
SoftwareX 19 (2022) 101120

Contents lists available at ScienceDirect

SoftwareX
journal homepage: www.elsevier.com/locate/softx

Original software publication

irs-partition: An Intrusion Response System utilizing Deep
Q-Networks and system partitions
Valeria Cardellini a, Emiliano Casalicchio b, Stefano Iannucci c, Matteo Lucantonio b,
Sudip Mittal d, Damodar Panigrahi d,⇤, Andrea Silvi a
a University of Rome Tor Vergata, Italy
b Sapienza University of Rome, Italy
c Roma Tre University, Italy
d Mississippi State University, United States of America

a r t i c l e i n f o

Article history:
Received 16 February 2022
Received in revised form 25 April 2022
Accepted 30 May 2022

Keywords:
Intrusion Response System
Self-protection
Self-adaptation

a b s t r a c t

Intrusion Response is a relatively new field of research. Recent approaches for the creation of Intrusion
Response Systems (IRSs) use Reinforcement Learning (RL) as a primary technique for the optimal or
near-optimal selection of the proper countermeasure to take in order to stop or mitigate an ongoing
attack. However, most of them do not consider the fact that systems can change over time or, in other
words, that systems exhibit non-stationary behaviors. Furthermore, stateful approaches, such as those
based on RL, suffer from the curse of dimensionality, due to the state space growing exponentially with
the size of the protected system. In this paper, we introduce and develop an IRS software prototype,
named irs-partition. It leverages the partitioning of the protected system and Deep Q-Networks to
address the curse of dimensionality by supporting a multi-agent formulation. Furthermore, it exploits
transfer learning to follow the evolution of non-stationary systems.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version V1(tag:irs-partition-v2)
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00049
Code Ocean compute capsule N/A
Legal code license Apache License 2.0
Code versioning system used git
Software code languages, tools, and services used Java, Python, Shell scripts
Compilation requirements, operating environments & dependencies openjdk 11.0.13, maven
If available link to developer documentation/manual https://github.com/dpanigra/irs-partition
Support email for questions dp1657@msstate.edu

1. Motivation and significance

Intrusion Detection Systems (IDSs) are widely used to detect
threats to computer systems. However, they are just one of the
two parts of an automatic self-protecting system, as shown in
Fig. 1. Indeed, while IDSs are fundamental to identify ongoing
threats, they generally offer trivial response capabilities, usually
based on a static mapping between the attack that has been
identified and a response (e.g., Snort [1]). Unfortunately, such

⇤ Corresponding author.
E-mail address: dp1657@msstate.edu (Damodar Panigrahi).

an approach exhibits evident limitations mainly related to scal-
ability [2] and lack of generalizability [3]. For this reason, in
the last decade, research on Intrusion Response Systems (IRSs)
started to gain traction. The purpose of an IRS is to automatically
identify the proper response to an ongoing attack, usually by
exploiting additional knowledge of the attacker behavior and of
the protected system.

We investigated existing IRS methodologies (e.g., [1,4–14]),
and the most recent comprehensive survey on this topic, pub-
lished in 2017 by Nespoli et al. [15]. We found that, with the
exception of [3], upon which this work is based, all of them as-
sume that the behavior of the protected system does not change

https://doi.org/10.1016/j.softx.2022.101120
2352-7110/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101120
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101120&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00049
https://github.com/dpanigra/irs-partition
mailto:dp1657@msstate.edu
mailto:dp1657@msstate.edu
https://doi.org/10.1016/j.softx.2022.101120
http://creativecommons.org/licenses/by/4.0/


Valeria Cardellini, Emiliano Casalicchio, Stefano Iannucci et al. SoftwareX 19 (2022) 101120

Fig. 1. Role of Intrusion Detection and Intrusion Response in self-protecting
systems.

over time or, in other words, that the protected system is sta-
tionary. Indeed, most IRSs (e.g., [8,12–14]) use either a rule-based
static configuration or a combination of static attacker and system
models (e.g., [16,17]) to formulate a set of responses for the
entire system. However, modern systems exhibit a non-stationary
behavior, and therefore need the ability to automatically adapt to
changes while dynamically predicting a near optimal response to
an intrusion.

Moreover, to the best of our knowledge, none of the existing
works are based on an openly accessible software prototype,
therefore limiting the reproducibility of the experimental results.

For this reason, in this work, we describe as our main contribu-
tion an open-source licensed software prototype that implements
an IRS, named irs-partition, which builds upon the methodology
introduced in [3]. It uses Deep Q-Networks [18] (DQN), Reinforce-
ment Learning (RL) [19], and transfer learning [20] to cope with
the non-stationary behavior of computer systems. To address the
curse of dimensionality, its formulation supports the partitioning
of the system model, therefore enabling the usage of different
local modeling techniques and solvers, e.g., approaches based on
Markov Decision Processes, such as, DQN and Dynamic Program-
ming [19], or other types of optimization, such as, Mathematical
Programming. To the best of our knowledge, our IRS software
implementation is the first to be released with an Apache 2.0
license.

The high-level architecture of the proposed prototype, and
how it fits in the intrusion detection (ID) and IR chain, is depicted
in Fig. 1. In particular, the defended system is divided into inde-
pendent subsystems (partitions), and an IR agent is responsible
to control each of them. Furthermore, the IR agents receive the
attack details from the IDS, which in turn is in charge of collecting
and analyzing the data using sensors deployed into the system
partitions. The prototype focuses on the IR and assumes an al-
ready existing IDS component. The response is generated upon
reception of an alert from the IDS using exclusively a model of
the system, i.e., without using an attack model. This is a common
trend in recent works on IR (e.g., [3,21]) and it allows the IRS to
handle zero-day attacks, while providing a less targeted response
if compared to an IRS based on the attacker model, when the
attack is known.

The rest of the paper is organized as follows: we describe the
system model and the design of its software implementation in
Section 2. Then, we showcase the functionalities of the developed
software with a case study based on the open-source Online
Boutique application [22] in Section 3. Finally, we discuss the
impact of the software followed by conclusions and future works
in Sections 4 and 5, respectively.

Table 1

Main notation used in this paper.
Symbol Meaning
i A component type
pi A partition corresponding to the ith component type
ij The jth component of the ith component type
pij The jth component of the ith type of the ith partition
S The computer system model
V The set of state variables of system S
vi The set of state variables of component type i
vijT

The state of the jth component of type i at time T
piT The ith partition state at time T
ST The state of system S at time T
⌃ The state space
A The set of actions available to system S
Ai The set of valid actions for the ith component type
ai A valid action (ai 2 Ai) for the ith component type
E(ai) The execution time for action ai
C(ai) The cost for taking action ai
R(·) The reward function
⌧ The termination function
⌧i The termination function for partition i

2. System model and IRS design

We developed and published under the Apache 2.0 license an
IRS prototype, named irs-partition. Even though the software is
flexible enough to support different optimization techniques for
different system partitions, at the current stage of development
we introduced the support for a single solver, based on DQN.
The latter uses a training environment to train agents that are
defined on a per-partition basis. Each agent works toward the
overall system goal of keeping the system secure by predicting the
near-optimal action for its partition using a customizable DQN.

Software dependencies of the application include Eclipse
Deeplearning4J (DL4J) [23], and Reinforcement Learning for Java
(RL4J) [24]. Both are Java implementations of deep neural net-
work algorithms and of the RL framework.

2.1. System model

In this section we introduce the systemmodel and its notation.
The latter is summarized in Table 1.

A system contains components of different types. Each compo-
nent type can be defined at a different granularity level, as deemed
necessary. Examples of component types are hardware devices,
virtual appliances, software modules, web servers, application
servers, database servers, network switches, load balancers, and
container images. We define a component as an instance of com-
ponent type. Furthermore, we define the concept of partition
as the set of all the components of a given type i, i.e., pi =
[m

j=1ij, where ij represents component j of type i, and m is the
total number of components of type i. The system S is the set
of all the partitions, that is, S = {p1, p2, . . . , pn}, where n is
the total number of partitions. In addition, given any two par-
titions pa, pb 2 S, they do not share any component, that is,
8a.8b.a 6= b ! pa \ pb = ;. In other words, partitions are
disjoint. This restriction, which has been introduced to simplify
the development of the prototype, has important implications:
on one hand, it eases the design, development and run-time
administration of the proposed prototype. On the other hand,
it could not fully capture the dynamics of a complex system,
if components belonging to different partitions have some in-
teraction. As a consequence, given the current formulation, the
near-optimality of the response is guaranteed only if components

2



Valeria Cardellini, Emiliano Casalicchio, Stefano Iannucci et al. SoftwareX 19 (2022) 101120

Fig. 2. Class diagram of the main classes of irs-partition software.

belonging to different partitions do not have any interaction. This
limitation will be addressed in a future release of the software
prototype.

2.2. System state

We define a set of boolean state variables V = [n
i=1vi, where

vi = {v1, v2, . . . , vq}, and where each variable v 2 vi defines
a specific characteristic of component type i and q is the total
number of variables used to model the state for such component
type. For example, following the case study scenario we will
describe in Section 3, the variable corruptedi is applied to all the
components of type i, and its instances represent whether or not
each component of type i has been compromised. The set of the
variable values of all the components of a given partition i at
a given discrete time T represents the partition state, that is,
piT = [m

j=1vijT
. Similarly, the system state is represented by the

set of the states of its component partitions, that is, ST = [n
i=1piT .

Finally, ST 2 ⌃ , where ⌃ represents the state space.

2.3. System actions

We define a set of actions which, when executed on a given
component ij, change the state of its corresponding partition pi,
and hence the system state. Each component type i of the system
has its set of valid actions, i.e., Ai = {a1, a2, . . . , ar}, where r
is the total number of actions executable on component type i.
Furthermore, by design, we have that 8j.Ai = Aij . Hence, the set
of actions available to the entire system is the union of all of
the actions defined for each component type, i.e., A = [n

i=1Ai.

Furthermore, each action is associated with a pre-condition and
a post-condition. The former, Pre(ST , aij ), where aij 2 Aij , deter-
mines if action aij can be executed on component j of partition i
when the system is in state ST . The latter modifies the partition
state, taking it from piT to piT+1 , and thus from ST to ST+1.

2.4. Reward and termination functions

For each action ai 2 Ai, we define its execution time, E(ai),
and cost, C(ai), as two criteria of a reward function. The latter re-
turns the immediate reward obtained by a reinforcement learning
agent upon its execution, and it is defined as:

R(piT , ai, piT+1 ) =
⇢ �2, if piT = piT+1

�wE
E(ai)
Emax

� wC
C(ai)
Cmax

, otherwise. (1)

where Emax and Cmax are respectively the maximum execution
time and the maximum cost; wE, wC 2 [0, 1] are the cor-
responding optimization weights. R(piT , ai, piT+1 ) returns a high
penalty score of �2 if an action, ai, cannot be run because the
preconditions are not met. This specific formulation is a techni-
cal requirement of the DQN solver implementation of the DL4J
library.

Finally, the termination function is used to identify the set of
states in which the system is considered secure. We define a per-
partition termination function as ⌧i : piT ! {true, false}, and a
system-level termination function as ⌧ = Vn

i=1 ⌧i(piT ).

2.5. Software design

We implement the system model S, system state variables
V , actions A, partition state piT , reward function R, termination

3



Valeria Cardellini, Emiliano Casalicchio, Stefano Iannucci et al. SoftwareX 19 (2022) 101120

Fig. 3. Sequence diagram to create deep neural nets.

function ⌧ , and partition termination function ⌧i respectively,
in the SystemEnvironment (SE), SystemState, SystemAc-
tion, SystemPartitionEnvironment (PSE), SystemReward-
Function, SystemTerminateFunction, and PartitionSys-

temTerminateFunction (PSTF) classes. We decompose the sys-
tem model S into multiple partitions, where each partition stores
only its own state variables and actions in SystemPartitio-

nEnvironment, which is a subclass of SystemEnvironment. All
the partitions are then stored in the List<PartitionSystem-

Environment> list. We use PartitionCreatorUtility (PCU)
to decompose the SystemEnvironment into multiple Parti-

tionSystemEnvironment based on component type i, as shown
in Fig. 2, which represents the class diagram of the main classes
of the software. The references to the full system state variables
V , and action set A are stored in MasterMDPHolder, which is
a singleton object that acts as a central store and provides the
state of the system at a discrete time T , ST , and the set of
actions, A, to objects of classes SystemPartitionEnvrionment
and PartitionSystemTerminateFunction.

The execution of our software starts with the main function
of PartitionDQNMain, where we create the system model (S)
in SystemEnvironment from the .yml configuration files, store
the system state (ST ) in MasterMDPHolder, decompose S into
partitions, store each partition in SystemPartitionEnviron-

ment, and create one DNN for each partition as shown in the
sequence diagram of Fig. 3.

We train one agent on each partition pi. Each agent is respon-
sible for providing the local near-optimal next action, according

to the current partition state. Given the formulation of the system
model as a set of disjoint partitions, the set of predicted opti-
mal local actions leads to a global optimum. We use DQN with
Monte Carlo simulation to train the agents. We utilize QLearn-

ingDiscreteDense [24] for DQN with configurable parameters.
The simulation begins with an initial system state configured
in SystemState by the system administrator. Then, based on
the initial state, a set of actions, ActionSet, (at most one for
each partition) is executed on the environment, represented by
PartitionSystemEnvironment, which returns a set of rewards
(from SystemRewardFunction) and the next system state. Such
actions are chosen by the agent by either exploiting the acquired
knowledge, and therefore trying to maximize the expected dis-
counted reward, or by exploring actions whose outcome, in terms
of reward and transition, is still unknown. The latter case occurs
with a probability ✏ = 0.01 during the first epoch, and the
parameter is gradually reduced to 0 after 1500 epochs. We store
the state ST , the action aT+1, and the reward R(ST , a, ST+1) in the
memory called experience. We configured the maximum size of
experience to 5000 in a parameter expRepMaxSize. Finally, the
epoch continues until it either terminates when the environment
reaches a secure state (as determined by the partition termination
function, PartitionSystemTerminateFunction) or when it
reaches its maximum length (as configured in maxStep.) After
storing a batch (configured as 128 in batchSize parameter)
of experiences, we train multiple DNNs, one (implemented in
NNBuilder with parameters layers, hiddenSize, and learn-

ingRate) for each partition, pi, with episodes drawn from the

4



Valeria Cardellini, Emiliano Casalicchio, Stefano Iannucci et al. SoftwareX 19 (2022) 101120

Fig. 4. Architecture of the OB System.

memory using the experience replay technique. We run many
batches of episodes to retrain the DNNs to increase accuracy in
the prediction of the action.

3. Case study: Online boutique

A proper validation and comparison of different IRS tech-
niques is usually undermined by the lack of a standardized cyber-
range [25]. For this reason, and in order to improve the repro-
ducibility of our scenario and results, we illustrate the function-
alities of our IRS software using a use-case scenario based on
the open-source Online Boutique (OB) 2.0 system [22]. OB is
a web application used by Google to showcase cloud-enabling
technologies like Kubernetes/GKE, Istio, Stackdriver, gRPC, and
OpenCensus [26]. It is a cloud-native application based on the
microservice architectural style and is composed of 11 services,
written in different languages that communicate over gRPC, plus
a workload generator. It implements an online shop where users
can browse items, add them to the cart, and purchase them. Fig. 4
shows the OB system architecture, along with a representation
of a possible partitioning scheme, according to the definition
of partition introduced in Section 2.1. There are 11 partitions,
one for each service. For the sake of simplicity and without loss
of generality, we report experimental results showing the time
needed to converge to a near-optimal solution for a scenario in
which a sub-system with 2 partitions is considered. We used a
machine of type c220g2 from CloudLab [27] to run our experi-
ments. We used the following JVM parameters: -Xms102400 m -

Xmx102400 m -XX:MaxMetaspaceSize=40960m. For space rea-
sons, we do not report experimental results on the non-stationary
aspects. However, the interested reader can find a detailed anal-
ysis in [3].

We now describe the system model of the case study and
analyze the experiments.

3.1. Case study system model

The system administrator describes the systemmodel contain-
ing the partition information in the topology-containers.yml
configuration file.
1 frontend -service:

2 replication: 1

3 state:

4 - start

5 - active

6 - restarted

7 - corrupted

8 - shellCorrupted

9 ...

Listing 1: Configuration snippet from topology-containers.yml

Listing 1 shows an example configuration of the frontend-
service partition, where the number of components in the parti-
tion is represented by the parameter replication, and its state
variables are listed in the state section. This specific configura-
tion instance shows that the component type has the following
5 state variables: start, active, restarted, corrupted,

shellCorrupted.
For space reasons, we only list the configuration of one com-

ponent type. However, we list in Table 2 all the state variables
(and their corresponding meanings) that we used to model the
OB system.
1 start:

2 execution -time: 300

3 execution -cost: 100

4 pre-condition: state[active] == false

5 post-condition: state[active] = rand(1)

6 components:

7 - frontend -service

8 - cart-service

9 - redis-service

10 ...

Listing 2: Configuration snippet from action-set-containers.yml

5



Valeria Cardellini, Emiliano Casalicchio, Stefano Iannucci et al. SoftwareX 19 (2022) 101120

Table 2

OB System State variables list.
State variable Meaning
start If true, the container has started
active If true, the container is running
corrupted If true, the container is under attacker control
restarted If true, the container has been restarted after the agent requested to do so
shellCorrupted If true, the attacker has overwritten the shell /bin/sh in the container
cartCorrupted If true, the content of Redis data store has been altered by the attacker
confVuln If true, the current configuration of Redis data store is vulnerable to potential

attacks and is subject to loss of confidentiality
intVuln If true, the current configuration of Redis data store is vulnerable to potential

attacks and is subject to loss of integrity
passwordRequired If true, it mandates a password before accepting a command on Redis data

store
dangerousCmdEnabled If true, dangerous commands, such as flushall, that can potentially compromise

the Redis data store, are enabled.
accessRestricted If true, it only permits access from permitted sources, such as cart-service, to

the Redis data store.

Table 3

Actions list.
Action Name Description Pre-Condition Post-Condition E(ai) C(ai)
starti Start a stopped microservice ¬activei P = 1 ! activei = true 300 100
restarti Restart a malfunctioning

service
activei ^ corruptedi ^ ¬restartedi P = 0.75 ! corruptedi =

false; P = 1 ! restartedi = true
500 300

heali Restore a malfunctioning
service from a container image

activei ^ corruptedi _
shellCorruptedi

P = 1 ! corruptedi =
false; P = 1 !
shellCorruptedi = false

1000 500

healRedisSecurei Restore a malfunctioning Redis
server from a container image

activei ^ cartCorruptedi ^
¬intVulni

P = 1 ! cartCorruptedi = false 1000 500

healRedisInsecurei Restore a malfunctioning Redis
server from a container image

activei ^cartCorruptedi ^ intVulni P = 1 ! cartCorruptedi = true 1000 500

enablePasswordi Configure the Redis server to
request a password before a
user can issue commands

activei ^ ¬passwordRequiredi ^
confVulni _ intVulni

P = 1 ! passwordRequiredi =
trueP = 1 ! confVulni =
false; P = 1 ! intVulni = false

1000 1000

disableDangerousCmdi Configure the Redis server to
disable dangerous commands

activei ^
dangerousCmdEnabledi ^ intVulni

P = 1 !
dangerousCmdEnabledi =
false; P = 0.85 ! intVulni =
true

50 500

restrictAccessi Configure firewall rules to
permit access from authorized
services

activei ^ ¬accessRestrictedi ^
confVulni _ intVulni

P = 1 ! accessRestrictedi =
true; P = 0.7 ! confVulni =
true; P = 0.7 ! intVulni = true

50 300

The administrator also defines a set of actions and provides the
following parameters for each action: the reward parameters (ex-
ecution time and cost), the pre-condition and the post-condition
in the action-set-containers.yml configuration file. List-
ing 2 shows the configuration of the action start, consisting
of: its reward parameters (execution-time and execution-

cost); the component types (frontend-service and redis-

service) whose components can choose start as one of the ac-
tion under the components section; the pre- and post-conditions
under their respective sections. Table 3 defines all the actions
along with their pre-condition, post-conditions, execution time
and cost, that we modeled for the protection of the OB system.

We use a total of 16 state variables and decompose the system
state as shown in Fig. 5. Furthermore, we implement
PartitionSystemTerminateFunction.terminate() as the
conjunction of the subset of the state variables reported in Ta-
ble 4. In addition, the input to each DQN is the set of the state
variable values of the its corresponding partition, and the output
is one action from the set of valid actions.

Table 4

Termination condition.
State Variable Condition
active = true
corrupted = false
cartCorrupted = false
confVuln = false
intVuln = false
shellCorrupted = false

3.2. Case study experiments

We initialize the system state to simulate an exploit based on
the common vulnerability CVE-2019-5736 [28], based on the lack
of authentication of Redis server. We measure the effectiveness
of the proposed IRS prototype in terms of cumulative reward
and convergence time, as typical in IRSs based on Reinforcement
Learning (e.g., [3,21]). We carried out experiments to gather the

6



Valeria Cardellini, Emiliano Casalicchio, Stefano Iannucci et al. SoftwareX 19 (2022) 101120

Fig. 5. Relationship between the OB System state and Partition state variables.

Fig. 6. DQN training time vs cumulative rewards.

cumulative rewards in training the DQNs for both, the entire
system and the front-end partition only. As depicted in Fig. 6, the
training time to converge to a near-optimal cumulative reward of
the front-end partition, 173 sec, is smaller than the convergence
time for the case in which the entire system is considered, 220
sec. We calculated the optimal cumulative reward using our
implementation of the Value Iteration algorithm [19] (classes
VIMain and PartitionVIMain). Fig. 6(a) and 6(b) respectively
show the cumulative reward obtained according to the time spent
on training for both, the single front-end partition and the system.
We do not provide a detailed analysis of the time overhead
introduced by the IRS, because it is negligible with respect to the
execution time of the response actions. Indeed, once the model
has been trained, the IRS overhead consists in a single forward
pass on the neural network, which can be accomplished in the
order of milliseconds, while the execution time of the response
actions is in the order of seconds or minutes.

4. Impact

The irs-partition system described in this paper further ad-
vances the state of the art in IRS software. We take a significant
step forward in creating self-protecting systems that support
non-stationary behavior, allow complex system partitioning, and
near-optimal mitigation of local threats using multiple model

types, including DQNs with customizable hyper-parameters. Our
IRS software implementation with these capabilities is also the
first to be released with an Apache 2.0 license.

Our software uses a training environment with a simulated
system to train the IRS agents. Thus, it makes it possible to pre-
train agents in a training environment and deploy them in a live
environment. We train each agent with a dedicated deep neural
network, where each network can be customized to a different ar-
chitecture with its own set of hyperparameters. In addition, each
agent could configure different types of modeling approaches,
including DQNs, which we have used in our prototype.

5. Conclusions

Cyber threats are still evolving, and the security industry needs
systems that can both, detect and respond, automatically. This
need requires further investigation into automatic self-protecting
systems, which can help secure real-world systems exhibiting
non-stationary behavior. In this paper, we introduced a soft-
ware tool to train multiple agents in a training environment
using customizable deep neural networks to build an IRS, named
irs-partition. We focused on leveraging multiple deep neural net-
works that predict a set of optimal actions. Moreover, the pre-
trained agents immediately enhance system security using the
transfer learning technique from their experience gained in a

7



Valeria Cardellini, Emiliano Casalicchio, Stefano Iannucci et al. SoftwareX 19 (2022) 101120

simulated system. In the future, we plan to monitor the impact
and quality of the predictions, and to provide a mechanism to
self-tune the deep neural networks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

All the experiments have been conducted on the NSF-sponsored
CloudLab platform [27]. E. Casalicchio is funded by the project
Smart Defense, Italy (000090_19RS).

References

[1] What is snort?. 2021, https://www.snort.org/faq/what-is-snort (Accessed:
12 May 2021).

[2] Iannucci S, Abdelwahed S. A probabilistic approach to autonomic security
management. In: Proc. of 2016 IEEE Int’l Conf. on Autonomic Computing.
ICAC ’16, 2016, p. 157–66.

[3] Iannucci S, Cardellini V, Barba OD, Banicescu I. A hybrid model-free
approach for the near-optimal intrusion response control of non-stationary
systems. Future Gener Comput Syst 2020;109:111–24.

[4] Guo Y, Zhang H, Li Z, Li F, Fang L, Yin L, et al. Decision-making for intrusion
response: Which, where, in what order, and how long? In: Proc. of 2020
IEEE Int’l Conf. on Communications. ICC ’20, 2020, p. 1–6.

[5] Hughes K, McLaughlin K, Sezer S. Dynamic countermeasure knowledge for
intrusion response systems. In: Proc. of 31st Irish Signals and Systems
Conf.. ISSC ’20, IEEE; 2020, p. 1–6.

[6] Li X, Zhou C, Tian Y-C, Qin Y. A dynamic decision-making approach
for intrusion response in industrial control systems. IEEE Trans Ind Inf
2018;15(5):2544–54.

[7] Iafarov R, Gad R, Kappes M. Improving attack mitigation with a cost-
sensitive and adaptive intrusion response system. In: Proc. of 14th Int’l
Conf. on Networks. ICN ’15, 2015, p. 135–9.

[8] Foo B, Wu Y-S, Mao Y-C, Bagchi S, Spafford E. ADEPTS: Adaptive intrusion
response using attack graphs in an e-commerce environment. In: Proc.
of 2005 Int’l Conf. on Dependable Systems and Networks. DSN ’05, IEEE;
2005, p. 508–17.

[9] Douligeris C, Mitrokotsa A. DDoS attacks and defense mechanisms:
Classification and state-of-the-art. Comput Netw 2004;44(5):643–66.

[10] Koutepas G, Stamatelopoulos F, Maglaris B. Distributed management ar-
chitecture for cooperative detection and reaction to DDoS attacks. J Netw
Syst Manage 2004;12(1):73–94.

[11] Ryutov T, Neuman C, Dongho K, Li Z. Integrated access control and
intrusion detection for web servers. IEEE Trans Parallel Distrib Syst
2003;14(9):841–50.

[12] Armstrong D, Carter S, Frazier G, Frazier T. Autonomic defense:
Thwarting automated attacks via real-time feedback control. Complexity
2003;9(2):41–8.

[13] Armstrong D, Frazier G, Carter S, Frazier T. A controller-based autonomic
defense system. In: Proc. of DARPA Information Survivability Conf. and
Exposition, Vol. 2. IEEE; 2003, p. 21–3.

[14] Kreidl OP, Frazier TM. Feedback control applied to survivability: A
host-based autonomic defense system. IEEE Trans Reliab 2004;53(1):
148–66.

[15] Nespoli P, Papamartzivanos D, Mármol FG, Kambourakis G. Optimal coun-
termeasures selection against cyber attacks: A comprehensive survey on
reaction frameworks. IEEE Commun Surv Tutor 2017;20(2):1361–96.

[16] Tanachaiwiwat S, Hwang K, Chen Y. Adaptive intrusion response to
minimize risk over multiple network attacks. ACM Trans Inf Syst Secur
2002;19(1–30):95–6.

[17] Toth T, Kruegel C. Evaluating the impact of automated intrusion response
mechanisms. In: Proc. of 18th Ann. Computer Security Applications Conf..
IEEE; 2002, p. 301–10.

[18] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et
al. Playing Atari with deep reinforcement learning. 2013, arXiv preprint
arXiv:1312.5602.

[19] Sutton R, Barto A. Reinforcement learning: an introduction. 2nd ed..
Cambridge, MA, USA: MIT Press; 2018.

[20] Olivas ES, Guerrero JDM, Martinez-Sober M, Magdalena Benedito JR,
Serrano Lopez AJ. Handbook of research on machine learning applications
and trends: Algorithms, methods, and techniques. IGI Global; 2009.

[21] Hughes K, McLaughlin K, Sezer S. A model-free approach to intrusion
response systems. J Inf Secur Appl 2022;66:103150.

[22] Online boutique. GitHub; 2021, GitHub Repository https://github.com/
GoogleCloudPlatform/microservices-demo.

[23] DeepLearning4j. GitHub; 2020, GitHub Repository https://github.com/
deeplearning4j/deeplearning4j.

[24] DeepLearning4j. RL4J: REinforcement learning for Java. GitHub; 2020,
GitHub Repository https://github.com/deeplearning4j/rl4j.

[25] Montemaggio A, Iannucci S, Bhowmik T, Hamilton J. Designing a
methodological framework for the empirical evaluation of self-protecting
systems. In: Proc. of 2020 IEEE Int’l Conf. on Autonomic Computing and
Self-Organizing Systems Companion. ACSOS-C ’20, IEEE; 2020, p. 218–23.

[26] Bernstein D. Containers and cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Comput 2014;1(3):81–4.

[27] Duplyakin D, Ricci R, Maricq A, Wong G, Duerig J, Eide E, et al. The design
and operation of CloudLab. In: Proc. of USENIX Ann. Tech. Conf.. ATC ’19,
2019, p. 1–14.

[28] CVE-2019-5736 Detail, https://nvd.nist.gov/vuln/detail/CVE-2019-5736.

8

https://www.snort.org/faq/what-is-snort
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb2
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb2
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb2
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb2
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb2
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb3
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb3
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb3
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb3
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb3
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb4
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb5
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb6
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb7
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb8
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb9
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb10
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb11
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb12
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb13
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb14
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb15
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb16
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb17
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb17
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb19
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb20
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb21
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb21
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb21
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/deeplearning4j/deeplearning4j
https://github.com/deeplearning4j/deeplearning4j
https://github.com/deeplearning4j/deeplearning4j
https://github.com/deeplearning4j/rl4j
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb25
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb26
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb26
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb26
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb27
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb27
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb27
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb27
http://refhub.elsevier.com/S2352-7110(22)00079-6/sb27
https://nvd.nist.gov/vuln/detail/CVE-2019-5736

	irs-partition: An Intrusion Response System utilizing Deep Q-Networks and system partitions
	Motivation and significance
	System model and IRS design
	System model
	System state
	System actions
	Reward and termination functions
	Software design

	Case study: Online boutique
	Case study system model
	Case study experiments

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


