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a b s t r a c t

Recently, Wang and Tchetgen Tchetgen (2018) showed that the global average treatment
effect is identifiable even in the presence of unmeasured confounders so long as they
do not modify the instrument’s additive effect on the treatment. We use a simple and
direct method to show that this no-interaction assumption allows identification of the
entire outcome distribution, which leads to multiply robust estimation procedures for
nonlinear functionals like the quantile and Mann–Whitney treatment effects. Similarly,
we can bound these causal estimands through the outcome distribution in sensitivity
analysis against confounder–instrument interaction.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Background

Instrumental variables, such as randomized treatment assignment, are indispensable in causal inference with en-
ogenous treatments (Baiocchi et al., 2014). Due to identifiability issues, however, they are mostly used to estimate
ocal treatment effects on the subpopulation of compliers, or those whose treatment varies in lockstep with the
nstrument (Angrist et al., 1996). The overall treatment effect, while substantively more relevant, is commonly thought
f as inaccessible without an intricate model to extrapolate local effects globally (Goldberger, 1972).
Such notion was recently challenged by Wang and Tchetgen Tchetgen (2018), who showed that the global average

reatment effect can be identified model-free if the confounders do not modify the instrument’s additive effect on the
reatment. Because this identifying assumption does not constrain the observed data distribution, the investigator is free
o model the latter as they see fit. Given this leeway, the authors went on to construct a multiply robust estimator for
he average treatment effect on a binary outcome under three sets of models.

The identifying power of this no-interaction assumption goes beyond the average treatment effect. In a technical
eport, Tchetgen Tchetgen et al. (2018) established a general identification result for time-varying treatments, con-
ounders, and instruments. This was later used to make inference in marginal structural mean (Michael et al., 2020) and
azard (Wang et al., 2022) models without the traditional sequential randomization assumption. For a point treatment, a
echnical reader could specialize Lemma 2 of Tchetgen Tchetgen et al. (2018) to find that the entire outcome distributions
re identified under the no-interaction assumption. But it is not immediately clear how to estimate them efficiently
nd robustly. Besides estimation, little is yet known about the quantitative implications of an imperfect no-interaction
ssumption on the causal estimand of interest.
In this note, we express the outcome distributions in terms of certain identifiable quantities along with a latent

ne that measures the extent of confounder–instrument interaction. Not only does the expression readily recovers the
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dentification result in the absence of interaction, it provides specific instructions on constructing distributional estimators
hat are multiply robust in the sense of Wang and Tchetgen Tchetgen (2018) and Tchetgen Tchetgen et al. (2018). It also
elps to quantify the stochastic range of the distributions in relation to the degree of interaction, which proves useful in
ensitivity analysis of estimands that respect the stochastic order of the distributions (Manski, 2003).

. Main results

Let Y (a) denote the potential outcome under treatment a, where a = 1 and 0 indicate the active treatment and control,
espectively. With observed treatment A, the observed outcome is Y = AY (1)+ (1−A)Y (0). Let X denote a set of observed
covariates and U a set of unmeasured confounders. Suppose that Z ∈ {1, 0} is valid instrument that is unconfounded by
U and that influences Y only through A. More formally, we make and list below the same assumptions as in Wang and
Tchetgen Tchetgen (2018). In particular, (A4) means that all confounders are captured between X and U .

(A1) Exclusion restriction: Y (z, a) = Y (a) almost surely, where Y (z, a) denotes the potential outcome under instrument
z and treatment a.

(A2) Independence: Z ⊥⊥ U | X .
(A3) Relevance: Z ⊥̸⊥ A | X .
(A4) Y (a) ⊥⊥ (Z, A) | (U, X).

Let νa(·) denote the marginal distribution of Y (a) ∈ Y (a = 1, 0), where Y denotes the outcome space. We seek to
characterize a generic finite measure µ on Y through its integrals µ(f ) =

∫
f (y)µ(dy), where f : Y → R is an arbitrary

integrable function. Under this notation, let pa,z(· | x) denote the conditional measure of Y given A = a, Z = z, and X = x.
Write δa,z(x) = pr(A = a | Z = z, X = x). Because δa,1(x) ̸= δa,0(x) by (A3), we can define a finite, possibly signed measure
ν∗
a (· | x) by

ν∗

a (· | x) =
pa,1(· | x)δa,1(x) − pa,0(· | x)δa,0(x)

δa,1(x) − δa,0(x)
. (1)

learly, ν∗
a (· | x) is identifiable as it concerns the observed data (Y , A, Z, X).

Switching to the latent setting, let δa,z(x,U) = pr(A = a | Z = z, X = x,U). For shorthand notation, write
δz(x,U) = δ1,z(x,U) and δz(x) = δ1,z(x). Then ∆δ(x,U) = δ1(x,U) − δ0(x,U) and ∆δ(x) = δ1(x) − δ0(x) can be viewed as
the instrument’s additive effects on the treatment with and without adjusting for the unknown confounders, respectively.
Deviation of ∆δ(x,U) from ∆δ(x) thus reflects the modification of this effect by the confounders through their interaction
with the instrument. In that sense, it is natural to measure the extent of interaction by the relative difference

ε(x,U) = ∆δ(x)−1
{∆δ(x;U) − ∆δ(x)}.

We call ε(x,U) the relative interaction function and use it to restate Assumption 5(a) of Wang and Tchetgen Tchetgen
(2018).

(A5) There is no confounder–instrument interaction on the treatment, i.e., ε(x,U) ≡ 0 almost surely for every x.

Let νa(· | x) denote the conditional measure of Y (a) given X = x. The following lemma relates νa(· | x) to the identifiable
ν∗
a (· | x) up to an error due to a possibly nonzero ε(x,U). Write ∆δa(x) = δa,1(x) − δa,0(x) = (−1)a+1∆δ(x).

Lemma 2.1. Under Assumptions (A1)–(A4), we have that, for a = 1, 0,

ν∗

a (· | x) = νa(· | x) + EU |x {νa(· | x,U)ε(x,U)} , (2)

where EU |x(·) denotes conditional expectation taken over U given X = x and νa(· | x,U) is the conditional measure of Y (a)
given X = x and U.

Proof. For z = 1, 0, E{f (Y )I(A = a) | Z = z, X = x,U} = E[f {Y (a)}I(A = a) | Z = z, X = x,U] = E[f {Y (a)} | Z = z, X =

x,U]pr(A = a | Z = z, X = x,U) = νa(f | x,U)δa,z(x;U), where the first equality follows by (A1), and the second and
third by (A4). Thus,

E{f (Y )I(A = a) | Z = 1, X = x,U} − E{f (Y )I(A = a) | Z = 0, X = x,U}

=νa(f | x,U){δa,1(x;U) − δa,0(x;U)}

=∆δa(x){νa(f | x,U) + νa(f | x,U)ε(x;U)}. (3)

By (A2), taking EU |x(·) on both sides of (3) yields E{f (Y )I(A = a) | Z = 1, X = x}−E{f (Y )I(A = a) | Z = 0, X = x} = pa,1(f |

x)δa,1(x) − pa,0(f | x)δa,0(x) and ∆δa(x)[νa(f | x) + EU |x{νa(f | x,U)ε(x;U)}], respectively. Divide both sides by ∆δa(x) ̸= 0
to obtain (2). □

Lemma 2.1 immediately implies identification of ν (·) under (A5).
a
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roposition 2.1. Under Assumptions (A1)–(A5), νa(· | x) = ν∗
a (· | x) so that νa(·) is identifiable through νa(·) = E{ν∗

a (· | X)}
a = 1, 0).

The identification of E{Y (1)− Y (0)} (Wang and Tchetgen Tchetgen, 2018) is implied by inserting the identity function
in the νa(·). In full strength, Proposition 2.1 also implies identification of other functionals of the outcome distributions
like the quantile and Mann–Whitney treatment effects (Mao, 2018).

3. Multiply robust estimation under no interaction

The first step to estimate the various functionals is to estimate the νa(·) themselves. This can be done in a multiply
obust way under the general theory developed in Section 4.2 of Tchetgen Tchetgen et al. (2018) for marginal structural
odels with time-varying treatments. We provide a specific route by mimicking the construction for the average

reatment effect (Wang and Tchetgen Tchetgen, 2018) given ν∗
a (· | x) = νa(· | x) under (A5).

With a slight abuse of notation, we use νa(y) to denote νa{I(· ≤ y)}, i.e., νa(y) = pr{Y (a) ≤ y}. A similar convention
applies to other measures. Let q(z | x) = pr(Z = z | X = x) denote the propensity score for the instrument.
Consider three classes of models: M1, consisting of νa(· | x) = νa(· | x; α), ∆δ(x) = ∆δ(x; β), δ0(x) = δ0(x; ζ ), and
pa,0(y | x) = pa,0(y | x; θ ); M2, consisting of q(z | x) = q(z | x; γ ) and ∆δ(x) = ∆δ(x; β); and M3, consisting of
q(z | x) = q(z | x; γ ) and νa(· | x) = νa(· | x; α), where α, β, γ , θ , and ζ are parameters indexing the corresponding
distributions. Following Wang and Tchetgen Tchetgen (2018), we first derive the efficient influence function for νa(y) in
the union model, with details relegated to the supplementary material.

Theorem 3.1. Under Assumptions (A1)–(A5), the nonparametric efficient influence function for νa(y) is

EIFa(y) =
2Z − 1
q(Z | X)

∆δa(X)−1[I(Y ≤ y, A = a) − I(A = a)νa(y | X)−

δa,0(X){pa,0(y | X) − νa(y | X)}
]
+ νa(y | X) − νa(y),

hich also coincides with the efficient influence function in M1 ∪ M2 ∪ M3.

Given a random n-sample of (Y , A, Z, X), let γ̂ , θ̂ , and ζ̂ denote the estimators for γ , θ , and ζ by regressing Z against
X , Y against X for those with A = a and Z = 0, and A against X for those with Z = 0, respectively. With Pn denoting
the empirical measure, let β̂dr and α̂dr solve Pn[h(X)(2Z − 1)q(Z | X; γ̂ )−1

{A − ∆δ(X; β̂dr)Z − δ0(X; ζ̂ )}] = 0 and
Pn(g(f ; X)(2Z −1)q(Z | X; γ̂ )−1

[I(A = a){f (Y )−νa(f | X; α̂dr)}−δa,0(X; ζ̂ ){pa,0(f | X; θ̂ )−νa(f | X; α̂dr)}]) = 0, respectively,
where h(X) and g(·; X) are weight functions commensurate with β and α, respectively. For finite-dimensional α, moment-
based weights with f (y) = y, y2, . . . will probably suffice. When it has infinite-dimensional components, however, we may
need to set f (·) = I(· ≤ y) for y ∈ Y and solve a correspondingly infinite-dimensional estimating equation (van der Vaart
and Wellner, 1996, Ch. 3.3).

The initial estimators β̂dr and α̂dr are doubly robust in M1 ∪ M2 and M1 ∪ M3, respectively. We use them to
construct a triply robust estimator for νa(·) in the next proposition (proved in the supplementary material). Write
∆δa(x; β) = (−1)a+1∆δ(x; β).

Proposition 3.1. Under Assumptions (A1)–(A5), the estimator

ν̂a,mr(y) = Pn

(
2Z − 1

q(Z | X; γ̂ )
∆δa(X; β̂dr)−1[I(Y ≤ y, A = a)

− I(A = a)νa(y | X; α̂dr) − δa,0(X; ζ̂ ){pa,0(y | X; θ̂ )

− νa(y | X; α̂dr)}
]
+ νa(y | X; α̂dr)

)
is consistent to νa(y) in M1 ∪ M2 ∪ M3 and locally efficient in M1 ∩ M2 ∩ M3.

Now by plugging in the ν̂a,mr(·), we can estimate any treatment effect in the form of a contrast T (ν1, ν0). This
pplies to the average treatment effect with T (ν1, ν0) =

∫
y{ν1(dy) − ν0(dy)}, the τ -quantile treatment effect with

(ν1, ν0) = ν−1
1 (τ )−ν−1

0 (τ ) (0 < τ < 1), and the Mann–Whitney stochastic shift T (ν1, ν0) =
∫

ν0(y)ν1(dy)−
∫

ν1(y)ν0(dy)
Mao, 2018), the last of which measures the net probability of a greater outcome from the treatment as compared
o the control. For these smooth T , T (ν̂1,mr, ν̂0,mr) inherits the robustness and efficiency of the ν̂a,mr(y) established in
roposition 3.1 (Bickel et al., 1993).

. Sensitivity analysis against interaction

All such plug-in estimators rely on (A5) for validity. To assess their sensitivity to the presence of interaction, consider
relaxed form of (A5).
3
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(A5*) The relative interaction function satisfies

− ξ−(x) ≤ ε(x,U) ≤ ξ+(x) (4)

almost surely with some 0 ≤ ξ−(x) ≤ |∆δ(x)|−1
+ 1 and 0 ≤ ξ+(x) ≤ |∆δ(x)|−1

− 1.

emark 4.1. The constraints on ξ−(x) and ξ+(x) arise from the natural bounds −|∆δ(x)|−1
−1 ≤ ε(x,U) ≤ |∆δ(x)|−1

−1
ue to |∆δ(x,U)| ≤ 1, which form the identifiable region for ε(x,U). As a result, tighter bounds are untestable because
hey have no empirical implications for the data at hand. If circumstances allow, it would be ideal to estimate ξ−(x) and
+(x) from a previous study where confounders are more extensively measured. Without such external data, one can use
he natural bounds themselves, which, as will be seen later, may still bound the treatment effect meaningfully provided
hat the instrument-treatment association is sufficiently strong.

Similarly to estimation under (A5), we can bound a suitable treatment effect under (A5*) by bounding the distribution
unctions νa(·) via the νa(· | x). First, consider bounding νa(B | x) for some measurable B ⊂ Y , where µ(B) = µ{I(· ∈ B)}.
y (2) of Lemma 2.1, the error between νa(B | x) and the identifiable ν∗

a (B | x) is −EU |x{νa(B | x,U)ε(x,U)}, which by
≤ νa(B | x,U) ≤ 1 is bracketed between −ξ+(x) and ξ−(x) under (4), leading to

ν∗

a (B | x) − ξ+(x) ≤ νa(B | x) ≤ ν∗

a (B | x) + ξ−(x). (5)

hese bounds can be improved since they have not used the fact that EU |x{ε(x,U)} = 0 or that EU |x{νa(B | x,U)} = νa(B | x).
The following lemma tightens the bounds by exploiting these constraints. Write ξ (x) = {ξ−(x), ξ+(x)}.

emma 4.1. Under Assumptions (A1)–(A4) and (A5*), we have that, for any measurable B ⊂ Y ,

− EL
{νa(B | x); ξ (x)} ≤ EU |x{νa(B | x,U)ε(x,U)} ≤ EU

{νa(B | x); ξ (x)}, (6)

where

EL(π; ξ ) =

{
ξ−π, 0 ≤ π ≤

ξ+

ξ−+ξ+

ξ+(1 − π ), ξ+

ξ−+ξ+ < π ≤ 1

and EU(π; ξ ) =

{
ξ+π, 0 ≤ π ≤

ξ−

ξ−+ξ+

ξ−(1 − π ), ξ−

ξ−+ξ+ < π ≤ 1

for π ∈ [0, 1] and ξ = (ξ−, ξ+) ∈ R+⊗2.

roof. Obviously, −ξ−(x)νa(B | x) ≤ EU |x{νa(B | x,U)ε(x,U)} ≤ ξ+(x)νa(B | x). Because EU |x{ε(x,U)} = 0, we have that
EU |x{νa(B | x,U)ε(x,U)} = EU |x[{1 − νa(B | x,U)}ε(x,U)], which is similarly bounded between −ξ−(x){1 − νa(B | x)} and

ξ+(x){1 − νa(B | x)}. Composing the two sets of bounds produces (6). □

The bounds in (6) are superior to those in (5) as both EL
{νa(B | x); ξ (x)} and EU

{νa(B | x); ξ (x)} are always less than
r equal to min{ξ−(x), ξ+(x)}. What is more, they duly shrink to zero when νa(B | x) approaches 1 or 0, or when |∆δ(x)|
pproaches 1. To see the latter, recall that ξ+(x) ≤ |∆δ(x)|−1

− 1 by the natural upper bound on ε(x,U). Therefore,
∆δ(x)| ↑ 1 implies that ξ+(x) ↓ 0, which in turn pushes both EL

{νa(B | x); ξ (x)} and EU
{νa(B | x); ξ (x)} down to 0. This is

nsurprising since |∆δ(x)| ≈ 1 means strong concordance between the instrument and treatment. With the unconfounded
nstrument as a good proxy for the treatment, the outcome distributions are naturally near identifiable.

Now we can combine (6) with (2) to obtain bounds of νa(B | x) as piecewise linear functions of ν∗
a (B | x).

roposition 4.1. Under Assumptions (A1)–(A4) and (A5*), we have that, for any measurable B ⊂ Y ,

L{ν∗

a (B | x); ξ (x)} ≤ νa(B | x) ≤ H{νa(B | x); ξ (x)}, (7)

where L(π∗
; ξ ) and H(π∗

; ξ ) are piecewise linear functions of π∗ for any ξ = (ξ−, ξ+) ∈ R+⊗2 and are expressed in the
supplementary material.

In particular, we can bound the cumulative distribution function νa(y | x) by taking B = {y′
∈ Y : y′

≤ y}, yielding

L{ν∗

a (y | x); ξ (x)} ≤ νa(y | x) ≤ H{ν∗

a (y | x); ξ (x)}. (8)

According to the expressions of L(π∗
; ξ ) and H(π∗

; ξ ) in the supplementary material, an inflection point is found
at ξ−(x) = 1. To illustrate, consider the case with δ1(x) = 0.9, δ0(x) = 0.1, and set ξ+(x) at the natural bound
|∆δ(x)|−1

− 1 = 0.25. For ξ−(x) ∈ {|∆δ(x)|−1
+ 1 = 2.25, 1, 0.5}, we plot the range of νa(y | x) as a function of ν∗

a (y | x)
in Fig. 1. Because ξ−(x) = 1 implies that δ1(x,U) ≥ δ0(x,U) almost surely, it is roughly equivalent to a stochastic version
of the monotonicity condition under a causal instrument (Angrist et al., 1996). In such cases, a fraction of the population,

namely, the noncompliers, are completely unidentified (Imbens and Rubin, 1997), which explains the truncation of the

4
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Fig. 1. Range of νa(y | x) as a function of ν∗
a (y | x) under Assumption (A5*) based on an instance with δ1(x) = 0.9 and δ0(x) = 0.1.

istribution function in the middle panel of Fig. 1. Interestingly, such truncation disappears when ξ−(x) is strictly less
han 1. More discussions in this regard are provided in the supplementary material.

In general, we can always find a least and a greatest element for νa(· | x) in terms of stochastic order, which help
bound certain treatment effects of interest.

Proposition 4.2. For all νa(· | x) satisfying (8), a stochastically least and a greatest element exist, denoted by νa(· | x)
and νa(· | x), respectively. Then the stochastically least and greatest νa(·) are νa(·) = E{νa(· | X)} and νa(·) = E{νa(· | X)},
respectively. Moreover, if the treatment effect is defined by θ = T (ν1, ν0) with T (ν1, ν0) nondecreasing in ν1 and nonincreasing
n ν0 with respect to the stochastic order, then T (ν1, ν0) ≤ θ ≤ T (ν1, ν0).

The existence of νa(· | x) and νa(· | x) is ensured by the closure of the space of distribution functions satisfying (8) under
pointwise maximum and minimum. To estimate the bounds from empirical data, we first estimate ν∗

a (· | x), e.g., using
he procedures described in Section 3, and the compute νa(y | x) and νa(y | x) by applying isotonic methods to find
he greatest and smallest monotone functions below H{ν∗

a (y | x); ξ (x)} and above L{ν∗
a (y | x); ξ (x)}, respectively (see, e.g.,

roeneboom and Jongbloed, 2014). Finally, taking the empirical averages of νa(· | X) and νa(· | X) over X gives us estimates
f νa(·) and νa(·), respectively. These estimates can then be used to bound the quantile treatment effect, Mann–Whitney

stochastic shift, and average treatment effect, all respecting the stochastic order as required in Proposition 4.2 (Manski,
2003). An illustration using the U.S. National Job Training Partnership Act (JTPA) Study (Abadie et al., 2002) is provided
in the supplementary material.

5. Concluding remarks

There are several ways to extend the sensitivity analysis in Section 4. Because bounds are developed on the νa(· | x),
it should be straightforward to derive similar results under marginal structural models, with point or even time-varying
treatments (Tchetgen Tchetgen et al., 2018). Moreover, in selecting optimal treatment regimes, one typically does not
need the full range of the effect size. For example, Cui and Tchetgen Tchetgen (2021) provided a necessary and sufficient
condition to identify the sign of the average treatment effect in complete absence of (A5). The distributional bounds
developed under (A5*) can shed new light on the sign-identifiability of the average and various other treatment effects.

It may also be possible to improve the bounds on the treatment effects themselves. For instance, those in Proposi-
tion 4.2 stem from separate bounds on the outcome distributions under the treatment and control. As is clear from (2),
however, ν1(· | x) and ν0(· | x) are subject to the same influence of ε(x,U). Simultaneous bounding of the outcome
distributions may further narrow their contrast. Certain monotonicity assumptions on the confounders, if justifiable, may
also help, as is shown in Appendix B of Wang and Tchetgen Tchetgen (2018) for the average treatment effect. For starters,
a distributional version of that result is derived in the supplementary material.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2022.109590.

Supplementary material online includes technical and numerical results.
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