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ABSTRACT
To analyze randomized trials with imperfect compliance, a standard
approach is to estimate the local average treatment effect in the sub-
population of compliers using randomization status as an instrumen-
tal variable. Though quantile analysis has been popular in general,
the local (or complier) quantile treatment effect (cQTE) as a causal
estimand has received insufficient attention. In this paper, we map
out the details for the estimation, inference, and sensitivity analy-
sis of the cQTE in a completely nonparametric setting. We propose
to estimate the cQTE using nonparametric plug-in estimators of the
cumulative distribution functions for the potential outcomes of the
compliers. The cQTE estimator is shown to be asymptotically normal,
with asymptotic variance estimated through kernel-smoothed den-
sity estimators. Theprocedure is easily extended to adjust for discrete
covariates for gains in statistical efficiency. Moreover, by exploiting
the stochastic monotonicity of the quantile functional, we develop
sensitivity bounds for the cQTEwhen key assumptions such as exclu-
sion restriction and instrument monotonicity are violated. Extensive
simulations show that theproposedmethodsprovide valid inference
of the target local estimand and outperform standard intent-to-treat
tests, especially under low compliance rates and/or heterogeneous
treatment effects. A recent study on a government-funded health
insurance program in India is analyzed as an illustration.
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1. Introduction

As a summary measure, the quantiles are commonly favored over the mean when the out-
come distribution is skewed or when treatment effects are heterogeneous [1,2]. Indeed, in
these situations, changes in the quantiles can often reveal patterns not seen in the simple
average. Given such merits, quantile analysis has been studied thoroughly as a method-
ological topic [3,4] and applied extensively in fields as diverse as econometrics [5], ecology
[6], and medicine [7].

The usual quantile analysis, however, does not address the potential bias due to endoge-
nous treatment or exposure whose relationship with the outcome is confounded by
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unknown factors. A common scenario of endogenous treatment comes from random-
ized trials with imperfect compliance, where some participants, ignoring the randomized
assignment, self-select into the treatment of their own choosing. For example, in a recent
study to evaluate the effect of a health insurance program funded by the Indian federal
government [8], about 25% of the participants who were randomized to the treatment
group did not enroll in the program, while about 30% of those randomized to the control
enrolled through other means. In order to circumvent the selection bias in the nonran-
dom treatment, investigators often follow the intent-to-treat (ITT) principle, that is, to
analyze the outcomes according to the subject’s randomization status rather than the treat-
ment received. The ITT analysis leads to a valid test on the ‘sharp’ null hypothesis of no
treatment effect at the individual level [9], and meanwhile produces an estimate for causal
effect of randomization (which is sometimes policy relevant). On the other hand, it does
not quantify the causal effect of the treatment per se. In fact, without unrealistically strong
assumptions, the global treatment effect on the whole population is unidentifiable due to
unmeasured confounding [10]. Nevertheless, with the exogenous randomization status as
an instrumental variable (IV), local treatment effects on the sub-population of compliers,
i.e. those who always follow the assignment, can often be teased out bias-free. For example,
under assumptions such as exclusion restriction (that randomization has no direct effect
on the outcome) and instrument monotonicity (that randomization influences treatment
choice monotonically), Angrist, Imbens, and Rubin [11] derived a nonparametric Wald
(IV) estimator for the local (or complier) average treatment effect (ATE) [12–14].

Following this seminal work, a number of authors extended the IV methodology to
quantile analysis under endogenous treatment. Their work is mostly set in a general
framework where the IV itself is non-randomized (albeit with known confounders). The
non-randomized IV necessitates additional assumptions on its conditional probabilities,
which often require complex numerical procedures to estimate. For example, Abadie et al.
[15,16] considered regression models for the complier quantile treatment effect (cQTE)
against an endogenous treatment and other covariates using inverse propensity score
weighting for the IV. Due to the noncollapsibility of the quantiles, the cQTE conditional
on covariates has no simple correspondence with the (more interpretable) unconditional
cQTE, i.e. the quantile difference between the marginal distributions of the complier out-
comes. Frölich and Melly [17] extended their work to covariate-adjusted unconditional
cQTE. The authors proposed kernel-based nonparametric local linear regression to esti-
mate the IV scores and used the estimated scores in a weighted minimization scheme to
obtain the cQTE [18]. For randomized trials, although much simpler solutions may be
obtained by adapting Abadie et al. (2002; 2003) and Frölich and Melly (2013) under ran-
domized instrument (e.g. via substitution of treatment probability for the propensity score)
[19,20], applied researchers, especially medical scientists and practitioners, generally lack
the statistical background to implement the simplification and, as a result, hesitate to use
thesemethods in practice. It is thus helpful for statisticians tomake themethodologymore
transparent, in an effort to increase its likelihood of adoption in actual trials.

To take up this task, we examine closely the estimation, inference, and sensitivity analy-
sis of the cQTE in the special setting of randomized trials with noncompliance. In Section 2,
we define cQTE estimand, construct an empirical estimator under standard assumptions,
and derive its asymptotic variance in analytic form. Exploiting the stochastic monotonic-
ity of the quantile functional, we develop simple and easy-to-compute sensitivity bounds
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for the estimand when exclusion restriction and instrument monotonicity are violated
[21–27]. Simulation studies are conducted in Section 3 to evaluate the performance of the
inference procedures and sensitivity bounds and to compare the cQTE with standard ITT
analyses in testing the treatment effect. In Section 4, the aforementioned Indian health
insurance program study is analyzed using the proposed methodology as an illustration.
We conclude the paper with some discussion on future research directions in Section 5.

2. Theory andmethods

2.1. Data and estimand

We first briefly review the set-up of randomized trials with noncompliance and the
definition of the complier quantile treatment effect (cQTE). For a detailed exposition, see
Melly and Wüthrich [19, Section 1.2.1].

Let Z = 1, 0 denote the randomization status with 1 indicating the treatment and 0 the
control. To allow for discrepancy between treatment assignment and receipt, letA(z) = 1, 0
denote the potential treatment received had the subject been randomized to group z (z=1,
0) [28]. Under this notation, we can divide the target population into four compliance
classes, or principal strata [11,29]. These are always-takers: A(1) = A(0) = 1; compli-
ers: A(1) = 1,A(0) = 0; never-takers: A(1) = A(0) = 0; and defiers: A(1) = 0,A(0) = 1.
Use Y(a) to denote the potential outcome under treatment a (a = 1, 0). Under the Sta-
ble Unit Treatment Value Assumption (SUTVA), the actual treatment received is A =
ZA(1)+ (1 − Z)A(0). Likewise, the observed outcome under received treatment A is
Y = AY(1)+ (1 − A)Y(0). The observed data thus consist of the triple (Z,A,Y).

We make the following standard assumptions regarding the data-generating mecha-
nism [11].

(A1) (Exclusion restriction) If Y(z, a) denotes the potential outcome under randomiza-
tion status z and treatment a, then Y(z, a) = Y(a) with probability 1.

(A2) (Randomization) {Y(1),Y(0),A(1),A(0)} ⊥⊥ Z.
(A3) (Relevance) P{A(1) = 1} �= P{A(0) = 1}.
(A4) (Monotonicity) A(1) ≥ A(0) with probability one.

In particular, the exclusion restriction assumption implies that randomization affects the
outcome only through the treatment received (i.e. no direct effect of randomization). The
monotonicity assumption denies the existence of defiers in the population. These assump-
tions are reasonable in double-blind, placebo-controlled clinical trials but need not always
be so in sociological experiments where blinding is impossible (e.g. when subjects are
assigned to participate in job training programs [15]). In the latter cases, sensitivity analy-
sis is generally needed to gauge the impact of possible violations against these assumptions
(see Section 2.4).

Without further assumptions on the confounding mechanisms between A and Y, it is
clear that the marginal distributions of the Y(a) cannot be nonparametrically identified.
For example, we cannot hope to identify the distribution of Y(1) among the never-takers
because we never observeY(1) in that strata. Thismeans that global treatment effects, such
as the difference between the averages or quantiles of Y(1) and Y(0), cannot be estimated
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from empirical data. There are two general approaches to overcoming this nonidentifi-
ability. The first one is to follow the intent-to-treat (ITT) principle. Let ωz(y) = P(Y ≤
y |Z = z) denote the cumulative distribution function (cdf) of the observed outcome Y in
randomized group z (z = 1, 0). Then, the τ th (0 < τ < 1) ITT quantile treatment effect is

QITT(τ ) = ω−1
1 (τ )− ω−1

0 (τ ).

Here and in the sequel, we adopt the following definition for the ‘inverse’ function:

ν−1(τ ) = inf{y ∈ R : ν(y) ≥ τ }, (1)

which applies to discrete as well as continuous cdfs.
The quantity QITT(τ ) measures the τ -quantile change due to the randomization, not

one due to the treatment. Though the latter is not fully identifiable, a local version of it
is. Use νac(y) = P{Y(a) ≤ y | A(1) > A(0)} to denote the potential outcome distributions
among the compliers. Then, the complier (or local) τ -quantile treatment effect (cQTE) is

Qc(τ ) = ν−1
1c (τ )− ν−1

0c (τ ), (2)

which can be interpreted as the τ -quantile change in the compliers due to the treatment.
By Imbens and Rubin [30], the cdfs νac (a = 1, 0) are indeed identifiable from the

observed data. In fact, under assumptions (A1)–(A4), the νac can be represented in the
neat form [31]

νac(y) = P
(
Y ≤ y,A = a |Z = 1

) − P
(
Y ≤ y,A = a |Z = 0

)
P (A = a |Z = 1)− P (A = a |Z = 0)

. (3)

Consequently we can identify Qc(τ ) as a direct functional of the νac(·).

2.2. Estimation and inference

Given a random n-sample of observed data (Z,A,Y), namely,

(Zi,Ai,Yi) i = 1, . . . , n, (4)

we can construct an estimator ν̂ac(·) for νac(·) by replacing the conditional probabilities
on the right-hand side of (3) with their empirical analogs. It can be shown that the result-
ing estimator is equivalent to Frölich and Melly’s (2013) weighting estimator when the
propensity score is replaced by the corresponding empirical proportions (see supplemen-
tal material for details). Plugging in the ν̂ac(·) on the right-hand side of (2), we obtain the
estimator

Q̂c(τ ) = ν̂−1
1c (τ )− ν̂−1

0c (τ ).

We show that Q̂c(τ ) is asymptotically normal and derive its asymptotic variance. To do so,
we first linearize the ν̂1c(·) by

n1/2{̂νac(·)− νac(·)} = n−1/2
n∑

i=1
ψa(Zi,Ai,Yi)(·)+ op(1) (5)

for some mean-zero influence function ψa(Z,A,Y) (the details are relegated to the online
supplemental material). Next, applying the deltamethod to the ‘inverse’ functional defined
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in (1), we obtain that

n1/2{̂ν−1
ac (τ )− ν−1

ac (τ )} = n−1/2
n∑

i=1
ηa(Zi,Ai,Yi){ν−1

ac (τ )} + op(1),

where ηa(Z,A,Y)(y) = −ψa(Z,A,Y)(y)/ν̇ac(y) and ν̇ac(y) = dνac(y)/dy.We then imme-
diately have that

n1/2{Q̂c(τ )− Qc(τ )} →d N
{
0, σ 2(τ )

}
, (6)

where σ 2(τ ) = E[η1(Z,A,Y)(y)− η0(Z,A,Y)(y)]2. Given estimators ̂̇νac and ψ̂a for the
functions ν̇ac and ψa, respectively, we can estimate σ 2(τ ) by the moment estimator
σ̂ 2(τ ) = n−1 ∑n

i=1[̂η1(Zi,Ai,Yi){̂ν−1
1c (τ )} − η̂0(Zi,Ai,Yi){̂ν−1

0c (τ )}]2, where η̂a(Z,A,Y)
(y) = −ψ̂a(Z,A,Y)(y)/̂ν̇ac(y) (a = 1, 0).

The estimator ψ̂a can be easily constructed given the form ofψa (see the online supple-
mental material for details). For the density function ν̇ac(·), direct estimation is impossible
since the empirical estimator ν̂ac(y) is a step function andhence lacks awell-defined deriva-
tive. To avoid this problem, we take a kernel-smoothed approach to estimating ν̇ac(y) using
ν̂ac(y). Suppose that Kh(·) is a kernel function satisfying

∫
Kh(y)dy = 1 with smooth-

ness controlled by a ‘bandwidth’ parameter h. Typically, Kh(·) is the density function for a
location-scale family of continuous distributions with dispersion parameter h. A common
example is the Gaussian kernelKh(· − θ) = h−1φ{(· − θ)/h}, where φ is the density func-
tion for the standard normal distribution. Then, a kernel-smoothed estimator for ν̇ac(y)
is

̂̇νac(y) =
∫

Kha,n
(
y − x

)
d̂νac(x), (7)

where ha,n is a properly chosen bandwidth parameter satisfying ha,n ↓ 0 as n → ∞ for
each a = 1, 0. It is well known that, under suitable regularity conditions, the optimal
bandwidth ha,n is of the order O(n−1/5). Per the rule of thumb by Silverman [32], we use
ha,n = 1.06σ̂an−1/5, where σ̂a is the standard deviation of the Yi with Zi = Ai = a.

Remark 2.1: It is clear that ν̂ac(·) as an empirical analog of the right-hand side of (3) need
not be always nondecreasing in y. As a result, the corresponding kernel density estimates
can be negative [30]. Obviously, negative density estimates are most likely around points
on which ν̂ac(·) has a negative jump size. In our application, however, negativity is less
of a concern because the estimated density function is evaluated only at ν̂−1

ac (τ ), which is
always associated with a positive jump size (see definition of the inverse function in (1)).
Indeed, in all simulations described in Section 3, we have not encountered a single case
with negative density estimates.

The nonparametric cQTE estimator Q̂c(τ ) can also be used in hypothesis testing. Specif-
ically, an asymptotic level-α (0 < α < 1) test rejects the null hypothesis of no treatment
effect if n1/2|Q̂c(τ )| > σ̂(τ)z1−α/2, where z1−α/2 = �−1(1 − α/2) and�(·) standard nor-
mal cdf. This IV test can serve as an alternative to standard ITT-based t or quantile
tests.
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2.3. Adjustment of discrete covariate

The cQTE estimator can bemademore efficient by adjusting for baseline covariates that are
predictive of the potential outcomes. With a discrete covariate (e.g. sex and race groups),
the adjustment can be done nonparametrically by simple modifications to the procedures
described in Section 2.2.

Let X denote the covariate taking values in a discrete set X . Still assuming that Z is
completely randomized (so that Z ⊥⊥ X), we can estimate the νac(·) by aggregating the
covariate-specific complier outcome distributions. This typically yields amore precise esti-
mator if the covariate is truly associated with the outcome. Specifically, let ν̂ac,adj(·) =∑

x∈X n−1nxν̂ac,x(·), where ν̂ac,x(·) is the estimator for νac,x(·) = P{Y(a) ≤ · | A(1) >
A(0),X = x} using the subgroup data with Xi = x and nx is the group size. Then, we
can estimateQc(τ ) by Q̂c,adj(τ ) = ν̂−1

1c,adj(τ )− ν̂−1
0c,adj(τ ). By derivations only slightly more

complicated than those outlined in Section 2.2 (see online supplemental material), we have
that n1/2{Q̂c,adj(τ )− Qc(τ )} is asymptotically normal with variance

σ 2
adj(τ ) = n−1

n∑
i

[
η1,Xi(Zi,Ai,Yi){ν−1

1c (τ )} − η0,Xi(Zi,Ai,Yi){ν−1
0c (τ )}

]2 ,
where ηa,x(Z,A,Y)(y) = −ψa,x(Z,A,Y)(y)/ν̇ac,x(y) (a = 1, 0) and ψa,x(Z,A,Y)(y) is the
influence function for ν̂ac,x(y) in the same sense as in (5) (only restricted to the sub-
group with Xi = x). The functions ηa,x(Z,A,Y)(y) can be easily estimated by applying the
procedures described in Section 2.2 to each subgroup.

2.4. Sensitivity analysis

When either (A1) or (A4) is violated, the distributions νac(y) become unidentifiable [30].
Even in such cases, partial information may still exist to allow us to bound the target esti-
mand informatively. First note that Qc(τ ) is a monotone functional with respect to the
stochastic order of the νac (nondecreasing in ν1c and nonincreasing in ν0c) [33]. If we can
find lower and upper stochastic-order bounds for νac, denoted by νac and νac, respectively,
then the cQTE can be easily bracketed by

Q(ν1c, ν0c)(τ ) ≤ Qc(τ ) ≤ Q(ν1c, ν0c)(τ ), (8)

whereQ(ν1, ν0)(τ ) = ν−1
1 (τ )− ν−1

0 (τ ) for arbitrary cdf’s ν1 and ν0.
When exclusion restriction is violated, for example, the target outcome distributions

can be redefined as νac(y) = P{Y(a, a) ≤ y | A(1) > A(0)} (a = 1, 0), where, as described
in assumption (A1), Y(z, a) denotes the potential outcome under assigned and received
treatments z and a, respectively. Let pA = P{A(1) = A(0) = 1}, pC = P{A(1) > A(0)},
and pN = P{A(1) = A(0) = 0}. Under assumptions (A2)–(A4), it can be shown that these
compliance class probabilities are still identifiable, through

pA = P(A = 1 | Z = 0), pN = P(A = 0 | Z = 1), and pC = 1 − pA − pN .

However, the νac are no longer identified. The only identifiable constraint on νac is that it is
a component to the distribution in the ‘per protocol’ group μa(·) := P(Y ≤ · | Z = A =
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a), which is a mixture of compliers and noncompliers (always-takers for μ1 and never-
takers for μ0), with identifiable proportions. In fact, it is easily seen that

ν1c ∈ P
(

pC
pA + pC

∣∣∣∣μ1

)
and ν0c ∈ P

(
pC

pN + pC

∣∣∣∣μ0

)
, (9)

where P(p | μ) = {ν : ν is a cdf and satisfies μ = pν + (1 − p)ζ for some cdf ζ }. By
Proposition 4.3 of Manski [33], P(p |μ) contains a least and greatest element by stochas-
tic order, which are (quite intuitively) the right- and left-truncated μ at μ−1(p) and
μ−1(1 − p), i.e.

Pmin(p | μ)(·) = min{μ(·)/p, 1} and Pmax(p | μ)(·) = 1 − min[{1 − μ(·)}/p, 1],
(10)

respectively. This is similar to the ‘mixture data’ approach used by Huber and Mellace
[26], Blanco et al. [34,35], and Imai [23] for various purposes. By (10), we obtain that
ν1c = Pmin(

pC
pA+pC | μ1), ν1c = Pmax(

pC
pA+pC | μ1), ν0c = Pmin(

pC
pN+pC | μ0), and ν0c =

Pmax(
pC

pN+pC | μ0). Replacing the unknown (but identifiable) quantities with their empiri-
cal analogs, we can estimate the bounding distributions and construct the bounds forQc(τ )

by (8). The resulting bounds are sharp by Sections 4.3 and 4.4 of Manski [33].

Remark 2.2: The cQTE considered here combines the effects of both randomization and
treatment. To focus on the treatment effect only, Flores and Flores-Lagunes [36] derived
bounds for E{Y(1, 1)− Y(1, 0) | A(1) > A(0)} under additional monotonicity assump-
tions on the means of each compliance class. It is possible to use similar stochastic versions
of such assumptions to bound Q(νz1,c, νz0,c)(τ ) (z = 1, 0), where νza,c(y) = P{Y(z, a) ≤
y} (a = 1, 0). Some discussions are provided in the supplemental material.

In the presence of defiers, the constraints in (9) remain true, but pC, pA, and pN
are no longer point-identified. Under the assumption that pC ≥ pD [11], however, we
can show that the empirical estimators for the mixing proportions pC(pA + pC)−1 and
pC(pN + pC)−1 always underestimate the target proportions. This means that the empir-
ical versions of P( pC

pA+pC | μ1) and P( pC
pN+pC | μ1) still contain the true ranges of ν1c

and ν0c (since P(p2 | μ) ⊂ P(p1 | μ) for p1 ≤ p2), respectively. Hence, the estimated
stochastic-order bounds for the outcome distributions are conservative (i.e. non-sharp)
but still valid. To see this, denote p∗

A = P(A = 1 | Z = 0), p∗
N = P(A = 0 | Z = 1), and

p∗
C = 1 − p∗

A − p∗
N ; these are the estimands of the original estimators for pA, pN , and

pC, respectively. Let pD = P{A(1) = 0,A(0) = 1} denote the proportion of defiers. It is
not hard to find that p∗

A = pA + pD, p∗
N = pN + pD, and p∗

C = pC − pD, which, by pC ≥
pD, leads to 0 ≤ p∗

C(p
∗
A + p∗

C)
−1 ≤ pC(pA + pC)−1 and 0 ≤ p∗

C(p
∗
N + p∗

C)
−1 ≤ pC(pN +

pC)−1. Hence, the same estimated bounds can be used to bracket the true cQTE when
instrument monotonicity is violated.

3. Simulation studies

We conducted simulations first to assess the estimation, inference, and sensitivity analy-
sis of the cQTE and then to compare the associated IV test with standard ITT tests for
treatment effect.
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Table 1. Simulation results on the estimation and inference of Qc(0.25).

High compliance (pC = 0.70) Low compliance (pC = 0.45)

ITT cQTE ITT cQTE

n θ Bias Bias SE SEE CP Bias Bias SE SEE CP

200 0 0.000 −0.012 0.212 0.213 0.949 −0.004 −0.012 0.265 0.252 0.940
0.25 −0.058 −0.011 0.211 0.214 0.949 −0.137 −0.022 0.270 0.254 0.941
0.50 −0.121 −0.007 0.209 0.214 0.953 −0.258 −0.024 0.273 0.264 0.942
1.00 −0.247 −0.008 0.214 0.214 0.946 −0.483 −0.031 0.263 0.254 0.943

500 0 −0.003 0.005 0.136 0.135 0.944 0.002 0.011 0.146 0.143 0.947
0.25 −0.056 −0.006 0.131 0.134 0.952 −0.139 −0.011 0.148 0.144 0.952
0.50 −0.118 0.005 0.132 0.134 0.949 −0.257 −0.009 0.147 0.143 0.951
1.00 −0.244 −0.005 0.133 0.134 0.950 −0.480 −0.012 0.148 0.143 0.949

1000 0 0.000 0.001 0.094 0.094 0.950 0.004 0.006 0.102 0.100 0.947
0.25 −0.056 −0.002 0.094 0.094 0.950 −0.139 −0.005 0.100 0.099 0.950
0.50 −0.117 −0.001 0.093 0.094 0.952 −0.260 −0.007 0.099 0.100 0.955
1.00 −0.244 −0.003 0.093 0.094 0.950 −0.480 −0.006 0.098 0.100 0.951

2000 0 0.000 0.001 0.066 0.066 0.951 0.000 0.000 0.069 0.070 0.952
0.25 −0.056 −0.001 0.065 0.066 0.955 −0.139 −0.004 0.069 0.070 0.951
0.50 −0.118 0.001 0.066 0.066 0.952 −0.259 0.002 0.069 0.070 0.954
1.00 −0.244 −0.001 0.066 0.066 0.951 −0.478 −0.002 0.070 0.070 0.951

aSE, empirical standard error of the estimator; SEE, empirical average of the standard error estimator; CP, empirical coverage
rate of the 95% confidence interval. Each entry is based on 10,000 replicates.

3.1. Estimation of local treatment effects

Let Y(0) ∼ N(0, 1) and Y(1) = Y(0)+ θ , where θ > 0 denotes the (homogeneous) treat-
ment effect. The compliance status was generated by a conditional trinomial distribu-
tion with P{A(1) > A(0) | Y(0) = y} = exp(−λy2), P{A(1) = A(0) = 1 | Y(0) = y} =
{1 − exp(−λy2)}I(y ≤ 0), and P{A(1) = A(0) = 0 | Y(0) = y} = {1 − exp(−λy2)}I(y >
0), where λ > 0 controls the rate of noncompliance. Hence, subjects with ‘baseline’ out-
comes around the mode are most likely compliers; the probability of noncompliance
increases as they move away. (This model mimics the situation where, for example, sub-
jects with poorer/better baseline conditions are respectively more/less likely to take the
active treatment regardless of the assignment.) Under this set-up, it can be shown that the
compliance rate is pC = (1 + 2λ)−1/2 and that the complier quantiles are ν−1

0c (τ ) = (1 +
2λ)−1/2�−1(τ ) and ν−1

1c (τ ) = (1 + 2λ)−1/2�−1(τ )+ θ (see online supplemental mate-
rial). We considered two scenarios with λ = 0.5 and 2, corresponding to compliance rates
pC = 0.70 and 0.45, respectively. The results for the estimation and inference of Qc(0.25)
under different values of θ are summarized in Table 1. For comparison, we also considered
the estimator for the ITT effectQITT(0.25). It can be seen that the bias of the ITT estimator
with nonzero θ is substantial, especially when the compliance rate is low. In contrast, the
IV estimator Q̂c(0.25) exhibits minimal bias across all scenarios. It is worth noting that the
variance estimator based on the kernel density estimates with bandwidth specified by the
Silverman rule of thumb is consistently accurate, giving rise to 95% confidence intervals
with empirical coverage probabilities uniformly close to the nominal rate. Similar results
for the estimation and inference of QITT(0.5) and QITT(0.75) are tabulated in the online
supplemental material.

Then we assessed the accuracy of the empirical estimator ν̂−1
0 (·) for the baseline quan-

tile process ν̂−1
0c (·). The set-up was the same as above except that we fixed θ = 0.5. The
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Figure 1. Nonparametric estimation of the baseline quantile process ν−1
0c (·). Red dashed line, true func-

tion; solid line, average estimates based on 1,000 replicates; dotted lines, five random realizations of the
estimated curves.

estimation results are plotted in Figure 1. We can see that the empirical estimator is virtu-
ally unbiased for sample size as small as n = 200. The estimates become more precise (i.e.,
with less sampling variation) when n increases to 1000.

Next, we evaluated the accuracy of the sensitivity bounds developed in Section 2.4 in the
absence of exclusion restriction. The set-up is the same as before except that the potential
outcomes are generated by Y(z, a) = Y(0, 0)+ zθ/2 + aθ/2, so that randomization has
additive direct effect θ/2 on all subjects. Under this set-up, expressions for the true bounds
given in (8) are derived in the supplemental material. With λ = 0.2, 0.5 (corresponding to
pC = 0.85, 0.70, respectively) and θ = 0.5, we used the ‘truncated distributions’ in (10) to
estimate the upper and lower bounds.With n = 1000, the results are displayed in Figure 2.
The empirical bounds are seen to have minimal bias with regard to the true bounds.

3.2. Comparisonwith covariate-adjusted estimator

In the presence of a discrete covariate, we compared the performance of the covariate-
adjusted estimator for the cQTE, as described in Section 2.3, with that of the unadjusted
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Figure 2. Estimation of sensitivity bounds for Qc(τ ) with n = 1000 when exclusion restriction is vio-
lated. Dotted lines, true bounds; solid red/blue lines,mean estimates of the upper/lower bounds; shaded
areas, range of 95% of the bound estimates. The results are based on 5000 replicates.

Table 2. Simulation results comparing the unadjusted versus covariate-adjusted estimators for
Qc(0.25).

Unadjusted Adjusted

γ n θ Bias SE SEE CP Bias SE SEE CP RE

0 200 0 0.005 0.214 0.218 0.955 0.006 0.214 0.216 0.951 1.00
0.25 −0.006 0.211 0.217 0.951 −0.009 0.213 0.215 0.949 0.97
0.5 −0.011 0.213 0.218 0.955 −0.012 0.215 0.216 0.949 0.98
1 −0.012 0.214 0.218 0.950 −0.015 0.218 0.215 0.944 0.98

500 0 0.004 0.133 0.136 0.955 0.001 0.133 0.135 0.954 1.00
0.25 −0.007 0.132 0.136 0.955 −0.005 0.133 0.135 0.952 0.98
0.5 −0.003 0.133 0.135 0.955 0.001 0.134 0.135 0.952 0.99
1 −0.006 0.131 0.136 0.956 −0.005 0.132 0.136 0.954 0.99

0.5 200 0 0.014 0.247 0.251 0.95 0.003 0.232 0.227 0.942 1.13
0.25 −0.002 0.245 0.250 0.953 −0.010 0.230 0.227 0.937 1.13
0.5 −0.007 0.246 0.249 0.959 −0.007 0.230 0.226 0.941 1.13
1 0.002 0.246 0.250 0.957 0.002 0.231 0.227 0.944 1.13

500 0 −0.002 0.149 0.155 0.957 −0.006 0.140 0.142 0.954 1.15
0.25 −0.007 0.153 0.155 0.953 −0.003 0.143 0.142 0.946 1.14
0.5 −0.004 0.150 0.154 0.956 −0.006 0.141 0.142 0.943 1.14
1 0.002 0.153 0.155 0.951 0.001 0.143 0.143 0.945 1.14

aSee note to Table 2. RE, relative efficiency (inverse ratio of variance) of covariate-adjusted versus unadjusted. Each entry is
based on 10,000 replicates.

version. Let covariate X = 1 and −1 with equal probability and Y(0) | Z ∼ N(γZ, 1),
where γ = 0 and 0.5. The rest of the data generating mechanism is the same as that
of Table 1 with λ = 0.5. Results for the estimation of Qc(0.25) using both Q̂c(0.25) and
Q̂c,adj(0.25) are summarized in Table 2. Both the adjusted and unadjusted estimators per-
form satisfactorily in terms of bias, standard error, and confidence interval estimation.
When the covariate is independent of the outcome (γ = 0), the adjusted estimator is
no superior to the unadjusted version. In case of a strong covariate-outcome association
(γ = 0.5), adjusting for it increases the efficiency substantially, by 13%–15%.
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3.3. Power comparisonwith ITT tests

Finally, we compared the power of the IV test based on Q̂c(0.5) (as described in the last
paragraph of Section 2.2) with that of the standard ITT median and t tests. For the ITT
median test, in particular, we used similar kernel density estimators for the variance of
the test statistic. Because of the non-linearity of the median functional, the relationship
between the ITT and compliermedian treatment effects ismore complex than that between
their ATE counterparts (where the complier effect is famously the ITT effect divided by pC
[11]). As a result, their relative performance in hypothesis testing is unclear and warrants
some investigation.

We adopted the same set-up with homogeneous treatment effect θ as in Section 3.1.
For generality, we also considered an additional scenario with inhomogeneous effect. In
this latter scenario, we let Y(1)+ 1.5I{Y(0) < 0}θ . That is, the treatment increases the
outcome by 1.5θ if and only if the baseline value is negative. Simulation results on the
empirical power of the three tests at level 0.05 are summarized in Table 3. All tests main-
tain approximately correct type I error (as shown in the empirical rejection rate at θ = 0).
The empirical power of the three tests are comparable under homogeneous effect and high
compliance rate. However, the t test loses power dramatically under low compliance rate or
heterogeneous treatment effect. The IV median test performs similarly to the ITT median
test under homogeneous effect, but shows a slight advantage over the latter under inhomo-
geneous effect, especially when compliance rate is low. In sum, it appears that the median
tests are more robust than the t test and that the IV median test is slightly more efficient
than the ITT counterpart in cases with low compliance and inhomogeneous effect.

Table 3. Simulation results on the empirical power of IV and ITT tests.

Homogeneous effect Inhomogeneous effect

High compliance Low compliance High compliance Low compliance

n θ IV-m ITT-m ITT-t IV-m ITT-m ITT-t IV-m ITT-m ITT-t IV-m ITT-m ITT-t

200 0 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05
0.20 0.18 0.19 0.18 0.18 0.19 0.10 0.14 0.12 0.13 0.16 0.12 0.09
0.40 0.56 0.58 0.57 0.55 0.59 0.31 0.52 0.51 0.43 0.49 0.45 0.23
0.60 0.89 0.90 0.91 0.87 0.88 0.62 0.83 0.82 0.80 0.74 0.67 0.48
0.80 0.99 0.99 0.99 0.98 0.98 0.89 0.96 0.96 0.98 0.85 0.80 0.79

500 0 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.05
0.10 0.13 0.13 0.13 0.13 0.14 0.09 0.07 0.07 0.10 0.09 0.07 0.06
0.20 0.39 0.41 0.37 0.39 0.42 0.19 0.33 0.31 0.25 0.35 0.28 0.13
0.30 0.73 0.75 0.70 0.72 0.75 0.37 0.67 0.66 0.52 0.66 0.60 0.26
0.40 0.93 0.94 0.92 0.92 0.93 0.62 0.90 0.89 0.79 0.88 0.84 0.46

1000 0 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.04 0.06 0.05 0.05 0.06
0.06 0.10 0.11 0.11 0.11 0.11 0.07 0.06 0.05 0.09 0.06 0.05 0.06
0.12 0.30 0.31 0.27 0.30 0.32 0.14 0.22 0.21 0.19 0.25 0.18 0.10
0.18 0.59 0.6 0.55 0.58 0.61 0.27 0.51 0.48 0.37 0.55 0.46 0.18
0.24 0.84 0.85 0.80 0.83 0.86 0.46 0.79 0.78 0.61 0.80 0.74 0.30

2000 0 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05
0.04 0.09 0.10 0.10 0.11 0.12 0.08 0.06 0.05 0.08 0.06 0.05 0.07
0.08 0.27 0.28 0.25 0.28 0.3 0.13 0.19 0.17 0.18 0.21 0.16 0.10
0.12 0.55 0.56 0.50 0.55 0.57 0.24 0.44 0.42 0.33 0.50 0.43 0.16
0.16 0.80 0.81 0.74 0.80 0.82 0.39 0.72 0.70 0.52 0.75 0.68 0.26

a IV-m, test based on Q̂c(0.5); ITT-m, median test following the ITT principle; ITT-t, t test following the ITT principle. Each
entry is based on 10,000 replicates.
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4. A health insurance program study

We apply our methodology to the Indian health insurance program study mentioned in
Section 1. The Rashtriya Swasthya Bima Yojana (RSBY; or National Health Insurance Pro-
gram) was introduced by the Indian government in 2008 to provide health insurance
coverage to the country’s low-income residents. A randomized controlled trial was con-
ducted to determinewhether enrollment in the Program increases access to hospitalization
and health care, as measured primarily by the annual household hospital expenditure
[8]. The original study adopted a two-stage randomization scheme, where villages were
first randomized to ‘high’ or ‘low’ treatment-assignment mechanisms and the households
within the village were then randomized to the treatment with 80% or 40% probabilities,
respectively. Thewhole study has recently been analyzed by Imai et al. [8] based on the aver-
age treatment effects while accounting for both noncompliance and possible ‘spill-over’
effects between households in the same village.

For simplicity, we focus on the households under the low treatment-assignment mech-
anism. Among the 4854 households, 1938 (39.9%) were randomized to the treatment
group with free RSBY enrollment and the remaining 2916 (60.1%) were randomized to
the control. In the assigned treatment group, 480 (24.8%) households did not enroll in the
program, while in the assigned control group, 872 (29.9%) households managed to enroll
by other means. The estimated compliance rate is thus pC = 1 − 24.8% − 29.9% = 45.3%.
The median annual household hospital expenditures in the assigned treatment and con-
trol groups are $70.2 and $60.6, respectively.Histograms of the outcomes by randomization
and enrollment status are plotted in Figure 3. Given the extreme skewness in the distribu-
tions, it is likely more advantageous to analyze the data through the quantiles rather than
the average.

Using the procedures described in Section 2.2, we estimated the cQTE Qc(τ ) for τ =
0.05, 0.15, 0.25, 0.5, 0.75, 0.85, and 0.95 along with their 95% confidence intervals using
both the unadjusted estimator and one adjusted for the district of the household (Gul-
barga versus Mysore). The results are plotted in Figure 4. For comparison, we also indicate
the estimated ITT effects in the left panel, which are seen to be smaller than or equal to
the corresponding cQTE. The two estimators yield largely similar results, with only slightly
narrower confidence interval under the adjusted approach. Overall, the cQTEs appear sub-
stantial and significant (at the 0.05 level) at the 0.75- and 0.85-quantiles, while those at
or below the median are marginal and nonsignificant. (By the unadjusted estimator, for
example, Program enrollment adds $104.4 to the baseline 0.85-quantile of $6,190, a 1.7%
increase, in the compliers.) There are several plausible explanations for the differential
treatment effects. For example, households that spend less on hospital expenditure may
tend to be healthier and thus do not stand to gain as much from the government subsidy.
It is also possible, however, that there are insurmountable barriers (e.g. financial, cultural,
religious, and etc.) to utilization of hospital resources for these households which the RSBY
is unable to eliminate or reduce. In any case, this inhomogeneous pattern of treatment
effects may signify important features about the causal mechanisms of the RSBY that await
further investigation.

Remark 4.1: As the original analysis shows by comparing households randomized to
‘high’ versus ‘low’ treatment-assignment mechanisms, interferences between households
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Figure 3. Histograms of the outcomes by randomization and enrollment status.

detsujda−tcirtsiDdetsujdanU

0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

cQ
TE

on
m

ed
ic

al
ex

pe
nd

itu
re

 ($
)

0
20

0
40

0
60

0

cQ
TE

on
m

ed
ic

al
ex

pe
nd

itu
re

 ($
)

0
20

0
40

0
60

0

 

Figure 4. Nonparametric estimates for the cQTE (solid circles) and their 95% confidence intervals (error
bars) in the RSBY study. Cross sign, estimated QITT(τ ).
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Figure 5. Range thepartially identified cQTEunder violationsof exclusion restrictionand/ormonotonic-
ity in the RSBY study.

within the same village are non-negligible [8]. For example, a household is less likely
to utilize hospital resources if neighboring households are also assigned to the Pro-
gram, possibly due to overcrowded local hospitals. Without considering such spill-over
effects, our analysis can overestimate the efficacy of the Program if it is to be rolled out
universally.

As argued in Imai et al. [8], both exclusion restriction and monotonicity are plausible
assumptions for this study. For illustration, we nonetheless apply the sensitivity anal-
ysis techniques described in Section 2.4 to bound the cQTE when these assumptions
are violated. The estimated range of the partially identified cQTE under violations of
exclusion restriction and/or monotonicity is plotted in Figure 5. Due to the low compli-
ance rate (pC = 45.3%), however, the bounds are rather wide, especially for the upper
quantiles.

5. Discussion

Simplifying the general methods of Abadie et al. [15,16] and Frölich and Melly [17], we
have studied the complier quantile treatment effect (cQTE) in the special case of random-
ized trials with noncompliance in a completely nonparametric setting. As shown in the
RSBY example, analysis of the quantiles presents a fuller picture of the possibly heteroge-
neous treatment effects thatmay be concealed by themean difference. It is thus advisable in
practice to supplement, if not supplant, standard ATE-based analysis with quantile-based
analysis such as the cQTE.

The covariate adjustment approach of Section 2.3 has been proven useful in increas-
ing the efficiency of cQTE inference. It is also uniquely straightforward – one just applies
the unadjusted method to each level of the covariate and then obtain a pooled estimate,
an example of “standardization” [14]. On the other hand, it is applicable only to a dis-
crete covariate with a small number of levels. In case of continuous covariates, one has to
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either discretize their values into a small number of groups or resort to more sophisticated
methods such as described in Frölich and Melly [17], Ye and Lai [37], and Tsiatis [38].

In addition to estimating the local treatment effect, we have also shown by simulation
that the cQTE-based IV test tends to outperform the standard ITT tests in adverse con-
ditions such as low compliance rates and heterogeneous treatment effects. The efficiency
gain of the IV test is possibly attributable to its exclusive focus on the compliers, the only
sub-population in which the treatment effect shows. However, it is important to note that
a comparison between the IV and ITT analyses can be made only when both are used to
test the causal effect of the treatment. The ITT approach remains indispensable and irre-
placeable whenever interest resides in quantifying the causal effect of randomization (such
as when evaluating the effect of public policies).

In the absence of exclusion restriction, we have considered bounds for the cQTE defined
as the combined effect of both treatment and randomization. To tease out the treatment
effect in this case is not easy, as it involves comparison between different treatments in
the same randomized group. This comparison is empirically impossible for compliers,
whose treatment is fixed by randomization. To circumvent the resulting nonidentifiability,
Flores and Flores-Lagunes [36] introduced additional monotonicity assumptions on the
outcome means to bound the complier ATE. Both we (see Section S1.5 of supplemental
material) and Blanco et al. [34,35] partially extended the mean-monotonicity assumptions
to stochastic versions so as to bound the cQTE.More study in this direction is needed in the
future.

Ourwork relies on instrumentmonotonicity to identify andmake inference of the target
estimand. An alternate route to identification of the cQTE is by assuming that the ranks
of the outcome are preserved by the treatment. Under this rank-preservation condition,
the cQTE is not only the difference in the quantiles of the marginal outcome distributions
but also the quantile of the individual-level treatment difference. This line of work is pur-
sued by Chernozhukov and Hansen [39,40]. Despite concerns over the plausibility of such
assumptions [3,19], it might prove useful to borrow certain ideas from rank preservation
in order to relax the monotonicity assumption.

We have been concerned exclusively with binary instrument and treatment. To broaden
the scope of cQTE analysis, it will be of interest to consider multivalued instrument and/or
treatment as well [41]. Such extensions need not be straightforward as the definition of
compliers and the associated assumptions must change accordingly. These too are worthy
problems for future research.
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