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1. Background

Instrumental variables, such as randomized treatment assignment, are indispensable in causal inference with en-
dogenous treatments (Baiocchi et al., 2014). Due to identifiability issues, however, they are mostly used to estimate
local treatment effects on the subpopulation of compliers, or those whose treatment varies in lockstep with the
instrument (Angrist et al., 1996). The overall treatment effect, while substantively more relevant, is commonly thought
of as inaccessible without an intricate model to extrapolate local effects globally (Goldberger, 1972).

Such notion was recently challenged by Wang and Tchetgen Tchetgen (2018), who showed that the global average
treatment effect can be identified model-free if the confounders do not modify the instrument’s additive effect on the
treatment. Because this identifying assumption does not constrain the observed data distribution, the investigator is free
to model the latter as they see fit. Given this leeway, the authors went on to construct a multiply robust estimator for
the average treatment effect on a binary outcome under three sets of models.

The identifying power of this no-interaction assumption goes beyond the average treatment effect. In a technical
report, Tchetgen Tchetgen et al. (2018) established a general identification result for time-varying treatments, con-
founders, and instruments. This was later used to make inference in marginal structural mean (Michael et al., 2020) and
hazard (Wang et al., 2022) models without the traditional sequential randomization assumption. For a point treatment, a
technical reader could specialize Lemma 2 of Tchetgen Tchetgen et al. (2018) to find that the entire outcome distributions
are identified under the no-interaction assumption. But it is not immediately clear how to estimate them efficiently
and robustly. Besides estimation, little is yet known about the quantitative implications of an imperfect no-interaction
assumption on the causal estimand of interest.

In this note, we express the outcome distributions in terms of certain identifiable quantities along with a latent
one that measures the extent of confounder-instrument interaction. Not only does the expression readily recovers the

E-mail address: Imao@biostat.wisc.edu.

https://doi.org/10.1016/j.spl.2022.109590
0167-7152/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Please cite this article as: L. Mao, Identification of the outcome distribution and sensitivity analysis under weak confounder-instrument interaction.
Statistics and Probability Letters (2022) 109590, https://doi.org/10.1016/j.spl.2022.109590.



https://doi.org/10.1016/j.spl.2022.109590
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lmao@biostat.wisc.edu
https://doi.org/10.1016/j.spl.2022.109590
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

STAPRO: 109590

L. Mao Statistics and Probability Letters xxx (xXxx) xxx

identification result in the absence of interaction, it provides specific instructions on constructing distributional estimators
that are multiply robust in the sense of Wang and Tchetgen Tchetgen (2018) and Tchetgen Tchetgen et al. (2018). It also
helps to quantify the stochastic range of the distributions in relation to the degree of interaction, which proves useful in
sensitivity analysis of estimands that respect the stochastic order of the distributions (Manski, 2003).

2. Main results

Let Y(a) denote the potential outcome under treatment a, where a = 1 and 0 indicate the active treatment and control,
respectively. With observed treatment A, the observed outcome is Y = AY(1)+(1—A)Y(0). Let X denote a set of observed
covariates and U a set of unmeasured confounders. Suppose that Z € {1, 0} is valid instrument that is unconfounded by
U and that influences Y only through A. More formally, we make and list below the same assumptions as in Wang and
Tchetgen Tchetgen (2018). In particular, (A4) means that all confounders are captured between X and U.

(A1) Exclusion restriction: Y(z, a) = Y(a) almost surely, where Y(z, a) denotes the potential outcome under instrument
z and treatment a.

(A2) Independence: Z 1L U | X.

(A3) Relevance: Z J A | X.

(A4) Y(a) 1L (Z,A) | (U, X).

Let vq4(-) denote the marginal distribution of Y(a) € ¥ (a = 1, 0), where Y denotes the outcome space. We seek to
characterize a generic finite measure p on ) through its integrals u(f) = f f(y)u(dy), where f : Y — R is an arbitrary
integrable function. Under this notation, let p, ;(- | X) denote the conditional measure of Y givenA =a,Z =z, and X = x.
Write §q,(x) = pr(A = a | Z =z, X = x). Because §4,1(X) # 84,0(x) by (A3), we can define a finite, possibly signed measure
va (- | %) by
(.| x) = Pai(- 1 X)8a1(X) — Pa.ol- | X)da.0(X)
‘ 8a,1(X) — 8q,0(%) '

Clearly, v}(- | x) is identifiable as it concerns the observed data (Y, A, Z, X).

Switching to the latent setting, let é,,(x,U) = pr(A = a | Z = z,X = x,U). For shorthand notation, write
8,(x,U) = 81.(x,U) and 8,(x) = 61 ,(x). Then Ad(x, U) = §1(x, U) — So(x, U) and AS(x) = §1(x) — o(x) can be viewed as
the instrument’s additive effects on the treatment with and without adjusting for the unknown confounders, respectively.
Deviation of Ad(x, U) from Ad(x) thus reflects the modification of this effect by the confounders through their interaction
with the instrument. In that sense, it is natural to measure the extent of interaction by the relative difference

g(x, U) = AS(x)"H{AS(x; U) — AS(x)}.

(1)

We call g(x, U) the relative interaction function and use it to restate Assumption 5(a) of Wang and Tchetgen Tchetgen
(2018).

(A5) There is no confounder-instrument interaction on the treatment, i.e., &(x, U) = 0 almost surely for every x.
Let vy(- | x) denote the conditional measure of Y(a) given X = x. The following lemma relates v4(- | x) to the identifiable
v¥(- | x) up to an error due to a possibly nonzero e(x, U). Write A84(x) = 84,1(x) — 8q.0(x) = (—1)*T1AS(x).
Lemma 2.1. Under Assumptions (A1)-(A4), we have that, fora =1, 0,
Vg (- 1 X) = va(- [ X) + Eype {va(- | X, Ude(x, U)}, (2)
where Eyx(-) denotes conditional expectation taken over U given X = x and vy(- | x, U) is the conditional measure of Y(a)

given X = x and U.

Proof. Forz = 1,0, E{f(Y)IA=a)|Z =2z, X =x, U} =E[f{Y(@}HA=a)|Z =2z, X =x, U]l =E[f{Y(a)} | Z=2,X =
x,UlprA=a | Z = z,X = x,U) = v(f | x,U)d4(x; U), where the first equality follows by (A1), and the second and
third by (A4). Thus,

Ef(VIA=a)|Z=1,X=x, U —E{f(Y)I(A=a)|Z=0,X =x, U}
=vo(f | X, UN{8a,1(x; U) — 8a,0(x; U)}
=A8(x){va(f | X, U) + vo(f | X, Ude(x; U)}. (3)

By (A2), taking Eyx(-) on both sides of (3) yields E{f (Y)I(A=a) |Z=1,X =x} —E{f(Y)(A=a) | Z=0,X =X} = pa1(f |
X)84,1(%) — Pa,o(f | X)84,0(x) and Ada(x)[va(f | X) + Eup{va(f | X, U)e(x; U)}], respectively. Divide both sides by Adq(x) # 0
to obtain (2). O

Lemma 2.1 immediately implies identification of v,(-) under (A5).
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Proposition 2.1. Under Assumptions (A1)-(A5), va(- | X) = v}(- | x) so that v,(-) is identifiable through v,(-) = E{v}(- | X)}
(a=1,0).

The identification of E{Y(1) — Y(0)} (Wang and Tchetgen Tchetgen, 2018) is implied by inserting the identity function
in the vy(-). In full strength, Proposition 2.1 also implies identification of other functionals of the outcome distributions
like the quantile and Mann-Whitney treatment effects (Mao, 2018).

3. Multiply robust estimation under no interaction

The first step to estimate the various functionals is to estimate the v,(-) themselves. This can be done in a multiply
robust way under the general theory developed in Section 4.2 of Tchetgen Tchetgen et al. (2018) for marginal structural
models with time-varying treatments. We provide a specific route by mimicking the construction for the average
treatment effect (Wang and Tchetgen Tchetgen, 2018) given v}(- | x) = v,(- | x) under (A5).

With a slight abuse of notation, we use v,(y) to denote v {I(- < y)}, i.e,, vo(y) = pr{Y(a) < y}. A similar convention
applies to other measures. Let q(z | x) = pr(Z = z | X = x) denote the propensity score for the instrument.
Consider three classes of models: M, consisting of vs(- | X) = va(- | x; ), AS(x) = Ad(x; B), So(x) = do(x; ¢), and
Pao(y | X) = paoly | x;0); My, consisting of qg(z | x) = q(z | x; ) and Ad(x) = AS(x; 8); and M3, consisting of
q(z | x) = q(z | x; ¥) and ve(- | X) = va(- | x; ), where «, 8, v, 0, and ¢ are parameters indexing the corresponding
distributions. Following Wang and Tchetgen Tchetgen (2018), we first derive the efficient influence function for v,(y) in
the union model, with details relegated to the supplementary material.

Theorem 3.1. Under Assumptions (A1)-(A5), the nonparametric efficient influence function for vg(y) is
21
- qZ1X)

8a,0X){Paoy | X) — vay | X)}] + va(y | X) — va(y),

which also coincides with the efficient influence function in M; U My U Ms.

EIF,(y) A8(X)TI(Y <y, A=a)— (A= a)(y | X)—

Given a random n-sample of (Y, A, Z, X), let p, 6, and Z‘ denote the estimators for y, 6, and ¢ by regressing Z against
X, Y against X for those with A = a and Z = 0, and A against X for those with Z = 0, respectively. With P, denoting
the empirical measure, let By and &qr solve Py[h(X)(2Z — 1)q(Z | X; 7)) HA — AS(X; Bar)Z — So(X;¢)}] = 0 and
Pu(g(f; X)2Z —1)9(Z | X; 7))~ 'U(A = a){f(Y) = va(f | X; Gar)} = 80.0(X; £){Paolf | X; 6) = va(f | X; Gar)}]) = O, respectively,
where h(X) and g(-; X) are weight functions commensurate with 8 and «, respectively. For finite-dimensional &, moment-
based weights with f(y) = y, y?, ... will probably suffice. When it has infinite-dimensional components, however, we may
need to set f(-) = I(- < y) for y € ¥ and solve a correspondingly infinite-dimensional estimating equation (van der Vaart
and Wellner, 1996, Ch. 3.3).

The initial estimators B4 and &g, are doubly robust in M; U M, and M; U M3, respectively. We use them to
construct a triply robust estimator for v,(-) in the next proposition (proved in the supplementary material). Write
Abg(x; B) = (=1)"1AS(x; B).

Proposition 3.1. Under Assumptions (A1)-(A5), the estimator
27 — 1 N
D =Py —=—=————— A8,(X; Bar) 1Y <y, A=
Va,mr(Y) n<q(z IX:7) o(X; Bar) [ Y=y a)
— I(A = a)ve(y | X; &ar) — 8a,0(X; { HPaoly | X; 6)
- Va(y | X; &dr)}] + Va(y | X; &dr)>

is consistent to vq(y) in M1 U My U M3 and locally efficient in My N M3 N Ms.

Now by plugging in the Dy (-), we can estimate any treatment effect in the form of a contrast 7(vq, vp). This
applies to the average treatment effect with 7(vq, vg) = f y{vi(dy) — vo(dy)}, the t-quantile treatment effect with
T(vi,v9) = vl’l(r)—vo’l(r) (0 < T < 1), and the Mann-Whitney stochastic shift 7(vq, vp) = f vg(y)v1(dy)—f vi(y)vo(dy)
(Mao, 2018), the last of which measures the net probability of a greater outcome from the treatment as compared
to the control. For these smooth 7T, 7(D1 mr, Vo,mr) inherits the robustness and efficiency of the Dy m(y) established in
Proposition 3.1 (Bickel et al., 1993).

4. Sensitivity analysis against interaction

All such plug-in estimators rely on (A5) for validity. To assess their sensitivity to the presence of interaction, consider
a relaxed form of (A5).
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(A5*) The relative interaction function satisfies
—E () <e(xU) <& (x) (4)
almost surely with some 0 < £(x) < |A8(x)]"" + 1 and 0 < £+(x) < |AS(x)|~! — 1.

Remark 4.1. The constraints on £ ~(x) and £*(x) arise from the natural bounds —|AS(x)| ™' — 1 < e(x, U) < |AS(x)| "1 — 1
due to |AS(x, U)| < 1, which form the identifiable region for g(x, U). As a result, tighter bounds are untestable because
they have no empirical implications for the data at hand. If circumstances allow, it would be ideal to estimate £ ~(x) and
&*(x) from a previous study where confounders are more extensively measured. Without such external data, one can use
the natural bounds themselves, which, as will be seen later, may still bound the treatment effect meaningfully provided
that the instrument-treatment association is sufficiently strong.

Similarly to estimation under (A5), we can bound a suitable treatment effect under (A5*) by bounding the distribution
functions vg,(-) via the v,(- | x). First, consider bounding v,(B | x) for some measurable B C ), where wu(B) = u{I(- € B)}.
By (2) of Lemma 2.1, the error between v,(B | x) and the identifiable v}(B | x) is —Eyp{v4(B | x, U)e(x, U)}, which by
0 < ve(B | x, U) < 1is bracketed between —&*(x) and £ ~(x) under (4), leading to

Vi(B | X) — EF(X) < va(B | X) < vi(B|x)+E(x). (5)

These bounds can be improved since they have not used the fact that Eyx{e(x, U)} = 0 or that Eyx{v4(B | X, U)} = v4(B | X).
The following lemma tightens the bounds by exploiting these constraints. Write &(x) = {£~(x), £ (x)}.

Lemma 4.1. Under Assumptions (A1)-(A4) and (A5*), we have that, for any measurable B C Y,

— EY{va(B | %); §(X)} < Eupelva(B | x, U)e(x, U)} < € {va(B | x); §(X)}, .
where
v | E U s %
g(mé)—{éﬂ_n), e <m s
+ _&
and £%r: £) — 5,”’ 0 in S
F0-m),  Eersl

form e[0,1]and & = (6, &%) e RT®2,

Proof. Obviously, —£~(x)va(B | X) < Eypf{va(B | x, U)e(x, U)} < ET(x)ve(B | x). Because Eypnf{e(x, U)} = 0, we have that
—Ey{va(B | X, U)e(x, U)} = Eyx[{1 — va(B | X, U)}e(x, U)], which is similarly bounded between —&~(x){1 — v4(B | x)} and
E1(x){1 — ve(B | x)}. Composing the two sets of bounds produces (6). O

The bounds in (6) are superior to those in (5) as both £4{vy(B | x); £(x)} and €Y{v.(B | x); £(x)} are always less than
or equal to min{& ~(x), £*(x)}. What is more, they duly shrink to zero when v,(B | x) approaches 1 or 0, or when | A§(x)|
approaches 1. To see the latter, recall that £t(x) < |A8(x)|"! — 1 by the natural upper bound on &(x, U). Therefore,
|A8(x)| 4 1 implies that £ (x) | 0, which in turn pushes both £-{v,(B | x); £(x)} and £Y{vy(B | x); £(x)} down to 0. This is
unsurprising since |A§(x)| &~ 1 means strong concordance between the instrument and treatment. With the unconfounded
instrument as a good proxy for the treatment, the outcome distributions are naturally near identifiable.

Now we can combine (6) with (2) to obtain bounds of v4(B | x) as piecewise linear functions of v} (B | x).

Proposition 4.1. Under Assumptions (A1)-(A4) and (A5*), we have that, for any measurable B C ),
L{vg(B | x); §(x)} < va(B | x) < H{va(B | x); £(x)}, (7

where £(n*; £) and H(m*; £) are piecewise linear functions of w* for any &€ = (£§7,&%) € R*®? and are expressed in the
supplementary material.

In particular, we can bound the cumulative distribution function vy(y | x) by taking B={y’ € Y : y’ <y}, yielding

L{vg(y 1 %): §()} = wa(y | x) = H{vg (v [ ¥); §(x)}. (8)

According to the expressions of £(7*; &) and H(x*; &) in the supplementary material, an inflection point is found
at £~ (x) = 1. To illustrate, consider the case with §;(x) = 0.9, §o(x) = 0.1, and set £*(x) at the natural bound
|AS(x)|"! — 1 = 0.25. For £ (x) € {|A8(x)|"! 4+ 1 = 2.25, 1, 0.5}, we plot the range of v,(y | x) as a function of Vi | x)
in Fig. 1. Because £ ~(x) = 1 implies that §;(x, U) > §o(x, U) almost surely, it is roughly equivalent to a stochastic version
of the monotonicity condition under a causal instrument (Angrist et al., 1996). In such cases, a fraction of the population,
namely, the noncompliers, are completely unidentified (Imbens and Rubin, 1997), which explains the truncation of the
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Fig. 1. Range of v,(y | x) as a function of v;(y | x) under Assumption (A5*) based on an instance with §1(x) = 0.9 and §y(x) = 0.1.

distribution function in the middle panel of Fig. 1. Interestingly, such truncation disappears when &~ (x) is strictly less
than 1. More discussions in this regard are provided in the supplementary material.

In general, we can always find a least and a greatest element for v,(- | x) in terms of stochastic order, which help
bound certain treatment effects of interest.

Proposition 4.2. For all v,(- | x) satisfying (8), a stochastically least and a greatest element exist, denoted by v,(- | X)
and vg(- | x), respectively. Then the stochastically least and greatest v,(-) are v (-) = E{v,(- | X)} and v4(-) = E{va(- | X)},
respectively. Moreover, if the treatment effect is defined by 6 = T(v1, vo) with T(v1, vo) nondecreasing in v, and nonincreasing
in vy with respect to the stochastic order, then T(v,, Vo) <60 < T(V1, v,).

The existence of v (- | x) and V(- | x) is ensured by the closure of the space of distribution functions satisfying (8) under
pointwise maximum and minimum. To estimate the bounds from empirical data, we first estimate v}(- | X), e.g., using
the procedures described in Section 3, and the compute v ,(y | x) and v4(y | x) by applying isotonic methods to find
the greatest and smallest monotone functions below H{v;(y | x); £(x)} and above £{v}(y | x); £(x)}, respectively (see, e.g.,
Groeneboom and Jongbloed, 2014). Finally, taking the empirical averages of v (- | X) and vg(- | X) over X gives us estimates
of v,(-) and v,(+), respectively. These estimates can then be used to bound the quantile treatment effect, Mann-Whitney
stochastic shift, and average treatment effect, all respecting the stochastic order as required in Proposition 4.2 (Manski,
2003). An illustration using the U.S. National Job Training Partnership Act (JTPA) Study (Abadie et al., 2002) is provided
in the supplementary material.

5. Concluding remarks

There are several ways to extend the sensitivity analysis in Section 4. Because bounds are developed on the v,(- | x),
it should be straightforward to derive similar results under marginal structural models, with point or even time-varying
treatments (Tchetgen Tchetgen et al., 2018). Moreover, in selecting optimal treatment regimes, one typically does not
need the full range of the effect size. For example, Cui and Tchetgen Tchetgen (2021) provided a necessary and sufficient
condition to identify the sign of the average treatment effect in complete absence of (A5). The distributional bounds
developed under (A5*) can shed new light on the sign-identifiability of the average and various other treatment effects.

It may also be possible to improve the bounds on the treatment effects themselves. For instance, those in Proposi-
tion 4.2 stem from separate bounds on the outcome distributions under the treatment and control. As is clear from (2),
however, vi(- | x) and vo(- | x) are subject to the same influence of (x, U). Simultaneous bounding of the outcome
distributions may further narrow their contrast. Certain monotonicity assumptions on the confounders, if justifiable, may
also help, as is shown in Appendix B of Wang and Tchetgen Tchetgen (2018) for the average treatment effect. For starters,
a distributional version of that result is derived in the supplementary material.

Acknowledgments

I thank the editor and an anonymous referee for helpful comments. This research was supported by the U.S. National
Science Foundation grant DMS2015526 and National Institutes of Health grant RO1HL149875.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.sp.2022.109590.
Supplementary material online includes technical and numerical results.
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