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Abstract. We generalize the Guth–Katz joints theorem from lines to varieties. A special case
says that N planes (2-flats) in 6 dimensions (over any field) have O(N3/2) joints, where a joint is
a point contained in a triple of these planes not all lying in some hyperplane. More generally, we
prove the same bound when the set of N planes is replaced by a set of 2-dimensional algebraic
varieties of total degree N , and a joint is a point that is regular for three varieties whose tangent
planes at that point are not all contained in some hyperplane. Our most general result gives upper
bounds, tight up to constant factors, for joints with multiplicities for several sets of varieties of
arbitrary dimensions (known as Carbery’s conjecture). Our main innovation is a new way to extend
the polynomial method to higher dimensional objects, relating the degree of a polynomial and its
orders of vanishing on a given set of points on a variety.

1. Introduction

Guth and Katz [18] proved the following “joints theorem”: N lines in R3 have O(N3/2) joints,
where a joint is a point contained in three of the lines that do not all lie on some plane. This
bound is tight up to a constant factor due to the following example: consider k generic planes—their
pairwise intersections give

(
k
2

)
lines and triplewise intersections give

(
k
3

)
joints.

The joints problem was first studied in Chazelle et al. [7]. Besides being an interesting problem
in incidence geometry, it also caught the attention of harmonic analysts due to connections to the
Kakeya problem as observed by Wolff [34]. This connection was further elucidated by Bennett,
Carbery and Tao [1] in their work on the multilinear Kakeya problem, which in turn allowed them
to improve bounds on the joints problem (prior to the Guth–Katz solution). Guth [13] later adapted
techniques from the solution of the joints theorem to prove the so-called endpoint case of the
Bennett–Carbery–Tao multilinear Kakeya conjecture, which can be viewed as a joints theorem for
tubes (also see the exposition in [15, Section 15.8]). Guth’s multilinear Kakeya result was later
generalized by Zhang [38] to slabs and neighborhoods of varieties (though the latter does not translate
back to the joints problem for flats).

The Guth–Katz solution of the joints problem highlights the importance of the polynomial method.
Their joints theorem was also a precursor to their subsequent breakthrough on the Erdős distinct
distances problem [19], which introduced a polynomial partitioning method that has found many
subsequent applications. One of the key steps in [19] dealt with a point-line incidence problem in R3

with additional constraints on the configuration of lines. These developments were partly inspired
by Dvir’s [8] stunningly short and elegant solution to the finite field Kakeya problem. Guth has also
successfully applied the polynomial method developed in this line of work to restriction problems
related to Kakeya [16, 17].

Since Guth and Katz’s original work, there has been significant effort in extending the joints
theorem [4, 5, 6, 12, 20, 21, 22, 23, 24, 25, 26, 37, 39]. Kaplan, Sharir, and Shustin [25] and
Quilodrán [26] independently extended the joints theorem from R3 to Rd, and these techniques and
results extend to arbitrary fields as stated below (also see [4, 9, 29]). Given a set of lines in Fd, a
joint is a point contained in d lines with independent and spanning directions. Throughout the
paper, F stands for an arbitrary field, and our constants do not depend on F.

Theorem 1.1. A set of N lines in Fd has at most CdNd/(d−1) joints, for some constant Cd.
1
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2 TIDOR, YU, AND ZHAO

Recently Yu and Zhao [37] proved that N lines in Fd have at most (d−1)!1/(d−1)

d Nd/(d−1) joints.
This leading constant is optimal, matching the above construction up to a (1 + o(1))-factor.

We generalize the joints theorem from lines to varieties, overcoming a fundamental difficulty
with the polynomial method that one quickly runs into—we will elaborate more on this later. A
representative case of our result says the following. Here a joint is a point contained in a triple of
planes not all lying in some hyperplane. All our bounds on joints in this paper are tight up to a
constant factor (depending on the dimension) due to a straightforward generalization of the example
in the first paragraph.

Theorem 1.2. A set of N planes in F6 has O(N3/2) joints.

In his PhD thesis, Ben Yang [35, 36] proved partial results giving an upper bound N3/2+o(1) when
F = R (and also more generally for bounded degree varieties in Rd—in contrast, our results on joints
of varieties do not require any bounded degree hypotheses). Yang’s results have two fundamental
limitations: (1) an error term in the exponent and (2) the methods only work over the reals. He used
a variant of the polynomial partitioning method [19], which requires real topology. More specifically,
Yang applied polynomial partitioning for varieties (due to Guth [14] and extended by Blagojević,
Blagojević, and Ziegler [2]) using bounded degree polynomials (due to Solymosi and Tao [27]), with
the latter requiring an error term in the exponent. We introduce a novel approach that avoids both
limitations.

The only other prior result on joints of higher dimensional objects says that, as a representative
example, a set of L lines and F planes in F4 has O(LF 1/2) joints, where now a joint is defined to be
a point contained in two lines and one plane, not all lying on a hyperplane (this result was recently
independently proved by Yu and Zhao [37] and Carbery and Iliopoulou [5]; Yang mentioned at the
end of his thesis [36] that he could also obtain this claim, though without details). Even the “next”
case of “line-plane-plane” joints was open before this work.

Incidence geometry and the polynomial method concerning higher dimensional objects often tend
to be substantially more intricate compared to problems that only involve lines and points. Our
work introduces a new way to tackle such problems. Let us highlight some other representative
works on higher dimensional incidence problems. Solymosi and Tao [27] introduced a bounded
degree variation of the polynomial partitioning method, used in Yang’s proof mentioned earlier,
to give nearly tight (up to a +o(1) error term in the exponent) bound for incidences between
points and k-dimensional varieties of bounded degree in Rd, in the spirit of the Szemerédi–Trotter
theorem [28] for point-line incidences in the plane. Using different methods, Walsh [32, 33] recently
developed powerful techniques for understanding incidences between sets of m-dimensional and
m + 1-dimensional varieties, thereby unifying a large body of incidence geometry results in the
literature. However, we do not see how to apply Walsh’s techniques for extending the joints theorem.
The above approaches use different forms of “partitioning” and involve iteratively restricting the
ambient space to a codimension-1 subvariety, which usually involves an increment in the degree of
the ambient variety. By contrast, our strategy does not use any form of partitioning.

The main innovation of our work is a new method of relating degrees and orders of vanishing for
multivariate polynomials. Earlier approaches, e.g., [27, 32, 33, 35, 38], consider multiple polynomials,
and are related to understanding Bézout’s theorem and possible inverses (see Tao’s blog post [30] on
inverse Bézout). Our approach instead only considers a single polynomial via parameter counting but
we have to be extremely delicate in choosing vanishing conditions. We motivate and explain these
ideas in Section 2. The polynomial method is already a powerful technique in discrete geometry,
analysis, number theory, and theoretical computer science, and we hope that our method for handling
higher dimensional objects will find additional applications.

The most general version of our result is Theorem 1.9 below, and it implies all the other statements.
Next we gradually introduce the various generalizations and explain the history. The reader who is
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only interested in the proof of Theorem 1.2 can safely skip the rest of this section and proceed to
Section 2 and Section 3 for the key ideas and the proof of Theorem 1.2.

1.1. Joints of flats. We extend Theorem 1.2 to flats of arbitrary dimensions. Given a collection
of k-flats (i.e., k-dimensional flats) in Fmk, a joint is defined to be a point contained in m of these
k-flats and not all contained in a single hyperplane.

Theorem 1.3. A set of N k-flats in Fmk has at most Cm,kNm/(m−1) joints, for some constant
Cm,k.

1.2. Multijoints. In the joints problem, instead of a single set of lines in Fd, we can consider d sets
of lines L1, . . . ,Ld in Fd and consider joints formed by taking one line from each Li (each point is
counted as a joint at most once, for now). This variation, known as “multijoints”, can be viewed as a
discrete analogue of the endpoint multilinear Kakeya problem. The following bound on multijoints
was conjectured by Carbery, proved in F3 and Rd by Iliopoulou [24] and in general Fd by Zhang [39].
Note that the the multijoints theorem is equivalent to the joints theorem if |Li| are all within a
constant factor of each other.

Theorem 1.4 (Multijoints of lines). Given d sets of lines L1, . . . ,Ld in Fd, the number of joints
formed by taking one line from each Li is at most Cd(|L1| · · · |Ld|)1/(d−1) for some constant Cd.

We extend the multijoints theorem from lines to flats. Here a point is a joint formed by several
flats if these flats contain this point and have spanning and independent directions.

Theorem 1.5 (Multijoints of flats). Given F1, . . . ,Fr, where Fi is a set of ki-flats in Fd, with
d = k1 + · · · + kr, the number of joints formed by taking one flat from each Fi is at most
Ck1,...,kr(|F1| · · · |Fr|)1/(r−1) for some constant Ck1,...,kr .

1.3. Varieties. We extend the joints theorem from flats to varieties. Generalizing earlier notions, a
point p is a joint formed by several varieties V1, . . . , Vr if p is a regular point for each Vi and their
tangent spaces at p have independent and spanning directions. (Recall that a point p is a regular
point of a variety V if the Zariski tangent space TpV has the same dimension as V .)

The proof of the joints theorem can be easily adapted from lines to algebraic curves (e.g.,
see [25, 26]). Here we extend the joints theorem to higher dimensional varieties. Given a set V of
varieties, let degV denote the sum of the degrees of the elements of V .

Theorem 1.6 (Joints of varieties). A set V of k-dimensional varieties in Fmk has at most Cm,k(degV)m/(m−1)

joints for some constant Cm,k.

Remark. In this paper, all varieties are assumed to be irreducible. We do not lose any generality for
the joints problem with this assumption as one can always replace any algebraic set by its irreducible
components.

Like earlier, we prove the result more generally for multiple sets of varieties.

Theorem 1.7 (Multijoints of varieties). Given V1, . . . ,Vr, where each Vi is a set of ki-dimensional
varieties in Fd, where d = k1 + · · ·+ kr, the number of joints formed by taking one variety from each
Vi is at most Ck1,...,kr(degV1 · · · degVr)1/(r−1) for some constant Ck1,...,kr .

Previously, Iliopoulou [24] proved the multijoints theorem for algebraic curves of bounded degree
in Rd (here by bounded degree we mean that the leading constant C depends on the maximum
degree of the curves), but it was unknown how to to generalize from Rd to Fd, despite knowledge of
the joints theorem for a single set of curves. This is because Zhang’s proof [39] of the multijoints
theorem for lines (Theorem 1.4) does not easily adapt to curves.

In the setting of real varieties, Yang [35] proved an upper bound of the form Cε(|V1| · · · |Vr|)1/(r−1)+ε
for all ε > 0 where Cε also depends on the maximum degree of the varieties.
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1.4. Joints with multiplicities. In the above formulations of joints and multijoints theorems,
each point is counted as a joint at most once. Motivated by Kakeya problems, Carbery suggested a
generalization where joints contained in many lines are counted with multiplicity. The following
theorem about joints of lines with multiplicities was conjectured by Carbery, proved in R3 by
Iliopoulou [21], and settled in general by Zhang [39].

Theorem 1.8 (Joints of lines with multiplicities). Let L1, . . . ,Ld be multisets of lines in Fd. Let
M(p) denote the number of tuples of lines (`1, . . . , `d) ∈ L1×· · ·×Ld that form a joint at p. Summing
over all such joints p, we have∑

p

M(p)1/(d−1) ≤ Cd(|L1| · · · |Ld|)1/(d−1),

where Cd is some constant.

Theorem 1.8 strengthens Theorem 1.4 (multijoints of lines). The exponent in M(p)1/(d−1) on the
left-hand side is optimal as can be easily seen by duplicating every element in each set of lines m
times for some large m.

Yang [35] studied a generalization of Theorem 1.8 to joints of varieties with multiplicities, but
as earlier, his upper bound only holds in Rd, carries an +o(1) error term in the exponent, and the
leading constant depends on the maximum degree of the varieties.

Our main result, below, generalizes the above to joints of varieties counted with multiplicities. It
generalizes all previously stated results.

Theorem 1.9 (Joints of varieties with multiplicities). For each i = 1, . . . , r, let Vi be a multiset of
ki-dimensional varieties in Fd, where d = k1 + · · ·+ kr. Let M(p) denote the number of tuples of
varieties (V1, . . . , Vr) ∈ V1× · · · × Vr that form a joint at p. Summing over all such joints p, we have∑

p

M(p)1/(r−1) ≤ Ck1,...,kr(degV1 · · · degVr)1/(r−1),

where Ck1,...,kr is some constant.

Our proof of Theorem 1.9 even in the case of lines is different from that of Zhang [39]. By our
method, there is no significant difference between the proofs of Theorem 1.7 (without multiplicities)
and Theorem 1.9 (with multiplicities).

1.5. Constants. We restate Theorems 1.7 and 1.9 in the following equivalent form with explicit
constansts. This superficially more general formulation (formulated in [37] for flats) exposes a
difficulty hierarchy of the problem. It also allows us to discuss the leading constants. While the
constants below are optimal for (r, k1,m1) = (1, 1, d), they are likely not tight in all other cases.

Theorem 1.10 (Main theorem). Let k1, . . . , kr,m1, . . . ,mr be positive integers. For each i = 1, . . . , r,
let Vi be a finite multiset of ki-dimensional varieties in Fd, where d = m1k1 + · · ·+mrkr. We only
consider joints p formed by choosing mi unordered elements from Vi for each i = 1, . . . , r, and we
write M(p) for the number of such choices.

(a) (without multiplicities) The number of joints is at most

Ck1,...,kr;m1,...,mr ((degV1)m1 · · · (degVr)mr)1/(m1+···+mr−1) ,

where

Ck1,...,kr;m1,...,mr =

(
d!∏r

i=1 ki!
mimmi

i

)1/(m1+···+mr−1)
.

(b) (with multiplicities) Summing over all joints p, one has∑
p

M(p)1/(m1+···+mr−1) ≤ C ′k1,...,kr;m1,...,mr
((degV1)m1 · · · (degVr)mr)1/(m1+···+mr−1) ,
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where

C ′k1,...,kr;m1,...,mr
=

(
d!∏r

i=1 ki!
mimi!

)1/(m1+···+mr−1)
.

Let us explain how various specializations of Theorem 1.10 correspond to earlier results.
(1) (Joints of lines) Theorem 1.1 corresponds to Theorem 1.10(a) for r = 1, k1 = 1, m1 = d, and

degree 1 varieties. In this case, the optimal constant C1;d = (d− 1)!1/(d−1)/d was determined
previously in [37] and matches the constant above.

(2) (Joints of flats) Theorem 1.3 corresponds to Theorem 1.10(a) for r = 1, k1 = k, m1 = m,
d = km, and degree 1 varieties.

(3) (Multijoints of lines) Theorem 1.4 corresponds to Theorem 1.10(a) with r = d, (ki,mi) = (1, 1)
for all i, and degree 1 varieties. This case was previously known [39]. The constant in this
case was improved to C1,...,1;1,...,1 = d!1/(d−1) in [37] (matching above) though it is likely not
optimal. Without consideration of constants, Theorem 1.4 also easily implies the setting
allowing mi ≥ 1 by duplicating the sets of lines.

(4) (Multijoints of k-flats) Theorem 1.5 relaxes the ki = 1 assumption above to arbitrary ki ≥ 1.
Previously the only other known case is (r; k1, k2;m1,m2) = (2; k, 1; 1, d − k), i.e., a set
of k-flats and a set of lines, where each joint is formed by one k-flat and d − k lines, as
proved independently by [5] and [37] (and stated without proof in [35]). Even the “next”
case of (r; k1, k2;m1,m2) = (2; 2, 1; 2, 1) was previously unknown, corresponding to having a
joint being formed by two flats and one line. Likewise, the case (r; k1, k2, k3;m1,m2,m3) =
(3; 2, 1, 1; 1, 1, 1) allowing one set of flats and two different sets of lines was also previously
unsolved.

(5) (Varieties) Theorems 1.6 and 1.7 relax the degree 1 assumption, generalizing from flats to
varieties. The only previously known case was for a single set of curves [25, 26], namely r = 1
and k1 = 1, as well as multiple sets of bounded degree curves in Rn [24]. Theorem 1.7 is
equivalent to Theorem 1.10(a) (other than constants).

(6) (Multiplicities) Finally, adding in considerations of joint multiplicities, Theorem 1.8 is
equivalent to Theorem 1.10(b) for lines, while Theorem 1.9 is equivalent to Theorem 1.10(b)
in general (other than constants). For a single set of lines, i.e., (r, k1,m1) = (1, 1, d), our
result gives C1;d = 1.

While we know the optimal constant for joints of lines, our proof does not seem to give the optimal
constant for flats or varieties. For r = 1 we conjecture that the optimal constant in Theorem 1.10 is
Ck,m = (m!/mm)1/(m−1)Nm/(m−1) for all k and m, agreeing with joints of lines (k = 1). The first
open case (k,m) = (2, 3) is stated below.

Conjecture 1.11. A set of N planes in F6 has at most (
√

2/3 + o(1))N3/2 joints.

1.6. Outline. We begin by motivating and describing, in Section 2, the key new ideas in our
method. We then give, in Section 3, the proof in the special case of joints of planes in R6, which
is representative of the general result. To obtain the result in full generality, we use higher order
directional derivatives with respect to local coordinates along a variety, as well as Hasse derivatives
to deal with arbitrary fields, and they are both discussed in Section 4. The complete proof of the
main theorem then appears in Section 5.

2. Key ideas

2.1. Joints of lines. We begin by recalling the proof of Theorem 1.1 on joints of lines in R3 following
[25, 26] (also see Guth’s book [15, Section 2.5] for a nice exposition). The proof exposes two tools
that are essential in nearly all applications of the polynomial method: parameter counting and
vanishing lemma.
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Let R[x1, . . . , xd]≤n denote the space of polynomials with degree at most n. Using that its
dimension is

(
n+d
d

)
, we have the following simple yet extremely useful linear algebraic consequence.

Lemma 2.1 (Parameter counting). Given a set of fewer than
(
n+3
3

)
points in R3, there exists a

nonzero polynomial of degree at most n that vanishes on all these points.

Given a set of N lines forming J joints in Rn, let g be a nonzero polynomial of minimum degree
that vanishes at all J joints. By the parameter counting lemma, we have deg g ≤ CJ1/3 for some
constant C > 0.

The following elementary fact is key to the polynomial method.

Lemma 2.2 (Vanishing lemma). If a degree n polynomial vanishes at more than n points on a line,
then it vanishes on the whole line.

We claim that some line contains at most CJ1/3 joints. Suppose, for contradiction, that every
line contains more than CJ1/3 joints. Since deg g ≤ CJ1/3, the vanishing lemma implies that g
vanishes on each of the N lines. Since each joint is contained in three lines in spanning directions,
the gradient ∇g vanishes at every joint. Thus ∂g/∂x, ∂g/∂y, ∂g/∂z all vanish at every joint. At
least one of these partial derivatives is a nonzero polynomial of degree smaller than that of g, thereby
contradicting the minimal degree assumption on g.

Thus some line contains at most CJ1/3 joints. We can then remove this line and all its joints,
and repeat the argument to find another line with at most CJ1/3 joints. After we have removed all
the lines, we have removed at most CJ1/3N joints, so J ≤ CJ1/3N , and hence J = O(N3/2). This
completes the proof in the case of R3. This proof also extends to Fd.

2.2. Vanishing on planes. How can we try to adapt the above proof to show that N planes in R6

form O(N3/2) joints? The main obstacle is to generalize the vanishing lemma from lines to planes.
The above proof would extend verbatim to joints of planes if the answer to the following question
were yes.

Attempt I. Given distinct points p1, . . . , p(n+2
2 ) in the plane, if g ∈ R[x, y]≤n satisfies the vanishing

conditions g(p1) = 0, . . . , g(p(n+2
2 )) = 0, does this imply that g is identically zero?

Of course, the answer to this question is no, since the vanishing locus of the polynomial on a plane
could be a curve. Clearly it is impossible to force a two-variable polynomial to vanish by forcing it
to vanish at any finite number of points. Instead of asking for polynomials to vanish at the joints,
we can ask them to vanish to high multiplicity at the joints. This idea, known as the “method of
multiplicities” [10], has been fruitful in the study of the joints problem [39, 37], and it was also used
to improve bounds on the finite field Kakeya problem [8, 3].

Attempt II. Given a point p1 in the plane, if g ∈ R[x, y]≤n vanishes to order more than n at p1;
equivalently, if g satisfies the vanishing conditions ∂i+jg

∂xi∂yj
(p1) = 0 for all 0 ≤ i + j ≤ n, does this

imply that g is identically zero?

The answer to this one is yes, and it shows how using derivatives creates a correct vanishing
lemma. However, this vanishing lemma is completely useless for our application since we want to
use this vanishing lemma somehow to bound the number of joints lying on a plane and this method
ignores all of the joints but one on each plane. Perhaps we can create a correct and useful vanishing
lemma by combining the ideas of Attempts I and II.

Attempt III. Given distinct points p1, . . . , pm in the plane with m ∼ n2/s2, if g ∈ R[x, y]≤n vanishes
to order at least s at each point, does this imply that g is identically zero?

Unfortunately the answer is no again. Indeed g(x, y) = ys vanishes to order s on the entire x-axis.
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We have dimR[x, y]≤n =
(
n+2
2

)
, less than the number of linear constraints on the coefficients of g

imposed by asking g to vanish to order at least s on Θ(n2/s2) given points (each such point gives(
s+2
2

)
constraints). This counterexample must imply that some of these linear constraints are linearly

dependent. Our proof strategy is to build a vanishing lemma using a linearly independent set of
such constraints on the coefficients of g.

Remark. Another very natural strategy for extending the proof of joints of lines to planes is to
consider, instead of a single polynomial that vanishes on all the joints, now a pair of polynomials
that vanish on all the joints. For this approach to be useful, one would like the pair of polynomials,
when restricted to each plane, to either be coprime or one of them to vanish. This seems like a
difficult condition to satisfy and we suspect that it is not possible, at least if one wants the degrees
of the polynomials to be small.

This problem appears to be related to the inverse Bézout problem. Given a set of N points in
R2, can one always find a pair of coprime polynomials P,Q both vanishing on all N points and
(degP )(degQ) = O(N)? The answer is no, by putting half of the N points on a

√
N/2×

√
N/2

grid and the other half on a line (this grid-and-line example shows up again in our discussion below).
A partial converse to Bézout’s theorem is known in 2-dimensions but open in higher dimensions (see
Tao [30]).

2.3. Key idea I: collecting linearly independent vanishing conditions. We define a vanishing
condition to be a single homogeneous linear constraint on the coefficients of a polynomial g ∈ R[x, y]≤n
that arises from requiring some particular higher order directional derivative to vanish at some
point. For example, for a two variable polynomial g, some examples of vanishing conditions are
(a) g(2, 4) = 0, (b) ∂g

∂x(2, 1) = 0, and (c)
(
∂2g
∂x2
− ∂2g

∂x∂y

)
(−1, 2) = 0. For a positive integer r, an

r-th order vanishing condition on g at p is a vanishing condition of the form Dg(p) = 0 where D is
an (r − 1)-th order derivative operator, i.e., a linear combination of ∂r−1/∂r1x1 · · · ∂rdxd for some
r1 + · · ·+ rd = r− 1. (We will not need mixed order vanishing conditions for joints of flats, but they
will be needed for joints of varieties.)

For now, let us focus on a single plane and study vanishing conditions on g ∈ R[x, y]≤n. Vanishing
conditions can be viewed as linear functionals on the vector space R[x, y]≤n, though it will be helpful
later to also keep track of the (derivative operator, point) pair (D, p) that generates the vanishing
condition Dg(p) = 0.

We now devise a procedure for selecting a basis of linear functionals on R[x, y]≤n.
As a first attempt, we fix an arbitrary order on P, say p1, . . . , pr and cycle through the points

(the vertical bars are a visual aid separating the epochs)

p1 p2 · · · pr | p1 p2 · · · pr | p1 p2 · · · pr | · · · .
We cycle through the points in the above sequence and maintain a linearly independent set of
vanishing conditions on R[x, y]≤n, starting from an empty set of vanishing conditions. The r-th
time (r = 1, 2, . . . ) that we see a point p, we add to our existing collection a maximal subset of r-th
order vanishing conditions so that our collection of vanishing conditions always remains linearly
independent as a set of linear functionals on R[x, y]≤n. Eventually, the process terminates once we
have collected a basis of

(
n+2
2

)
linear functionals on R[x, y]≤n.

Although there is some choice in the above process in deciding which vanishing conditions to
add to our collection at each step, the number of vanishing conditions added at each step does not
depend on this choice. We would like to understand and control the number of vanishing conditions
attached to each point as we run through the process. However, this does not seem easy. We do not
know how to compute these numbers (for large n) even for an explicitly given set of points.

More importantly, the process does not always evenly assign the vanishing conditions across all
the points. For example, suppose we have |P| = 2t2, with half of the points in P forming an t× t
grid (a high-degree part), and the other t2 points all lying on a single generic line (a low-degree
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part). As we run through the above process, we encounter significantly more linear dependencies
among vanishing conditions at points on the line than on the grid. For large n, at the end of the
process, each point on the grid receives on the order of t times as many vanishing conditions as each
point on line. This is an undesirable situation, since the process leads to an unequal distribution of
vanishing conditions, effectively “ignoring” the points on the low-degree algebraic structure.

2.4. Key idea II: handicaps and priority order. To address the uneven distribution of vanishing
conditions across points, we give the “disadvantaged” points a head start and cycle just among
themselves many times before we cycle through the entire set of points. For example, in the earlier
grid-and-line example, if p1, . . . , pr/2 are points on the line and pr/2+1, . . . , pr are points on the grid,
then we give points on the line a head start, e.g.,

p1 p2 · · · pr/2 | · · · | p1 p2 · · · pr/2 | p1 p2 · · · pr | p1 p2 · · · pr | · · · .
More generally, we give each point p a handicap αp ∈ Z corresponding to the number of rounds of
head start.

For example, suppose there are five points labeled a, b, c, d, e that we would cycle through in this
order. Now we assign handicaps 0, 1, 3, 0,−1 to a, b, c, d, e respectively. Then, for instance, c starts
in round −3 and b starts in round −1. So we process the points in the following priority order :

c | c | b c | a b c d | a b c d e | a b c d e | · · · .
We now run the same vanishing condition collection process as earlier with this sequence of points.
The r-th time (r = 1, 2, . . . ) that we see a point p, we append to our existing collection a maximal
non-redundant set of r-th order vanishing conditions at p.

We would like to assign handicaps in a way so that all joints are treated equitably in the distribution
of vanishing conditions (what this means precisely will be explained later). However, it appears to be
a very difficult problem to determine how exactly the distribution of vanishing conditions depends
on the handicaps. Intuitively, as in the grid-and-line example, we want to assign more handicap to
points that are part of low-degree algebraic substructures, but it is far from obvious how to make
this notion precise and useful.

2.5. Key idea III: existence of a good handicap via compactness/smoothing. Instead of
explicitly assigning handicaps, we shall indirectly prove the existence of a good choice of handicaps
via a compactness/smoothing argument. (Strictly speaking, we do not actually invoke compactness
here since all our domains are finite, but we believe that compactness offers a helpful perspective as
the argument here is a significant generalization of the earlier compactness argument giving tight
bounds for joints of lines [37].)

Fix a joints configuration. Let n be large and consider the function

handicaps α ∈ ZP −→ partitions of
(
n+2
2

)
among P (2.1)

where the partition records the final number of vanishing conditions assigned to each point. While it
appears to be difficult to compute this function explicitly, we can show that it has the following
three properties.

Bounded domain. If one point has a much bigger handicap than another point, then the latter
point gets assigned no vanishing conditions since the process would have finished before the first
appearance of the latter point. Such a situation will never be desirable, so we only need to consider
cases where the handicaps are all bounded (as a function of n).
Monotonicity. Suppose we increase the handicap by one at a subset of points while holding others
fixed. Then the number of vanishing conditions assigned to this subset of points cannot decrease,
and the number of vanishing conditions assigned to the other points cannot increase. Indeed, the
points with the increased handicap now appear earlier in the priority order, and thus cannot receive
fewer vanishing conditions than before the change.



JOINTS OF VARIETIES 9

Lipschitz continuity. A small change in the handicap assignments can only induce a small change in
the number of vanishing conditions at each point. This property is intuitively reasonable, but it
requires a proof.

With these three properties, we can iteratively increase the handicaps at points that end up with
too few constraints, so that we eventually balance out the distribution of constraints across all joints.

The eventual implicit assignment of handicaps across joints appears to somehow identify the
“algebraicity” of each point in the configuration by assigning higher handicaps to points lying in
lower-degree algebraic substructures. However, we do not know how to make this algebraicity
intuition precise.

Remark. This idea of implicitly assigning handicaps came up in a simpler form previously in the
work of Yu and Zhao [37] in determining the tight constant for the joints theorem of lines. There
one does not have to consider any priority order or iterative process of adding constraints as we do
here, though one does end up proving, via compactness, the existence of a handicap (though not
called by that name) along with other parameters for controlling the order of vanishing at each joint.

2.6. Putting everything together: a new vanishing lemma. Suppose we have a set F of
planes in R6 forming joints J . For a choice of handicaps ~α ∈ ZJ , and a large integer n, we can
run the above vanishing condition collection procedure separately on each plane (using handicaps
~α restricted to points on the plane). On each plane F ∈ F , and at each joint p on the plane F ,
the procedure attaches a set Dp,F = Dp,F (~α, n) of derivative operators. Combining these vanishing
conditions over all joints on F then gives a basis of linear functionals on the space of polynomials g
on F of degree at most n, where each basis element is a vanishing condition of the form Dg(p) = 0
with p ∈ F and D ∈ Dp,F being a linear combination of higher order directional derivatives along F .
With this data, we can now state our new vanishing lemma for joints of planes.

Vanishing lemma for joints of planes (Lemma 3.9). With the above setup, if g ∈ R[x1, . . . , x6]≤n
satisfies D1D2D3g(p) = 0 whenever Di ∈ Dp,Fi are three derivative operators attached to three planes
F1, F2, F3 forming a joint p ∈ J , then g = 0.

Note that we are choosing a minimal set of derivative operators on each plane (as we chose a
basis of linear functionals). The vanishing lemma would be trivial if each Dp,Fi were the full set of
directional derivative operators at p along F .

Also, our proof of the vanishing lemma only works if we build the vanishing conditions following
the priority order—we would not be able to say much if the joints were processed in some other
arbitrary manner.

By parameter counting, this new vanishing lemma implies the following inequality. Summing
over joints p formed by a triple of planes F1, F2, F3, we have∑

(p,F1,F2,F3)

|Dp,F1 | |Dp,F2 | |Dp,F3 | ≥ dimR[x1, . . . , x6]≤n =

(
n+ 6

6

)
.

The left-hand side is the number of linear constraints on g of the form D1D2D3g(p) = 0 in the
vanishing lemma. Indeed, if this inequality were not satisfied, by parameter counting there would be
a non-zero polynomial g of degree at most d satisfying these vanishing conditions. However, the
vanishing lemma implies that such a g is identically zero, a contradiction.

Recall that all these quantities |Dp,F | depend on n as well as the handicap ~α. We can now apply
a compactness/smoothing argument to choose a handicap ~α that minimizes

max
p
|Dp,F1 | |Dp,F2 | |Dp,F3 | −min

p
|Dp,F1 | |Dp,F2 | |Dp,F3 | .

Using the three properties (bounded domain, monotonicity, Lipschitz continuity) of (2.1), we can
deduce that the above difference must be negligible, i.e., o(n6), since otherwise we can significantly
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reduce the above difference by increasing the handicap by 1 at a subset of points p with small
|Dp,F1 | |Dp,F2 | |Dp,F3 |.

It follows that we can choose handicaps so that the product |Dp,F1 | |Dp,F2 | |Dp,F3 | is roughly constant
across all (p, F1, F2, F3). We also know that for each plane F ,

∑
p∈F |Dp,F | = dimR[x, y]≤n =

(
n+2
2

)
since we have a basis of linear functionals on the space of polynomials on F with degree at most n.
The conclusion |J | = O(N3/2) then follows from a short calculation using the AM-GM inequality
(see the end of Section 3).

In Section 3, we flesh out these ideas to give a complete proof of joints of planes in R6. In Section 4
we discuss two further modifications to the above proof technique. To deal with varieties, we modify
our notion of higher order directional derivatives. Geometrically we are taking derivatives with
respect to local coordinates on the varieties. To deal with general fields other than the reals, we use
Hasse derivatives.

3. Joints of planes in R6

The purpose of this section is to prove that N planes in R6 have O(N3/2) joints. This special
case contains many of the key ideas that we introduce in this paper towards the full theorem.

Let (J ,F) be a joints configuration of planes in R6, where F is a finite set of planes and J is the
set of joints formed by any three planes in F . We abuse notation slightly to handle the case when
more than three planes pass through p ∈ J : in this case we arbitrarily choose three planes forming
a joint at p, and only write “p ∈ F ” (and say that “F contains p”, etc.) if F is among the triple of
planes chosen at p.

3.1. Priority order and handicaps. First, assign an arbitrary but fixed order (referred to as the
preassigned order) to the joints J .

A handicap ~α = (αp)p∈J ∈ ZJ assigns an integer to each joint. Given a handicap, the associated
priority order is a linear order on J × Z≥0 defined by setting (p, r) ≺ (p′, r′)

• if r − αp < r′ − αp′ , or
• if r − αp = r′ − αp′ and p comes before p′ in the preassigned order on J .

The priority ordering corresponds to the description in the previous section. Note that in particular
(p, 0) ≺ (p, 1) ≺ (p, 2) ≺ · · · . We write ≺ for the strict ordering, and � to allow equality.

3.2. Derivatives and evaluations. Let R[x1, . . . , xk]≤n denote the space of polynomials of degree
at most n in k variables.

Given a plane F and a joint p ∈ F , let Drp,F denote the space of all r-th order derivative
operators in directions along F , i.e., every element D ∈ Drp,F gives a linear map g 7→ Dg sending
R[x1 . . . , x6]→ R[x1, . . . , x6] and D is a linear combination of compositions of r directional derivative
operators along F . For example, if F is the plane spanned by the first two coordinate directions,
then Drp,F is the space spanned by the operators ∂i+j/∂xi1∂x

j
2 ranging over all i+ j = r. (The space

Drp,F here does not actually depend on p, but we include p in the notation with a view towards
generalization from flats to varieties.)

Let Brp,F (n) denote the subspace of all linear functionals on R[x1, . . . , x6]≤n of the form g 7→ Dg(p)

for some D ∈ Drp,F (i.e., an r-th order derivative along F evaluated at p). Then, for a fixed p ∈ J ∩F ,
a polynomial g ∈ R[x1, . . . , x6]≤n lies in the common kernel of B0

p,F (n) + B1
p,F (n) + · · ·+ Br−1p,F (n) if

and only if the restriction of g to the plane F vanishes to order at least r at p. (By common kernel
we mean the intersection of the kernels of all linear functionals in this space.)

To emphasize the difference between B and D, the elements of Drp,F are derivative operators
sending polynomials to polynomials, whereas the elements of Brp,F (n) are linear functionals sending
polynomials of degree up to n to scalars. Perhaps a helpful mnemonic is that D stands for



JOINTS OF VARIETIES 11

“differentiation” while B stands for “basis” (we will soon use a basis of the space of linear forms on
polynomials up to degree n).

For a fixed F ∈ F , let us describe a process where we go through pairs (p, r) ∈ (J ∩ F )× Z≥0
according to the priority order, and at each step we choose a

Brp,F (~α, n) ⊂ Brp,F (n).

We will drop the dependencies on ~α, n, and F when there is no confusion, i.e., we write Brp ⊂ Brp for
the above inclusion. In addition, all unions and direct sums in the following paragraph are taken
over (p′, r′) ∈ (J ∩ F )× Z≥0.

Suppose we are at the start of step (p, r). At this point, we have already chosen some Br′p′ ⊂ Br′p′
for each (p′, r′) ≺ (p, r) so that the disjoint union

⋃
(p′,r′)≺(p,r) Br

′
p′ is a basis for

∑
(p′,r′)≺(p,r) Br

′
p′ .

Now consider expanding this space to
∑

(p′,r′)�(p,r) Br
′
p′ by adding in all the r-th order derivative

evaluations at p along F . We desire to expand the basis accordingly. As such, we choose a set
Brp ⊂ Brp so that the disjoint union

⋃
(p′,r′)�(p,r) Br

′
p′ becomes a basis of

∑
(p′,r′)�(p,r) Br

′
p′ . Note that

while we have some choice about which elements of Brp to include as new basis elements, the size of
Brp does not depend on any choice, and is only a function n and the priority order. We will provide
a more direct formula for

∣∣Brp∣∣ shortly.
Since each element of Brp,F (n) can be written as g 7→ Dg(p) for some D ∈ Drp,F , we can choose

Drp,F (~α, n) ⊂ Drp,F
with the same size as Brp,F (~α, n) so that

Brp,F (~α, n) = {g 7→ Dg(p) : D ∈ Drp,F (~α, n)}.
We write

Bp,F (~α, n) :=
⋃
r≥0
Brp,F (~α, n) and Dp,F (~α, n) :=

⋃
r≥0
Drp,F (~α, n).

As we range over all joints p on F , the sets Bp,F (~α, n) combine to form a basis of the space of
linear forms on polynomials of degree at most n on F . Thus∑

p∈J∩F
|Bp,F (~α, n)| = dimR[x, y]≤n =

(
n+ 2

2

)
. (3.1)

We may omit the parenthetical ~α and n in our notation when these parameters do not change
and the context is clear. Some of the arguments below will involve comparing different values of ~α
and n, in which case we will state the dependencies explicitly. We may also omit F when we are not
considering other planes.

3.3. Polynomials with given vanishing orders. In this and the next subsection, we focus our
attention on a single fixed plane F ∼= R2. Fix a finite set of points P ⊂ F (which we will later take
to be the joints on F ). Given a vector ~v = (vp)p∈P ∈ ZP≥0, let

T(~v, n) = {g ∈ R[x, y]≤n : g vanishes to order ≥ vp at each p ∈ P}

(i.e., the partial derivatives satisfy ∂i+jg
∂xi∂yj

(p) = 0 for all i+ j < vp). We would like to understand
how the dimension of T(~v, n) changes with ~v and n. We are particularly interested in the following
quantity, which we will shortly relate below in (3.4) to |Brp,F (~α, n)|: for p ∈ P , set

bp(~v, n) := codimT(~v,n) T(~v + ~ep, n) = dimT(~v, n)− dimT(~v + ~ep, n).

Here, given a pair of subspaces W ≤ U , we write codimU W for the relative codimension of W in U .
Also ~ep ∈ ZP is the vector with 1 at p and 0 elsewhere. Note, for each p ∈ P , the space T(~v + ~ep, n)
is the nullspace of the map on T(~v, n) that sends every polynomial g to all its vp-th order derivatives
evaluated at p, and thus bp(~v, n) is the rank of this map.
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The following basic fact will be useful:

for subspaces U,W ≤ V, we have codimV W ≥ codimU (W ∩ U). (3.2)

Lemma 3.1 (Bounded domain). If ~v ∈ ZP≥0 has vp > n for some p ∈ P, then dimT(~v, n) = 0.

Proof. This is the statement that no nonzero polynomial of degree at most n can vanish to order
more than n at some point. �

Lemma 3.2 (Monotonicity). Let p ∈ P. Suppose ~v(1), ~v(2) ∈ ZP≥0 satisfy ~v(1) ≥ ~v(2) coordinatewise
and with equality at p. Then bp(~v(1), n) ≤ bp(~v(2), n) for all n.

Proof. Earlier we saw that for each i = 1, 2, bp(~v(i), n) is the rank of the map on T(~v(i), n) that
sends each polynomial to all its v(1)p = v

(2)
p -th order derivatives evaluated at p. Since ~v(1) ≥ ~v(2)

coordinatewise, T(~v(1), n) is a subspace of T(~v(2), n), which implies the inequality bp(~v
(1), n) ≤

bp(~v
(2), n) on the rank of a map when restricted to a subspace. �

The next two lemmas together will lead to the Lipschitz continuity property of bp(~v, n) as a
function of ~v.

Lemma 3.3. Let p, q ∈ P be distinct points. Then for every ~v ∈ ZP≥0 and nonnegative integer n,
one has bp(~v + ~eq, n) ≥ bp(~v, n− 1).

Proof. Let f be an arbitrary linear polynomial that vanishes at q but at no other point of P (such
f clearly exists if the underlying field F is large enough; if not, we replace F by a field extension,
which would not affect bp(~v, n) as it is a rank-type quantity). We have

bp(~v + ~eq, n) = codimT(~v+~eq ,n) T(~v + ~ep + ~eq, n)

≥ codimf ·T(~v,n−1) f · T(~v + ~ep, n− 1)

= codimT(~v,n−1) T(~v + ~ep, n− 1)

= bp(~v, n− 1).

The inequality step follows from (3.2), observing that restricting T(~v + ~eq, n) and T(~v + ~ep + ~eq, n)
to polynomials divisible by f yields f · T(~v, n− 1) and f · T(~v + ~ep, n− 1) respectively. �

Lemma 3.4. Let p ∈ P. Suppose ~v(0), ~v(1), · · · ∈ ZP are such that ~v(0) ≤ ~v(1) ≤ · · · coordinate-wise
and strictly increasing at the coordinate indexed by p. Then∑

r≥0
bp(~v

(r), n)−
∑
r≥0

bp(~v
(r), n− 1) ≤ n+ 1.

Proof. For each r ≥ 0, we have

bp(~v
(r), n)− bp(~v(r), n− 1) = codimT(~v(r),n) T(~v(r) + ~ep, n)− codimT(~v(r),n−1) T(~v(r) + ~ep, n− 1)

= codimT(~v(r),n) T(~v(r), n− 1)− codimT(~v(r)+~ep,n) T(~v(r) + ~ep, n− 1).

We have codimT(~v(r)+~ep,n) T(~v(r)+~ep, n−1) ≥ codimT(~v(r+1),n) T(~v(r+1), n−1) by (3.2) since ~v(r)+~ep ≤
~v(r+1) coordinatewise. Summing over all r ≥ 1, we obtain∑

r≥0
bp(~v

(r), n)−
∑
r≥0

bp(~v
(r), n− 1) ≤ codimT(~v(0),n) T(~v(0), n− 1)

≤ codimT(~0,n) T(~0, n− 1)

= n+ 1. �
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Lemma 3.5 (Lipschitz continuity). Let p, q ∈ P be distinct points. Suppose ~v(0), ~v(1), · · · ∈ ZP are
such that ~v(0) ≤ ~v(1) ≤ · · · coordinate-wise and strictly increasing at the coordinate indexed by p.
Then

0 ≤
∑
r≥0

bp(~v
(r), n)−

∑
r≥0

bp(~v
(r) + ~eq, n) ≤ n+ 1.

Proof. Combine Lemmas 3.2, 3.3 and 3.4. �

3.4. How the number of vanishing conditions varies with the handicap. As in the previous
subsection, let us continue to focus our attention on a set of points P on a fixed plane F ∼= R2

(which we will drop from our notation temporarily).
Given a handicap ~α ∈ ZP (restricted to this plane), we define the vector ~vp,r(~α) as follows.

It assigns to coordinate p′ ∈ P the smallest nonnegative integer r′ such that (p, r) � (p′, r′).
Equivalently, the value of ~vp,r(~α) at p′ is given by

vp,rp′ (~α) =

{
max{r − αp + αp′ + 1, 0} if p′ comes strictly before p in the preassigned order,
max{r − αp + αp′ , 0} otherwise.

(3.3)
In other words, ~vp,r(~α) collects the desired vanishing orders at each joint on F at the stage right
before we hit (p, r) in the priority order.

Define Brp(~α, n) and Bp(~α, n) as in Section 3.2 restricted to this plane. Recall that for every
(p, r) ∈ P × Z≥0, the disjoint union

⋃
(p′,r′)≺(p,r) Br

′
p′ is basis of

∑
(p′,r′)≺(p,r) Br

′
p′ . Then a polynomial

g ∈ R[x1, . . . , x6]≤n lies in the common kernel of
⋃

(p′,r′)≺(p,r) Br
′
p′ if and only if the restriction of g

to the plane F vanishes to order at least vp,rq (~α) for every q ∈ P . Since adding Brp makes this set a
basis for

∑
(p′,r′)�(p,r) Br

′
p′ , its size is the number of non-redundant constraints that we need to add

to increase the order of vanishing at p by 1. Thus∣∣Brp(~α, n)
∣∣ = bp(~v, n) = codimT(~v,n) T(~v + ~ep, n) with ~v = ~vp,r(~α). (3.4)

The observations in the previous section then imply the following.

Lemma 3.6 (Bounded domain). Let n ≥ 0 and ~α ∈ ZP . Let p, q ∈ P. If αp < αq − n, then
|Bp(~α, n)| = 0.

Proof. For each r ≥ 0, the value of ~v = ~vp,r(~α) at q is greater than n, so dimT(~v, n) = 0 by
Lemma 3.1. Hence

∣∣Brp(~α, n)
∣∣ = bp(~v, n) = 0. �

Lemma 3.7 (Monotonicity). Let n be a positive integer and ~α(1), ~α(2) ∈ ZP be two handicaps.
Suppose p ∈ P satisfies α(1)

p − α(1)
p′ ≤ α

(2)
p − α(2)

p′ for all p′ ∈ P. Then
∣∣Bp(~α(1), n)

∣∣ ≤ ∣∣Bp(~α(2), n)
∣∣.

Proof. For each i = 1, 2, let ~v(i) = ~v(p,r)(~α(i)). From (3.3) we see that ~v(1) ≥ ~v(2) coordinatewise and
with equality at p. Then Lemma 3.2 gives bp(~v(1), n) ≤ bp(~v(2), n), and (3.4) gives the claim. �

Lemma 3.8 (Lipschitz continuity). Let p ∈ P and ~α(1), ~α(2) ∈ ZP . Then∣∣∣|Bp(~α(1), n)| − |Bp(~α(2), n)|
∣∣∣ ≤ (n+ 1)

∑
p′∈P

∣∣∣(α(1)
p′ − α

(1)
p )− (α

(2)
p′ − α

(2)
p )
∣∣∣ .

Proof. Shifting all handicaps by the same constant does not change the priority order and thus
also does not change |Bp|. Since the right-hand side of the above inequality is also invariant under
translation we may assume that α(1)

p = α
(2)
p = 0.

Starting with ~α = ~α(1), we can perform a sequence of changes where at each step we change the
value of the handicap ~α at some p′ 6= p by exactly 1, so that the vector (αp′)p′∈P ends up being
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equal to (α
(2)
p′ ) after exactly

∑
p′∈P

∣∣∣α(1)
p′ − α

(2)
p′

∣∣∣ moves. So it suffices to prove the inequality for each

step in the process, i.e., showing that for every ~α ∈ ZP and q 6= p,

0 ≤ |Bp(~α, n)| − |Bp(~α+ ~eq, n)| ≤ n+ 1.

The first inequality follows from Lemma 3.7. For the second inequality, by |Bp(~α, n)| =
∑

r≥0
∣∣Brp(~α, n)

∣∣
and (3.4), it suffices to prove∑

r≥0
bp(~v

p,r(~α), n)−
∑
r≥0

bp(~v
p,r(~α+ ~eq), n) ≤ n+ 1.

From (3.3), we see that there is some r0 so that ~vp,r(~α+~eq) = ~vp,r(~α) for all r < r0 and ~vp,r(~α+~eq) =
~vp,r(~α) + ~eq for all r ≥ r0. Restricting the sum to r ≥ r0 (the earlier terms cancel), we obtain the
desired inequality by Lemma 3.5. �

3.5. Vanishing lemma. Now we start considering the interactions between different planes at the
joints. The next statement is a vanishing lemma that is tailored to this joints problem. We omit the
dependence on the handicap ~α and the degree n from the notation since we are keeping them fixed
in this subsection. Recall from the beginning of the section that, at each joint, we arbitrarily chose
three planes that form this joint. Note that this vanishing lemma is the only place in the proof where
we use the hypothesis that the three planes that form a joint do not all lie in some hyperplane.

Lemma 3.9. Let (J ,F) be a joints configuration of planes in R6. Given a handicap ~α ∈ ZJ and
its associated priority order, and a positive integer n, choose Dp,F as earlier.

Then for every nonzero polynomial g ∈ R[x1, . . . , x6] of degree at most n, one has

D1D2D3g(p) 6= 0

for some joint p ∈ J formed by F1, F2, F3 ∈ F , and some Di ∈ Dp,Fi for each i = 1, 2, 3.

Proof. Suppose, on the contrary, that there were some nonzero g ∈ R[x1, . . . , x6]≤n such that
D1D2D3g(p) = 0 for every p ∈ J , with F1, F2, F3 ∈ F being the three planes passing through p,
and every Di ∈ Dp,Fi for each i = 1, 2, 3.

Choose p ∈ J to minimize (p, vp(g)) under ≺, where vp(g) is the order of vanishing of g at p.
Recall that Drp,F is the space of r-th order derivative operators at p along F . Since g vanishes

to order exactly vp(g) at p and the planes F1, F2, F3 do not all line in one hyperplane, there exist
D1 ∈ Dr1p,F1

, D2 ∈ Dr2p,F2
, D3 ∈ Dr3p,F1

with D1D2D3g(p) 6= 0 and r1 + r2 + r3 = vp(g). Among all
choices of D1, D2, D3 (including choices of r1, r2, r3), choose ones so that |{i ∈ [3] : Di ∈ Dp,Fi}| is
maximized. By the assumption at the beginning of the proof, one must have Di /∈ Dp,Fi for some i.
Relabeling if necessary, assume that D1 /∈ Dp,F1 .

Suppose p′ ∈ F1∩J and r′ ∈ Z≥0 satisfy (p′, r′) ≺ (p, r1). We get (p′, r′+r2+r3) ≺ (p, r1+r2+r3) =
(p, vp(g)). By the choice of p, we have (p, vp(g)) � (p′, vp′(g)). Thus (p′, r′ + r2 + r3) ≺ (p′, vp′(g)),
and hence r′ + r2 + r3 < vp′(g). If follows that DD2D3g(p′) = 0 for all D ∈ Dr′p′,F1

by the definition
of vanishing order.

From the above paragraph we deduce that D2D3g lies in the common kernel of Br′p′,F1
ranging over

all (p′, r′) ∈ (F1∩J )×Z≥0 with (p′, r′) ≺ (p, r1). SinceD1D2D3g(p) 6= 0, we deduce thatD2D3g does
not lie in the common kernel of Br1p,F1

, i.e., there is some D ∈ Dr1p,F1
with DD2D3g(p) 6= 0. But this D

contradicts the earlier assumption that the choice of (D1, D2, D3) maximizes |{i : Di ∈ Dp,Fi}|. �

The next inequality uses parameter counting.

Lemma 3.10. Assume the same setup as Lemma 3.9. We have∑
p∈J

∏
F3p
|Dp,F (~α, n)| ≥

(
n+ 6

6

)
.
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Proof. Denote the left hand side by A and right hand side by B. Consider the constraints on
g ∈ R[x1, . . . , x6]≤n where for all p ∈ J formed by the planes F1, F2, F3 ∈ F , we require

D1D2D3g(p) = 0 ∀Di ∈ Dp,Fi , i = 1, 2, 3.

This requirement is asking A linear functionals on R[x1, . . . , x6]≤n, which has dimension B, to vanish
at g. Hence, if A < B, then there exists a nonzero polynomial g in R[x1, . . . , x6]≤n that satisfies all
the conditions, which would contradict Lemma 3.9. �

3.6. Choosing the handicaps. We say that a joints configuration (J ,F) is connected if the
following graph is connected: the vertex set is J , with two joints adjacent if there is some plane in
F containing both joints.

Lemma 3.11. Let (J ,F) be any connected joints configuration, and let n be some positive integer.
Then there exists a choice of handicap ~α ∈ ZJ such that

max
p∈J

∏
F3p

|Dp,F (~α, n)|(
n+2
2

) −min
p∈J

∏
F3p

|Dp,F (~α, n)|(
n+2
2

) ≤ C

n

for some constant C that only depends on (J ,F) but not n.

Proof. Fix n throughout the proof. Denote

Wp(~α) =
∏
F3p

|Dp,F (~α, n)|(
n+2
2

)
for all p ∈ J . The αp are arbitrary integers. However, note that shifting all αp by the same constant
does not affect the priority order and thus does not affect Wp(α). Furthermore, by Lemma 3.6, if
two handicaps differ by more than n at two points on the same plane, then Wp(~α) = 0. Therefore,
there are only finitely many possibilities for the vector (Wp(~α) : p ∈ J ). Among those possibilities,
choose the one so that after sorting Wp(~α) in descending order, this vector is least in lexicographical
order over all such possible vectors. Suppose that the sorted result is

Wp1(~α) ≥Wp2(~α) ≥ · · · ≥Wp|J |(~α).

We will show that Wpi(~α) −Wpi+1(~α) ≤ C ′/n for some constant C ′ to be determined. This will
imply the desired statement.

Suppose for the sake of contradiction that the above claim does not hold. Let t be the least
positive integer such that Wpt(~α)−Wpt+1(~α) > C ′/n. Then let ~v = ~ep1 + · · ·+~ept and let ~α′ = ~α−~v
be a new handicap. We will consider the difference between Wp(~α) and Wp(~α

′). By Lemma 3.8,∣∣|Dp,F (~α, n)| − |Dp,F (~α′, n)|
∣∣ ≤ |J | (n+ 1) ≤ 2 |J |

n

(
n+ 2

2

)
for each joint p on each plane F . We have |Dp,F (~α, n)| ≤

(
n+2
2

)
by (3.1). We use the following

telescoping inequality. For x1, x2, x3, y1, y2, y3 ∈ [0, 1],

|x1x2x3 − y1y2y3| ≤ |x1 − y1|x2x3 + |x2 − y2|y1x3 + |x3 − y3|y1y2 ≤ 3 max
i
|xi − yi|.

Thus ∣∣Wp(~α
′)−Wp(~α)

∣∣ ≤ 6|J |
n

=
C ′

2n
where we choose C ′ = 12|J |.

By the monotonicity established in Lemma 3.7, we know that Wpi(~α
′) ≤ Wpi(~α) for i ≤ t, and

Wpi(~α
′) ≥Wpi(~α) for i > t. By (3.1), we know that if Wp(~α

′) 6= Wp(~α) for some p, then there exists
i ≤ t such that Wpi(~α

′) < Wpi(~α). However, since the difference between Wp(~α) and Wp(~α
′) is

at most C ′/2n, and Wpt(~α)−Wpt+1(~α) > C ′/n, we know that Wp1(~α′), . . . ,Wpt(~α
′) are still the t
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largest values among (Wp(~α
′))p∈J . This shows that ~α′ gives a strictly lower lexicographical order of

(Wp(~α
′))p∈J , which is a contradiction.

Hence Wp(~α) = Wp(~α
′) = Wp(~α − ~v) for all p ∈ J . By the same argument, we know that

Wp(~α) = Wp(~α
′) = Wp(~α − c~v) holds for p ∈ J for any positive integer c. By connectedness, we

can find some i ≤ t < j such that pi and pj are on the same plane. As a consequence, if c is chosen
sufficiently large such that αpi − c < αpj − n, this implies that Wpi(~α− c~v) = 0. By our ordering
this implies that Wpi′ (~α− c~v) = 0 for all i′ ≥ i. In particular, Wpt(~α) = Wpt+1(~α) = 0, contradicting
our earlier assumption that Wpt(~α)−Wpt+1(~α) > C ′/n. �

We are now ready to prove the joints theorem for a set of planes in R6.

Proof that N planes in R6 have
√

10/3N3/2 joints. Assume first that the joints configuration is
connected. Let n be some large positive integer. In this proof we will use O-notation to suppress
constants that can depend on (J ,F) arbitrarily as long as they are independent of n. Choose ~α
according to Lemma 3.11. Then there exists W such that∣∣∣∣∣∣

∏
F3p

|Dp,F |(
n+2
2

) −W
∣∣∣∣∣∣ ≤ C

n

for all p ∈ J . By Lemma 3.10, we have

|J |W
(
n+ 2

2

)3

≥
(
n+ 6

6

)
−O(n5).

Therefore

W ≥ 8

6! · |J |
−O(n−1).

So there is some constant c > 0 (depending on J but not on n) so that W ∈ [c, 1] for all sufficiently
large n. For each p ∈ J , by a Taylor series approximation,

W 1/3 =

∏
F3p

|Dp,F |(
n+2
2

)
1/3

+O(n−1).

Hence (in the summations, p ranges over joints and F ranges over planes in F),

3|J |
(
W

N3

)1/3

= 3
∑
p

∏
F3p

|Dp,F |
N
(
n+2
2

)
1/3

+O(n−1)

≤
∑
p

∑
F3p

|Dp,F |
N
(
n+2
2

) +O(n−1) [by AM-GM]

=
∑
F

∑
p∈F

|Dp,F |
N
(
n+2
2

) +O(n−1)

=
∑
F

1

N
+O(n−1) [by (3.1)]

= 1 +O(n−1).

Thus

W ≤ N3

27|J |3
+O(n−1).
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By comparing the leading term in the upper bound and the lower bound of W , i.e., letting n go to
infinity, we get that

8

6! · |J |
≤ N3

27|J |3
,

and by rearranging we get that

|J | ≤
√

10

3
N3/2.

The above argument proves the result for connected joints configurations. In general, decompose
the joints configuration (J ,F) into connected components (in the sense of the associated graph)
(J1,F1), . . . , (Jk,Fk). Denote Ni = |Fi| . Then

|J | =
k∑
i=1

|Ji| ≤
√

10

3

k∑
i=1

N
3/2
i ≤

√
10

3
N3/2. �

Remark. The arguments here generalize straightforwardly to joints of flats in arbitrary dimensions.

4. Derivatives along varieties

In this section we discuss how to generalize the argument in Section 3 to varieties in Fd. There
are two issues that we need to address. The first is to define appropriate higher order directional
derivatives along varieties. As we explain below, it does not suffice to simply take derivatives along
the tangent plane, as those miss the higher order data of the variety. The second is to generalize
derivatives from the reals to general fields. Since we are working with polynomials, differentiation
can be viewed as a formal algebraic operation. To handle fields of positive characteristics, we use
Hasse derivatives.

Let V be a k-dimensional variety in Fn. Let I(V ) be the ideal of polynomials in F[x1, . . . , xd]
that vanish on V . Define RV = F[x1, . . . , xd]/I(V ). The elements of RV are called regular functions
on V . Let p be a regular point on V , that is, a point where the Zariski tangent space of V at p is
also k-dimensional. Given a nonnegative integer r, we would like to write down derivative operators
D on F[x1, . . . , xd] so that Dg(p) is well defined not just when g ∈ F[x1, . . . , xd], but also when g
is a regular function on V . The point here is that regular functions on V may be represented as
polynomials in F[x1, . . . , xd] in non-unique ways (by adding a polynomial that vanishes on V ), but we
should study derivative operators D whose evaluation Dg(p) does not depend on this representation
of g.

4.1. An explicit example. We consider the explicit example of the circle V in R2 centered at
(0, 1/2) of radius 1/2. In particular, V is defined by the equation y = x2 + y2. Let p = (0, 0) be the
origin. How should we define a second-order derivative at p along V ?

Naively one might take ∂2/∂x2 since the tangent at p is the x-coordinate direction. However,
consider evaluation of this derivative at p applied to the two sides of y = x2 + y2 (an identity of
regular functions on V ): the left-hand side gives 0 while the right-hand side gives 2. So ∂2/∂x2 does
not induce a linear functional on the space of regular functions on V .

To fix this issue, we can rewrite all regular functions on V as power series centered at p using the
local coordinate x of V . Indeed, by repeated substituting y ← x2 + y2, we can write y as a power
series in x:

y = x2 + y2

= x2 + (x2 + y2)2

= x2 + (x2 + (x2 + y2)2)2

= x2 + x4 + 2x6 + · · ·
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We would like a derivative operator D on R[x, y] so that Dg(0, 0) equals to the coefficient of x2 in
g(x, x2 + x4 + 2x6 + · · · ), which in turn equals to the coefficient of x2 plus the coefficient of y in
g(x, y). It is not hard to see that only such choice is 1

2
∂2

∂x2
+ ∂

∂y . Conversely, it is not hard to check
that Dg(0, 0) = 0 for every g ∈ R[x, y] that vanishes identically on V .

Elaborating on this example further, for each nonnegative integer r, we will define Drp,V to be a
one-dimensional space spanned a derivative operator D on R[x, y] such that Dg(0, 0) equals to the
coefficient of xr in g(x, x2 + x4 + 2x6 + · · · ). Thus (here 〈·〉 denotes the span)

D0
p,V = 〈Id〉

D1
p,V =

〈
∂

∂x

〉
D2
p,V =

〈
1

2

∂2

∂x2
+

∂

∂y

〉
D3
p,V =

〈
1

6

∂3

∂x3
+

∂2

∂x∂y

〉
D4
p,V =

〈
1

24

∂4

∂x4
+

1

2

∂3

∂x2∂y
+

1

2

∂2

∂y2

〉
...

Then, for each each D ∈ Drp,V , the map sending g ∈ R[x, y] to Dg(0, 0) passes to a linear functional
on the space RV = R[x, y]/I(V ) of regular functions on V .

The computation in the above example can be extended to any variety over any field, as we
explain below.

4.2. Local coordinates. Given a regular point p on a k-dimensional variety V , after a translation
and a linear change of coordinates, suppose that p is at the origin and the first k coordinate vectors
are tangent to V . Then by assumption, there are polynomials fk+1, . . . , fd without any constant
or linear terms so that on V , we have xk+1 = fk+1(x1, . . . , xk), . . . , xd = fd(x1, . . . , xk). For each
i = k + 1, . . . , d, by repeated substitutions using the defining equations, as functions on V , we can
write each xi as a formal power series hi(x1, . . . , xk) in the local coordinates x1, . . . , xk for V at p.

The procedure of taking a power series described earlier can be described in algebraic geometry as
a completion. We give a quick summary here and refer the reader to a standard algebraic geometry
textbook, e.g., [11, Chapter 7] [31, Chapter 29]. Let p be a regular point on a k-dimensional variety V
in Fd. Let mp ⊂ RV be the maximal ideal of regular functions that vanish at p. Then the completion
R̂p,V of RV at p is the inverse limit lim←−RV /m

m
p . The family of projection maps RV → RV /m

m
p

induces a map ιp,V : RV → R̂p,V .
The completion should be thought of as the ring of formal power series around p. For example,

when RV = F[x] and mp = (x), the completion is the ring of formal power series F JxK. More generally,
for a regular point p on V , assuming that p is the origin and x1, . . . , xk ∈ mp span the Zariski
cotangent space mp/m

2
p, the map F Jx1, . . . , xkK → R̂p,v sending xi to ιp,V (xi) is an isomorphism

(say, by the Cohen structure theorem). In other words, there is a local coordinate system at p so that
every regular function on V can be written as a formal power series around p.

It will be useful to know that the formal power series expansion of a regular function is zero if
and only if the regular function is zero, i.e., the completion map RV → R̂p,V is injective. This fact
follows from the Krull intersection theorem below (recall that our varieties are always irreducible).

Theorem 4.1 (Krull intersection theorem). Let R be an integral domain and I be a proper ideal of
R. Then

⋂∞
m=0 I

m = {0}.
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4.3. Hasse derivatives. In the explicit example earlier, the main goal of taking derivatives is to
extract coefficients. This is a formal algebraic procedure that does not rely on real analysis. To allow
for arbitrary fields, including those of positive characteristics, we use an algebraic variant known as
Hasse derivatives, whose definition and basic properties we summarize below. For proofs of these
basic properties of Hasse derivatives, we refer the reader to [10], where Hasse derivatives were used
to study the finite field Kakeya problem.

Definition 4.2 (Hasse derivatives). For any d-tuple ~ω = (ω1, . . . , ωd) of nonnegative integers,
define H~ω to be the linear operator on F[x1, . . . , xd] given by (writing xδ = xδ11 · · ·x

δd
d and

(
~γ
~ω

)
:=(

γ1
ω1

)
· · ·
(
γd
ωd

)
)

H~ωx
~δ =

(~δ
~ω

)
x
~δ−~ω

for every d-tuple ~δ = (δ1, . . . , δd) of nonnegative integers.

In particular, H~ωx~δ = 0 unless ~δ ≥ ~ω coordinatewise.
Over the reals, it is not hard to see that the two notions of derivatives are related by a constant

factor

H~ω =
1

~ω!

∂~ω

∂x~ω
:=

1

ω1! · · ·ωd!
∂ω1+···+ωd

∂xω1
1 · · · ∂x

ωd
d

.

Like usual derivatives, Hasse derivatives commute:

H~αH
~β =

(
~α+ ~β

~α

)
H~α+

~β = H
~βH~α.

Hasse derivatives form an algebraic generalization of the usual derivatives when acting on poly-
nomials or formal power series. The evaluation of a Hasse derivative corresponds to coefficient
extraction (without the factorial factors that might be troublesome in fields of positive characteristics).
Indeed, we have the following “Taylor’s theorem”: given formal variables x1, . . . , xd, y1, . . . , yd and a
polynomial g ∈ F[x1, . . . , xd], we have

g(x+ y) =
∑
~ω∈Zd

≥0

(H~ωg)(x)y~ω (4.1)

for any g ∈ F[x1, . . . , xd]. This identity can be easily checked for each monomial g(x) = x
~δ. From

this characterization, we see that Hasse derivatives behave well under affine coordinate transforms
(as we would expect for derivatives). For example, it makes sense to talk about directional Hasse
derivatives without specifying a choice of a coordinate system.

4.4. Higher order directional derivatives. Now that we have the tools of completion and Hasse
derivatives, we are ready to define higher order directional derivatives at a regular point p along a
k-dimensional variety V in Fd, generalizing the notion for flats from Section 3.

By an affine change of coordinates, assume that p is at the origin, and the tangent space of V
at p is spanned by the first k coordinate directions. For each i = k + 1, . . . , d, write each xi as
a formal power series hi(x1, . . . , xk) in the “local coordinates” x1, . . . , xk for V at p. Equivalently,
hi(x1, . . . , xk) is the image of xi under the completion map RV → R̂p,V ∼= F Jx1, . . . , xkK.

We define Drp,V to be the space of all linear combinations D of Hasse derivative operators on
F[x1, . . . , xd] such that the map F[x1, . . . , xd] → F defined by g 7→ Dg(p) equals a linear form on
coefficients of the homogeneous degree r part of

ĝ(x1, . . . , xk) := g(x1, x2, . . . , xk, hk+1(x1, . . . , xk), . . . , hd(x1, . . . , xk)),
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which is the power series representation of g as a regular function on V in local coordinates at p.
Let us also write out this definition more explicitly. Given (γ1, . . . , γk) ∈ Zk≥0, define

D~γ
p,V =

∑
~ω∈Zd

≥0

c~γ~ωH
~ω

where

c~γ~ω = the coefficient of xγ11 · · ·x
γk
k in xω1

1 · · ·x
ωk
k hk+1(x1, . . . , xk)

ωk+1 · · ·hd(x1, . . . , xk)ωd

Then D~γ
p,V g(0, . . . , 0) equals the coefficient of x~γ in ĝ(x1, x2, . . . , xk). We then set

Drp,V = span
{
D~γ
p,V : ~γ = (γ1, . . . , γk) ∈ Zk≥0, γ1 + · · ·+ γk = r

}
.

Note that the D~γ
p,V in the above set are linearly independent. To see this, first note that because no

hi has constant or linear terms, one has

D~γ
p,V ∈ H(~γ,0,...,0) + span

{
H~ω : ω1 + · · ·+ ωd < γ1 + · · ·+ γk

}
. (4.2)

The Hasse derivative operators H~ω are linearly independent as ~ω ranges over Zd≥0. Since the top
weight component of D~γ

p,V is H(~γ,0,...,0), we see that the D~γ
p,V ’s are linearly independent as ~γ ranges

over Zk≥0.
The key property, as well as the motivation for the above definition, is that for every D ∈ Drp,V ,

there is a well defined map RV → F given by g 7→ Dg(p). To define this derivative evaluation, we
can replace g ∈ RV by a representative g ∈ F[x1, . . . , xd], and we need to check that Dg(p) does not
depend on the choice of the representative. Indeed, if g is identically zero on V , then ĝ = 0, and
hence Dg(p) = 0.

The above explicit formula defines Drp,V assuming that p is at the origin and the tangent space of
V at p is spanned by the first k coordinate directions. By an affine transformation (using (4.1) to
determine the behavior of Hasse derivatives under affine transformations), we can define the space
Drp,V of r-th order directional derivatives at any regular point p on a variety V .

Having defined Drp,V , we now can proceed nearly identically as in Section 3 to prove the joints
theorem for varieties. Details are given in the next section.

5. Proof of the main theorem

5.1. Priority order, handicaps, and a choice of basis. Given a set of joints J with a fixed
preassigned order, and a handicap ~α ∈ ZJ , we define the priority order ≺ on J × Z≥0 as before.

Let n be a positive integer. Let RV,≤n denote the space of regular functions on V that can be
represented as a polynomial of degree at most n in x1, . . . , xn. In other words, RV,≤n is the image of
F[x1, . . . , xd]≤n under the projection F[x1, . . . , xd]→ RV .

Define Brp,V (n) to be the set of linear functionals on RV,≤n of the form g 7→ Dg(p) for some
D ∈ Drp,V (this is a well defined linear functional as explained earlier). Note that g ∈ RV,≤n vanishes
under B0

p,V (n) + · · · + Br−1p,V (n) if and only if g vanishes to order at least r at p. Here a regular
function g on V vanishes at p to order at least r if g ∈ mr

p,V where mp,V is the maximal ideal of RV
corresponding to p. Equivalently, power series representation of g using local coordinates at p has
no terms with degree lower than r.

Now, exactly as in Section 3.2, we go through all pairs (p, r) ∈ (J ∩ V ) × Z≥0 according
to the priority order and choose sets Brp,V (~α, n) ⊂ Brp,V (n) as earlier so that the disjoint union⋃

(p′,r′)�(p,r) Br
′
p′,V (~α, n) is a basis of

∑
(p′,r′)�(p,r) Br

′
p′,V (~α, n). Choose Drp,V (~α, n) ⊂ Drp,V with the

same size as Brp,V (~α, n) so that Brp,V (~α, n) = {g 7→ Dg(p) : D ∈ Drp,V (~α, n)}. Finally, write
Bp,V (~α, n) :=

⋃
r≥0 Brp,V (~α, n) and Dp,V (~α, n) :=

⋃
r≥0Drp,V (~α, n).
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From the Krull intersection theorem, it follows that for every p ∈ V ,
∑

r≥0 Brp,V (~α, n) spans the
dual space of RV,≤n. Hence the disjoint union

⋃
p∈V Bp,V (~α, n) is a basis of the space of linear forms

on RV,≤n. Thus ∑
p∈J∩V

|Bp,V (~α, n)| = dimRV,≤n = deg V

(
n

dimV

)
+OV (ndimV−1). (5.1)

Furthermore there is some n0(V ) so that dimRV,≤n is a polynomial in n for all n ≥ n0(V ). This is
a standard fact about the Hilbert series for a variety (see, e.g., [31, Chapter 18.6]).

5.2. Regular functions with given vanishing orders. This subsection parallels Section 3.3.
Here we fix a k-dimensional variety V and a finite set of points P ⊂ V . Given a vector ~v ∈ ZP≥0,
define

T(~v, n) = {g ∈ RV,≤n : g vanishes to order ≥ vp at each p ∈ P}.
Set bp(~v, n) := codimT(~v,n) T(~v + ~ep, n).

Lemma 5.1 (Bounded domain). For every n there is some CV (n) so that if ~v ∈ ZP≥0 has maxp∈P vp >

CV (n) then dimT(~v, n) = 0.

Proof. By the Krull intersection theorem,
⋂
m≥0m

m
p,V = {0}. Since RV,≤n is finite dimensional,

there exists C = CV (n) such that mC
p,V ∩ RV,≤n = {0}. Hence, if ~v ∈ ZJ∩V≥0 satisfies vp ≥ C, then

TV (~v, n) = {0}. �

We omit the proofs of the next two lemmas, which mirror those of Section 3.3, except to note
that the last line of the proof of Lemma 3.4 should be adapted as

codimT(~0,n) T(~0, n− 1) = dimRV,≤n − dimRV,≤n−1 = deg V

(
n

dimV − 1

)
+OV (ndimV−2).

To see this we use the fact that dimRV,≤n, for sufficiently large n, equals to a polynomial (the
Hilbert polynomial) whose leading term given in (5.1). The right-hand side is the finite difference of
this polynomial which can readily be seen to have the above form.

Lemma 5.2 (Monotonicity). Let p ∈ P. Suppose ~v(1), ~v(2) ∈ ZP≥0 satisfy ~v(1) ≥ ~v(2) coordinatewise
and with equality at p. Then bp(~v(1), n) ≤ bp(~v(2), n) for all n.

Lemma 5.3 (Lipschitz continuity). Let p, q ∈ P be distinct points. Suppose ~v(0), ~v(1), · · · ∈ ZP are
such that ~v(0) ≤ ~v(1) ≤ · · · coordinate-wise and strictly increasing at the coordinate indexed by p.
Then

0 ≤
∑
r≥0

bp(~v
(r)
p , n)−

∑
r≥0

bp(~v
(r)
p + ~eq, n) ≤ deg V

(
n

dimV − 1

)
+OV (ndimV−2).

5.3. How the number of vanishing conditions varies with the handicap. The lemmas in
Section 3.4 can now be easily adapted to varieties. As in the previous subsection, we continue to
focus our attention on a set of points P on a variety V .

Given a handicap ~α ∈ ZP (restricted to V ), we define the vector ~vp,r(~α) identically to Section 5.3.
We have ∣∣Brp,V (~α, n)

∣∣ = bp(~v, n) = codimT(~v,n) T(~v + ~ep, n) with ~v = ~vp,r(~α).

We omit the proofs of the following lemmas, which mirror those of Section 3.4 but now using the
lemmas from the previous subsection.

Lemma 5.4 (Bounded domain). For each n there is some CV (n) so that if p ∈ P and ~α ∈ ZP
satisfy αp < maxq∈P αq − CV (n), then |Bp,V (~α, n)| = 0.
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Lemma 5.5 (Monotonicity). Let n be a positive integer and ~α(1), ~α(2) ∈ ZP be two handicaps.
Suppose p ∈ P satisfies α(1)

p −α(1)
p′ ≤ α

(2)
p −α(2)

p′ for all p′ ∈ P. Then
∣∣Bp,V (~α(1), n)

∣∣ ≤ ∣∣Bp,V (~α(2), n)
∣∣.

Lemma 5.6 (Lipschitz continuity). Let p ∈ P. Let ~α(1), ~α(2) ∈ ZP . Then∣∣∣|Bp,V (~α(1), n)| − |Bp,V (~α(2), n)|
∣∣∣

≤
(

deg V

(
n

dimV − 1

)
+OV (ndimV−2)

)∑
p′∈P

∣∣∣(α(1)
p′ − α

(1)
p )− (α

(2)
p′ − α

(2)
p )
∣∣∣ .

5.4. Joints configuration. We are ready to discuss joints of varieties. Here we set some notation
and definitions.

By a (k1, . . . , kr;m1, . . . ,mr)-joints configuration (or just a joints configuration for short) we mean
a tuple (J ,V1, . . . ,Vd) as in Theorem 1.10, namely that each Vi is a finite multiset of ki-dimensional
varieties in Fd, where d = m1k1 + · · · + mrkr, and J is the set of joints formed by choosing mi

elements from Vi for each i = 1, . . . , r. We writeM(p) for the multiset of r-tuples (S1, . . . ,Sr), where
each Si is an unordered mi-tuple of elements of Si and such that together these s = m1 + · · ·+mr

varieties form a joint at p. The quantity M(p) from Theorem 1.10 is then the cardinality ofM(p).
We have M(p) > 0 at each p ∈ J .

5.5. Vanishing lemma. Before stating the analog to Lemma 3.9, let us first note the following
observation about how high order directional derivatives of several varieties interact at a joint.

Lemma 5.7. Let p be a joint formed by varieties V1, . . . , Vs. Suppose g ∈ F[x1, . . . , xd] vanishes
to order exactly r at p (as a polynomial function on Fd). Then there exist r1, . . . rs ∈ Z≥0 with
r1 + · · ·+ rs = r and D1 ∈ Dr1p,V1 , . . . , Ds ∈ Drsp,Vs such that

(D1D2 · · ·Dsg) (p) 6= 0.

Proof. Let ki = dimVi for each i. By an affine change of coordinates, suppose that p is at the origin,
V1 is tangent to the first k1 coordinate vectors, V2 tangent to the next k2 coordinate vectors, and so
on. Let cxγ11 · · ·x

γd
d , c ∈ F \ {0}, be a monomial of lowest degree in g. Since g vanishes to order r at

p, we have γ1 + · · ·+ γd = r. Let r1 be the sum of the first k1 γi’s, r2 the sum of the next k2 γi’s,
and so on. By (4.2), there exist Di ∈ Drip,Vi of the form

D1 = H(γ1,...,γk1 ,0,...,0) + lower order derivatives,

D2 = H(0,...,0,γk1+1,...,γk1+k2
,0,...,0) + lower order derivatives,

. . . .

Then D1D2 · · ·Dsg = c+ higher order terms, which evaluates to c 6= 0 at p = 0. �

The next statement is analogous to the vanishing lemma for planes in Lemma 3.9. The proof is
analogous, but we write it out explicitly here since it is a critical step of the argument.

Lemma 5.8. Let (J ,V1, . . . ,Vk) be a (k1, . . . , kr;m1, . . . ,mr)-joints configuration. Let s = m1 +
· · · + mr and d = m1k1 + · · · + mrkr. Fix a handicap ~α and its associated priority order. Fix a
positive integer n. Choose Dp,V as earlier. For each p ∈ J , fix a choice V1(p), V2(p), . . . , Vs(p) of
varieties that form a joint at p, and of which exactly mi of them come from Vi for each i = 1, . . . , r.

Then for every nonzero polynomial g ∈ F[x1, . . . , xd] of degree at most n, one has D1 · · ·Dsg(p) 6= 0
for some joint p ∈ J and some D1 ∈ Dp,V1(p), . . . , Ds ∈ Dp,Vs(p).

Proof. Suppose, on the contrary, that there were some nonzero polynomial g ∈ F[x1, . . . , xd] of
degree at most n such that D1 · · ·Dsg(p) = 0 for every joint p ∈ J and D1 ∈ Dp,V1 , . . . , Ds ∈ Dp,Vs ,
where V1, V2, . . . , Vs are any varieties that form a joint at p and exactly mi of them come from Vi
for each i = 1, . . . , r,
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Choose p ∈ J to minimize (p, vp(g)) under ≺, where vp(g) is the order vanishing of g at p.
Since g vanishes to order exactly vp(g) at p, by Lemma 5.7, there exist D1 ∈ Dr1p,V1(p), . . . ,

Ds ∈ Drsp,Vs(p) with D1D2 · · ·Dsg(p) 6= 0 and r1 + · · ·+ rs = vp(g). Among all choices of D1, . . . , Ds

(including choices of r1, . . . , rs), choose ones so that |{i ∈ [s] : Di ∈ Dp,Vi(p)}| is maximized. By the
assumption at the beginning of the proof, one must have Di /∈ Dp,Vi for some i ∈ [s]. Relabeling if
necessary, assume that D1 /∈ Dp,V1(p). (Here we are using that derivatives commute.)

Suppose p′ ∈ V1(p) ∩ J and r′ ∈ Z≥0 satisfy (p′, r′) ≺ (p, r1). We get (p′, r′ + r2 + · · · +
rs) ≺ (p, r1 + r2 + · · · + rs) = (p, vp(g)). By the choice of p, we have (p, vp(g)) � (p′, vp′(g)).
Thus (p′, r′ + r2 + · · · + rs) ≺ (p′, vp′(g)), and hence r′ + r2 + · · · + rs < vp′(g). If follows that
DD2 · · ·Dsg(p′) = 0 for all D ∈ Dr′p′,V1(p) by the definition of vanishing order.

From the above paragraph we deduce that D2 · · ·Dsg(p
′) lies in the common kernel of Br′p′,V1(p)

ranging over all (p′, r′) ∈ (V1(p) ∩ J )× Z≥0 with (p′, r′) ≺ (p, r1). Since D1D2 · · ·Dsg(p) 6= 0, we
deduce that D2 · · ·Dsg does not lie in the common kernel of Br1p,V1(p), i.e., there is some D ∈ Dr1p,V1(p)
with DD2 · · ·Dsg(p) 6= 0. But this D contradicts the earlier assumption that the choice of D1, . . . , Ds

maximizes |{i ∈ [s] : Di ∈ Dp,Vi(p)}|. �

The next lemma is a consequence of parameter counting. Its proof is identical to that of Lemma 3.10
except that we now apply Lemma 5.8.

Lemma 5.9. Assume the same setup as Lemma 5.8. We have∑
p∈J

s∏
i=1

∣∣Dp,Vi(p)(~α, n)
∣∣ ≥ (n+ d

d

)
.

5.6. Choosing the handicaps. We say that a joints configuration (J ,V1, . . . ,Vr) is connected
if the following graph is connected: the vertex set is J , with p, p′ ∈ J adjacent if there is some
V ∈ V1 ∪ · · · ∪ Vr containing both p and p′.

Lemma 5.10. Let n be a positive integer and (J ,V1, . . . ,Vk) be a connected (k1, . . . , kr;m1, . . . ,mr)-
joints configuration. Let ω(p) be a positive real for each p ∈ J . Then there exists a choice of handicap
~α ∈ ZJ such that

1

ω(p)

 ∏
(S1,...,Sr)∈M(p)

∏
V ∈S1∪···∪Sr

|Dp,V (~α, n)|(
n

dimV

)
1/M(p)

lies in some common interval of length oJ ,V1,...,Vk,ω;n→∞(1) as we range over p ∈ J . Here the
notation means that the length of the interval tends to zero as n goes to infinity but the rate may
depend on the joints configuration and ω.

Proof. The proof is analogous to Lemma 3.11 with appropriate modification. In this proof, we use
o(1) to denote oJ ,V1,...,Vk,ω;n→∞(1). Let (δn)n∈N be a sequence tending to 0 sufficiently slowly as n
tends to infinity. Denote by Wp(~α) the quantity (the dependence of Wp(~α) on n is suppressed in the
notation).

1

ω(p)

 ∏
(S1,...,Sr)∈M(p)

∏
V ∈S1∪···∪Sr

|Dp,V (~α, n)|(
n

dimV

)
1/M(p)

.

We begin by noticing that, by Lemma 5.4, there exists some c depending on n and the joints
configuration such that if αp < αp′ − c for two joints p, p′ on the same flat V , then |Dp,V (~α, n)| = 0,
which shows that Wp(~α) = 0. Therefore, although there are infinitely many choices for ~α ∈ ZJ ,
there are only finitely many possible values of (Wp)p∈J they can produce for a given n. Choose
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the Wp(~α) so that after sorting Wp in the descending order, it has the least lexicographical order.
Suppose that the sorted result is

Wp1(~α) ≥ · · · ≥Wp|J |(~α).

It suffices to show that Wpi(~α)−Wpi+1(~α) ≤ δn for all i = 1, . . . , |J | − 1.
Suppose for the sake of contradiction that the claim fails for some i. Let t be the least positive

integer such that Wpt(~α) −Wpt+1(~α) > δn. Then let ~v = ~ep1 + · · · + ~ept and ~α′ = ~α − ~v. Take a
constant C ′ larger than all the degrees of the varieties in the joints configuration. Similar to the proof
of Lemma 3.11, we can apply Lemma 5.6 to show that ||Dp,V (~α, n)| − |Dp,V (~α′, n)|| /

(
n

dimV

)
= o(1).

Together with the fact that |Dp,V (~α, n)| /
(

n
dimV

)
≤ C ′ + o(1) (guaranteed by (5.1)) we can use a

similar telescoping inequality to show that the difference between Wp(~α, n) and Wp(~α
′, n) is at most

o(1). Therefore the difference is bounded by δn/2 as long as δn tends to 0 slowly enough.
Now, by the new monotonicity established in Lemma 5.5, we know that Wpi(~α

′) ≤Wpi(~α) if i ≤ t,
and Wpi(~α

′) ≥ Wpi(~α) if i > t. If Wp(~α) 6= Wp(~α
′) for some p ∈ J , then by (5.1), we know that

there exist i ≤ t and pi ∈ V such that |Dpi,V (~α′, n)| < |Dpi,V (~α, n)|, resulting in Wpi(~α
′) < Wpi(~α).

By the fact that |Wp(~α
′)−Wp(~α)| ≤ δn/2 for all p ∈ J and the assumption that Wpt −Wpt+1 > δn,

we know that Wp1(~α′), . . . ,Wpt(~α
′) are still the t largest ones among (Wp(~α

′))p∈J . Hence, that
Wpi(~α

′) < Wpi(~α) is a contradiction with the assumption of the minimality under the lexicographical
order.

The previous paragraph shows that Wp(~α) = Wp(~α
′) for every p ∈ J . As a consequence,

Wp(~α) = Wp(~α − m~v) for all positive integers m and p ∈ J . Since the joints configuration is
connected, we can find i ≤ t < j such that pi and pj lie on the same variety. When m is sufficiently
large, we have αpi − m < αpj − c, which forces Wpi(~α − m~v) to be 0. By the ordering, this
shows that Wp′i

(~α −m~v) = 0 for all i′ ≤ i. In particular, Wpt(~α) = Wpt+1(~α) = 0, contradicting
Wpt(~α)−Wpt+1(~α) > δn. �

Proof of Theorem 1.10(b). In this proof o(1) denotes a quantity which goes zero as n goes to infinity
but can dependent arbitrarily on the joints configuration. Similar to the proof of Theorem 1.2, it
suffices to consider the case where the joints configuration is connected. Set

s = m1 + · · ·+mr,

and
Jω =

∑
p∈J

ω(p) where ω(p) = M(p)1/(s−1).

Choose ~α according to Lemma 5.10. Then we can choose W so that∣∣∣∣∣∣∣
1

ω(p)

 ∏
(S1,...,Sr)∈M(p)

∏
V ∈S1∪···∪Sr

|Dp,V |(
n

dimV

)
1/M(p)

−W

∣∣∣∣∣∣∣ = o(1)

for all p ∈ J . Hence, by Lemma 5.9 (choosing Vi(p) of Lemma 5.9 to give the minimum product
below), we have that∑

p∈J
ω(p)W ≥

∑
p∈J

min
(S1,...,Sr)∈M(p)

∏
V ∈S1∪···∪Sr

|Dp,V |(
n

dimV

) − o(1) ≥
(
n+d
d

)∏r
i=1

(
n
ki

)mi
− o(1),

which, after rearrangement, shows that

W ≥
∏r
i=1(ki!)

mi

Jω · d!
− o(1).
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Let Vp,i be the set of varieties in Vi that contain p. Then we have that for any joint p ∈ J ,

M(p)ω(p)W ≤
∑

(S1,...,Sr)∈M(p)

∏
V ∈S1∪···∪Sr

|Dp,V |(
n

dimV

) + o(1) [by AM-GM]

≤
∑

S1∈(Vp,1m1
),...,Sr∈(Vp,rmr

)

r∏
i=1

∏
V ∈Si

|Dp,V |(
n
ki

) + o(1)

=
r∏
i=1

∑
Si∈(Vp,imi

)

∏
V ∈Si

|Dp,V |(
n
ki

) + o(1)

≤
r∏
i=1

(degVi)mi

mi!

 ∑
V ∈Vp,i

|Dp,V |
degVi

(
n
ki

)
mi

+ o(1)

≤(degV1)m1 · · · (degVr)mr

m1! · · ·mr!ss

 r∑
i=1

∑
V ∈Vp,i

mi |Dp,V |
degVi

(
n
ki

)
s

+ o(1). [by AM-GM]

By taking the s-th root on both sides, summing over all p using (5.1) and noticing that M(p)ω(p) =
ω(p)s, we conclude that∑

p∈J
ω(p)W 1/s ≤ 1

s

(
(degV1)m1 · · · (degVr)mr

m1! · · ·mr!

)1/s r∑
i=1

∑
V ∈Vi

∑
p∈J∩Vi

mi |Dp,V |
degVi

(
n
ki

) + o(1)

=
1

s

(
(degV1)m1 · · · (degVr)mr

m1! · · ·mr!

)1/s r∑
i=1

∑
V ∈Vi

mi deg V

degVi
+ o(1)

=
1

s

(
(degV1)m1 · · · (degVr)mr

m1! · · ·mr!

)1/s r∑
i=1

mi + o(1)

=

(
(degV1)m1 · · · (degVr)mr

m1! · · ·mr!

)1/s

+ o(1).

Rearranging, we find

W ≤ (degV1)m1 · · · (degVr)mr

m1! · · ·mr!Jsω
+ o(1).

By comparing the lower and upper bounds on W , and letting n→∞ so that the o(1) term vanishes,
we have ∏r

i=1(ki!)
mi

Jω · d!
≤ (degV1)m1 · · · (degVr)mr

m1! · · ·mr!Jsω
.

Rearranging gives the desired conclusion

Jω ≤

(
d!

r∏
i=1

(degVi)mi

ki!mimi!

)1/(s−1)

. �

Proof of Theorem 1.10(a). As earlier, we may assume that the joints configuration is connected. Set
s = m1 + · · ·+mr throughout the proof. Choose ~α according to Lemma 5.10 with ω(p) = 1 for all
p ∈ J . Then we can choose W so that∣∣∣∣∣∣∣

 ∏
(S1,...,Sr)∈M(p)

∏
V ∈S1∪···∪Sr

|Dp,V |(
n

dimV

)
1/M(p)

−W

∣∣∣∣∣∣∣ = o(1)
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for all p ∈ J . Hence, by Lemma 5.9, we have that

∑
p∈J

W ≥
∑
p∈J

min
(S1,...,Sr)∈M(p)

∏
V ∈S1∪···∪Sr

|Dp,V |(
n

dimV

) − o(1) ≥
(
n+d
d

)∏r
i=1

(
n
ki

)mi
− o(1),

which, after rearrangement, shows that

W ≥
∏r
i=1(ki!)

mi

|J | · d!
− o(1).

For each p ∈ J , let (S1(p), . . . ,Sr(p)) ∈M(p) be the element S ofM(p) such that∏
V ∈S1∪···∪Sr

|Dp,V |(
n

dimV

)
is maximized. Then W ≤

∏
V ∈S1(p)∪···∪Sr(p) |Dp,V |/

(
n

dimV

)
+ o(1), which shows that

s |J |W 1/s (degV1)−m1/s · · · (degVr)−mr/s

≤ s
∑
p∈J

 r∏
i=1

m−mi
i

∏
V ∈Si(p)

mi |Dp,V |
degVi

(
n
ki

)
1/s

+ o(1)

≤ 1

m
m1/s
1 · · ·mmr/s

r

∑
p∈J

r∑
i=1

∑
V ∈Si(p)

mi |Dp,V |
degVi

(
n
ki

) + o(1) [by AM-GM]

≤ 1

m
m1/s
1 · · ·mmr/s

r

r∑
i=1

∑
V ∈Vi

∑
p∈J∩V

mi |Dp,V |
degVi

(
n
ki

) + o(1)

≤ 1

m
m1/s
1 · · ·mmr/s

r

r∑
i=1

∑
V ∈Vi

mi deg V

degVi
+ o(1) [by (5.1)]

≤ 1

m
m1/s
1 · · ·mmr/s

r

r∑
i=1

mi + o(1)

=
s

m
m1/s
1 · · ·mmr/s

r

+ o(1).

By rearranging, we get that

W ≤ (degV1)m1 · · · (degVr)mr

mm1
1 · · ·m

mr
r |J |s

+ o(1).

By comparing the lower and upper bounds on W , and letting n→∞ so that the o(1) term vanishes,
we have ∏r

i=1(ki!)
mi

|J | · d!
≤ (degV1)m1 · · · (degVr)mr

mm1
1 · · ·m

mr
r |J |s

.

Rearranging gives the desired conclusion

|J | ≤

(
d!

r∏
i=1

(deg Vi)
mi

ki!
mimmi

i

)1/(s−1)

. �
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