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Summary

A general framework is set up to study the asymptotic properties of the intent-to-treat Wilcoxon–
Mann–Whitney test in randomized experiments with nonignorable noncompliance. Under location-shift
alternatives, the Pitman efficiencies of the intent-to-treat Wilcoxon–Mann–Whitney and t tests are derived.
It is shown that the former is superior if the compliers are more likely to be found in high-density regions of
the outcome distribution or, equivalently, if the noncompliers tend to reside in the tails. By logical extension,
the relative efficiency of the two tests is sharply bounded by least and most favourable scenarios in which
the compliers are segregated into regions of lowest and highest density, respectively. Such bounds can be
derived analytically as a function of the compliance rate for common location families such as Gaussian,
Laplace, logistic and t distributions. These results can help empirical researchers choose the more efficient
test for existing data, and calculate sample size for future trials in anticipation of noncompliance. Results
for nonadditive alternatives and other tests follow along similar lines.

Some key words: Causal inference; Instrumental variable; Nonignorable missingness; Pitman efficiency; Randomized
controlled trial; t test.

1. Motivation

The asymptotic properties of the two-sample Wilcoxon–Mann–Whitney test (Wilcoxon, 1945; Mann &
Whitney, 1947) have been thoroughly investigated in the literature, especially in comparison with the t test
(Sidak et al., 1999). It is well known that the relative performance of the Wilcoxon–Mann–Whitney and
t tests depends on the shape of the underlying outcome distribution, with the former being superior under
heavy-tailed distributions. In fact, the asymptotic relative efficiency of the two tests has been explicitly
derived for various outcome distributions, such as the Gaussian, logistic and Laplace families, under
location-shift alternatives (see, e.g., van der Vaart, 1998, Ch. 14).

The situation may be different in the presence of nonignorable, i.e., informative, noncompliance to
group assignment (Angrist et al., 1996). In such settings, an intent-to-treat test that compares the sub-
jects according to their randomization status is commonly employed to circumvent the selection bias
in the treatment received (Gupta, 2011). Because of the unknown relationship between the compli-
ance status and potential outcome, however, the power structures of such tests remain opaque. In this
paper, we use the instrumental-variable framework (Angrist et al., 1996; Imbens & Rubin, 1997) to study
the asymptotic properties of the intent-to-treat Wilcoxon–Mann–Whitney test in the presence of non-
compliance, with particular emphasis on comparison with its t-test counterpart in detecting additive
treatment effects.
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2. Asymptotic theory

2.1. General set-up for intent-to-treat tests

Let Y (z, a) denote the continuous potential outcome under randomization status z and received treatment
a, where z and a are binary variables, each taking value 1 for the active treatment and value 0 for the control
(Rubin, 1978). Similarly, let A(z) denote the potential treatment under randomization status z. This notation
defines four compliance classes: always-taker if A(z) = 1; complier if A(z) = z; never-taker if A(z) = 0; and
defier if A(z) = 1−z (z = 1, 0). Under the stable unit treatment value assumption (Imbens & Rubin, 2015),
the observed treatment and outcome are A = A(Z) and Y = Y (Z , A), respectively. In addition, we assume
that randomization has a nontrivial effect on the treatment received, i.e., pr{A(1) = 1} |= pr{A(0) = 1},
and that there is no defier in the population, i.e., A(1) � A(0) almost surely. In the interest of generality,
we relax the usual exclusion restriction assumption that Y (1, a) = Y (0, a) (a = 1, 0) with probability 1
(Angrist et al., 1996) to allow for possible randomization direct effects.

Denote the proportions of the three remaining compliance classes by pa = pr{A(1) = A(0) = 1},
pc = pr{A(1) = 1, A(0) = 0} and pn = pr{A(1) = A(0) = 0}. By Imbens & Rubin (1997), the observed
outcomes in each randomized group can be viewed as a mixture of potential outcomes from the three
classes. To be specific, let ωz(· | θ) denote the cumulative distribution function for (Y | Z = z) (z = 1, 0),
where θ is some real-valued parameter. Then

ω1(· | θ) = pcν1c(· | θ)+ paν1a(· | θ)+ pnν1n(· | θ),
ω0(· | θ) = pcν0c(· | θ)+ paν0a(· | θ)+ pnν0n(· | θ), (1)

where {Y (z, z) | A(1) = 1, A(0) = 0} ∼ νzc(· | θ), {Y (z, 1) | A(1) = A(0) = 1} ∼ νza(· | θ) and
{Y (z, 0) | A(1) = A(0) = 0} ∼ νzn(· | θ) (z = 1, 0). Suppose that θ = 0 represents a scenario of the sharp
null hypothesis

H0 : Y (z, a) = Y (0, 0) (z, a = 1, 0),

so that νzc(· | 0) = νc(·), νza(· | 0) = νa(·) and νzn(· | 0) = νn(·) (z = 1, 0) for some νc, νa and νn. Then
ω1(· | 0) = ω0(· | 0) = ν(·), where ν = pcνc + paνa + pnνn.

With a random sample of size n, suppose that a level-α test (0 < α < 1) rejects H0 and accepts
HA : θ > 0 when n1/2|Tn − μ(0)|/σ̂n > z1−α/2, where Tn is a regular estimator for some function μ(θ) of
θ , σ̂ 2

n is a consistent estimator for its asymptotic variance, and z1−α/2 = �−1(1 − α/2) with �(·) denoting
the standard normal cumulative distribution function. The asymptotic power of the test can be evaluated
analytically under a sequence of contiguous alternatives approaching H0 at rate O(n−1/2), say θ = n−1/2h
for some h > 0. Under this θ , the power of the test tends to �(ζh − z1−α/2) for some ζ > 0 as n → ∞
(see van der Vaart, 1998, Ch. 14). The quantity ζ 2, commonly called the Pitman efficiency, is given by
ζ 2 = μ̇(0)2/σ 2

0 , where σ 2
0 is the asymptotic limit of σ̂ 2

n under H0 and ḟ (x) = df (x)/dx for any function f .
The Pitman efficiency is inversely proportional to the sample size needed to achieve a given power and is
used aptly to measure the asymptotic quality of the test.

Nonparametric intent-to-treat tests can often be formulated as contrasts of empirical distributions. Let
ω̂z(·) denote the empirical analogue of ωz(· | θ) (z = 1, 0). Then the Wilcoxon–Mann–Whitney and t
test statistics can be written as TWMW, n = ∫

ω̂0(y)ω̂1(dy) − 2−1 (Mann & Whitney, 1947) and Tt, n =∫
y{ω̂1(dy) − ω̂0(dy)}, respectively. The estimands of TWMW, n and Tt, n are thus μWMW(θ) = ∫

ω0(y |
θ)ω1(dy | θ) − 2−1 and μt(θ) = ∫

y{ω1(dy | θ) − ω0(dy | θ)} = − ∫ {ω1(y | θ) − ω0(y | θ)} dy,
respectively. Write ∇η(·) = ∂η(· | θ)/∂θ ∣∣

θ=0
for any distribution function η indexed by θ . The following

lemma, proved in the Appendix, provides general expressions for the Pitman efficiencies of the two tests.

Lemma 1. Under (1) with θ = O(n−1/2), the Pitman efficiencies for the intent-to-treatWilcoxon–Mann–
Whitney and t tests are
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ζ 2
WMW = 12q(1 − q)

[∫
{∇ω1(y)− ∇ω0(y)}ν̇(y) dy

]2

,

ζ 2
t = q(1 − q)V (ν)−1

[∫
{∇ω1(y)− ∇ω0(y)} dy

]2

,

respectively, where q = E(Z) and V (ν) = ∫ {y − ∫
y∗ν(dy∗)}2ν̇(y) dy.

By Lemma 1, the Pitman efficiencies of the two tests are both functionals of

∇ω1 − ∇ω0 = pc{∇ν1c − ∇ν0c} + pa{∇ν1a − ∇ν0a} + pn{∇ν1n − ∇ν0n}, (2)

which mixes the treatment and randomization effects across the compliance classes. Under exclusion
restriction, for example, the latter two terms on the right-hand side of (2) vanish so that the difference
consists only of the treatment effect on the compliers.

2.2. The Wilcoxon–Mann–Whitney test versus the t test under additive effects

For ease of comparison with existing theory under perfect compliance (see, e.g., van der Vaart, 1998,
§ 14.1), we first focus on constant additive effects. Extensions to general patterns of treatment effects are
studied in § 3.1. Specifically, consider the location-shift alternatives

HA, n : Y (z, a) = Y (0, 0)+ (rz + a)θ , θ = n−1/2h, (3)

where h > 0 and r ∈ R. That is, the treatment and randomization add θ and rθ , respectively, to the
outcome. The case with exclusion restriction corresponds to r = 0. Combining (2) with (3), we obtain that
∇ω1(y) − ∇ω0(y) = pc∂{νc(y − θ − rθ) − νc(y)}/∂θ

∣∣
θ=0

+ pa∂{νa(y − θ − rθ) − νa(y − θ)}/∂θ ∣∣
θ=0

+
pn∂{νn(y − rθ)− νn(y)}/∂θ

∣∣
θ=0

= −{(pc + r)ν̇c(y)+ rν̇a(y)+ rν̇n(y)} = −{pcν̇c(y)+ rν̇(y)}. Substituting
this into Lemma 1, we arrive at the next theorem.

Theorem 1. Under the location-shift contiguous alternatives HA, n in (3), the Pitman efficiencies for
the intent-to-treat Wilcoxon–Mann–Whitney and t tests are

ζ 2
WMW(pc, ν) = 12q(1 − q)

(
pc〈ν̇, ν̇c〉 + r〈ν̇, ν̇〉)2

,

ζ 2
t (pc, ν) = q(1 − q)V (ν)−1(pc + r)2,

(4)

respectively, where 〈f , g〉 = ∫
f (y)g(y) dy for any Lebesgue square-integrable functions f and g. As a

result, the relative efficiency is

R(pc, ν) ≡ ζ 2
WMW(pc, ν)

ζt(pc, ν)
= 12V (ν)

(
pc〈ν̇, ν̇c〉 + r〈ν̇, ν̇〉

pc + r

)2

. (5)

Simulations described in the Supplementary Material show that asymptotic power functions based on
(4) approximate the actual power fairly accurately under finite samples.

Either under perfect compliance so that pc = 1, or under uninformative noncompliance so that νc = ν,
the far right-hand side of (5) reduces to 12V (ν)〈ν̇, ν̇〉2, recovering the classical results for the two tests
(see, e.g., van der Vaart, 1998, Example 14.13). In that sense, the impact of informative noncompliance
shows in the difference between R(pc, ν) and R(1, ν) = 12V (ν)〈ν̇, ν̇〉2, which, in turn because of (5), is
determined by the difference between 〈ν̇, ν̇c〉 and 〈ν̇, ν̇〉. The following proposition says that this difference
depends crucially on how strongly being a complier is correlated with the height of the outcome density.

Proposition 1. Let Y = Y (0, 0) and δ = I {A(1) = 1, A(0) = 0}. Then 〈ν̇, ν̇c〉 − 〈ν̇, ν̇〉 =
p−1

c cov{δ, ν̇(Y )} so that

R(pc, ν) = 12V (ν)
[〈ν̇, ν̇〉 + (pc + r)−1cov{δ, ν̇(Y )}]2

. (6)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
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Proof. With Y ∼ ν, since E(δ − pc) = 0 we have that

cov{δ, ν̇(Y )} = E{(δ − pc)ν̇(Y )} = pcE{ν̇(Y ) | δ = 1} − pc〈ν̇, ν̇〉 = pc(〈ν̇, ν̇c〉 − 〈ν̇, ν̇〉).

The identity in (6) then follows from (5). �

Using Proposition 1, we obtain via standard calculations that

R(pc, ν)− R(1, ν) = 12V (ν)(pc + r)−2cov{δ, ν̇(Y )}{pc〈ν̇, ν̇c〉 + (pc + 2r)〈ν̇, ν̇〉}.

This means that the sign of R(pc, ν)−R(1, ν) coincides with that of cov{δ, ν̇(Y )}. Hence, roughly speaking,
noncompliance favours the Wilcoxon–Mann–Whitney test over the t test if the compliers are more likely
to appear in high-density regions or, conversely, if noncompliers are more likely to appear in the tails.
Consider a simple situation where ν̇ is unimodal and symmetric about zero and pr(δ = 1 | Y = y) is
nonincreasing in |y|; then one can easily show that cov{δ, ν̇(Y )} � 0 so that R(pc, ν) � R(1, ν).

The correspondence between the relative location of compliers/noncompliers and the relative efficiency
of the two tests has an intuitive explanation rooted in classical theory, which tells us that the rank-based
Wilcoxon–Mann–Whitney test is more robust against noise in the tails. In an intent-to-treat analysis, the
compliers are the sole carrier of the treatment signal between the randomized groups, with the noncompliers
contributing nothing but random noise. Hence, if the noise contributors tend to reside in the tails, their
influence is better contained by the Wilcoxon–Mann–Whitney test than by the t test, allowing the former
to pick out the signal more easily.

This qualitative relationship can be carried over to quantitative limits. By (6), the range of R(pc, ν)
depends on that of cov{δ, ν̇(Y )}. Intuitively, cov{δ, ν̇(Y )} should be maximized or minimized when the
compliers are selected according to the largest or smallest density values, respectively. To make this precise,
denote the range of νc under fixed ν and pc by

P(pc | ν) = {νc : ν = pcνc + (1 − pc)η for some distribution η}.

We can obtain bounds for {〈ν̇, ν̇c〉 : νc ∈ P(pc | ν)} using the following lemma, whose proof can be found
in the Supplementary Material.

Lemma 2. Given a ν-integrable function g, let

ν̇(L)g (y) = p−1
c I {g(y) < l} ν̇(y)+ c(L)I {g(y) = l} ν̇(y),

ν̇(U)g (y) = p−1
c I {g(y) > u} ν̇(y)+ c(U)I {g(y) = u} ν̇(y), (7)

where l, u ∈ R and c(L), c(U) ∈ [0, p−1
c ] are such that

∫
ν̇(L)g (y) dy = ∫

ν̇(U)g (y) dy = 1. Then

{〈g, ν̇c〉 : νc ∈ P(pc | ν)} = [〈g, ν̇(L)g 〉, 〈g, ν̇(U)g 〉].
Replacing g in Lemma 2 with ν̇, we obtain the range of 〈ν̇, ν̇c〉 and, by (5), that of R(pc, ν).

Theorem 2. Under HA, n in (3) with fixed (pc, ν), the range of the relative efficiency between the
intent-to-treat Wilcoxon–Mann–Whitney and t tests is

12V (ν)

(
pc〈ν̇, ν̇(L)c 〉 + r〈ν̇, ν̇〉

pc + r

)2

� R(pc, ν) � 12V (ν)

(
pc〈ν̇, ν̇(U)c 〉 + r〈ν̇, ν̇〉

pc + r

)2

, (8)

where {ν̇(L)c , ν̇(U)c } is {ν̇(L)g , ν̇(U)g } defined in (7) with g replaced by ν̇.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data


Miscellanea 5

0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

0

1

2

3

4

Gaussian

Noncompliance rate

A
sy

m
pt

ot
ic

 r
el

at
iv

e 
ef

fi
ci

en
cy

Laplace

Noncompliance rate

A
sy

m
pt

ot
ic

 r
el

at
iv

e 
ef

fi
ci

en
cy

0

1

2

3

4

Logistic

Noncompliance rate

A
sy

m
pt

ot
ic

 r
el

at
iv

e 
ef

fi
ci

en
cy

0

1

2

3

4

Uniform

Noncompliance rate
A

sy
m

pt
ot

ic
 r

el
at

iv
e 

ef
fi

ci
en

cy

Noncompliance rate

A
sy

m
pt

ot
ic

 r
el

at
iv

e 
ef

fi
ci

en
cy

0

1

2

3

4

t5t3

Noncompliance rate

A
sy

m
pt

ot
ic

 r
el

at
iv

e 
ef

fi
ci

en
cy

Fig. 1. The range of asymptotic relative efficiency of the intent-to-treat Wilcoxon–Mann–Whitney test versus the t test
against HA, n under exclusion restriction for different outcome distributions. The dashed line in each panel represents the

asymptotic relative efficiency under perfect compliance; td refers to the t distribution with d degrees of freedom.

For a unimodal symmetric ν̇, it is clear from the above results that the least and most favourable
scenarios for the Wilcoxon–Mann–Whitney test are those in which the compliers exclusively occupy the
tails or modal regions, respectively. Standard derivation along this line gives us

〈ν̇, ν̇(L)c 〉 = 2p−1
c

∫ ν−1(pc/2)

−∞
ν̇(y)2 dy, 〈ν̇, ν̇(U)c 〉 = 2p−1

c

∫ ν−1{(1+pc)/2}

0
ν̇(y)2 dy. (9)

Using (9) in conjunction with (8), we derive the range of R(pc, ν) as a function of the noncompliance rate
1 − pc for Gaussian, Laplace, logistic, uniform and t distributions under exclusion restriction, i.e., r = 0.
The results are plotted in Fig. 1, with the underlying analytical formulae given in the Supplementary
Material. The dashed lines represent the asymptotic relative efficiency values under perfect compli-
ance, which agree with the numbers tabulated in Table 14.12 of van der Vaart (1998). Not surprisingly,
R(pc, ν) ≡ 1 for the uniform distribution, whose constant density makes the upper and lower bounds the
same. Otherwise, we find by numerical calculation that the lower bounds of R(pc, ν) under the Laplace,
logistic, t3 and t5 distributions intersect with the unit horizontal line at 1 − pc = 18.4%, 8.3%, 34.4%
and 16.7%, respectively. This means that the Wilcoxon–Mann–Whitney test is always more efficient

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
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than the t test for these distributions, as long as the noncompliance rate is below the corresponding
threshold.

2.3. Practical considerations

The theoretical results in § 2.2 are practically instructive in two ways. First, we can use Theorem 1 to
pick the more efficient test for analysing a current trial in the presence of noncompliance. In (5) with r = 0,
for example, pc can be estimated by the sample analogue of E(A = 1 | Z = 1) − E(A = 1 | Z = 0)
(Angrist et al., 1996). Moreover, ν̇(·) and ν̇c(·) can be estimated by a kernel density estimator based on the
randomized control group and one using the methods of Imbens & Rubin (1997), respectively. Plugging
in these estimates, we obtain an estimate for R(pc, ν), telling us which of the Wilcoxon–Mann–Whitney
and t tests is likely to be more powerful. Intuitively, this data-dependent selection of test should not
affect the Type I error rate as it does not use the part of the data that is informative about the treatment
effect.

As a demonstration, the above procedure was run on data collected from 11 204 participants in the
well-known U.S. National Job Training Partnership Act Study, a randomized trial conducted between 1987
and 1989 to assess the effect of a job-training programme on the trainee’s subsequent earnings (Abadie
et al., 2002). The estimated compliance rate is pc = 62.7%. As shown in the Supplementary Material, both
ν̇ and ν̇c appear heavily bimodal. Using these density estimates, we find that R(pc, ν) ≈ 4.9, suggesting
that the intent-to-treat Wilcoxon–Mann–Whitney test is likely much more powerful than the t test. This
is substantiated by the actual test results, with the former producing a p-value of 0.001 and the latter
0.023.

Second, one can calculate the sample size for a future trial by inverting the power function with the
derived Pitman efficiencies. By Theorem 1 with r = 0, the Pitman efficiency for the t test is p2

c times that
under perfect compliance. Provided that a good estimate for pc can be obtained from historical data, the
investigator need only inflate the standard sample size by p−2

c . The same is true for the Wilcoxon–Mann–
Whitney test under uninformative noncompliance. With informative noncompliance, and without further
knowledge about the compliance structure, the best one can do is use the lower bound on 〈ν̇, ν̇c〉 constructed
by Lemma 2 to obtain a conservative estimate for the sample size. For example, under exclusion restriction
with additive treatment effect θ in units of standard deviation, it can be shown that the sample sizes needed
to achieve a power of 1 − β for the Gaussian and Laplace distributions are bounded by

π(z1−α/2 + z1−β)2

12q(1 − q)�{21/2�−1(pc/2)}2θ 2
,

2(z1−α/2 + z1−β)2

3q(1 − q)p4
cθ

2
,

respectively. As an example, the data from the above job-training study are used as pilot data to calculate
the sample size for a new trial. The details are provided in the Supplementary Material.

3. Extensions and discussions

3.1. Inhomogeneous effects

The framework of § 2.1 accommodates all patterns of treatment and randomization effects, to the
extent that ∇ω1(y)− ∇ω0(y) can be derived under the specific contiguous alternatives. Indeed, consider a
general alternative hypothesis that transforms the null outcome by a function T indexed by treatment and
randomization effect parameters θ and rθ , respectively; that is,

HA, n : Y (z, a) = T {Y (0, 0); aθ , zrθ},
where T (y; 0, 0) = y for all y ∈ R. For example, the location-shift alternative in (3) corresponds to
T (y; aθ , zrθ) = y+aθ+zrθ . Multiplicative effects can be formulated as T (y; aθ , zrθ) = y exp(aθ+zrθ).
Sometimes subjects with lower baseline outcomes stand to gain more from the treatment than do those with
already high values. In such cases, it would be appropriate to consider T (y; aθ , zrθ) = y + (rz + a)θκ(y),

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
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where θ > 0 and κ(y) is a decreasing function, e.g., κ(y) = {1+exp(cy)}−1 for some c > 0. The following
proposition, proved in the Supplementary Material, expresses ∇ω1(y) − ∇ω0(y) in terms of a tangent
function of T (y; aθ , zrθ) as θ → 0.

Lemma 3. Under regularity conditions specified in the Supplementary Material, suppose that
∂T (y; aθ , zrθ)/∂θ

∣∣
θ=0

= Ṫa, z(y) for some function Ṫa, z(y). Write Ṫc(y) = Ṫ1, 1(y) − Ṫ0, 0(y), Ṫa(y) =
Ṫ1, 1(y)− Ṫ1, 0(y) and Ṫn(y) = Ṫ0, 1(y)− Ṫ0, 0(y). Then

∇ω1(y)− ∇ω0(y) = −{
pcṪc(y)ν̇c(y)+ paṪa(y)ν̇a(y)+ pnṪn(y)ν̇n(y)

}
.

Under the inhomogeneous additive model T (y; aθ , zrθ) = y+(rz+a)θκ(y), for example, it is immediate
that Ṫa, z(y) = (rz + a)κ(y) so that Ṫc(y) = (1 + r)κ(y), Ṫa(y) = Ṫn(y) = rκ(y) and, by Lemma 3,
∇ω1(y)− ∇ω0(y) = −κ(y){pcν̇c(y)+ rν̇(y)}. Using the last expression in Lemma 1, we obtain that

ζ 2
WMW(pc, ν) = 12q(1 − q) (pc〈κν̇, ν̇c〉 + r〈κν̇, ν̇〉)2 ,

ζ 2
t (pc, ν) = q(1 − q)V (ν)−1

(
pc〈κ , ν̇c〉 + r〈κ , ν̇〉)2

.
(10)

Taking κ(y) ≡ 1 reduces (10) to (4) of Theorem 1. Although the Pitman efficiencies under nonconstant
κ(·) appear a bit more complex, one can nonetheless use Lemma 2 to derive bounds for them. The case
with multiplicative effects is considered in the Supplementary Material.

3.2. General intent-to-treat tests

The intent-to-treat Wilcoxon–Mann–Whitney and t tests can both be formulated as contrasts between the
empirical distributions in the randomized groups. As seen from the main steps in § 2, what determines their
respective asymptotic properties is the functional derivative, or more precisely the Hadamard derivative
(van der Vaart, 1998, Ch. 20), of the contrast in question. This helps us generalize the previous results to a
broad class of nonparametric intent-to-treat tests. The following proposition is proved in the Supplementary
Material.

Proposition 2. Consider an intent-to-treat test that rejects H0 if n1/2|H(ω̂1, ω̂0)|/σ̂n > z1−α/2, where
H(· , ·) is a functional satisfying H(ω1,ω0) = −H(ω0,ω1) for allω1 andω0, and σ̂ 2

n is a consistent variance
estimator for n1/2|H(ω̂1, ω̂0)|. Let Ḣν denote the Hadamard derivative of H(ω1,ω0) with respect to ω1 at
ω1 = ω0 = ν. Then the Pitman efficiency of the test is

ζ 2
H = q(1 − q)

[∫
Ḣ2
ν{I (y � ·)− ν(·)}ν̇(y) dy

]−1

Ḣ2
ν(∇ω1 − ∇ω0). (11)

In (11), the expressions for ∇ω1 − ∇ω0 and Ḣν are determined by the contiguous alternatives and
the specific test, respectively. To recover the results of Lemma 1 for the Wilcoxon–Mann–Whitney and
t tests under location-shift alternatives, simply plug in Ḣν{ψ(·)} = − ∫

ψ(y)ν̇(y) dy and − ∫
ψ(y) dy,

respectively, along with ∇ω1 − ∇ω0 = −{pcν̇c(y) + rν̇(y)}. For a new example, consider the τ -quantile
test based on H(ω̂1, ω̂0) = ω̂−1

1 (τ ) − ω̂−1
0 (τ ) (0 < τ < 1). The Hadamard derivative of this H is

Ḣν{ψ(·)} = −ν̇(zν, τ )
−1ψ(zν, τ ), where zν, τ = ν−1(τ ) (e.g., van der Vaart, 1998, Lemma 21.3). A

straightforward derivation in the Supplementary Material shows that the Pitman efficiency under the
location-shift alternatives is ζ 2

τ = q(1 − q)τ−1(1 − τ)−1
{
pcν̇c(zν, τ )+ rν̇(zν, τ )

}2
. As one might have

guessed, the τ -quantile test is powerful when the neighbourhood of the corresponding quantile is densely
populated by compliers, driving up the value of ν̇c(zν, τ ). Formal analysis and comparison with the
Wilcoxon–Mann–Whitney and t tests is left to the interested reader.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/asab053#supplementary-data
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Appendix

Proof of Lemma 1. The null asymptotic variance of TWMW, n is the distribution-free constant 12−1q−1(1−
q)−1 by Example 14.13 in van der Vaart (1998). On the other hand,

μ̇WMW(0) = ∂

∂θ

∣∣∣∣
θ=0

∫
ω0(y | θ)ω1(dy | θ) = −

∫
{∇ω1(y)− ∇ω0(y)}ν̇(y) dy,

where the second equality follows from integration by parts. The case for ζ 2
t can be similarly derived. �
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