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Abstract

Structural identifiability properties of models of ordinary differential equations help one assess if the
parameter’s value can be recovered from experimental data. This theoretical property can be queried
without the need for data collection and is determined with help of differential algebraic tools. We
present a web-based Structural Identifiability Toolbox that rigorously uncovers identifiability properties
of individual parameters of ODE systems as well as their functions (also called identifiable combina-
tions) using the apparatus of differential algebra. The application requires no installation and is readily
available at https://maple.cloud/app/6509768948056064/

1 Introduction

Let us begin by defining a model in a state-space form.

Definition 1 (Model in the state-space form). A model in the state-space form is a system

x’ =f(x, p, v,
Y= qy  =gx om ),
x(0) =x*,

where f = (f1,..., fn) and g = (g1,...,9n) With f; = fi(x, @, u), g; = ¢gi(x, p, u) are rational functions
over the field of complex numbers C.

The vector x = (z1,...,2,) represents the time-dependent state variables and x’ represents the deriva-
tive. The vector-function u = (uq,...,us) represents the input variables. The m-vector y = (y1,...,Yn)
represents the output variables. The vector pu = (p1,...,u)) represents the parameters and x* =
(x7,...,z}) defines initial conditions of the model.

Let us (informally) introduce the concept of identifiability. We say that a parameter is locally (respec-
tively, globally) identifiable if, from given inputs and outputs of an ODE model, the parameter’s value can
be recovered up to finitely many values (respectively, such value is unique). If there are infinitely many
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such values, the parameter is said to be non-identifiable. In this case, we may mitigate the issue by consid-
ering all possible identifiable combinations of model’s parameters. Such combinations can be obtained from
single or multiple experiments; thus we call this type of identifiability single- or multi-experiment identi-
fiability, respectively (see below). The former implies that parameter combinations can already be found
from one experiment, while the latter implies that there exists 8 such that 8 experiments are sufficient.
We refer to [12, Definition 7] and to [13, Definition 2.7] for definitions of single- and multi-experiment
identifiability, respectively. Consider an illustrative example of a model that is single-experiment globally

identifiable:
' = azx,
Yy =T
y'(0)

Parameter a is identifiable from a single experiment as a = 0) On the other hand, consider another toy
example:

z) =0,

Y1 =1, Y2 = axy +b.
Note that one cannot identify a, b from just one experiment since there are infinitely many pairs a, b that
yield the same output. On the other hand, with two experiments, we get

33/1,1 = 37/2,1 =0,

Y11= T1,1, Y12 =ax11 +b,

Y2,1 = T2.1, Y22 = axrz1 +b,
Y2,2—Y1,2 _ Y1,1Y2,2—Y1,2

Y2,1—Y1,1° ©  Y2,1Y1,2—Y1,1

There is a range of existing identifiability software packages such as [1, 8, 10, 14, 16]. We refer to [4, 8]
for an overview of available software. Structural Identifiability analyzer (STAN) from [7] is, to the best of
our knowledge, typically most efficient in terms of runtime and resources for parameter global identifiability
problems, see [7, Table 1]. For parameter combinations, there are web applications COMBOS and its recent
development, COMBOS 2, [9, 11]. The main disadvantage is limited efficiency of the underlying algorithm
of COMBOS [7, Table 1]. For other packages, the lack of all-in-one approach without efficiency compromise
and requirement of proprietary or unpopular dependencies makes it less convenient for the end-user.

We present a toolbox that solves these problems as a web-based application written in MAPLE and
runnable from a web-browser. Our application is capable of assessing individual identifiability properties
using SIAN [7] as well as finding all single- and multi-experiment identifiable combinations of parameters
via algorithms and implementations from [12, 13].

which yields a = . Therefore a, b are identifiable from 2 experiments.

2 Computational efficiency

The are two parts of our application, one is responsible for individual parameter identifiability proper-
ties and the other assesses identifiability of parameter combinations. The first part utilizes SIAN [7, 8],
which transforms the input ODE model into a system of polynomial equations, to categorize individual
parameters and initial conditions of the input model as globally, locally-not-globally, and non-identifiable.
It relies on computation of a Grobner basis for global identifiability and rank of Jacobian for local identifi-
ability properties. In addition to individual identifiability properties, we report the multiplicities of locally
identifiable parameters. This is achieved by performing a change of variable ordering from graded reverse
lexicographic to the elimination ordering using Grobner walk procedure. By considering each locally-not-
globally identifiable parameter, we report the degree of the polynomial in this parameter only having
eliminated other variables via Grobner walk. Note that, while this result is probabilistic due to the Monte
Carlo nature of SIAN, the resulting probability will be different from the prescribed one for STAN.
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The second part is based on the results of [12, Theorem 11] and [12, Theorem 21]. To find all identifiable
combinations, we use the implementation from [12] which relies on the Rosenfeld-Grébner algorithm of
BLAD package [2] (included in MAPLE as DifferentialAlgebra package [3]) for computing characteristic
sets used in input-output equations (see [12, Definition 8]). We add an option to refine the bound on the
number of experiments, which is achieved by changing the ranking in the Rosenfeld-Grobner procedure for
different variable orderings (see Example 2 below).

Computing single- and multi-experiment identifiable combinations relies additionally on simplifying the
generators. In the process of computing this simplification, we utilize Grobner walk procedure converting
the total degree lexicographic order to pure lexicographic ordering. For instance, the computation for the
ODE model from DAISY [1, Example 5], https://daisy.dei.unipd.it/:

) = —(a21 + as1 + ao1)x1 + arex2 + a13xs + u(t),
Ty = a21T1 — 1272,
T3 = aA31r1 — 41373,

y=1a

finishes the multi-experiment identifiability check in under 1 minute while if the lexicographic ordering is
used directly without the Grobner walk, the process does not finish in reasonable time.

To further maximize the speedup, we take advantage of the output of each algorithm that we use.
Concretely, if all parameters are named globally identifiable by STAN, then this is also interpreted as both
single- and multi-experiment identifiability with bound 1. Since SIAN is a Monte Carlo algorithm with
user-specified correctness probability p, the single- and multi-experiment identifiability results are to be
interpreted as Monte Carlo with the same probability of correctness.

If such bypass is not used, the single- and multi-experiment results are reported deterministically. In this
case, additional speedup is achieved if the multi-experiment check (which runs first) reports bound equal
to 1, which allows us to avoid extra computations for single-experiment queries (which are typically more
time-consuming). We can also achieve a speedup for bound refining via single-experiment identifiability.
Indeed, if a bound is reported as 8 > 1 but the single-experiment identifiable combinations are identical
to those identifiable from at most [ experiments, we automatically refine the bound to be g = 1.

If, on the other hand, the bound is 5 > 1 and single- and multi-experiment identifiable functions are
different, we can run a different refinement procedure. This refinement is performed by permuting variables
with a user-specified number of permutations. For each permutation, we obtain a different ranking for
Rosenfeld-Grobner procedure and we retain the smallest bound value that we obtain this way.

3 Examples

Example 1: Multi-experiment Check Bypass via STAN

Below is an example of a mixed-mechanism network [5], where the state functions z;(t),7 = 1,...,6 are

concentrations and the parameters k;,7 = 1,...,6 are rate constants. The functions y;, y2 are the outputs.
(2} = —kiz122 + kotty + ke,

zh = k1x122 + kowg + kaxy,
:Iig = ksxyg + ksxg — kgx3xs,
ry = kixixe — koxy — kaxy,
l‘,5 = kyxg + ksxg — kgr3rs,
xy = —kawe — kswe + ker3Ts,

Y1 = T3, Y2 = T2.
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The global and local identifiability for all parameters is returned in under 4 seconds. This is used to conclude
that multi-experiment identifiable combinations with the bound of 1 are the parameters themselves. If we
turn off such bypass, the multi-experiment identifiable combinations ki, k3, ks, kg, %, ko — kg with
bound 1 are returned in 433 seconds.

Example 2: Refining Multi-Experiment Identifiability Bound
(slow-fast ambiguity in a chemical reaction network)

Consider the following system based on a kinetic reaction A kB #2450 from [15] with an extra output
equation yo:

'y = —kiza,

zly = kiza — ko,

ry = ko,

o
€y =ec =0,

Y1 = earA +eprp +ecxc, Y2 =Tco, Y3 = €A, Y4 = €C.

Global identifiability is reported only for initial conditions z¢(0), e4(0), ec(0), while everything else
is locally identifiable (with probability p). Upon checking identifiable parameter combinations, we observe
single-experiment identifiability for kiks, k1+ko. This implies that the parameters k1 and ko are identifiable
up to a permutation, so it is possible to infer the reaction rates from an experiment but not which rate
corresponds to which reaction. For parameters ep, ki, k2 we obtain multi-experiment identifiability with
bound of 3 experiments. We then try to refine the bound with default number of refining attempts being
4. As a result, the new bound for the number of experiments is 2. This is done via different orderings of
outputs y1,ys in the procedure.

To illustrate this point in another way, we can tell STAN to consider multiple copies of the system. We
observed that the refined bound for parameters ep, k1, ko was 2. Setting number of copies to 2, SIAN yields
global identifiability of ep, k1, k2, supporting the observation above. Without using the bypass option in
the search for combinations, we observe that the application still returns ep, k1, k2 as identifiable with
more than 1 experiments, however, single-experiment check overwrites this result, making the bound 1.

4 Discussion and future directions

The structural identifiability toolbox we present here is available online for efficient identifiability analysis
of ODE systems. It is capable of fast assessment of individual parameter identifiability properties in Monte
Carlo fashion with a user-specified correctness probability as well as assessing deterministically single- and
multi-experiment identifiable functions of parameters. By taking advantage of the output information
from underlying algorithms of the application, we increase the efficiency of the application via bypassing
some time-consuming computations (in some of such bypasses, deterministic result is replaced with a result
correct with user-specified probability). However, some computational bottlenecks still need to be resolved:

1. At the time of input-output equation calculation, it is of interest to investigate potential improvements
coming from the variable ordering in the Rosenfeld-Grébner procedure.

2. Field intersection procedure relies on prime decomposition of polynomial ideals [12, Algorithm 2] and
can be computationally expensive. We ask if this can be replaced by, for instance, regular chains.

3. To take advantage of parallel computing and absence of 4 GB memory limits of DifferentialAlgebra
in MAPLE, one could use Differential Thomas decomposition [6] in place of Rosenfeld-Grébner for
characteristic sets. This is currently a work in progress.
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