Water Research 210 (2022) 117993

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

ELSEVIER

t.)

Check for

Toward shotgun metagenomic approaches for microbial source tracking e
sewage spills based on laboratory mesocosms

Blake G. Lindner?, Brittany Suttner®, Kevin J. Zhu? Roth E. Conrad ", Luis M. Rodriguez-R *°,
Janet K. Hatt?, Joe Brown ®', Konstantinos T. Konstantinidis ®"
@ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

b Ocean Science and Engineering, Georgia Institute of Technology, 311 Ferst Drive, ES&T Building, Room 3321, Atlanta, GA 30332, USA
¢ Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Tyrol 6020, Austria

ARTICLE INFO ABSTRACT

Keywords:

Source tracking
Metagenomics

Sewage collection systems
Wastewater

Microbial ecology

Water quality

Little is known about the genomic diversity of the microbial communities associated with raw municipal
wastewater (sewage), including whether microbial populations specific to sewage exist and how such pop-
ulations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used
the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater
mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun meta-
genomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome-
assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater
control at our analytical limit of detection. Tracking the dynamics of the populations represented by these MAGs
revealed varied decay kinetics, depending on (inferred) phenotypes, e.g., anaerobes decayed faster than aerobes
under the well-aerated incubation conditions. Notably, a portion of these populations showed decay patterns
similar to those of common markers, Enterococcus and HF183. Despite the apparent decay of these populations,
the abundance of p-lactamase encoding genes remained high throughout incubation relative to the control.
Lastly, we constructed genomic libraries representing several different fecal sources and outline a bioinformatic
approach which leverages these libraries for identifying and apportioning contamination signal among multiple
probable sources using shotgun metagenomic data.

1. Introduction

Wastewater collection systems (or simply, collection systems)
represent an important engineering control for the collection of human
feces, commercial or industrial wastewaters, and sometimes storm-
water, particularly in certain urban settings. The operation and main-
tenance of collection systems pose unique challenges, often due to their
size, complexity, and capital costs (Salman et al., 2012; Berendes et al.,
2018; McLellan et al., 2018). Population growth and distribution
changes — especially growing urbanization trends — highlight the
importance of maintaining and expanding efficient collection systems
for an increasing fraction of the global population (ten Veldhuis et al.,
2010). Severe weather, pipe blockages, aging, and other issues of system
failure can lead to the accidental release of untreated wastewater
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(sewage) from collection systems into waterways or floodwaters (Sal-
man et al., 2012; Berendes et al., 2018; McLellan et al., 2018; Olds et al.,
2018). As sewage is a significant reservoir of both chemical and bio-
logical pollutants, its release into the environment poses serious envi-
ronmental and human health risks, including potential exposure to
human pathogens (Ashbolt et al., 2010; Fouz et al., 2020; Medina et al.,
20205 Eisenberg et al., 2016) and possible dissemination of antimicro-
bial resistance genes (ARGs) among microbial populations (Su et al.,
2020; Kessler 2011; Lira et al., 2020).

Microbial source tracking (MST) refers to a collection of forensic
tools developed to identify the presence and source of contamination
among multiple probable fecal sources, including sewage (Harwood
et al, 2014). In large part, the technical approaches behind MST
methods have been developed in response to both the difficulty of
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assaying for the diverse array of relevant human pathogens as well as the
practical need to keep methods relatively rapid and inexpensive. Exist-
ing approaches have relied on indicator organisms to imply the presence
of fecal pollution and sometimes as proxies for the presence of human
pathogens in contaminated waters. Specifically, fecal indicator bacteria
(FIB) include an aggregation of bacterial populations considered rep-
resentatives of microbial communities inhabiting the guts of
warm-blooded animals. Widely used indicator organisms include
Escherichia coli and Enterococcus spp. More recently, MST genetic
markers from distinct bacterial lineages have been used that leverage
known host specificity of distinct populations for source attribution
(Bernhard et al., 2000). Some markers (e.g., the HF183 primer targeting
a human-associated Bacteroides clade) have found effective use in
environmental management strategies as the basis for inferring the
amount of sewage present and thereby, a potential array of pathogen
concentrations for iterative risk assessment simulations (Boehm et al.,
2015). Yet, the use of FIB and MST gene markers has had challenges:
most notably, that the concentration of most markers are rarely found to
co-vary with pathogen concentrations, marker concentrations fluctuate
with sewage age and the capability of FIB to adapt to environmental
conditions can all combine to confound results interpretation (Harwood
et al., 2014; Korajkic et al., 2018; Ahmed et al., 2016, 2019; Devane
et al., 2020).

In recent years, targeted metabarcoding methods have examined
sewage and sewage-contaminated waters via the 16S rRNA gene or the
internal transcribed spacer (ITS) for prokaryotes and fungi, respectively
(Ahmed et al., 2016; Unno et al., 2018; McLellan and Eren, 2014;
Assress et al., 2019). These studies have revealed a distinct sewage
“microbiome” dominated by taxa that proliferate in collection systems,
sometimes far beyond the abundance of human gut associated pop-
ulations (Newton et al., 2015; McLellan and Roguet, 2019; McLellan
et al., 2010). However, these single-gene assays offer limited resolution
to distinguish between environmental or non-environmental strains of
the same species due to conservation of the rRNA gene or the ITS region.
Likewise, these methods do not provide information about the gene
content associated with important populations (e.g., emergent patho-
gens, ARGs present) or resolve finer community-wide compositional
shifts (Ahmed et al., 2016; Poretsky et al., 2014). Therefore, rRNA
gene-based approaches are limited with respect to quantifying health
risks associated with the detection of biomarkers or guide the develop-
ment of more holistic environmental management criteria (e.g., site
specific criteria).

Whole genome shotgun sequencing (or metagenomics), which re-
covers fragments of the genomes in a sample, have revealed that bac-
teria and archaea predominantly form sequence-discrete populations
with intra-population genomic sequence relatedness typically ranging
from approximately 95% to 100% average nucleotide identity (ANI)
depending on the population considered — a level that the 16S rRNA
gene cannot often assess (Caro-Quintero and Konstantinidis, 2012;
Rodriguez-R et al., 2021). Metagenomic approaches offer unique ad-
vantages for environmental health monitoring tasks including: (1)
extensive gene content information of abundant populations, (2) precise
ecological estimates of relative abundance at the species level and (3)
examination of intra-species diversity (Segata 2018). Despite its poten-
tial for circumventing some of the challenges facing existing MST and
metabarcoding methods, whole genome shotgun sequencing has not
been utilized in monitoring municipal sewage pollution. To date, met-
agenomic applications have focused on understanding the microbiology
of biological wastewater treatment, treated effluents and their receiving
waters, or viral populations (Lira et al., 2020; Cai and Zhang, 2013;
Bibby and Peccia, 2013). In part, this is because it remains unclear how
to best merge the methods and bioinformatics behind metagenomic
practices with existing MST and environmental monitoring paradigms
(Hong et al., 2020). Widespread application of this technology in the
field requires that several outstanding issues be resolved, including the
detection limits of metagenomic analyses, whether whole and/or
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metagenome-assembled genomes (MAGs) can serve as source-specific
fecal contamination markers and how metagenomic approaches can
infer the relative contribution of various fecal inputs (referred to here-
after as “source apportioning™).

Here, we offer a metagenomic perspective on sewage-related bacte-
rial populations and explore their relationships with culture and PCR-
based markers during a simulated failure of a collection system (i.e.,
spill). Specifically, we simulated sewage contamination events in lake
water obtained from a local drinking water and recreational use reser-
voir within dialysis bag laboratory mesocosms that were incubated in
the dark for one week. Shotgun metagenomic sequencing was performed
to search for potential sewage-specific biomarkers, test the effectiveness
of genome collections for fecal source attribution and apportioning, and
directly screen for both pathogens and antimicrobial resistance genes.
We further support these aims by developing and testing a theoretical
analytical limit of detection which can help guide the future application
and interpretation of metagenomics to these issues.

2. Materials and methods
2.1. Sampling and mesocosm operation

Samples were collected in sterile glass 1 L bottles from the primary
influent of three WWTPs located in the Atlanta Metropolitan region of
Georgia (USA) to serve as representatives of sewage across three
different sewersheds. Each sewershed was comprised of collection sys-
tems with separate stormwater and wastewater conveyance (i.e., sepa-
rate sewers). Approximately 50 L of surface water from Lake Lanier,
Georgia was also collected concurrently. Hereafter, these sample groups
are referred to as sewersheds A, B, and C. All sewage and water samples
were immediately transported to the lab and stored in darkness at 4 °C
until mesocosm setup, which occurred within 24 h. For mesocosm setup,
40 L tanks were filled with lake water and a pump installed for aeration.
Experimental dialysis bags were prepared with 110 mL 10% (v/v)
sewage and lake water mixture and control bags were filled with 110 mL
uninoculated lake water and closed on both ends using polypropylene
Spectra/Por clamps (Spectrum Laboratories). Both experimental (n =
12 x 3 sewersheds = 36 bags) and control (n = 12 bags) dialysis bags
were then added to the tank. A small headspace of air was left in each
bag when sealing with clamps so that they could float freely in the tank.
Dialysis bag pore sizes (6-8 kDa molecular weight cutoff) permit the
transport of small molecules and ions, but bacterial and viral particles
are contained within the bags. Mesocosms were kept in darkness at 22 °C
throughout the duration of the experiment. Sampling occurred at 1, 4,
and 7 days by retrieving experimental and control bags from the mes-
ocosm for destructive processing.

2.2. Culturing, DNA purification, gPCR, and shotgun sequencing

EPA Method 1600 (USEPA, 2009) was followed for enumerating
volumetric Enterococcus CFUs. Three replicates of each sample were
diluted 10-fold and then plated in duplicate. All dilutions yielding
measurements within an acceptable range for counting were averaged to
estimate CFUs/100 mL for a sample. Mesocosm sampling, DNA extrac-
tion and subsequent qPCR analysis occurred as described previously in
Suttner et al. (Suttner et al., 2021). Briefly, water samples were passed
through 0.45 pm pore size polycarbonate (PC) membranes and stored at
—80 °C in 2 mL screw cap bead tubes until processed (within 1-3
months). DNA was extracted from PC membranes using the Qiagen
PowerFecal kit following the manufacturer’s instructions with only one
exception: mechanical cell lysis was performed by bead beating in two
1-minute intervals using the Biospec Mini-Beadbeater-24 with icing
between intervals. These DNA extractions were used as template for
gqPCR with the HF183/BFDRev assay (Wade et al., 2010) and a universal
16S rRNA gene qPCR assay (GenBacl6S) to quantify 16S rRNA gene
copies across samples (Ritalahti et al., 2006). Metagenomic sequencing
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was performed using the Illumina Nextera XT kit with library average
insert size determined on an Agilent 2100 instrument using a HS DNA kit
and library concentrations determined using the Qubit 1X dsDNA assay.
Samples were then pooled and sequenced on the HiSeq 2500 instrument
as described previously (Johnston et al., 2019).

All qPCR reactions were run using an Applied Biosystems 7500 Fast
thermocycler and the cycling parameters were as follows: 2 min at 50 °C,
10 min at 95 °C, and 40 cycles of 15 s at 95 °C and 60 s at 60 °C. Assay
reactions used 2 pL of template DNA in 20 pL qPCR reactions with the
TagMan Universal PCR Master Mix (Applied Biosystems). The primer
and probe concentrations were 0.25 pM for HF183 assay and 0.3 pM for
the Bac16S assay. Template DNAs were run diluted 5-fold (to remove the
effect of PCR inhibitors) based on the expected marker concentration
and quality of each sample. Further details on qPCR reaction set up and
standard plasmids for absolute quantification are provided in Suttner
et al. (2021) and reiterated within Supporting Information (SI,
Table S1). To test for extraneous DNA and potential contamination from
sample handling, 50 mL of sterile PBS was also filtered onto PC mem-
branes and processed following the same DNA extraction at every
sampling time point as described above.

2.3. Sequence data analysis

Short reads were quality trimmed and Nextera adapters removed
with Trimmomatic 0.39 (Bolger et al., 2014). Quality trimming was
performed to remove poor quality bases along both ends of sequences
and subsequent removal of any sequences below 50 bp in length. k-mer
based operation of Nonpareil 3.304 (-T kmer) was used to estimate the
fraction of alpha diversity covered by the sequencing effort of each
metagenome (Rodriguez-R et al., 2018). Beta diversity across trimmed
short reads was assessed with the default settings of simka 1.5.1 based
on Bray-Curtis dissimilarity values and visualized by principal coordi-
nate analysis (PCoA) (Benoit et al., 2016). Kraken2 was used to assign
taxonomy and estimate simple relative abundance against a custom li-
brary, including bacteria, archaea, viruses, protozoa, human, and fungal
reference genomes at the rank of class (Wood et al., 2019). Trimmed
short reads were assembled individually with IDBA (UD) 1.1.3 and
SPAdes (“~meta”) 3.14.0 using k-mer sizes between 20 and 127 (Peng
et al., 2012; Prjibelski et al., 2020). Contigs shorter than 3 Kbp were
removed prior to population genome binning, which was performed
with MaxBin 2.2.7 and MetaBAT 2.12.1 (Wu et al., 2016; Kang et al.,
2019). Additionally, in a parallel workflow, trimmed short reads were
normalized via the BBNorm function of the BBtools suite (version 38) to
bring depths between 10 and 30X sequencing depth and then subse-
quently assembled and binned as described above (Bushnell, 2014). All
resulting metagenome-assembled genomes (MAGs) from both regular
and depth-normalized short read assemblies were dereplicated using
MiGA 0.7.24.0 via the derep_wf function (Rodriguez-R et al., 2018).
Groups of MAGs sharing ANI > 95% were clustered into species-like
populations (hereafter, “populations™) with representative MAGs for
each population selected by highest completeness and lowest redun-
dancy. Populations with no representative MAG having a MiGA quality
score above 30% and/or redundancies below 5% were excluded from
further analysis. Both Traitar 1.1.2 and MicrobeAnnotator were used
with default settings to infer potential phenotypes and annotate draft
genomes, respectively (Weimann et al., 2016; Ruiz-Perez et al., 2021).
Lastly, MAGs were screened for cross-reactivity using the FastANI tool to
search for other genomes with ANI > 95% across a suite of reference
databases (Jain et al., 2018).

From the PATRIC database, version 3.6.9, 1097 pathogenic bacterial
genome accession IDs were recovered by querying for host name
"Human, homo sapiens" and "good" quality. This included both genomes
tagged as "Reference" (n = 28) and "Representative" (n = 1069) (Davis
et al., 2020). Of these, 1076 genomes were recoverable from NCBI for
use in this study. Abundance estimates of pathogen genomes were
assessed by competitive short read mapping with Magic-BLAST 1.4.0
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(-splice F) (Boratyn et al., 2019). Resulting alignments were filtered
using minimum cut-off of 70 bp alignment length, 95% query coverage
by alignment and 95% identity to avoid spurious matches. Additionally,
for virulence gene detection, only experimentally verified nucleotide
entries in the Virulence Factor Database (Liu et al., 2019) were used.

Evaluating MAG relative abundance across the time series was
accomplished similarly using Magic-BLAST 1.4.0, where MAGs were
concatenated into a single library to which reads were competitively
mapped. Additionally, DIAMOND 2.0.1 (blastx —ultra-sensitive) was
used to search short reads against the reference gene sequences of pre-
compiled 150 bp p-lactamase ROCker models to reliably identify short
reads belonging to p-lactamase encoding genes (Buchfink et al., 2015;
Zhang et al., 2020). Reads mapping to these reference sequences were
selected for best bit-score alignment and subsequently filtered by
ROCker v1.5.2 as described previously (Orellana et al., 2017).

2.4. Detection and quantification of metagenomic features

For a reference genome, MAG, or gene to be considered detected in a
sample, at least 10% of the target sequence was required to be covered
by reads (i.e., breadth of coverage: hereafter, C), as proposed previously
for robust detection of targets in metagenomic datasets (Castro et al.,
2018). Or, as written, the analytical limit of detection (LOD) used here:

Analytical LOD : C > 0.1 (€8]

The LOD was automatically implemented by calculating sequencing
depth and breadth similarly to Rodriguez-R et al. (2020) for estimating
“Truncated Average Depth” at 80% (hereafter, the function TAD8O).
Python scripts used for this approach are available online at: https://gith
ub.com/rotheconrad/00_in-situ_GeneCoverage. In short, the TAD8O
function estimates sequencing depth by first sorting genomic positions
according to their sequencing depth and then removing the upper 10%
and lower 10% of positions before averaging the sequencing depth along
the remaining 80% of positions. Since truncation of targets with breadth
of coverage near the detection limits (e.g., C =~ 0.1) could introduce
artificially lower values, a quantification threshold was also necessary to
avoid systemic underestimation of abundance for targets near LOD.
From Lander and Waterman (1988), breadth of coverage (C) is related to
sequencing depth (p) by the following:

C=1-¢" )

Thus, for the analytical LOD defined above, the expected sequencing
depth (p) is simply -1n(0.9) for targets at detectable limits. We formalize
a quantification threshold which measures whether a target is quanti-
fiable following application of the truncation function (TAD80) with:

Quantification Threshold : TAD80(p) > —In(0.9) 3

For simplicity in our metagenomic results, we describe those targets
which satisfied the LOD condition but were below the quantification
threshold as targets that were “detected but not quantifiable” (DNQ).

To convert relative abundance of detected target genomes to abso-
lute abundances (e.g., cells/mL), the following approach was used.
Single copy gene coverage or genome equivalents (GEQ) and average
genome size (AGS) of metagenomes were evaluated using Microbe-
Census 1.1.0 (Nayfach and Pollard, 2015). The 16S rRNA gene-carrying
reads were identified and extracted using sortmeRNA 4.2.0 and the
average 16S rRNA gene coverage was estimated as the sum of extracted
read lengths divided by 1540 bp, the average length of the bacterial 16S
rRNA gene (Kopylova et al., 2012; Wang et al., 2007). Average 16S rRNA
gene copy number (16S ACN) for each metagenome was determined by
the ratio between 16S rRNA sequencing depth (p;6s) and GEQ:

plﬁx
16S rRNA ACN =
6S rRNA ACN GEO 4)

The copy number of the 16S rRNA gene per mL as quantified by qPCR
was divided by the 16S rRNA ACN to obtain an estimate for the number
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of cells in each sample, assuming that one prokaryotic genome was
approximately equivalent to one prokaryotic cell:

mL

colls 16S rRNA <"—>
Estimated Prokaryotic Cell Density (—) =

mL O

"~ 165 rRNA ACN

These measures were taken to help control for bias in relative
abundance estimation due to changes in overall microbial load (cells per
volume) and 16S rRNA gene ACN variation throughout the experiment
(Lin and Peddada, 2020; Morton et al., 2019). Finally, absolute abun-
dances were estimated by multiplying a population’s genome equiva-
lents by the estimate for the number of cells in a sample. This was
accomplished using the following equation for a given population via
the truncated average sequencing depth [TAD80(p)], GEQ and total
estimated prokaryotic cell density:

mL

il TADS0
Est. Pop. Cell Density <ce S) = GTQ(/))

x Est. Prok. Cell Density (%) 6)
m

Further, an extension of our definitions of LOD was used in tandem
with cell density estimations for theorizing the smallest abundance
detectable as a function of GEQ and cell density via:
cellx) > —In(0.9)

Detectable Pop. Si —_— _—
etectavle rop tze( GEQ

1ls
+ Est. Prok. Cell Density <2>
mL

mL
@)

2.5. Curation of source-specific genome collections

It was necessary to curate a collection of source-specific genomes in
order to support our efforts to develop metagenomic based source
attribution and apportioning approaches. In short, we collected refer-
ence genomes, MAGs, and isolate genomes from several large-scale
studies of host microbiomes. These datasets included genomes gath-
ered from the fecal microbiomes of humans (n = 4644 genomes), pigs (n
= 1667 genomes), and chickens (n = 5675) and the rumen microbiome
of cows (n = 2124 genomes) (Almeida et al., 2021; Stewart et al., 2019;
Gilroy et al., 2021; Chen et al., 2021). MAGs produced in this study were
also included as representatives of sewage sources. Detailed methods for
the curation and dereplication of these collections are summarized in
Supporting Information and visualized in SI Fig. 6S. Lastly, these li-
braries are hosted online for public use and download at http://enve
-omics.ce.gatech.edu/data/mst_library.

2.6. Data availability

Sewage and mesocosm short reads as well as sewage-associated
MAGs can be accessed through NCBI within BioProject PRINA691978.

3. Results
3.1. Culture and gPCR data

Both fecal indicators (Enterococcus and HF183) were in the same
order of magnitude across the sewage samples gathered as inoculum for
the mesocosms. Sewage from sewersheds A and B contained counts with
averages of 3.7E+04 and 3.1E+04 Enterococci CFUs/100 mL and
2.4E4+06 and 3.6E4+06 HF183 copies/mL, respectively. Within sew-
ershed C, counts were lower having 1.3E+04 Enterococci CFUs/100 mL
and 1.5E+06 HF183 copies/mL. Similarly, quantification of the 16S
rRNA gene copy number within the inoculum indicated that overall,
microbial loads were lower in sewershed C than sewersheds A and B at
the time of sampling (SI Fig. S1). Monitoring Enterococci and HF183
qPCR markers across the mesocosm timeseries revealed that the markers
decreased throughout the experiment in all replicates but were still
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detectable at day 7 and remained higher than the established or rec-
ommended water quality criteria for recreational use waters (i.e., 36
CFUs/100 mL and 41 HF183 copies/mL) (USEPA, 2015; Boehm et al.,
2018). Only the HF183 marker within sewershed C mesocosm decreased
below detection on Day 7 (Fig. 1). Neither marker was detected in the
(un-inoculated) freshwater serving as control at any time point during
mesocosm operation.

3.2. Estimated microbial load

The estimated prokaryotic cell density of the inoculum varied based
on quantification of the 16S rRNA gene: 1.1E+09, 2.0E+09, and
1.8E+08 cells/mL were estimated for sewersheds A, B and C, respec-
tively. Following dilution and mixing of the inoculum into the meso-
cosms, day O estimates for cell densities were 2.0E+07, 1.7E+08, and
2.5E+07 cells/mL. Thereafter, cell density in both sewershed A and
sewershed C mesocosm increased considerably in the first 24 h to
1.8E+08 and 6.9E+07 estimated cells/mL (a 924% and 275% increase)
while sewershed B decreased to 1.5E+08 cells/mL. Subsequent time
points revealed steady decreases in cell densities approaching the con-
trol cell density at day 7 of 7.9E+405 cells/mL (SI Table S2).

3.3. Metagenomic coverage and compositional shifts

Between 1.5 Gbp to 3.5 Gbp of data per sample remained following
read quality trimming and adapter removal, which corresponded to a
range of 9 to 27 million reads. Sequencing effort covered between 36
and 67% of expected nucleotide diversity (Ng) across all samples based
on the Nonpareil algorithm, which estimates sequence coverage based
on the degree of redundancy among the metagenomic reads available for
each dataset (Rodriguez-R et al., 2018). This level of coverage is
adequate for comparing the abundance of features (e.g., genomes,
genes) across samples (Rodriguez-R and Konstantinidis, 2014). Ny esti-
mations of the inoculum and control samples were similar, and day
0 values closely followed that of their respective sources. A decrease in
Ny occurred within the first 24 h for all three biological replicates; lower
diversities were observed in day 1 samples compared to those for the
inoculum, day O samples and the control. The sewershed B series
increased in diversity for the remaining days while both sewersheds A
and C fluctuate thereafter (SI, Table S2).

Observations of beta diversity revealed that the earlier timeseries
samples (day 0 and day 1) remained quite similar to the inoculum. By
day 4, considerable shifts in community composition were observed
driving the sewage contaminated waters closer to the control (SI
Fig. S2). k-mer mapping to characterize these community-wide shifts
using Kraken2 at the class level showed the depletion of Bacteroidia,
Epsilonproteobacteria, and Clostridia following inoculation. None of these
classes were detectable in the control samples. An increase of Gam-
maproteobacteria abundance occurred within the first 24 h across all
replicates after which this class gradually decreased in abundance with
time. Additionally, increases in Alphaproteobacteria and Cytophagia
occurred in later time points (day 4 and day 7), far beyond levels
observed in the control, suggesting that the later timepoint samples had
not yet fully recovered from perturbation. Class level relative
metagenome-based abundances, qPCR, culture, and cell density esti-
mation results are summarized on Fig. 1.

3.4. Sewage-associated population genome binning and taxonomic
identification

Seven hundred twenty MAGs were recovered from inoculum and
timeseries sample assemblies. The 720 MAGs were dereplicated at the
ANI > 95% level and the highest quality MAG per resulting ANI group
was selected, generating a single representative MAG for 49 sequence
discrete populations (hereafter, simply “populations™). Competitive read
mapping to the representative MAG of these populations revealed two
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Fig. 1. Panel A: Class level abundances across control, inoculum and timeseries for sewersheds A, B and C based on kmer classification by Kraken2 against a custom-
built database of reference genomes. Total height of bars represents the percentage of kmers confidently classified to the corresponding taxon (Figure key). The
maximum and minimum percentages of kmers confidently classified were 69.0% from sewershed A day 1 and 8.9% from the control, respectively. Panel B: Estimated
cell density, estimated HF183 copy concentration and Enterococci colony forming units (CFU) for the same samples. The dashed lines indicate the estimated cell
density range for the control sample. HF183 was detected but not quantifiable (DNQ) for sewershed C on day 7.

groupings delineated by their presence or absence in the inoculum. Of
the total 49, 33 populations were detected within sewage inoculum
samples with varying degrees of prevalence across replicates. We
selected a subset of 15 of these 33 populations that were above the
quantification threshold in each inoculum sample, which we refer to as
“sewage-associated populations”. This selection process was motivated
twofold: First, to focus only on core populations shared between the

inoculum recovered from each sewershed examined herein. Second, as
an effort to exclude potentially noisy, nonspecific, or transient pop-
ulations from further analysis. The sewage-associated populations and
their representative MAGs are summarized in Table 1. Additionally, we
validated our analytical detection and quantification limits using mock
data of known composition to ensure these criteria were suitable for
identifying sewage-associated populations (SI Table S3.A) Sczyrba
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Table 1
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Summary of representative MAGs recovered in this study representing sewage-associated populations.

Taxonomic Summary

Population  Confident Taxonomy Best match in MiGA Similarity Metric ~ Completeness Redundancy Length N50 CDS GC
(p<0.05) TypeMat Database (%) (%) (%) (Mbp) (bp) (%)

01 Genus Arcobacter Arcobacter cryaerophilus 92.8 ANI 87.7 1.9 1.38 7214 1519  28.77
GCA 002,992,955

03 Genus Acinetobacter Acinetobacter johnsonii 96.5 ANI 78.3 0 1.99 6506 2157 419
NZ CP065666

04 Genus Aeromonas Aeromonas caviae GCA 93.5 ANI 56.6 0.9 2.99 6625 3099 61.78
000,819,785

13 Class Bacteroidia Paludibacter 55.1 AAI 51.9 1.9 0.8 4680 764 39.63
propionicigenes WB4 NC
014,734

15 Species  A. caviae Aeromonas caviae GCA 98.0 ANI 40.6 0 1.57 4876 1684 61.79
00,820,265

18 Genus Cloacibacterium Cloacibacterium rupense 88.2 ANI 61.3 3.8 1.58 5371 1596  33.27
GCA 014,645,495

19 Family Campylobacteraceae  Arcobacter suis CECT 72.1 AAI 49.1 0 0.95 5098 1130 28.6
7833 NZ CP032100

28 Order Neisseriales Rivicola pingtungensis 67.3 AAL 75.5 0 1.13 5350 1176  56.67
GCA 003,201,855

29 Genus Moraxella Moraxella osloensis GCA 95.4 ANI 75.5 0 1.83 9146 1726  44.48
001,679,175

30 Species  A. temperans Acidovorax temperans 97.3 ANI 91.5 0.9 2.8 8597 2816 63.59
GCA 006,716,905

33 Genus Flavobacterium Flavobacterium 87.3 ANI 88.7 2.8 2.81 10,562 2699 35.43
succinicans LMG 10,402
GCA 000,611,675

43 Species  P. copri Prevotella copri DSM 97.1 ANI 52.8 0 2.36 11,303 1981 46.62
18,205 GCA
009,495,405

44 Species  B. vulgatus Bacteroides vulgatus 99.0 ANI 49.1 0 2.67 5144 2496 419
ATCC 8482 NC 009,614

47 Family Aeromonadaceae Tolumonas auensis DSM 83.5 ANI 98.1 1.9 2.67 16,590 2612 47.97
9187 NC 012,691

49 Species  R. pingtungensis Rivicola pingtungensis 97.5 ANI 46.2 0.9 2.03 8236 2031 62.89

GCA 003,201,855

Footnote: "Metric" refers to whether average nucleotide (ANI) or average amino acid identity (AAI) was used to calculate similarity. "Completeness" indicates what
percentage of single-copy marker genes appear in a MAG. "Redundancy” (or "Contamination") indicates the frequency at which multple copies of those same single-
copy genes appear in a MAG. "N50” represents the contig length at which contigs covering 50% of the MAG are greater than or equal to its value. "CDS" represents the

number of predicted coding sequences in a MAG.

et al., 2017). We found our approach, as described in Materials and
Methods (Egs. (1) and (2), robust for reducing quantification error and
detected targets as expected according to sequencing effort and target
genome size, except on very limited occasions when close relatives were
present in the sample at relative abundances many times greater than
the target. (SI Table S3B,C).

Our collection of ubiquitous sewage-associated populations in sew-
ersheds A, B, and C represented, respectively, 9.5%, 5.7%, and 13.3% of
the total reads in inoculum metagenomes and 15.9%, 8.8%, and 19.6%
of GEQ (genome equivalents). Estimated absolute abundances of these
populations varied across the samples, from a maximum of 4.4E+07
cells/mL (Pop.01, sewershed B) to a minimum of 2.3E+05 cells/mL
(Pop.04, sewershed C). Within the inoculum, the median and mean
absolute abundances of an individual sewage-associated population was
5.3E+06 and 8.4E+06 cells/mL, respectively. Overall, sewershed C had
substantially lower population densities due to the difference in total
microbial load compared to sewersheds A and B, as noted above.
Consistently, the sewage-associated populations presented here capture
a larger portion of the metagenomic samples associated with sewershed
C (compared to A or B), further indicating that the sewershed C samples
may have simply had more dilute microbial load at the time of sampling.
Overall, these results reveal that this collection of populations consis-
tently represent highly abundant members of the sewage microbiome
across these biological replicates and possibly a substantial part of the
total sewage microbial community.

Comparison of the corresponding representative MAG sequences
against type material in the MiGA “TypeMat” database (Rodriguez-R
et al., 2018a) revealed several entries with close matches to previously

described taxa at the species level (e.g., >95% ANI) including Aeromonas
caviae (Pop.15), Acidovorax temperans (Pop.30), Prevotella copri
(Pop.43), Bacteroides vulgatus (Pop.44), and Rivicola pingtungensis
(Pop.49). Of the remaining, six populations matched known genus-level
representatives, potentially representing a novel species of the matching
genera. Two populations matched members of a known family, one to
members of a known order, and one to members of a known class
(Table 1). The population with the most distant match in the database
(Pop.13, matching class Bacteroidia) with 55.1% average amino acid
identity (AAI) to Paludibacter propioncigenes.

Collections of bacterial isolate genomes and/or MAGs from fresh-
water (Rodriguez-R et al., 2020), activated sludge (Ye et al., 2020),
anaerobic digestors (Campanaro et al., 2020), the human gut environ-
ments (Almeida et al.,, 2021), and the broad general-purpose GEMs
catalog (Nayfach et al., 2021), were examined to assess specificity be-
tween these 15 sewage-associated populations and other microbiomes.
Of these sewage-associated populations, some (n = 11) may belong to
species with members also inhabiting non-sewage microbiomes such as
biological wastewater treatment processes or the human gut (SI
Table S4). Importantly, only a single population, Moraxella (Pop.29),
was found via these database searches to match (95.1-95.0% ANI,
borderline of universal species cutoff) genomes recovered from aquatic
environments (both marine and freshwater) (Rodriguez-R et al., 2018b).
This finding suggests Population 29 could be less effective as an entry in
a sewage-specific genomic library utilized for MST approaches if other
Moraxella are in high abundance within unperturbed environments.
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3.5. Sewage-associated population decay and putative phenotyping

Overall, all populations experienced rapid decline in estimated cell
densities across the timeseries with most populations below detection
limits following day 4. Acinetobacter sp., Cloacibacterium sp., Acidovorax
temperans, and Flavobacterium sp. (Pop.03, Pop.18, Pop.30 and Pop.33,
respectively) were detectable in at least one biological replicate at day 7
but most of these observations were below quantification. Signal from
sewershed A had the greatest persistence; of the four mesocosms with
quantifiable levels of a sewage-associated population by day 7, three
belonged to the series of sewershed A. Notably, Acidovorax temperans
(Pop.30) was the only population detected at day 7 in all three sew-
ersheds (Fig. 2).

All populations remaining detectable at day 7 were putatively phe-
notyped as aerobic or facultatively anaerobic by Traitar analysis except
for Cloacibacterium sp. (Pop.18), which could not be confidently classi-
fied. Nonetheless, Cloacibacterium sp. belongs to a genus of facultative
anaerobes (Cloacibacterium), suggesting that it likely is a facultative
population and that the representative MAG did not contain the neces-
sary genes for confident phenotyping due to incompleteness. No popu-
lation — regardless of (predicted) preference for oxygen — showed an
increased estimated cell density outside the first 24 h of the incubation.
All sewage-associated populations were likely gram negative, rod or
oval-shaped bacteria as predicted by Traitar (SI Fig. S4).

3.6. Human markers and sewage-associated populations

Our results suggested that several of the sewage-associated pop-
ulations are possibly linked to the human gut microbiome (SI Table S4).
Based on whole genome comparisons (via ANI), Pop.43 and Pop.44 were
assigned to Bacteroidales lineages that likely represent different clades
than those represented by HF183. This was concluded based on either
analysis of the 16S rRNA genes carried by these populations’ represen-
tative MAG (HF183 is a 16S rRNA gene-based marker) or, if a 16S rRNA
gene was not binned with the MAG, the 16S rRNA genes carried on the
closest matching cultured relative showing at least 95% ANI to the
representative MAG (See Table 1). In either case, HF183 was not a match
for Pop.43 or Pop.44 which is consistent with the notion that HF183
typically belongs to B. dorei (Phocaeicola dorei) and its closest relatives.
Modeling the linear relationship between either HF183 or Enterococcus
concentrations against the estimated cell densities of the sewage-
associated populations revealed divergent results for both markers.
Specifically, HF183 had excellent correlations against some populations
(i.e., anaerobic Pop.43 and Pop.44, and aerobic Pop.30 and Pop.28) but
highly variable correlations overall (R? between 0.35 to 0.97) while
Enterococcus had worse correlations but with a tighter range (R between
0.5 to 0.8) (Fig. 3). As noted above, not all the sewage-associated pop-
ulations highlighted as potentially co-habiting the human gut co-varied
in abundance as well with HF183 concentrations. For example, corre-
lations with HF183 concentrations were moderate with the presumed
aerobes of Pop.03 (R2 = 0.69) and Pop.29 (R2 = 0.75) but poor for the
facultative anaerobic Pop.15 (R% = 0.35).

3.7. Source attribution and apportioning assessment

Source specific genomic libraries were collected and curated as
described above and in the Supporting Information. These libraries
contain genomes representing populations which are likely restricted to
a particular contamination source. Short reads from the metagenomes
collected across the incubation were mapped to these source specific
libraries via Magic-BLAST and normalized to both genome length and
GEQ as described above. The results of this exercise provide an esti-
mation for the percentage of prokaryotic cells likely originating from a
particular contamination source (Fig. 4A). No source category was
detected in the control sample. Further, human and sewage signals
dominated the timeseries across each sewershed — though these signals
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showed rapid decline following day 4. The pig, cow, and chicken source
categories were either not detected or were consistently <0.1% GEQ.

3.8. Pathogen and virulence genes assessment

To assess the ability of the metagenomic approach to provide insights
into the health risk associated with bacterial pathogens introduced by
sewage contamination during mesocosm operation, we recruited meta-
genomic short reads to 1076 pathogenic bacterial genomes recovered
from the PATRIC webserver (Supplement, Table S5). Results revealed
that 63, 38, and 129 pathogen genomes from sewersheds A, B, and C,
respectively, within the inoculum had sequencing depths at or above our
established LOD after read mapping (Supplement, Table S6). In
contrast, immediately following inoculation on day 0 many reference
genomes were no longer detectable, with a total of 61, 25, and 20
pathogenic genomes detected from sewersheds A, B, and C, respectively.
Obviously, for many of these organisms, pathogenicity is a function of
exact genotype (e.g., the E. coli pathotypes) and the methods used herein
were developed for species-level detection and not optimized for dis-
tinguishing between closely related genotypes of the same species at low
abundances (Castro et al., 2018).

Therefore, due to the low relative abundances of these pathogens
that we observed and the need to assess the actual genetic content
present within these populations, we examined the relative abundance
of experimentally verified genes within the Bacterial Virulence Factor
Database (VFDB) as proxies for key bacterial pathogens (Fig. 4B). The
virulence signal within inoculum metagenomes primarily comprised
those belonging to Aeromonas, Klebsiella, and Shigella pathogenic genera,
consistent with the whole-genome detection results above. Sewage from
both sewershed A and C appeared to have greater virulence factor sig-
nals compared to sewage from sewershed B, which had drastically lower
detected levels of Aeromonas VFs (virulence factors) and no detection of
Klebsiella, Shigella or Escherichia VFs. Within the sewershed A and C
timeseries, average virulence abundance was lower on day 0 than in the
inoculum but quickly reached a maximum in 24 h before substantially
decreasing by day 4 and being below detection by day 7. The change was
primarily due to a substantial increase in the abundance of Aeromonas
hydrophila VFs. This trend was consistent among genes hlyA (hemo-
lysin), aerA (aerolysin) and act (Aeromonas enterotoxin) — essential cy-
totoxins for Aeromonas spp. pathogenicity — across the timeseries.
Alignment of these three cytotoxin genes to the MAG representing Pop.
15 revealed that it likely carries a gene encoding for hlyA but aerA and
act were either not binned with the draft genome or truly not carried by
this population. Upon further inquiry, the closest matching entry on
NCBI's Genome database was Aeromonas caviae NZ_AP022214 (ANI =
98.0%), which represents a strain isolated from a Japanese wastewater
treatment plant that has not been implicated in disease or designated as
an obligate pathogen. Hence, to what extent the MAG identified repre-
sents a pathogenic or opportunistic pathogenic population remains
somewhat speculative.

3.9. p-lactam resistance gene assessment

Several classes representing the breadth of f-lactamase-encoding
gene diversity were present in the metagenomes from all samples. The
uninoculated lake water (control) sample showed very low abundance
of B-lactamase encoding genes across each class (sum of classes was
0.078 total B-lactamase encoding genes/genome equivalent) — though a
subset of metallo-p-lactamase encoding genes (MBLS3) was noticeably
pronounced (0.06 gene copies/genome equivalent). In the inoculum
samples, total observed f-lactamase signal was much greater in sew-
ersheds A and C (1.07 and 1.14 total gene copies /genome equivalent,
respectively) compared to sewershed B (0.51 total p-lactamase encoding
genes/genome equivalent), but the relative contribution of each class
was consistent, with genes encoding for BlaA, BlaC and OXA domi-
nating. In contrast, by day 4 and to a greater extent by day 7, the
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Fig. 2. Estimated cell densities of sewage-associated populations across inoculum and timeseries samples. Cell densities (absolute abundances) were estimated as
described in the Materials and Methods section (via Eq. (6)). Populations that were detectable (via Eq. (2)) but that “did not quantify” (DNQ) above our quantification

threshold (via Eq. (3)) are labelled with an asterisk.
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populations (n = 15).

frequency of genes encoding for BlaA, BlaC and OXA decreased consis-
tently while those encoding for MBLs increased (Fig. 4C). Along with a
shift in prominence of these p-lactamase gene classes, both sewersheds A
and C showed steep decreases in the relative number of f-lactamase
encoding genes/genome equivalent between day 0 and day 7. Sew-
ershed C showed the same shifts in prominence between classes, yet
total signal remained consistent with 0.55 and 0.54 total p-lactamase
gene copies/genome equivalent on day 0 and 7, respectively.

4. Discussion
4.1. Sewershed microbial diversity

Collection systems represent a key component of modern sanitation
infrastructure. Despite the importance of sewage as a reservoir for
human pathogens, antimicrobial resistance genes and the recent wide-
spread utilization of wastewater-based epidemiology, the sewage
microbiome remains relatively understudied at the whole genome level.
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Fig. 4. Abundance patterns of source specific genomic libraries,
virulence factors, and p-lactamase encoding genes across inoculum

and timeseries metagenomes. All normalization was performed
against genome equivalents (GEQ). Panel A: Source attribution

and apportioning results based on reads mapped against MAGs
curated for different fecal sources. Percentages represent an esti-
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Our results indicated that the sewage samples we collected from three
separate collection systems were dominated by what have been aptly
named microbial “weeds” in literature and which we have observed as
belonging to several sewage-associated populations that appear quite
prolific (Assress et al., 2019; Newton et al., 2015) (Fig. 1A). Others have
reported that several of these populations are also present at high rela-
tive abundances within sewersheds spanning another urban landscape
(VandeWalle et al., 2012).

These sewage-associated populations showed different preference
for oxygen, appearing to span strict anaerobic, facultative, and aerobic
metabolic phenotypes. Notably, the signal associated with these pop-
ulations in the metagenomic datasets decayed non-uniformly during
mesocosm operation, though the most persistent populations were aer-
otolerant, acetate-utilizing populations which contained genes related

to aromatic degradation and/or nitrogen metabolism. Depending on
additional inquiry, it may be possible to leverage the ratio between
abundances of anaerobic and aerobic (or facultatively anaerobic)
sewage-associated populations in future work for inferring the date of
pollution events linked to sewage contamination. For all 15 populations
described here, their linear relationship with HF183 and Enterococci
had a combined R? of 0.6 (Fig. 2), revealing overall consistent results for
different markers under the conditions tested here. However, these
correlations were drawn from the limited number of mesocosm in-
cubations and in situ population dynamics are likely to differ according
to varying environmental and biological factors which were not
controlled for herein (Ahmed et al., 2019).
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4.2. Source attribution and apportioning with source specific genomic
libraries

Populations specific to municipal sewage likely exist and represent a
subset of the microbiome of collection systems which - if better cata-
logued — may be useful for identifying and quantifying sewage pollution
in natural ecosystems (SI Fig. S6). We demonstrated, through a proof-of-
concept workflow, the capacity for read mapping of metagenomic
datasets to curated source specific genomic libraries to perform simul-
taneous source attribution and apportioning. This approach yields a
relatively easy-to-interpret metric representing the approximate per-
centage of prokaryotic cells within a sample that belong to a contami-
nation source (Fig. 4A). Importantly, our approach represents a novel
development given that current approaches utilizing sequence data for
MST problems are not designed to distinguish between multiple fecal
sources (McGhee et al., 2020) or cannot directly assess source appor-
tioning between multiple sources (Roguet et al., 2020).

4.3. p-lactamase encoding genes surveillance

Additionally, we leveraged our metagenomes to survey for f-lacta-
mase encoding genes across the inoculum and timeseries. The abun-
dance of B-lactamases across the inoculum samples was substantially
higher (7-15 times) compared to the control (Fig. 4C). This result was
consistent with the literature regarding heightened ARG abundance
within collection systems (Li et al., 2021). Specifically, others have re-
ported substantial abundances of p -lactamase OXA genes on both
Campylobacteraceae and Aeromonadaceae clades in sewage (Hultman
et al., 2018). Indeed, the abundance of reads belonging to p-lactamase
encoding genes, especially of the OXA-encoding class, were the most
abundant in the inoculum and early time points where these
sewage-associated clades (e.g., Pop.01, Pop.19) persisted in the lake
water. Overall, these results indicated that sewage contamination
imparted a substantial and lasting increase to the abundance of genes
encoding p-lactamases even after 7 days following the contamination
event (Fig. 4C). More work is needed to elucidate the genomic context of
this increased f-lactamase encoding gene abundance (e.g., whether they
belong to or have been transferred to organisms capable of driving
clinically relevant cases of antimicrobial resistance). Nonetheless, our
results allow for a quantitative view of the abundance of these genes
relative to the natural environment, which could be quite relevant for
assessing associated health risks as part of future work.

4.4. Shotgun sequencing and monitoring environmental waters

Importantly, although sewershed A and B showed what appears to be
similar concentrations of human input according to HF183 concentra-
tions within the inoculum (SI Fig. S1), the pathogen detection results
revealed via the sequence data were quite varied (Fig. 4B, SI Table S6).
Results from both read mapping to bacterial pathogen genomes and the
experimentally verified VFDB collection were consistent in suggesting
that bacterial virulence may have been more elevated in the sewershed
A inoculum compared to sewershed B. This contrast between sewersheds
with equal human marker concentrations yet apparently unequal bac-
terial pathogen load illustrates how shotgun sequence data can facilitate
perspectives on the actual co-variance of marker and pathogen. Yet
these insights clearly depend on sufficient sequencing effort and/or
relatively high pathogen concentrations to avoid the possibility of false
negative results.

In particular, the estimated smallest detectable population size
associated with our analysis and sequencing effort ranged between
approximately 2E4+05 to 1E+02 cells/mL based on gqPCR-based cell
count normalization and the sequencing effort applied (Materials and
Methods, SI Table $2). Approaches for estimating analytical LOD within
metagenomic based analysis remain rare within the literature, especially
as it relates to work done in the environment as opposed to clinical
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settings (Wendl et al., 2013; Ebinger et al., 2021). Yet, the concept of
detection and quantification limits in metagenomics is a major challenge
to its thorough incorporation into environmental monitoring ap-
proaches because 1) it is necessary to track biomarkers or pathogens
down to quite low relative abundance in the field (e.g., at frequencies
<1E-09 target basepairs/total basepairs), and 2) leveraging extraordi-
nary sequencing effort is currently expensive and not practical when
limitations of expertise and computational resources exist. Our approach
provides the means to establish theoretical analytical LOD for meta-
genomic analyses based on sequencing effort which is useful for deter-
mining and interpreting the meaning of “non-detects”.

Additionally, using average genome size (AGS) and total cell density
estimates within the inoculum, we estimate that approximately 3.5Tbp
of sequencing effort is necessary for detecting a population with con-
centration of 1E4+02 cells/mL within the high microbial loading condi-
tions such as those observed in the inoculum (sewage). In contrast,
following the decline in cell density and increase in AGS across the
timeseries, the estimated sequencing effort required to detect a popu-
lation of 1E+02 cells/mL drops to 10Gbp in day 7 conditions (which had
far smaller microbial loads). Therefore, our approach and results re-
ported here for sequencing effort estimation may be helpful for
informing the planning and execution of future environmental moni-
toring work utilizing metagenomic approaches (SI, Table S7). Though,
crucial to note is the fact that our approaches for analytical LOD, and
sequencing effort estimation assumes unbiased sequencing and does not
consider sampling or processing recoveries — where the latter limitation
is obviously broadly applicable to all molecular methods. Total detec-
tion limits, in the context of analytical limits as well as both sequencing
bias and sampling/processing recoveries, will be important caveats to
consider for future metagenomic workflows aiming to surveil pathogens
in sewage collection systems and their releases into the natural and built
environment (Hull et al., 2019).

Our efforts have shown how metagenomic datasets can provide in-
sights on multiple questions critical to environmental monitoring and
water quality: pathogen detection, source attribution and apportioning,
and ARG persistence in the environment. In our view, confident and
direct detection of pathogens within metagenomic datasets will remain
primarily a logistical challenge due to the large amount of sequencing
effort required to reliably detect bacterial pathogens at concentrations
that are very low yet still quite relevant for safeguarding public health.
For example, we have shown how via metagenomics one could track a
broad range of population sizes — about five orders of magnitude (from
about 1E+01 to 1E+02 cells/mL) - but that reliable detection depends
on both sequencing effort and microbial load.

Thus, when performed alone, metagenomic approaches are unlikely
to be the most prudent technology for routine monitoring and directly
informing health risks associated with sewage contamination, especially
when pathogen or virulence genes are at these relatively low abun-
dances (e.g., below 1E+02 features/mL). This issue is also compounded
by the large contribution of non-bacterial pathogens (e.g., viruses and
protozoa) to illness risk in contaminated waters. In contrast, meta-
genomic approaches are increasingly poised to resolve questions related
to source attribution and apportioning by improving our understanding
(and the size of public databases) of the genomes maintained by source-
specific microbial populations.

4.5. Limitations

Our dataset is of limited size and scope considering that, on a global
scale, we examined sewage from collection systems in essentially
equivalent geographies. The assortment of sewage-associated pop-
ulations described here, although ubiquitous across the sewersheds we
sampled, likely maintain differing prevalence across time or space.
Furthermore, many draft genomes we produced are not complete, so
further work will be needed to establish more practical views on both
the geographic range of these populations and their genomic content
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and diversity. Yet, we see advancing our knowledge of sewage-
associated populations as a potential contribution towards newly
developing forensic approaches that help monitor, manage, and repair
essential infrastructure (Gonzalez et al., 2020). For example, we
observed several highly abundant populations with a range restricted to
only one or two of the three sewersheds. Going forward, it will be
important to gage whether populations (or genotypes within a popula-
tion) exist that are specific to individual sewersheds. Further inquiry in
this direction may also lead to strategies for resolving source attribution
problems when multiple collection systems with differing catchment
compositions are all possible sources of contamination in the same water
environment.

Our reporting for source apportioning (Fig. 4A) reports %GEQ
belonging to each genome library. This metric represents an estimation
of the fraction of prokaryote cells which we are confident belong to a
particular source library. Yet, the values reported herein should not be
interpreted as representing the fraction of total fecal material belonging
to a particular source. Additionally, some signal is reported as belonging
to off-target libraries (e.g., chicken) despite our efforts to eliminate
cross-reactive genomic entries based on ANI comparisons a priori. We
believe this signal likely belongs to genomes of populations with close
relatives within either the background matrix (e.g., freshwater) or
sewage microbial communities which have yet to be cataloged. Thus, as
more genomic datasets from these environments becomes available it
will be important to update these source-specific libraries to ensure
better performance and less cross-reactivity.

5. Conclusions

e We tracked the microbial dynamics of a simulated sewage spill in
freshwater mesocosms for 7 days using shotgun metagenomes, cul-
ture, and qPCR to better establish how shotgun metagenomics can
assist with water quality monitoring efforts.

Metagenomic analysis revealed that genes related to bacterial viru-
lence and antimicrobial resistance were substantially enriched by the
addition of sewage compared to the pristine control but became
markedly depleted by the 4th day.

Genome reconstruction and comparison to available public data-
bases suggest that collection systems likely harbor their own (spe-
cific) microbial populations which are largely distinct from those in
other environments — including the human gut.

Genomes from publicly available datasets — including those recov-
ered by this study — were compiled and analyzed to provide a set of
source-specific and non-redundant genomic libraries.

e A reproducible bioinformatic workflow was developed, harnessing a
well-defined limit of detection and the source-specific genome li-
braries developed herein, to perform source attribution and appor-
tioning of fecal signal in metagenomic datasets recovered from the
water environment.

Direct detection of pathogenic bacteria remains challenging due to
the large amount of sequencing effort necessary to confidently detect
rare features in a community.
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