|
|

≥ 𝜖ref for at least one j = 1, 2

0 elsewhere,
(23)

the above consideration leads to

dTnref−1enref−1 = dTa ea∕k2 (24)

with ea vector of ones of dimension na. Notice that da can be computed directly from the design. Indeed, (8) implies
that the resolution of the analysis mesh and of the adaptive mesh is the same in the elements where the refine-
ment criterion (12) is satisfied. Thus, da is available directly from ∇𝛾 . Then, we may assume that the elements
that are refined at the last refinement had been refined also at the previous refinement. Therefore, we can further
estimate

dTnref−2enref−2 = dTnref−1enref−1∕k
2 = dTa ea∕(k2)2, (25)

and so on. Proceeding iteratively and replacing into (22), we obtain

n̂a = na0 +
k2 − 1
(k2)nref

dTa ea +
k2 − 1
(k2)nref−1

dTa ea + · · · + k2 − 1
k2

dTa ea

= na0 + (k2 − 1)dTa ea
nref
∑

i=1

1
(k2)i

. (26)

This lower bound (26) is well-posed. Indeed, consider, for instance, a square domain of length 1, which is
discretized by a design mesh of rd = 256 and by an analysis mesh of ra0 = 16, with nref = 4 and k = 2. By (8),
if we have nonzero density gradients in all elements of the design, the estimate is well-posed if n̂a = nd. This
is indeed what happens. Indeed, nd = 2562 = 65,536 and the estimate (26) analogously provides 162 + 3 ⋅ 2562 ⋅
(
1
4
+ 1

16
+ 1

64
+ 1

256

)

= 65,536. If, instead, the density gradient is zero everywhere, the bound gives n̂a = na0, as we would
expect.

Furthermore, (26) is available to compute before any refinement is made. Indeed, na0 and nref are user related
choices (linked by (8)), k is known, and da can be computed through ∇𝛾 . Therefore, we can use (26) as a lower
bound of the minimum possible number of elements in the density gradient-based adaptive mesh. This lower
bound again confirms that the main savings are at the first refinements. Indeed, the term 1

(k2)i
becomes quickly

small as i is increased. The last terms of the sum in (26) will, then, provide a smaller contribution to the element
saving.
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4.2.2 Heuristic estimates

However, if a precise estimate is needed, it is necessary to perform additional considerations. In particular, (26) makes
the following, significant simplifications.

1. While the number of elements with nonzero density gradient is the same in the design mesh and in the final analysis
mesh, wemake a simplification when we assume that the same relationship can be propagated iteratively to the previ-
ous refinements as in (24)–(26). Indeed, at each refinement, the density is projected/interpolated onto a differentmesh.
In particular, coarsermeshes will tend to have a higher ratio of nodes with nonzero density gradient to total nodes with
respect to finer meshes. This happens because coarser meshes must represent complex density distributions in fewer
nodes, and the projected density tends, then, to change more frequently from one node to the other. This behavior was
observed, for instance, in Figure 4. Thus, (26) tends to underestimate the number of elements in the adaptive mesh.

2. As remarked in the previous subsection, our considerations neglect the fact that elements that are neighbor to elements
with nonzero gradient are also refined.

We address these two contributions by heuristic considerations. In particular, as regards the first issue, let us ana-
lyze Table 3. As previously noticed, the main savings are concentrated at the first refinements. Thus, we can accept
na after a few refinements as a practical estimate of the minimum number of elements of the adaptive mesh n̂a. For
instance, let us accept n̂a as na at the last row of Table 3 (nref = 6). Let us then compute, for each choice of nref , the
ratio

s = nd − na
nd − n̂a

(27)

of the maximum number of elements that we could save. The results are reported in Table 4.
These ratios follow closely the maximum savings of the limit case in Table 2 and Equation 18. Therefore, we can

assume that, in a real design, for given nref and k, we are saving a quantity of elements corresponding to the analytical
limit savings (third column of Table 2 for k = 2) of the maximum amount of elements that we can save. In this way, we
implicitly include all evaluations regarding the refinements and we can compute the saving for any nref whenever the
saving for a single nref is known.

In this regard, we have already remarked that the number of elements with nonzero density gradient is the
same in the design mesh and in the final analysis mesh. Thus, for nref = 1, we can estimate the elements that sat-
isfy the refinement criterion (12) almost exactly, and estimate the number of elements of the corresponding analysis
mesh by

n̂a1 = na0 +
k2 − 1
k2

dTa ea. (28)

This estimate can then be propagated to other choices of nref by requiring that each new refinement provides the same
saving (with respect to the maximum possible saving for the considered problem) as expressed by the theoretical ratio
(18). Therefore, for a given choice of nref , we set

TABLE 4 Maximum saving in terms of number of elements with the density gradient-based adaptive mesh on a real design

nref na s%

1 666,027 78.1%

2 450,118 95.4%

3 404,534 99.1%

4 395,148 99.8%

5 393,684 99.9%

6 393,085 100.0%
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n̂a = nd − (nd − n̂a1) ⋅
ŝnref
ŝ1

. (29)

Finally, regarding the refinement of elements with null density gradient that are close to refined elements, we can
multiply the estimate n̂a1 by a heuristic parameter kh > 1 that accounts for this effect. We then revise the estimate into

ña = nd − (nd − khn̂a1) ⋅
ŝnref
ŝ1

. (30)

The precise value of kh depends on the design and on the refinement. Nonetheless, in practice, we have found that kh
between 1 and 2 is often a good choice in our experimental setting. All the other terms can be computed by (28) and (18)
once the refinement parameters have been chosen and∇𝛾 has been computed. Thus, (30) can be used a priori, before any
refinement is performed.

As an example, Table 5 reports a comparison between the actual number of analysis elements for the 2D design in
Figure 12, the lower threshold (26) and the a priori estimate (30) with kh = 1.3.

4.3 Generalization to 3D

The considerations made with regard to 2D problems apply directly also to 3D cases. The analysis must only be adapted
to the 3D setting by revising the above expressions to account for the presence of a third spatial dimension. For instance,
consider a unit cube that is packed with six tetrahedra. If the resolution doubles after one refinement, the number of
elements n increases by 23 = 8 (as the doubling now occurs along three dimensions).

Thus, if the entire mesh is initialized by a uniform mesh of resolution ra0, the initial mesh contains na0 = kgr3a0 ele-
ments (where, as before, kg accounts for the geometry of the domain, for example, kg = 6 for the unit cube packed
with six tetrahedra). If the entire mesh were refined, at each refinement the number of elements increases by a fac-
tor k3, where k denotes, as before, the increase of the resolution produced by a refinement. Once n is known, it is
easy to obtain the number of nodes: indeed, each tetrahedron has four nodes and each cube (which has eight nodes)
is packed with six tetrahedra. Therefore, every node of the cube is shared, on average, by 24∕8 = 3 tetrahedra. As an
inner node is shared by eight cubes, it is also shared, on average, by 8 ⋅ 3 = 24 tetrahedra, so that nn > 4∕24n = 1∕6n
(where the inequality is given by the presence of boundary nodes). Finally, each node has three DOFs, and hence
nDOFs = 3nn.

Therefore, the expressions in (16) must be replaced by

n = kgr3a0k
3nref ,

nn ≈
1
6
n,

nDOF ≈ 1
2
n. (31)

Similarly, the maximum theoretical saving in terms of elements (and, hence, DOFs) that can be obtained is

TABLE 5 Comparison between the number of analysis elements, the lower threshold (26) and the estimate (30) for the 2D
design in Figure 12

nref n̂a as in (26) ña as in (30) Actual na

1 541,039 703,350 666,027

2 266,698 469,588 450,118

3 198,113 411,147 404,534

4 180,967 396,537 395,148

5 176,680 392,885 393,684

6 175,609 391,971 393,085
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n̂a =
1

k3nref
nd, (32)

which replaces (17). Therefore, for a square domain and considering, for instance, nd = 65,536 and k = 2, the maximum
gain after each refinement is given by Table 6, which can be seen as the 3D equivalent of Table 2. We notice that the main
savings are even more concentrated at the first refinements.

We can then proceed as in 2D, noticing that, in actual designs, some parts will always be refined, proportionally to the
number of elements where the density gradient is nonzero. The considerations made in 2D can then be largely applied
with no modification. The main difference is given by the net contribution of each refinement to the saving, by effect of
the presence of a third space dimension. In particular, we can replace (18) by

ŝi = (k3 − 1)
nref
∑

i=1

1
k3i

, (33)

while, for nref = 1, we can estimate the elements of the density gradient-based analysis mesh by

n̂a1 = na0 +
k3 − 1
k3

dTa ea, (34)

where da is defined analogously to (23) with j = 1, 2, 3. Equation (34) replaces (28) for 3D problems. At this point, the
heuristic estimates of n̂a and of the number of analysis elements for an arbitrary number of refinements can still be
expressed as in 2D by (29) and (30), respectively, with ŝi as in (33) and n̂a1 as in (34).

It is also possible to adapt the previous analysis to different types of 2D and 3D elements. In this regard, (16)
and (31) can be easily revised by analyzing the discretization by the considered finite element. This allows to obtain
the maximum theoretical saving in the limit cases for any choice of nref . The other considerations can then be
applied quite directly irrespective of the considered finite element, adapting only the choices of k, kg, kh to the chosen
discretization.

4.4 Estimate of computational complexity of various operations

Based on the number of DOFs and on the operations that are performed, we can estimate the computational complexity
of running the analysis on a uniform and on a density gradient-based mesh, in order to make a comparison.

In particular, in usual topology optimization settings, the analysis mesh is uniform, with ra = rd. Thus, we do not
have any remeshing to perform. The operations that are performed consist uniquely in computing the primal and adjoint
solutions, the cost, and the sensitivity in a mesh of nd elements.

Instead, whenwe use an adaptivemesh,wemust consider both the computation of the density gradient-based analysis
mesh and the cost to run the analysis in the density gradient-based mesh of na elements.

4.4.1 Computation of the analysis mesh

With regard to the adaptive analysis mesh, its construction requires, at every refinement, to project or interpolate the
density gradient 𝛾 from the design onto the analysis mesh computed by the previous refinement, and then to compute
its gradient. Since in each of these projections/interpolations the number of unknowns equals the number of DOFs of

TABLE 6 Threshold to saving in terms of number of elements and nodes with the density gradient-based adaptive mesh

nref nd n̂a %maximum saving

1 65,536 8192 87.5%

2 65,536 1024 98.4%

3 65,536 128 99.8%
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the analysis mesh at the current refinement, these operations are not expensive compared with the problems to be solved
in analysis. Indeed, the maximum number of unknowns will be given by na,nref−1, which occurs for the problem that is
needed to compute the last refinement and obtain the final density gradient-based mesh. This number is not large with
respect to nd, because (as seen in the previous subsections) the number of unknowns tends to decrease sharply even after
one refinement.

After we have computed ∇𝛾ai, we need to mark all elements where the gradient exceeds the tolerance. In this regard,
we need a loop over all elements of the analysis mesh computed by the previous refinement. Through the refinements,
we will then loop over a total of

natot = na0 + na1 + · · · + na,nref−1

indices. At each index of the loop, we will have an if statement, which will mark the element, depending on whether
∇𝛾 exceeds the tolerance in the element itself. Beyond this, in actual implementations, there may be other auxiliary
computations, such as maps between node and vertex numbering, passage of local indices in case of parallel computing,
etc.

Due to these many contributions, it is quite impractical to provide a precise estimate of the computational cost of
remeshing. Therefore, wewill later analyze numerically the time for building the adaptivemesh in someproblems. For the
moment, we just notice that, arguably, these computations are not particularly expensive with respect to the complexity
of the problem. Indeed, not only each mesh considered in the gradient-based refinements has significantly less variables
than the design mesh, but we also do not have to recompute the adaptive mesh at each iteration if we use the measure
of change of density distribution (13). Lastly, we remark that the loop and the operations that it contains can be easily
parallelized, further reducing the computational times.

4.4.2 Solution of analysis

Solving the analysis consists of the same operations irrespective of whether we are using an adaptive or a uniform anal-
ysis mesh. What changes is the mesh where the operations are performed. In particular, when a density gradient-based
analysis mesh is used, all operations are performed in a mesh of na nodes, where na can be significantly smaller than nd,
especially for sharp designs.

The computational complexity depends on several factors that depend on the choices performed in the implemen-
tation (including the solvers that are used to solve the primal and adjoint problems). Nonetheless, the complexity of
these operations increases (possibly, more than linearly) with the number of variables. The savings achieved by using an
adaptive analysis mesh are concentrated here.

Based on the analysis on the number of elements, the ratio of saved elements with adaptive mesh increases with
the size of the problem. Thus, it is reasonable to expect that the efficiency of the adaptive mesh scales well with the
problem, and that a good efficiency is obtained especially for large problems. This is substantiated hereafter by considering
a 2D test problem. The scalability in terms of the number of unknowns is later studied for several test problems also in
Section 5.

4.4.3 Efficiency comparison with uniform design mesh

We here substantiate the previous considerations by analyzing the computational times required to solve some test
problems. The numerical data and the computational setting is described in Section 5.1.

Considering the compliant mechanism with rd = 256, the total times (in seconds) required by the analysis
and by the computation of the gradient based mesh with various choices of nref is reported in Table 7. In
the table, ta denotes the total time required to perform the analysis, while tm denotes the total time to com-
pute the density gradient-based analysis mesh. This latter time is comprehensive of all the intermediate projec-
tions of the density gradient (one per adaptive refinement). The final designs obtained with and without adap-
tive analysis mesh are the same as in Figure 14. Similar results are obtained with all the other considered
choices of nref .
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We notice that the results obtained with density gradient-based analysis mesh require a significantly smaller
analysis time, while the optimized design remains similar and does not become less defined. The saving increases
with the number of refinements, but the improvement becomes less significant as nref increases. This is consis-
tent with the previous analysis on the savings in terms of the number of analysis elements. The computed design
has, instead, the same resolution and the same fine features of the one computed in the uniform (fine) analysis
mesh.

Furthermore, in all cases, the time required to compute the adaptive mesh is quite small with respect to the analysis
time. In this context, it is worth noticing that the remeshing time does not increase significantly when more refine-
ments are performed. This follows the fact that every additional refinement adds computations on coarser meshes, and
is consistent with what was expected.

Finally, Table 8 analyzes the scalability of the procedure. In this regard, we analyze how ta and tm change when rd is
changed, for the same number of adaptive refinements nref .

Table 8 shows that the density gradient-based adaptive mesh scales well with the dimension of the problem. Indeed,
while the computation of the adaptivemesh is not advantageous for smaller problems, computational times soon improve
(with respect to solving analysis in a uniform mesh) when higher resolutions are required. In this context, it is worth
noticing that while the analysis time in uniform mesh increases by a factor of ≈ 5 when the resolution is doubled, ta
in the adaptive mesh increases by a factor of ≈ 4 and tm increases by a factor around 2 (i.e., linearly with the resolu-
tion of the problem). This further demonstrates that the use of the proposed technique is particularly favorable in larger
problems.

This is yet more evident in large 3D problems. For instance, in the 3D problem of Figure 24D, where the discretization
was conducted with more than 21 million elements, we have

ta with nref = 4 6629,
tm with nref = 4 520. (35)

As regards the comparison with the uniform analysis mesh, we did not run the experiment with uniform anal-
ysis mesh, as it would be impractical due to the dimensions of the problem. Nonetheless, the time saving is
apparent from the analysis later performed in Section 5.4.2, and we can assume that tm is almost negligible with
respect to the time that would be required to perform the analysis on the uniform mesh. Finally, we remark that
also parallel computing was here used, confirming the efficiency of the density gradient-based mesh also in this
framework.

TABLE 7 Analysis of computational times for the designs of Figure 14

nref ta tm

Not adaptive 508.5 -

1 269.7 56.1

2 222.7 57.2

3 212.1 57.1

4 208.8 57.5

5 205.7 58.2

TABLE 8 Analysis of the scalability of computational times

rd ta not adaptive ta with nref = 4 tm with nref = 4

32 5.2 5.1 4.6

64 21.7 16.5 10.8

128 98.9 53.0 17.7

256 508.5 208.8 57.5
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5 NUMERICAL EXPERIMENTS

5.1 Numerical data and computational setting

Figure 13 summarizes the considered experiments. The problems involve classical topology optimization problems, such
as the compliantmechanismand theMBBbeam (see, e.g., References 1,33,34), and roof support problemswith distributed
load that could arise in applied contexts such as topology optimization of support structures for additive manufacturing
or of bridge generation35,36.

In all the problems, the Young’s modulus, the length L, and the force F are assumed to be unitary. The distributed load
in the 2D support problem is also unitary, while the distributed load of the 3D problems is 100 and is modeled by applying
normalized point-loads to all the nodes of the loaded boundary. In this latter case, the mesh of the loaded boundary is
always refined to avoid any possible inconsistency in the load application on the adaptive mesh. The Poisson’s ratio is
𝜈 = 0.3. In addition, in the compliantmechanism, the inlet is 0.06 L long and the outlet is 0.14 L long, both centered at half
the height of the domain. The elasticity constant of the spring is ks = 0.01. The problems are also subjected to a volume
constraint, with prescribed volume fraction V = 0.5 for the compliant mechanism and for the MBB beam, V = 0.25 for
the 2D support, V = 0.1 for the 3D bridge, and V = 0.04 for the 3D tree.

We solve the problems in the FEniCS environment37,38, stopping the procedures after ittot = 150 iterations. Densities
are assumed to be nodal-based and material properties are interpolated by the SIMP method1,39 with penalty p = 3. The
initial density distribution is given by a uniform density field, where all values are set equal to the maximum volume
fraction V admitted by the problem. The optimization is performed by the method of moving asymptotes (MMA).31 The
reported values of the final cost have been computed on a uniform mesh, in order to afford for consistent comparisons
between the optimality of the designs obtained by uniform and adaptive analysis. The analysis systems are solved directly
in 2D by sparse LU and iteratively in 3D by GMRES with Hypre AMG preconditioner.

Regarding the parameters of the density gradient-based analysis mesh, in all cases we set 𝜖cd = 0.05 and we initialize
𝜖ref = 0.1. We then relax 𝜖ref at later iterations, after the design starts forming, setting it to 0.5 from iteration 10 and to
1 from iteration 25. Unless otherwise specified, in 2D the adaptive mesh is used as soon as possible, that is, from itera-
tion 2 (at iteration 1, the initial density is uniform and the gradient is zero everywhere). In 3D, the adaptive mesh is used
immediately as well, but we wait a couple more iterations to avoid numerical difficulties given by uniform density distri-
butions. We then use the adaptive analysis mesh starting from iteration 5. For simplicity, when the problems are solved

F IGURE 13 Numerical experiments
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in series, the functions belonging to the density and analysis meshes are mapped by projections whenever is needed,
using the project command of FEniCS. When parallel programming is employed, the above command can no longer be
used between non uniform meshes (as they are partitioned differently, and each processor may lack of all the informa-
tion needed to perform the projection), and we use the LagrangeInterpolator command, which can interpolate between
meshes in parallel.

Regarding the computational setting, 2D experiments with less than 1 million nodes are solved in series on a laptop
provided with a dual core 2.7 GHz Intel Core i5 (Broadwell architecture) and with 8 GBs of memory. Larger 2D prob-
lems are, instead, solved on an Azure Standard_D3_v2 computer, with four virtual CPUs and 14 GiB of memory. Finally,
3D experiments are performed on an Azure’s Standard_HB120rs_v2 machine, which is provided with 120 virtual CPUs
(processor: AMD EPYC 7V12) and 456 GiB of memory.

To evaluate the efficiency of the proposed mesh, we often provide measures associated to the number of DOFs. This
is motivated by the fact that a direct wall-clock time comparison would be less meaningful due to the differences in the
computational setting, as pointed out also in Reference 27. Thus, we use the measure Ea, which we define, similarly to
[27, Eq. (36)], as

Ea ∶=

∑ittot
k=1

(

n(k)DOF,design
)ns

∑ittot
k=1

(

n(k)DOF,analysis
)ns

. (36)

In the previous expression, ns relates the DOF number to the computational effort when a sparse linear solver is
used27,40. As in Reference 27, we set ns = 1 in 2D and ns = 4∕3 in 3D. In addition, we also report the efficiency measure

E(end)
a ∶=

(

n(end)DOF,design

)ns

(

n(end)DOF,analysis

)ns
, (37)

which refers to the final design, which is stable and with low grayness. Therefore, E(end)
a gives an idea of the efficiency we

could expect if more iterations were performed.

5.2 Compliant mechanism

First, let us consider the 2D compliant mechanism. Densities are filtered by an isotropic PDE filter41,42 with filter radius
rf = 3. Here, rf must be intended to characterize the actual filter radius in terms of the number of elements in the filtering
(see also Reference 42). The final designs obtained with uniform and adaptive analysis mesh with various choices of the
number of adaptive refinements nref are reported in Figure 14. The design mesh is made of 131,072 finite elements. We
also report the numerical value of the final cost and the last analysis mesh in all cases.

The designs in Figures 14A–F are almost identical. Also the numerical values of the final cost are practically the
same: the difference is always smaller than 0.5%. Therefore, the density gradient-based analysis mesh is able to detect the
topology change and to provide a sufficiently accurate solution of the analysis problems. This applies irrespectively of the
number of adaptive refinements that are performed. The same happens alsowhen nref = 6 and nref = 7, whose designs are
not reported for compactness but whose results are reported in Table 9. It is worth noticing that the issue of QR-patterns
does not arise, although in these cases the resolution of the initial analysis mesh is very coarse. This is motivated by the
fact that the ra = rd at solid-void interfaces constitutes an “implicit” upper bound for the coarsening level of the analysis
mesh, especially in the more critical regions of the design. This can be noticed by the final analysis meshes reported in
Figure 14. The choice of nref does not appear, then, particularly critical and it is mainly based on efficiency reasons.

Nonetheless, nref cannot be arbitrarily large, either: indeed, the resolution of the initial analysis mesh, ra0, must be
sufficient to activate the gradient-based refinements. The limit case when this does no longer happen for the analyzed
problem is represented in Figure 14G, where eight density gradient-based refinements were performed starting from an
initial uniform mesh of resolution ra0 = 1. In this case, the only nodes of the starting mesh are at the boundaries of the
domain, and the design is not detected at all. No density gradient-based refinement is, then, triggered, and the analysis
mesh remains extremely coarse everywhere during all iterations of the procedure. As a consequence, the mesh cannot
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F IGURE 14 Compliant mechanism, final designs with rd = 256. Analysis performed on density gradient-based adaptive meshes built
with various choices of the number of refinements nref

detect any topology change and the optimizer is unable to build the optimized design. Nonetheless, this limit case can
be easily avoided: we have shown in the previous section that 3–4 refinements are enough to achieve great part of the
improvement in efficiency, and limiting the number of refinements is then a viable way to avoid the above and other
numerical issues. In alternative, it is possible to refine also elements that contain boundary nodes close to applications
points of loads and boundary conditions.

At the same time, the cost of the analysis was significantly reduced by the adaptivemesh. In this regard, Table 9 reports
the details of the efficiency of the density gradient-based analysis mesh. Beyond Ea and E(end)

a , we also report the final
number of elements in the last computed analysis mesh, na, the relative saving 𝛿n as in (19), and the ratio ca∕cu, where
ca and cu are the final values of the objective for the designs obtained by performing the analysis in the adaptive and in
the uniform mesh, respectively.

The values of Ea and of E(end)
a in Table 9 confirm that the density gradient-based analysis mesh improves the efficiency

of the solution of the analysis problems not only at the last iterations (when the density gradients are sharp and do not
change much between one iteration to the other), but also throughout the entire optimization process, which includes
the iterations when the design is being built and large regions with nonzero density gradient are present. Furthermore,
they further confirm that we achieve almost the entire efficiency gain when we perform 3–5 refinements. Finally, the
optimized design and the corresponding cost remains almost identical to the cost computed in the uniform design mesh,
as testified by ca∕cu. Therefore, the solution of the analysis problems is sufficiently accurate in all the computed density
gradient-based meshes.
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TABLE 9 Efficiency of the density gradient-based analysis mesh for the compliant mechanism problem with several choices of nref and
nd = 131,072

nref na 𝜹n Ea E(end)
a ca∕cu

1 73,519 43.9% 1.65 1.78 1.00014

2 62,077 52.6% 1.89 2.11 1.00165

3 59,538 54.6% 1.95 2.20 1.00123

4 58,892 55.1% 1.97 2.23 1.00095

5 58,015 55.7% 2.00 2.26 1.00471

6 58,623 55.3% 2.00 2.24 1.00698

7 57,936 55.8% 2.00 2.27 1.00857

F IGURE 15 Final designs obtained coarsening the mesh also at solid-void interfaces

On the other hand, if we reduce the resolution of analysis at the solid-void interfaces, the result changes significantly.
This is shown in Figure 15, which shows what happens if we coarsen the analysis mesh also at the solid-void interfaces.
In all cases, the analysis mesh was computed by four density gradient-based refinements (starting from an appropriate
mesh or resolution ra0), which led to the prescribed value of ra at solid-void interfaces.

In particular, we notice that, if we coarsen the resolution also where the density gradient is nonzero, soon some irreg-
ularities appear at the interfaces between solid and void. This already happens for ra = 128 at solid-void interfaces, as
shown in Figures 15A,D. In addition, some irregularities also form on the left of the upper and lower edges. Notice that
ra = 128 is still much finer than the resolution of the analysis mesh that we commonly used in solid and in void regions
with no contraindications. If ra is further reduced, the design becomes progressively more irregular and changes sig-
nificantly. Finally, further reductions of ra at solid-void interfaces completely prevent the formation of the design, as in
Figure 15C. In this case, the analysis mesh is not sufficiently fine as to detect any topology change.
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As regards scalability, Table 10 reports the efficiency of density gradient-based analysis meshes when the design
resolution is changed. The savings tend to increase with the dimension of the problem. The procedure is, then, well
scalable.

Finally, in Figure 16 we examine the convergence to the solution and the link between the design and the density
gradient-based analysis mesh, considering, for instance, the case with nref = 5.

In particular, Figure 16A shows how the (normalized) value of the cost changes during the optimization when the
analysis is solved in a uniform or in the density-gradient basedmesh.We notice that the convergence is almost identical in
the two cases, confirming the capabilities of the proposed adaptive analysis mesh. Furthermore, we observe that the cost
rapidly decreases at the first iterations, due to the fact that the design is being built and the topology changes significantly
at every iteration. At the same time, when the adaptive analysis mesh is used, the density gradient-based mesh changes
at every iteration: indeed, in Figure 16B we observe thatMcd in the first iteration is always above the threshold 𝜖cd, and it
therefore prescribes a remeshing.

At later iterations, the design stabilizes and the cost starts converging, as shown by Figure 16A. Also the behavior of
Mcd changes, and it exhibits a zig-zag trend with many values below 𝜖cd. This happens becauseMcd is computed based on
the density distribution at the current iteration, 𝛾 (k), and the density distribution at the last iteration when the remeshwas
performed, 𝛾 (old). Thus, until Mcd < 𝜖cd, 𝛾 (old) remains the same, while 𝛾 (k) is changing. The value of Mcd tends, then, to
increase as the topology gets farther from 𝛾

(old). Then, at some point, we will haveMcd ≥ 𝜖cd, which triggers the generation
of a new density gradient-based adaptive mesh and the update of 𝛾 (old). Thus, we have an abrupt decrease ofMcd. This is
exactly what we observe in Figure 16B after about 40 iterations.

In this regard, it is also worth noticing that the “peaks” of the zig-zagging behavior of Mcd (corresponding to the
remeshings) become increasingly far from one another. Indeed, at later iterations, the design is increasingly sharp
and stable, so that every iteration produces just a moderate change of topology. This further highlights the strict
link between the design and the density gradient-based mesh. Moreover, it also shows that the remeshing criterion
(14) allows to avoid performing many remeshings (in this experiment, almost two thirds of what we would other-
wise perform), thus improving the efficiency. The gain in efficiency would further increase if more iterations were
performed.

TABLE 10 Scalability of the procedure, considering design mesh of different dimensions and the same number of refinements
nref = 4 for the analysis mesh

nd na 𝜹n Ea E(end)
a

8,192 5,978 27.0% 1.33 1.37

32,768 17,541 46.5% 1.75 1.87

131,072 58,892 55.1% 1.97 2.23

F IGURE 16 History of the evolution of the cost and ofMcd for the case nref = 5
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5.3 2D elasticity problems

Let us now pass to 2D elasticity problems. Here, the PDE filter has radius rf = 10, and also theHeaviside filter43 is applied.
In the Heaviside filter, we set 𝜂 = 0.5, while the parameter 𝛽 (which regulates how sharp the filter is) is doubled every
25 iterations, starting from 𝛽 = 1 up to 𝛽 = 32. Considering, for instance, the 2D support problem in a design mesh of
409,600 finite elements, Figure 17 shows the effect of nref on the final design when the density gradient-based analysis
mesh is used.

As before, the design does not change significantly when the number of adaptive refinements is changed. Indeed,
the final design and the numerical value of the final cost remain almost unaltered, irrespective of nref . Details on the
efficiency and on the numerical values of the final cost for the designs in Figure 17 are reported in Table 11. The same
considerations performed with regard to the compliant mechanism can be repeated also in this case.

The 2D support is a problemwhose solution is expected to have a tree-like structure, with various thin features resem-
bling branches. When the design mesh is finer, we expect to be able to identify more of these thin features. It is then
interesting to evaluate whether our density gradient-based analysis mesh is able to detect the topology change in a suffi-
ciently accurate way as to obtain high-resolution final designs. In this regard, Figure 18 shows the final designs computed

F IGURE 17 2D support, final designs with rd = 160. Analysis performed on density gradient-based adaptive meshes built with various
choices of the number of refinements nref

TABLE 11 Efficiency of the density gradient-based analysis mesh for the 2D support problem with several choices of nref and for
rd = 160 (corresponding to nd = 409,600 design elements)

nref na 𝜹n Ea E(end)
a ca∕cu

1 208,615 49.0% 2.02 1.96 1.00048

2 171,515 58.1% 2.54 2.38 1.00015

3 164,893 59.7% 2.68 2.48 1.00207

4 163,400 60.1% 2.69 2.50 1.00331
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F IGURE 18 Final designs computed by density gradient-based analysis mesh with different design resolutions

TABLE 12 Comparison between the number of elements in uniform and density gradient-based analysis mesh (ra0 = 20) for the 2D
support

nd na 𝜹n Ea E(end)
a ca∕cu

25,600 17,168 32.9% 1.59 1.49 1.03280

102,400 56,084 45.2% 2.00 1.82 0.99320

409,600 164,893 59.7% 2.68 2.48 1.00207

1,638,400 398,567 75.7% 4.24 4.10 1.00043

with various design resolutions. In all cases, the minimum resolution of the analysis is ra0 = 20 and the filter radius (in
terms of the number of elements) is rf = 10. Fixing ra0 allows to compare more consistently the efficiencies of the adap-
tive analysis mesh at different design resolutions, while fixing rf allows us to more easily explore whether our adaptive
analysis mesh is able to support fine design details in higher resolution meshes. Differences among the results at design
resolutions should, then, not be attributed to mesh convergence issues. This is further substantiated by the fact that all
the designs are consistent with what we would get in a uniform analysis mesh, as later remarked with regard to the data
in Table 12.

As expected, the final design is more detailed and presents more fine features as the design mesh is refined. This
demonstrates that, although ra0 is the same in all cases, the density gradient-based adaptive analysis mesh is able to detect
the topology change also in fine features, when the design is represented in a fine mesh.

Notice that the previous cases include large scale problems: rd = 320 hasmore than 1million design elements and it is
then particularly important to use as few analysis elements as possible in order to achieve high efficiency. In this regard,
Table 12 reports the saving for the cases represented in Figure 18. We remark that all these designs are in good agreement
with what we would obtain with a uniform analysis mesh, as testified by the ratio ca∕cu that is reported in the table.

The saving in terms of elements scales well with the dimensions of the problem and, in the largest case, it exceeds
75%. This result, together with the fact that we have shown in Figure 18 that the used analysis mesh is able to detect the
topology change as a uniform analysis mesh, further testifies the efficiency and applicability of the proposed procedure.
Figure 19 is finally used to verify mesh convergence by considering what happens when we use as radius a physical
distance (in this case, we choose 0.0361271676301, which corresponds to rf = 10 in the problemwith rd = 80) for the first
three problems of Figure 18. The designs now do not differ when the resolution is increased, further substantiating the
fact that our adaptive analysis does not lead to mesh convergence issues.

Finally, for completeness, we report the result of another well-known 2D elasticity problem, that is, the MBB beam.
Also in this case, densities are filtered by both the PDE filter and the Heaviside filter, with the same parameters and
continuation methods of the previous experiment. Figure 20 shows two optimized designs computed in a design mesh of
153,600 and of 2,457,600 finite elements, respectively. The analysis is performed on a density gradient-based mesh with
ra0 = 20. The saving in terms of the number of elements is reported in Table 13.

The designs of Figure 20 are in agreement with results in the literature and with what we would obtain performing
the analysis in a uniform mesh. Indeed, the analysis in the density gradient-based mesh is again sufficiently accurate to
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F I GURE 19 Final designs with filter radius as the same physical distance in different design resolutions

F IGURE 20 2D MBB beam, final designs with different design resolutions and analysis computed in density gradient-based meshes
with ra0 = 20

TABLE 13 Comparison between the number of elements in uniform and density gradient-based analysis mesh for the 2D MBB beam

nd na 𝜹n Ea E(end)
a

153,600 70,521 54.1% 2.10 2.18

2,457,600 419,213 82.9% 4.37 5.87

detect the topology change, and to build fine features and small holes. At the same time, the saving in terms of elements
is significant and exceeds 80% in the largest problem. This is competitive with results in the recent literature: for instance,
although the results are not directly comparable for differences in the general settings and in the refinement algorithms,
the efficiency estimates in Reference 27 for the MBB beam with linear elements are between 2.05 and 5.40.

Finally, it is interesting to evaluate how the efficiency varies depending on the feature size. Indeed, designs withmany
fine features are characterized by a longer perimeter and, hence, bymore elementswith nonzero density gradient.We then
expect that the efficiency of the density gradient-based analysis will increase when a large PDE filter radius suppresses
the smaller features of the design, reducing the overall perimeter. We verify that this is indeed what happens considering,
for instance, the MBB beam problem. Indeed, the MBB beam is a well-known reference problem in the literature, and it
is easy to assess the validity of the obtained designs.

In particular, we consider a similar setting as the one by which Figure 20Awas obtained, but we performmore density
gradient-based refinements to emphasize the effect of the adaptive mesh and to analyze MBB problems where ra0 is
smaller than in Figure 13. In particular, we set rd = 80, ra0 = 5, and nref = 4. Modifying only the value of the filter radius,
we obtain the designs in Figure 21. The corresponding analysis of the efficiency of the density gradient-based analysis
mesh is reported in Table 14.
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F IGURE 21 Optimized designs and final density gradient-based mesh. Design resolution is rd = 80, while the analysis mesh is built by
four gradient-based refinements from ra0 = 5

TABLE 14 Efficiency of the density gradient-based analysis mesh when the PDE filter radius (and, hence, the feature size) changes.
Results corresponding to the designs of Figure 21. Design resolution is rd = 80 in all cases (nd = 153,600)

rf na 𝜹n Ea E(end)
a

10 67,544 56.0% 2.16 2.28

15 63,022 59.0% 2.23 2.44

20 50,747 67.0% 2.52 3.04

25 46,991 69.4% 2.54 3.28

The results demonstrate that the efficiency of the analysis mesh changes significantly when a large PDE filter radius
suppresses the finer features of the design. Indeed, the mesh is fine along the contour of the design, and reducing the
length of perimeter implies that less elements have nonzero density gradient (as long as the design is sharp). Furthermore,
we notice that Ea increases more slowly than E(end)

a when rf is increased. This confirms that the gain in efficiency is
particularly significant at later iterations, and is consistent with the previous analysis. Indeed, at first iterations, the design
will be gray and the density gradient-based analysis mesh will be fine in large regions of the domain, almost irrespective
of rf (and, arguably, a large rf may also worsen efficiency). On the contrary, after the design has formed, the density
gradient mesh is regulated mainly by the perimeter of the design, where all regions with ∇𝛾 ≠ 0 are now concentrated.
The efficiency then is significantly higher when the feature size is larger.

5.4 3D problems

In this subsection, we solve the 3D problems introduced in Figure 13. As we will be considering also large-scale 3D
problems, we solve iteratively the finite-element systems. This demonstrates that the analysis meshes generated by our
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technique do not lead to severe ill-conditioning of thematrices of the system, at least in the considered cases. Therefore, it
is possible to couple the adaptive analysis meshwith the inexact solution of the analysis problems for increased efficiency.
More precisely, in the following we solve the analysis problems by GMRES solver with Hypre AMG preconditioner. In
other occurrenceswhere the solution of a system is required (for instance, for the PDE filter) we useGMRESwithAdditive
Schwarz preconditioner. All these solvers have been applied through PETSc44,45, using their default settings.

5.4.1 3D bridge

Let us solve the 3D bridge problem. We apply both the PDE filter (with rf = 3) and the Heaviside filter (with the same
continuation methods as in 2D and with 𝛽max = 16). The 3D bridge as shown in Figure 13D is conceptually similar to
the 2D support. The main difference is that the zero displacement boundary condition is applied only at the sides of the
bottom part of the domain. Therefore, as in the 2D support, we expect that, increasing the resolution of the design, we
will have more fine features and branch-like structures, especially toward the top of the domain. It is then interesting to
verify whether the analysis can be solved in our density gradient-based mesh in a sufficiently accurate way as to detect
these thin structures. Figure 22 reports the results for rd = 16, rd = 32, and rd = 64 corresponding to design meshes of
98304, 786432, and 6291456 elements, respectively. In all cases, we set nref = 4. In order to improve the readability of the
results, we avoid the presence of discretization voxels by reporting the final designs before the application of theHeaviside
filter. No postprocessing is made, and the figures come directly by just using the command Iso Volume of the Paraview
software, with threshold 0.5. Notice that the following largest scale problems involve millions of variables in a 3D setting,
and have been solved on a computer cluster. It is, therefore, impractical to solve the problems also in a uniform analysis
mesh, where analysis takes much longer than in the adaptive setting. Thus, we here present only the results obtained
using adaptive analysis meshes.

When the resolution of the design mesh is increased, the final result becomes gradually smoother and finer branches
are detected. Therefore, the density gradient-based adaptive mesh behaves correctly also in three dimensions, with
iterative solvers and for large problems, where several processors are employed in parallel for solving the systems.

As regards efficiency and scalability, Table 15 reports the efficiency indices for the considered problems.
Table 15 allows to appreciate the dimension of the problems, the largest of which involves more than 6 million finite

elements. Therefore, the use of an adaptive analysismesh appears particularly desirable in order to reduce the dimensions
of the analysis systems by thousands and, possibly, millions of variables. This is indeed what happens: the efficiency

F IGURE 22 3D bridge for various design resolutions

TABLE 15 Efficiency of the density gradient-based analysis mesh for the 3D support problem

rd nd Ea E(end)
a ca

16 98,304 1.67 1.64 1.2E-2

32 786,432 2.39 2.64 8.7E-3

64 6,291,456 2.97 3.27 7.4E-3
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parameters Ea and E(end)
a both reveal a significant efficiency improvement, which translates into the saving of millions

of variables in the largest problem. This is particularly significant as the analyzed problem presents several regions with
nonzero density gradient (indeed, we have a long perimeter, given by the many pillars and fine features that are formed),
which forces to refine the analysis mesh in several regions. In all cases, the design is still rich of details and of fine features
(increasingly with the dimension of the design mesh), as shown in the previous figures, testifying that it is possible to
solve the analysis in a sufficiently accurate way. Finally, Table 15 also shows that the efficiency tends to increase with the
dimension of the problem. This reveals a good scalability of the procedure and is consistent with what we observed in
two dimensions.

Finally, Figure 23 shows that the final analysis mesh is finer along the contours of the design, while it is coarser in
the other regions. This is particularly apparent in the large hole below the bridge, but it can easily be noticed that the
mesh becomes rapidly coarser also in smaller zones, as soon as we are sufficiently far from a solid-void interface. Thus,
the density gradient-based analysis mesh works as expected in the 3D setting.

5.4.2 3D tree

Although the computational saving achieved with our adaptive mesh for the 3D bridge was significant, it was lim-
ited by the long perimeter of the bridge and of the supporting pillars. In the 3D tree example (see Figure 13E), we
solve a mechanically similar problem, but with a smaller volume fraction and with boundary conditions that are
expected to generate a single pillar (i.e., the trunk of the tree) and branches that should become progressively finer
as the design resolution is increased. The aim is to see whether fine features are detected by the adaptive analy-
sis in yet larger problems and to evaluate the computational saving in a 3D structure with smaller volume fraction
(which can lead to a shorter perimeter, but which can also complicate the generation of the design under the strict
volume constraint). Furthermore, this situation is more similar to other 3D examples in the literature on adaptive
analysis meshes, like in Reference 27. Regarding the dimension of the problems, beyond considering rd = 16, rd = 32,
and rd = 64 (which, in the domain of the problem, correspond to design meshes as large as the ones used in the
3D bridge experiments), we also solve a problem with rd = 96, which corresponds to a design mesh of 21,233,664
elements.

Setting V = 0.04 and performing three adaptive refinements to generate the density gradient-based analysis mesh, we
obtain the designs in Figure 24. The corresponding efficiency measures are reported in Table 16.

Figure 24 shows that the adaptive analysis mesh is able to detect the topology change in all experiments, includ-
ing the largest one. In this latter case, reported in Figure 24D, the resolution allows to form very fine columns and
thin “sheets” of material between branches. Moreover, the central pillar splits in two at the base, and tends to form
two different columns, further showing the ability of the procedure to detect new design features as the design mesh
is refined.

At the same time, the efficiency of the adaptive mesh increases with the dimension of the problem, as shown in
Table 16. In particular, in the largest case, Ea and E(end)

a are almost double than what we got in the largest 2D experiment

F IGURE 23 Optimized design and sections of the density gradient-based analysis mesh
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F I GURE 24 3D tree for various design resolutions

TABLE 16 Efficiency of the density gradient-based analysis mesh for the 3D tree problem

rd nd Ea E(end)
a ca

16 98,304 2.59 2.67 2.1E-3

32 786,432 4.00 4.51 1.6E-3

64 6,291,456 6.25 7.72 1.3E-3

96 21,233,664 8.50 10.55 1.4E-3

that we analyzed earlier. This demonstrates that the density gradient-based mesh is particularly effective in large 3D
problems. The value of E(end)

a is here particularly interesting: indeed, it characterizes the efficiency of the mesh at the last
iteration, where the design is finally sharp and stable. Thus, it can be viewed as the efficiency measure of the optimized
structure, which depends on the final perimeter. The obtained value of E(end)

a is much larger than Ea because Ea contains
the efficiency at the first five iterations, which are conducted in the uniform design mesh to obtain an initial distribution
of the density gradient. These iterations are characterized by unitary efficiency. When the efficiency of the adaptive mesh
is much larger than one, this penalizes considerably the final value of Ea. For instance, it is sufficient to start registering
Ea fromwhen the adaptive mesh is used to obtain Ea = 10.70. Finally, it is worth remarking that the peak efficiency of the
density gradient-based analysis mesh is 27.37, which is obtained at iteration 11, when the design is forming but thinner
branches have yet to be built.
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6 CONCLUSIONS

We have presented a density gradient-based adaptive refinement of the analysis mesh for efficient topology optimization.
In our procedure, the finite-element analysis is performed in an analysis mesh whose resolution is the same as the design
mesh only at elements where the gradient of the density function is not zero. Thismeans that the resolution of the analysis
mesh is fine only at solid-void interfaces and, possibly, in regions where intermediate densities are present. All other
regions (i.e., solid and void regions) are represented in a coarser grid. We generate such mesh by a sequence of successive
gradient-based refinements, whose number is arbitrary and depends on the desired coarseness of the mesh in regions
where the density gradient is zero.

We have shown that our analysis mesh is fine in all regions where the topology is changing, and that the density
gradient-based refinement is favorable also for ensuing consistency in interpolating/projecting quantities across design
and analysis meshes of different resolutions. Furthermore, we have shown that the proposed adaptive meshing scheme
is simple and that we can avoid remeshing whenever the topology does not change significantly from the last refinement.
This follows directly from the fact that the density gradient is an entity that is rich of physical information, and its use
as a refinement indicator allows to link the topology evolution to the analysis mesh density. Thus, we have regulated
the choice on whether or not to refine by a measure of the change of density distribution. Finally, although the density
gradient-based analysis mesh is not explicitly based on error evaluations, we have shown numerically in a test problem
that the error of the solution of the analysis (evaluated by an a posteriori measure) remains comparable with the error
obtained solving the analysis in the same mesh as the design.

We have also analyzed the efficiency of the proposed density gradient-based analysis mesh. In particular, we have
characterized the efficiency especially with regard to the number of elements (and, consequently, of nodes, and DOFs) of
the mesh, comparing the uniform and the density gradient-based settings. In this context we have performed theoretical
and numerical considerations, providing some thresholds and a heuristic estimate of the number of elements that wemay
expect to have in the density gradient-based mesh for an arbitrary number of refinements nref . This way, we have shown
that 3–4 refinements are sufficient to approach the maximum theoretical saving that our mesh can produce. Finally,
we have also commented on the computational complexity of the procedure and we have provided numerical data that
showed that performing the analysis in our density gradient-basedmesh leads to a significant reduction in analysis times,
while the time required for remeshing is, in comparison, modest.

Finally, we have solved several numerical experiments, both in the 2D and 3D settings. In this context, we have solved
large-scale 3D problems with more than 20 million elements, where the efficiency of the solution of the FE analysis
improved by 8.5 times when the density gradient-based adaptive mesh was used. We have shown that we compute almost
identical designs when the analysis is solved on a uniform or on the density gradient-based mesh. This applies also to
designs represented in fine design meshes, which are rich of fine features.

The formulation of the density gradient-based mesh is general and it can be adapted to different problems. This
affords for various future works. For instance, it is possible to require that the analysis mesh is finer than the design along
solid-void interfaces, which can be helpful in problems characterized by boundary layers. On the other hand, futureworks
can also include the study of whether (and how much) it is possible to coarsen also the solid-void interfaces in smooth
problems, in order to achieve a yet higher efficiency.
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ENDNOTES
* In practice, when not otherwise specified, we are going set itref = 2 in our experiments, and use the adaptive analysis from the beginning.
Nonetheless, it is convenient to incorporate itref in the formulation to make it more flexible and because computing a density gradient-based
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mesh at the first iteration is generally not reasonable, since the initial design does not come from a topology optimization step and a uniform
density distribution is often considered.
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