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DEGREE BOUND FOR TORIC ENVELOPE OF A LINEAR

ALGEBRAIC GROUP

ELI AMZALLAG, ANDREI MINCHENKO, AND GLEB POGUDIN

Abstract. Algorithms working with linear algebraic groups often represent
them via defining polynomial equations. One can always choose defining
equations for an algebraic group to be of degree at most the degree of the
group as an algebraic variety. However, the degree of a linear algebraic group
G ⊂ GLn(C) can be arbitrarily large even for n = 1. One of the key ingre-
dients of Hrushovski’s algorithm for computing the Galois group of a linear
differential equation was an idea to “approximate” every algebraic subgroup
of GLn(C) by a “similar” group so that the degree of the latter is bounded
uniformly in n. Making this uniform bound computationally feasible is crucial
for making the algorithm practical.

In this paper, we derive a single-exponential degree bound for such an
approximation (we call it a toric envelope), which is qualitatively optimal. As
an application, we improve the quintuply exponential bound due to Feng for
the first step of Hrushovski’s algorithm to a single-exponential bound. For the
cases n = 2, 3 often arising in practice, we further refine our general bound.

1. Introduction

1.1. Representing linear algebraic groups in algorithms. A linear algebraic
group is a subgroup of the group GLn(C) of invertible n×n matrices over a field C
that is defined by a system of polynomial equations in matrix entries. Such groups
arise naturally in different areas of mathematics.

For algorithms dealing with arbitrary linear algebraic groups, there are two stan-
dard ways of representing such a group [7, Section 3.13]

(R1) by a system of defining polynomial equations
(R2) by a set of generators of a dense subgroup.

The approach (R1) is convenient, for example, for membership testing and for com-
puting the dimension and the Lie algebra. (R2) is useful for computing normalizers
and centralizers. Other ways of representing are available if some additional infor-
mation (e.g., being connected or reductive) is known about the group. We refer
to [7, Section 3.13] for a discussion.

In this paper, we will focus on (R1), the representation of linear algebraic groups
by a system of defining equations. It is known [13, Proposition 3] that an affine
variety can be defined by a system of polynomial equations of degree at most the
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degree of the variety. Thus, the degree of an algebraic group as an algebraic variety
becomes a natural measure of complexity if (R1) is chosen. In addition to that, the
degrees of an algebraic group and its orbits play an important role in constructive
invariant theory [8, 9] (see also [19, 4] for bounds in the case of a reductive group).
The degree of a linear algebraic group can be arbitrarily large even in the case of
n = 1 (see Example 2.8). However, as we show in this paper, every linear algebraic

group can be “approximated” by a group of degree at most (4n)3n
2

(see Section 1.3).

1.2. Hrushovski’s algorithm. Our main motivation comes from Hrushovski’s al-
gorithm for computing the Galois group of a linear differential equation [15]. A
Galois group is associated to every linear differential equation and captures such
properties of the solutions of the equation as solvability by quadratures and alge-
braicity of relations among solutions (for details, see [36]). Galois theory of differ-
ential equations has applications in integrable systems [25] and number theory [2],
among other areas.

In contrast with the Galois theory of polynomial equations, in which Galois
groups are finite, the Galois group of a linear differential equation is a linear al-
gebraic group and so it is usually infinite. Moreover, it is known [34, 24, 11] that
every linear algebraic group over an algebraically closed field C of characteristic
zero can appear as the Galois group of a linear differential equation over C(t). Sev-
eral algorithms were designed for computing the differential Galois group in special
cases [20, 5, 31], computing invariants [37] and the Lie algebra [1] of the differential
Galois group, and computing the differential Galois group approximately [35].

Let C be an algebraically closed field of characteristic zero. The first general
algorithm for computing the Galois group of a linear differential equation over C(t)
due to Hrushovski [15] appeared in 2002. The algorithm was used, for example, to
design algorithms for computing the Galois group of a linear differential equation
with parameters in several cases [22, 23]. For the last decade, it has been a challenge
to understand the complexity of Hrushovski’s algorithm and make it practical,
see [10, 32, 28] for recent progress in this direction. One of the key ingredients of the
algorithm is the following fact, which is of independent interest to the effective and
computational theory of algebraic groups. There exists a function d(n) such that
for every algebraic group G ⊂ GLn(C) there exists an algebraic groupH ⊂ GLn(C)
containing G such that

(H1) H approximates G in the following sense: there is a set of characters of H◦

such that G◦ is equal to the intersection of their kernels (X◦ denotes the
connected component of identity in X).

(H2) H can be defined by equations of degree at most d(n).

Constructing such an approximationH of the differential Galois group G is the first
step of Hrushovski’s algorithm. The bound on the degrees of defining equations
allows one to search for defining equations of H using undetermined coefficients.
With such an approximation H at hand, the algorithm then proceeds to compute
G by using the algorithm by Compoint and Singer [5].

Hrushovski himself did not provide an explicit expression for d(n) but showed
its existence [15, Corollary 3.7]. He also conjectured that the overall complexity of
the algorithm is at most double-exponential [15, Remark 4.4]. Feng [10, Proposi-
tion B.14] found the first explicit formula for such a d(n) by presenting a function of
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quintuply exponential growth in n that could be used as d(n) in (H2) (see also [32]
for a related bound for H).

1.3. Summary of the main results. In this paper, we show that every linear
algebraic group G ⊂ GLn(C) can be approximated in the sense of (H1) by a group
of degree at most

(1.1)





1 for n = 1,

6 for n = 2,

360 for n = 3,

(4n)3n
2

for n > 3.

More precisely, we formalize (H1) by the notion of a toric envelope. We say that
H ⊂ GLn(C) is a toric envelope of an algebraic group G ⊂ GLn(C) if there exists
a torus T ⊂ GLn(C) such that H can be written as a product T ·G (as a product
of abstract groups). Theorems 3.1, 3.2, and 3.3 state that every algebraic subgroup
of GLn(C) has a toric envelope of degree at most (1.1).

In particular, we show that one can take d(n) = (4n)3n
2

(see Section 4). This
improves Feng’s result dramatically. Our bound is qualitatively optimal (see Re-
mark 3.5) in the sense that any such bound is at least single-exponential.

1.4. Outline of the approach. We derive a general bound in Theorem 3.1 for a
group G ⊂ GLn(C) in the following steps.

Divide. By the Levi decomposition, G is a product of a reductive group and the
unipotent radical.

Conquer (reductive). We find a toric envelope of bounded degree for the re-
ductive group (Section 5.3). We reduce the problem to the case of a connected
reductive group by deriving a bound (Lemma 5.11) analogous to the Jordan bound
for finite subgroups of GLn(C) [18]. We construct a toric envelope in the case of a
connected group using the Lie correspondence and theory of reductive Lie algebras
(Lemma 5.13). We put everything together in Lemma 5.14.

Conquer (unipotent). We derive a degree bound for any unipotent subgroup
of GLn(C) via representing it as the image of the exponential map (Section 5.2).

Combine. We combine the obtained bounds to produce a toric envelope of G
(Section 5.4).
The proof of Theorem 3.2 takes a different approach based on a classification of
subgroups of SL2(C) and computer-assisted computation of the degree bound for
the hardest special cases (Section 7). The proof of Theorem 3.3 refines the ideas
from the proof of Theorem 3.1 in the case n = 3 (Section 8).

1.5. Structure of the paper. The rest of the paper is organized as follows. Sec-
tion 2 contains the notions used to state the main results and illustrates them by
examples. Section 3 contains the main results of the paper. Section 4 describes
the application of the main results to Hrushovski’s algorithm for computing the
differential Galois group of a linear differential equation. Sections 5, 6, 7, and 8
contain proofs of the main results.
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2. Preliminaries

Throughout the paper, C denotes an algebraically closed field of characteristic
zero.

Definition 2.1. A torus is a commutative connected algebraic subgroup T ⊂
GLn(C) such that every element of T is diagonalizable.

Definition 2.2. Consider a linear algebraic group G ⊂ GLn(C). We say that
an algebraic group H ⊂ GLn(C) is a toric envelope of G if there exists a torus
T ⊂ GLn(C) such that H = T ·G (product as abstract groups).

Remark 2.3. The product T ·G is not necessarily semidirect. More precisely, T does
not necessarily normalize G (Example 2.10) and G does not necessarily normalize
T (Example 2.9).

Example 2.4. Every linear algebraic group G ⊂ GLn(C) is a toric envelope of
itself (with T = {e}).
Definition 2.5. A algebraic subvariety X ⊂ GLn(C) is said to be bounded by d,
where d is a positive integer, if there exist polynomials f1, . . . , fM ∈ C[x11, x12, . . . , xnn]
of degree at most d such that

X = GLn(C) ∩ {f1 = f2 = . . . = fM = 0}.
The following notion of the degree of a variety (we specialize it to subvarieties

of GLn(C), see [13, Section 2] for a general treatment) is a generalization of the
notion of degree of a polynomial.

Definition 2.6. Let X ⊂ GLn(C) be a subvariety such that all irreducible com-
ponents of X are of the same dimension m (for example, this is the case if X is a
linear algebraic group). Then

degX := max {|X ∩H | : H is a hyperplane of codimension m such that |X ∩H | is finite} .
By [13, Remark 2], the degree of a hypersurface is equal to the degree of its defining
polynomial.

Proposition 2.7 (follows from [13, Proposition 3] ). Let X ⊂ GLn(C) be a sub-
variety of degree D. Then X can be defined by equations of degree at most D.

The following examples show that the degree of a toric envelope of a group can
be much smaller that the degree of the group itself.

Example 2.8. Let N be a positive integer and G ⊂ GL1(C) be the group of all
N -th roots of unity. It is defined inside GL1(C) by a single equation xN − 1 = 0
of degree N , so it has degree N . The whole GL1(C) is a toric envelope of G with
T = GL1(C) and is of degree 1.

Example 2.9. Consider

G =

{(
a b
0 a2018

)
| a ∈ C∗, b ∈ C

}
.

One can show that the degree of G is 2018. Let T be the group of all diagonal
matrices. Then the group of all triangular matrices in GL2(C) is a toric envelope
of G because it is equal to T ·G. This group is defined by a single linear equation,
so it has degree 1.
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Example 2.10. Consider a dihedral group

G =

{(
εm 0
0 ε−m

)
| m ∈ Z

}
∪
{(

0 εm

ε−m 0

)
| m ∈ Z

}
,

where ε is a primitive 2018-th root of unity. Since G is a zero-dimensional variety
consisting of 4036 points, degG = 4036. Let T be the group of all diagonal matrices.
Then

T ·G =

{(
a 0
0 b

)
| a, b ∈ C∗

}
∪
{(

0 a
b 0

)
| a, b ∈ C∗

}

is a toric envelope of G. Since T · G is a union of two two-dimensional spaces,
deg(T ·G) = 2.

3. Main results

Theorem 3.1. Let C be an algebraically closed field of characteristic zero. Let
G ⊂ GLn(C) be a linear algebraic group. Then there exists a toric envelope H of

G of degree at most (4n)3n
2

. In particular, H is bounded by this number.

Theorem 3.2. Let C be an algebraically closed field of characteristic zero. Let
G ⊂ GL2(C) be a linear algebraic group. Then there exists a toric envelope H of
G such that H is bounded by 6.

Theorem 3.3. Let C be an algebraically closed field of characteristic zero. Let
G ⊂ GL3(C) be a linear algebraic group. Then there exists a toric envelope H of
G of degree at most 360. In particular, H is bounded by 360.

Remark 3.4. A sharper bound for Theorem 3.1 is given by (6.1) in Section 6.

Remark 3.5. Let us show that the bound in Theorem 3.1 is qualitatively optimal by
presenting a single-exponential lower bound. Fix a positive integer n. Let D and P
be the group of all diagonal matrices and the group of all permutation matrices in
this basis, respectively. Since P normalizes D, their product G := P ·D ⊂ GLn(C)
is an algebraic group [27, §3 and Theorem 3 on p. 102]. One can show that,
since G◦ is a maximal torus in GLn(C), the only possible toric envelope of G is G
itself. Since P ∩ D = {e}, the number of connected components of G is equal to
|P | = n!. Since G◦ = D, every component has degree degD = 1. Thus, we obtain
a single-exponential lower bound

degG = n! = nO(n).

The same example gives a single-exponential lower degree bound for a proto-Galois
group (see Section 4) as well.

4. Application to Hrushovski’s algorithm

Hrushovski’s algorithm for computing the differential Galois group [15] of a linear
differential equation of order n consists of the following three steps as outlined in [10,
Section 1]

(1) Computing a proto-Galois group of the differential Galois group of the
equation using an a priori upper bound for the degrees of the defining
equations.

(2) Compute the toric part using the algorithm by Compoint and Singer [5].
(3) Compute the finite part.
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In this section, we show (Lemma 4.2) that every toric envelope of an algebraic
group G ⊂ GLn(C) is a proto-Galois group of G. It follows that the bounds from
Theorems 3.1, 3.2, and 3.3 can be used in the first step of Hrushovski’s algorithm
instead of the bound given in [10, Proposition B.11].

Feng [10, Definition 1.1] defined a proto-Galois group as follows.

Definition 4.1 (proto-Galois group). Let G ⊂ GLn(C) be an algebraic group. An
algebraic group H ⊂ GLn(C) is called a proto-Galois group of G if

(H◦)t EG◦ ⊂ G ⊂ H,

where (H◦)t denotes the intersection of the kernels of all characters of H◦.

Lemma 4.2. If H ⊂ GLn(C) is a toric envelope of G ⊂ GLn(C), then H is a
proto-Galois group of G.

Proof. Since H is a toric envelope of G, G ⊂ H , so inclusions G◦ ⊂ G ⊂ H from
Definition 4.1 hold. [30, Lemma 2.1] implies that (H◦)t is exactly the subgroup of
H generated by all unipotent elements of H◦. By Lemma 5.2, it coincides with the
subgroup of G◦ generated by all unipotents in G◦, and such a subgroup is normal
in G◦. �

Corollary 4.3. Let C be an algebraically closed field of characteristic zero. For
every linear algebraic group G ⊂ GLn(C)

• there exists a proto-Galois group H bounded by (4n)3n
2

;
• if n = 2, there exists a proto-Galois group H bounded by 6;
• if n = 3, there exists a proto-Galois group H bounded by 360.

5. Proof ingredients

Notation 5.1. In what follows we will use the following notation.

• By C we denote an algebraically closed field of characteristic zero.
• We denote the set of all n×n (resp., n×m) matrices over C by Matn(C) (resp.,
Matn,m(C)).

• We denote the subgroup of all scalar matrices in GLn(C) by Zn ⊂ GLn(C).
• For a subset X ⊂ Matn(C), we denote the normalizer and centralizer subgroups
of X by N(X) and Z(X), respectively.

• For a subgroup G ⊂ GLn(C), we denote the center by C(G) and the connected
component of the identity by G◦.

• For a Lie subalgebra u ⊂ gln(C), we denote the normalizer and centralizer
subalgebras by n(u) and z(u), respectively.

• For a positive integer n, J(n) is the minimal number such that every finite
subgroup of GLn(C) contains a normal abelian subgroup of index at most J(n).
We will use Schur’s bound [6, Theorem 36.14]

(5.1) J(n) 6
(√

8n+ 1
)2n2

−
(√

8n− 1
)2n2

• For a positive integer n, A(n) is the maximal size of a finite abelian subgroup
of GLn(Z). Some known values are A(1) = 2, A(2) = 6 (see [26, p. 180]), and
A(3) = 12 (see [33, p. 170]), a general upper bound is given by Lemma 5.9.



DEGREE BOUND FOR TORIC ENVELOPE OF A LINEAR ALGEBRAIC GROUP 7

5.1. Auxiliary lemmas.

Lemma 5.2. An algebraic group H ⊂ GLn(C) is a toric envelope of an algebraic
group G ⊂ GLn(C) if and only if

(1) H◦ and G◦ have the same set of unipotents;
(2) H = G ·H◦.

Proof. Let H be a toric envelope of G. Then there exists torus T ⊂ GLn(C) such
that H = T ·G. Since T is connected, T ⊂ H◦, so H ⊃ G ·H◦ ⊃ G · T = H , so (2)
holds. Consider any unipotent element A ∈ H◦. Since H◦ = T · G◦, then there
are B ∈ T and C ∈ G◦ such that A = BC. Since T is a torus, B is a semisimple
element. Then C = B−1A is a Jordan-Chevalley decomposition of C. By [27,
Theorem 6, p. 115], A,B ∈ G◦. Thus, every unipotent element of H◦ belongs to
G◦. Since also G ⊂ H , (1) holds.

Assume that properties (1) and (2) hold for G and H . Let H = H0⋉U be a Levi
decomposition of H (see [27, Theorem 4, p. 286]). By [39, Lemma 10.10], H0 can
be written as a product ΓH◦

0 for some finite group Γ ⊂ GLn(C). [3, Proposition,
p. 181] implies that H◦

0 can be written as ST , where T := C(H◦
0 )

◦ is a torus and
S := [H◦

0 , H
◦
0 ] is semisimple. Since Γ normalizesH0 and the center is a characteristic

subgroup, Γ normalizes T . Since U and S are generated by unipotents, U, S ⊂ G◦.
Then

H ⊃ T ·G = T ·G◦ ·G ⊃ T · S · U ·G = H◦ ·G = H,

so H = T ·G and H is a toric envelope of G. �

Corollary 5.3. If H2 ⊂ GLn(C) is a toric envelope of H1 ⊂ GLn(C) and H1 is a
toric envelope of H0 ⊂ GLn(C), then H2 is a toric envelope of H0.

Proof. Lemma 5.2 implies that H◦
0 , H

◦
1 , and H◦

2 have the same set of unipotents.
Since H1 ⊂ H2, we have H◦

1 ⊂ H◦
2 . Together with Lemma 5.2 this implies that

H2 = H◦
2 · H1 = H◦

2 · H◦
1 · H0 = H◦

2 · H0. Lemma 5.2 implies that H2 is a toric
envelope of H0. �

Corollary 5.4. Any toric envelope of a reductive group is again a reductive group.

Proof. LetG be a reductive group andH be a toric envelope ofG. Assume thatH is
not reductive. Then it contains a nontrivial connected normal unipotent subgroup
U . Since G◦ and H◦ have the same unipotents, U ⊂ G◦. This contradicts the
reductivity of G. �

Corollary 5.5. Let G be an algebraic subgroup of GLn(C). Then every toric envelope
of GZn is a toric envelope of G.

Lemma 5.6. Let G ⊂ GLn(C) be an algebraic group such that Zn ⊂ G. Then
G = Zn · (G ∩ SLn(C)).

Proof. Let A ∈ G. Since Zn ⊂ G, 1
n
√
detA

A ∈ G ∩ SLn(C). Thus, A ∈ Zn · (G ∩
SLn(C)). �

The following geometric lemma is a modification of [17, Lemma 3].

Lemma 5.7. Let X ⊂ AN be an algebraic variety of dimension 6 d and degree
D. Consider polynomials f1, . . . , fM ∈ C[AN ] such that deg fi 6 D1 for every
1 6 i 6 M . Then the sum of the degrees of the components of Y := X ∩ {f1 =

. . . = fM = 0} of dimension > d′ does not exceed D ·Dd−d′

1 .
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Proof. We will prove the lemma by induction on d − d′. The base case is d = d′.
In this case, the set of components of Y of dimension at least d′ is a subset of the
set of components of X of dimension d, and the sum of their degrees is at most
degX = D.

Let d > d′. Considering every component of X separately, we may reduce
to the case that X is irreducible. If every fi vanishes on X , then X = Y and
the only component of Y of dimension > d′ has degree D. Otherwise, assume
that f1 does not vanish everywhere on X . Then dimX ∩ V (f1) 6 d − 1 and
deg(X ∩ V (f1)) 6 DD1 by [12, Theorem 7.7, Chapter 1]. Applying the induction
hypothesis to X ∩ V (f1) and the same d′, we show that the sum of the degrees of
the components of Y of dimension at least d′ is at most

deg(X ∩ V (f1))D
d−1−d′

1 6 DDd−d′

1 . �

Corollary 5.8. For every collection of algebraic subgroups G0, G1, . . . , Gk ⊂ GLn(C)

degG 6 ndimG0−dimG degG0, where G := G0 ∩N(G1) ∩ . . . ∩N(Gk).

Proof. [10, Lemma B.4] implies that N(G1)∩ . . .∩N(Gk) is defined by polynomials
of degree at most n. Then the statement of the corollary follows from Lemma 5.7
with D1 = n. �

Lemma 5.9. A(n) 6 2 · 3[n2/4], where [x] means the integer part of x.

Proof. Consider a finite abelian subgroup A ⊂ GLn(Z). Let A0 := A ∩ SLn(Z),
then |A| 6 2|A0|. Consider the homomorphism ϕ : SLn(Z) → SLn(F3) defined by
reducing modulo 3. [26, Theorem IX.8] implies that |A0| = |ϕ(A0)|. According

to [38, Table 2], the size of an abelian subgroup of SLn(F3) does not exceed 3[n
2/4].
�

5.2. Degree bound for unipotent groups.

Lemma 5.10. Let U ⊂ GLn(C) be a connected unipotent group. Then

degU 6

n−1∏

k=1

k!.

Proof. By Engel’s theorem [27, Corollary 1, p. 125], there exists a basis such that
LieU is contained in a subspace T ⊂ Matn(C) of strictly upper triangular matrices.
From now on, we fix such a basis. By [27, Theorem 7, p. 126], U = ϕ(LieU), where
ϕ is the exponential map. Since every matrix in T is nilpotent of index at most n,
ϕ is defined everywhere on T by the following formula

ϕ(X) = In +X +
X2

2!
+ . . .+

Xn−1

(n− 1)!
for X ∈ T .

Consider the affine variety

W := {(X,Y ) ∈ T ×GLn(C) | Y = ϕ(X) & X ∈ LieU}.
Since the projection of W to GLn(C) is equal to ϕ(LieU) = U , degU 6 degW
by [13, Lemma 2]. The condition X ∈ LieU is defined by linear equations. A direct
computation shows that

deg(ϕ(X))i,j 6

{
−∞, if i > j,

j − i, otherwise,
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where (ϕ(X))i,j denotes the (i, j)-th entry of the matrix ϕ(X) whose entries are

polynomials in the entries of X . The condition Y = ϕ(X) is defined by n(n+1)
2

linear equations, n − 2 quadratic equations, n − 3 equations of degree 3, . . ., one
equation of degree n − 1. Thus, Bezout’s theorem [12, Theorem 7.7, Chapter 1]

implies that degW 6 2n−23n−3 . . . (n− 2)2(n− 1) =
n−1∏
k=1

k!. �

5.3. Degree bound for reductive groups. All statements in this section will be
about a reductive group G ⊂ GLn(C) such that G ⊂ N(F ), where F ⊂ GLn(C) is
some connected group. In our proofs, G and F will be the reductive and unipotent
parts of a Levi decomposition of an arbitrary linear algebraic group, respectively.

Lemma 5.11. Let G ⊂ GLn(C) be a reductive algebraic group such that G ⊂ N(F )
for some connected algebraic group F ⊂ GLn(C). Then there is a toric envelope
H ⊂ N(F ) of G such that

[H : H◦] 6 J(n)A(n− 1)nn−1.

Proof. Using Corollary 5.5, we replace G with GZn, so in what follows, we assume
that Zn ⊂ G.

By [39, Lemma 10.10], G can be written as a product ΓG◦ for some finite group
Γ ⊂ GLn(C). [3, Proposition, p. 181] implies that G◦ can be written as ST ,
where T := C(G◦)◦ is a torus and S := [G◦, G◦] is semisimple. Since centers
and connected components of the identity are preserved by any automorphism of
a group, and conjugation by an element of Γ induces an automorphism of G◦, Γ
normalizes T .

By the definition of J(n) (see Notation 5.1), there exists a normal abelian sub-
group Γab ⊂ Γ of index at most J(n). Since Zn ⊂ G, T contains Zn. Then
Lemma 5.6 implies that

T = Zn · (T ∩ SLn(C)).

For every algebraic group F , by AlgAut(F ) we will denote the group of algebraic
automorphisms of F . The action of Γab on T by conjugation defines a group
homomorphism ϕ : Γab → AlgAut(T ∩ SLn(C)). Since T ∩ SLn(C) ∼= (C∗)d for
some d 6 n− 1 (see [27, Problem 10, p. 114]),

AlgAut(T ∩ SLn(C)) ∼= GLd(Z).

Let Γ0 := Kerϕ. Since Γ0 = Γab ∩ Z(T ) and both Γab and T are normalized by Γ,
Γ0 is a normal subgroup in Γ.

We set H0 to be the intersection of all the maximal tori in GLn(C) containing
Γ0 ·T . Since Γ0 ·T is a quasitorus, it is diagonalizable (see [27, Theorem 3, p. 113]),
so there is at least one maximal torus containing Γ0 ·T . Thus, H0 is a torus. Since
Γ0·T is normalized by Γ, H0 is also normalized by Γ. We setH1 = H0∩N(S)∩N(F )
and

(5.2) H := T0 ·G, where T0 := H◦
1 .

The lemma follows from the following two claims.

Claim 1: H is a group. Since T ⊂ T0 and Γ normalizes T0, we have

(5.3) H = T0 ·G = T0 · Γ · T · S = Γ · (T0 · S).
The latter is a group, because T0 normalizes S and Γ normalizes T0 and S.
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Claim 2: [H : H◦] 6 J(n)A(n−1)nn−1. From (5.3) we have H = (Γ ·T0)·(T0 ·S).
Since T0 · S is connected, H has at most as many connected components as Γ · T0.
Since T0 = H◦

1 , the latter is bounded by the number of connected components of
Γ ·H1. We have

(5.4) deg(Γ ·H1) 6 [Γ : Γ0] · degH1 = [Γ : Γab] · [Γab : Γ0] · degH1.

We have already shown that [Γ : Γab] 6 J(n). The index [Γab : Γ0] = |ϕ(Γab)|
does not exceed the maximal size of a finite abelian subgroup of GLd(Z). Since
d 6 n− 1, this number is at most A(n− 1).

Since H0 is defined by linear polynomials, degH0 = 1. Since H0 is a torus,
dimH0 6 n. Since dim (H0 ∩N(S) ∩N(F )) > dimZn = 1, Corollary 5.8 implies
that

(5.5) degH1 = deg (H0 ∩N(S) ∩N(F )) 6 nn−1.

Thus, H has at most [Γ: Γ0] · degH1 6 J(n)A(n− 1)nn−1 connected components.
�

Corollary 5.12. In the notation of Lemma 5.11, if G◦ is a torus, then

degH 6 J(n)A(n− 1)nn−1.

Proof. In this case, S from the proof of Lemma 5.11 is trivial. Since T ⊂ T0,
H = Γ ·T0. Then degH 6 (deg Γ ·H1). The latter is bounded by J(n)A(n−1)nn−1

due to (5.4) and (5.5). �

Lemma 5.13. Let G ⊂ GLn(C) be a connected reductive group such that G ⊂
N(F ) for some connected group F ⊂ GLn(C). Then there exists a toric envelope
H ⊂ N(F ) of G such that

degH 6 nn2−dimG and N(G) ∩N(F ) ⊂ N(H).

Proof. Using Corollary 5.5 we may replace G with GZn, so we will assume that
Zn ⊂ G. We set

H := (Z(G) ∩ Z(Z(G)) ∩N(F ))
◦ ·G.

The lemma follows from the following three claims

Claim 1: H is a toric envelope of G. Since Z(G) normalizes G, H is a group.
We will show that the connected component of identity of Z(G) ∩ Z(Z(G)) is a
torus. Then the connected component of the identity of Z(G) ∩ Z(Z(G)) ∩N(F )
will also be a torus.

Since G is reductive, its representation in Cn is completely reducible (see [14,
Theorem 4.3, p. 117]). Let Cn = V1 ⊕ V2 ⊕ . . . ⊕ Vℓ be a decomposition of Cn

into isotypic components. Each Vi can be written as Wi ⊗ Cni , where Wi is the
corresponding irreducible representation of G and Cni is a trivial representation.
Let di := dimWi for 1 6 i 6 ℓ. Then Schur’s lemma implies that

Z(G) =

ℓ⊕

i=1

(C∗Idi
⊗GLni

(C)) , where Idi
is a di × di identity matrix.

Since Z(G) ∩ Z(Z(G)) is the center of Z(G), we have

Z(G) ∩ Z(Z(G)) =

ℓ⊕

i=1

(C∗Idi
⊗ C∗Ini

) =

ℓ⊕

i=1

C∗Inidi
.
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Thus, Z(G) ∩ Z(Z(G)) is a torus. So the claim is proved.

Claim 2: degH 6 nn2−dimG. [3, Proposition, p. 181] implies that G can be
written as ST , where T := C(G)◦ is a torus and S := [G,G] is semisimple. Consider

Ĥ := N(S) ∩ Z(Z(G)) ∩N(F ). Then H ⊂ Ĥ. We will show that H = Ĥ◦.
Let g := LieG and s := LieS. Consider an element a ∈ n(s). The map s → s

defined by g 7→ [a, g] satisfies the requirements of Whitehead’s lemma [16, Lemma 3,
p. 77].

Hence there exists h ∈ s such that [h, g] = [a, g] for every g ∈ s, so a can be
written as a = h+ (a− h), where a− h ∈ z(s). Since s is semisimple, s ∩ z(g) = 0,
so

(5.6) n(s) = s⊕ z(s).

Decomposition (5.6) implies that

(5.7) N(S)◦ = S · Z(S)◦.

We can write Ĥ◦ as

Ĥ◦ = (N(S) ∩ Z(Z(G)) ∩N(F ))◦ .

Using (5.7), we obtain

Ĥ◦ = ((S · Z(S)◦) ∩ Z(Z(G)) ∩N(F ))
◦
.

Using consequently the inclusions S ⊂ Z(Z(G)) ∩N(F ) and Z(Z(G)) ⊂ Z(T ), we
can further write

Ĥ◦ = (Z(S)◦ ∩ Z(Z(G)) ∩N(F ))◦ · S = ((Z(S) ∩ Z(T )) ∩ Z(Z(G)) ∩N(F ))◦ · S
Since Z(G) = Z(S) ∩ Z(T ), the latter is equal to (Z(G) ∩ Z(Z(G)) ∩N(F ))

◦ · S.
Using T ⊂ Z(G) ∩ Z(Z(G)) ∩N(F ), we conlcude that

Ĥ◦ = (Z(G) ∩ Z(Z(G)) ∩N(F ))
◦ · S = (Z(G) ∩ Z(Z(G)) ∩N(F ))

◦ ·G = H.

Thus, degH 6 deg Ĥ . Since any centralizer is defined by linear equations, degZ(Z(G)) =
1. By Corollary 5.8

deg Ĥ 6 ndimZ(Z(G))−dim Ĥ degZ(Z(G)) 6 nn2−dimG.

Claim 3. N(G)∩N(F ) ⊂ N(H). ConsiderA ∈ N(G)∩N(F ). Since A normalizes
G, it normalizes Z(G). Likewise, A normalizes Z(Z(G)). Since A also normalizes
N(F ), we have A ∈ N(H). �

Lemma 5.14. Let G ⊂ GLn(C) be a reductive subgroup such that G ⊂ N(F ) for
some connected group F ⊂ GLn(C). Then there exists a toric envelope H ⊂ N(F )
of G such that

degH 6 J(n)A(n− 1)nn2+n−5.

Proof. Using Corollary 5.5, we may replace G with GZn, so we will assume that
Zn ⊂ G. In the case that G◦ is a torus, the lemma follows from Corollary 5.12.
Otherwise, dimG > dimZn + dimSL2(C) = 4.

Since being a toric envelope is a transitive relation (see Corollary 5.3), applying
Lemma 5.11, we will further assume that [G : G◦] 6 J(n)A(n − 1)nn−1. [39,
Lemma 10.10] implies that G = ΓG◦ for some finite group Γ. Lemma 5.13 implies
that there exists a toric envelope H0 ⊂ N(F ) of G◦ such that N(G◦) ∩ N(F ) ⊂
N(H0) and degH0 6 nn2−4. Let H := ΓH0. Since Γ ⊂ N(G◦) ∩N(F ) ⊂ N(H0),
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H is an algebraic group. Since G◦ ⊂ H0, G ⊂ H . Since H◦ = H0, all unipotent
elements of H◦ belong to G◦. Since also H◦G ⊃ H◦Γ = H , Lemma 5.2 implies
that H is a toric envelope of G.

Since H = H0G where H0 = H◦, [H : H◦] 6 [G : G◦]. Then

degH = [H : H◦] ·degH◦
6 J(n)A(n−1)nn−1 ·nn2−4 = J(n)A(n−1)nn2+n−5. �

5.4. Degree bound for product.

Lemma 5.15. Let G = G0 ·U ⊂ GLn(C), where U is a connected unipotent group,
G0 is a reductive group, and G ⊂ N(U). Let degG0 = D1, degU = D2. Then
degG 6 D1D22

n(n−1)/2.

Proof. The ambient space Cn carries a filtration by subspaces

Vi := {v ∈ Cn | ∀A ∈ U (A− In)
iv = 0}.

There exists s < n such that V1 ( V2 ( . . . ( Vs = Cn. Since G0 normalizes U , Vi

is invariant with respect to G0 for every i > 0. Since G0 is reductive, there exists
a decomposition Vi = Vi−1 ⊕Wi into a direct sum of G0-representations for every
1 6 i 6 s. Thus, there is a decomposition Cn = W1 ⊕ . . .⊕Ws into a direct sum of
G0-invariant subspaces. Let ni := dimWi for 1 6 i 6 s. We fix a basis of Cn that
is a union of bases of W1, . . . ,Ws. In this basis, every element of G0 is of the form

(5.8)




X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xs


 , where Xi ∈ Matni

(C) for every 1 6 i 6 s.

And every element of U is of the form

(5.9)




In1
Y12 . . . Y1n

0 In2
. . . Y2n

...
...

. . .
...

0 0 . . . Ins


 , where Yij ∈ Matni,nj

(C) for every 1 6 i < j 6 s.

We denote the spaces of all the invertible matrices of the form (5.8) and (5.9) by
D and T , respectively. Consider the following variety

P := {(X,Y, Z) ∈ D×T ×GLn(C) | X ∈ G0, Y ∈ U, XY = Z} ⊂ D×T ×GLn(C).

Let π : D × T × GLn(C) → GLn(C) be the projection onto the last coordinate.
Then G = π(P ), so degG 6 degP . Consider P as an intersection of the variety
G0 × U × GLn(C) of degree D1D2 with the variety defined by the n2 equations
XY = Z. Since the product XY is of the form




X1 X1Y12 . . . X1Y1n

0 X2 . . . X2Y2n

...
...

. . .
...

0 0 . . . Xn


 ,

out of n2 entries of XY − Z there are

(5.10)
n(n− 1)

2
− n1(n1 − 1)

2
− . . .− ns(ns − 1)

2
6

n(n− 1)

2
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quadratic polynomials and the rest are linear. Thus, degG 6 degP 6 D1D22
n(n−1)/2.

�

6. Proof of Theorem 3.1

Proof of Theorem 3.1. By [27, Theorem 4, p. 286], G can be written as a semidirect
product G0 ⋉ U , where U is the unipotent radical of G and G0 is a reductive
subgroup of G.

We apply Lemma 5.14 with G = G0 and F = U and obtain a toric envelope
Hs ⊂ N(U) of G0. Let Hs = T · G0, where T is a torus. We set H := Hs · U .
Since Hs ⊂ N(U), H is an algebraic group. Since H = T ·G0 · U = T · G, H is a
toric envelope of G. Corollary 5.4 implies that Hs is reductive. Then Lemma 5.15
implies that

degH 6 2n(n−1)/2 degHs degU.

Using bounds for Hs and U from Lemmas 5.14 and 5.10, respectively, we obtain

(6.1) degH 6 J(n)A(n− 1)nn2+n−52(n−1)n/2
n−1∏

k=1

k!.

Using
√
8n + 1 <

√
16n and (5.1), we derive J(n) 6 42n

2

nn2

. Using Lemma 5.9

and 2 · 3(n−1)2/4 6 4n
2

, we derive A(n− 1) 6 4n
2

. Using n! 6 (n+1
2 )n, we derive

n−1∏

k=1

k! 6
(n
2

)n(n−1)/2

.

Substituting all these bounds to (6.1), we obtain degH 6 (4n)3n
2

. �

7. Proof of Theorem 3.2

Proof. Using Corollary 5.5, from now on we assume that G contains Z2, the group
of all scalar matrices in GL2(C). Lemma 5.6 implies that G = Z2GSL, where
GSL := G ∩ SL2(C). According to [20, p.7], there are only four options for GSL.

(a) GSL is triangularizable but not diagonalizable.
(b) GSL is conjugate to a subgroup of

D =

{(
a 0
0 d

)
| a, d ∈ C, ad 6= 0

}
∪
{(

0 b
c 0

)
| b, c ∈ C, bc 6= 0

}

(c) GSL is finite and neither of the previous two cases hold.
(d) GSL = SL2

We examine each of these cases individually below.

Case (a): GSL is triangularizable but not diagonalizable. We fix a basis in
which GSL can be represented by upper-triangular matrices. In this basis, G is also
represented by upper-triangular matrices. Consider any non diagonalizable matrix
in G

(7.1) A =

(
a b
0 c

)
=

(
a 0
0 c

)(
1 a−1b
0 1

)
.

The last expression in (7.1) is the Jordan decomposition of A. By [27, Theorem 6, p.

115],

(
1 a−1b
0 1

)
belongs to G. Since a−1b 6= 0, the powers of this matrix generate

a Zariski dense subgroup in the group U of unipotent upper-triangular matrices.
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Thus, U ⊂ G. Consider the group B of all invertible upper-triangular matrices.
Since B is connected and the set of unipotent elements of B is U , Lemma 5.2 implies
that B is a toric envelope of G. B is defined by linear equations, so it is bounded
by 1. Moreover, B is a variety of dimension 3 and degree 1.

Case (b): GSL is a subgroup of D. Then G is also contained in D. Since D◦

is the group of diagonal matrices, the only unipotent element in D◦ is the identity
matrix. Since D has two connected components, Lemma 5.2 implies that either
D is a toric envelope of G or, if G is diagonalizable, D◦ is a toric envelope of G.
Since D is defined inside GL2(C) by quadratic equations x11x12 = x21x22 = 0, it
is bounded by 2. D◦ is defined by linear equations and bounded by 1. Moreover,
D is a variety of degree 2 and dimension 2 and D◦ is of degree 1 and dimension 2.

Case (c): GSL is finite and neither of the two previous cases hold. We
will use a classification of finite subgroups of SL2(C) given in [21, §§101-103] (for
a more modern treatment, see [29, Chapter 2]). Based on this classification, GSL

must be one of the following five types:

(1) Cyclic Groups [21, §101, case A]
(2) Binary Dihedral Group [21, §101, case B]
(3) Binary Tetrahedral Group [21, §102, case C]
(4) Binary Octahedral Group [21, §102, case D]
(5) Binary Icosahedral Group [21, §103, case E]

In cases (1) and (2), GSL is conjugate to a subgroup of D (see [21, §101, case A
and B]), so these cases are already considered in Case (b). For cases (3)-(5), we take
G = Z2GSL to be a toric envelope of itself. Then we find a d such that G is bounded
by d using Algorithm 1 (for aMaple code, see https://github.com/pogudingleb/ToricEnvelopes.git).

Algorithm 1 Finding a degree bound for a toric envelope of a finite subgroup of
SL2(C)

Input: Generators of a finite subgroup GSL ⊂ SL2(C)
Output: Positive integer d such that G := Z2GSL is bounded by d

(1) Compute the list of all elements in GSL

(2) Compute generators of the vanishing ideal I of G := Z2GSL

(3) Compute the reduced Gröbner basis B of I with respect to graded
lexicographic ordering

(4) Check all d from 1 to max
p∈B

deg p and find the minimum d such that

√
(p ∈ B| deg p 6 d) = I

(5) Return d found in the previous step

Algorithm 1 outputs bounds 3, 4, and 6 for cases (3), (4), and (5), respec-
tively. The dimension of G is one. Since each of the groups (3) (4), and (5)

contains

(
−1 0
0 −1

)
, the degree of G is at most half of the maximum of the cardi-

nalities of these groups. Thus, degG 6 60.

Case (d): GSL = SL2(C). Then G = Z2 SL2(C) = GL2(C) is bounded by 0. In
this case, G is a variety of dimension 4 and degree 1.

https://github.com/pogudingleb/ToricEnvelopes.git
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Collecting together the results for cases (a)-(d), we conclude that every algebraic
subgroups G ⊂ SL2(C) has a toric envelope bounded by six. �

From the proof of Theorem 3.2, we can extract additional information about
possible toric envelopes.

Corollary 7.1. Let G ⊂ GL2(C) is an algebraic group. Then there exists a
toric envelope H for G containing Z2 and satisfying one of the following

• dimH = 4 and degH = 1;
• dimH = 3 and degH = 1;
• dimH = 2 and degH = 2;

• dimH = 2 and degH = 1;
• dimH = 1 and degH 6 60.

8. Proof of Theorem 3.3

Proof. By [27, Theorem 4, p. 286], G can be written as a semidirect product
G0 ⋉ U , where U is the unipotent radical of G and G0 is a reductive subgroup of
G. Since G0 is reductive, its representation in C3 is completely reducible (see [14,
Theorem 4.3, p. 117]). There are three cases for the dimensions of G0-irreducible
components of C3.

(a) C3 = W1 ⊕W2 ⊕W3, where dimW1 = dimW2 = dimW3 = 1 and W1,W2,
and W3 are irreducible G0-representations;

(b) C3 = V1 ⊕V2, where dimV1 = 1, dimV2 = 2, and V1 and V2 are irreducible
G0-representations;

(c) C3 is G0-irreducible.

Case (a): C3 = W1 ⊕ W2 ⊕ W3, where dimW1 = dimW2 = dimW3 = 1 and
W1,W2, and W3 are irreducible representations of G0. Then G0 is diagonalizable
in some basis, we fix such a basis. Let D be the group of all diagonal matrices in
the basis. We consider H := (D ∩N(U))◦ ·G. Since D ∩N(U) commutes with G0

and normalizes U , it normalizes G. So H is an algebraic group. Hence, H is a toric
envelope of G.

Since degD = 1 and 3 > dim(D ∩ N(U)) > dimZ3 = 1, Corollary 5.8 implies
that deg(D ∩N(U)) 6 9. Lemma 5.10 implies that degU 6 2. Since D ∩N(U) is
reductive, Lemma 5.15 implies that

deg(D ∩N(U)) · U 6 9 · 2 · 8 = 144.

Then degH 6 deg(D ∩N(U))G = deg(D ∩N(U))U 6 144.

Case (b): C3 = V1 ⊕ V2. , where dimV1 = 1, dimV2 = 2, and V1 and V2 are
irreducible representations of G0. According to the presentations (5.8) and (5.9)
for G0 and U constructed in the proof of Lemma 5.15, one of the following two
cases holds:

either G0 ⊂
{(A 0

0 b

)
| A ∈ GL2(C), b ∈ C∗} and U ⊂

{


1 0 u
0 1 v
0 0 1


 | u, v ∈ C

}
,

or G0 ⊂
{(b 0

0 A

)
| A ∈ GL2(C), b ∈ C∗} and U ⊂

{


1 u v
0 1 0
0 0 1


 | u, v ∈ C

}

We will consider the former. The latter is completely analogous.
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Let T1 be the group of the matrices of the form diag(1, 1, a), where a ∈ C∗.
Since T1 ⊂ Z(G0), T1G0 is an algebraic group. Moreover, there is a decomposition
G0 = T1G1, whereG1 acts trivially on V1. Then G1 can be considered as a subgroup
of GL(V2) ∼= GL2(C). Let H1 be a toric envelope for G1 given by Corollary 7.1.
Then there exists a torus T2 ⊂ GL(V2) such that H1 = T2G1. Then T2 and T1

commute, so T := T1T2 is a torus. Thus, H0 := TG0 is a toric envelope for G0.
We set H := (H0 ∩ N(U)) · U . Since G0 ⊂ N(U), H = (T ∩ N(U))G0U , so H

is a toric envelope of G = G0U . Using Lemma 5.15 with more precise bound given
by (5.10), we obtain

(8.1) degH 6 4 deg(H0 ∩N(U)) degU.

Direct computation shows that any subgroup of






1 0 u
0 1 v
0 0 1


 | u, v ∈ C





is an affine subspace of Mat3(C), so degU = 1. Both T1 and Z2 ⊂ H1 normalize
U , so dim(H0 ∩ U) > 2. Using Corollary 5.8 and classification from Corollary 7.1,
we obtain

deg(H0 ∩N(U)) 6 3dimH1−1 degH1 6 max(27 · 1, 9 · 1, 3 · 2, 1 · 60) = 60.

Plugging all the bounds into (8.1), we obtain degH 6 240.

Case (c): C3 is G0-irreducible. Since the space of fixed vectors of U is G0-
invariant, it coincides with C3, so U = {e}. [3, Proposition, p. 181] implies that G◦

0

can be written as ST , where T := C(G◦
0)

◦ is torus and S := [G◦
0, G

◦
0] is semisimple.

If C3 is an irreducible S-representation, let H := Z3 · G. As in the proof of
Lemma 5.13 (see (5.7)), one can show thatN(S)◦ = SZ(S)◦. Schur’s lemma implies
that Z(S) = Z3. Since H ⊂ N(S) and H◦ ⊃ S ·Z(S), we obtain that H◦ = N(S)◦,
so degH 6 degN(S). Since dimN(S) > dimZ3+dimS > 4, Corollary 5.8 applied
with G0 = GL3(C) and G1 = S implies that degH 6 35 = 243.

If C3 is not an irreducible representation of S, then there exists an S-invariant
one-dimensional subspace spanned by a vector v. Since [S, S] = S, gv = v for every
g ∈ S. Consider a subspace I = {u ∈ C3 | ∀g ∈ S gu = u}. Since v ∈ I, dim I > 0.
Since S is normal in G0, I is G0-invariant. Since C3 is G0-irreducible, I = C3, so
S = {e}. Since U = S = {e}, [39, Lemma 10.10] implies that G = G0 = ΓT for
some finite Γ.

Let T0 be any maximal element of the set of all the tori containing T and nor-
malized by Γ. We set H := T0 · G, then H is a toric envelope of G. Since T0 is a
torus, all its irreducible representations are one-dimensional and are described by
characters of T0. We denote distinct characters of T0 by χ1, . . . , χs. Then we write

C3 =

s⊕

i=1

Vχi
, where Vχi

:= {v | ∀g ∈ T0 gv = χi(g)v} 6= {0} for i = 1, . . . , s.

Since Γ normalizes T0, for every 1 6 i 6 s, there exists 1 6 j 6 s such that
Γ(Vχi

) ⊂ Vχj
. Consider possible values of s
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s = 1. Then T ⊂ Z3, so T0 = Z3. By Lemma 5.6, we can further assume that
Γ ⊂ SL3(C). We will use the classification of finite subgroups of SL3(C) from [40,
p. 2-3] (see also [29, §3]).

Since there is no torus strictly containing Z3 that is normalized by Γ, Γ is an
imprimitive subgroup of SL3(C) (see [40, p. 10]). Thus, only cases (E)-(K) from [40,
p. 2-3] are possible. One can see that every group Γ of types (E)-(K) satisfies one
of the following

• |Γ| 6 360 (cases (E), (F), (H), (I), and (J));
• |Γ| 6 1080 and Γ contains a matrix ωI3, where ω is a primitive cubic root
of unity and I3 is the identity matrix (cases (J), (L), and (K)).

In both cases we have degH 6 |Γ|/|Γ ∩ Z3| 6 360.

s = 2. Without loss of generality we can assume that dimVχ1
= 2 and dimVχ2

=
1. Then Vχ1

is an invariant subspace for both Γ and T0. This contradicts the
assumption that C3 is an irreducible G0-representation.

s = 3. If we choose a basis e1, e2, e3 such that ei ∈ Vχi
for 1 6 i 6 s, every

element of G can be written in this basis as a product of a diagonal matrix and a
permutation matrix. Let D be a group of all diagonal matrices in this basis. Then
Γ normalizes D and T0 ⊂ D, so T0 = D. Thus, H := ΓD. Since the number of
connected component of H does not exceed the number of permutation matrices
and degD = 1, we have degH 6 3! = 6.

In all the cases above, we constructed a toric envelope H of G such that degH 6

360. �
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