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INVERSE BOUNDARY PROBLEM FOR THE TWO PHOTON
ABSORPTION TRANSPORT EQUATION*

PLAMEN STEFANOV! AND YIMIN ZHONGH#

Abstract. We study the inverse boundary problem for the nonlinear two photon absorption
radiative transport equation. We show that the absorption coefficients and the scattering coefficient
can be uniquely determined from the albedo operator. If the scattering is absent, we do not require
smallness of the incoming source, and the reconstruction of the absorption coefficients is explicit.
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1. Introduction. In this work we study the inverse boundary problem for the
two photon absorption radiative transport equation. Two photon absorption happens
when it takes two photons to excite a molecule from one state to another [24, 30]. The
probability of a two photon absorption at a given point is proportional to the light
intensity there regardless of the incoming direction, which makes the corresponding
term quadratic. One of the applications of two photon absorption is in medical imag-
ing: the human body is not transparent to optical rays, but it is more transparent to
infrared ones. Then fluorescent dyes with good two photon absorption rates can be
used successfully with such a large wavelength excitation; see, e.g., [15, 22]. Other
applications are pointed out in [22]—for example, microscopy, microfabrication, three-
dimensional data storage, etc. For applications to photoacoustic imaging, we refer the
reader to [7] and the references therein.

Let Q C R", n > 2, be an open bounded convex set with a C'' boundary 9, and
let S"~! be the unit sphere in R”, T'y = {(z,0) € 9Q x S"~ | £n(z) - 0 > 0}, where
n(x) is the outer normal at z € 9. Denote by u(x,8) the photon density function
at spatial location z € Q in the direction § € S*~1. Then our model is the following
equation (see also [23]):

(1)
0 - Vyu(x,0) + (04(x,0) + op(x, 0)|{u))u(z, ) — Ku(z,0) =0 in Q xS,
u(z,0) = f_(x,0) onT_,

where (u) is the average of u(x, 6) over the angular variable 6; that is,

(2) (uy == /Snil u(zx,0)do,

with df being the normalized surface measure on S"~*. When u > 0, the absolute
value in |{(u)| does not matter, of course, but for general solutions, we include it to
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have a well-posed problem. The linear operator K is defined by
(3) Ku(z,0) ::/ k(z,0",0)u(x,0)dd’ .
Sn—l

The coefficients o,(x, ), k(x,80’,0) are the usual total absorption and scattering co-
efficients, respectively. The coefficient o, stands for strength of the nonlinear effect
of two photon absorption, and the term o, + o{u) can be understood as the effec-
tive total absorption coefficient dependent on the solution. They are all assumed to
be nonnegative, and we impose smallness assumptions on k, oy, and f_; see Defini-
tion 2.1.

If the direct problem (1) is uniquely solvable, one can define the usual albedo
operator

(4) A:f—Hf-‘r’

where fi (x,60) := u(x,0)|r, denotes the exiting photon density. This albedo operator
is nonlinear, and we are interested in finding out whether the albedo operator A
determines uniquely the coefficients o, (z,0), op(x, 0), k(x,0', 6).

When o, = 0, the equation (1) is linear. Uniqueness and recovery formulas for
0, and k, when o, depends on z only, were established in [9] for n > 3 and in [28]
for n = 2 under a smallness assumption on k. The general case of o = o(x,0) for
n > 3 was resolved in [27]. Stability estimates were proved in [2, 3]. Inverse radiative
transport in the Riemannian setting was studied in [16, 17, 18, 19, 20, 25|, and for
a different dynamical system (see [12]), there are also many other works regarding
different types of boundary measurement; see [1, 4, 5, 6, 13, 29, 31] and the references
therein. References to earlier works can be found in the survey [26].

Inverse problems for nonlinear versions of the transport equation (different from
the one we study here) are studied in [11, 14]. In [23], the authors considered the
inverse medium problem under the same nonlinear model as (1) and showed the
uniqueness and stability of the reconstruction of absorption coefficients from internal
data.

The main result is the following. We show that we can recover o, k, and o, given
the nonlinear operator A. The idea of the proof is the following. If we take f_ small,
then we are in the linear regime and can use the result in [9] to recover o, if it depends
on z only, and k. The latter requires n > 3; see also [28] for the 2D case. Next, we can
take f_ = fo+df1 (see (22)) with 0 < 6 < 1 and fy > 0 smooth but f; singular in the
6 variable only. Then f; would not create singularities in solution at order O(4), but
the effective absorption coefficient would involve oy (ug), where ug is the leading O(1)
term of the solution which is determined by fo; see (23) and (25). This is the reason
we require fy > 0—so that (ug) > 0, and we can divide by it eventually to recover
op. Then choosing f; concentrated near a single 6’ (and independent of z) allows us
to reconstruct the X-ray transform of o, and therefore o}, itself; see Theorem 3.3.

Particularly, when k& = 0, one can solve the equation (1) directly with f_ in the
form of f_ = v_(x)dp,(0) (a collimated source); see (56), where v_ > 0 smooth. Then
we are solving a Riccati ODE along each line s — (¢ + s6g, 6p). This allows us to
recover o, if it depends on x only, and o}, through their attenuated X-ray transforms
without the smallness assumption on f_ (or of the perturbation of f_ as in (22)); see
Theorem 4.1. This way, we may work with signals which are not necessarily small
and will be less sensitive to additive background noise.

The rest of the paper is organized as follows. In section 2, we state the preliminary
results about the well posedness of the two photon absorption radiative transport
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model (1). Section 3 consists of the main theorems about the reconstructions of the
absorption and scattering coefficients, respectively. The scattering free case k = 0 is
discussed in section 4.

2. Preliminaries. We first study the well posedness of (1) and of the albedo
operator A. Define 74 (z,0) := min{t > 0 | x+¢0 € 9Q}, which stands for the distance
between x and the boundary 9 along +6. Set 7(x,0) = 7_(x,0) + 7 (0), and define
the boundary measure d¢ = |n(z) - 0|du(z)dl, where du(z) is the Lebesgue measure
on Jf). Define the function space

H(QxS" )= {f|feL"(QxS" ) and 0-V,f € L'(QxS"1)}.

We further denote the function subspaces L5(I'_,d¢) C L'(I'—,d€) b

(5) LY(T-dg) = {f | f € L'(T—,dg) and | f]l. < oo},
where the || - ||« norm is defined by
(6) If ]l = H/ (- 7_(2,0)0,0) |d9H

DEFINITION 2.1. We call the tuple of functions (04,0, k, f—) admissible if
1. 04,00 € L®(Q x S"71), 0, >0, and oy > 0;
2. 0 < k(x,0,0) € L®(Q x S"~1 x S"71) and there exists a constant pu € [0,1)
such that

HT”LO‘D(QXS”*) HkHL‘”(QxSn*l xS§n—1) <

3. fo € L(T_,d€) and there exists v € [0,1) such that

HTHLOO(QXS"*)”Ub”LOO(QxS"*l)Hf—”* <v(l- M)Q-

DEFINITION 2.2. We define the following operators:
Tu:=—0-Vzu, Su:=(u), Z(m)u:=—(0o4,+ opm)u.
Then %(m) = —(04 + opm). Let J(m) : LL(T—,d€) — LY (Q x S"71) be defined by

T (x,0)

() J(m)f-(2,0) = f—(x —7—(x,0)6,6) exp ( / S(m)(a — ze,a>dz> ,

and let H(m) : LY (Q x S"=1) — LY(Q x S"~1) be defined by
7 (z,0) l
8)  H(m)u(z,0) = / exp ( / S(m)(z — sa,a)ds> Ku(z — 10, 0)dL.
0 0

LEMMA 2.3. If the coefficients are admissible, then for any m € L% (),

[H (jm[)u(z, 0)] < pl[{lul) ][> @)-
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Proof. Since K|u|(x,0) < ||k Lo (axsn—1xsn-1)(|ul)(z), we can derive

7 (z,0) l
/ exp (/ S(lm|)(x — 30,9)d8> Ku(x —10,0)dl
0 0

7 (z,0) l
< / exp (/ S(jml) (= — 39,9)d3> Klul(z — 10, 0)dl
0 0

7 (x,0)
< [ M@ o (e~ 0)a
0

< ||7-||L°°(Q><S“*1)Hk”L‘X’(QxS”*l ><S"*1)||<|u|>HL°C(Q)
< pll{luf} [ o (- O

[H ([m[)u(z,0)| =

In particular, this shows that operator H(|m/|) is a contraction in L>(Q, L}(S"~1)).

LEMMA 2.4. If (04,00, k, f—) is admissible and if m € L*(Q), then the linear
initial value problem

(T+2(m|)+ K)u=0 in Q x S"1,

©) w(z,0) = f_(x,0) onT_

has a unique solution u € L (2, L*(S"™1))NHY(Qx S"71), and this solution satisfies
o=@ < T4
Ul) L= () = 1— 1 —|]*-
Proof. The solution u to (9) satisfies

(10) u(z,0) = H(lm|)u(z,0) + J(|m|) f-(x,0),

and vice versa, every solution to (10) solves (9) (in a weak sense). Take the absolute
value on both sides of (10), and apply the operator S to get, for every = €

() <t~ + [ 1700DS-(z.0)1d0
< pltfebll ooy + 15

where we used Lemma 2.3. The supremum on the left-hand side satisfies

(ub@) < [ 1 (mbuGe.0)ld+ [ 17(m])f- (. 0)/ap

(12) IJuD Lo @) < pll{lul) e @) + 1/~ 1+

In particular, this shows that the operator H(|m/|) is a contraction in L>(£2, L*(S"~1))
and that J(|m|) f_ (z, #) belongs to that space; thus (10) is solvable in L> (£, L*(S"~1)
Moreover, it satisfies the estimate in the lemma by (12). Then we can apply T to (10
to conclude that u € H! and solves (1) in the strong sense.

I:I\/yu

COROLLARY 2.5. Under the assumptions of Lemma 2.4, the solution u to (9) also

satisfies
T (z, 9) - e
H/ / — 50,0) |dsd9H < ”T”Tw”f_”*
S§n— 1 _M
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Proof. Using the estimate from Lemma 2.3, and (10), Vs € [0, 7—(x, 6)],
u(z = s0,0)| < pll(fu))llL~@) + [f-(x = s0 — 7 (x — 50,0)0, 0|
= pll(luDll Lo (@) + [f-(z — 7-(2,0)6,0)].

Apply the integrals with respect to s and 6; we obtain
(14)

7_(z,0)
[ temso0)dsan < 7 (2.0 (M|(|u|>|\m°(m A ﬂ(x,ew,ende) .
sn—=1Jo gn—1

(13)

Then take the supremum on both sides and use the conclusion of Lemma 2.4 to get

7_(z,0)
| [ ] e so.oasas],_ < Irlzconons (u||<|u|>HLoc<m+||f—||*)
sn—1 Jo L= (Q)
< 7l pee (xsn- Dk (||f [[+) - o

LEMMA 2.6. If (04,0b,k, f—) is admissible, then the radiative transport equa-
tion (1) permits a unique solution u(z,6) € H*(Q x S*~1), and

(16) HWMMwm<‘4*WH*

In addition, if there exists a constant cg > 0 such that f_ > cg, then there is a
constant C = C(Q, 04,0, k, f—) > 0 such that u(z,0) > Ccq.

Proof. The proof is based on the Banach fixed point theorem. Define the mapping
C: L>®(Q) — L*(Q) by C(m) := (u), where u(zx,0) solves (9). Define the sets of
functions M and M by

Ahz{meLm(%() If}

and

M+:{m€L“my0§m@h§¥;Nﬁm}

We prove that C is a contraction mapping on M (resp., M) with the L>°(2) metric.
First we show that C : M — M. If m € M, the solution to (9) will satisfy (10). Take
the absolute value on both sides of (10) and apply the operator S. By (16), (|u|) € M;
hence (u) € M. When f_ > 0, from the theory of linear transport [10], the solution
u(zx,0) to (10) is nonnegative as well through a fixed point iteration; thus we have the
mapping C : M4 — M. Next, we show C is indeed a contraction mapping on both
sets. Let my,ms € M (resp., M, ) and up,us be the solutions to (9), respectively.
Denote w = u; — ug; then

(T +2(jm1]) + K) w = opua(|mi| — |mal), in Q x S*!

17) w(z,0) =0 onT_.

Let g(x,0) := opua(|mq| — |mz|); then the solution w(x,#) solves

7 (z,0) l
(18) w(z,0) = H(|m1|)w(x,0)+/0 exp (/0 E(mal)(x — sG)ds) q(x—16,0)dl
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Apply the integral operator S on the second term on the right-hand side to get

T (x,0) l
‘ / / exp (/ S(lma])(x — 59)d8> q(xz — 10, 9)dld9‘
sn—1 Jo 0

7—(z,0)
/ / lus(z — 16, 0)|d1d6
§n—1 0

1
< lIrllze @xsnny low(flmal = fmalDll e @xgn-1) 7= 1= Il

< low(llma] = Imal )l Lo @xsn-1)

The last inequality comes directly from Corollary 2.5. As in the proof of Lemma 2.4,

(71l 2o @xsn-1 l[ovlm1 — ma|[l Lo (gn—1)
=1,

(19) (lwl) (@) < plllwllz=) + 1— 1

where we have used the triangle inequality ||mi| — |ma|| < |m; — ma|. Then use
[{(w)(x)] < (Jw])(x) and (us) € M (resp., M, when f_(z,0) > 0) to get

71| o< (xsn-1) lowlma — malll Lo (g xgn—1)
(1 —p)?

By condition (3) in Definition 2.1, C is a contraction mapping on both M and M
with the L°°(2) metric. Then by the Banach fixed point theorem, C has a unique
fixed point in M (resp., M when f_(z,6) > 0). Then (16) follows from Lemma 2.4.
In particular, when f_(z,6) > ¢o > 0, then u(z,6) > 0 and 0 < (u) < ﬁﬂf,H*,
therefore,

(20) [(w)(z)] <

[P

e, 0) = H (), 0) + (DS (0.0) 2 T (1) - (0.0)

. 1
) 2 qe (@) (ol @ + T lovlisae 111 ) ) . O

REMARK 2.7. The mapping C may not be compact when f_ € Lg(I'_,d€); there-
fore, the Schauder fixed point theorem does not apply.

3. Main theorems. In this section, we show that the nonlinear albedo operator
determines the three coefficients o,, oy, k, under the conditions o, (z,0) = o,(z) and

op(x,0) = op(z). In the following, we consider a source function f_(z,0) in the form
of

(22) f-(,0) = fo(x,0) + 6 f1(x,0)

with 6 — 0 a scaling parameter, with f; € L5(I'_, d€) nonnegative, i = 1,2. Formally,
the nonnegative solution u expands as

(23) u(z,0) = ug(x,0) + Sui(z,0) + 6%ug(x,0) + - - - .
Then ug and uy will satisfy the equations

(T +X({up)) + Kug =0 in QxS 1,

29 wo(2,0) = fo,0) onT_,
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and

o5 (T + 2 ((ug)) + K)uy = —op{ur)ug  in Q x S*7H
(25) ui(z,0) = fi(z,0) onT_.

When the coefficients are admissible and fy = 0, then (24) has unique solution uy = 0,
and (25) becomes the linear transport equation. Then one can follow the method
in [9] to decompose the singularities, which leads to the reconstruction of o, and k;
the latter requires dimension n > 3. After the coefficients o, and k are recovered, we
can select arbitrary nonzero fo € Li(I'_,d€) such that ug is nonsingular. Then in
(25), the most singular part in the solution will come from the source f; if we select it
to be singular in angular variable . Therefore, ¥({ug)) can be recovered, and then ug
can be solved from (24), which finally reconstructs o}. In the following, we rigorously
prove these claims.

3.1. Reconstruction of o,. In the next theorem, we show that we can recover
the X-ray transform of o,(x, ). As a corollary, if o, is #-independent, one recovers it
through the inverse X-ray transform [21].

Here and below, we take sources approximating singular ones in the spirit of [9].
Let By be the unit ball centered at origin in R™, h € C§°(By) with 0 < h < 1, and
h = 1 near origin be a cut-off function. Given ¢’ € S"~!, define the source function

(26) F0(x,0;0") = 0 h (9 — 9/> )

wWp_1en~1 €

where d,¢ > 0 are small parameters such that ff’(S € L3(I_,d¢) and w,,_; is the
constant defined by

_p
(27) Wp—1 = lim ! h (9 o ) de.

e—0 Jgno1 en~1 €
We view f° as § times an approximation (a Friedrichs mollifier) of the delta function
d¢/(0) on the sphere. Then £2° plays the role of §f; in (22) with fo = 0 there.

THEOREM 3.1. Let f_ = fi’é, and assume the tuple (o4, 0p, k, f—) is admissible;
then

£,8 o 7 (z,0")
lim lim u(e, 9>h <9 0 ) df = exp (—/ oq(x — 59/,9/)ds> ;
v 0

v—0¢e,6—0 gn—1 1)

where u®? is the unique solution to (1) with boundary condition fi"s.

Proof. Let w* be the unique solution to the following radiative transport equation:
(T +%(0) + K)uw® =0 in QxS
28 1 0—¢
(28) w®(z,0) = h( ) onT_.

Wp_1en~1 €

The solution w® then satisfies
(29)

. 1 0—0 T (z,0) .
w®(x,0) = h( . >exp —/0 oo(x — $6,0)ds | + H(0)w®,

wn—1€"_1
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where |H(0)w®| < pl[{w®)| 1), which is uniformly bounded from Lemma 2.3.
Therefore, the following iterated limit holds:

(30)
_ A
lim lim w®(x,0)h (9 o ) do
~y—0e—0 sn—1 "}/
1 09— 6 7 (z,0) 0—6

= lim lim 1h< )exp( / m—s@ﬁ)d)h( >d9

’74)06*)0 §n—1 Whn,— 15” 0 ’y

!/
+ lim lim H(0)w*® (0 G)dO
¥—=0e—=0 Jon—1 ol

T_(2,0")
=exp —/ oq(x—s0',0")ds | .
0

The term containing H(0) vanishes because when v — 0,

(31)
i 1H<> G (=) o] < ey [ 0 (5w 0

Denote ¢ = fus® — w®; then

(T + Z(|(u%)]) + K)¢ = op|(u°)|w®  in Q xS,
¢(x,0) =0 onT_.

Then one can show that ¢(z,0) = L4(x,0) + La(z,d), where

B 7 (z,0) l o
Ly _/o exp </0 S(|[(u))(x — s6,0)ds | Ko(x —10,6)dL,

— @0 : €,0 e .
Lo = _/0 exp </0 E([(u)|)(x — s0,0)ds | op|(u?)|w(z — 10, 0)dl.

(32)

(33)

The first term £; is uniformly bounded in the L° norm; this could be derived from
Lemmas 2.3 and 2.6 by observing that

1 0—¢ p
(34) — h dg = h(f —6")do < c|0B;|
en sn—1 3 %Sn—l
for some absolute constant ¢ > 0. Therefore,
6—6
(35) / Li(z,0)h < S ) d) =O(""') =0, as v — 0.
S?’L—l

For the second term Lo we have

_p 7_(x,0) _p
/ Lo (x,0)h (‘9 4 ) d@’ < / / o[ ()| w® (z — 16, 0)h (9 4 ) dodl
sn—1 Y gn—1 ol
T_(z, 9) 6 — 0
< low(u=Y || Los (@) / / (z—10,0)h ( ) dodl.
n—1

Note that [|oy (u®?)|| () = O(8) by Lemma 2.6, and the integral part is uniformly
bounded by the decomposition for w® in (29); therefore

_
(36) lim lim La(z,0)h ( b 70 ) o = 0.

7—=0¢e,60—0 Jgn—1



INVERSE BOUNDARY PROBLEM FOR TPA TRANSPORT 2761

Combining (30), (35), and (36), we arrive at our conclusion. |

2. Reconstruction of k. We show next that once o, is known, one can re-
cover k pointwise.

When n > 3, we let 6,0’ € S*™! such that 6 Jf §’ and denote by mg ¢ (z) the
projection of = onto the subspace © spanned by 6,6". Let ¢, € © = span(6,6’) be
the unit vector such that 6, - 0" = 0. Take any ¢ € C§°(—1,1) such that 0 < ¢ <1
and [, (t)dt = 1. We then deﬁne the test function

1 x-6 x — mp 9 ()
37 o (2,0,0) = — ( L)h( ’ .

e’ .

We also define the source function f=° *° in the form of

’ _ ! Y
(38) fes 76(5679?‘@/’9/) = w? ijn*lh (m - ) h (9 : )

/
h—1 9 9

such that 5% € L¥(T'_, d¢); the constant w,_; is defined by (27).

THEOREM 3.2. Letn > 3, set f_ = fi’a/’(s, and assume the tuple (04,00, k, f_) is
admissible. Then

’
lim lim lim lim lim us® Mz + 74 (,0)6,6;, 0')
¥1—=>07v2—0e/—50e—=06—0 J90 gmn—1§

7+ (x,6) T (2,0")
= exp —/ oa(x + sB)ds | exp —/ oo(z —50")ds | k(z,0',0),
0 0

where u=< 9 (z,0; 2 ,0') is the unique solution to (1) with boundary condition <
The limit holds in L}OC(Q x (S"=1 x S"=1\ D)) where D = {(6,0") € S*~t x S~ | OH
0'}.

Proof. Similarly to section 3 of [9], we can write the decomposed solution as
w0 (,0) = T(|(w ) ) f- + H(|(w ) )T (|(u)]) f-

(39) + (1= H(|u== ")) T H2 ([ ) ) I (™)) f-
= ﬁl(l‘, 0) + LQ(I, 9) + Lg(&?, 9),

¢’Yl 22 ("El — T+ T (w’ 9/)017 9’ Ql)d#(x/)

e,e’ 0

with the terms there corresponding to the ballistic, the single-scattering, and the
multiple-scattering components. First, it is simple to see that when ¢ is small enough
so that [0 — 0’| > e, then h(?=%) = 0; hence

(40)

/ £1 (x +E’/7;j—(f(; 9)67 9) ¢’Y1ﬂ’2 (l'/ —x+T- (ZE, 0’)0,5 95 Gl)d,u(z/)
o0

:/ 1 b z—71_(2,0)0 — ' L A
o0 w2_ em—len—1 € €

7(x.0)
X exp (—/0 S(()) (@ - 56,60)d. ) Gy1 e (@' — @+ 7 (2,01)0",0,0")dp(a")

=0.

Next, we compute the contribution of the single-scattering term. Let E(z,y, m) de-
note

E(z,y,m) = exp (|x—y|/ )z + s(y ))ds).
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In order to make the derivation concise, we also introduce the following notation:

:L':t’g =z + T:t(.%', 9)9,
(41) Yo = Ty — 10,
210,00 = Yo — 7 (y1,0")0".

Then we can write

lim lim lim La(w + 74(2,0)0,0)

e’—0e—086—0 gm—1§

930
— Iim lim hm/ / / E(@s 0,00, [0 D)) B0, 20007 | (15 0)])
onN Sn—1

e’—=0e—=06—0

o — T 1 0" _ @ ,
8 15’”71h ( e ) Wi — 15”*1h < € kYo, 0", 9)
x ¢v1ﬁz —z+7_(x,0)0,0,0)do" dldu(z")

(z,0)
= lim hm/ / / E(74.0,91,0,0)E(Y1,0,21,0,07,0)
e’—0e—0 BQ gn—1

zgn — T 0" — o
g 15/” ! ( )wn 1en—t ( € k(y.0,0",0)
X ¢71,72 —x+7_(2,0)0,0,60")d0" dldp(a’")

7(z,0)
= hm/ / E(x4.0,Y1,0,0)E(y1,0, 21,6,6', 0)
a0

e’—=0
zo — X'
&‘/n 1h < ! ) k(yl,070/79)

X (;5%,72 (2 —z+7_(2,0)0,0,0")dldu(z")

Pyi (2 — w4+ 7 (2,61)6",0,0")dp(a")

(z,0)
:/ E(x4.0,91,6,0)E(y1,6, 210,60/, 0)k (41,6, 0", 0)
0
X Gy o (Y6 — T+ 7—(2,0')0',6,0")dl.

The right-hand side has the limit
(42)
7(x,0)
lim lim E(:L’.hg, yl,07 O)E(yl’a, 2179’9/, O)k(yl,g, 9’, 9)

Y1—=072—=0 Jq

X Grve (Y0 — & + 7 (3,0)0',0,0")dl

7(@f) 1 F(a,0) —1
= lim E(x4,0,91,0,0)E(y1,0, 210,00, 0)k(y1,0, 0", 0) — ¢ (M) dl
v1—0 Y1 Y1

= E(z4,0,7,0)E(z,2_ ¢,0)k(z,0,0).

To show that the multiscattering contribution is zero, we only need to show that
(E,y%léﬁg(m, ) € L' (2xS"~1) uniformly and hence is uniformly bounded in L!(T'y., d€).

Given any y € C§°(Q x (S1 x S4=1\ D)), we have

(43)
J Lot T (0 I OTO) sl =7 (00,0, 0 6 )d(2)d0
QxSn—1xI_ g/m—1§
AN,
< i £3(x+7—+(x70)’07x’e)xd,u($)d9df(1:/,9/),

— m—1
Y1 Ty, & 1)
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where T, = {(z,0,2',0") € QxS"~! xI'_Nsupp x and |z —a2' —mg 9 (x —2')| < 72}
When (E,),ﬁﬁg(xﬁ) is uniformly bounded in L!(T,d¢), the integrand of (43) is
an L' function. On the other hand, meas(T’,) — 0 as 2 — 0; therefore the integral
vanishes as 75 — 0. In the following, we prove (6,)%15/&’3(1‘,0) € LY(Q x S*71) with
a uniform bound there with respect to ¢’ < 1 and § < 1.

Since (I — H(|{(u¥+?)[))~! is a uniformly bounded operator in L'(Q x S*~1),
we merely have to show that W%%HQH<u575/>5>|).](|<u575/’5>|)f_ is also uniformly
bounded; see (39). Let y19 = x — 10, zs9v = y19 — s0”, and wer = 2597 —
T_(25,07,0")60". Then
(44)

H2(|(u=20) ) I ([(us2) ) f- (. 0)

g/n—1§

T (x,0) T (y1,0,0"") ' s ‘s
<[] [ B | M) Bz, [ D)
0 sn—1Jo gn—1
X E‘(,’/;’S’g//,z,l}glu7 ‘<u£'£,’5>|)k’(yl’g, 6”, O)k(zsygn,ﬁ"', 6”)|f7 (w9/1/79”/)|d0/”d8d9”dl

"
- (@.6) - (w1,0.67) 1 neopn " " ”
< k(yr0,0 ,G)R(ZS,Q//,Q L0 f= (wgrrr,0"77)]dO" dsdb” dl.
0 sn—1 Jo -1

sn

Since zs 97 = y.9 — 50", we change the variable such that dz; g» = s"~'dsdf”, and we
recall the formula
T+ ('7"/70)
(45) / g(x,0)dxdd = / / g(z' +t0,0)dtde (2, 0)
Qxsn—1 r_Jo
(see [9]) with 2’ =z — 7_(x,0)0. We obtain
(46)

7 (2.0) T (y1,0.8")
/ / / / k(y1.0,0",0)k(zs.00,0",0")| f—(wgrr,0"")|d0"" dsd6 dI
0 Sn=1.J0 Sn—1

T_(I,G) T+(w9///,9/”)
N T
0 r-Jo
1

X g 1~ (worr, 0) |81 dtdg (worr, 6" )l

T_(z,0) pry(2’,0")
/ / st Tdtdl € LM (Q x S™TY),
LY(r_,d¢) /o 0

which is uniformly bounded in L (€2 x S"~1) with respect to &', where s = |y, o — (2 +
t0')| and C' = ”kH%w(QxSn—le"—l)' .

3.3. Reconstruction of op. Let the source function f_ be chosen in the fol-
lowing form:

(47) £, 0,0) = g+ —2 h(e‘e'),

Wp_1en~1 €

<C

glnfl fﬁ

where ¢q is a positive constant and d, ¢ are positive small parameters. Compared with
(26), here we have added fo = ¢p in (22).

THEOREM 3.3. Let f_ = fi"s, and assume the tuple (04,0, k, f—) is admissible;
then
(48)
€8( 0 0— 0 T7_(x,0")
lim lim lim u(@,0), < ) df = exp (/ B(|(w)])(x — s0")ds |,
0

6—07—=0e—0 Jgn-1 ) ¥
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where u®% is the unique solution to (1) with boundary condition f_, and w is the
unique solution to (1) with the boundary condition f_ = cy.

Proof. Let w(x,0) be the solution to the following equation:
(T+S((w)) + K)w=0  inQxS" !
w(z,0)=cy onTl_.
Then w € L>®(Q x S*~1), which implies

0) (60—¢
(50) lim lim lim w8, ( > o = 0.
6—07—=0e—0 Jgn-1 ) y

(49)

We denote ¢ = § (u™® — w). It satisfies

us,é — Nw
(T + S(|(u))) + K)¢ = oy (l<>|5|<>

o(z,0) = ! h(9_9/> onT_.

wp_1en~1 €

) w  in QxS
(51)

Therefore, the solution ¢ can be written in the following form:

¢(x,0) = exp </OT (@.0) S (=Y ) (@ — 89)d5> wnillgn,l . (9 _E 9/)

+ /OL(M exp (/Ol S| w0 (@ — se)ds) Ko(z —10,0)dl

[ e ([ st - sas) [on (LN o - 0,)]

= £1(1’, 9) =+ ﬁz(aj‘, 0) —+ Eg(it, 9)

Integrate ¢(z,0) over S"~! and note that ||(u®%)| — [(w)|| < &|(¢)| to obtain
1 1 -0

—_ / h 6-0 de| .

(1= =v)|Jgn—1 wy_1e™ ! €

This implies that L5, L3 are both uniformly bounded in L>(Q x S"~1); hence

(52) (@) o= (0) <

C 0—0
lim lim lim o(x,0)h de
Y

0—=07—=0e—0 Jon-1

_n 0
= lim lim lim Ly(x,0) ! h<0 G)h(H 9>d6’
wn

En—l

0—=07—=0e—0 Jgn—1 1 € vy
(53) T (,0") ,
= lim exp / S([(us)]) (z — s0")ds
6—0 0

T_(x,0")
=exp (/0 S({w)|)(x — sb )ds) .

Combine this with (50) to obtain

£,0 _
lim lim lim u(a, Q)h (0 4 > df
§—07—=0e—0 Jgn—1 ) ¥

T_(x,0")
(54) = exp (/0 S([{w)])(z — s@’)ds) : O
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Theorem 3.3 implies that X(Jw|) can be reconstructed from the albedo operator.
Therefore, the solution w of (49) can be uniquely determined, and there exists a
constant C' > 0 such that w(z,0) > Ccy by Lemma 2.6; and when o, is known, one
can find o, = (Z(|w|) — 04)/[{w)].

4. Scattering-free media. For media with k£ = 0, there exists a more direct
explicit reconstruction method. Moreover, no smallness assumptions on the boundary
source are needed. Equation (1) reduces to

(55) 0 - Vu+ oqu + op{uyu = 0.
Choose the boundary condition

(56) fe = v (2)d4,(0)

in (1) with some v_(z) > 0 in C!'. We are going to look for a nonnegative weak
solution, i.e., for a solution of the integrated equation

7 (z,0)
(57)  u(x,0) =v_(z —7_(x,0)0)dg,(0) exp <—/ (04 + op(u))(x — 59)d$>

0

in the following class: u(z,6) is a measure-valued function in 6, C1(2) N C(Q) in
the x variable. Then (u)(z) is in the latter space. By (57), u = dg,(0)v with v €
C(Q x S"71); also, v is C! except for (z,6) such that x € 9 and @ is tangent to 9
(which is 9T'y). Clearly, only the value of v at § = 6y matters for u. With some abuse
of notation, we denote v(z,8p) by v(z). Then by (56), v must satisfy the boundary
condition v = v_ on 9€.

In view of the C! regularity of v as stated above, we can differentiate (57) to get
back to the differential form (55), which in this case reduces to

(58) (90 Vv + 0,0 + Ubv2) =0,

since (u) = v. Here, o, and o}, can depend on 6 as well; then 6 = 6y above. Therefore,
on each line s — (zo + sbp, 0p), the equation reduces to

(59) v 4 oqv + opv? = 0.

This is a homogeneous Riccati equation. For each initial condition v(0) = v_(x¢), we
measure v(74(x, 6p)).

Let pu(t) = exp (— fg 04(s)ds); then 1/p is the integrating factor. Multiply (59)
by 1/ to get

(60) (0] 1) + ow0? 11 = 0.
This is a separable ODE for v/u, and the solution satisfies

(61) £ = #) + /OS M(t)(fb(t) dt;

v v_(xo

therefore,

(62) o) =06) (g + [ o)
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Hence, at s = 74 (x0,0) we recover the attenuated X-ray transform of o, with at-
tenuation o,, assuming o, is known. One way to recover o, is to replace v_(xg)
by dv_(zp) as in the previous section with § — 0; then we get the X-ray transform
—log (74 (x,00)) of o4; and by varying 6, we can recover o,. Then we recover a;, by
inverting the attenuated X-ray transform of op; see [8, 21].

If we do not want to deal with small signals which may be corrupted by back-
ground noise, we can proceed as follows. To reconstruct o,, we choose two distinct
boundary sources f_; = v_ ;(x)dg,(8), j = 1,2, such that Vo € 99, v_i(z) >
v_(x). Let vy, vy be the solutions to (59) with v;(0) = v_ j(xo); then from (62) we
observe that

1 1 1 s -
o vi(s)  uls) <v_7j(x0) +/0 p(t)os(t) dt) . j=1,2.

Subtracting the above formulas with 7 = 1,2, we obtain

1 1 1 1 1
(64) n(®) " ) a) (v_,1<xo> B U—,2(9€0)> ’

which implies

(65) p(s) = (Ults) - vis)) : (v,ll(xo) - v,21($0)> '

Take s = 74 (o, 0p) to get u(7y(xo,00)) = exp(—Xo4(zo,6p)), where X is the X-ray
transform, which can be determined by (65). Therefore, we can recover o, first by
varying 0y and inverting the X-ray transform of o, as above. After that, we recover
op as above.

Also, one can take v_(zg) approximating d,,(z); this corresponds to a single
beam.

Therefore, we proved the following.

THEOREM 4.1. Assume k = 0. Let o, and oy, depend only on x and be in C°(Q).
Then A acting on f_ as in (56) determines o, oy, uniquely by inverting their attenu-
ated, respectively, nonattenuated, X-ray transforms, which can be determined by (62)
and (65).
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