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1 Introduction

Recent years have seen a flurry of activities related to the swampland program [1–3]. Many
new conjectures were proposed and fascinating interconnections between different conjec-
tures became apparent. However, given that it is extremely hard to prove any swampland
conjecture (see for example [4]), one might wonder whether all of the conjectures are truly
imposed by quantum gravity or whether some arose from our somewhat limited understand-
ing of string theory. Given that many conjectures are motivated and tested against what
we observe in controlled string theory setups, there is an apparent need to broaden our tool
kits and to get trustworthy results from larger and larger classes of string theory setups.
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While this is a noble goal we are faced with the immediate problem that enlarging the
landscape of trustworthy string theory constructions is extremely difficult. New approaches
are rare (see for example [5]) and in most instances, like for example in the absence of
supersymmetry, one can only study a fairly limited set of string theories. While these
might already hold surprises (see for example [6–11]), we are clearly very far from even
remotely understanding the landscape of non-supersymmetric string theories.

Several conjectures involving moduli spaces and scalar potentials have been proposed
recently in [12–15]. Sometimes these are influenced by what does and does not work in
explicit string theory compactifications. The most studied of such string compactifications
are based on geometric compactifications of 10d supergravity theories that arise as low
energy limits of string theory. One may be tempted to conjecture that a property that we
observe in such a corner of moduli space is indeed a fundamental consistency requirement
of quantum gravity. However, the presence of a heuristic argument, for example based on
black hole physics, is usually considered a more important hint that the criteria applies
more generally. In the absence of such arguments one can only try to enlarge the land-
scape of four-dimensional theories that one can obtain from string theory, to check existing
conjectures against a larger part of the string landscape. This is what we are doing here,
by focusing on a corner of the landscape which has not been explored much, namely flux
compactifications with orientifolds and purely non-geometric SCFT descriptions for the in-
ternal dimensions. In particular, we focus on type IIB and two different Landau-Ginzburg
(LG) orientifold models, with F3 and H3 fluxes turned on. The tools necessary to deter-
mine the low energy effective action for these models were spelled out in [16]. See [17, 18]
for additional details regarding the geometrical description of the mirror of the rigid CY
that we consider.

In this work we revisit and expand the results of [16, 19, 20]. We find new AdS,
Minkowski and dS solutions and discuss them in the context of the swampland program.
In the first part of the paper we focus our attention on supersymmetric solutions. At weak
coupling and large complex structure we find several infinite families of AdS solutions.
In some cases the solutions are mirror dual to the well known type IIA AdS flux vacua
found by DeWolfe, Giryavets, Kachru and Taylor (DGKT) [21] (see also [22–26] for earlier
work). We find perfect agreement with the AdS distance conjecture except in one family of
solutions which is dual to DGKT. It was argued in [27] that the presence of a Zk discrete
symmetry forces a modification of the conjecture. We argue that such a symmetry is indeed
present in our setup so we find an agreement with the refined version of the conjecture,
just like for DGKT.

Surprisingly our setup, which is essentially dual to a generalization of the DGKT model
in type IIA, allows also for infinite families of AdS solutions with an ever growing number
of D3 branes. Such solutions do naively give rise to AdS4 spacetimes with arbitrarily large
gauge group rank. We are not aware of any such solutions in the literature and they
certainly deserve further study and scrutiny.

We also find fully stabilized four-dimensional Minkowski families of solutions, which
are to our knowledge the only full-fledged string theory constructions of N = 1 Minkowski
vacua without flat directions. Such Minkowski vacua were previously discovered in [16, 19]
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and their validity beyond the perturbative regime was shown to be guaranteed by a powerful
non-renormalization theorem in [16]. We extend the previous analysis to show that these
vacua do not only survive despite string loop corrections but we also prove that, although
string loop corrections can change the masses, they cannot lead to any flat directions.

We also study non-supersymmetric solutions. In the parametrically weak coupling and
large complex structure regime we find a family of non-supersymmetric AdS vacua as in
the dual DGKT setting. We find that the masses lie above the BF bound, so the vacuum
is perturbatively stable. According to the conjecture in [28] these should be unstable but
we leave it for the future to study potential decay. In the not-so-weak coupling regime we
find a metastable dS vacuum which requires the presence of D3 branes in order to satisfy
the tadpole cancellation condition. These vacua are, however, not protected by the non-
renormalization theorem. In particular, the Kähler potential is expected to receive quantum
corrections that are not under control and therefore these dS vacua are not trustworthy.

The structure of the paper is as follows. In the next section 2 we review how to
obtain the low energy 4d N = 1 theories and revisit the no-go theorems protecting the
superpotential. Then, in section 3 we discuss fully stabilized, supersymmetric Minkowski
vacua and contrast their existence with related swampland conjectures. In section 4 we find
several new families of supersymmetric and non-supersymmetric AdS vacua and we discuss
their connection to the AdS distance conjecture. Lastly, we study dS vacua in section 5
before concluding in section 6. We include several useful formulas regarding Type IIA flux
compactifications on Calabi-Yau manifolds in appendix A.

2 Review of the setup

In type IIA flux compactifications on Calabi-Yau manifolds with smeared O6-plane sources
and NSNS and RR fluxes it is possible to stabilize all moduli at tree-level if h2,1 = 0, i.e.
if we are dealing with a rigid Calabi-Yau manifold [21]. In a mirror symmetric type IIB
compactification, using the SYZ conjecture [29], one would then expect to be able to
stabilize all moduli on ‘spaces’ with h1,1 = 0. The RR fluxes Fp with p = 0, 2, 4, 6 on
the IIA side all transform into RR F3 flux. The IIA H3 flux could in principle transform
to a mixture of NSNS H3, geometric and non-geometric fluxes in IIB.1 However, on the
type IIA side, for h2,1 = 0, we have a space with only one 3-cycle (and its dual). Turning
on the H3 flux in type IIA so that it does not thread the T 3 fibration of the SYZ setup,
we expect that after the three T-dualities, we end up in type IIB with a setup that only
involves H3 flux and neither geometric nor non-geometric fluxes. Intuitively, this might also
be expected from the work of Giddings, Kachru and Polchinski (GKP) [31] that showed
that in type IIB it is possible to stabilize the axio-dilaton and all complex structure moduli
using only F3 and H3 fluxes. This means of course that we can stabilize all moduli in the
absence of Kähler moduli, i.e. for h1,1 = 0.

This idea of studying how all moduli are stabilized at tree-level in type IIB flux com-
pactifications with F3 andH3 fluxes on ‘spaces’ with h1,1 = 0 was first fleshed out in [16, 19].

1See [30] for a recent detailed discussion of the T-duality between type IIA and type IIB flux compacti-
fications.
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There the authors studied orbifolds of certain Landau-Ginzburg models and searched suc-
cessfully for completely stabilized, supersymmetric 4d N = 1 Minkowski and AdS vacua.
Such Minkowski vacua are absent in geometric type IIA flux compactifications [32, 33] and
require non-geometric fluxes, which are not well-controlled due to potential α′ corrections.
However, as mentioned above, under mirror symmetry the H3 flux can become geometric
and non-geometric fluxes. So, even if we only turn on the H3 flux on the type IIB side, we
actually probe a genuinely larger part of the string landscape than DGKT. Furthermore,
due to powerful no-go theorems that we will review in the next subsection, these settings
are very well-controlled.

Landau-Ginzburg orbifold models provide a way of analytically continuing Calabi-
Yau compactifications to small volume and can even be used to describe the mirror dual
of compactification on a rigid Calabi-Yau manifold [34]. A Landau-Ginzburg theory is
determined by the superpotential W (Φi), which is a quasi-homogeneous analytic function
of the (worldsheet) chiral superfields Φi. In this paper, following [16], we will consider two
models. Firstly, we consider the 19 model with a superpotential given by

W =
9∑
i=1

Φ3
i , (2.1)

and secondly we will consider the 26 model with a superpotential given by

W =
6∑
i=1

Φ4
i . (2.2)

In the 19 model one can orbifold by the Z3 symmetry Φi → ωΦi where ω = e
2πi
3 , while

in the 26 model we use the Z4 symmetry with ω = e
πi
2 . For the 19 orientifold, σ1

in [16], one combines worldsheet parity with (Φ1,Φ2,Φ3, . . . ,Φ9)→ −(Φ2,Φ1,Φ3, . . . ,Φ9).
The orientifold for the 26 model is the σ0 orientifold in [16] that acts on the fields as
(Φ1,Φ2,Φ3, . . . ,Φ6) → e2πi/8(Φ1,Φ2,Φ3, . . . ,Φ6). In both of the cases one ends up with
O3-planes whose charge can be cancelled by turning on F3 and H3 fluxes and/or by adding
D3 branes.

Before turning on the fluxes, it is easy to check which are the corresponding Calabi-
Yau (CY) manifolds. We need to compute the dimensions of the ring of superprimary
chiral operators R = C[Φ]

∂jW (Φ)] . The (c, c) ring correspond to (2, 1) harmonic forms while
the chiral-antichiral ring (c, a) corresponds to (1, 1) forms. For the 19 model it is easy to
check that there are h2,1 = 63 monomials ΦiΦjΦk which are invariant under the Z3 and
the orientifold action. One also obtains h1,1 = 0 [16], that is, there are no corresponding
Kähler moduli in the would be CY manifold. It corresponds to the mirror of T 6

Z3×Z3
. Thus

we see that in the absence of fluxes the model is dual to a DGKT construction, i.e. to a
compactification of type IIA on a rigid CY manifold.2 Similarly, for the 26 orientifold one
obtains h1,1 = 0 and h2,1 = 90 and it corresponds to the mirror of T 6

Z4×Z4
.

2The actual model that was explicitly worked out by DGKT is a slightly different T6

Z3×Z3
that differs

from this model in the twisted sector [19].
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In this work, following [19, 20], we will restrict ourselves to what would be the bulk
moduli in the mirror dual toroidal orbifold. We will furthermore set the three bulk complex
structure moduli equal and study a rather simple 4d N = 1 SU model. This allows us
to find many analytic families of solutions and thereby truly study the parameter space
of this model in great detail.3 It is expected that all of our findings carry over to the full
model. In the simplest, somewhat restricted setup where our model is dual to the DGKT
model, this follows from the explicit check of the blow-up modes in the DGKT paper [21].
When talking about fully stabilized Minkowski vacua, then we can refer to the paper [16]
where Minkowski vacua were found even when including all moduli. In particular, our
new proof below that the masses cannot become zero even when including all corrections
applies equally well to our SU model and the full model studied in [16]. However, although
we do not expect surprises, it would of course be interesting to extend our analysis to a
generic setup with arbitrary many moduli.

The careful reader might worry that stabilizing blow-up modes requires turning on
many additional fluxes that then contribute to the tadpole which then might become much
larger than the fixed negative charge induced by the O3 planes in our models. This expec-
tation would be in line with the recently proposed tadpole conjecture [35–39]. However,
it does not apply here for two reasons: firstly, in the case where our models are dual to
the DGKT model, all blow-up moduli are stabilized in the dual model by using F4 fluxes
that do not appear in any non-trivial tadpole condition in the type IIA model. This means
that the dual F3 flux quanta, that stabilize blow-up modes, likewise do not appear in the
tadpole condition on the type IIB side. Secondly, as we explain in the next subsection,
the large volume intuition that fluxes contribute with the same sign as D3 branes to the
tadpole is not correct in these non-geometric settings. Fluxes are no longer required to
be ISD and can even in supersymmetric solutions contribute to the tadpole with the same
sign as orientifold planes.

Type IIB string theory compactifications on the above two Landau Ginzburg models,
after including the above discussed O3 orientifold projections, give rise to 4d N = 1
theories. The superpotential is generated by H3 and F3 fluxes and takes the standard
form W =

∫
M (F3 − SH3) ∧ Ω [40, 41]. However, given that we are in these setting in

a small volume regime, the usual Kähler potential K = − ln[−i(S − S̄)] − ln[i
∫
M Ω ∧ Ω]

does receive corrections as discussed in subsection 3.2 of [19]. These corrections can be
derived by using mirror symmetry (see appendix A), which leads to the following the Kähler
potential K = −4 ln[−i(S − S̄)] − ln[i

∫
M Ω ∧ Ω]. In our simple case where we restrict to

two moduli, the axio-dilaton S = C0 + ie−φ and a complex structure modulus U , both the
19 and the 26 model give rise to the following Kähler and superpotential

K = −4 ln[−i(S − S̄)]− 3 ln[−i(U − Ū)] , (2.3)
W = (f0 − Sh0)U3 − 3(f1 − Sh1)U2 + 3(f1 − Sh1)U + (f0 − Sh0) . (2.4)

3While the previous work [16, 19] studied particular solutions of these models, the more recent paper [20]
picked random flux numbers within a finite range and generated large generic solution sets that were
compared with a variety of swampland conjectures. Here, we actually test several swampland conjectures
against new infinite families of analytic solutions.
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This restricted model, corresponding to h2,1 = 1, is dual to a similarly restricted model in
type IIA where, for example, one sets the three Kähler moduli in the original DGKT model
equal, to get an effective model with h1,1 = 1 on the type IIA side (an ST model). The four
F3 flux components, labelled by f0, f1, f

1, f0 above correspond on the type IIA side to F6,
F4, F2 and F0 fluxes, while the four H3 flux components h0, h1, h

1, h0 correspond on the
type IIA side to H3 flux, metric flux and non-geometric Q and R fluxes, respectively (see
table 1 in [42]). Thus, this flux compactification on the type IIB side is indeed extending
the original DGKT construction [21] in a very important way. Furthermore, as we will
explain in the next subsection, there are non-renormalization theorems that allows one to
obtain trustworthy results in regimes that have not really been probed much in the existing
literature.

As is familiar from any flux compactification with orientifolds, one has to cancel the
net charge induced by the fluxes, O-planes and potentially D-branes. In our case this will
be the O3 plane charge and the tadpole condition is given by

∫
M
F3 ∧H3 +ND3 = 1

2NO3 . (2.5)

This allows us now to clarify, why we discussed above the 19 model and the 26 model
although they both give rise to the same (restricted) Kähler and superpotential in equa-
tions (2.3) and (2.4): the above mentioned orientifold projection for the 19 model gives rise
to NO3 = 24, while the orientifold projection for the 26 model gives rise to NO3 = 80 [16].
This means that the flux contribution to the tadpole

Nflux =
∫
M
F3 ∧H3 = −h0f0 − 3h1f1 + h0f

0 + 3h1f
1, (2.6)

would have to equal either 12 or 40, if we want to satisfy the tadpole condition in equa-
tion (2.5) without the addition of D3 branes.

However, it is also important and interesting in these models to include D3 branes.
The reason for this is that the flux contribution to the tadpole Nflux has no definite sign
(see subsection 3.3 in [19]). This means in particular that fluxes can contribute with the
same sign as O3 planes in the tadpole and we will see below that there are even infinite
families in which Nflux → −∞ and at the same time ND3 → ∞. One may ask why this
is possible, since in the well-known geometric type IIB CY orientifolds with 3-form fluxes,
studied in GKP [31], the Nflux is always positive. This follows in that case simply from
the requirement that the flux F3 − SH3 has to be imaginary self dual (ISD). The latter
in turn follows from the vanishing of the covariant derivatives of the superpotential with
respect to the axio-dilaton and the complex structure modulus, i.e. DSW = DUW = 0. In
our setup there are small volume corrections to the Kähler potential in equation (2.3). In
particular, the factor of 4 changes DSW = 0 in such a way that one can no longer derive
the ISD requirement, as is discussed in more detail in [19].
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The above property might be surprising.4 Therefore we quickly discuss it also in the
dual type IIA models. In the case where we only turn on a single H3 flux quanta our
model is dual to a type IIA flux compactification à la DGKT with h2,1 = 0. There is then
a single O6 plane tadpole condition. In this case, for supersymmetric AdS vacua, the flux
contribution to the tadpole has to have the same sign as D6-branes. If that were not the
case, then we could add D6 branes in addition to the O6 planes and thereby completely
cancel their negative contribution to the scalar potential. Then there would be no negative
term in the scalar potential (and therefore no AdS vacua) since RR fluxes and H3 flux
contribute positive definite terms only. Thus in this case, which is the dual of the DGKT
model with h2,1 = 0, the fluxes induce a charge in the tadpole that has the same sign
as D branes and Nflux is therefore bounded by zero from below and NO3/2 from above.
Now when we turn on more general H3 flux on the type IIB side then this corresponds
to type IIA flux compactifications in the presence of geometric and non-geometric fluxes.
These fluxes can contribute to the scalar potential with either sign and the O plane term
is no longer the only negative term in the scalar potential. Thus, there is no immediate
obstruction to over-cancelling the O plane contribution by adding a very large number of
D branes. We will see how this works in explicit examples below, when we discuss concrete
solutions.

2.1 Non-renormalization theorem

In this subsection we first recall the absence of perturbative and non-perturbative correc-
tions to the superpotential [16, 19]. First of all, α′ corrections are already taken into account
in the LG theory. Thus, one only has to focus on gs perturbative and non-perturbative
corrections. However, it was argued in [16, 19] that the superpotential does not receive
any perturbative or non-perturbative corrections at all, which follows for example from
the non-renormalization of the BPS tension of a D5-brane domain wall but also passes
other non-trivial checks [16]. This means that the superpotential is exact even at strong
coupling. Note however, that the Kähler potential can and will receive perturbative and
non-perturbative corrections, which is something we will return to in the next paragraph.
The cautious reader might worry about the familiar brane instanton corrections to the IIB
superpotential. Let us therefore recall that our models have h1,1 = 0 and thus no Euclidean
D3-brane instantons. The absence of D(−1) instantons was argued for in footnote 6 in [16]
as follows: since the D(−1) instantons do not depend on the volume and they are not
there in the decompactification limit due to higher supersymmetry, they should also not
appear here. This is also consistent with the recent analysis in [43], which trivially covers
our setup since we have h1,1 = 0 and therefore no 4-cycles and no D7 branes or O7 planes.
Alternative it was argued for the absence of any brane instanton corrections in [19] using
the duality to the type IIA setting of DGKT: there the only 3-cycle in models with h2,1 = 0
has H3 flux and therefore there are no brane instantons [44].

4At small volume there are a plethora of instances were the large volume understanding of mutually
supersymmetric objects changes completely due to stringy corrections. So, it shouldn’t necessarily be
surprising that fluxes can carry anti-D3 brane charge and still be mutually supersymmetric with D3 branes
and O3 planes.
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When studying Minkowski vacua we will assume that the non-renormalization theorem
holds and the superpotential receives no corrections even in those vacua where gs is of order
1 or larger. The conditions for supersymmetric Minkowski vacua are ∂iW = W = 0 and
do not depend on the Kähler potential. Thus, the very existence of Minkowski vacua does
not change even if one includes arbitrary corrections because those can only appear in
the Kähler potential. Previously, such explicit supersymmetric, fully stabilized Minkowski
vacua where constructed in [16, 19, 20]. However, it was stated in [19] that these are
necessarily at strong coupling5 and thus receive large corrections to the Kähler potential.
This then leads to the following important question: are these truly fully stabilized 4d
N = 1 Minkowski vacua or can the corrections to K lead to flat directions?

We will prove here that even arbitrary, unknown corrections to K cannot lead to flat
directions in these models: we assume that one has been able to a find a fully stabilized
SUSY Minkowski vacuum as was the case in [16, 19, 20] (see also section 3 below). Then the
Hessian matrix of second derivatives of the scalar potential has only positive eigenvalues
and is given by6

Hi̄ = ∂i∂̄V = (∂i∂kW )Kk ¯̀(∂¯̀∂̄W ) , (2.7)

or in matrix form
H =WKW . (2.8)

Now compute the determinant

detH = detW detK detW = | detW |2 detK . (2.9)

Given that all eigenvalues of H were positive to begin with we can conclude that
| detW |2 > 0.

Now let us take into account arbitrary and unknown corrections to the Kähler potential
and denote the inverse Kähler metric after including all these corrections Kc. The new
Hessian for this corrected Minkowksi vacuum is now given by

Hc =WKcW . (2.10)

We again compute the determinant

detHc = detW detKc detW = | detW |2 detKc . (2.11)

Since the superpotential did not receive any corrections we have from above that
| detW |2 > 0. Since the Kähler metric controls the kinetic terms of the scalar fields,
its eigenvalues have to be positive. This remains true even after including arbitrary correc-
tions and therefore detKc 6= 0. This, combined with the preservation of | detW |2 implies
that detHc 6= 0. Thus, all the eigenvalues of Hc must be nonzero.

In supersymmetric Minkowski vacua eigenvalues of the Hessian matrix have to be posi-
tive for stabilized moduli or zero for flat directions. It was just shown that the eigenvalues of

5We find that they cannot be at parametrically weak coupling but there are certainly examples
with gs < 1.

6For simplicity we work here with the Hessian. The actual masses squared are the eigenvalues of Hi̄K
̄k.

However, given that the Kähler metric is positive definite, this does not change our conclusion.
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Hc are nonzero, so we can conclude that these Minkowski vacua cannot have flat directions
even when including unknown and arbitrary corrections to the Kähler potential.

One can actually prove also the existence of AdS vacua at strong coupling using the
non-renormalization of W [16]. While this is not so important since there are infinite
families of AdS vacua with parametrically weak coupling, let us nevertheless briefly recall
the argument. For supersymmetric AdS vacua, satisfying DiW = ∂iW + (∂iK)W =
0, the ∂iK term can receive corrections. The authors of [16] expanded the corrected
Kähler potential around the minimum which one can choose to be at φi = 0, so that
Kc = K + f(φi) + f̄(φ̄ı̄) + φiφ̄̄gi̄(φi, φ̄ı̄). At the minimum φi = 0 the only correction
to ∂iK arises from f(φi). However, this can be interpreted as a Kähler transformation:
K → K+f+ f̄ ,W →We−f , which changes DiW → e−fDiW . Therefore, supersymmetric
AdS vacua satisfying DiW = 0 cannot disappear even when including arbitrary unknown
Kähler corrections. However, for example the mass spectrum is expected to be corrected
(within the limits allowed by N = 1 supergravity).

Finally, there is no argument for preventing corrections to non-supersymmetric vacua.
So, if one finds them at strong coupling, they could disappear or become unstable when
including string loop corrections.

3 Fully stabilized N = 1 Minkowski vacua

As mentioned previously, the first fully stabilized 4d N = 1 Minkowski vacua were found
in [16]. In the dual type IIA case, such vacua do not exist in geometric compactifications [32,
33], which means that in the type IIB models at least two components of the H3 flux have
to be turned on. It was also show in [19] that these IIB Minkowski vacua are never arising
at large complex structure, i.e. on the dual type IIA side they cannot arise at large volume.
However, as we reviewed above the Landau-Ginzburg models take all α′ corrections into
account and therefore do not require us to be at large complex structure. It was furthermore
stated [19] that these Minkowski vacua are confined to strong coupling. Given the non-
renormalization theorem from the previous section, we can trust Minkowski vacua even at
strong coupling. However, we also find that only parametrically weak coupled solutions are
forbidden in this setup and gs < 1 is possible with a model dependent lower bound on gs.
In the next subsection we present a new infinite family of fully stabilized supersymmetric
Minkowski vacua and in the following subsection we discuss how this family of solutions
fits into the swampland program.

3.1 Minkowski solutions

In order to find Minkowski vacua we have to solve W = ∂SW = ∂UW = 0 for the W given
in equation (2.4) above. A particular family of solutions with properly integer quantized
fluxes arises for

f0 = −4 , f1 = 0 , f1 = 0 , f0 = 4 , h0 = −3− h0 , h1 = 1 , h1 = −1 . (3.1)

Here h0 ∈ Z is a free parameter that actually does not appear in the tadpole condition since
Nflux in equation (2.5) reduces to Nflux = 12 independent of h0. Thus, this is a solution
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to the 19 model which does not require D3 branes since the fluxes cancel the negative O3
plane charge.

The moduli are stabilized at the following values

Re(U) = −1
2 , Im(U) =

√
3

2 ,

Re(S) = 6 + 4h0
3 + h0(3 + h0) , Im(S) = 2

√
3

3 + h0(3 + h0) . (3.2)

While the complex structure modulus is stabilized at a fixed value, the inverse string
coupling Im(S) changes when we vary the free parameter h0 ∈ Z. It takes on its maximal
value of Im(S) = 2

√
3 for h0 = −1 and for h0 = −2. For h0 → ±∞ we enter parametrically

strong coupled regions with Im(S) ∝ 1/h2
0. We stress again that even in this parametrically

strong coupled regime there are no corrections to W due to the above non-renormalization
theorem.

The positive masses squared for the two complex scalar fields in the Minkowski vacuum
are given by

m2
− =

(11− 4
√

7)
(
3 + h0(3 + h0)

)3
192
√

3
, m2

+ =
(11 + 4

√
7)
(
3 + h0(3 + h0)

)3
192
√

3
. (3.3)

We see that in the limit h0 → ±∞ the masses grow like h6
0. For the largest inverse string

coupling value Im(S) = 2
√

3 ≈ 3.46 which is obtained for h0 = −1 and for h0 = −2, the
masses squared reduce in both cases to m2

− = 11−4
√

7
192
√

3 ≈ 0.00125 and m2
+ = 11+4

√
7

192
√

3 ≈
0.0649.

3.2 Minkowski vacua and the swampland

It is easy to find string compactifications that give rise to 4d Minkowski vacua with N ≥ 2,
for example, by compactifying type II string theory on a Calabi-Yau manifold or a torus.
However, to the best of our knowledge all these Minkowksi vacua with N ≥ 2 have flat
directions, i.e. massless scalar fields. These flat directions can be protected by the high
amount of supersymmetry. However, in 4d N = 1 theories there is no such protection and
it is expected that all flat direction would be lifted by corrections which likely leads to
runaway directions. To the best of our knowledge, the Minkowski vacua first discovered
in [16, 19] are the only fully stabilized N = 1 Minkowski vacua that arise in full-fledged
string theory constructions. Given that corrections to the scalar potential are not forbidden
by N = 1 supersymmetry, one would have thought that it would not be possible to really
argue for the existence of these vacua when including all perturbative and non-perturbative
corrections. However, the non-renormalization of the superpotential [16] and our argument
above about the mass matrix are implying that these vacua do indeed exist in a strongly
coupled corner of string theory.

Given the more recent objections to the existence of dS vacua in string theory [45, 46],
the very existence of fully stabilized 4d N = 1 Minkowksi vacua was questioned as well.
The reason is that any small, SUSY breaking, positive energy contribution to the scalar
potential turns these Minkowksi vacua into metastable dS solutions. Following this logic,
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the authors of [47] conjectured that strongly stabilized AdS vacua should be forbidden. Here
by strongly stabilized one means that the mass of the lightest field satisfies mlightLAdS � 1,
where LAdS is the length scale of the AdS space. This AdS moduli conjecture seems to
imply that if we take the limit LAdS → ∞ to go to Minkowksi space, then mlight → 0
in contradiction with the Minkowski vacua discussed here and previously in [16, 19, 20].
Note however, that these Minkowski vacua cannot arise as the limit of any of the infinite
families of AdS solutions that we find in these models and that will be discussed in the
next subsection. Likewise, there is no obvious small SUSY breaking correction or change
to the model that leads to dS vacua. All string loop corrections do not change W and
only modify the values of the positive masses squared of the scalar fields in the Minkowski
vacuum. Changing some flux quanta to break supersymmetry is a large effect and the same
probably applies to any other change given that the complex structure modulus is stabilized
at order 1 and we are at strong coupling. However, it would definitely be interesting to
study this further.

The existence of these vacua and the absence of corrections is surprising, maybe even
more so given the recent paper [48] that finds that generically in quantum gravity any
allowed correction should appear. The exception to this rule is stated in the same paper
and is formalized in the supersymmetric genericity conjecture [48]. This conjecture says
that quantities that are protected in higher supersymmetric theories should only vanish in
lower supersymmetric theories, if the lower supersymmetric theory is related to a higher
supersymmetric theory. In particular, the authors discuss 4d N = 1 Minkowski vacua
with everywhere vanishing superpotential, W = 0. They find that the equation W = 0
can only survive all corrections if the theory is related to a higher dimensional theory
via for example a simple orbifold projection. While our setup with fluxes and a non-
zero W generate by those fluxes is not covered by the analysis in [48], our findings seem
nevertheless compatible with the supersymmetric genericity conjecture since our setups are
simple orbifolds of toroidal models that preserve higher amounts of supersymmetry.

Summarizing, these non-geometric type IIB setups give rise to fully stabilized 4d N = 1
Minkowksi vacua that seem to survive all stringy corrections, which makes them to our
knowledge the only full-fledged string theory constructions of this type. These vacua arise
only at relatively strong coupling in a barely studied part of the string landscape.

4 Infinite families of AdS vacua

In this section we study exemplary families of AdS solutions that arise in these non-
geometric type IIB flux compactifications. As discussed above, due to the non-renorma-
lization of W even supersymmetric AdS solutions at strong coupling will persist when
including all potential corrections. However, for example the masses and the cosmological
constant in these solutions might get significantly modified when we are not at weak string
coupling. All the different families of AdS solutions that we present below, allow us to
go to parametrically weak coupling and thus we have parametric control over them. This
enables us to perform trustworthy and detailed studies even when these solutions are not
supersymmetric. Given that the exact number of O3 planes in these infinite families plays
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essentially no role, we will restrict ourselves to the 19 model with NO3 = 24. We will intro-
duce representative examples to illustrate the different behaviors that these infinite families
display. Firstly, we present families that are dual to the AdS vacua found in DGKT [21]
but we also find other infinite families of AdS vacua that arise in our more general setup.
Secondly, we study interesting and very different sets of solutions, where by increasing the
number of D3 branes the contribution of the fluxes to the tadpole can become negative
and very large. In the Nflux → −∞ limit the number of D3 branes needs to become infinite
ND3 → ∞ as well, in order to satisfy the tadpole condition. We discuss how all these
solutions fit into the web of swampland conjectures at the end of this section.

4.1 Infinite families of AdS vacua without D3 branes

4.1.1 The DGKT dual

In [19] two infinite families of SUSY AdS solutions were presented. The first solution is
related to the infinite family of SUSY AdS vacua that were found in DGKT [21].7 To find
it one has to necessarily set three H3 flux quanta to zero, h0 = h1 = h1 = 0. The tadpole
condition (2.5) then implies

h0 = 12
f0 , (4.1)

which means that due to flux quantization f0 ∈ {1, 2, 3, 4, 6, 12}. We will not plug in any
specific flux values but keep in mind that f0 and h0 are bounded due to tadpole cancellation
condition but the other fluxes are not.

One can easily solve DSW = DUW = 0 and find that the axio-dilaton is stabilized at

Re(S) = f0(f0)2 + 3f1f
0f1 − 2(f1)3

12f0 , Im(S) = 2
√

5
3

(
f1f

0 − (f1)2) 3
2

9f0 , (4.2)

while the complex structure modulus is stabilized at

Re(U) = f1

f0 , Im(U) =
√

5
3

(
f1f

0 − (f1)2) 1
2

f0 . (4.3)

Given that f1 is unconstrained by the tadpole, we can make it large and even send it to
infinity. In that limit the string coupling 1/ Im(S) becomes parametrically small and the
complex structure modulus becomes parametrically large. This is the mirror dual of the
large volume, weak coupling families of AdS vacua that arise in type IIA flux compactifi-
cations if one makes the F4 flux large [21].

The scalar potential at the minimum is

VAdS =
−19683

√
3
5(f0)3

3200
(
f1f0 − (f1)2) 9

2
. (4.4)

7In the second SUSY AdS solution in subsection 4.3.2 in [19], there seems to be a typo. We find that
either Im(U) or Im(S) are necessarily negative, so this does not seem to be a physically meaningful solution.
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The four masses squared in this family can be conveniently expressed in terms of the above
value of the scalar potential as

m2 =
{10

3 , 6,
70
3 ,

88
3

}
|VAdS| . (4.5)

Since the AdS radius in 4d is given by RAdS =
√

3/|VAdS| one finds surprisingly that
all the masses squared in AdS units, i.e. all m2R2

AdS, are integers. This was recently
discovered in [49] (see also [50]). Furthermore, the integers are such that the operator
scaling dimensions in the dual CFT3, i.e.

∆ = 1
2
(
3 +

√
9 + 4m2R2

AdS

)
= {5, 6, 10, 11} , (4.6)

are integers as well [49, 51, 52]. This fascinating feature of this family of AdS vacua
currently awaits an explanation and we check below in our other families whether the same
is true or not.

Given that we want to compare our infinite families with the AdS distance conjecture,
it is important to determine the mass scale of a tower of states that becomes light in the
large flux limit. In the dual DGKT construction [21] the large flux limit corresponds to a
large volume limit and the KK scale sets the scale of a tower with a mass scale that goes
to zero as the flux quanta go to infinity. Using mirror symmetry, as further discussed in
appendix A, we can determine the dual mass scale of a tower that becomes light in this
large flux limit8

m2
tower ∼

1
Im(U) Im(S)2 ∼

(f0)3(
f1f0 − (f1)2) 7

2
∼ 1

f
7
2

1

. (4.7)

As we discuss below, the AdS distance conjecture [53], constrains the parameter α that
relates the mass scale of the tower to the cosmological constant via mtower ∼ |Λ|α. In this
solution we have α = 7/18 since

mtower ∼
1

f
7
4

1

∼ |VAdS|
7
18 . (4.8)

4.1.2 SUSY families with α = 1/2

Next we discuss another infinite family of AdS vacua that is also parametrically controlled
but not dual to the DGKTmodel since we have two H3 flux quanta turned on. In particular,
we fix the following fluxes

f0 = 0 , f1 = 0 , h0 = −3 , h1 = 0 , h0 = 0 . (4.9)

The tadpole condition in equation (2.5) is satisfied if we set f0 = 4− h1f
1 and we are left

with two free flux parameters h1, f
1 ∈ Z. In this solution the real parts of S and U are

8By mirror symmetry the large volume limit becomes a large complex structure limit in which winding
modes should become light and lead to this tower of states.
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equal to zero and the imaginary parts are given by

Im(U) =

√
9f1h1+2

(
−9+
√

81+24f1h1(−4+f1h1)
)

f1
√

15
,

Im(S) =


(
−16f1h1 + 3

(
9 +

√
81 + 24f1h1(−4 + f1h1)

))
2h2

1

 Im(U) . (4.10)

In the limit f1 → ∞ (and for negative h1 < 0) we find the following scaling of the
moduli

Im(U) ≈

√
(9− 4

√
6)h1√

15
,

Im(S) ≈

√
6 + 8

√
2
3f

1

√
−h1

. (4.11)

So, we have parametric control since we can go to parametrically small string coupling. We
can in principle also make the complex structure modulus large by an appropriate choice
of h1, however, this is not necessary since the Landau-Ginzburg model already takes all α′

corrections into account [16].
In the above limit of very large f1 the value of the potential at the minimum is given by

VAdS ≈ −
27(−h1)

5
2

32
√

1329 + 544
√

6

1
(f1)2 . (4.12)

Comparing the mass of the light tower from equation (A.6) with the value of the scalar
potential in this limit, we find that mtower ∼ |VAdS|

1
2 , i.e. α = 1/2.

In the limit where f1 →∞ the masses squared are,

m1±
2 = 2

9
(
17 +

√
6±

√
127 + 46

√
6
)
|VAdS| ,

m2±
2 = 1

9
(
25− 2

√
6±

√
337 + 68

√
6
)
|VAdS| . (4.13)

The smallest of these masses squared, m2
2− = 1

9(25 − 2
√

6 −
√

337 + 68
√

6)|VAdS| ≈
−0.260|VAdS|, is above the Breitenlohner-Freedman bound m2

BF = −3
4 |VAdS| [54], as re-

quired by supersymmetry. Obviously, none of these masses are integers in AdS units and
the same is true for the dual conformal scaling dimensions. Since we kept h1 finite in
this example, the complex structure remains finite and therefore the mirror dual type IIA
families should have likewise a fixed finite volume, which might (or might not) be related
to the absence of integer conformal scaling dimensions.

4.1.3 Non-supersymmetric AdS vacua

Lastly, we discuss here a single non-supersymmetric family of AdS vacua. We have not
performed an all encompassing search for such solutions but given that they exist in the
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type IIA models of DGKT and are related to the supersymmetric solutions by simple sign
flips of F4 flux quanta, they have to exist here as well. We found one such family that is
related to the supersymmetric AdS solution discussed above in subsection 4.1.1, by setting
f1 = f0 = 0 and flipping the sign of f1.

Concretely, for h0 = h1 = h1 = f1 = f0 = 0, and f0 essentially fixed by the tadpole as
in equation (4.1) above, we find a one parameter family of non-SUSY AdS vacua parame-
terized by f1. The real parts of the two moduli vanish in this family, Re(S) = Re(U) = 0
and the imaginary parts are given by

Im(U) =
√

5
3

√
− f1
f0 , Im(S) = 2

9

√
5
3(−f1)

3
2

√
f0 . (4.14)

So, we see that both grow in the limit f1 → −∞ and we have parametric control over these
non-supersymmetric solutions. The scalar potential is given by

VAdS = −
√

3
5

19683
3200(f0)

3
2 (−f1)

9
2
. (4.15)

Since the moduli and the cosmological constant scale as for the supersymmetric counter
part in subsection 4.1.1 above, one again finds α = 7/18.

The four masses squared for these solutions are given by

m2 =
{70

3 ,
40
3 , 6,−

2
3

}
|VAdS| . (4.16)

The smallest of these masses squared, m2 = −2
3 |VAdS|, is above the Breitenlohner-Freedman

bound m2
BF = −3

4 |VAdS| [54] and this solutions is stable, although in this case this is not
guaranteed by supersymmetry.

We note that the masses squared above again give rise to dual conformal dimen-
sions ∆ = {10, 8, 6, 2 or 1} that are all integers. This was previously noticed for non-
supersymmetric DGKT solutions in [49, 51] and it would be interesting to extend the
general analysis of [52] to non-supersymmetric AdS vacua.

4.2 AdS vacua with a large number of D3 branes

Given the fact that supersymmetric fluxes in this setup can contribute to the tadpole
condition in the same way as O3 planes, we do not necessarily need the latter, however,
we will keep them in the models below. We can furthermore ask whether we can find
infinite families of supersymmetric vacua where a flux contribution in the tadpole can
cancel an arbitrarily large number of D3 branes. This is indeed the case and we will
present below two exemplary families where Nflux → −∞, ND3 → ∞ while the tadpole
Nflux +ND3 = NO3/2 = 12 is satisfied. To the best of our knowledge such types of solution
have never been discussed in the flux compactification literature before. We will present
them below and then discuss potential problems and detailed features of these solutions in
more detail below in subsection 4.3.
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4.2.1 An infinite family with α = 1/2 and ND3 → ∞

We will set the following four fluxes to zero f1 = f0 = h0 = h1 = 0. Then we solve
the SUSY equations DSW = DUW = 0. We find supersymmetric AdS solutions with
Re(S) = Re(U) = 0 and the imaginary parts are stabilized at

Im(U) =

√
−3f0h0 − 9f1h1 +

√
9(f0h0)2 + 74f1f0h0h1 + 81(f1h1)2

2f0h1 , (4.17)

Im(S) =
(−3f0h0 + 9f1h

1 +
√

9(f0h0)2 + 74f1f0h0h1 + 81(f1h1)2

8h0h1

)
Im(U) .

The tadpole equation (2.5) in this case reduces to

− 3h1f1 + h0f
0 +ND3 = 12 . (4.18)

Keeping h0 and f0 fixed and choosing a positive h1, we can send f1 →∞. This gives rise
to an infinite family of solution that requires an ever growing number of D3 branes to be
present, with ND3 ∝ f1. For simplicity we study the particular example h1 = f0 = 1. In
the f1 →∞ limit the moduli are approximately given by

Im(U) ≈
√

5h0
3 , Im(S) ≈ 3

√
5f1

4
√
h0

.

Thus we are at parametrically weak coupling and we can even make Im(U) very large by
choosing an appropriate fixed but arbitrarily large value for h0.

In the limit where f1 goes to infinity we have:

VAdS ≈ −
2(h0)3/2

25
√

5f2
1
. (4.19)

In the large f1 limit the mass of the light tower (in Planck units) is

m2
tower ∼

1
Im(U) Im(S)2 ≈

16
√
h0

15
√

5f2
1
, (4.20)

which corresponds to α = 1/2. The masses squared in this limit are

m1±
2 ≈ 1

27
(
41± 4

√
181

)
|VAdS| , m2±

2 ≈ 1
27
(
26±

√
181

)
|VAdS| . (4.21)

The smallest mass squared, m2
1− ≈ 1

27(41−4
√

181)|VAdS| ≈ −0.475|VAdS|, is above the
Breitenlohner-Freedman bound m2

BF = −3
4 |VAdS| [54], as required by supersymmetry.

4.2.2 An infinite family with α = 3/2 and ND3 → ∞

Lastly, we present an infinite family that gives rise to a different value of α, while still
requiring an ever growing number of D3 branes. We choose the following fixed flux values

f1 = 1 , f0 = 1 , h0 = 0 , h1 = −1 , h1 = 0 , h0 = −1 , f0 = 1 , (4.22)
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leaving us with f1 as the free parameter. There exist then supersymmetric AdS vacua in
which the moduli take on the following values

Re(U) = 0 , Im(U) =

√
−3− 9f1 +

√
9 + f1(74 + 81f1)
√

2
, (4.23)

Re(S) = −1 , Im(S) =
(3− 9f1 −

√
9 + f1(74 + 81f1)

8

)
Im(U) .

The tadpole equation (2.5) in this case reduces to

3f1 +ND3 = 13 . (4.24)

In the limit f1 → −∞ the above tadpole requires ND3 ∼ −3f1 → ∞. The value of the
scalar potential in this limit is

VAdS ≈ −
729

32768(−f1)
1
2
. (4.25)

The moduli scale for f1 → −∞ like

Im(S) ≈ 8
√
−f1
3 , Im(U) ≈ 3

√
−f1 , (4.26)

and therefore
m2

tower ∼
1

Im(U) Im(S)2 ∼
1

(−f1)
3
2
. (4.27)

This actually means that mtower ∼ |VAdS|
3
2 , i.e. α = 3/2 in this case.

In the limit where f1 → −∞ the masses become

m2 ≈
{

6, 10
3 ,

22
7 ,−

8
27

}
|VAdS| . (4.28)

The masses squared are above the Breitenlohner-Freedman bound m2
BF = −3

4 |VAdS| [54],
as required by supersymmetry. Interestingly the first two masses squared give again rise
to dual conformal scaling dimensions that are integers, while the later two give rise to
fractional scaling dimensions: ∆ = {6, 5, 11/3, 8/3}.

4.3 AdS vacua and the swampland

Many explicit and widely studied constructions of AdS vacua in string theory exhibit the
following two features: first, there are usually some light fields whose masses are comparable
(or smaller) than the AdS scale MAdS = 1/RAdS =

√
|VAdS|/3 and this was conjectured to

be true in all string compactifications in [47]. Second, the most widely studied AdS vacua
in string theory are of Freund-Rubin type [55, 56] or exhibit similar features, by which we
mean that the size of the internal space RKK is not parametrically smaller than RAdS. This
property was recently studied for example in [51, 57–63] and has led to the AdS distance
conjecture [53] that states that for infinite families of AdS vacua with VAdS → 0, there
exist a tower of massive states with masses that satisfy mtower ∼ |VAdS|α for some positive
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α of order one. The strong version of this conjecture says that for supersymmetric AdS
vacua α = 1/2. This conjecture has been refined in [27, 64]. Lastly, it was conjectured
that no stable AdS vacua exist at all [28] and all these conjectures have been used to derive
important implications for the standard model of particle physics [65–70].

Against the backdrop of the above results, let us start by examining our infinite families
of AdS vacua. First, let us note that in all the above families of solution the masses of the
light fields S and U are always of the same order as

√
|VAdS|. This means that they are all

consistent with the AdS/moduli conjecture proposed in [47].
Let us now look at the Nflux = 12 solutions, which do not require the presence of D3

branes and that were discussed above in subsection 4.1. The supersymmetric AdS solutions
with α = 7/18 violate the strong version of the AdS distance conjecture. A refined version
of the conjecture was proposed in [27] where a 4d discrete Zk 3-form gauge symmetry was
identified in the DGKT model and the following refined conjecture was proposed: mtower ∼√
k|VAdS|. Given that our family of solutions is mirror dual to the DGKT AdS vacua we

have a discrete Zf1 symmetry and our solutions indeed satisfy mtower ∼
√
f1|VAdS|.9

The next family of supersymmetric AdS vacua that we discuss above satisfies the
strong version of the AdS distance conjecture since it has α = 1/2. This absence of scale
separation was also discovered in related IIA models in [71].

This leaves us with a non-supersymmetric family of AdS solutions that is also dual
to DGKT and that has α = 7/18. This is again consistent with the refined AdS distance
conjecture due to the presence of a discrete symmetry that is unaffected by a simple sign flip
of a flux quanta. Since these solutions are non-supersymmetric they are predicted to decay
perturbatively or non-perturbatively [28]. Given that we find that the masses squared of
S and U are above the Breitenlohner-Freedman bound [54], it is not clear whether there is
a perturbative instability. Studying all possible non-perturbative decay channels or trying
to identify one explicit non-perturbative decay channel is a daunting task, so we restrict
ourselves here to referring to a related study of non-supersymmetric AdS vacua in the dual
DGKT model [72].

Finally, let us discuss the most interesting families of supersymmetric 4d N = 1 AdS
vacua, namely the new families that allow for the inclusion of an arbitrarily large number of
D3 branes and that are discussed in subsection 4.2. While the first one has α = 1/2 and is
therefore consistent with the strong version of the AdS distance conjecture, the second one
has α = 3/2, which means that the light tower is becoming light much more quickly. These
solution can be made consistent with the strong version of the AdS distance conjecture by
demanding α ≥ 1/2, as is already discussed in the original paper [53]. Nevertheless, given
that these vacua with α = 3/2 are different from all the other solutions which had α = 1/2
or smaller, they are interesting and deserve further study.

9One could in principle work this out explicitly following [27]: a 3-form gauge field with U(1) gauge
group arises from F7 = dC6 wrapping an internal 3-cycle. This 3-form gauge field couples to the F3 flux
component f1 and the complex structure axion Re(U), which leads to the breaking of the symmetry to Zf1 .
However, given the non-geometric nature of our compactifications things are more involved and it is easiest
to simply rely on mirror symmetry.
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Since the later two families of supersymmetric AdS vacua have an ever increasing
number of D3 branes one should worry about what that means exactly. In geometric
compactifications we would expect an ever growing number of light open string modes
associated with these ND3 branes. Concretely, for ND3 branes at separate locations the
number of light open string degrees of freedom should grow like ND3. If there is a an
actual potential being generated for the D3 brane position moduli, then it seems likely
that they all settle into the minimum.10 We can of course also always choose to place
all the ND3 on top of each other and since they are mutually BPS there should be no
force between them. This would then lead to a number of light degrees of freedom that
grows even faster like N2

D3. Due to the species bound [73–76], this leads to a UV cutoff
that goes like ΛUV ∼ Mpl/

√
N2

D3 = Mpl/ND3. In our first family of AdS vacua one finds
that ΛUV ∼ 1/f1 ∼ mtower. So, the UV cutoff from the species bound scales in the same
way as the infinite tower of light modes. In the second example with α = 3/2 one finds
that ΛUV ∼ 1/f1 ∼ m

4
3
tower. This means that the species bound is even lower than the

tower of light states that comes down rather quickly in this case anyways. Note that the
previous discussion is based on the geometric intuition that might well carry over to these
non-geometric setups. However, the actual open string spectrum for D3 branes in these
model was not worked out in the previous literature. We leave it as an interesting task for
the future to check the light open string degrees of freedoms in these models.

Slightly disconnected from the different AdS conjectures discussed above, we lastly
would like to point out the most interesting and most surprising feature of these AdS
solutions with ND3 → ∞: the fluctuations along the AdS4 directions of the open string
modes on these branes should give rise to gauge groups with arbitrarily large rank. For
example, if we place all ND3 branes on top of each other one would naively expect an
SU(ND3/2) gauge group.11 String universality in higher dimensions with higher amount
of supersymmetry leads to fairly low ranks for the gauge group, which seems in stark
contrast with the solutions above. This is a by now very active area of research following
the initial work of [77–81]. However, there is no argument in the literature that forbids
4d N = 1 (not scale separated) AdS solutions with an SU(N) gauge group for arbitrarily
large N . Furthermore, there exist families of AdS7 solutions with arbitrarily large gauge
group rank (see for example [82–86] for early work on this). So, it seems reasonable that
related AdS4 solutions do exist as well in the barely explored part of the string landscape
that we study here. As discussed in section IV of [53], since the AdS7 solutions are not
scale separated one should think of the gauge group as living on a defect in the higher
dimensional AdS7 × S4/Zk theory. For this AdS7 case one can increase the gauge group
rank by making k large and this does not lead to a decompactification. However, in our

10At least in a geometric compactification the moduli space is compact so there are no runaway directions
and for a non-trivial potential there has to exist a global minimum. Any potential that is generated for
the D3 brane position moduli should be small in our limit of parametrically weak string coupling, so these
position moduli should be light.

11The tadpole condition in equation (2.5) counts D3 branes in the covering space, hence there can be
at most bND3/2c freely moving D3 branes in the quotient space. If ND3 is odd then one D3 brane would
necessarily be stuck on top of an O3 plane.
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setup when we increase the rank of the gauge group we send the cosmological constant to
zero VAdS → 0. The internal space is also not geometric. So, although our solutions are
not scale separated and there is a tower of light string modes, it is not necessarily natural
to think of the D3 branes as defects in a higher dimensional geometric space. We again
add as a word of caution that the open string spectrum for these D3 branes has not been
worked out and therefore it could hypothetically not contain any massless open strings or
no gauge fields at all. It would be very interesting to check this explicitly and we hope to
do this in the future.

5 de Sitter vacua

Lastly, we would like to comment on the existence of dS vacua in this setup. Given that
the Kähler potential can receive string loop corrections, one finds that non-supersymmetric
solutions can cease to exist, if corrections are large. Thus, unless they are at weak coupling
one should not trust non-supersymmetric solutions. All dS solutions in the models discussed
here will have a string coupling that is not that much smaller than 1 and it is therefore
not clear whether they can be trusted. Nevertheless, we discuss them for the following
two reasons: firstly, they were recently studied in [20] and in the dual type IIA picture
in [87] and we would like to comment on and extend these previous results. Secondly, dS
vacua are notoriously difficult to construct in purely classical scalar potentials [88] and
only very few explicit solutions without tachyons exist in the literature [89–92]. Therefore,
it is interesting to check whether they also exist in our simple models or not.

Unstable dS solutions, i.e. solutions with a tachyonic direction and the correct tadpole
for the 19 model, Nflux = 12, were found in [20]. Interestingly, the authors of that paper
performed a scan over flux values that do not satisfy the tadpole condition and they found
that stable dS vacua exist for a large Nflux ∼ O(100). They also noticed that the ratio of
stable dS vacua to all randomly generated vacua grows with Nflux (see figure 9 in [20]).
The smallest Nflux value that was giving rise to a stable dS solution in figure 9 in [20] is
larger than 66 and the smallest, explicitly listed, stable dS solution in table 5 of that paper
has Nflux = 74. While this is substantially larger than the allowed Nflux = 12 in the 19

model, it is not that much larger than the allowed Nflux = 40 in the 26 model.

5.1 Explicit dS solutions

An explicit tachyonic dS extremum with Nflux = 12 was previously found in [20]. The
corresponding fluxes are

f0 = 4 , f1 = 8 , f1 = 7 , f0 = −17 , h0 = 1 , h1 = 1 , h1 = 1 , h0 = −2 .
(5.1)

Given that Nflux = 12 this is a solution to the 19 model which does not require D3 branes
since the fluxes cancel the negative O3 plane charge. The moduli are stabilized at the
following values

Re(U) ≈ 0.544 , Im(U) ≈ 1.11 ,
Re(S) ≈ 7.72 , Im(S) ≈ 5.19 . (5.2)

– 20 –



J
H
E
P
0
6
(
2
0
2
2
)
1
6
6

The value of the scalar potential is given by VdS ≈ 1.72 × 10−4. The masses squared for
the four real scalar fields in the unstable dS extremum are given by

m2
1 ≈ 0.0226 , m2

2 ≈ 0.0157 , m2
3 ≈ 0.00143 , m2

4 ≈ −0.00119 . (5.3)

So, there are unstable dS solutions like the one above and, as mentioned previously,
there are also metastable dS vacua, if one ignores the tadpole and lets Nflux become fairly
large. Therefore, one should ask what the lowest possible value for Nflux is that still gives
rise to metastable dS solutions. We have not been able to answer this question in full
generality. However, we noticed that unstable and metastable dS solutions still exist when
we set four fluxes to zero: f1 = f0 = h0 = h1 = 0. We then studied the full parameter
space spanned by the remaining four fluxes, while ignoring the tadpole. This led us to
discover infinite families of solutions that transition from AdS to unstable dS and then
to metastable dS, if we vary the fluxes. Within these family we identified the smallest
possible Nflux that has integer quantized fluxes and gives rise to metastable dS solutions.
We find that the only possible value below NO3/2 = 40 for the 26 model is Nflux = 30.12

For this value there are four different metastable dS solutions. Three have Im(S) < 1 and
are therefore expected to receive substantial string loop corrections. The fourth one with
the fluxes

f0 = 33 , f1 = 0 , f1 = −1 , f0 = 0 , h0 = 0 , h1 = −1 , h1 = 0 , h0 = 1 ,
(5.4)

has a metastable dS vacuum at

Re(U) = 0 , Im(U) ≈ 0.299 ,
Re(S) = 0 , Im(S) ≈ 1.32 . (5.5)

The value of the scalar potential is given by VdS ≈ 0.00524. The masses squared for the
four real scalar fields in the dS minimum are given by

m2
1 ≈ 3.31 , m2

2 ≈ 1.29 , m2
3 ≈ .302 , m2

4 ≈ 0.0999 . (5.6)

Given that Nflux = 30 this is a solution to the 26 model which does require ND3 = 10 D3
branes. Thus, there should be additional light open string moduli associated with those
D3 branes.

It would be interesting to extend our full analysis beyond the restriction f1 = f0 =
h0 = h1 = 0 and check whether there exist metastable dS solutions in these models that
are at smaller string coupling and/or that do not require D3 branes in order to satisfy
the tadpole. Due to the mirror symmetry that relates our above models to models with
H3 flux and non-geometric Q flux there should be also a connection to the metastable dS
solution found in 2009 in [93]. Note however, that the latter also required geometric and/or
non-geometric fluxes in the type IIB duality frame since h1,1 6= 0 and thus they are less
controlled then the models we discussed in this paper due to the risk of large α′ corrections.

12The next larger values of Nflux that give rise to metastable dS solutions in our restricted model with
only four non-zero fluxes are Nflux = {59, 60, 61}. This is too large to be compatible with the tadpole
cancellation condition.
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5.2 dS extrema and the swampland

The very existence of dS vacua in string theory was first questioned in [45, 46] and a variety
of refined dS swampland conjectures were proposed in 2018 in for example [12, 94–97]. All
of these conjectures forbid metastable dS solutions. However, given that our metastable
dS solution above is expected to receive substantial string loop corrections, it does not
invalidate these conjectures. The previously discovered unstable dS extremum of [20] has
eφ ≈ .5 and does not require D3 branes. It is thus in much better shape, however, given
that it is unstable with large |η| ≈ 7 it is not really incompatible with any of the refined
dS swampland conjectures.

It would be interesting to study this simplified model or related more complicated
setups to see whether one can find metastable dS vacua at weak coupling and without
D3 branes. While there is no obstruction to this, it was recently shown in the context of
type IIA flux compactifications that dS solutions cannot exist in a parametrically controlled
region [98, 99]. While these papers mostly focused on geometric type IIA flux compacti-
fications they also discuss more exotic ingredients like non-geometric fluxes which makes
them applicable to all the type IIA flux compactifications that are the mirror dual of our
type IIB setup. Thus, they actually apply also to our non-geometric type IIB models. This
means there should be no parametrically controlled dS solutions, i.e. no solutions with a
free flux parameter that we can send to infinity to get Im(S) → ∞. However, there is no
obvious reason why well-controlled dS solutions with Im(S)� 1 cannot exist in the setup
discussed in this paper.

6 Conclusion

In this paper we have studied type IIB flux compactifications based on Landau-Ginzburg
orientifolds. We have focused on models that are non-geometric in the sense that h1,1 =
0, i.e., there are no Kähler moduli. This barely studied class of models was originally
introduced in [16, 19] and allows for full moduli stabilization. We have revisited these
models and discovered a variety of interesting new families of solutions. We have contrasted
these solutions with several swampland conjectures (see [20] for recent related work).

Concretely, we have explored the four dimensional landscape of two models which
are mirror duals to type IIA string theory on rigid Calabi-Yau orientifolds, i.e., Calabi-
Yau manifolds with h2,1 = 0. After including H3 and F3 fluxes our models are dual to
type IIA flux compactifications with both metric and non-geometric fluxes, so our analysis
goes beyond (and includes) setups such as DGKT [21]. However, while non-geometric
fluxes are not under control in type IIA supergravity models, we have only regular (and
well understood) H3 and F3 fluxes in the mirror dual Landau-Ginzburg models in IIB.
Furthermore, there exists a very powerful non-renormalization theorem that protects the
superpotential from receiving any corrections at all [16]. For simplicity we have focused
here on an isotropic two moduli (SU) model, which is not the most general setup, but it
is already enough to provide us with new interesting results that we now sum up.

In this work we have provided additional arguments which point to the existence of fully
stabilized 4d N = 1 Minkowski vacua. While these were originally discovered in [16, 19],
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we managed to find infinite families of Minkowski vacua and we have argued that they are
in principle compatible with existing swampland conjectures like [47, 48]. Furthermore, we
have proven that although the masses do receive corrections, they can never become zero
and there cannot arise any flat directions even when including all unknown corrections.

We have also found several new infinite families of AdS vacua, which are not connected
to the aforementioned family of Minkowski vacua. By taking some particular flux combi-
nations to infinity (often simply one of the fluxes) these AdS solutions approach Minkowski
space. However, in every example we have argued using mirror symmetry that there is a
tower of states becoming light with a certain power α ≥ 1/2 of the cosmological constant,
i.e. mtower ∼ |VAdS|α. Thus, our results in this regard are consistent with the AdS distance
conjecture [53]. However, since our models are essentially a generalization of the DGKT
models in type IIA, we also identified supersymmetric and non-supersymmetric infinite
families of AdS vacua in a subset of our model, which have α = 7/18 like the original
examples in DGKT [21]. For similar reasons as discussed in [27] we find agreement of
these families with the refined version of the AdS distance conjecture due to a large dis-
crete 3-form gauge symmetry. For the nonsupersymmetric infinite family of AdS vacua,
our moduli S and U acquire masses squared above the BF bound. These vacua arise in a
regime of parametric control but should be unstable according to the conjecture in [28]. It
would be interesting to analyze possible decay modes for our family of non-supersymmetric
AdS solutions.

As explained in [19], due to the non-geometric nature of our models, the Kähler poten-
tial acquires an unfamiliar factor of 4 whose main effect is to allow supersymmetric fluxes
that are not imaginary self-dual. This actually allows the H3 and F3 fluxes to contribute
to the D3/O3 tadpole condition with either sign. Interestingly, this enables us to con-
struct new infinite families of supersymmetric AdS4 vacua with an unbounded number of
spacetime filling D3 branes. This is possible because the flux contribution to the tadpole
can have the same sign as that of O3 orientifold planes and we can make it arbitrarily
large. This arbitrarily large flux then requires an arbitrarily large number of D3 branes.
Given that all these solutions are consistent with the AdS distance conjecture there is an
infinite tower of massive states becoming light when we increase the flux and the number
of D3 branes at the same time. Furthermore, it is expected that there are large numbers
of massless open string modes that are associated with those D3 branes, leading to an ever
decreasing species bound ΛUV ∼ Mpl/ND3. Nevertheless, it seems naively possible to get
a very large rank for the gauge group in these 4d N = 1 AdS vacua. It would be very
interesting to study this further and see whether these solutions are indeed trustworthy or
suffer from some inconsistencies.

Finally, we have been able to find a metastable de Sitter vacuum that requires some
number of D3 branes to be present. However, this vacuum does not arise at weak coupling
and there is no argument preventing perturbative and non-perturbative corrections from
destroying it.

Given the current large amount of activity in the swampland program, it is very impor-
tant to keep exploring all different areas of the string landscape, in particular, areas that
are truly stringy in the sense that they do not have a geometric supergravity description.
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In this paper we have revisited and extended previous studies of type IIB flux compact-
ifications in the absence of Kähler moduli, i.e. for h1,1 = 0. We found several intriguing
results which could be natural in this rather unexplored corner of the string landscape and
that deserve further study in the future.
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A Details of the dual type IIA models

A.1 Kähler potential

As mentioned in the text the way in which one derives the formula for the Kähler potential
is by using mirror symmetry. The usual formula for the Kähler potential in Type IIA flux
compactifications on Calabi-Yau manifolds is [25]

K = − log
[4

3

∫
J ∧ J ∧ J

]
− 2 log

[
2
∫

Re(CΩ3) ∧ ?Re(CΩ3)
]
, (A.1)

where J is the Kähler form and Ω the holomorphic 3-form. The volume is given by vol6 =
1
6
∫
J∧J∧J . The so-called 4d dilaton is defined via eD = eφ/

√
vol6 and CC

∫
Ω∧Ω = e−2D.

The supergravity fields are introduced by expanding the complexified Kähler form and the
complexified holomorphic 3-form [25]

Jc = B2 + iJ =
h(1,1)∑
a=1

T aωa , (A.2)

Ωc = C3 + 2i Re(CΩ3) = Sα0 +
h(2,1)∑
k=1

Ukαk . (A.3)

When h(2,1) = 0 there are no complex structure moduli. We can always write the
volume in terms of the triple intersection number κabc =

∫
ωa ∧ ωb ∧ ωc of the Calabi-Yau

manifold, which leads (up to a constant) to the Kähler potential

K = − log
[ i

6κabc(T
a − T a)(T b − T b)(T c − T c)

]
− 4 log

[
− i

2
√

2
(S − S)

]
. (A.4)

Mirror symmetry simply exchanges the h1,1 Kähler moduli T a with the h2,1 complex
structure moduli Uk. Since we have no complex structure moduli the mirror dual Kähler
potential is the one given above in equation (2.3), if one restricts to the torus bulk moduli
and sets them all equal [19]. The superpotential can be derived in the same way but was
also argued for directly in type IIB in [16].
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A.2 KK towers

In this section, following the original work [21], we quickly review how to derive the KK
scale in type IIA flux compactifications. Using mirror symmetry we can then derive the
mass scale for a light tower in the non-geometric type IIB flux compactifications discussed
in this paper. As on the type IIA side, this is not proven to be always the lightest tower
but no other lighter tower is expected to arise in the type IIA side, so presumably the same
is true on the type IIB side. Also, our infinite families of AdS vacua are all consistent with
the refined AdS distance conjecture [27, 53], which means that this is likely the relevant
tower of massive states.

The KK scale in type IIA flux compactifications is controlled by the internal volumes
of 2-cycles, Im(T a). In the isotropic limit where we set the three bulk 2-cycles of the torus
equal we will simply use Im(T ) to describe this volume. So, we know that m2

KK scales like
1/ Im(T ). Compactifying from 10d to 4d and then going to 4d Einstein frame introduces
an extra factor and the correct KK scale is given by

m2
KK ∼

1
vol6 e−2φ Im(T ) = 1(

Im(S)
)2 Im(T )

. (A.5)

Again using mirror symmetry, we find a dual massive tower with masses that scale like

m2
tower ∼

1
(ImS)2 Im(U) . (A.6)
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