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INVERSE BOUNDARY PROBLEM FOR THE TWO PHOTON
ABSORPTION TRANSPORT EQUATION\ast 

PLAMEN STEFANOV\dagger AND YIMIN ZHONG\ddagger 

Abstract. We study the inverse boundary problem for the nonlinear two photon absorption
radiative transport equation. We show that the absorption coefficients and the scattering coefficient
can be uniquely determined from the albedo operator. If the scattering is absent, we do not require
smallness of the incoming source, and the reconstruction of the absorption coefficients is explicit.
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1. Introduction. In this work we study the inverse boundary problem for the
two photon absorption radiative transport equation. Two photon absorption happens
when it takes two photons to excite a molecule from one state to another [24, 30]. The
probability of a two photon absorption at a given point is proportional to the light
intensity there regardless of the incoming direction, which makes the corresponding
term quadratic. One of the applications of two photon absorption is in medical imag-
ing: the human body is not transparent to optical rays, but it is more transparent to
infrared ones. Then fluorescent dyes with good two photon absorption rates can be
used successfully with such a large wavelength excitation; see, e.g., [15, 22]. Other
applications are pointed out in [22]---for example, microscopy, microfabrication, three-
dimensional data storage, etc. For applications to photoacoustic imaging, we refer the
reader to [7] and the references therein.

Let \Omega \subset Rn, n \geq 2, be an open bounded convex set with a C1 boundary \partial \Omega , and
let Sn - 1 be the unit sphere in Rn, \Gamma \pm = \{ (x, \theta ) \in \partial \Omega \times Sn - 1 | \pm n(x) \cdot \theta > 0\} , where
n(x) is the outer normal at x \in \partial \Omega . Denote by u(x, \theta ) the photon density function
at spatial location x \in \Omega in the direction \theta \in Sn - 1. Then our model is the following
equation (see also [23]):
(1)
\theta \cdot \nabla xu(x, \theta ) + (\sigma a(x, \theta ) + \sigma b(x, \theta )| \langle u\rangle | )u(x, \theta ) - Ku(x, \theta ) = 0 in \Omega \times Sn - 1,

u(x, \theta ) = f - (x, \theta ) on \Gamma  - ,

where \langle u\rangle is the average of u(x, \theta ) over the angular variable \theta ; that is,

(2) \langle u\rangle :=
\int 
Sn - 1

u(x, \theta )d\theta ,

with d\theta being the normalized surface measure on Sn - 1. When u \geq 0, the absolute
value in | \langle u\rangle | does not matter, of course, but for general solutions, we include it to
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have a well-posed problem. The linear operator K is defined by

(3) Ku(x, \theta ) :=

\int 
Sn - 1

k(x, \theta \prime , \theta )u(x, \theta \prime )d\theta \prime .

The coefficients \sigma a(x, \theta ), k(x, \theta 
\prime , \theta ) are the usual total absorption and scattering co-

efficients, respectively. The coefficient \sigma b stands for strength of the nonlinear effect
of two photon absorption, and the term \sigma a + \sigma b\langle u\rangle can be understood as the effec-
tive total absorption coefficient dependent on the solution. They are all assumed to
be nonnegative, and we impose smallness assumptions on k, \sigma b, and f - ; see Defini-
tion 2.1.

If the direct problem (1) is uniquely solvable, one can define the usual albedo
operator

(4) \scrA : f - \mapsto \rightarrow f+,

where f+(x, \theta ) := u(x, \theta )| \Gamma +
denotes the exiting photon density. This albedo operator

is nonlinear, and we are interested in finding out whether the albedo operator \scrA 
determines uniquely the coefficients \sigma a(x, \theta ), \sigma b(x, \theta ), k(x, \theta 

\prime , \theta ).
When \sigma b = 0, the equation (1) is linear. Uniqueness and recovery formulas for

\sigma a and k, when \sigma a depends on x only, were established in [9] for n \geq 3 and in [28]
for n = 2 under a smallness assumption on k. The general case of \sigma = \sigma (x, \theta ) for
n \geq 3 was resolved in [27]. Stability estimates were proved in [2, 3]. Inverse radiative
transport in the Riemannian setting was studied in [16, 17, 18, 19, 20, 25], and for
a different dynamical system (see [12]), there are also many other works regarding
different types of boundary measurement; see [1, 4, 5, 6, 13, 29, 31] and the references
therein. References to earlier works can be found in the survey [26].

Inverse problems for nonlinear versions of the transport equation (different from
the one we study here) are studied in [11, 14]. In [23], the authors considered the
inverse medium problem under the same nonlinear model as (1) and showed the
uniqueness and stability of the reconstruction of absorption coefficients from internal
data.

The main result is the following. We show that we can recover \sigma a, k, and \sigma b given
the nonlinear operator \scrA . The idea of the proof is the following. If we take f - small,
then we are in the linear regime and can use the result in [9] to recover \sigma a if it depends
on x only, and k. The latter requires n \geq 3; see also [28] for the 2D case. Next, we can
take f - = f0+\delta f1 (see (22)) with 0 < \delta \ll 1 and f0 > 0 smooth but f1 singular in the
\theta variable only. Then f0 would not create singularities in solution at order \scrO (\delta ), but
the effective absorption coefficient would involve \sigma b\langle u0\rangle , where u0 is the leading \scrO (1)
term of the solution which is determined by f0; see (23) and (25). This is the reason
we require f0 > 0---so that \langle u0\rangle > 0, and we can divide by it eventually to recover
\sigma b. Then choosing f1 concentrated near a single \theta \prime (and independent of x) allows us
to reconstruct the X-ray transform of \sigma b, and therefore \sigma b itself; see Theorem 3.3.

Particularly, when k = 0, one can solve the equation (1) directly with f - in the
form of f - = v - (x)\delta \theta 0(\theta ) (a collimated source); see (56), where v - > 0 smooth. Then
we are solving a Riccati ODE along each line s \mapsto \rightarrow (x0 + s\theta 0, \theta 0). This allows us to
recover \sigma a if it depends on x only, and \sigma b through their attenuated X-ray transforms
without the smallness assumption on f - (or of the perturbation of f - as in (22)); see
Theorem 4.1. This way, we may work with signals which are not necessarily small
and will be less sensitive to additive background noise.

The rest of the paper is organized as follows. In section 2, we state the preliminary
results about the well posedness of the two photon absorption radiative transport
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model (1). Section 3 consists of the main theorems about the reconstructions of the
absorption and scattering coefficients, respectively. The scattering free case k = 0 is
discussed in section 4.

2. Preliminaries. We first study the well posedness of (1) and of the albedo
operator \scrA . Define \tau \pm (x, \theta ) := min\{ t \geq 0 | x\pm t\theta \in \partial \Omega \} , which stands for the distance
between x and the boundary \partial \Omega along \pm \theta . Set \tau (x, \theta ) = \tau  - (x, \theta ) + \tau +(\theta ), and define
the boundary measure d\xi = | n(x) \cdot \theta | d\mu (x)d\theta , where d\mu (x) is the Lebesgue measure
on \partial \Omega . Define the function space

\scrH 1(\Omega \times Sn - 1) :=
\bigl\{ 
f | f \in L1(\Omega \times Sn - 1) and \theta \cdot \nabla xf \in L1(\Omega \times Sn - 1)

\bigr\} 
.

We further denote the function subspaces L1
S(\Gamma  - , d\xi ) \subset L1(\Gamma  - , d\xi ) by

(5) L1
S(\Gamma  - , d\xi ) :=

\Bigl\{ 
f | f \in L1(\Gamma  - , d\xi ) and \| f\| \ast < \infty 

\Bigr\} 
,

where the \| \cdot \| \ast norm is defined by

(6) \| f\| \ast :=
\bigm\| \bigm\| \bigm\| \int 

Sn - 1

| f(x - \tau  - (x, \theta )\theta , \theta )| d\theta 
\bigm\| \bigm\| \bigm\| 
L\infty (\Omega )

.

Definition 2.1. We call the tuple of functions (\sigma a, \sigma b, k, f - ) admissible if
1. \sigma a, \sigma b \in L\infty (\Omega \times Sn - 1), \sigma a \geq 0, and \sigma b \geq 0;
2. 0 \leq k(x, \theta \prime , \theta ) \in L\infty (\Omega \times Sn - 1 \times Sn - 1) and there exists a constant \mu \in [0, 1)

such that

\| \tau \| L\infty (\Omega \times Sn - 1)\| k\| L\infty (\Omega \times Sn - 1\times Sn - 1) \leq \mu ;

3. f - \in L1
S(\Gamma  - , d\xi ) and there exists \nu \in [0, 1) such that

\| \tau \| L\infty (\Omega \times Sn - 1)\| \sigma b\| L\infty (\Omega \times Sn - 1)\| f - \| \ast \leq \nu (1 - \mu )2.

Definition 2.2. We define the following operators:

Tu :=  - \theta \cdot \nabla xu, Su := \langle u\rangle , \Sigma (m)u :=  - (\sigma a + \sigma bm)u.

Then \Sigma (m) =  - (\sigma a + \sigma bm). Let J(m) : L1
S(\Gamma  - , d\xi ) \mapsto \rightarrow L1(\Omega \times Sn - 1) be defined by

(7) J(m)f - (x, \theta ) = f - (x - \tau  - (x, \theta )\theta , \theta ) exp

\Biggl( \int \tau  - (x,\theta )

0

\Sigma (m)(x - l\theta , \theta )dl

\Biggr) 
,

and let H(m) : L1(\Omega \times Sn - 1) \rightarrow L1(\Omega \times Sn - 1) be defined by

(8) H(m)u(x, \theta ) =

\int \tau  - (x,\theta )

0

exp

\Biggl( \int l

0

\Sigma (m)(x - s\theta , \theta )ds

\Biggr) 
Ku(x - l\theta , \theta )dl.

Lemma 2.3. If the coefficients are admissible, then for any m \in L\infty (\Omega ),

| H(| m| )u(x, \theta )| \leq \mu \| \langle | u| \rangle \| L\infty (\Omega ).
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Proof. Since K| u| (x, \theta ) \leq \| k\| L\infty (\Omega \times Sn - 1\times Sn - 1)\langle | u| \rangle (x), we can derive

| H(| m| )u(x, \theta )| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \tau  - (x,\theta )

0

exp

\Biggl( \int l

0

\Sigma (| m| )(x - s\theta , \theta )ds

\Biggr) 
Ku(x - l\theta , \theta )dl

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int \tau  - (x,\theta )

0

exp

\Biggl( \int l

0

\Sigma (| m| )(x - s\theta , \theta )ds

\Biggr) 
K| u| (x - l\theta , \theta )dl

\leq 
\int \tau  - (x,\theta )

0

\| k\| L\infty (\Omega \times Sn - 1\times Sn - 1)\langle | u| \rangle (x - l\theta )dl

\leq \| \tau \| L\infty (\Omega \times Sn - 1)\| k\| L\infty (\Omega \times Sn - 1\times Sn - 1)\| \langle | u| \rangle \| L\infty (\Omega )

\leq \mu \| \langle | u| \rangle \| L\infty (\Omega ).

In particular, this shows that operatorH(| m| ) is a contraction in L\infty (\Omega , L1(Sn - 1)).

Lemma 2.4. If (\sigma a, \sigma b, k, f - ) is admissible and if m \in L\infty (\Omega ), then the linear
initial value problem

(9)
(T +\Sigma (| m| ) +K)u = 0 in \Omega \times Sn - 1,

u(x, \theta ) = f - (x, \theta ) on \Gamma  - 

has a unique solution u \in L\infty (\Omega , L1(Sn - 1))\cap \scrH 1(\Omega \times Sn - 1), and this solution satisfies

\| \langle | u| \rangle \| L\infty (\Omega ) \leq 
1

1 - \mu 
\| f - \| \ast .

Proof. The solution u to (9) satisfies

(10) u(x, \theta ) = H(| m| )u(x, \theta ) + J(| m| )f - (x, \theta ),

and vice versa, every solution to (10) solves (9) (in a weak sense). Take the absolute
value on both sides of (10), and apply the operator S to get, for every x \in \Omega ,

(11)

\langle | u| \rangle (x) \leq 
\int 
Sn - 1

| H(| m| )u(x, \theta )| d\theta +
\int 
Sn - 1

| J(| m| )f - (x, \theta )| d\theta 

\leq \mu \| \langle | u| \rangle \| L\infty (\Omega ) +

\int 
Sn - 1

| J(| 0| )f - (x, \theta )| d\theta 

\leq \mu \| \langle | u| \rangle \| L\infty (\Omega ) + \| f - \| \ast ,

where we used Lemma 2.3. The supremum on the left-hand side satisfies

(12) \| \langle | u| \rangle \| L\infty (\Omega ) \leq \mu \| \langle | u| \rangle \| L\infty (\Omega ) + \| f - \| \ast .

In particular, this shows that the operatorH(| m| ) is a contraction in L\infty (\Omega , L1(Sn - 1)),
and that J(| m| )f - (x, \theta ) belongs to that space; thus (10) is solvable in L\infty (\Omega , L1(Sn - 1)).
Moreover, it satisfies the estimate in the lemma by (12). Then we can apply T to (10)
to conclude that u \in \scrH 1 and solves (1) in the strong sense.

Corollary 2.5. Under the assumptions of Lemma 2.4, the solution u to (9) also
satisfies \bigm\| \bigm\| \bigm\| \int 

Sn - 1

\int \tau  - (x,\theta )

0

| u(x - s\theta , \theta )| dsd\theta 
\bigm\| \bigm\| \bigm\| 
L\infty (\Omega )

\leq 
\| \tau \| L\infty (\Omega \times Sn - 1)

1 - \mu 
\| f - \| \ast .
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Proof. Using the estimate from Lemma 2.3, and (10), \forall s \in [0, \tau  - (x, \theta )],

(13)
| u(x - s\theta , \theta )| \leq \mu \| \langle | u| \rangle \| L\infty (\Omega ) + | f - (x - s\theta  - \tau  - (x - s\theta , \theta )\theta , \theta | 

= \mu \| \langle | u| \rangle \| L\infty (\Omega ) + | f - (x - \tau  - (x, \theta )\theta , \theta )| .

Apply the integrals with respect to s and \theta ; we obtain
(14)\int 

Sn - 1

\int \tau  - (x,\theta )

0

| u(x - s\theta , \theta )| dsd\theta \leq \tau  - (x, \theta )

\biggl( 
\mu \| \langle | u| \rangle \| L\infty (\Omega ) +

\int 
Sn - 1

| f - (x - \tau  - (x, \theta )\theta , \theta )| d\theta 
\biggr) 
.

Then take the supremum on both sides and use the conclusion of Lemma 2.4 to get\bigm\| \bigm\| \bigm\| \int 
Sn - 1

\int \tau  - (x,\theta )

0

| u(x - s\theta , \theta )| dsd\theta 
\bigm\| \bigm\| \bigm\| 
L\infty (\Omega )

\leq \| \tau \| L\infty (\Omega \times Sn - 1)

\bigl( 
\mu \| \langle | u| \rangle \| L\infty (\Omega ) + \| f - \| \ast 

\bigr) 
\leq \| \tau \| L\infty (\Omega \times Sn - 1)

1

1 - \mu 
(\| f - \| \ast ) .(15)

Lemma 2.6. If (\sigma a, \sigma b, k, f - ) is admissible, then the radiative transport equa-
tion (1) permits a unique solution u(x, \theta ) \in \scrH 1(\Omega \times Sn - 1), and

(16) \| \langle | u| \rangle \| L\infty (\Omega ) \leq 
1

1 - \mu 
\| f - \| \ast .

In addition, if there exists a constant c0 \geq 0 such that f - \geq c0, then there is a
constant C = C(\Omega , \sigma a, \sigma b, k, f - ) > 0 such that u(x, \theta ) \geq Cc0.

Proof. The proof is based on the Banach fixed point theorem. Define the mapping
\scrC : L\infty (\Omega ) \mapsto \rightarrow L\infty (\Omega ) by \scrC (m) := \langle u\rangle , where u(x, \theta ) solves (9). Define the sets of
functions \scrM and \scrM + by

\scrM :=

\Biggl\{ 
m \in L\infty (\Omega ) : | m(x)| \leq 1

1 - \mu 
\| f - \| \ast 

\Biggr\} 
and

\scrM + :=

\Biggl\{ 
m \in L\infty (\Omega ) : 0 \leq m(x) \leq 1

1 - \mu 
\| f - \| \ast 

\Biggr\} 
.

We prove that \scrC is a contraction mapping on \scrM (resp., \scrM +) with the L\infty (\Omega ) metric.
First we show that \scrC : \scrM \rightarrow \scrM . If m \in \scrM , the solution to (9) will satisfy (10). Take
the absolute value on both sides of (10) and apply the operator S. By (16), \langle | u| \rangle \in \scrM ;
hence \langle u\rangle \in \scrM . When f - \geq 0, from the theory of linear transport [10], the solution
u(x, \theta ) to (10) is nonnegative as well through a fixed point iteration; thus we have the
mapping \scrC : \scrM + \rightarrow \scrM +. Next, we show \scrC is indeed a contraction mapping on both
sets. Let m1,m2 \in \scrM (resp., \scrM +) and u1, u2 be the solutions to (9), respectively.
Denote w = u1  - u2; then

(17)
(T +\Sigma (| m1| ) +K)w = \sigma bu2(| m1|  - | m2| ), in \Omega \times Sn - 1,

w(x, \theta ) = 0 on \Gamma  - .

Let q(x, \theta ) := \sigma bu2(| m1|  - | m2| ); then the solution w(x, \theta ) solves

(18) w(x, \theta ) = H(| m1| )w(x, \theta )+
\int \tau  - (x,\theta )

0

exp

\Biggl( \int l

0

\Sigma (| m1| )(x - s\theta )ds

\Biggr) 
q(x - l\theta , \theta )dl.
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Apply the integral operator S on the second term on the right-hand side to get\bigm| \bigm| \bigm| \bigm| \int 
Sn - 1

\int \tau  - (x,\theta )

0

exp

\Biggl( \int l

0

\Sigma (| m1| )(x - s\theta )ds

\Biggr) 
q(x - l\theta , \theta )dld\theta 

\bigm| \bigm| \bigm| \bigm| 
\leq \| \sigma b(| | m1|  - | m2| | )\| L\infty (\Omega \times Sn - 1)

\bigm| \bigm| \bigm| \bigm| \int 
Sn - 1

\int \tau  - (x,\theta )

0

| u2(x - l\theta , \theta )| dld\theta 
\bigm| \bigm| \bigm| \bigm| 

\leq \| \tau \| L\infty (\Omega \times Sn - 1) \| \sigma b(| | m1|  - | m2| | )\| L\infty (\Omega \times Sn - 1)

1

1 - \mu 
\| f - \| \ast .

The last inequality comes directly from Corollary 2.5. As in the proof of Lemma 2.4,

(19) \langle | w| \rangle (x) \leq \mu \| \langle | w| \rangle \| L\infty (\Omega ) +
\| \tau \| L\infty (\Omega \times Sn - 1) \| \sigma b| m1  - m2| \| L\infty (\Omega \times Sn - 1)

1 - \mu 
\| f - \| \ast ,

where we have used the triangle inequality | | m1|  - | m2| | \leq | m1  - m2| . Then use
| \langle w\rangle (x)| \leq \langle | w| \rangle (x) and \langle u2\rangle \in \scrM (resp., \scrM + when f - (x, \theta ) \geq 0) to get

(20) | \langle w\rangle (x)| \leq 
\| \tau \| L\infty (\Omega \times Sn - 1) \| \sigma b| m1  - m2| \| L\infty (\Omega \times Sn - 1)

(1 - \mu )2
\| f - \| \ast .

By condition (3) in Definition 2.1, \scrC is a contraction mapping on both \scrM and \scrM +

with the L\infty (\Omega ) metric. Then by the Banach fixed point theorem, \scrC has a unique
fixed point in \scrM (resp., \scrM + when f - (x, \theta ) \geq 0). Then (16) follows from Lemma 2.4.
In particular, when f - (x, \theta ) \geq c0 > 0, then u(x, \theta ) \geq 0 and 0 \leq \langle u\rangle \leq 1

1 - \mu \| f - \| \ast ;
therefore,

u(x, \theta ) = H(\langle u\rangle )u(x, \theta ) + J(\langle u\rangle )f - (x, \theta ) \geq J

\biggl( 
1

1 - \mu 
\| f - \| \ast 

\biggr) 
f - (x, \theta )

\geq c0 exp

\biggl( 
 - diam(\Omega )

\biggl( 
\| \sigma a\| L\infty (\Omega \times Sn - 1) +

1

1 - \mu 
\| \sigma b\| L\infty (\Omega \times Sn - 1)\| f - \| \ast 

\biggr) \biggr) 
.(21)

Remark 2.7. The mapping \scrC may not be compact when f - \in L1
S(\Gamma  - , d\xi ); there-

fore, the Schauder fixed point theorem does not apply.

3. Main theorems. In this section, we show that the nonlinear albedo operator
determines the three coefficients \sigma a, \sigma b, k, under the conditions \sigma a(x, \theta ) = \sigma a(x) and
\sigma b(x, \theta ) = \sigma b(x). In the following, we consider a source function f - (x, \theta ) in the form
of

(22) f - (x, \theta ) = f0(x, \theta ) + \delta f1(x, \theta )

with \delta \rightarrow 0 a scaling parameter, with fi \in L1
S(\Gamma  - , d\xi ) nonnegative, i = 1, 2. Formally,

the nonnegative solution u expands as

(23) u(x, \theta ) = u0(x, \theta ) + \delta u1(x, \theta ) + \delta 2u2(x, \theta ) + \cdot \cdot \cdot .

Then u0 and u1 will satisfy the equations

(24)
(T +\Sigma (\langle u0\rangle ) +K)u0 = 0 in \Omega \times Sn - 1,

u0(x, \theta ) = f0(x, \theta ) on \Gamma  - ,
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and

(25)
(T +\Sigma (\langle u0\rangle ) +K)u1 =  - \sigma b\langle u1\rangle u0 in \Omega \times Sn - 1,

u1(x, \theta ) = f1(x, \theta ) on \Gamma  - .

When the coefficients are admissible and f0 = 0, then (24) has unique solution u0 = 0,
and (25) becomes the linear transport equation. Then one can follow the method
in [9] to decompose the singularities, which leads to the reconstruction of \sigma a and k;
the latter requires dimension n \geq 3. After the coefficients \sigma a and k are recovered, we
can select arbitrary nonzero f0 \in L1

S(\Gamma  - , d\xi ) such that u0 is nonsingular. Then in
(25), the most singular part in the solution will come from the source f1 if we select it
to be singular in angular variable \theta . Therefore, \Sigma (\langle u0\rangle ) can be recovered, and then u0

can be solved from (24), which finally reconstructs \sigma b. In the following, we rigorously
prove these claims.

3.1. Reconstruction of \bfitsigma \bfita . In the next theorem, we show that we can recover
the X-ray transform of \sigma a(x, \theta ). As a corollary, if \sigma a is \theta -independent, one recovers it
through the inverse X-ray transform [21].

Here and below, we take sources approximating singular ones in the spirit of [9].
Let B1 be the unit ball centered at origin in Rn, h \in C\infty 

0 (B1) with 0 \leq h \leq 1, and
h \equiv 1 near origin be a cut-off function. Given \theta \prime \in Sn - 1, define the source function

(26) f\varepsilon ,\delta 
 - (x, \theta ; \theta \prime ) =

\delta 

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
,

where \delta , \varepsilon > 0 are small parameters such that f\varepsilon ,\delta 
 - \in LS

 - (\Gamma  - , d\xi ) and \omega n - 1 is the
constant defined by

(27) \omega n - 1 := lim
\varepsilon \rightarrow 0

\int 
Sn - 1

1

\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
d\theta .

We view f\varepsilon ,\delta 
 - as \delta times an approximation (a Friedrichs mollifier) of the delta function

\delta \theta \prime (\theta ) on the sphere. Then f\varepsilon ,\delta 
 - plays the role of \delta f1 in (22) with f0 = 0 there.

Theorem 3.1. Let f - = f\varepsilon ,\delta 
 - , and assume the tuple (\sigma a, \sigma b, k, f - ) is admissible;

then

lim
\gamma \rightarrow 0

lim
\varepsilon ,\delta \rightarrow 0

\int 
Sn - 1

u\varepsilon ,\delta (x, \theta )

\delta 
h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta = exp

\Biggl( 
 - 
\int \tau  - (x,\theta \prime )

0

\sigma a(x - s\theta \prime , \theta \prime )ds

\Biggr) 
,

where u\varepsilon ,\delta is the unique solution to (1) with boundary condition f\varepsilon ,\delta 
 - .

Proof. Let w\varepsilon be the unique solution to the following radiative transport equation:

(28)

(T +\Sigma (0) +K)w\varepsilon = 0 in \Omega \times Sn - 1,

w\varepsilon (x, \theta ) =
1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
on \Gamma  - .

The solution w\varepsilon then satisfies
(29)

w\varepsilon (x, \theta ) =
1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
exp

\Biggl( 
 - 
\int \tau  - (x,\theta )

0

\sigma a(x - s\theta , \theta )ds

\Biggr) 
+H(0)w\varepsilon ,
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where | H(0)w\varepsilon | \leq \mu \| \langle w\varepsilon \rangle \| L\infty (\Omega ), which is uniformly bounded from Lemma 2.3.
Therefore, the following iterated limit holds:
(30)

lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

w\varepsilon (x, \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

= lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
exp

\Biggl( 
 - 
\int \tau  - (x,\theta )

0

\sigma a(x - s\theta , \theta )ds

\Biggr) 
h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

+ lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

H(0)w\varepsilon (x, \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

=exp

\Biggl( 
 - 
\int \tau  - (x,\theta \prime )

0

\sigma a(x - s\theta \prime , \theta \prime )ds

\Biggr) 
.

The term containing H(0) vanishes because when \gamma \rightarrow 0,
(31)\bigm| \bigm| \bigm| \bigm| \int 

Sn - 1

H(0)w\varepsilon (x, \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

\bigm| \bigm| \bigm| \bigm| \leq \mu \| \langle w\varepsilon \rangle \| L\infty (\Omega )

\int 
Sn - 1

h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta \rightarrow 0.

Denote \phi = 1
\delta u

\varepsilon ,\delta  - w\varepsilon ; then

(32)
(T +\Sigma (| \langle u\varepsilon ,\delta \rangle | ) +K)\phi = \sigma b| \langle u\varepsilon ,\delta \rangle | w\varepsilon in \Omega \times Sn - 1,

\phi (x, \theta ) = 0 on \Gamma  - .

Then one can show that \phi (x, \theta ) = \scrL 1(x, \theta ) + \scrL 2(x, \theta ), where

(33)

\scrL 1 =

\int \tau  - (x,\theta )

0

exp

\Biggl( \int l

0

\Sigma (| \langle u\varepsilon ,\delta \rangle | )(x - s\theta , \theta )ds

\Biggr) 
K\phi (x - l\theta , \theta )dl,

\scrL 2 =  - 
\int \tau  - (x,\theta )

0

exp

\Biggl( \int l

0

\Sigma (| \langle u\varepsilon ,\delta \rangle | )(x - s\theta , \theta )ds

\Biggr) 
\sigma b| \langle u\varepsilon ,\delta \rangle | w\varepsilon (x - l\theta , \theta )dl.

The first term \scrL 1 is uniformly bounded in the L\infty norm; this could be derived from
Lemmas 2.3 and 2.6 by observing that

(34)
1

\varepsilon n - 1

\int 
Sn - 1

h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
d\theta =

\int 
1
\varepsilon Sn - 1

h(\theta  - \theta \prime )d\theta \leq c| \partial B1| 

for some absolute constant c > 0. Therefore,

(35)

\int 
Sn - 1

\scrL 1(x, \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta = \scrO (\gamma n - 1) \rightarrow 0, as \gamma \rightarrow 0.

For the second term \scrL 2 we have\bigm| \bigm| \bigm| \bigm| \int 
Sn - 1

\scrL 2(x, \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

\bigm| \bigm| \bigm| \bigm| \leq \int 
Sn - 1

\int \tau  - (x,\theta )

0

\sigma b| \langle u\varepsilon ,\delta \rangle | w\varepsilon (x - l\theta , \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta dl

\leq \| \sigma b\langle u\varepsilon ,\delta \rangle \| L\infty (\Omega )

\int 
Sn - 1

\int \tau  - (x,\theta )

0

w\varepsilon (x - l\theta , \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta dl.

Note that \| \sigma b\langle u\varepsilon ,\delta \rangle \| L\infty (\Omega ) = \scrO (\delta ) by Lemma 2.6, and the integral part is uniformly
bounded by the decomposition for w\varepsilon in (29); therefore

(36) lim
\gamma \rightarrow 0

lim
\varepsilon ,\delta \rightarrow 0

\int 
Sn - 1

\scrL 2(x, \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta = 0.
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Combining (30), (35), and (36), we arrive at our conclusion.

3.2. Reconstruction of \bfitk . We show next that once \sigma a is known, one can re-
cover k pointwise.

When n \geq 3, we let \theta , \theta \prime \in Sn - 1 such that \theta ∦ \theta \prime and denote by \pi \theta ,\theta \prime (x) the
projection of x onto the subspace \Theta spanned by \theta , \theta \prime . Let \theta \prime \bot \in \Theta = span(\theta , \theta \prime ) be
the unit vector such that \theta \prime \bot \cdot \theta \prime = 0. Take any \varphi \in C\infty 

0 ( - 1, 1) such that 0 \leq \varphi \leq 1
and

\int 
R \varphi (t)dt = 1. We then define the test function

(37) \phi \gamma 1,\gamma 2
(x, \theta , \theta \prime ) =

1

\gamma 1
\varphi 

\biggl( 
x \cdot \theta \prime \bot 
\gamma 1\theta \cdot \theta \prime \bot 

\biggr) 
h

\biggl( 
x - \pi \theta ,\theta \prime (x)

\gamma 2

\biggr) 
.

We also define the source function f\varepsilon ,\varepsilon \prime ,\delta 
 - in the form of

(38) f\varepsilon ,\varepsilon \prime ,\delta 
 - (x, \theta ;x\prime , \theta \prime ) =

\delta 

\omega 2
n - 1\varepsilon 

n - 1
h

\biggl( 
x - x\prime 

\varepsilon \prime 

\biggr) 
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
such that f\varepsilon ,\varepsilon \prime ,\delta 

 - \in LS
1 (\Gamma  - , d\xi ); the constant \omega n - 1 is defined by (27).

Theorem 3.2. Let n \geq 3, set f - = f\varepsilon ,\varepsilon \prime ,\delta 
 - , and assume the tuple (\sigma a, \sigma b, k, f - ) is

admissible. Then

lim
\gamma 1\rightarrow 0

lim
\gamma 2\rightarrow 0

lim
\varepsilon \prime \rightarrow 0

lim
\varepsilon \rightarrow 0

lim
\delta \rightarrow 0

\int 
\partial \Omega 

u\varepsilon ,\varepsilon \prime ,\delta (x+ \tau +(x, \theta )\theta , \theta ;x\prime , \theta \prime )

\varepsilon \prime n - 1\delta 
\phi \gamma 1,\gamma 2 (x

\prime  - x+ \tau  - (x, \theta \prime )\theta \prime , \theta , \theta \prime )d\mu (x\prime )

= exp

\Biggl( 
 - 
\int \tau +(x,\theta )

0
\sigma a(x+ s\theta )ds

\Biggr) 
exp

\Biggl( 
 - 
\int \tau  - (x,\theta \prime )

0
\sigma a(x - s\theta \prime )ds

\Biggr) 
k(x, \theta \prime , \theta ),

where u\varepsilon ,\varepsilon \prime ,\delta (x, \theta ;x\prime , \theta \prime ) is the unique solution to (1) with boundary condition f\varepsilon ,\varepsilon \prime ,\delta 
 - .

The limit holds in L1
loc(\Omega \times (Sn - 1 \times Sn - 1\setminus D)) where D = \{ (\theta , \theta \prime ) \in Sn - 1 \times Sn - 1 | \theta ∦

\theta \prime \} .
Proof. Similarly to section 3 of [9], we can write the decomposed solution as

(39)

u\varepsilon ,\varepsilon \prime ,\delta (x, \theta ) = J(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )f - +H(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )J(| \langle u\varepsilon ,\delta \rangle | )f - 
+ (I  - H(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )) - 1H2(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )J(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )f - 

= \scrL 1(x, \theta ) + \scrL 2(x, \theta ) + \scrL 3(x, \theta ),

with the terms there corresponding to the ballistic, the single-scattering, and the
multiple-scattering components. First, it is simple to see that when \varepsilon is small enough

so that | \theta  - \theta \prime | > \varepsilon , then h( \theta  - \theta \prime 

\varepsilon ) = 0; hence
(40)\int 

\partial \Omega 

\scrL 1(x+ \tau +(x, \theta )\theta , \theta )

\varepsilon \prime n - 1\delta 
\phi \gamma 1,\gamma 2(x

\prime  - x+ \tau  - (x, \theta 
\prime )\theta \prime , \theta , \theta \prime )d\mu (x\prime )

=

\int 
\partial \Omega 

1

\omega 2
n - 1\varepsilon 

\prime n - 1\varepsilon n - 1
h

\biggl( 
x - \tau  - (x, \theta )\theta  - x\prime 

\varepsilon 

\biggr) 
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
\times exp

\Biggl( 
 - 
\int \tau (x,\theta )

0

\Sigma (| \langle u\varepsilon ,\delta \rangle | )(x - s\theta , \theta )ds

\Biggr) 
\phi \gamma 1,\gamma 2(x

\prime  - x+ \tau  - (x, \theta 
\prime )\theta \prime , \theta , \theta \prime )d\mu (x\prime )

= 0.

Next, we compute the contribution of the single-scattering term. Let E(x, y,m) de-
note

E(x, y,m) = exp

\biggl( 
| x - y| 

\int 1

0

\Sigma (m)(x+ s(y  - x))ds

\biggr) 
.
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In order to make the derivation concise, we also introduce the following notation:

(41)

x\pm ,\theta = x\pm \tau \pm (x, \theta )\theta ,

yl,\theta = x+,\theta  - l\theta ,

zl,\theta ,\theta \prime \prime = yl,\theta  - \tau  - (yl, \theta 
\prime \prime )\theta \prime \prime .

Then we can write

lim
\varepsilon \prime \rightarrow 0

lim
\varepsilon \rightarrow 0

lim
\delta \rightarrow 0

\int 
\partial \Omega 

\scrL 2(x+ \tau +(x, \theta )\theta , \theta )

\varepsilon \prime n - 1\delta 
\phi \gamma 1,\gamma 2(x

\prime  - x+ \tau  - (x, \theta 
\prime )\theta \prime , \theta , \theta \prime )d\mu (x\prime )

= lim
\varepsilon \prime \rightarrow 0

lim
\varepsilon \rightarrow 0

lim
\delta \rightarrow 0

\int 
\partial \Omega 

\int \tau (x,\theta )

0

\int 
Sn - 1

E(x+,\theta , yl,\theta , | \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )E(yl,\theta , zl,\theta ,\theta \prime \prime , | \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )

\times 1

\omega n - 1\varepsilon \prime n - 1
h

\biggl( 
z\theta \prime \prime  - x\prime 

\varepsilon \prime 

\biggr) 
1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta \prime \prime  - \theta \prime 

\varepsilon 

\biggr) 
k(yl,\theta , \theta 

\prime \prime , \theta )

\times \phi \gamma 1,\gamma 2
(x\prime  - x+ \tau  - (x, \theta 

\prime )\theta \prime , \theta , \theta \prime )d\theta \prime \prime dld\mu (x\prime )

= lim
\varepsilon \prime \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
\partial \Omega 

\int \tau (x,\theta )

0

\int 
Sn - 1

E(x+,\theta , yl,\theta , 0)E(yl,\theta , zl,\theta ,\theta \prime \prime , 0)

\times 1

\omega n - 1\varepsilon \prime n - 1
h

\biggl( 
z\theta \prime \prime  - x\prime 

\varepsilon \prime 

\biggr) 
1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta \prime \prime  - \theta \prime 

\varepsilon 

\biggr) 
k(yl,\theta , \theta 

\prime \prime , \theta )

\times \phi \gamma 1,\gamma 2
(x\prime  - x+ \tau  - (x, \theta 

\prime )\theta \prime , \theta , \theta \prime )d\theta \prime \prime dld\mu (x\prime )

= lim
\varepsilon \prime \rightarrow 0

\int 
\partial \Omega 

\int \tau (x,\theta )

0

E(x+,\theta , yl,\theta , 0)E(yl,\theta , zl,\theta ,\theta \prime , 0)

\times 1

\omega n - 1\varepsilon \prime n - 1
h

\biggl( 
z\theta \prime  - x\prime 

\varepsilon \prime 

\biggr) 
k(yl,\theta , \theta 

\prime , \theta )

\times \phi \gamma 1,\gamma 2
(x\prime  - x+ \tau  - (x, \theta 

\prime )\theta \prime , \theta , \theta \prime )dld\mu (x\prime )

=

\int \tau (x,\theta )

0

E(x+,\theta , yl,\theta , 0)E(yl,\theta , zl,\theta ,\theta \prime , 0)k(yl,\theta , \theta 
\prime , \theta )

\times \phi \gamma 1,\gamma 2(yl,\theta  - x+ \tau  - (x, \theta 
\prime )\theta \prime , \theta , \theta \prime )dl.

The right-hand side has the limit
(42)

lim
\gamma 1\rightarrow 0

lim
\gamma 2\rightarrow 0

\int \tau (x,\theta )

0

E(x+,\theta , yl,\theta , 0)E(yl,\theta , zl,\theta ,\theta \prime , 0)k(yl,\theta , \theta 
\prime , \theta )

\times \phi \gamma 1,\gamma 2(yl,\theta  - x+ \tau  - (x, \theta 
\prime )\theta \prime , \theta , \theta \prime )dl

= lim
\gamma 1\rightarrow 0

\int \tau (x,\theta )

0

E(x+,\theta , yl,\theta , 0)E(yl,\theta , zl,\theta ,\theta \prime , 0)k(yl,\theta , \theta 
\prime , \theta )

1

\gamma 1
\varphi 

\biggl( 
\tau +(x, \theta ) - l

\gamma 1

\biggr) 
dl

= E(x+,\theta , x, 0)E(x, x - ,\theta \prime , 0)k(x, \theta 
\prime , \theta ).

To show that the multiscattering contribution is zero, we only need to show that
1

(\varepsilon \prime )n - 1\delta \scrL 3(x, \theta ) \in L1(\Omega \times Sn - 1) uniformly and hence is uniformly bounded in L1(\Gamma \pm , d\xi ).

Given any \chi \in C\infty 
0 (\Omega \times (Sd - 1 \times Sd - 1\setminus D)), we have

(43)\int 
\Omega \times Sn - 1\times \Gamma  - 

\scrL 3(x+ \tau +(x, \theta ), \theta ;x
\prime , \theta \prime )

\varepsilon \prime n - 1\delta 
\phi \gamma 1,\gamma 2(x

\prime  - x+ \tau  - (x, \theta 
\prime )\theta \prime , \theta , \theta \prime )\chi d\xi (x\prime , \theta \prime )d\mu (x)d\theta 

\leq 1

\gamma 1

\int 
T\gamma 2

\scrL 3(x+ \tau +(x, \theta ), \theta ;x
\prime , \theta \prime )

\varepsilon \prime n - 1\delta 
\chi d\mu (x)d\theta d\xi (x\prime , \theta \prime ),
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where T\gamma 2
= \{ (x, \theta , x\prime , \theta \prime ) \in \Omega \times Sn - 1\times \Gamma  - \cap supp\chi and | x - x\prime  - \pi \theta ,\theta \prime (x - x\prime )| \leq c\gamma 2\} .

When 1
(\varepsilon \prime )n - 1\delta \scrL 3(x, \theta ) is uniformly bounded in L1(\Gamma +, d\xi ), the integrand of (43) is

an L1 function. On the other hand, meas(T\gamma 2
) \rightarrow 0 as \gamma 2 \rightarrow 0; therefore the integral

vanishes as \gamma 2 \rightarrow 0. In the following, we prove 1
(\varepsilon \prime )n - 1\delta \scrL 3(x, \theta ) \in L1(\Omega \times Sn - 1) with

a uniform bound there with respect to \varepsilon \prime \ll 1 and \delta \ll 1.
Since (I  - H(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )) - 1 is a uniformly bounded operator in L1(\Omega \times Sn - 1),

we merely have to show that 1
(\varepsilon \prime )n - 1\delta H

2(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )J(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )f - is also uniformly

bounded; see (39). Let yl,\theta = x  - l\theta , zs,\theta \prime \prime = yl,\theta  - s\theta \prime \prime , and w\theta \prime \prime \prime = zs,\theta \prime \prime  - 
\tau  - (zs,\theta \prime \prime , \theta \prime \prime \prime )\theta \prime \prime \prime . Then
(44)\bigm| \bigm| \bigm| \bigm| \bigm| H2(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )J(| \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )f - (x, \theta )

\varepsilon \prime n - 1\delta 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int \tau  - (x,\theta )

0

\int 
Sn - 1

\int \tau  - (yl,\theta ,\theta 
\prime \prime )

0

\int 
Sn - 1

E(x, yl,\theta , | \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )E(yl,\theta , zs,\theta \prime \prime , | \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )

\times E(zs,\theta \prime \prime , w\theta \prime \prime \prime , | \langle u\varepsilon ,\varepsilon \prime ,\delta \rangle | )k(yl,\theta , \theta \prime \prime , \theta )k(zs,\theta \prime \prime , \theta \prime \prime \prime , \theta \prime \prime )| f - (w\theta \prime \prime \prime , \theta 
\prime \prime \prime )| d\theta \prime \prime \prime dsd\theta \prime \prime dl

\leq 
\int \tau  - (x,\theta )

0

\int 
Sn - 1

\int \tau  - (yl,\theta ,\theta 
\prime \prime )

0

\int 
Sn - 1

k(yl,\theta , \theta 
\prime \prime , \theta )k(zs,\theta \prime \prime , \theta 

\prime \prime \prime , \theta \prime \prime )| f - (w\theta \prime \prime \prime , \theta 
\prime \prime \prime )| d\theta \prime \prime \prime dsd\theta \prime \prime dl.

Since zs,\theta \prime \prime = yl,\theta  - s\theta \prime \prime , we change the variable such that dzs,\theta \prime \prime = sn - 1dsd\theta \prime \prime , and we
recall the formula

(45)

\int 
\Omega \times Sn - 1

g(x, \theta )dxd\theta =

\int 
\Gamma  - 

\int \tau +(x\prime ,\theta )

0

g(x\prime + t\theta , \theta )dtd\xi (x\prime , \theta )

(see [9]) with x\prime = x - \tau  - (x, \theta )\theta . We obtain
(46)\int \tau  - (x,\theta )

0

\int 
Sn - 1

\int \tau  - (yl,\theta ,\theta 
\prime \prime )

0

\int 
Sn - 1

k(yl,\theta , \theta 
\prime \prime , \theta )k(zs,\theta \prime \prime , \theta \prime \prime \prime , \theta \prime \prime )| f - (w\theta \prime \prime \prime , \theta \prime \prime \prime )| d\theta \prime \prime \prime dsd\theta \prime \prime dl

=

\int \tau  - (x,\theta )

0

\int 
\Gamma  - 

\int \tau +(w\theta \prime \prime \prime ,\theta 
\prime \prime \prime )

0

k(yl,\theta , \theta 
\prime \prime , \theta )k(w\theta \prime \prime \prime + t\theta \prime \prime \prime , \theta \prime \prime \prime , \theta \prime \prime )

\times 1

\varepsilon \prime n - 1
| f - (w\theta \prime \prime \prime , \theta \prime \prime \prime )| s1 - ndtd\xi (w\theta \prime \prime \prime , \theta \prime \prime \prime )dl

\leq C

\bigm\| \bigm\| \bigm\| \bigm\| 1

\varepsilon \prime n - 1
f - 

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma  - ,d\xi )

\int \tau  - (x,\theta )

0

\int \tau +(x\prime ,\theta \prime )

0

s1 - ndtdl \in L1(\Omega \times Sn - 1),

which is uniformly bounded in L1(\Omega \times Sn - 1) with respect to \varepsilon \prime , where s = | yl,\theta  - (x\prime +
t\theta \prime )| and C = \| k\| 2L\infty (\Omega \times Sn - 1\times Sn - 1).

3.3. Reconstruction of \bfitsigma \bfitb . Let the source function f - be chosen in the fol-
lowing form:

(47) f\varepsilon ,\delta 
 - (x, \theta ; \theta \prime ) = c0 +

\delta 

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
,

where c0 is a positive constant and \delta , \varepsilon are positive small parameters. Compared with
(26), here we have added f0 = c0 in (22).

Theorem 3.3. Let f - = f\varepsilon ,\delta 
 - , and assume the tuple (\sigma a, \sigma b, k, f - ) is admissible;

then
(48)

lim
\delta \rightarrow 0

lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

u\varepsilon ,\delta (x, \theta )

\delta 
h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta = exp

\Biggl( \int \tau  - (x,\theta \prime )

0

\Sigma (| \langle w\rangle | )(x - s\theta \prime )ds

\Biggr) 
,
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where u\varepsilon ,\delta is the unique solution to (1) with boundary condition f - , and w is the
unique solution to (1) with the boundary condition f - = c0.

Proof. Let w(x, \theta ) be the solution to the following equation:

(49)
(T +\Sigma (| \langle w\rangle | ) +K)w = 0 in \Omega \times Sn - 1,

w(x, \theta ) = c0 on \Gamma  - .

Then w \in L\infty (\Omega \times Sn - 1), which implies

(50) lim
\delta \rightarrow 0

lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

w(x, \theta )

\delta 
h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta = 0.

We denote \phi = 1
\delta 

\bigl( 
u\varepsilon ,\delta  - w

\bigr) 
. It satisfies

(51)

(T +\Sigma (| \langle u\varepsilon ,\delta \rangle | ) +K)\phi = \sigma b

\biggl( 
| \langle u\varepsilon ,\delta \rangle |  - | \langle w\rangle | 

\delta 

\biggr) 
w in \Omega \times Sn - 1,

\phi (x, \theta ) =
1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
on \Gamma  - .

Therefore, the solution \phi can be written in the following form:

\phi (x, \theta ) = exp

\Biggl( \int \tau  - (x,\theta )

0

\Sigma (| \langle u\varepsilon ,\delta \rangle | )(x - s\theta )ds

\Biggr) 
1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 

+

\int \tau  - (x,\theta )

0

exp

\biggl( \int l

0

\Sigma (| \langle u\varepsilon ,\delta \rangle | )(x - s\theta )ds

\biggr) 
K\phi (x - l\theta , \theta )dl

 - 
\int \tau  - (x,\theta )

0

exp

\biggl( \int l

0

\Sigma (| \langle u\varepsilon ,\delta \rangle | )(x - s\theta )ds

\biggr) \biggl[ 
\sigma b

\biggl( 
| \langle u\varepsilon ,\delta \rangle |  - | \langle w\rangle | 

\delta 

\biggr) 
w(x - l\theta , \theta )

\biggr] 
dl

= \scrL 1(x, \theta ) + \scrL 2(x, \theta ) + \scrL 3(x, \theta ).

Integrate \phi (x, \theta ) over Sn - 1 and note that | | \langle u\varepsilon ,\delta \rangle |  - | \langle w\rangle | | \leq \delta | \langle \phi \rangle | to obtain

(52) \| \langle \phi \rangle \| L\infty (\Omega ) \leq 
1

(1 - \mu )(1 - \nu )

\bigm| \bigm| \bigm| \bigm| \int 
Sn - 1

1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
d\theta 

\bigm| \bigm| \bigm| \bigm| .
This implies that \scrL 2,\scrL 3 are both uniformly bounded in L\infty (\Omega \times Sn - 1); hence

(53)

lim
\delta \rightarrow 0

lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

\phi (x, \theta )h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

= lim
\delta \rightarrow 0

lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

\scrL 1(x, \theta )
1

\omega n - 1\varepsilon n - 1
h

\biggl( 
\theta  - \theta \prime 

\varepsilon 

\biggr) 
h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

= lim
\delta \rightarrow 0

exp

\Biggl( \int \tau  - (x,\theta \prime )

0

\Sigma (| \langle u\varepsilon ,\theta \prime 
\rangle | )(x - s\theta \prime )ds

\Biggr) 

=exp

\Biggl( \int \tau  - (x,\theta \prime )

0

\Sigma (| \langle w\rangle | )(x - s\theta \prime )ds

\Biggr) 
.

Combine this with (50) to obtain

lim
\delta \rightarrow 0

lim
\gamma \rightarrow 0

lim
\varepsilon \rightarrow 0

\int 
Sn - 1

u\varepsilon ,\delta (x, \theta )

\delta 
h

\biggl( 
\theta  - \theta \prime 

\gamma 

\biggr) 
d\theta 

= exp

\Biggl( \int \tau  - (x,\theta \prime )

0

\Sigma (| \langle w\rangle | )(x - s\theta \prime )ds

\Biggr) 
.(54)
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Theorem 3.3 implies that \Sigma (| w| ) can be reconstructed from the albedo operator.
Therefore, the solution w of (49) can be uniquely determined, and there exists a
constant C > 0 such that w(x, \theta ) \geq Cc0 by Lemma 2.6; and when \sigma a is known, one
can find \sigma b = (\Sigma (| w| ) - \sigma a)/| \langle w\rangle | .

4. Scattering-free media. For media with k = 0, there exists a more direct
explicit reconstruction method. Moreover, no smallness assumptions on the boundary
source are needed. Equation (1) reduces to

(55) \theta \cdot \nabla u+ \sigma au+ \sigma b\langle u\rangle u = 0.

Choose the boundary condition

(56) f - = v - (x)\delta \theta 0(\theta )

in (1) with some v - (x) \geq 0 in C1. We are going to look for a nonnegative weak
solution, i.e., for a solution of the integrated equation

(57) u(x, \theta ) = v - (x - \tau  - (x, \theta )\theta )\delta \theta 0(\theta ) exp

\Biggl( 
 - 
\int \tau  - (x,\theta )

0

(\sigma a + \sigma b\langle u\rangle )(x - s\theta )ds

\Biggr) 

in the following class: u(x, \theta ) is a measure-valued function in \theta , C1(\Omega ) \cap C(\=\Omega ) in
the x variable. Then \langle u\rangle (x) is in the latter space. By (57), u = \delta \theta 0(\theta )v with v \in 
C(\=\Omega \times Sn - 1); also, v is C1 except for (x, \theta ) such that x \in \partial \Omega and \theta is tangent to \partial \Omega 
(which is \partial \Gamma 0). Clearly, only the value of v at \theta = \theta 0 matters for u. With some abuse
of notation, we denote v(x, \theta 0) by v(x). Then by (56), v must satisfy the boundary
condition v = v - on \partial \Omega .

In view of the C1 regularity of v as stated above, we can differentiate (57) to get
back to the differential form (55), which in this case reduces to

(58)
\bigl( 
\theta 0 \cdot \nabla v + \sigma av + \sigma bv

2
\bigr) 
= 0,

since \langle u\rangle = v. Here, \sigma a and \sigma b can depend on \theta as well; then \theta = \theta 0 above. Therefore,
on each line s \mapsto \rightarrow (x0 + s\theta 0, \theta 0), the equation reduces to

(59) v\prime + \sigma av + \sigma bv
2 = 0.

This is a homogeneous Riccati equation. For each initial condition v(0) = v - (x0), we
measure v(\tau +(x, \theta 0)).

Let \mu (t) = exp
\bigl( 
 - 
\int t

0
\sigma a(s) ds

\bigr) 
; then 1/\mu is the integrating factor. Multiply (59)

by 1/\mu to get

(60) (v/\mu )\prime + \sigma bv
2/\mu = 0.

This is a separable ODE for v/\mu , and the solution satisfies

(61)
\mu 

v
=

1

v - (x0)
+

\int s

0

\mu (t)\sigma b(t) dt;

therefore,

(62) v(s) = \mu (s)

\biggl( 
1

v - (x0)
+

\int s

0

\mu (t)\sigma b(t) dt

\biggr)  - 1

.
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Hence, at s = \tau +(x0, \theta 0) we recover the attenuated X-ray transform of \sigma b with at-
tenuation \sigma a, assuming \sigma a is known. One way to recover \sigma a is to replace v - (x0)
by \delta v - (x0) as in the previous section with \delta \rightarrow 0; then we get the X-ray transform
 - log \mu (\tau +(x, \theta 0)) of \sigma a; and by varying \theta , we can recover \sigma a. Then we recover \sigma b by
inverting the attenuated X-ray transform of \sigma b; see [8, 21].

If we do not want to deal with small signals which may be corrupted by back-
ground noise, we can proceed as follows. To reconstruct \sigma a, we choose two distinct
boundary sources f - ,j = v - ,j(x)\delta \theta 0(\theta ), j = 1, 2, such that \forall x \in \partial \Omega , v - ,1(x) >
v - ,2(x). Let v1, v2 be the solutions to (59) with vj(0) = v - ,j(x0); then from (62) we
observe that

(63)
1

vj(s)
=

1

\mu (s)

\biggl( 
1

v - ,j(x0)
+

\int s

0

\mu (t)\sigma b(t) dt

\biggr) 
, j = 1, 2.

Subtracting the above formulas with j = 1, 2, we obtain

(64)
1

v1(s)
 - 1

v2(s)
=

1

\mu (s)

\biggl( 
1

v - ,1(x0)
 - 1

v - ,2(x0)

\biggr) 
,

which implies

(65) \mu (s) =

\biggl( 
1

v1(s)
 - 1

v2(s)

\biggr)  - 1\biggl( 
1

v - ,1(x0)
 - 1

v - ,2(x0)

\biggr) 
.

Take s = \tau +(x0, \theta 0) to get \mu (\tau +(x0, \theta 0)) = exp( - X\sigma a(x0, \theta 0)), where X is the X-ray
transform, which can be determined by (65). Therefore, we can recover \sigma a first by
varying \theta 0 and inverting the X-ray transform of \sigma a as above. After that, we recover
\sigma b as above.

Also, one can take v - (x0) approximating \delta x0
(x); this corresponds to a single

beam.
Therefore, we proved the following.

Theorem 4.1. Assume k = 0. Let \sigma a and \sigma b depend only on x and be in C0(\Omega ).
Then \scrA acting on f - as in (56) determines \sigma a, \sigma b uniquely by inverting their attenu-
ated, respectively, nonattenuated, X-ray transforms, which can be determined by (62)
and (65).
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