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A B S T R A C T   

Little is known about the genomic diversity of the microbial communities associated with raw municipal 
wastewater (sewage), including whether microbial populations specific to sewage exist and how such pop
ulations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used 
the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater 
mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun meta
genomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome- 
assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater 
control at our analytical limit of detection. Tracking the dynamics of the populations represented by these MAGs 
revealed varied decay kinetics, depending on (inferred) phenotypes, e.g., anaerobes decayed faster than aerobes 
under the well-aerated incubation conditions. Notably, a portion of these populations showed decay patterns 
similar to those of common markers, Enterococcus and HF183. Despite the apparent decay of these populations, 
the abundance of β-lactamase encoding genes remained high throughout incubation relative to the control. 
Lastly, we constructed genomic libraries representing several different fecal sources and outline a bioinformatic 
approach which leverages these libraries for identifying and apportioning contamination signal among multiple 
probable sources using shotgun metagenomic data.   

1. Introduction 

Wastewater collection systems (or simply, collection systems) 
represent an important engineering control for the collection of human 
feces, commercial or industrial wastewaters, and sometimes storm
water, particularly in certain urban settings. The operation and main
tenance of collection systems pose unique challenges, often due to their 
size, complexity, and capital costs (Salman et al., 2012; Berendes et al., 
2018; McLellan et al., 2018). Population growth and distribution 
changes – especially growing urbanization trends – highlight the 
importance of maintaining and expanding efficient collection systems 
for an increasing fraction of the global population (ten Veldhuis et al., 
2010). Severe weather, pipe blockages, aging, and other issues of system 
failure can lead to the accidental release of untreated wastewater 

(sewage) from collection systems into waterways or floodwaters (Sal
man et al., 2012; Berendes et al., 2018; McLellan et al., 2018; Olds et al., 
2018). As sewage is a significant reservoir of both chemical and bio
logical pollutants, its release into the environment poses serious envi
ronmental and human health risks, including potential exposure to 
human pathogens (Ashbolt et al., 2010; Fouz et al., 2020; Medina et al., 
2020; Eisenberg et al., 2016) and possible dissemination of antimicro
bial resistance genes (ARGs) among microbial populations (Su et al., 
2020; Kessler 2011; Lira et al., 2020). 

Microbial source tracking (MST) refers to a collection of forensic 
tools developed to identify the presence and source of contamination 
among multiple probable fecal sources, including sewage (Harwood 
et al., 2014). In large part, the technical approaches behind MST 
methods have been developed in response to both the difficulty of 
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assaying for the diverse array of relevant human pathogens as well as the 
practical need to keep methods relatively rapid and inexpensive. Exist
ing approaches have relied on indicator organisms to imply the presence 
of fecal pollution and sometimes as proxies for the presence of human 
pathogens in contaminated waters. Specifically, fecal indicator bacteria 
(FIB) include an aggregation of bacterial populations considered rep
resentatives of microbial communities inhabiting the guts of 
warm-blooded animals. Widely used indicator organisms include 
Escherichia coli and Enterococcus spp. More recently, MST genetic 
markers from distinct bacterial lineages have been used that leverage 
known host specificity of distinct populations for source attribution 
(Bernhard et al., 2000). Some markers (e.g., the HF183 primer targeting 
a human-associated Bacteroides clade) have found effective use in 
environmental management strategies as the basis for inferring the 
amount of sewage present and thereby, a potential array of pathogen 
concentrations for iterative risk assessment simulations (Boehm et al., 
2015). Yet, the use of FIB and MST gene markers has had challenges: 
most notably, that the concentration of most markers are rarely found to 
co-vary with pathogen concentrations, marker concentrations fluctuate 
with sewage age and the capability of FIB to adapt to environmental 
conditions can all combine to confound results interpretation (Harwood 
et al., 2014; Korajkic et al., 2018; Ahmed et al., 2016, 2019; Devane 
et al., 2020). 

In recent years, targeted metabarcoding methods have examined 
sewage and sewage-contaminated waters via the 16S rRNA gene or the 
internal transcribed spacer (ITS) for prokaryotes and fungi, respectively 
(Ahmed et al., 2016; Unno et al., 2018; McLellan and Eren, 2014; 
Assress et al., 2019). These studies have revealed a distinct sewage 
“microbiome” dominated by taxa that proliferate in collection systems, 
sometimes far beyond the abundance of human gut associated pop
ulations (Newton et al., 2015; McLellan and Roguet, 2019; McLellan 
et al., 2010). However, these single-gene assays offer limited resolution 
to distinguish between environmental or non-environmental strains of 
the same species due to conservation of the rRNA gene or the ITS region. 
Likewise, these methods do not provide information about the gene 
content associated with important populations (e.g., emergent patho
gens, ARGs present) or resolve finer community-wide compositional 
shifts (Ahmed et al., 2016; Poretsky et al., 2014). Therefore, rRNA 
gene-based approaches are limited with respect to quantifying health 
risks associated with the detection of biomarkers or guide the develop
ment of more holistic environmental management criteria (e.g., site 
specific criteria). 

Whole genome shotgun sequencing (or metagenomics), which re
covers fragments of the genomes in a sample, have revealed that bac
teria and archaea predominantly form sequence-discrete populations 
with intra-population genomic sequence relatedness typically ranging 
from approximately 95% to 100% average nucleotide identity (ANI) 
depending on the population considered – a level that the 16S rRNA 
gene cannot often assess (Caro-Quintero and Konstantinidis, 2012; 
Rodriguez-R et al., 2021). Metagenomic approaches offer unique ad
vantages for environmental health monitoring tasks including: (1) 
extensive gene content information of abundant populations, (2) precise 
ecological estimates of relative abundance at the species level and (3) 
examination of intra-species diversity (Segata 2018). Despite its poten
tial for circumventing some of the challenges facing existing MST and 
metabarcoding methods, whole genome shotgun sequencing has not 
been utilized in monitoring municipal sewage pollution. To date, met
agenomic applications have focused on understanding the microbiology 
of biological wastewater treatment, treated effluents and their receiving 
waters, or viral populations (Lira et al., 2020; Cai and Zhang, 2013; 
Bibby and Peccia, 2013). In part, this is because it remains unclear how 
to best merge the methods and bioinformatics behind metagenomic 
practices with existing MST and environmental monitoring paradigms 
(Hong et al., 2020). Widespread application of this technology in the 
field requires that several outstanding issues be resolved, including the 
detection limits of metagenomic analyses, whether whole and/or 

metagenome-assembled genomes (MAGs) can serve as source-specific 
fecal contamination markers and how metagenomic approaches can 
infer the relative contribution of various fecal inputs (referred to here
after as “source apportioning”). 

Here, we offer a metagenomic perspective on sewage-related bacte
rial populations and explore their relationships with culture and PCR- 
based markers during a simulated failure of a collection system (i.e., 
spill). Specifically, we simulated sewage contamination events in lake 
water obtained from a local drinking water and recreational use reser
voir within dialysis bag laboratory mesocosms that were incubated in 
the dark for one week. Shotgun metagenomic sequencing was performed 
to search for potential sewage-specific biomarkers, test the effectiveness 
of genome collections for fecal source attribution and apportioning, and 
directly screen for both pathogens and antimicrobial resistance genes. 
We further support these aims by developing and testing a theoretical 
analytical limit of detection which can help guide the future application 
and interpretation of metagenomics to these issues. 

2. Materials and methods 

2.1. Sampling and mesocosm operation 

Samples were collected in sterile glass 1 L bottles from the primary 
influent of three WWTPs located in the Atlanta Metropolitan region of 
Georgia (USA) to serve as representatives of sewage across three 
different sewersheds. Each sewershed was comprised of collection sys
tems with separate stormwater and wastewater conveyance (i.e., sepa
rate sewers). Approximately 50 L of surface water from Lake Lanier, 
Georgia was also collected concurrently. Hereafter, these sample groups 
are referred to as sewersheds A, B, and C. All sewage and water samples 
were immediately transported to the lab and stored in darkness at 4 ◦C 
until mesocosm setup, which occurred within 24 h. For mesocosm setup, 
40 L tanks were filled with lake water and a pump installed for aeration. 
Experimental dialysis bags were prepared with 110 mL 10% (v/v) 
sewage and lake water mixture and control bags were filled with 110 mL 
uninoculated lake water and closed on both ends using polypropylene 
Spectra/Por clamps (Spectrum Laboratories). Both experimental (n =

12 × 3 sewersheds = 36 bags) and control (n = 12 bags) dialysis bags 
were then added to the tank. A small headspace of air was left in each 
bag when sealing with clamps so that they could float freely in the tank. 
Dialysis bag pore sizes (6–8 kDa molecular weight cutoff) permit the 
transport of small molecules and ions, but bacterial and viral particles 
are contained within the bags. Mesocosms were kept in darkness at 22 ◦C 
throughout the duration of the experiment. Sampling occurred at 1, 4, 
and 7 days by retrieving experimental and control bags from the mes
ocosm for destructive processing. 

2.2. Culturing, DNA purification, qPCR, and shotgun sequencing 

EPA Method 1600 (USEPA, 2009) was followed for enumerating 
volumetric Enterococcus CFUs. Three replicates of each sample were 
diluted 10-fold and then plated in duplicate. All dilutions yielding 
measurements within an acceptable range for counting were averaged to 
estimate CFUs/100 mL for a sample. Mesocosm sampling, DNA extrac
tion and subsequent qPCR analysis occurred as described previously in 
Suttner et al. (Suttner et al., 2021). Briefly, water samples were passed 
through 0.45 μm pore size polycarbonate (PC) membranes and stored at 
−80 ◦C in 2 mL screw cap bead tubes until processed (within 1–3 
months). DNA was extracted from PC membranes using the Qiagen 
PowerFecal kit following the manufacturer’s instructions with only one 
exception: mechanical cell lysis was performed by bead beating in two 
1-minute intervals using the Biospec Mini-Beadbeater-24 with icing 
between intervals. These DNA extractions were used as template for 
qPCR with the HF183/BFDRev assay (Wade et al., 2010) and a universal 
16S rRNA gene qPCR assay (GenBac16S) to quantify 16S rRNA gene 
copies across samples (Ritalahti et al., 2006). Metagenomic sequencing 
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was performed using the Illumina Nextera XT kit with library average 
insert size determined on an Agilent 2100 instrument using a HS DNA kit 
and library concentrations determined using the Qubit 1X dsDNA assay. 
Samples were then pooled and sequenced on the HiSeq 2500 instrument 
as described previously (Johnston et al., 2019). 

All qPCR reactions were run using an Applied Biosystems 7500 Fast 
thermocycler and the cycling parameters were as follows: 2 min at 50 ◦C, 
10 min at 95 ◦C, and 40 cycles of 15 s at 95 ◦C and 60 s at 60 ◦C. Assay 
reactions used 2 μL of template DNA in 20 μL qPCR reactions with the 
TaqMan Universal PCR Master Mix (Applied Biosystems). The primer 
and probe concentrations were 0.25 μM for HF183 assay and 0.3 μM for 
the Bac16S assay. Template DNAs were run diluted 5-fold (to remove the 
effect of PCR inhibitors) based on the expected marker concentration 
and quality of each sample. Further details on qPCR reaction set up and 
standard plasmids for absolute quantification are provided in Suttner 
et al. (2021) and reiterated within Supporting Information (SI, 
Table S1). To test for extraneous DNA and potential contamination from 
sample handling, 50 mL of sterile PBS was also filtered onto PC mem
branes and processed following the same DNA extraction at every 
sampling time point as described above. 

2.3. Sequence data analysis 

Short reads were quality trimmed and Nextera adapters removed 
with Trimmomatic 0.39 (Bolger et al., 2014). Quality trimming was 
performed to remove poor quality bases along both ends of sequences 
and subsequent removal of any sequences below 50 bp in length. k-mer 
based operation of Nonpareil 3.304 (-T kmer) was used to estimate the 
fraction of alpha diversity covered by the sequencing effort of each 
metagenome (Rodriguez-R et al., 2018). Beta diversity across trimmed 
short reads was assessed with the default settings of simka 1.5.1 based 
on Bray-Curtis dissimilarity values and visualized by principal coordi
nate analysis (PCoA) (Benoit et al., 2016). Kraken2 was used to assign 
taxonomy and estimate simple relative abundance against a custom li
brary, including bacteria, archaea, viruses, protozoa, human, and fungal 
reference genomes at the rank of class (Wood et al., 2019). Trimmed 
short reads were assembled individually with IDBA (UD) 1.1.3 and 
SPAdes (“–meta”) 3.14.0 using k-mer sizes between 20 and 127 (Peng 
et al., 2012; Prjibelski et al., 2020). Contigs shorter than 3 Kbp were 
removed prior to population genome binning, which was performed 
with MaxBin 2.2.7 and MetaBAT 2.12.1 (Wu et al., 2016; Kang et al., 
2019). Additionally, in a parallel workflow, trimmed short reads were 
normalized via the BBNorm function of the BBtools suite (version 38) to 
bring depths between 10 and 30X sequencing depth and then subse
quently assembled and binned as described above (Bushnell, 2014). All 
resulting metagenome-assembled genomes (MAGs) from both regular 
and depth-normalized short read assemblies were dereplicated using 
MiGA 0.7.24.0 via the derep_wf function (Rodriguez-R et al., 2018). 
Groups of MAGs sharing ANI ≥ 95% were clustered into species-like 
populations (hereafter, “populations”) with representative MAGs for 
each population selected by highest completeness and lowest redun
dancy. Populations with no representative MAG having a MiGA quality 
score above 30% and/or redundancies below 5% were excluded from 
further analysis. Both Traitar 1.1.2 and MicrobeAnnotator were used 
with default settings to infer potential phenotypes and annotate draft 
genomes, respectively (Weimann et al., 2016; Ruiz-Perez et al., 2021). 
Lastly, MAGs were screened for cross-reactivity using the FastANI tool to 
search for other genomes with ANI ≥ 95% across a suite of reference 
databases (Jain et al., 2018). 

From the PATRIC database, version 3.6.9, 1097 pathogenic bacterial 
genome accession IDs were recovered by querying for host name 
"Human, homo sapiens" and "good" quality. This included both genomes 
tagged as "Reference" (n = 28) and "Representative" (n = 1069) (Davis 
et al., 2020). Of these, 1076 genomes were recoverable from NCBI for 
use in this study. Abundance estimates of pathogen genomes were 
assessed by competitive short read mapping with Magic-BLAST 1.4.0 

(-splice F) (Boratyn et al., 2019). Resulting alignments were filtered 
using minimum cut-off of 70 bp alignment length, 95% query coverage 
by alignment and 95% identity to avoid spurious matches. Additionally, 
for virulence gene detection, only experimentally verified nucleotide 
entries in the Virulence Factor Database (Liu et al., 2019) were used. 

Evaluating MAG relative abundance across the time series was 
accomplished similarly using Magic-BLAST 1.4.0, where MAGs were 
concatenated into a single library to which reads were competitively 
mapped. Additionally, DIAMOND 2.0.1 (blastx –ultra-sensitive) was 
used to search short reads against the reference gene sequences of pre- 
compiled 150 bp β-lactamase ROCker models to reliably identify short 
reads belonging to β-lactamase encoding genes (Buchfink et al., 2015; 
Zhang et al., 2020). Reads mapping to these reference sequences were 
selected for best bit-score alignment and subsequently filtered by 
ROCker v1.5.2 as described previously (Orellana et al., 2017). 

2.4. Detection and quantification of metagenomic features 

For a reference genome, MAG, or gene to be considered detected in a 
sample, at least 10% of the target sequence was required to be covered 
by reads (i.e., breadth of coverage: hereafter, C), as proposed previously 
for robust detection of targets in metagenomic datasets (Castro et al., 
2018). Or, as written, the analytical limit of detection (LOD) used here: 

Analytical LOD : C ≥ 0.1 (1) 

The LOD was automatically implemented by calculating sequencing 
depth and breadth similarly to Rodriguez-R et al. (2020) for estimating 
“Truncated Average Depth” at 80% (hereafter, the function TAD80). 
Python scripts used for this approach are available online at: https://gith 
ub.com/rotheconrad/00_in-situ_GeneCoverage. In short, the TAD80 
function estimates sequencing depth by first sorting genomic positions 
according to their sequencing depth and then removing the upper 10% 
and lower 10% of positions before averaging the sequencing depth along 
the remaining 80% of positions. Since truncation of targets with breadth 
of coverage near the detection limits (e.g., C ≈ 0.1) could introduce 
artificially lower values, a quantification threshold was also necessary to 
avoid systemic underestimation of abundance for targets near LOD. 
From Lander and Waterman (1988), breadth of coverage (C) is related to 
sequencing depth (ρ) by the following: 

C = 1 − e−ρ (2) 

Thus, for the analytical LOD defined above, the expected sequencing 
depth (ρ) is simply -ln(0.9) for targets at detectable limits. We formalize 
a quantification threshold which measures whether a target is quanti
fiable following application of the truncation function (TAD80) with: 

Quantification Threshold : TAD80(ρ) ≥ −ln(0.9) (3) 

For simplicity in our metagenomic results, we describe those targets 
which satisfied the LOD condition but were below the quantification 
threshold as targets that were “detected but not quantifiable” (DNQ). 

To convert relative abundance of detected target genomes to abso
lute abundances (e.g., cells/mL), the following approach was used. 
Single copy gene coverage or genome equivalents (GEQ) and average 
genome size (AGS) of metagenomes were evaluated using Microbe
Census 1.1.0 (Nayfach and Pollard, 2015). The 16S rRNA gene-carrying 
reads were identified and extracted using sortmeRNA 4.2.0 and the 
average 16S rRNA gene coverage was estimated as the sum of extracted 
read lengths divided by 1540 bp, the average length of the bacterial 16S 
rRNA gene (Kopylova et al., 2012; Wang et al., 2007). Average 16S rRNA 
gene copy number (16S ACN) for each metagenome was determined by 
the ratio between 16S rRNA sequencing depth (ρ16S) and GEQ: 

16S rRNA ACN =
ρ16s

GEQ
(4) 

The copy number of the 16S rRNA gene per mL as quantified by qPCR 
was divided by the 16S rRNA ACN to obtain an estimate for the number 
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of cells in each sample, assuming that one prokaryotic genome was 
approximately equivalent to one prokaryotic cell: 

Estimated Prokaryotic Cell Density
(

cells
mL

)

=

16S rRNA
(

copies
mL

)

16S rRNA ACN
(5) 

These measures were taken to help control for bias in relative 
abundance estimation due to changes in overall microbial load (cells per 
volume) and 16S rRNA gene ACN variation throughout the experiment 
(Lin and Peddada, 2020; Morton et al., 2019). Finally, absolute abun
dances were estimated by multiplying a population’s genome equiva
lents by the estimate for the number of cells in a sample. This was 
accomplished using the following equation for a given population via 
the truncated average sequencing depth [TAD80(ρ)], GEQ and total 
estimated prokaryotic cell density: 

Est. Pop. Cell Density
(

cells
mL

)

=
TAD80(ρ)

GEQ

∗ Est. Prok. Cell Density
(

cells
mL

)

(6) 

Further, an extension of our definitions of LOD was used in tandem 
with cell density estimations for theorizing the smallest abundance 
detectable as a function of GEQ and cell density via: 

Detectable Pop. Size
(

cells
mL

)

≥
−ln(0.9)

GEQ
∗ Est. Prok. Cell Density

(
cells
mL

)

(7)  

2.5. Curation of source-specific genome collections 

It was necessary to curate a collection of source-specific genomes in 
order to support our efforts to develop metagenomic based source 
attribution and apportioning approaches. In short, we collected refer
ence genomes, MAGs, and isolate genomes from several large-scale 
studies of host microbiomes. These datasets included genomes gath
ered from the fecal microbiomes of humans (n = 4644 genomes), pigs (n 
= 1667 genomes), and chickens (n = 5675) and the rumen microbiome 
of cows (n = 2124 genomes) (Almeida et al., 2021; Stewart et al., 2019; 
Gilroy et al., 2021; Chen et al., 2021). MAGs produced in this study were 
also included as representatives of sewage sources. Detailed methods for 
the curation and dereplication of these collections are summarized in 
Supporting Information and visualized in SI Fig. 6S. Lastly, these li
braries are hosted online for public use and download at http://enve 
-omics.ce.gatech.edu/data/mst_library. 

2.6. Data availability 

Sewage and mesocosm short reads as well as sewage-associated 
MAGs can be accessed through NCBI within BioProject PRJNA691978. 

3. Results 

3.1. Culture and qPCR data 

Both fecal indicators (Enterococcus and HF183) were in the same 
order of magnitude across the sewage samples gathered as inoculum for 
the mesocosms. Sewage from sewersheds A and B contained counts with 
averages of 3.7E+04 and 3.1E+04 Enterococci CFUs/100 mL and 
2.4E+06 and 3.6E+06 HF183 copies/mL, respectively. Within sew
ershed C, counts were lower having 1.3E+04 Enterococci CFUs/100 mL 
and 1.5E+06 HF183 copies/mL. Similarly, quantification of the 16S 
rRNA gene copy number within the inoculum indicated that overall, 
microbial loads were lower in sewershed C than sewersheds A and B at 
the time of sampling (SI Fig. S1). Monitoring Enterococci and HF183 
qPCR markers across the mesocosm timeseries revealed that the markers 
decreased throughout the experiment in all replicates but were still 

detectable at day 7 and remained higher than the established or rec
ommended water quality criteria for recreational use waters (i.e., 36 
CFUs/100 mL and 41 HF183 copies/mL) (USEPA, 2015; Boehm et al., 
2018). Only the HF183 marker within sewershed C mesocosm decreased 
below detection on Day 7 (Fig. 1). Neither marker was detected in the 
(un-inoculated) freshwater serving as control at any time point during 
mesocosm operation. 

3.2. Estimated microbial load 

The estimated prokaryotic cell density of the inoculum varied based 
on quantification of the 16S rRNA gene: 1.1E+09, 2.0E+09, and 
1.8E+08 cells/mL were estimated for sewersheds A, B and C, respec
tively. Following dilution and mixing of the inoculum into the meso
cosms, day 0 estimates for cell densities were 2.0E+07, 1.7E+08, and 
2.5E+07 cells/mL. Thereafter, cell density in both sewershed A and 
sewershed C mesocosm increased considerably in the first 24 h to 
1.8E+08 and 6.9E+07 estimated cells/mL (a 924% and 275% increase) 
while sewershed B decreased to 1.5E+08 cells/mL. Subsequent time 
points revealed steady decreases in cell densities approaching the con
trol cell density at day 7 of 7.9E+05 cells/mL (SI Table S2). 

3.3. Metagenomic coverage and compositional shifts 

Between 1.5 Gbp to 3.5 Gbp of data per sample remained following 
read quality trimming and adapter removal, which corresponded to a 
range of 9 to 27 million reads. Sequencing effort covered between 36 
and 67% of expected nucleotide diversity (Nd) across all samples based 
on the Nonpareil algorithm, which estimates sequence coverage based 
on the degree of redundancy among the metagenomic reads available for 
each dataset (Rodriguez-R et al., 2018). This level of coverage is 
adequate for comparing the abundance of features (e.g., genomes, 
genes) across samples (Rodriguez-R and Konstantinidis, 2014). Nd esti
mations of the inoculum and control samples were similar, and day 
0 values closely followed that of their respective sources. A decrease in 
Nd occurred within the first 24 h for all three biological replicates; lower 
diversities were observed in day 1 samples compared to those for the 
inoculum, day 0 samples and the control. The sewershed B series 
increased in diversity for the remaining days while both sewersheds A 
and C fluctuate thereafter (SI, Table S2). 

Observations of beta diversity revealed that the earlier timeseries 
samples (day 0 and day 1) remained quite similar to the inoculum. By 
day 4, considerable shifts in community composition were observed 
driving the sewage contaminated waters closer to the control (SI 
Fig. S2). k-mer mapping to characterize these community-wide shifts 
using Kraken2 at the class level showed the depletion of Bacteroidia, 
Epsilonproteobacteria, and Clostridia following inoculation. None of these 
classes were detectable in the control samples. An increase of Gam
maproteobacteria abundance occurred within the first 24 h across all 
replicates after which this class gradually decreased in abundance with 
time. Additionally, increases in Alphaproteobacteria and Cytophagia 
occurred in later time points (day 4 and day 7), far beyond levels 
observed in the control, suggesting that the later timepoint samples had 
not yet fully recovered from perturbation. Class level relative 
metagenome-based abundances, qPCR, culture, and cell density esti
mation results are summarized on Fig. 1. 

3.4. Sewage-associated population genome binning and taxonomic 
identification 

Seven hundred twenty MAGs were recovered from inoculum and 
timeseries sample assemblies. The 720 MAGs were dereplicated at the 
ANI ≥ 95% level and the highest quality MAG per resulting ANI group 
was selected, generating a single representative MAG for 49 sequence 
discrete populations (hereafter, simply “populations”). Competitive read 
mapping to the representative MAG of these populations revealed two 
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groupings delineated by their presence or absence in the inoculum. Of 
the total 49, 33 populations were detected within sewage inoculum 
samples with varying degrees of prevalence across replicates. We 
selected a subset of 15 of these 33 populations that were above the 
quantification threshold in each inoculum sample, which we refer to as 
“sewage-associated populations”. This selection process was motivated 
twofold: First, to focus only on core populations shared between the 

inoculum recovered from each sewershed examined herein. Second, as 
an effort to exclude potentially noisy, nonspecific, or transient pop
ulations from further analysis. The sewage-associated populations and 
their representative MAGs are summarized in Table 1. Additionally, we 
validated our analytical detection and quantification limits using mock 
data of known composition to ensure these criteria were suitable for 
identifying sewage-associated populations (SI Table S3.A) Sczyrba 

Fig. 1. Panel A: Class level abundances across control, inoculum and timeseries for sewersheds A, B and C based on kmer classification by Kraken2 against a custom- 
built database of reference genomes. Total height of bars represents the percentage of kmers confidently classified to the corresponding taxon (Figure key). The 
maximum and minimum percentages of kmers confidently classified were 69.0% from sewershed A day 1 and 8.9% from the control, respectively. Panel B: Estimated 
cell density, estimated HF183 copy concentration and Enterococci colony forming units (CFU) for the same samples. The dashed lines indicate the estimated cell 
density range for the control sample. HF183 was detected but not quantifiable (DNQ) for sewershed C on day 7. 
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et al., 2017). We found our approach, as described in Materials and 
Methods (Eqs. (1) and (2), robust for reducing quantification error and 
detected targets as expected according to sequencing effort and target 
genome size, except on very limited occasions when close relatives were 
present in the sample at relative abundances many times greater than 
the target. (SI Table S3B,C). 

Our collection of ubiquitous sewage-associated populations in sew
ersheds A, B, and C represented, respectively, 9.5%, 5.7%, and 13.3% of 
the total reads in inoculum metagenomes and 15.9%, 8.8%, and 19.6% 
of GEQ (genome equivalents). Estimated absolute abundances of these 
populations varied across the samples, from a maximum of 4.4E+07 
cells/mL (Pop.01, sewershed B) to a minimum of 2.3E+05 cells/mL 
(Pop.04, sewershed C). Within the inoculum, the median and mean 
absolute abundances of an individual sewage-associated population was 
5.3E+06 and 8.4E+06 cells/mL, respectively. Overall, sewershed C had 
substantially lower population densities due to the difference in total 
microbial load compared to sewersheds A and B, as noted above. 
Consistently, the sewage-associated populations presented here capture 
a larger portion of the metagenomic samples associated with sewershed 
C (compared to A or B), further indicating that the sewershed C samples 
may have simply had more dilute microbial load at the time of sampling. 
Overall, these results reveal that this collection of populations consis
tently represent highly abundant members of the sewage microbiome 
across these biological replicates and possibly a substantial part of the 
total sewage microbial community. 

Comparison of the corresponding representative MAG sequences 
against type material in the MiGA “TypeMat” database (Rodriguez-R 
et al., 2018a) revealed several entries with close matches to previously 

described taxa at the species level (e.g., >95% ANI) including Aeromonas 
caviae (Pop.15), Acidovorax temperans (Pop.30), Prevotella copri 
(Pop.43), Bacteroides vulgatus (Pop.44), and Rivicola pingtungensis 
(Pop.49). Of the remaining, six populations matched known genus-level 
representatives, potentially representing a novel species of the matching 
genera. Two populations matched members of a known family, one to 
members of a known order, and one to members of a known class 
(Table 1). The population with the most distant match in the database 
(Pop.13, matching class Bacteroidia) with 55.1% average amino acid 
identity (AAI) to Paludibacter propioncigenes. 

Collections of bacterial isolate genomes and/or MAGs from fresh
water (Rodriguez-R et al., 2020), activated sludge (Ye et al., 2020), 
anaerobic digestors (Campanaro et al., 2020), the human gut environ
ments (Almeida et al., 2021), and the broad general-purpose GEMs 
catalog (Nayfach et al., 2021), were examined to assess specificity be
tween these 15 sewage-associated populations and other microbiomes. 
Of these sewage-associated populations, some (n = 11) may belong to 
species with members also inhabiting non-sewage microbiomes such as 
biological wastewater treatment processes or the human gut (SI 
Table S4). Importantly, only a single population, Moraxella (Pop.29), 
was found via these database searches to match (95.1–95.0% ANI, 
borderline of universal species cutoff) genomes recovered from aquatic 
environments (both marine and freshwater) (Rodriguez-R et al., 2018b). 
This finding suggests Population 29 could be less effective as an entry in 
a sewage-specific genomic library utilized for MST approaches if other 
Moraxella are in high abundance within unperturbed environments. 

Table 1 
Summary of representative MAGs recovered in this study representing sewage-associated populations.  

Taxonomic Summary 
Population Confident Taxonomy 

(p<0.05) 
Best match in MiGA 
TypeMat Database 

Similarity 
(%) 

Metric Completeness 
(%) 

Redundancy 
(%) 

Length 
(Mbp) 

N50 
(bp) 

CDS GC 
(%) 

01 Genus Arcobacter Arcobacter cryaerophilus 
GCA 002,992,955 

92.8 ANI 87.7 1.9 1.38 7214 1519 28.77 

03 Genus Acinetobacter Acinetobacter johnsonii 
NZ CP065666 

96.5 ANI 78.3 0 1.99 6506 2157 41.9 

04 Genus Aeromonas Aeromonas caviae GCA 
000,819,785 

93.5 ANI 56.6 0.9 2.99 6625 3099 61.78 

13 Class Bacteroidia Paludibacter 
propionicigenes WB4 NC 
014,734 

55.1 AAI 51.9 1.9 0.8 4680 764 39.63 

15 Species A. caviae Aeromonas caviae GCA 
00,820,265 

98.0 ANI 40.6 0 1.57 4876 1684 61.79 

18 Genus Cloacibacterium Cloacibacterium rupense 
GCA 014,645,495 

88.2 ANI 61.3 3.8 1.58 5371 1596 33.27 

19 Family Campylobacteraceae Arcobacter suis CECT 
7833 NZ CP032100 

72.1 AAI 49.1 0 0.95 5098 1130 28.6 

28 Order Neisseriales Rivicola pingtungensis 
GCA 003,201,855 

67.3 AAI 75.5 0 1.13 5350 1176 56.67 

29 Genus Moraxella Moraxella osloensis GCA 
001,679,175 

95.4 ANI 75.5 0 1.83 9146 1726 44.48 

30 Species A. temperans Acidovorax temperans 
GCA 006,716,905 

97.3 ANI 91.5 0.9 2.8 8597 2816 63.59 

33 Genus Flavobacterium Flavobacterium 
succinicans LMG 10,402 
GCA 000,611,675 

87.3 ANI 88.7 2.8 2.81 10,562 2699 35.43 

43 Species P. copri Prevotella copri DSM 
18,205 GCA 
009,495,405 

97.1 ANI 52.8 0 2.36 11,303 1981 46.62 

44 Species B. vulgatus Bacteroides vulgatus 
ATCC 8482 NC 009,614 

99.0 ANI 49.1 0 2.67 5144 2496 41.9 

47 Family Aeromonadaceae Tolumonas auensis DSM 
9187 NC 012,691 

83.5 ANI 98.1 1.9 2.67 16,590 2612 47.97 

49 Species R. pingtungensis Rivicola pingtungensis 
GCA 003,201,855 

97.5 ANI 46.2 0.9 2.03 8236 2031 62.89 

Footnote: "Metric" refers to whether average nucleotide (ANI) or average amino acid identity (AAI) was used to calculate similarity. "Completeness" indicates what 
percentage of single-copy marker genes appear in a MAG. "Redundancy" (or "Contamination") indicates the frequency at which multple copies of those same single- 
copy genes appear in a MAG. "N50′′ represents the contig length at which contigs covering 50% of the MAG are greater than or equal to its value. "CDS" represents the 
number of predicted coding sequences in a MAG. 
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3.5. Sewage-associated population decay and putative phenotyping 

Overall, all populations experienced rapid decline in estimated cell 
densities across the timeseries with most populations below detection 
limits following day 4. Acinetobacter sp., Cloacibacterium sp., Acidovorax 
temperans, and Flavobacterium sp. (Pop.03, Pop.18, Pop.30 and Pop.33, 
respectively) were detectable in at least one biological replicate at day 7 
but most of these observations were below quantification. Signal from 
sewershed A had the greatest persistence; of the four mesocosms with 
quantifiable levels of a sewage-associated population by day 7, three 
belonged to the series of sewershed A. Notably, Acidovorax temperans 
(Pop.30) was the only population detected at day 7 in all three sew
ersheds (Fig. 2). 

All populations remaining detectable at day 7 were putatively phe
notyped as aerobic or facultatively anaerobic by Traitar analysis except 
for Cloacibacterium sp. (Pop.18), which could not be confidently classi
fied. Nonetheless, Cloacibacterium sp. belongs to a genus of facultative 
anaerobes (Cloacibacterium), suggesting that it likely is a facultative 
population and that the representative MAG did not contain the neces
sary genes for confident phenotyping due to incompleteness. No popu
lation – regardless of (predicted) preference for oxygen – showed an 
increased estimated cell density outside the first 24 h of the incubation. 
All sewage-associated populations were likely gram negative, rod or 
oval-shaped bacteria as predicted by Traitar (SI Fig. S4). 

3.6. Human markers and sewage-associated populations 

Our results suggested that several of the sewage-associated pop
ulations are possibly linked to the human gut microbiome (SI Table S4). 
Based on whole genome comparisons (via ANI), Pop.43 and Pop.44 were 
assigned to Bacteroidales lineages that likely represent different clades 
than those represented by HF183. This was concluded based on either 
analysis of the 16S rRNA genes carried by these populations’ represen
tative MAG (HF183 is a 16S rRNA gene-based marker) or, if a 16S rRNA 
gene was not binned with the MAG, the 16S rRNA genes carried on the 
closest matching cultured relative showing at least 95% ANI to the 
representative MAG (See Table 1). In either case, HF183 was not a match 
for Pop.43 or Pop.44 which is consistent with the notion that HF183 
typically belongs to B. dorei (Phocaeicola dorei) and its closest relatives. 
Modeling the linear relationship between either HF183 or Enterococcus 
concentrations against the estimated cell densities of the sewage- 
associated populations revealed divergent results for both markers. 
Specifically, HF183 had excellent correlations against some populations 
(i.e., anaerobic Pop.43 and Pop.44, and aerobic Pop.30 and Pop.28) but 
highly variable correlations overall (R2 between 0.35 to 0.97) while 
Enterococcus had worse correlations but with a tighter range (R2 between 
0.5 to 0.8) (Fig. 3). As noted above, not all the sewage-associated pop
ulations highlighted as potentially co-habiting the human gut co-varied 
in abundance as well with HF183 concentrations. For example, corre
lations with HF183 concentrations were moderate with the presumed 
aerobes of Pop.03 (R2 = 0.69) and Pop.29 (R2 = 0.75) but poor for the 
facultative anaerobic Pop.15 (R2 = 0.35). 

3.7. Source attribution and apportioning assessment 

Source specific genomic libraries were collected and curated as 
described above and in the Supporting Information. These libraries 
contain genomes representing populations which are likely restricted to 
a particular contamination source. Short reads from the metagenomes 
collected across the incubation were mapped to these source specific 
libraries via Magic-BLAST and normalized to both genome length and 
GEQ as described above. The results of this exercise provide an esti
mation for the percentage of prokaryotic cells likely originating from a 
particular contamination source (Fig. 4A). No source category was 
detected in the control sample. Further, human and sewage signals 
dominated the timeseries across each sewershed – though these signals 

showed rapid decline following day 4. The pig, cow, and chicken source 
categories were either not detected or were consistently ≤0.1% GEQ. 

3.8. Pathogen and virulence genes assessment 

To assess the ability of the metagenomic approach to provide insights 
into the health risk associated with bacterial pathogens introduced by 
sewage contamination during mesocosm operation, we recruited meta
genomic short reads to 1076 pathogenic bacterial genomes recovered 
from the PATRIC webserver (Supplement, Table S5). Results revealed 
that 63, 38, and 129 pathogen genomes from sewersheds A, B, and C, 
respectively, within the inoculum had sequencing depths at or above our 
established LOD after read mapping (Supplement, Table S6). In 
contrast, immediately following inoculation on day 0 many reference 
genomes were no longer detectable, with a total of 61, 25, and 20 
pathogenic genomes detected from sewersheds A, B, and C, respectively. 
Obviously, for many of these organisms, pathogenicity is a function of 
exact genotype (e.g., the E. coli pathotypes) and the methods used herein 
were developed for species-level detection and not optimized for dis
tinguishing between closely related genotypes of the same species at low 
abundances (Castro et al., 2018). 

Therefore, due to the low relative abundances of these pathogens 
that we observed and the need to assess the actual genetic content 
present within these populations, we examined the relative abundance 
of experimentally verified genes within the Bacterial Virulence Factor 
Database (VFDB) as proxies for key bacterial pathogens (Fig. 4B). The 
virulence signal within inoculum metagenomes primarily comprised 
those belonging to Aeromonas, Klebsiella, and Shigella pathogenic genera, 
consistent with the whole-genome detection results above. Sewage from 
both sewershed A and C appeared to have greater virulence factor sig
nals compared to sewage from sewershed B, which had drastically lower 
detected levels of Aeromonas VFs (virulence factors) and no detection of 
Klebsiella, Shigella or Escherichia VFs. Within the sewershed A and C 
timeseries, average virulence abundance was lower on day 0 than in the 
inoculum but quickly reached a maximum in 24 h before substantially 
decreasing by day 4 and being below detection by day 7. The change was 
primarily due to a substantial increase in the abundance of Aeromonas 
hydrophila VFs. This trend was consistent among genes hlyA (hemo
lysin), aerA (aerolysin) and act (Aeromonas enterotoxin) – essential cy
totoxins for Aeromonas spp. pathogenicity – across the timeseries. 
Alignment of these three cytotoxin genes to the MAG representing Pop. 
15 revealed that it likely carries a gene encoding for hlyA but aerA and 
act were either not binned with the draft genome or truly not carried by 
this population. Upon further inquiry, the closest matching entry on 
NCBI’s Genome database was Aeromonas caviae NZ_AP022214 (ANI =
98.0%), which represents a strain isolated from a Japanese wastewater 
treatment plant that has not been implicated in disease or designated as 
an obligate pathogen. Hence, to what extent the MAG identified repre
sents a pathogenic or opportunistic pathogenic population remains 
somewhat speculative. 

3.9. β-lactam resistance gene assessment 

Several classes representing the breadth of β-lactamase-encoding 
gene diversity were present in the metagenomes from all samples. The 
uninoculated lake water (control) sample showed very low abundance 
of β-lactamase encoding genes across each class (sum of classes was 
0.078 total β-lactamase encoding genes/genome equivalent) – though a 
subset of metallo-β-lactamase encoding genes (MBLS3) was noticeably 
pronounced (0.06 gene copies/genome equivalent). In the inoculum 
samples, total observed β-lactamase signal was much greater in sew
ersheds A and C (1.07 and 1.14 total gene copies /genome equivalent, 
respectively) compared to sewershed B (0.51 total β-lactamase encoding 
genes/genome equivalent), but the relative contribution of each class 
was consistent, with genes encoding for BlaA, BlaC and OXA domi
nating. In contrast, by day 4 and to a greater extent by day 7, the 
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Fig. 2. Estimated cell densities of sewage-associated populations across inoculum and timeseries samples. Cell densities (absolute abundances) were estimated as 
described in the Materials and Methods section (via Eq. (6)). Populations that were detectable (via Eq. (2)) but that “did not quantify” (DNQ) above our quantification 
threshold (via Eq. (3)) are labelled with an asterisk. 
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frequency of genes encoding for BlaA, BlaC and OXA decreased consis
tently while those encoding for MBLs increased (Fig. 4C). Along with a 
shift in prominence of these β-lactamase gene classes, both sewersheds A 
and C showed steep decreases in the relative number of β-lactamase 
encoding genes/genome equivalent between day 0 and day 7. Sew
ershed C showed the same shifts in prominence between classes, yet 
total signal remained consistent with 0.55 and 0.54 total β-lactamase 
gene copies/genome equivalent on day 0 and 7, respectively. 

4. Discussion 

4.1. Sewershed microbial diversity 

Collection systems represent a key component of modern sanitation 
infrastructure. Despite the importance of sewage as a reservoir for 
human pathogens, antimicrobial resistance genes and the recent wide
spread utilization of wastewater-based epidemiology, the sewage 
microbiome remains relatively understudied at the whole genome level. 

Fig. 3. Log-log scatter plots of estimated population densities across inoculum and timeseries samples against HF183 and Enterococci concentrations. Lines of best fit 
are shown dashed with their associated coefficients. Panel A: HF183 copy number versus the concentration of sewage-associated populations likely to also be enteric 
(n = 8). Panel B: HF183 copy number versus the concentration of all sewage-associated populations (n = 15). Panel C: Enterococci concentration versus the con
centration of sewage-associated populations likely to also be enteric (n = 8). Panel D: Enterococci concentration versus the concentration of all sewage-associated 
populations (n = 15). 
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Our results indicated that the sewage samples we collected from three 
separate collection systems were dominated by what have been aptly 
named microbial “weeds” in literature and which we have observed as 
belonging to several sewage-associated populations that appear quite 
prolific (Assress et al., 2019; Newton et al., 2015) (Fig. 1A). Others have 
reported that several of these populations are also present at high rela
tive abundances within sewersheds spanning another urban landscape 
(VandeWalle et al., 2012). 

These sewage-associated populations showed different preference 
for oxygen, appearing to span strict anaerobic, facultative, and aerobic 
metabolic phenotypes. Notably, the signal associated with these pop
ulations in the metagenomic datasets decayed non-uniformly during 
mesocosm operation, though the most persistent populations were aer
otolerant, acetate-utilizing populations which contained genes related 

to aromatic degradation and/or nitrogen metabolism. Depending on 
additional inquiry, it may be possible to leverage the ratio between 
abundances of anaerobic and aerobic (or facultatively anaerobic) 
sewage-associated populations in future work for inferring the date of 
pollution events linked to sewage contamination. For all 15 populations 
described here, their linear relationship with HF183 and Enterococci 
had a combined R2 of 0.6 (Fig. 2), revealing overall consistent results for 
different markers under the conditions tested here. However, these 
correlations were drawn from the limited number of mesocosm in
cubations and in situ population dynamics are likely to differ according 
to varying environmental and biological factors which were not 
controlled for herein (Ahmed et al., 2019). 

Fig. 4. Abundance patterns of source specific genomic libraries, 
virulence factors, and β-lactamase encoding genes across inoculum 
and timeseries metagenomes. All normalization was performed 
against genome equivalents (GEQ). Panel A: Source attribution 
and apportioning results based on reads mapped against MAGs 
curated for different fecal sources. Percentages represent an esti
mation for the fraction of the prokaryotic cells which can be 
confidently attributed as belonging to one of the fecal sources. 
Panel B: Virulence factor (VF) gene abundance dynamics based on 
short reads mapping against experimentally verified VF reference 
nucleotide sequences. Panel B: β -lactamase encoding gene (BLA) 
abundance dynamics across inoculum, timeseries and control 
metagenome based on searches of reads against reference ARG 
sequences and ROCker model filtering of the resulting matches. 
Relative abundance is calculated by normalizing the average 
sequencing depth of each gene to GEQ after ROCker filtering and 
then summing across BLA classes.   
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4.2. Source attribution and apportioning with source specific genomic 
libraries 

Populations specific to municipal sewage likely exist and represent a 
subset of the microbiome of collection systems which – if better cata
logued – may be useful for identifying and quantifying sewage pollution 
in natural ecosystems (SI Fig. S6). We demonstrated, through a proof-of- 
concept workflow, the capacity for read mapping of metagenomic 
datasets to curated source specific genomic libraries to perform simul
taneous source attribution and apportioning. This approach yields a 
relatively easy-to-interpret metric representing the approximate per
centage of prokaryotic cells within a sample that belong to a contami
nation source (Fig. 4A). Importantly, our approach represents a novel 
development given that current approaches utilizing sequence data for 
MST problems are not designed to distinguish between multiple fecal 
sources (McGhee et al., 2020) or cannot directly assess source appor
tioning between multiple sources (Roguet et al., 2020). 

4.3. β-lactamase encoding genes surveillance 

Additionally, we leveraged our metagenomes to survey for β-lacta
mase encoding genes across the inoculum and timeseries. The abun
dance of β-lactamases across the inoculum samples was substantially 
higher (7–15 times) compared to the control (Fig. 4C). This result was 
consistent with the literature regarding heightened ARG abundance 
within collection systems (Li et al., 2021). Specifically, others have re
ported substantial abundances of β -lactamase OXA genes on both 
Campylobacteraceae and Aeromonadaceae clades in sewage (Hultman 
et al., 2018). Indeed, the abundance of reads belonging to β-lactamase 
encoding genes, especially of the OXA-encoding class, were the most 
abundant in the inoculum and early time points where these 
sewage-associated clades (e.g., Pop.01, Pop.19) persisted in the lake 
water. Overall, these results indicated that sewage contamination 
imparted a substantial and lasting increase to the abundance of genes 
encoding β-lactamases even after 7 days following the contamination 
event (Fig. 4C). More work is needed to elucidate the genomic context of 
this increased β-lactamase encoding gene abundance (e.g., whether they 
belong to or have been transferred to organisms capable of driving 
clinically relevant cases of antimicrobial resistance). Nonetheless, our 
results allow for a quantitative view of the abundance of these genes 
relative to the natural environment, which could be quite relevant for 
assessing associated health risks as part of future work. 

4.4. Shotgun sequencing and monitoring environmental waters 

Importantly, although sewershed A and B showed what appears to be 
similar concentrations of human input according to HF183 concentra
tions within the inoculum (SI Fig. S1), the pathogen detection results 
revealed via the sequence data were quite varied (Fig. 4B, SI Table S6). 
Results from both read mapping to bacterial pathogen genomes and the 
experimentally verified VFDB collection were consistent in suggesting 
that bacterial virulence may have been more elevated in the sewershed 
A inoculum compared to sewershed B. This contrast between sewersheds 
with equal human marker concentrations yet apparently unequal bac
terial pathogen load illustrates how shotgun sequence data can facilitate 
perspectives on the actual co-variance of marker and pathogen. Yet 
these insights clearly depend on sufficient sequencing effort and/or 
relatively high pathogen concentrations to avoid the possibility of false 
negative results. 

In particular, the estimated smallest detectable population size 
associated with our analysis and sequencing effort ranged between 
approximately 2E+05 to 1E+02 cells/mL based on qPCR-based cell 
count normalization and the sequencing effort applied (Materials and 
Methods, SI Table S2). Approaches for estimating analytical LOD within 
metagenomic based analysis remain rare within the literature, especially 
as it relates to work done in the environment as opposed to clinical 

settings (Wendl et al., 2013; Ebinger et al., 2021). Yet, the concept of 
detection and quantification limits in metagenomics is a major challenge 
to its thorough incorporation into environmental monitoring ap
proaches because 1) it is necessary to track biomarkers or pathogens 
down to quite low relative abundance in the field (e.g., at frequencies 
<1E-09 target basepairs/total basepairs), and 2) leveraging extraordi
nary sequencing effort is currently expensive and not practical when 
limitations of expertise and computational resources exist. Our approach 
provides the means to establish theoretical analytical LOD for meta
genomic analyses based on sequencing effort which is useful for deter
mining and interpreting the meaning of “non-detects”. 

Additionally, using average genome size (AGS) and total cell density 
estimates within the inoculum, we estimate that approximately 3.5Tbp 
of sequencing effort is necessary for detecting a population with con
centration of 1E+02 cells/mL within the high microbial loading condi
tions such as those observed in the inoculum (sewage). In contrast, 
following the decline in cell density and increase in AGS across the 
timeseries, the estimated sequencing effort required to detect a popu
lation of 1E+02 cells/mL drops to 10Gbp in day 7 conditions (which had 
far smaller microbial loads). Therefore, our approach and results re
ported here for sequencing effort estimation may be helpful for 
informing the planning and execution of future environmental moni
toring work utilizing metagenomic approaches (SI, Table S7). Though, 
crucial to note is the fact that our approaches for analytical LOD, and 
sequencing effort estimation assumes unbiased sequencing and does not 
consider sampling or processing recoveries – where the latter limitation 
is obviously broadly applicable to all molecular methods. Total detec
tion limits, in the context of analytical limits as well as both sequencing 
bias and sampling/processing recoveries, will be important caveats to 
consider for future metagenomic workflows aiming to surveil pathogens 
in sewage collection systems and their releases into the natural and built 
environment (Hull et al., 2019). 

Our efforts have shown how metagenomic datasets can provide in
sights on multiple questions critical to environmental monitoring and 
water quality: pathogen detection, source attribution and apportioning, 
and ARG persistence in the environment. In our view, confident and 
direct detection of pathogens within metagenomic datasets will remain 
primarily a logistical challenge due to the large amount of sequencing 
effort required to reliably detect bacterial pathogens at concentrations 
that are very low yet still quite relevant for safeguarding public health. 
For example, we have shown how via metagenomics one could track a 
broad range of population sizes – about five orders of magnitude (from 
about 1E+01 to 1E+02 cells/mL) – but that reliable detection depends 
on both sequencing effort and microbial load. 

Thus, when performed alone, metagenomic approaches are unlikely 
to be the most prudent technology for routine monitoring and directly 
informing health risks associated with sewage contamination, especially 
when pathogen or virulence genes are at these relatively low abun
dances (e.g., below 1E+02 features/mL). This issue is also compounded 
by the large contribution of non-bacterial pathogens (e.g., viruses and 
protozoa) to illness risk in contaminated waters. In contrast, meta
genomic approaches are increasingly poised to resolve questions related 
to source attribution and apportioning by improving our understanding 
(and the size of public databases) of the genomes maintained by source- 
specific microbial populations. 

4.5. Limitations 

Our dataset is of limited size and scope considering that, on a global 
scale, we examined sewage from collection systems in essentially 
equivalent geographies. The assortment of sewage-associated pop
ulations described here, although ubiquitous across the sewersheds we 
sampled, likely maintain differing prevalence across time or space. 
Furthermore, many draft genomes we produced are not complete, so 
further work will be needed to establish more practical views on both 
the geographic range of these populations and their genomic content 
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and diversity. Yet, we see advancing our knowledge of sewage- 
associated populations as a potential contribution towards newly 
developing forensic approaches that help monitor, manage, and repair 
essential infrastructure (Gonzalez et al., 2020). For example, we 
observed several highly abundant populations with a range restricted to 
only one or two of the three sewersheds. Going forward, it will be 
important to gage whether populations (or genotypes within a popula
tion) exist that are specific to individual sewersheds. Further inquiry in 
this direction may also lead to strategies for resolving source attribution 
problems when multiple collection systems with differing catchment 
compositions are all possible sources of contamination in the same water 
environment. 

Our reporting for source apportioning (Fig. 4A) reports %GEQ 
belonging to each genome library. This metric represents an estimation 
of the fraction of prokaryote cells which we are confident belong to a 
particular source library. Yet, the values reported herein should not be 
interpreted as representing the fraction of total fecal material belonging 
to a particular source. Additionally, some signal is reported as belonging 
to off-target libraries (e.g., chicken) despite our efforts to eliminate 
cross-reactive genomic entries based on ANI comparisons a priori. We 
believe this signal likely belongs to genomes of populations with close 
relatives within either the background matrix (e.g., freshwater) or 
sewage microbial communities which have yet to be cataloged. Thus, as 
more genomic datasets from these environments becomes available it 
will be important to update these source-specific libraries to ensure 
better performance and less cross-reactivity. 

5. Conclusions  

• We tracked the microbial dynamics of a simulated sewage spill in 
freshwater mesocosms for 7 days using shotgun metagenomes, cul
ture, and qPCR to better establish how shotgun metagenomics can 
assist with water quality monitoring efforts. 

• Metagenomic analysis revealed that genes related to bacterial viru
lence and antimicrobial resistance were substantially enriched by the 
addition of sewage compared to the pristine control but became 
markedly depleted by the 4th day. 

• Genome reconstruction and comparison to available public data
bases suggest that collection systems likely harbor their own (spe
cific) microbial populations which are largely distinct from those in 
other environments – including the human gut. 

• Genomes from publicly available datasets – including those recov
ered by this study – were compiled and analyzed to provide a set of 
source-specific and non-redundant genomic libraries.  

• A reproducible bioinformatic workflow was developed, harnessing a 
well-defined limit of detection and the source-specific genome li
braries developed herein, to perform source attribution and appor
tioning of fecal signal in metagenomic datasets recovered from the 
water environment.  

• Direct detection of pathogenic bacteria remains challenging due to 
the large amount of sequencing effort necessary to confidently detect 
rare features in a community. 
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