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On the origins of invasive populations

Abstract

What factors shape the evolution of invasive populations? Recent theoretical
and empirical studies suggest that an evolutionary history of disturbance might
be an important factor. This perspective presents hypotheses regarding the
impact of disturbance on the evolution of invasive populations, based on a
synthesis of the existing literature. Disturbance might select for life-history
traits that are favorable for colonizing novel habitats, such as rapid population
growth and persistence. Theoretical results suggest that disturbance in the form
of fluctuating environments might select for organismal flexibility, or alterna-
tively, the evolution of evolvability. Rapidly fluctuating environments might
favor organismal flexibility, such as broad tolerance or plasticity. Alternatively,
longer fluctuations or environmental stress might lead to the evolution of
evolvability by acting on features of the mutation matrix. Once genetic variance
is generated via mutations, temporally fluctuating selection across generations
might promote the accumulation and maintenance of genetic variation. Deeper
insights into how disturbance in native habitats affects evolutionary and physi-
ological responses of populations would give us greater capacity to predict the
populations that are most likely to tolerate or adapt to novel environments
during habitat invasions. Moreover, we would gain fundamental insights into
the evolutionary origins of invasive populations.

Striking patterns are beginning to emerge, revealing
biases in the geographic origins of invasive populations.

Of the large number of species that are introduced into
novel habitats, few are successful as invaders (Williamson
and Fitter 1996). What allows some species to invade,
when most cannot? In many cases, populations might
invade habitats with environmental conditions that
resemble those of their native range (Peterson and
Vieglais 2001; Peterson 2003). In other cases, populations
might survive novel habitats through a plastic response or
by having broad physiological tolerance (Sultan 2001;
Parker et al. 2003; Yeh and Price 2004; Sol et al. 2005).
Increasingly, it is becoming recognized that, in many
cases, response to selection and rapid evolution might be
important (Huey et al. 2000; Carroll et al. 2001; Lee 2002;
Bossdorf et al. 2005; Donohue et al. 2005; Lee et al. 2007;
Kane and Rieseberg 2008). Such cases involve niche evo-
lution, which entails the evolution of survival and persis-
tence in novel habitats (Lee 2002).
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These biases suggest that characteristics of particular
source habitats within native ranges might shape the evo-
lution of invasive populations. Invasive species are often
composed of highly differentiated populations or sibling
species distributed across their native ranges (Geller et al.
1997; Lee 2000; Tsutsui and Case 2001; Lee and Frost
2002; Gelembiuk et al. 2006; Caldera et al. 2008; Winkler
et al. 2008). Often, only subsets of these populations
become invasive (Lee 1999; Tsutsui and Case 2001;
Saltonstall 2002; Meusnier et al. 2004; Brown and Idris
2005; Chu et al. 2006; Gelembiuk et al. 2006; May et al.
2006; Caldera et al. 2008; Winkler et al. 2008).

Empirical observations have suggested that invasive
populations tend to arise from regions prone to ‘distur-
bance’ (Box 1). For example, weedy plants, many of
which are invasive, are generally thought to be adapted

to disturbance (Baker 1974; Thébaud etal. 1996).
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In addition, species from the Old World have been specu-
lated to have higher invasive potential than those from
the New World, due to a history of greater natural and
anthropogenic disturbance (Di Castri 1989; Lonsdale
1999). In a striking example, the Black and Caspian (Pon-
to-Caspian) Sea basins have served as major donors of
invaders into the Great Lakes (Jazdzewski 1980; Spidle
et al. 1994; Lee and Bell 1999; Cristescu et al. 2001,
2004), giving rise to the vast majority of invaders between
1985 and 2000 (Ricciardi and Maclsaac 2000). The Pon-
to-Caspian basin has a history marked by fluctuations in
environmental variables on multiple timescales (Kaplin
1995; Svitoch et al. 2000; Reid and Orlova 2002). This
region also has a relatively long history of anthropogenic
disturbances, including canal and reservoir construction
and large-scale transplantation of Ponto-Caspian species
for use in aquaculture (Jazdzewski 1980).

For species with broad distributions, recent molecular
population genetic analyses have begun to identify the
less-stable habitats within the native ranges as frequent
sources of invasive populations. For instance, the native
range of the zebra mussel Dreissena polymorpha encom-
passes genetically distinct populations (and sibling spe-
cies) spanning brackish estuaries of the Black and
Caspian Sea region and ancient lakes to the south of the
seas. However, invasive populations most likely arose
from the northern estuaries of the Black and Caspian
Sea rather than from the more stable ancient lakes to
the south of the seas (Gelembiuk et al. 2006; May et al.
2006). Within the St Lawrence estuary, two genetically
divergent clades of the copepod Eurytemora affinis over-
lap in distribution. However, only the clade residing pri-
marily in the marginal near-shore and salt-marsh
habitats has invaded freshwater habitats, whereas the
clade restricted primarily to the more stable central
portion of the estuary has not (Winkler et al. 2008).
The native ranges of many invasive ant species (e.g.
Linepithema humile, Solenopsis invicta, Solenopsis richteri,
Wasmannia auropunctata and Pheidole obscurithorax)
include unstable flood plains of northern Argentina
(Suarez and Tsutsui 2008). In particular, the Argentine
ant L. humile and the fire ant S. invicta exhibit consider-
able population genetic structure across their native
ranges in South America (Tsutsui and Case 2001; Ross
et al. 2007), yet the invasive populations of both species
arose from regions of northeastern Argentina character-
ized by large-scale disturbances in the form of regular
flooding (Tsutsui and Case 2001; Caldera et al. 2008;
Suarez and Tsutsui 2008).

An evolutionary history of disturbance in the native
range might select for the propensity to invade. In many
cases, biases in geographic sources of invasions could
have resulted from biases in transport routes and oppor-
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tunity. However, the preponderance of invaders from dis-
turbed habitats suggests that disturbance itself might have
served as an evolutionary force leading to invasive suc-
cess. An increasing number of theoretical and empirical
studies suggest that disturbance might, through a variety
of mechanisms, promote the evolution of invasive popu-
lations.

This perspective advances a hypothesis regarding the
potential impact of disturbance on the evolution of inva-
sive populations based on a synthesis of the existing liter-
ature. The ideas presented here remain to be tested with
empirical data. Additional theoretical studies are required
to delimit the range of parameter values that are plausi-
ble, and further guide the hypotheses to be tested. In
addition, mechanisms underlying results obtained from
some of the theoretical simulation studies are not trans-
parent, and require further analyses. This perspective aims
to promote the study of forces that shape the evolution
of invasive populations, and illuminate areas of research
that warrant further exploration.

Impacts of disturbance on the evolution of
invasive populations

Two distinct types of strategies might evolve to increase
fitness in disturbance-prone fluctuating environments
(Gillespie 1974; Kawecki 2000; Meyers and Bull 2002;
Turelli and Barton 2004). On the one hand, organisms
might evolve generalist strategies, which would allow
them to prosper across a wide range of conditions. Alter-
natively, organisms might develop increased evolvability
(Boxes 1 and 2), with an increased capacity to adapt
rapidly to changing conditions. The strategy that predom-
inates would depend on a variety of factors, including the
frequency and amplitude of environmental change. Both
strategies reflect selection pressure to maximize time-aver-
aged fitness, and could contribute to increased invasive
potential in new habitats.

Disturbance in the form of environmental fluctuations
might serve as a general means for promoting either
organismal flexibility or evolvability, depending on the
rate of fluctuations relative to generation time (Kawecki
2000; Meyers and Bull 2002; Holt et al. 2004; Turelli and
Barton 2004; Meyers et al. 2005). Rapid fluctuations
occurring within generations could potentially select for
organismal flexibility, such as broad tolerance or short-
term phenotypic plasticity at the individual level (Turelli
and Barton 2004; Meyers et al. 2005). Fluctuations occur-
ring at the timescale of a generation might select for
genetic canalization (Box 1) (Kawecki 2000). At this time-
scale, evolutionary change could also be damped by the
buffering effect of developmental plasticity (Meyers and
Bull 2002). In contrast, fluctuations spanning across an
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Box 1. Definitions of terms and concepts

Disturbance

Ecological disturbance could be thought of as discrete events, either natural or human-induced, that cause temporary changes that deviate
from average environmental conditions. Disturbances could occur as discrete episodes or in a cyclical manner. In addition, cyclical distur-
bances could be random or regular in frequency. Examples of disturbances include fires, flooding, storms, pathogen outbreaks, tidal cycles,
climatic cycles and human activity. Some habitats are more prone to disturbance than others, such as pathways of tropical storms, salt
marshes, estuaries, agricultural farms and reservoirs.

Evolvability

Usage of this term varies, partly depending on the subdiscipline within evolutionary biology (Pigliucci 2008). For example, Wagner and Al-
tenberg (1996) define evolvability as the ability of genomes within a population to produce adaptive variants, such that the population
could respond to selection. In their definition, they focus on the generation of the genetic substrate available for selection through muta-
tional variability and recombination. Alternatively, evolvability is defined in terms of the ability of a population to respond to selection due
to its standing genetic variance, as quantified by the genetic coefficient of variation (CV, = 100y/V,/X, where V, is the additive genetic
variation and X is the trait mean) (Houle 1992). Evolvability is a trait that is under indirect selection, as it does not improve the fitness of
a population immediately, but tends to be beneficial in future environments (Reisinger and Miikkulainen 2006; Jones et al. 2007).

Evolutionary landscape

Evolution can be represented as movement on a landscape. This landscape relates one or more underlying factors (e.g. alleles or environ-
mental variables) to the value of the resulting phenotypic trait (phenotypic landscape; Rice 1998) or the fitness of organisms (the adaptive
landscape; Wright 1932). The trait value or the fitness value is given by the height of the landscape. On an adaptive landscape, populations
will tend to climb fitness peaks, as selection will favor an increase in fitness. In some cases, populations of organisms can become trapped
on local (suboptimal) fitness peaks, as moving to the global fitness peak might require traversing a valley of reduced fitness. Multidimen-
sional adaptive landscapes (i.e. which represent fitness as a function of many underlying genetic variables) typically have extensive ridges of
high fitness (they are ‘holey’), facilitating movement across the landscape (Gavrilets 1999).

Genetic canalization

Canalization refers to stabilization of a phenotype against genetic or environmental perturbation (Schmalhausen 1949; Waddington 1957;
Flatt 2005). Variation in the phenotype is thus reduced. In the case of genetic canalization, this involves buffering against mutations. Some
have argued that genetic canalization might frequently arise as an incidental byproduct of canalization against environmental perturbation
(Gibson and Wagner 2000).

G-matrix

Selection response depends on the standing additive genetic variances (V,) and covariances for a suite of traits in a population, or the
G-matrix. The G-matrix contains additive genetic variances on the diagonal elements and additive genetic covariances on the off-diagonal
elements. Genetic variances and covariances can be calculated based on the phenotypic similarity among relatives. The G-matrix relies
on the generation of new mutations (the M-matrix).

M-matrix

The mutation matrix (M-matrix) represents the effects of new mutations on trait variances and covariances. Below is a mutation matrix for
three traits (#;, t, and t;). The diagonal elements are the mutational variances for each trait (¢;, f, and t;), while off-diagonal elements are
mutational covariances between the traits. The structure of the M-matrix could evolve in three ways:

1 Evolution of global mutation rate: changes in the magnitude of all the elements. N 5 P A
2 Evolution of mutational variances of individual traits: changes in individual diagonal elements (blue). Mutational vari- it 1 t.i
ances are affected by mutation rates of individual traits and the sensitivity of the traits to mutations (genetic potential). '
3 Evolution of mutational covariances between individual traits: changes in the off-diagonal elements (red).

These values reflect pairwise pleiotropic effects due to mutations in different traits (¢, t, and t3).

GLi, Gl !

Modularity

The concept of modularity varies among and within different disciplines of biology (Schlosser and Thieffry 2000). For the purposes of this
paper, modularity is the degree of independence among traits in genetic variance structure and evolutionary response. Within the context
of quantitative genetics, modularity is maximized when the mutational and genetic covariances between traits are close to zero, such that
pleiotropic constraints are minimized. Modules could consist of sets of traits that covary among individuals within a population and that
coevolve. Modularity is thought to enhance evolvability by limiting the interference between the adaptation of different functions (Wagner
and Altenberg 1996).

Balancing selection
Balancing selection refers to any type of selection that maintains genetic variance in a population, such as frequency-dependent selection,
temporally or spatially fluctuating selection, and overdominance.
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intermediate number of generations might select for
enhanced evolvability at the population level, and might
also lead to the maintenance of genetic variation (Turelli
and Barton 2004; Meyers et al. 2005). Larger timescale
fluctuations would increasingly be experienced as constant
conditions, and would allow the population to become
fixed for the optimal phenotypes that are insensitive to
mutations (‘genetic robustness’) (Meyers et al. 2005).

Fluctuating selection might act to facilitate the genera-
tion of adaptive genetic variation, and enhance evolvability,
by selecting on various aspects of the mutation matrix of a
population (Box 1, see sections below) (Meyers et al. 2005;
Moxon et al. 2006; Reisinger and Miikkulainen 2006; Jones
et al. 2007; Kashtan et al. 2007). Once genetic variance is
generated through new mutations, mechanisms that
enhance the accumulation and maintenance of this genetic
variance would also serve to increase evolutionary poten-
tial. Under appropriate conditions, temporally fluctuating
selection could promote the accumulation and mainte-
nance of genetic variation, through the action of balancing
selection across generations (Gillespie and Turelli 1989;
Turelli and Barton 2004).

Moreover, disturbance-prone environments might be
an important source of major evolutionary innovations
(Rice 1990). Disturbance would alter the shape of the
adaptive landscape and promote the generation of diverse
unique phenotypes, elevating the evolutionary and inva-
sion potential from such habitats. Populations in dis-
turbed environments would spend much of their time far
from a local optimum on an adaptive landscape (see Box
1, Evolutionary Landscape), where drastically altered phe-
notypes would more likely be adaptive, or at least less
deleterious (Rice 1990). Thus, populations subjected to
severe environmental shifts would more likely possess
phenotypes that could only be accessed (i.e. brought
about) by mutations of large effect (Collins et al. 2007).
Therefore, more mutations, and especially more muta-
tions of large effect, would be adaptive. Environmental
fluctuations could also temporarily relax stabilizing selec-
tion around local adaptive peaks and alter relative peak
heights, thereby facilitating peak shifts (Whitlock 1997).
Such effects might explain a trend observed in marine
habitats, where speciation events in the disturbance-prone
nearshore environment result more frequently in new
families and orders, even though speciation rates are
higher offshore (Jablonski et al. 1983; Sepkoski and Miller
1985).

The evolution of enhanced evolvability would enable
invasive populations to more readily undergo niche evo-
lution. Niche evolution during biological invasions might
be fairly common, given the mounting evidence of phe-
notypic evolution following invasions (Huey et al. 2000;
Lee et al. 2003, 2007; Miiller-Schirer et al. 2004; Bossdorf
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et al. 2005; Donohue et al. 2005; Gilchrist and Lee 2007).
Such niche evolution could involve both new mutations
as well as adaptation from standing genetic variance.
Theoretical studies indicate that standing additive genetic
variance (V,) within source populations limits coloniza-
tion into novel stressful habitats (Gomulkiewicz et al.
1999; Boulding and Hay 2001; Holt et al. 2003). For
example, selection on standing genetic variance for osmo-
tic tolerance appears to underlie the evolution of fresh-
water tolerance in the copepod E. affinis (Lee et al. 2007).

Additional theoretical studies, greater integration across
theoretical studies, and integration between theoretical
and empirical results would deepen our understanding of
the effects of fluctuating selection on evolvability. In addi-
tion, it appears that theoretical simulations have not
examined the simultaneous effects of fluctuating selection
on the mutation matrix and on standing genetic variance.
The sections below discuss the diverse ways in which dis-
turbance or fluctuating environments might impact the
response of populations to novel environments.

Generalists: selection for disturbance-adapted
traits, including organismal flexibility

Disturbance occurring on rapid time scales would tend to
select for generalist organisms with enhanced invasive
potential. Such organisms could arise in several ways,
including (i) selection for life history and demographic
traits that facilitate escape from harsh conditions or pro-
mote rapid population growth, (ii) selection for broad
tolerance or phenotypic plasticity, and (iii) selection for
genetic architectures that prevent evolutionary decay of
functions needed in alternative environments.
Disturbance might select for particular characteristics
that are favorable for colonizing novel habitats, such as
those that promote rapid population growth and popula-
tion persistence. Disturbances often cause local extinc-
tions, producing areas with high resource availability and
low competition. Under such conditions, organisms with
the highest population growth rate would most effectively
exploit the high resource levels. Thus, selection would
favor life-history strategies that would promote rapid
population growth, such as high specific growth rate,
early maturation, high fecundity and selfing (Stearns
1992; Dillon 2000; Gelembiuk et al. 2006; Hintz et al.
2006; Pasiecznik et al. 2006; Feng et al. 2007). Environ-
ments with frequent local extinctions would select for
life-history traits that would promote population persis-
tence, such as diapause (e.g. resting eggs), seed banks and
high dispersal (Cohen 1966; Metz et al., 1983; Levin et al.,
1984; Mahdjoub and Menu 2008). Resting stages could
increase transport opportunities and accelerate spread
during invasion of new disturbance-prone environments,
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as diapaused eggs would be more resistant to biocide
flushing of ballast tanks (Gray et al. 2006) and digestion
in bird and fish guts (Conway et al. 1994). Upon intro-
ductions, populations with rapid growth and high dis-
persal would tend to obtain high biomass, spread rapidly
and have detrimental ecosystem impacts. For example,
the highly invasive zebra mussel D. polymorpha, which
originates from the unstable Ponto-Caspian basin, has
high fecundity (Sprung 1991) and rapid maturation rela-
tive to other bivalve species, such as the unionid mussels
that they are often driving to local extinctions (Mackie
1991).

Populations of the same taxon, but from habitats
of differing levels of disturbance, could differ in levels of
disturbance-adaptedness. For example, genomes of the
cyanobacteria Synechococcus sp. from differing habitat
types exhibited marked differences, consistent with differ-
ences in adaptation to disturbance (Palenik et al. 2006).
The genome of Synechococcus sp. from the dynamic
coastal environment showed an almost a twofold increase
in the number of sensor and response-regulator genes,
relative to the genome from more stable open-ocean
environments, reflecting a greater need to respond to
changing environmental conditions. Such mechanisms for
sensing rapidly changing conditions might facilitate
colonization into novel habitats.

A diverse set of theoretical models predicts that rapidly
fluctuating environments would select for populations
with generalist strategies (Gillespie 1974; Kawecki 2000;
Meyers and Bull 2002; Travis and Travis 2002; Ketola
et al. 2004; Turelli and Barton 2004). Such rapid fluctua-
tions might select for Baker’s ‘General Purpose Geno-
types’, which are often successful as invasive weeds (Baker
1965). Under a model where fluctuations were shorter
relative to generation time, selection favored greater phys-
iological tolerance or plasticity (Turelli and Barton 2004).
In another model where fluctuations were slightly longer,
occurring at the timescale of a generation, genetic canali-
zation was favored, because a response to selection at one
generation might be maladaptive at the next (Kawecki
2000). A theoretical model examining the effects of muta-
tions on phenotypes predicted that rapid fluctuations
(i.e. every few generations or shorter) would select for
‘organismal flexibility’ (Meyers et al. 2005). Organisms
favored under these conditions would have genotypes of
intermediate fitness that could tolerate diverse conditions,
but none exceptionally well (Meyers et al. 2005). Organis-
mal flexibility would allow populations to colonize a
range of environments and might involve concurrent
genetic canalization (Box 1).

Based on the studies above, types of generalist strategies
used by organisms in rapidly fluctuating environments
might include broad physiological tolerance, short-term
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plasticity or developmental plasticity. These properties
would evolve under fluctuations of different timescales.
Broad tolerance would evolve under the most rapid fluc-
tuations, while developmental plasticity would evolve
under fluctuations at the timescale of a generation.

Broad physiological tolerance might arise from the
selection for enzymes that could function over broad con-
ditions (O’Loughlin et al. 2006) or increased expression
of heat shock proteins (HSP) and other chaperones that
could buffer against physiological stress and developmen-
tal decanalization (Feder and Krebs 1998; Rutherford and
Lindquist 1998; Bettencourt and Feder 2001; Ketola et al.
2004). For example, lines of the ciliated protist Tetrahy-
mena thermophila that were reared under the most rap-
idly fluctuating temperatures experienced the greatest
evolutionary increases in Hsp90 expression (Ketola et al.
2004).

Under rapid environmental fluctuations, occurring
within a generation, short-term plasticity would allow
organisms to respond to instantaneous changes in the
environment, as the response is generally reversible.
Short-term morphological, physiological or behavioral
plasticity has been found to facilitate invasions into novel
environments (Sexton et al. 2002; Sol et al. 2002, 2005;
Yeh and Price 2004). For example, bird species with rela-
tively larger brains and a high frequency of foraging inno-
vations in their native ranges showed higher probability
of invasive success into novel environments (Sol et al.
2002, 2005). However, some theoretical studies have
found that specialists could still evolve under within-gen-
eration fluctuations, given appropriate circumstances
(Gilchrist 1995, 2000). Specifically, this would require
windows of time where the specialist could excel, and
also the ability to persist under unfavorable conditions
without severe detrimental consequences.

Theoretical results show that developmental plasticity is
favored when rates of fluctuations are at the timescale of
a generation (Meyers and Bull 2002). The stability within
a generation would allow the environment experienced at
the early stages of a developing organism to serve as a
good predictor of future environmental conditions that
the organism would experience (Meyers and Bull 2002).
As developmental plasticity arises from gene expression
during development, it is generally not reversible, particu-
larly in animals, and presents an unfavorable strategy
under rapid fluctuations within a generation. Develop-
mental plasticity is often a strategy used for plants invad-
ing into novel environments (Weinig 2000; Parker et al.
2003; Chun et al. 2007).

In general, as stated above, frequent fluctuations and
disturbance would tend to select for generalist organisms
that are robust to changing environmental conditions.
This type of adaptation has complex implications for the
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future evolution of these organisms. Such robust general-
ists would initially evolve more slowly upon introduction
into a new habitat, because they would initially experi-
ence reduced selection pressure (Wright 1931; Ancel
2000) and might be canalized to maintain their original
phenotype (Kawecki 2000). However, in their native
habitat, robust generalists would also have accumulated
cryptic genetic variation, i.e. nearly neutral genetic varia-
tion masked by the organism’s robustness (Gibson and
Dworkin 2004). Under novel conditions, selection of
increased intensity or duration would tend to lead to an
accelerating selection response (Rice 1998; Kawecki
2000), with decanalization of robust phenotypes. Theo-
retical results suggest that cryptic genetic variation might
actually be enriched for adaptive variants (Masel 2006)
and could contribute to the ultimate adaptive response
(Kim 2007). In addition, upon invasion into a new habi-
tat, robust organisms might be better able to accept new
beneficial mutations, as the phenotypic changes upon
new mutations would less likely lead to developmental/
physiological catastrophe. A similar principal has been
illustrated in protein evolution, whereby increased pro-
tein stability facilitates the evolution of new functions
(Bloom et al. 2006), as new mutations are less likely to
denature or produce destructive conformational changes
in a stable protein.

In addition, fluctuating environments could lead to the
maintenance of generalist phenotypes by selecting for an
integrated genetic architecture, preserving functions and
genes that are only intermittently advantageous (Li and
Wilke 2004). For example, an overlap of genetic instruc-
tions required for different functions could prevent the
loss of unrewarded functions (Ostrowski et al. 2007).
Given such a genetic architecture, a mutation that is dele-
terious to a function that is currently rewarded would also
likely be deleterious to a function that is not currently
rewarded. Selection for such an integrated genetic
architecture has been observed in simulations using digital
organisms in a persistently fluctuating environment (Li
and Wilke 2004). By selecting for such an architecture,
fluctuations of intermediate frequency maintained inter-
mittently unrewarded functions, preserving the generalist
phenotype (Li and Wilke 2004).

As anthropogenic disturbance becomes increasingly
widespread, much more territory is now available for
invasion by disturbance-adapted species. Possession of
disturbance-adapted traits would facilitate invasions into
anthropogenically altered environments (agriculture, res-
ervoirs, construction, etc.). Thus, invasive populations
that originate from habitats characterized by disturbance
will increasingly have greater opportunities to invade cor-
respondingly disturbed habitats (Weinig 2000; Clements
et al. 2004; Havel et al. 2005).
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Evolvability 1: generation of adaptive variants

The term ‘evolvability’ has various meanings and defini-
tions, partly depending on the subdiscipline within evolu-
tionary biology (Pigliucci 2008). Wagner and Altenberg
(1996) define evolvability as the ability of genomes within a
population to produce adaptive variants, such that the pop-
ulation could respond to selection. In their definition, they
focus on the generation of genetic substrate available for
selection through mutational variability and recombina-
tion. Alternatively, evolvability is defined in terms of the
ability of a population to respond to selection due to its
standing genetic variance, as quantified by the genetic coef-
ficient of variation (CV = 100y/V4/X, where V, is the
additive genetic variation and X is the trait mean) (Houle
1992). Evolvability is a trait that is under indirect selection,
as it does not improve the fitness of a population immedi-
ately, but tends to be beneficial in future environments
(Reisinger and Miikkulainen 2006; Jones et al. 2007).

The extent to which selection molds evolvability, and
the role of such adaptive changes in driving large-scale pat-
terns, is still poorly understood and controversial. For
example, it has been argued that selection for evolvability
could occur only through group selection (Lynch 2007).
However, numerous theoretical studies have shown that
individual-level selection is sufficient to promote evolvabil-
ity (Leigh 1970; Gillespie 1981; Ishii et al. 1989; Taddei
et al. 1997; Rice 1998; Travis and Travis 2002; Hadany and
Beker 2003; Pepper 2003; Tanaka et al. 2003; Toussaint
2003; Earl and Deem 2004; Masel 2005; Meyers et al. 2005;
Reisinger and Miikkulainen 2006; Jones et al. 2007;
Kashtan et al. 2007; Draghi and Wagner 2008). It has also
been argued that there is no evidence that differences
between organisms in variety-generating properties (e.g.
mutation or recombination rate) are due to selection on
these properties (Lynch 2007). Indeed, experiments using
bacteria clearly show that environmental shifts could suc-
cessfully select for constitutively elevated mutation rates in
bacteria (mutator strains, see sections below) (Sniegowski
et al. 1997; Giraud et al. 2001), in accordance with theo-
retical predictions. Refer to Box 2 for a more expanded
discussion on some of the critiques of the capacity of
natural selection to promote evolvability.

Evolvability according to Wagner and Altenberg (1996)
refers to the ability to produce ‘adaptive variants’, which
could be generated by (i) mutation or (ii) genetic
exchange (e.g. recombination). Both of these mechanisms
could serve as potential targets of selection (e.g. via fluc-
tuating selection), and could also be altered as a byprod-
uct of stress in disturbance-prone environments. In the
next two sections, we discuss how fluctuating conditions
or stress could promote evolvability by acting on aspects
of genetic exchange and on the mutation matrix.
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Box 2. Discussion of critiques of evolvability

It has been argued that the selection for evolvability can only occur through group selection (Lynch 2007). This leads to a com-
mon objection that group selection would typically tend to be a much weaker force than individual-level selection. However, it is
worth recognizing that (1) theory indicates that group selection can be an important evolutionary force for particular types of
traits (e.g. complex characters) across a biologically plausible parameter range (Rice 1995; Pepper 2000; Wilson and Wilson 2007)
and (2) numerous theoretical studies have shown that individual-level selection is sufficient to promote evolvability (Leigh 1970;
Gillespie 1981; Ishii et al. 1989; Taddei et al. 1997; Rice 1998; Travis and Travis 2002; Hadany and Beker 2003; Pepper 2003; Ta-
naka et al. 2003; Toussaint 2003; Earl and Deem 2004; Masel 2005; Meyers et al. 2005; Reisinger and Miikkulainen 2006; Jones
et al. 2007; Kashtan et al. 2007; Draghi and Wagner 2008). The source of conceptual confusion (in the perceived requirement for
group selection) may lie in the fact that evolvability, such as sexual dioecy or bet hedging, is a trait of populations, as individu-
als do not evolve. But this semantic property does not imply that selection could only promote evolvability by selecting among
groups (e.g. demes or clades).

The following example illustrates how individual-level selection could act on evolvability. Consider a trait and an accelerating fitness
function, for which the benefit of deviating from the population mean in the beneficial direction exceeds the cost of deviating in the
opposite, detrimental direction. Further consider a modifier allele that on average has no main effect, but that increases variance in
the trait (e.g. through epistatic interactions or by increasing mutation rate at the trait). Such an allele could increase in frequency, as
an individual bearing this allele, and the progeny of such an individual, would on average have higher fitness (Layzer 1980; Rice
1998). Thus, selection for increased individual-level fitness would have the effect of increasing evolvability, without a need for selection
among groups.

Although recombination would tend to dissociate such a modifier from the beneficial genotype it helped produce (Leigh 1970; Par-
tridge and Barton 2000; Sniegowski and Murphy 2006), this would reduce the selective force favoring evolvability but not entirely
eliminate it (Gillespie 1981; Johnson 1999; Tenaillon et al. 2000; Hadany and Beker 2003; Masel and Bergman 2003; Jones et al. 2007;
Draghi and Wagner 2008). Furthermore, certain types of evolvability modifiers could not be readily decoupled by recombination. For
example, in bacterial contingency loci, genes that control the trait under selection can readily mutate between discrete states (Zieg et al.
1977; Kearns et al. 2004; Martin et al. 2005; Moxon et al. 2006). Essentially, local mutation modifiers (e.g. sequence repeats prone to
slippage) are embedded within such genes. Also, a modifier that increases evolvability through a purely epistatic interaction (e.g.
increasing phenotypic variance by increasing sensitivity to allelic substitutions at a second locus) would resist being dissociated by
recombination, as selection would favor preservation of a beneficial allelic combination at the loci (Draghi and Wagner 2008).

It has also been argued that there is no evidence that differences between organisms in variety-generating properties (e.g. mutation
or recombination rate) are due to selection on these properties (Lynch 2007). Under this line of reasoning, all differences in variety-
generating properties might merely be incidental byproducts of other physical properties. However, there is no reason that variety-gen-
erating properties should not respond to selection, just as any other trait, and different variety-generating properties would be optimal
under different environmental conditions. Indeed, experiments using bacteria clearly show that environmental shifts can successfully
select for constitutively elevated mutation rates in bacteria (mutator strains) (Sniegowski et al. 1997; Giraud et al. 2001), in accordance
with theoretical predictions.

The arguments delineated in this perspective support specific, circumscribed claims regarding evolvability. They do not imply that
the selection for evolvability is responsible for organismal or genomic complexity, or that complex organisms are most adaptable.
There are reasons to believe that high organismal complexity can act as a drag on adaptation (Fisher 1930; Orr 2000a), and that selec-
tion for evolvability may favor compact genomes (Toussaint 2005). Furthermore, although evolution in a disturbance-prone environ-
ment might increase evolvability along all phenotypic dimensions (e.g. by increasing mutation rates across the genome), it should
predominantly tend to increase evolvability along specific phenotypic dimensions that align with long-term fluctuations in the environ-
ment (Altenberg 2005). For example, salinity tolerance might become more evolvable for Ponto-Caspian species subjected to long-term
fluctuations in salinity. In contrast, mechanisms that globally increase evolvability would be more likely to have high associated costs
(e.g. a global increase in mutation rates would lead to an increase in deleterious mutations). In addition, it is worth noting that empir-
ical data from experiments (using biological and digital organisms) supports the position that environmental shifts and fluctuation
could increase evolvability (Sniegowski et al. 1997; Earl and Deem 2004; Meyers et al. 2005; Reisinger and Miikkulainen 2006; Kashtan
et al. 2007; Draghi and Wagner 2008). Therefore, consideration of evolvability might be relevant for studies of invasive species, regard-
less of whether the increases occur as a product of direct selection for evolvability or as a byproduct of other forces.

Evolution of genetic exchange

Genetic exchange can create new variants by combining
genetic material from different individuals within a spe-
cies (sex) or from different species (horizontal gene trans-
fer). Mechanisms that increase the rate of genetic
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exchange could be selected for in a changing environ-
ment, as genetic exchange could accelerate adaptation to
new environmental conditions (Otto and Barton 1997).
For example, recombination could increase the rate of
adaptation by bringing together beneficial mutations from
different lineages and by separating beneficial mutations
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from linked deleterious mutations (Fisher 1930; Muller
1932; Crow and Kimura 1965; Cooper 2007). Selecting
for the capacity to bring together beneficial mutations,
thereby reducing competition between lineages with
different beneficial mutations and accelerating adaptation,
actually constitutes one of the primary hypothesized
mechanisms for the origin and maintenance of sex (the
Fisher—Muller hypothesis) (Fisher 1930; Muller 1932).

Evolution could alter rates of genetic exchange by act-
ing on a number of different mechanisms. First of all,
recombination rates are under heritable control (Coop
and Przeworski 2007), and can also show a plastic
increase in response to environmental stress (Belyaev and
Borodin 1982; Tracey and Dempsey 1982; Parsons 1988).
Domesticated plants show increased rates of recombina-
tion relative to their wild progenitors (Ross-Ibarra 2004).
Existing data support the hypothesis that recent intense
selection pressure associated with domestication indirectly
selected for this increase in recombination (Ross-Ibarra
2004). Second, many organisms can reproduce both
sexually and asexually, with genetic and environmental
inputs determining the choice of reproductive mode (Bell
1982; Bernstein and Johns 1989; West et al. 2001; Eads
etal. 2008). Finally, many organisms (especially
microbes) can take up and incorporate foreign DNA. In
bacteria, the capacity to take up foreign DNA from the
environment is referred to as competence. This typically
involves dedicated machinery and occurs in response to
specific environmental cues. For example, in the water-
borne bacteria Vibrio cholerae competence is induced by
chitin (Meibom et al. 2005; Miller et al. 2007). Thus,
integration of foreign DNA would preferentially occur
when V. cholerae is associated with copepods or other
crustacean hosts, a niche environment in which V. chole-
rae would be in close proximity to a high density of other
microbes. Interestingly, metagenomic analysis of microbes
in the human gut (a prototypical disturbance-prone but
resource-rich environment) revealed over-representation
of gene families involved in horizontal gene transfer
(Kurokawa et al. 2007).

There are potential tradeoffs between increased versus
reduced recombination in invasive populations. Asexual
reproduction could double the population growth rate, as
the fitness cost of males is removed. In addition, asexually
reproducing founders would have reproductive assurance,
diminishing allee effects and facilitating colonization of
new sites. In addition, organisms that reproduce sexually
could suffer inbreeding depression during founder events,
while asexually reproducing organisms would not (Haag
and Ebert 2004). Indeed, many of the most notorious
invaders are asexual (Lyman and Ellstrand 1984;
Raybould et al. 1991; Poulin et al. 2005). However, as
discussed above, sexual reproduction could facilitate
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adaptation and long-term invasion potential. A possible
example of this involves two invasive grass species in the
genus Cortaderia (Lambrinos 2001). Although morpho-
logically similar, the species Cortaderia selloana repro-
duces sexually while another, Cortaderia jubata,
reproduces asexually. The invasiveness of the sexually
reproducing species appears to have increased over time
(and populations have experienced directional morpho-
logical change), while the invasiveness of the asexually
reproducing species has remained relatively constant.
There is also empirical evidence that biological control
can be achieved more readily in asexually reproducing
than in sexually reproducing weeds, presumably because
of reduced genetic diversity and the capacity to adapt in
asexual species (Burdon and Marshall 1981).

Evolution of the mutation matrix

Mutations are the ultimate source of all genetic variation.
The contribution of spontaneous mutations to the vari-
ability of a quantitative trait can be quantified as the
mutational variance (V)), or the new genetic variance
arising in one generation for that trait (Clayton and
Robertson 1955; Wagner and Altenberg 1996). Such a
property is referred to as the ‘variability’ of the trait, as
opposed to its observable standing variation (Houle et al.
1996; Wagner and Altenberg 1996). Studies on model sys-
tems suggest that new mutations could make substantial
contributions to the long-term selection response of
quantitative traits (Lopez and Loépez-Fanjul 1993;
Mackay et al. 1994; Keightley 1998; Azevedo et al. 2002).
The amount of mutational variance that is generated for
particular traits is an inherent property of the organism,
and depends on the number of genes involved in the
trait, the phenotypic effect of mutations at those genes
and the spontaneous genomic mutation rates (Houle
1998). The mutational variances for traits and the covari-
ances between the traits can be depicted as the mutation
matrix (M-matrix, Box 1).

Fluctuating environments or environmental stress could
act to facilitate the generation of novel genetic variation
by acting on various aspects of the mutation matrix. First
of all, stressful conditions (Miller 1998; Bjedov et al.
2003; Foster 2005) and fluctuating selection (Taddei et al.
1997; André and Godelle 2006; Denamur and Matic
2006) could increase global mutation rates. Secondly,
fluctuating selection could increase mutational variances
of particular traits (Vy), either by increasing mutation
rates at loci underlying those traits (Jansen and Stumpf
2005) or by increasing sensitivity of the traits to muta-
tions (‘genetic potential’) (Meyers et al. 2005). Such
increases in mutational variance could then contribute to
additive genetic variance (V,), upon which selection
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could act. Thirdly, fluctuating selection might alter the
mutational covariance structure to increase modularity
and the potential speed of evolution (Kashtan and Alon
2005; Reisinger and Miikkulainen 2006).

Two forces, recombination and accumulation of delete-
rious mutations, would tend to act against the selection
for globally elevated mutation rates. Therefore, global
constitutive hypermutation might be disfavored relative
to local hypermutation or facultative hypermutation.
Local hypermutation might in some cases alleviate the
problem of recombination, as the locus affecting muta-
tion rate might be tightly linked to its mutational target
(preventing dissociation via recombination). Transient
facultative hypermutation, which might be induced in
response to environmental conditions, might be favored
as it would reduce mutational load.

Differences among populations, clades or species in
mutational variances or covariances for critical traits
might in some cases account for differences in their
potential to evolve during range expansions. Differences
in mutational variance have been found among strains of
Caenorhabditis elegans (Baer et al. 2005). However, inter-
population comparisons of mutational variances of traits
do not exist for most species. The three subsections below
outline how selection might act on various aspects of the
mutation matrix.

a) Increases in global mutation rate

Both empirical data (Sniegowski et al. 1997; Giraud et al.
2001; Denamur and Matic 2006) and theoretical studies
(Leigh 1970; Gillespie 1981; Taddei et al. 1997; Johnson
1999; Tenaillon et al. 2000; Tanaka et al. 2003; André and
Godelle 2006; Palmer and Lipsitch 2006) indicate that
disturbance could select for elevated global mutation
rates. Under conditions where adaptation is limited by
mutation rates, such as during environmental change,
new beneficial mutations would facilitate adaptation to
changing conditions. Stable environments, on the other
hand, would select for low rates of mutation, as most
mutations are deleterious (Kimura 1967). Three primary
forces contribute to selection pressure on mutation rate:
(i) negative effects of deleterious mutations, (ii) positive
effects of beneficial mutations and (iii) costs associated
with high replication fidelity (Dawson 1998; Drake et al.
1998; Johnson 1999; André and Godelle 2006).

In addition, the level of recombination is also critical
for mutation rate evolution (see Box 2). The reason is
that mutation rate is only selected on indirectly, and
recombination affects the capacity of indirect selection to
act on mutation rate. Under low levels of recombination,
an allele that confers an elevated mutation rate might
more readily hitchhike to fixation with a linked beneficial
allele (which was brought about by the elevated mutation
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rate). One implication is that selection could more readily
favor high mutation rate in asexual populations (see
Box 2).

In bacteria, changing environmental conditions have
been found to favor bacterial strains with constitutively
elevated mutation rates (‘mutators’) (Sniegowski et al.
1997; Miller 1998; Giraud etal. 2001; Shaver and
Sniegowski 2003; Matic et al. 2004; Macia et al. 2005;
Denamur and Matic 2006). Such strains tend to have
deficiencies in genetic fidelity functions, such as muta-
tional inactivation of the mismatch repair system (Miller
1998; Shaver and Sniegowski 2003; Denamur and Matic
2006). Most mutator strains have been isolated from
pathogenic bacteria, which are exposed to changing
stressful environments due to host defenses and antibiotic
treatments (Macia et al. 2005; Denamur and Matic 2006).

The long-term evolutionary importance of bacterial
mutator strains is still under debate. Although the fitness
increase conferred by mutator alleles after an environ-
mental shift is often sufficient to drive fixation in popula-
tions, this fitness increase is often relatively small
(Sniegowski et al. 2000; Shaver et al. 2002). Deleterious
alleles would also accumulate, diminishing fitness. More-
over, an increase in the deleterious mutation rate
in mutators could cause the loss of functions that are not
essential at present, but might be required in future
environments (de Visser 2002). Yet, in an ever-changing
environment, mutator strains might continue to accrue a
fitness advantage. In some cases, back mutation of the
mutator allele might allow reversion to wild-type muta-
tion rates, such that deleterious alleles would not con-
tinue to accumulate indefinitely. For example, in
Escherichia coli, global hypermutation is often caused by
potentially reversible changes in the number of copies of
a six base repeat located within the mismatch repair gene
mutL (Shaver and Sniegowski 2003). In addition, recom-
bination between mutator and wild-type strains could
restore functions lost to deleterious mutations.

Mutator strains can exhibit a dramatic advantage when
facing multiple environmental challenges. For example,
among Pseudomonas aeruginosa strains isolated from
chronic lung infections, all strains resistant to multiple
antibiotics and most of the strains resistant to at least
one antibiotic were hypermutable (Macia et al. 2005).
Construction of P. aeruginosa mutator strains in vitro, by
deletion of the mutS gene, resulted in the development of
resistance within 24-36 h against all anti-pseudomonal
antibiotics tested (Oliver et al. 2004). An elevated but
intermediate mutation rate appears to be associated with
resistance to the greatest number of antibiotics (Denamur
et al. 2005). Intermediate mutation frequencies might be
most optimal because highly elevated mutation rates
would increase the burden of deleterious mutations. In
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general, theoretical studies indicate that intermediate
levels of mutation are most favorable for adaptation
(Orr 2000Db).

Bacterial mutator strains can also show a large advan-
tage when colonizing novel environments. In one experi-
ment, mice, which represent a novel environment, were
simultaneously inoculated with two E. coli strains that dif-
fered only in mutation rate (Giraud et al. 2001). The
mutator strain showed a large short-term competitive
advantage, although it was ultimately outperformed by
the wild-type strain. In the first 9 days postinoculation,
the ratio of mutators to nonmutators rose 800-fold.
Moreover, mice inoculated only with mutators showed
much larger E. coli population sizes in the first 2 weeks
after inoculation than mice inoculated with the wild-type
strain (Giraud et al. 2001). These results might have
applications for understanding the role of high mutation
rate in promoting the adaptation and rapid population
growth of destructive invaders.

Theoretical studies have provided insights into condi-
tions required for increases in global mutation rates
(Leigh 1970, 1973; Gillespie 1981; Taddei et al. 1997;
Johnson 1999; Tenaillon et al. 2000; Tanaka et al. 2003;
André and Godelle 2006; Palmer and Lipsitch 2006).
Such studies have found that fixation of alleles for ele-
vated mutation rate might largely be restricted to asexual
lineages (Leigh 1970, 1973; Johnson 1999; Tenaillon
et al. 2000). In addition, for fluctuating environments,
fluctuations of intermediate frequency appear most
favorable for elevating mutation rate (Travis and Travis
2002; Palmer and Lipsitch 2006). However, indirect
selection for beneficial mutations could still substantially
increase the mutation rate in sexual organisms if the
replication accuracy cost function has low slope (i.e. the
physiological cost of increasing replication accuracy to
bring about a unit reduction in mutation rate is low)
(Johnson 1999).

Moreover, in asexual species, recent theoretical results
suggest that mutation rate could not evolve to a stable
optimum, but would be inherently unstable (André and
Godelle 2006). Given only alleles with a small effect on
mutation rate, the forces that affect mutation rate evolu-
tion (i.e. deleterious mutation, beneficial mutation and
accuracy cost) would push the mutation rate of a popula-
tion toward a convergence stable state. However, if alleles
could arise that produce large changes in mutation rate,
adaptation would destabilize the mutation rate, allowing
large-effect mutators to invade during periods requiring
adaptation to new environmental conditions. Thus, under
individual-level selection, mutation rate would not stably
converge to the intermediate frequency of mutations that
would maximize adaptive potential. However, one might
expect a higher variance of mutation rates and higher
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incidence of mutator alleles in fluctuating environments,
potentially leading to increases in adaptive potential.

Changes in mutation rate could also occur in a tran-
sient and plastic manner, rather than being constitutively
expressed. Transient increases in mutation rate could
occur through a variety of mechanisms (Foster 2005). For
example, under conditions of stress-induced DNA dam-
age, the SOS repair response system in bacteria prioritizes
rapid DNA repair over accuracy, resulting in elevated
rates of mutations (Matic et al. 2004). It is not clear
whether such transient increases in mutation rate are the
consequence of selection for increased mutation, or sim-
ply a by-product of stress. It would be useful to model or
experimentally test whether such transient hypermutation
facilitates adaptation to the stressful conditions.

In addition to changes in global mutation rate, global
genetic variance could also be increased by evolutionary
‘capacitance’. Evolutionary capacitance refers to a mecha-
nism whereby organisms could accumulate genetic varia-
tion that has no phenotypic effect under one set of
circumstances (cryptic genetic variation), but where this
genetic variation could be exposed and subjected to natu-
ral selection under altered circumstances. Such exposure
could either occur in response to environmental stress or
stochastically (bet hedging). Evolutionary capacitance is a
mechanism that could itself be selected for and would
allow for rapid phenotypic change in a population and
rapid adaptation to new environmental conditions.

One putative case of stress-responsive capacitance
involves heat shock protein 90 (Hsp90) (Rutherford and
Lindquist 1998; Queitsch et al. 2002). Under stress, the
capacity of Hsp90 to maintain proper protein folding is
overloaded (due to an increase in protein denaturation),
and Hsp90 is shunted from roles in maintenance of devel-
opmental stability. Cryptic genetic variation that is
exposed could then be selected upon, allowing ‘genetic
assimilation’ (Waddington 1953) of beneficial phenotypes
that were initially visible only under stress. After such
genetic assimilation, the beneficial phenotype is exhibited
even in the absence of stress. Thus, Hsp90 acts as a capac-
itor, releasing hidden genetic variation under stress, when
it might provide a survival advantage. Meanwhile, a puta-
tive case of stochastic capacitance involves the yeast prion
PSI+ (Patino et al. 1996; True et al. 2004). This protein
sporadically switches between heritable conformations,
with one of the conformations permitting partial read-
through of stop codons, thereby exposing cryptic genetic
variation that has accumulated in 3’ untranslated regions.
Theoretical modeling has shown that fluctuating selection
can permit the evolution and maintenance of capacitance
mechanisms, at least in asexual populations (and perhaps
even in sexual populations) (Masel 2005; King and Masel
2007).
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b) Changes in mutational variance of particular traits
(diagonals of the M-matrix)

Environmental stress or fluctuations could enhance evolv-
ability by selecting for increases in the mutational vari-
ances of important traits (Box 1, diagonal elements of the
M-matrix). Such evolutionary changes might arise by
either increasing mutation rates at loci underlying the
traits (Zieg et al. 1977; Kearns et al. 2004; Wright 2004;
Martin et al. 2005; Moxon et al. 2006) or increasing the
sensitivity of the traits to mutations (‘genetic potential’)
(Meyers et al. 2005).

Environmental stress (e.g. starvation, osmotic or tem-
perature stress) could directly affect mutation rates of
particular traits by inducing stress-directed mutagenesis
(Wright 2004; Heidenreich 2007). Stress induces tran-
scription of particular genes, such that those genes
become vulnerable to mutations (Heidenreich 2007). For
example, if tryptophan were limiting, transcription rates
of the trpA gene would increase and therefore elevate
mutation rates at that particular gene (Wright et al.
2003). In bacteria, transcription could drive supercoiling
of DNA strands, which would create secondary stem-loop
structures containing nucleotides that are unpaired and
thus vulnerable to mutation (Wright 2004).

There is substantial evidence for the evolution of
elevated mutation rates at particular loci or traits in
response to fluctuating environments (Jansen and Stumpf
2005). Much empirical data from bacteria indicates that
fluctuating selection favors hypermutability of traits and
rapid reversible shifts between phenotypic states. These
shifts frequently correspond to heritable but reversible
mutations at specific ‘contingency loci’ (i.e. hypermutable
loci that allow a contingent response to changing envi-
ronmental circumstances) (Zieg et al. 1977; Kearns et al.
2004; Martin et al. 2005; Moxon et al. 2006). For a wide
variety of bacteria, this hypermutability is induced by
slippage of simple sequence repeats, resulting in insertions
and deletions (Kearns et al. 2004; Martin et al. 2005;
Moxon et al. 2006). In other cases, hypermutability is
induced by inversions of specific DNA segments (Zieg
et al. 1977). Under fluctuating selection across genera-
tions, stochastic switching resulting from hypermutability
could be favored over short-term phenotypic response to
the environment (plasticity) (Kussell and Leibler 2005).

Theoretical models predict the evolution of elevated
mutation rates at particular loci under temporally fluctu-
ating selection (Ishii et al. 1989; Travis and Travis 2002),
particularly at intermediate levels of fluctuations (Travis
and Travis 2002). This class of theoretical models (Ishii
et al. 1989; Travis and Travis 2002) assumes that alleles
mutate back and forth between defined states that are
most beneficial in either of two different environments
(i.e. high reversion rates, with an absence of uncondition-

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd 1 (2008) 427-448

Evolution of invasive populations

ally deleterious alleles). Thus, the structure of these
models closely matches the mechanisms observed for
switch-like contingency loci, and might be less applicable
to mutational processes that are less constrained. Alterna-
tive mutational processes (e.g. random point mutations,
random indels, etc.) would produce a high proportion of
unconditionally deleterious alleles and reversion rates
would be low. In addition, it is noteworthy that one of
these models (Ishii et al. 1989) showed that fluctuating
conditions could select for a modifier that increased
mutation rate at a target locus even if the mutation rate
modifier was unlinked to the target locus. This mecha-
nism would allow for selection on evolvability even in the
presence of recombination.

Alternatively, under fluctuating selection across genera-
tions, mutational variance might increase for particular
phenotypes due to increases in ‘genetic potential’, or
heightened sensitivity of the phenotype to mutations
(Meyers et al. 2005). Such increases in mutational vari-
ance would occur without increases in mutation rate.
Genetic potential increases when selection favors the
alleles that would more likely code for altered phenotypes
upon mutations, facilitating switching between pheno-
types (Meyers et al. 2005). In a theoretical model of
codon substitution and amino acid evolution, populations
evolved genetic potential when the environment fluctu-
ated at a rate of approximately every 10-10° generations,
with a mutation rate of 107° (Meyers et al. 2005). With
increasing mutation rate, such as 1072, genetic potential
evolved with more rapid fluctuations, such as approxi-
mately every 1-10° generations (Meyers et al. 2005).
A question remains on the effect that overlapping genera-
tions would have on the evolution of genetic potential,
and whether switching between genetically robust states
would become more common.

There are circumstances under which fluctuating
selection could actually select for decreased evolvability
(increased canalization) (Kawecki 2000). However,
whereas Gaussian selection with a stable optimum (i.e.
classical stabilizing selection) would generally select for
increased canalization (Schmalhausen 1949; Wagner
et al. 1997; Rice 1998; Kawecki 2000) (but see para-
graph below), Gaussian selection with a fluctuating
optimum would only select for canalization under quite
restricted conditions (Kawecki 2000). Specifically, selec-
tion for canalization would require shifts in the direc-
tion of selection on the order of every one to eight
generations and would also require a low amplitude
of oscillation (small fluctuations) (Kawecki 2000).
Canalization is favored for shifts of this frequency
because a selection response in one generation could
prove disadvantageous in the next generation. A linear
rather than Gaussian fitness function would not impose
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the requirement of low oscillatory amplitude (relaxing
the conditions for canalizing selection), but such a fit-
ness function also seems less realistic. Slower fluctua-
tions, or greater oscillatory amplitude, would instead
select for increased evolvability.

The evolution of evolvability in a trait under fluctuat-
ing selection is governed by epistatic interactions between
loci. However, the effects of epistasis in this context are
poorly understood. Epistasis is important to consider,
because evolvability could evolve whenever a phenotype is
the product of two or more heritable factors (e.g. gene
products) that interact in a nonlinear fashion (Rice 1998,
2002). Such interaction creates curvature in the pheno-
typic landscape, with areas of steeper slope corresponding
to increased evolvability. The effects of epistasis on the
evolution of evolvability under simple directional selec-
tion have recently been studied using multilinear epistatic
models (Carter et al. 2005; Hansen et al. 2006). It was
found that with sustained directional selection, evolvability
could increase or decrease depending on the direction of
epistatic interactions. Negative epistasis, in which genetic
substitutions diminish each other’s effects in the direction
of selection, could be quite constraining. Asymptotically,
on long timescales, an accelerating response to selection
was found to occur regardless of the initial
epistatic architecture (although assumptions underlying
multilinear epistatic models are dubious on very long
timescales).

Fluctuating conditions might facilitate trait optimiza-
tion in the presence of epistasis, because changes in the
selection gradient could dislodge populations that would
otherwise be trapped by local constraints (e.g. local peaks
or plateaus) under purely directional selection (Kashtan
et al. 2007). However, a great deal of additional theoretical
work will be required to fully understand the manner and
degree to which different conditions could select for evolv-
ability or canalization in the presence of epistatic interac-
tions. For example, some theoretical studies yield
unexpected results. Contrary to expectation, it has recently
been revealed that stabilizing selection in the presence of
epistatic interaction would frequently not absolutely mini-
mize mutational variance (i.e. would not fully maximize
canalization) (Hermisson et al. 2003). This is the case even
though these conditions would select for minimized addi-
tive genetic variance. This result indicates that the reality
of the situation is complex, and much more research is
required to determine how epistatic interactions shape the
evolution of evolvability (see Hansen 2006).

¢) Changes in mutational covariances between traits
(off-diagonals of the M-matrix)

Mutational covariances between traits reflect levels of
pleiotropic constraints that are imposed on phenotypic
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effects due to new mutations. Modularity is maximized
when mutational covariances between traits are minimal.
High modularity between traits is generally thought to
increase evolvability, as the traits can evolve indepen-
dently (Wagner and Altenberg 1996). However, a theoret-
ical study suggests that low but nonzero pleiotropy
should maximize evolvability (i.e. nonzero due to a
balance between the reduction of mutational variances
under low pleiotropy and greater constraint under high
pleiotropy) (Hansen 2003).

Moreover, modularity requires a particular form in
order to increase evolvability, specifically an alignment
between environmental selection gradients and organismal
variation in phenotypic space (Altenberg 2005). An
appropriate pattern of modularity and integration of
traits (e.g. high pleiotropy among head morphology traits,
and low pleiotropy between head traits and arm traits)
would result in a distribution of new mutants that are
better matched to (and better able to exploit) the adap-
tive landscape. Selection on phenotypic traits indirectly
generates such structuring within organisms, as it indi-
rectly selects on genetic and mutational covariances to
produce an alignment of the M-matrix, the G-matrix and
the adaptive landscape (Reisinger and Miikkulainen 2006;
Jones et al. 2007; Toussaint and von Seelen 2007).

Evolutionary simulation studies found that systemati-
cally changing fitness functions tend to increase organismal
modularity. One theoretical study found that the degree of
modularization directly covaries with the frequency of
environmental change (Lipson et al. 2002). Likewise, simu-
lations of network evolution (i.e. Alife simulations) resulted
in the spontaneous evolution of modularity when the
simulations applied fluctuating selection with ‘modularly
varying goals’ (Kashtan and Alon 2005). Modularly varying
goals refers to the case of switching between several goals
that rely on different combinations of subgoals, with
subgoals being analogous to basic biological functions (e.g.
a biochemical network motif) (Kashtan and Alon 2005).
An empirical study of metabolic network structure in bac-
teria found that metabolic networks of taxa from more var-
iable environments were significantly more modular than
networks of those that evolved under more constant condi-
tions (Parter et al. 2007).

Furthermore, fluctuating selection might greatly accel-
erate the speed of evolution, mostly as a result of the
generation of appropriate modularity or pleiotropic link-
ages between traits (Reisinger and Miikkulainen 2006;
Kashtan et al. 2007). A simulation study using genetic
algorithms found that both randomly varying goals and
modularly varying goals increased the rate of evolution,
with modularly varying goals producing the greatest
increases in speed (Kashtan et al. 2007). Moreover, the
artificial organisms that evolved under such a selection
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regime could quickly adapt between alternate goals (i.e.
high genetic potential, with few mutations required to
achieve high fitness after each environmental shift) (Kash-
tan et al. 2007). Similarly, another study using genetic
algorithms that allowed indirect selection on pleiotropy
found that fluctuating selection could increase evolvability
(Reisinger and Miikkulainen 2006). Applying a fitness
function that varied over time while retaining certain
invariant features in the adaptive landscape (e.g. persis-
tently favoring bilateral symmetry) successfully selected
for enhanced evolvability (Reisinger and Miikkulainen
2006). These results suggest that sharply fluctuating natu-
ral environments might harbor organisms with dispropor-
tionately modular and evolvable structures.

Evolvability 2: maintenance of genetic variation
(G-matrix) through balancing selection

Once genetic variation is created through new mutations,
mechanisms must exist to maintain the variation within
populations, in order for the populations to readily
evolve. Temporally fluctuating selection might serve as a
means to promote the accumulation and maintenance of
genetic variance within source habitats that give rise to
invasive populations. Theoretical models indicate that
temporally fluctuating selection across generations could
promote the maintenance of genetic variance for quanti-
tative traits under appropriate conditions (Gillespie and
Turelli 1989; Ellner and Hairston 1994; Ellner and Sasaki
1996; Sasaki and Ellner 1997; Turelli et al. 2001; Biirger
and Gimelfarb 2002; Turelli and Barton 2004). In addi-
tion, many forms of disturbance (e.g. fires, floods) could
also increase spatial heterogeneity, which might further
augment the potential for balancing selection (Levene
1953; Hedrick 1998, 2006). This maintenance of variation
would affect response to selection and the potential for
phenotypic evolution.

Temporally fluctuating selection could maintain
genetic variation under particular conditions. Genotype
by environment interaction (G X E), and particularly
antagonistic pleiotropy between traits across environ-
ments, would facilitate the maintenance of genetic varia-
tion under fluctuating environments or spatial
heterogeneity, by favoring different traits at different
times or locations (Gillespie and Turelli 1989; Turelli and
Barton 2004). For example, for the copepod E. affinis,
negative genetic correlations between fresh and saltwater
tolerance would mean that seasonal fluctuations in salin-
ity would select for different phenotypes at different sea-
sons (Lee et al. 2003, 2007). Theoretical analyses show
that balanced polymorphism could be maintained
through fluctuating selection when the geometric mean
fitness of the heterozygotes exceeds that of the homozyg-
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otes (e.g. marginal overdominance) (Haldane and Jayakar
1963; Turelli 1981). Such conditions protect less-favored
alleles against elimination during environmental fluctua-
tions (Levene 1953; Haldane and Jayakar 1963; Wallis
1968; Gillespie and Turelli 1989; Curtsinger et al. 1994;
Hedrick 1999; Rand et al. 2002). In addition, in the
presence of recurrent mutation, fluctuating selection can
increase additive genetic variance under conditions that
are much less stringent than those required to maintain
protected  balanced  polymorphisms  (Biirger and
Gimelfarb 2002).

While the requirement for higher geometric mean fit-
ness of heterozygotes might be viewed as quite restrictive
(Hedrick 1974), two considerations argue for the poten-
tially high prevalence of balanced polymorphisms main-
tained through fluctuating selection. First, beneficial
reversal of dominance is plausibly a common phenome-
non (Gillespie 1998). Beneficial reversal of dominance
(Curtsinger et al. 1994; Hedrick 1999) is a form of mar-
ginal overdominance in which, hypothetically, freshwater
tolerance in the copepod E. affinis might be dominant in
freshwater environments, while saltwater tolerance might
be dominant in saline environments. Such a pattern
of dominance would arise when the favored allele in the
heterozygote compensates for the lowered function of
the less-favored allele in each environment, so that the
heterozygote resembles fitness of the favored homozygote
(Wright 1929; Kacser and Burns 1981). The relatively
high frequency of the less-favored genotype in both saline
and freshwater populations of E. affinis suggests that this
mechanism might be operating in this species (Lee et al.
2003). Secondly, the presence of overlapping generations
greatly expands the conditions under which fluctuating
selection could protect polymorphism, by preserving
genotypes that had been subjected to different selection
regimes across generations (Hedrick 1995; Ellner and
Sasaki 1996). Many species exhibit extreme generational
overlap in the form of dormant stages, such as seeds,
spores, or diapause eggs.

A few empirical studies support the theoretical predic-
tions (Hairston et al. 1996; Schemske and Bierzychudek
2001; Kassen 2002). For example, a population of the
copepod Diaptomus sanguineus exhibits heritable variation
in timing of spring diapause. Mean timing of diapause
shifts between years in response to fluctuations in selec-
tion, with selection favoring early diapause in years of
high predatory fish density (Hairston and Dillon 1990).
These populations have overlapping generations in the
form of a diapause egg bank, where diapause eggs could
remain in the sediment for decades (Hairston 1996; Hair-
ston and Kearns 2002). A mechanistic model that incor-
porated laboratory and field data confirmed that the
injection of diapause eggs from past selection regimes
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contributes to standing genetic variation (Ellner and
Hairston 1994; Ellner et al. 1999). In another example,
flower color in the desert annual Linanthus parryae is
subject to selection due to temporal and spatial variation
in rainfall (Schemske and Bierzychudek 2001, 2007).
Blue-flowered plants typically have a fitness advantage in
years of low spring precipitation, whereas white-flowered
plants have a fitness advantage in vyears of high
spring precipitation (Schemske and Bierzychudek 2001).
A model using fitness parameters estimated from Schemske
and Bierzychudek’s (2001) data suggests that the main-
tenance of flower color polymorphism might be explained
by fluctuating selection (Turelli et al. 2001).

Fluctuating conditions in either the source or sink ranges
could increase the probability of invasive success into novel
environments (Holt et al. 2004, 2005). Adaptation during
fluctuations within potential source habitats would cause
the source population to periodically more closely resemble
the sink habitat. Thus, these conditions would favor the
accumulation and maintenance of alleles in the source hab-
itat that would be beneficial in the sink habitat, and facili-
tate invasions from the source to the sink.

Maintenance of genetic variation across geographic
space could also facilitate invasive success by harboring a
vast range of phenotypes, some of which might be better
matched to the environment being invaded. Increased
genetic polymorphism in invasive populations could be
achieved through recurrent invasions (Holt et al. 2005),
invasions from multiple sources (Kolbe etal. 2004;
Lavergne and Molofsky 2007) and hybridization
(Ellstrand and Schierenbeck 2000; Rieseberg et al. 2003).
Such mechanisms would effectively bring together, into
genomes or populations, alleles that have been selected
for in different environments.

Testing hypotheses on the evolutionary origins of
invasive populations

The goal that we envision is to develop a synthesis
regarding the conditions that lead to the evolution of
invasive populations. Much more theoretical work is
needed, including on the effects of epistasis and pleiot-
ropy. For instance, a key area that requires greater under-
standing regards the extent to which selection molds
evolvability. In addition, more data are required from the
native range of invasive populations regarding: (i) specific
geographic origins of invasive populations within the
native range, (ii) characteristics of disturbance in the
native range and (iii) responses of individuals and popu-
lations to disturbance.

How do we proceed with testing hypotheses on the
impact of disturbance on the potential to invade? Theoreti-
cal results could guide us on hypotheses to test, and also
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the range of parameter values that are plausible. In order to
make better model predictions, we would require more
detailed information on the environmental conditions
within the native range. Within the native habitats of inva-
sive populations, we would need to determine the nature
of selection regimes experienced by populations, and quan-
tify levels of disturbance. We would need to determine the
variables, both biotic and abiotic, that might impose selec-
tion on the populations. In particular, we would need to
determine the period, relative to generation time, and mag-
nitude of fluctuations of those environmental variables.

We can, currently, make a few predictions based on
first principals. One important prediction is that, as more
data become available, the geographic sources of invasive
populations will be found disproportionately in disturbed
habitats (after accounting for transport opportunity).
Native ranges of invasive species are heterogeneous, and
not all populations within the native range necessarily
have the potential to invade (Lee 1999; Tsutsui and Case
2001; Saltonstall 2002; Meusnier et al. 2004; Brown and
Idris 2005; Chu et al. 2006; Gelembiuk et al. 2006; May
et al. 2006; Caldera et al. 2008; Winkler et al. 2008).
Thus, it is important to accurately genotype and identify
the actual geographic sources of invasive populations.

Furthermore, it is possible to use genomic data to test
hypotheses regarding the impact of fluctuating selection.
Specifically, sequence data could be used to estimate the
intensity of fluctuating selection, as captured by two
parameters corresponding to the strength of selection and
fluctuation rate (Mustonen and Lassig 2007). A testable
prediction is that invasive populations would have higher
parameter estimates (i.e. stronger fluctuating selection)
relative to noninvasive populations.

In addition, various hypotheses could be tested regard-
ing specific mechanisms that might play a role in the evo-
lution of invasive populations. For example, performing
common-garden reaction norm experiments would reveal
the degree of broad tolerance or plasticity of individuals
within populations (Lee et al. 2007, 2003). In addition,
with the increasing ease of genomic analyses, we could
compare genomes of sister taxa from disturbed versus
nondisturbed habitats, and those that are invasive versus
noninvasive (Palenik et al. 2006). For example, we might
expect a greater number of genes to be involved in per-
ceiving and responding to unpredictable conditions (e.g.
plasticity) in disturbed habitats.

Another prediction that we have outlined above is that
organisms from habitats differing in disturbance might
differ in variation generating properties, including recom-
bination, mutational variance and modularity (see section
on Evolvability 1: generation of adaptive variants). These
properties could be measured using populations or sister
taxa from disturbance-prone versus stable habitats, and
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also populations that successfully invade versus those that
do not, despite transport opportunity. Mutational vari-
ances of relevant traits could be determined in haploid
organisms or inbred lines of diploid organisms (Mackay
et al. 1994; Houle et al. 1996; Houle 1998; Keightley
1998; Azevedo et al. 2002). In addition, the prevalence of
mutator strains of bacteria could be measured in different
habitat types. The degree of modularity of the genotype—
phenotype map could be analyzed by estimating
M-matrices (Box 1) of populations from habitats of
differing degrees of disturbance.

Finally, more research could combine theory and
empirical data to examine the prevalence of balanced
polymorphisms maintained by environmental heterogene-
ity. The analysis of color morph polymorphism in the
desert flower L. parryae is a paradigmatic example (see
previous section) (Schemske and Bierzychudek 2001;
Turelli et al. 2001). Hypotheses regarding the mainte-
nance of genetic variance could be tested by quantifying
additive genetic variance for critical traits of populations
that reside in habitats that vary in the degree of environ-
mental fluctuations (Ellner and Sasaki 1996).

Management and policy implications

Our understanding of factors that contribute to the evo-
lution of invasive populations remains poor (Lee 2002).
Our ability to make concrete predictions on the invasive
potential of populations would be greatly enhanced by
more empirical and quantitative analyses of disturbance
in the native ranges. Unfortunately, such information is
unavailable for most invasive species. Integrating informa-
tion on environmental conditions in the native habitats,
such as the magnitude and duration of environmental
fluctuations, along with physiological and other responses
of the native populations would allow us to discern the
types of environmental conditions that might give rise to
invasive populations (see previous section). Such insights
would allow us to focus management and mitigation
efforts toward those populations that are likely to success-
fully tolerate or adapt to novel environments during
invasions.

The topic of niche expansions is fundamental to under-
standing how organisms respond to environmental change,
and has far-reaching implications for global climate change
and responses to other anthropogenically induced altera-
tions in the environment (Bradshaw and Holzapfel 2006;
Chown et al. 2007). The gaps in our understanding on
niche evolution are becoming apparent as we attempt to
grapple with the problem of invasive species. Our under-
standing of anthropogenically induced evolutionary
changes would greatly benefit from promoting invasion
biology into a predictive science, where there is greater
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integration among theoretical studies, between empirical
data and theory, and between ecological and evolutionary
models and approaches for studying invasive species.

As a final note regarding disturbance, increasing levels
of disturbance created by human activities are likely
to promote future invasions. Given their preadaptation
to disturbance, many invasive species would be favored in
environments altered by anthropogenic activity. The
initial invasions into disturbed habitats would allow these
invaders to subsequently invade nearby pristine habitats,
perhaps following a period of adaptation in the new envi-
ronment (Havel et al. 2005). With increasing alterations
to the environment, we are likely to create a world of
invaders, adapted to ongoing disturbance.
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