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Abstract. Kinetic models of biochemical systems used in the modern
literature often contain hundreds or even thousands of variables. While
these models are convenient for detailed simulations, their size is often
an obstacle to deriving mechanistic insights. One way to address this
issue is to perform an exact model reduction by finding a self-consistent
lower-dimensional projection of the corresponding dynamical system.
Recently, a new algorithm CLUE [16] has been designed and imple-
mented, which allows one to construct an exact linear reduction of the
smallest possible dimension such that the fixed variables of interest are
preserved. It turned out that allowing arbitrary linear combinations (as
opposed to zero-one combinations used in the prior approaches) may
yield a much smaller reduction. However, there was a drawback: some of
the new variables did not have clear physical meaning, thus making the
reduced model harder to interpret.
We design and implement an algorithm that, given an exact linear re-
duction, re-parametrizes it by performing an invertible transformation of
the new coordinates to improve the interpretability of the new variables.
We apply our algorithm to three case studies and show that “uninter-
pretable” variables disappear entirely in all the case studies.
The implementation of the algorithm and the files for the case studies
are available at https://github.com/xjzhaang/LumpingPostiviser.

Keywords: exact reduction (lumping) · ODE model · interpretability.

1 Introduction

Dynamical models described by systems of polynomial ordinary differential equa-
tions (PODEs) are frequently used in systems biology and life sciences in general.
One of the major classes of such models is the dynamical models of chemical
reaction networks (CRN) under the mass-action kinetics in which each indeter-
minate corresponds to the concentration of one of the chemical species. Models
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appearing in the literature often consist of hundreds or thousands of variables.
While the models of this size can incorporate a substantial amount of informa-
tion about the phenomena of interest, it is often hard to use them to derive
mechanistic insights.

One way to address these challenges is to use model reduction algorithms
that replace a model with a simpler one while preserving, at least approximately,
some of the features of the original model. A wide range of methods has been
developed for approximate model reduction, including methods based on singular
value decomposition [1] and time-scale separation [15].

A complementary approach is to perform exact model reduction, that is, lower
the dimension of the model without introducing approximation errors. For exam-
ple, exact linear lumping aims at writing a self-consistent system of differential
equations for a set of macro-variables in which each macro-variable is a linear
combination of the original variables. For important classes of biochemical mod-
els, specialized lumping criteria have been developed (see, e.g., [3,6,9]), allowing
the construction of macro-variables as sums of some of the original variables
(that is, allowing only coefficients zero and one in the linear combinations). A
general lumping algorithm has been proposed in [5,4] which is applicable to any
system of PODEs (not necessarily arising from a CRN). This algorithm parti-
tions the original variables so that the macro-variables can be the sums of the
variables within the blocks in the partition. Note that the macro-variables are
zero-one linear combinations of the original variables in all these cases.

In [16], an algorithm has been designed (and the corresponding software
called CLUE presented) that, for a given set of linear forms in the state vari-
ables (the observables), constructs a linear lumping of the smallest possible di-
mension such that the observables can be written as combinations of the macro-
variables (i.e., the observables are preserved). Unlike the earlier approaches,
the macro-variables produced by CLUE may involve any coefficients, and this
allowed to produce reductions of lower dimensions than it was possible before,
see [16, Table 1]. However, there was a price to pay for this flexibility: the authors
state that some of the produced macro-variables “escape physical intelligibility”
(see [16, Section 4.2]). Indeed, the resulting reduction of the smallest dimension
is uniquely defined up to a linear change of the coordinates, so the coordinates
in the reduced state space chosen by CLUE could be not optimal in the sense of
interpretability.

In this paper, we propose a post-processing step that takes an exact linear
lumping (not necessarily produced by CLUE) and attempts to improve its in-
terpretability by performing a change of variables. It has been observed in [16]
that one of the sources of difficulties for interpretation is the negative coeffi-
cients in the macro-variables. We design and implement an algorithm that finds
(if possible) a linear change of variables in the reduced model so that

1. the coefficients of the representations of the new macro-variables in terms of
the original state variables are nonnegative

2. and the total number of nonzero coefficients in these representations is as
small as possible.
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Note that interpretability is not a formal mathematical property, and the condi-
tions above is one possible formalization of the notion of a “more interpretable
reduction”. We do not claim that it is universal (e.g., a difference of two state
variables may represent a potential), but we claim that it is useful. To support
this claim, we demonstrate the efficiency of our approach on three case studies
from the literature. Two of these cases are exactly the case studies from [16]
in which issues with interpretability occur. We show that our method provides
interpretable re-parametrizations of the optimal lumpings computed by CLUE
in all three case studies. Our algorithm uses tools from convex discrete geometry
and matroid theory.

2 Methods

2.1 Preliminaries on lumping

Definition 1 (Lumping). Consider a system of ODEs of the form

x′ = f(x), (1)

where x = (x1, . . . , xn)
T , f = (f1, . . . , fn)

T , and f1, . . . , fn ∈ R[x]. A linear
transformation y = Lx with y = (y1, . . . , ym)T , L ∈ R

m×n, and rankL = m is
called a lumping of (1) if there exist polynomials g1, . . . , gm ∈ R[y] such that

y′ = g(y), where g = (g1, . . . , gm)T

for every solution x of (1). We say that m is the dimension of the lumping.
The variables y in the reduced system are called macro-variables. We will call a
macro-variable nontrivial if it is not proportional to one of the original variables.

Remark 1. An ODE system may have many lumpings, some of them may be less
useful than others. For example, if m = n, then the lumping is just an invertible
change of variables, so no reduction happens. Another special case is when the
rows of L contain the coefficients of linear first integrals of the system. In this
case, the reduced ODE will be of the form y′ = 0.

Constrained linear lumping introduced in Definition 2 requires to preserve
the dynamics of the variables of interest, and this is one of the ways to say that
reduction is not “too coarse”.

The following example is a substantially simplified version of the case study
from Section 3.1 (see also [12]).

Example 1. We will consider a chemical reaction network consisting of

– A chemical species X .
– Species AUU , AUX , AXU , and AXX . Each of them is one of the states of a

molecule A with two identical binding sites, which can be either unbound
(U in the subscript) or bound (X in the subscript) to X .
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For simplicity, we will assume that all the reaction rates are equal to one. The
dynamics of the network is defined by the following reactions (∗ denotes any of
X and U):

X +AU∗ ⇋ AX∗, X +A∗U ⇋ A∗X . (2)

Under the laws of the mass-action kinetics, the reactions (2) yield the following
ODE system (where [S] denotes the concentration of the species S):





[X ]′ = [AXU ] + [AUX ] + 2[AXX ]− [X ]([AXU ] + [AUX ] + 2[AUU ]),

[AUU ]
′ = [AXU ] + [AUX ]− 2[X ][AUU ],

[AXU ]
′ = [AXX ] + [X ][AUU ]− [X ][AXU ]− [AXU ],

[AUX ]′ = [AXX ] + [X ][AUU ]− [X ][AUX ]− [AUX ],

[AXX ]′ = [X ][AXU ] + [X ][AUX ]− 2[AXX ].

(3)

We will show that the following matrix L and the macro-variables y1, y2, y3

L =



1 0 0 0 0
0 0 1 1 2
0 2 1 1 0


 =⇒






y1 = [X ],

y2 = [AXU ] + [AUX ] + 2[AXX ],

y3 = 2[AUU ] + [AXU ] + [AUX ].

(4)

yield a lumping of the system (2). Indeed, a direct calculation shows that






y′1 = [X ]′ = [AXU ] + [AUX ] + 2[AXX ]− [X ]([AXU ] + [AUX ] + 2[AUU ]) = y2 − y1y3,

y′2 = [AXU ]
′ + [AUX ]′ + 2[AXX ]′ = −y2 + y1y3,

y′3 = 2[AUU ]
′ + [AXU ]

′ + [AUX ]′ = y3 − y1y2.

(5)
Since each reaction involves only one binding site, this lumping can be inter-
preted as follows: y2 is the total “concentration” of the bound sites, and y3 is
the total “concentration” of the unbound sites (see also Section 3.1).

The lumping matrix L in the example above turns out to exactly preserve
the concentration [X ]. In general, one may fix a vector xobs of combinations of
the original variables that are to be recovered in the reduced system.

Definition 2 (Constrained linear lumping). Let xobs be a vector of linearly
independent forms in x such that xobs = Ax. Then we say that a lumping y = Lx
is a constrained linear lumping with observables xobs if each entry of xobs is a
linear combination of the entries of y.

2.2 The nonuniqueness/interpretability issue

A recent software CLUE [16] allows to find, for a given system (1) and a vector
xobs, a constrained linear lumping of the smallest possible dimension. However,
such an optimal lumping is not unique in the following sense: if y1 = Lx is a
constrained linear lumping of the smallest possible dimension, then, for every
invertible matrix T of the appropriate dimension, y2 = TLx is also such a
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lumping. Two such lumpings will be called equivalent, and one can show that all
constrained linear lumpings of the smallest possible dimension are equivalent.

Because of this nonuniqueness, the lumping produced by CLUE will be op-
timal in terms of the dimension but not necessarily optimal in terms of the in-
terpretability of the resulting macro-variables. For example, the macro-variables
constructed by CLUE for the system (3) are:

y1 = [X ], y2 = [AXU ] + [AUX ] + 2[AXX ], y3 = [AUU ]− [AXX ].

The last macro-variable is different from the one in (4) and does not allow for
the “concentration-of-sites” interpretation. Moreover, the reduced ODE system
is more complicated than (5). This issue becomes more serious in more realistic
(and larger) models: for the case studies in [16, Section 4.2] it has been observed
that some of the resulting macro-variables “escaped physical intelligibility”.

2.3 Our approach via nonnegativity

It has been already observed in [16, Section 4.2] that the macro-variables in-
volving negative coefficients (such as [AUU ] − [AXX ]) may be an obstacle for
interpretability. This is partially because such quantities cannot be naturally
viewed as concentrations of some sort since they may take on negative values.

Thus, in order to improve the interpretability of a lumping, we construct an
equivalent lumping with all the coefficients being nonnegative and the number of
nonzero coefficients (that is, the ℓ0-norm ‖·‖0) being the smallest possible under
the nonnegativity constraint. Mathematically, for a given lumping y1 = Lx, we
find (if possible) an equivalent lumping y2 = TLx with invertible T satisfying:

1. the entries of TL are nonnegative and

2. ‖TL‖0 is as small as possible.

As we have mentioned, for fixed observables, all the constrained linear lumpings
of the smallest dimension are equivalent, so the value ‖TL‖0 does not depend on
the choice of L in the case of the optimal constrained linear lumping as in [16].

We hypothesize that the new lumping y2 = TLx will be typically more
interpretable than the original one. We support this hypothesis by three case
studies: multisite protein phosphorylation [18], Fcǫ-RI signaling pathways [8],
and Jak-family protein tyrosine kinase activation [2]. The first two are exactly
the case studies from [16] for which some of the macro-variables could not be
properly interpreted by the authors.

2.4 Algorithmic details

In this section, we provide and justify Algorithm 1, an algorithm for computing
a new lumping described in Section 2.3. We will use some basic terminology
from convex geometry. We refer the reader to [17, Chapters 7-8] for details.
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Throughout the rest of the section, for A being a vector or a matrix, ‖A‖0
denotes the ℓ0-norm of A, that is, the number of nonzero entries in A.

Algorithm 1: Algorithm for constructing new lumping

Input a m× n matrix L with entries in R and linearly independent rows;
Output an invertible m×m matrix T such that

– the entries of TL are nonnegative
– and the number of the nonzero entries is as small as possible.

Returns NO if such matrix T does not exist.

(Step 1) Consider the row space of L and the nonegative orthant in (R>0)
n as

polyhedral cones C1 and C2 in R
n.

(Step 2) Compute a polyhedral cone C = C1 ∩ C2. This can be done, for example,
using the Fourier-Motzkin algorithm [20, Section 1.2].

(Step 3) If dimC < m, return NO
(Step 4) Let E be a set of representatives of the extreme rays of C.
(Step 5) Initialize a 0× n matrix L1

(Step 6)While E 6= ∅

(a) choose e ∈ E such that ‖e‖0 = minv∈E‖v‖0;
(b) if e is not in the row space of L1, append e to L1 as a new row;
(c) remove e from E.

(Step 7) Construct an m×m matrix T such that the i-th column contains the
coordinates of the i-th row of L1 with respect to the rows of L.

Remark 2 (Implementation). Our implementation of Algorithm 1 in Julia can be
found at https://github.com/xjzhaang/LumpingPostiviser. We used poly-
make [11] for operations with cones (at (Step 2) and (Step 4)) and Nemo [10]
for symbolic linear algebra (at (Step 6)). Table 1 below summarizes the perfor-
mance of the code on the case studies we discuss in this paper. We also provide
timing for obtaining the starting reduction using CLUE. Therefore, the sum of
the last two columns is the total time to obtain the final reduction for the original
system. The runtimes are measured on a laptop with a 2.20GHz CPU and 16GB
RAM using @btime macro in Julia. One can see that the models with hundreds
of equations can be tackled in less than a minute on a commodity hardware.

Model # original variables (n) # macro-variables (m)
Runtime (sec.)

CLUE Algorithm 1

Section 3.1, m = 2 18 6 < 0.01 < 0.01

Section 3.1, m = 3 66 6 < 0.01 < 0.01

Section 3.1, m = 4 258 6 0.34 3.4

Section 3.2 354 69 3.3 4.7

Section 3.3 470 322 72 49

Table 1: Running times of our implementation.

https://github.com/xjzhaang/LumpingPostiviser


Interpretable exact linear reductions via positivity 7

Remark 3 (Choice at (Step 6)a). At the (Step 6)a, if there are several e ∈ E

with ‖e‖0 being minimal possible, we choose the one with the index of the
leftmost nonzero entry being the smallest one. In our experience, this makes the
results slightly easier to analyze.

Remark 4 (Returning NO). Although Algorithm 1 may, in principle, return NO,
we did not encounter such a situation with models from the literature. We give
an artificial example with this property in Appendix.

Theorem 1 (Correctness of Algorithm 1). For every matrix L over R with
linearly independent rows, Algorithm 1 produces an invertible square matrix T

such that

– TL has nonnegative entries
– and the number of nonzero entries in TL is the smallest possible under the

nonnegativity constraint

if such T exists and returns NO if there is no such T .

Proof. First, we will show that the algorithm returns NO if and only if there is
no such matrix. Assume that there is such a matrix T . Then both C1 and C2

contain the rows of the matrix TL. Therefore, C containsm linearly independent
vectors, so its dimension is at least m. In the other direction, if dimC > m, then
there exist m linearly independent vectors in C = C1 ∩C2. Let T be the matrix
with the columns being their coordinates with respect to the rows of L. Then
the rows of TL will belong to C2 so that they will be nonnegative.

Now assume that the algorithm does not return NO. We observe that the
entries of L1 are nonnegative because all its rows belong to C2. The rows of
L1 belong to C1, so they are linear combinations of the rows of L. Since, by
the construction on (Step 6), the rows of L1 are linearly independent, and
there are dimC of them, we conclude that the row spaces of L1 and L coincide.
Therefore, the coordinates in (Step 7) are well-defined, so the algorithm will
produce a matrix T such that L1 = TL has only nonnegative entries.

It remains to prove that the ℓ0-norm ‖L1‖0 of L1 = TL is the smallest
possible. Consider any set S of m linearly independent elements of the set E of
representatives of the extreme rays of C. Since (Step 7) is a greedy algorithm
on the linear matroid defined by E, [7, (18)] implies that

‖L1‖0 6
∑

e∈S

‖e‖0. (6)

Consider any invertible matrix T̃ such that the entries of L̃1 := T̃L are nonneg-
ative. Since the rows r1, . . . , rm of L̃1 belong to C, each of them can be repre-
sented as a nonnegative combination of the elements of E [17, §8.8]. For each
i = 1, . . . ,m, we fix such a representation for ri and denote Ei ⊆ E the set of el-
ements of E appearing in the representation with positive coefficients. We apply
the generalized Hall’s theorem [19, Theorem 1] to the family A = {E1, . . . , Em}
of subsets of E and the function µ such that µ(S) is defined to be the dimension
of the linear span of the elements of S for every S ⊆ E. This yields linearly
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independent elements e1, . . . , em ∈ E such that ei ∈ Ei for every i = 1, . . . ,m.
For every i = 1, . . . ,m, ri is a positive combination of ei and maybe some other
elements of E, hence ‖ei‖0 6 ‖ri‖0. Using (6), we have

‖L1‖0 6

m∑

i=1

‖ei‖0 6

m∑

i=1

‖ri‖0 = ‖L̃1‖0,

and this proves the minimality of the number of the nonzero entries in L1 = TL

for T constructed by the algorithm.

3 Case Studies

In this section, we demonstrate the improvements in physical intelligibility (while
preserving the dimension) of reductions of biochemical models by our Algo-
rithm 1. We analyse the results of the algorithm using models taken from the
literature. We also compare the resulting reduction to the ones obtained by
ERODE [4] which are always defined by zero-one linear combinations.

3.1 Multisite protein phosphorylation

Setup. We consider a model of multisite phosphorylation [18]. It describes a
protein with m identical and independent binding sites that simultaneously un-
dergo phosphorylation and dephosphorylation. Each binding site can be in one
of the four different states (see Figure 1):

1. unphosphorylated and unbound,

2. unphosphorylated and bound to a kinase,

3. phosphorylated and unbound,

4. phosphorylated and bound to a phosphatase.

Therefore, there are 4m + 2 chemical species in the corresponding reaction net-
work: free kinase and phosphatase, and 4m states of the protein.
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a. model components

multisite protein 

phosphorylation site 

kinase 

b. possible states of one site 

P phosphorylation

1

kinase/phosphatase binding

2

P

3

P

4

ns = 4

s  = {1, 2, 3, 4}

phosphatase 

Fig. 1: Molecular components and states of the multisite phosphorylation model.
a. Consists of multisite proteins and kinases. This example has m = 3 sites.
b. There are 4 possible states for a single site: unphosphorylated and unbound, un-
phosphorylated and bound to a kinase, phosphorylated and unbound, phosphorylated
and bound to a phosphatase.

Reductions by ERODE and CLUE. In the reduction computed by ERODE [5]
(for m = 2, . . . , 8), the concentrations of protein configurations are replaced by
the sums of the concentrations of configurations differing by a permutation of
the sites. Therefore, the number of macro-variables is equal to

(
m+3

3

)
+ 2.

In contrast, the analysis performed by CLUE [16] always results in just six
macro-variables. Two of them were always the concentrations of kinase and phos-
phatase as for ERODE. The other four were linear combinations with protein
configurations. In [16, Section 4.2], for m = 2, interpretation was provided for
the first three of them. However, for the last one, it was remarked that “the last
macro-variable escaped physical intelligibility as it represents the difference be-
tween the free substrate with unphosphorylated sites and protein configurations
that appear in the aforementioned lumps.”

Our results. We applied our algorithm to the cases m = 2, 3, 4, 5 and obtained
new macro-variables, which have again included the concentrations of free kinase
and phosphatase. Moreover, the three interpretable macro-variables from the
analysis in [16] form = 2 are kept. Each of the four our macro-variables involving
the protein configurations corresponds to a state of a site (e.g., unbounded and
unphosphorylated), and each protein configuration appears with a coefficient
equal to the number of sites in it with this state. Examples of these new macro-
variables are given on Figure 2 for m = 2 and m = 3.

One way to interpret the result is that the constructed reduction replaces the
concentration of the protein configurations with the “concentrations” of each of
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the four states of the sites (see also Example 1). From our interpretation, we
expect that the models with larger m will have a reduction of the same form.

 macro-variable representations

m=2 phosphoprylation sites:

Y  = + + + + + + 2x

m=3 phosphoprylation sites:

Y  = + + + + . . .

+ 2x + 2x + 2x + 3x

main state of a macro-variable

other three states

Fig. 2: New macro-variables for m = 2, 3. Each state of a binding site from Fig 1-b can
be the main state, yielding four macro-variables for each m. The coefficients are equal
to the number of binding sites in a protein that are in the main state.

3.2 Fcǫ-RI signaling pathways

Setup. We consider a model for a different kind of multisite phosphorylation
[8], a model for the early events in the signaling pathway of the high-affinity IgE
receptor (FcǫRI) in mast cells and basophils.

The model details the rule-based interactions of FcǫRI receptor with a biva-
lent ligand (IgE dimer), the Src kinase Lyn, and the cytosolic protein tyrosine
kinase Syk. The model is based on the following sequence of signaling events in
FcǫRI [13,14] (the reactions are nicely summarized on [8, Figure 2]):

1. binding of IgE ligand and FcǫRI which aggregates at the plasma membrane,

2. transphosphorylation of tyrosine residues in the immunoreceptor tyrosine-
based activation motifs (ITAMs) of the aggregated receptor by constitutively
associated Lyn,

3. recruitment of an extra Lyn/Syk kinase to the phosphorylated ITAM sites,

4. transphosphorylation of Syk by Lyn and Syk on its linker region and acti-
vation loop, respectively.

For visualizing different chemical species occurring in the resulting reaction
network, we use the representation [8, Figure 1] summarized in Figure 3. In total,
there are 354 of three types: monomers, dimers, and non-receptor states (free
ligand/Lyn and Syk in each of 4 possible states of phosphorylation).
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γ γ P

α

a. model components 

IgE dimers

β-chain

α-chain

β

γ
γ-chain

L

Lyn

Syk

activation loop

linker region

P

ITAM(s) SH2 Domain(s)

phosphorylated ITAM(s)

b. possible receptor subunit states

nα = 

nβ = 

nγ = γ P γ P
P

γ P Pγ P
P

P

0 1 2 3 4 5

L

αα

L

0 1

β β β βP P

0 1 2 3

Fig. 3: Molecular components and states of the FcǫRI signaling events model.
a. IgE dimer is a bivalent ligand. FcǫRI consists of α, β, γ subunits. Lyn kinase has an
SH2 domain. Syk kinase has an SH2 domain and two ITAM sites which differ by the
method of phosphorylation: Lyn at the linker region, and Syk at the activation loop.
b. The α subunit can be unbound or bound to a ligand. β can be unphos-
phorylated/phosphorylated, with/without associated Lyn. γ can be unphosphory-
lated/phosphorylated, and the phosphorylated form binds to Syk in any of the four
states of phosphorylation.

L

α

P

β

γ

L P

L

P

P
P

P

free ligand

free Lyn free Syk states
example dimerexample monomer

α

P

β

γ

L P

α

P

β

γ

P

P

Fig. 4: Examples of a monomer, a dimer, and the free components.

Reductions by ERODE and CLUE. The reduction by ERODE [5] consists
of 105 macro-variables, where all the complexes with the same configuration
except for the phosphorylation state of the Syk units are summed up in a single
macro-variable. We will refer to these macro-variables as Syk-macro-variables.

The model has been reduced using CLUE in [16, Section 4.2] with the observ-
able being the total concentration of the free Syk (in all the four phosphorylation
states). The reduced model had 69 macro-variables, and 51 of them were nontriv-
ial. It has been observed in [16, Section 4.2] that some of these macro-variable
carry a physical interpretation, but in some of them, negative elements were
present, which hinder their physical intelligibility.
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Our results. We apply our algorithm to the reduced model. Among the new
macro-variables, we have 51 nontrivial macro-variables which is the same as for
the CLUE reduction. More precisely, (Step 4) produced 57 nontrivial macro-
variables, and this number has been reduced to 51 when computing a linearly
independent basis on (Step 6). The resulting macro-variable refine the reduc-
tion by ERODE mentioned above in the sense that our new macro-variable are
the sums of the Syk-macro-variables with non-negative coefficients. Therefore,
in our reduction, all the complexes differing only by the phosphorylation state of
the Syk units are in the same macro-variable. For the monomers, we obtain the
same reduction: nontrivial macro-variable involving monomers are of the form
described on Figure 5.

Fig. 5: The monomer macro-variables. In each of them, α and β are fixed, and
we sum over all the phosphorylation patterns of Syk.

The macro-variable involving dimers are graphically described on Figure 6.
First, one can see that they are indeed linear combinations of the Syk-macro-
variables. Our interpretation of these new macro-variables is based on two ob-
servations about the set of the reactions in the original model [8, Figure 2]:

(Obs. 1) For every reaction involving a dimer, only one of the receptors of the
dimer is affected by the reaction.

(Obs. 2) The γ-chain of the other (not affected) receptor is relevant only for
the reactions of transphosphorylation of Syk.

Since the complexes with different phosphorylation patterns are grouped to-
gether in the Syk-macro-variables, the second observation implies that the transpho-
sphorylation reactions do not affect the values of the Syk-macro-variables at all.
Therefore, the first observation suggests considering macro-variables as sums
over all the dimer configurations in which one receptor is fixed (up to the phos-
phorylation of Syk), and for the other receptor, all the possible variants of the
γ-chain are considered.

With this interpretation in mind, let us take a closer look at the Figure 6:

– Each of the variables as on Figure 6a is the sum over the configurations
with the fixed left receptor not carrying Syk and the right receptor having
each of the six possible γ-chains. If one of the complexes in the sum is fully
symmetric, it appears with coefficient 2.

– Each of the variables as on Figure 6b is a combination of complexes that have:
the same β-chains and Syk on the left receptor, any phosphorylation pattern
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of the Syk on the left receptor, and any γ-chain on the right receptor. If the
β-chains on the receptors are equal, the complexes with two Syk’s (which
are symmetric up to Syk phosphorylation) appear with coefficient 2.

Note that the coefficients 2 appearing in the presence of symmetry prevent
ERODE [5] from finding this reduction.
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Fig. 6: Macro-variables involving dimers

3.3 Jak-family protein tyrosine kinase activation

Setup. We study a simplified cellular model of a bipolar “clamp” mechanism
for Jak-family kinase activation [2]. Kinases of the Janus kinase (JAK) family
play an essential role in signal transduction mediated by cell surface receptors,
which lack innate enzymatic activities to dimerize.

The model studies the interactions of Jak2 kinase trans-phosphorylation,
specifically the rule-based dynamics between the Jak2 (J) kinase, the unique
adaptor protein SH2-Bβ (S) with the capacity to homo-dimerize, the growth
hormone receptors (R), and a bivalent growth hormone ligand (L). The Jak2 ki-
nase has two phosphorylation sites, Y1 and Y2. The SH2-Bβ protein contains an
N-terminal dimerization domain (DD) and a C-terminal Src homology-2 (SH2)
domain.

The components can interact in the following ways:
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1. binding of ligand and growth hormone receptors which aggregates at the
plasma membrane,

2. constitutive binding of Jak2 kinase to the receptors, which autophosphory-
lates on the phosphorylation sites when two Jak2 kinases are bounded in the
same complex,

3. recruitment of SH2-Bβ protein at the SH2 domain by the Jak2’s autophos-
phorylated Y1 site,

4. dimerization of SH2-Bβ protein through recruitment of an additional SH2-
Bβ protein, engaged at the DD domains.

Receptors can undergo a process of internalization, in which the receptors
can no longer associate with any Jak2, and the existing Jak2 and SH2-Bβ in the
complex can dissociate at the normal rate.
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Fig. 7: Components of the Jak-family protein tyrosine kinase activation model.

Reductions by ERODE and CLUE. The reduction obtained by ERODE
in [5, Figure 5] contained 345 macro-variables. It grouped the internalized con-
figurations, which differ by the connections between the receptors and the ligand,
into macro-variables.

The model has been reduced by CLUE in [16], with the observable being the
concentration of the free ligand. The reduced model had 322 macro-variables, and
69 of them were nontrivial. The model has been used in [16] for benchmarking
purposes only, so the macro-variables have not been interpreted. The reduction
included several macro-variables with negative coefficients, including one with
20 nonzero coefficients. We do not see any natural interpretation for them.

Our results. We apply our algorithm to the reduced model, and among the pro-
duced macro-variables 69 are nontrivial as in the reduction by CLUE ((Step 4)
produces 70 macro-variables, and then this number is reduced to 69 at (Step 6)).
The nontrivial macro-variables are linear combinations of internalized molecules,
and the trivial macro-variables are not internalized. Compared to the ERODE
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reduction, some internalized complexes such as the ligand-receptor (R, RL, RLR)
structures in [5, Figure 5(C)], are omitted in our model as they do not disas-
sociate under internalization and thus do not affect the dynamics of the free
ligand observable. In our reduction, mirrored internalized complexes are lumped
together, which explains all two-element macro-variables. The remaining non-
trivial macro-variables are described on Figure 8, and are of two types:

– Configurations equivalent up to the connection between the ligand and the
receptors (Figure 8-a and 9). The structures are equivalent under internal-
ization as the ligand and receptors cannot disassociate and were obtained also
by ERODE [5, Figure 5(D, E)]. They are of two types: single-Jak2-Receptor
case (Figure 8-a) and “clamp” case (Figure 9).

– Configurations with one receptor fixed (Figure 8-b). These are similar to
Figure 6 from the case study in Section 3.2: since in the reactions with inter-
nalized complexes, only one receptor is affected, and this does not depend
on the state of the other receptor, one can group together the complexes
having one of the receptors the same.

When the receptors are symmetric, the element and its mirrored element are
the same, so the corresponding configuration appears with coefficient 2.
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Fig. 8: Classes of internalized macro-variables. a. equivalent up to the connection be-
tween the ligand and the receptors. b. one receptor fixed.
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Fig. 9: Macro-variables for equivalent structures of the bipolar ”clamp” mechanism
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4 Conclusion

We have hypothesized that the interpretability of the macro-variables in an exact
linear reduction may be improved by a change of coordinates making the macro-
variable nonnegative combinations of the original variables and minimizing the
number of nonzero coefficients. We have designed and implemented an algo-
rithm for performing such a transformation and applied it to three models (with
hundreds of variables) for which the result of the reduction by CLUE [16] con-
tained macro-variables without a clear physical interpretation. We have shown
that the resulting macro-variables are interpretable, thus supporting the original
hypothesis and demonstrating the usefulness of our algorithm.

Our results also give insight into the structure of reductions in which not all
the coefficients are zeroes and ones. In particular, we can point out two different
situations:

– The macro-variables are the “concentrations” of parts of molecules as in
Section 3.1. The species having several identical pieces may appear with
larger coefficients.

– Some of the molecules appearing in the macro-variable are symmetric (as in
Section 3.3) or even partially symmetric (as in Section 3.2), and they appear
with a coefficient accounting for the symmetries.
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Appendix: Non-positivizable reduction

As we have mentioned in Remark 4, we did not encounter examples from the
literature for which Algorithm 1 would return NO. However, one can easily
construct an artificial example with this property. Consider the system

{
x′

1 = x2
1 + x2

2,

x′

2 = 2x1x2.
(7)

Then y = x1 −x2 yields a reduced system y′ = y2. However, since any change of
macro-variables is a scaling of y, there is no equivalent lumping with nonnegative
coefficients, so Algorithm 1 (with the input L = (1 − 1)) will return NO.
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