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ABSTRACT: RibB (3,4-dihydroxy-2-butanone 4-phosphate syn-
thase) is a magnesium-dependent enzyme that excises the C4 of p-
ribulose-S-phosphate (D-RuSP) as formate. RibB generates the
four-carbon substrate for lumazine synthase that is incorporated
into the xylene moiety of lumazine and ultimately the riboflavin
isoalloxazine. The reaction was first identified by Bacher and co-
workers in the 1990s, and their chemical mechanism hypothesis
became canonical despite minimal direct evidence. X-ray crystal
structures of RibB typically show two metal ions when solved in the
presence of non-native metals and/or liganding non-substrate
analogues, and the consensus hypothetical mechanism has
incorporated this cofactor set. We have used a variety of
biochemical approaches to further characterize the chemistry

Y .

catalyzed by RibB from Vibrio cholera (VcRibB). We show that full activity is achieved at metal ion concentrations equal to the
enzyme concentration. This was confirmed by electron paramagnetic resonance of the enzyme reconstituted with manganese and
crystal structures liganded with Mn>* and a variety of sugar phosphates. Two transient species prior to the formation of products
were identified using acid quench of single turnover reactions in combination with NMR for singly and fully *C-labeled p-RuSP.
These data indicate that dehydration of C1 forms the first transient species, which undergoes rearrangement by a 1,2 migration,
fusing CS to C3 and generating a hydrated C4 that is poised for elimination as formate. Structures determined from time-dependent
Mn?* soaks of VcRibB-p-RuSP crystals show accumulation in crystallo of the same intermediates. Collectively, these data reveal for
the first time crucial transient chemical states in the mechanism of RibB.

Bl INTRODUCTION

Riboflavin is the direct precursor for the production of flavin
adenine mononucleotide and subsequently flavin adenine
dinucleotide, essential cofactors in redox and non-redox
reactions in all forms of life."” Riboflavin is required for
fundamental cellular processes, such as primary metabolism,
the electron transport chain of cellular respiration, folate
synthesis,1 iron absorption,3 DNA repair,4 and inflammation/
immune responses.”® Plants and bacteria have genes for the
enzymatic production of riboflavin, but animals must obtain
riboflavin (vitamin B2) from their diet. Not surprisingly,
riboflavin biosynthesis has drawn attention as a target for
antibacterial/antimicrobial drug design.7_9

Riboflavin biosynthesis has a convergent pathway with the
initial substrates of the individual branches being guanosine
triphosphate and Dp-ribulose S-phosphate (p-RuSP, a five-
carbon sugar phosphate of the pentose phosphate pathway),

43 both prevalent metabolites. 3,4-Dihydroxy-2-butanone 4-
44 phosphate (DHBP) synthase, or RibB, is a magnesium-
45 dependent enzyme that dehydrates the first carbon and
46 removes the fourth carbon of D-RuSP to make the four-
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carbon, DHBP product (Figure 1A). Evidence for this 47f1
unexpected chemistry is from classic biochemistry feeding 4s
studies and endpoint assays with *C-labeled ribose, acetate, 49
glucose, glycerol, and ribulose-S-phosphate employing "*C so
NMR detection.'””'® The enzyme mechanism that has been s1
proposed is necessarily complicated and requires at least four s2
steps: (1) dehydration at C1 to generate the methyl, (2) a s3
skeletal rearrangement to link C3 and CS, and a (3) hydration s4
at C4 to facilitate (4) deformylation. The order of events as ss
accepted in the literature is shown in Figure 1B,'® which we ss
refer to as the “canonical” mechanism. The inversion of the s7
stereochemistry at C3 has previously been established by CD ss
spectroscopy (Figure 1A)."> Due to the complexity of the so
reaction, it is not surprising that the RibB reaction is 60
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Figure 1. Hypothetical canonical mechanism depicted in the context of the findings of this study. (A) RibB catalyzes the conversion of p-ribulose 5-
phosphate (D-RuSP) to 1-3,4-dihydroxy-2-butanone 4-phosphate (DHBP), dehydrating C1 and removing C4 as formate. (B) Mechanism proposed
in the literature has four key steps: dehydration, 1,2-shift, hydration, and deformylation. Boxes indicate intermediate states identified in this study.

Structures drawn in the Natta projection.

61 considered to be one of the rate-limiting steps in riboflavin
62 biosynthesis,'” with RibB enzymes demonstrating turnover
63 numbers on the order of six per minute.'®

64 The structure of RibB appears to be a standard a+f
65 structure, in which a-helices pack against both sides of a
66 central f-sheet (Figure 2). However, the connectivity of the

Figure 2. V. cholerae RibB structure (PDB: 4P8E). RibB is a dimer
(monomers light and dark gray). This structure contains the D-RuSP
substrate (yellow sticks with red oxygens and orange phosphorous)
and is inactivate because the required magnesium ion(s) have been
substituted by the two zinc ions (gray spheres). The inset shows
magnification of the active site, highlighting two residues, Glu39 and
His154 colored wheat, which coordinate to the two reported metal
ions and will be shown in all subsequent images of the active site.

67 secondary structure is unique and dictates that RibB has a
6s distinctive fold."”™>' Indeed, if one performs a homology
69 search using PDBeFold** and sets low thresholds, S1 RibB
70 chains are returned with very high secondary structure
71 matching (over 80%) and strikingly similar root mean squared
72 deviation (rmsd) (1.5 A or less for at least 180 of 216 Ca
73 carbons). Additionally, four protein structures of unknown
74 function are identified, which show a clear deviation in
75 comparison statistics (rmsd doubles, Q score halves). The
76 active site is surrounded by two mobile loops. The shorter
77 loop, loop 1, is composed of acidic residues that are important
78 for binding of the substrate and metal. The longer loop, loop 2,
79 shows conformational flexibility with the substrate and metal
80 binding.”*"**

The majority of structures reported in the PDB are for non-
active states, with Mn?*, Zn**, and Ca®" substituted for the
catalytic Mg**. Others have sulfate or phosphate in the active
site, and a few have a metal and/or substrate or substrate
analogues bound.'”™*"**7*" 1t is widely accepted that the
enzyme requires two magnesium ions to be catalytically active,
but this is based on noncatalytic zinc-substituted structures of a
ternary protein—metal—substrate complex.””*” However,
RibB-ribulose S-phosphate complex structures show that the
substrate binds in the absence of metal with the phosphate
highly coordinated by amino acid side chains.”® Indeed, there
are several structures in which sulfate or phosphate bind in the
substrate-phosphate site in the absence of metal, indicating
that the metal ion is not required for substrate binding.”"*’

We have sought to provide evidence for the chemical
mechanism of RibB. Initially, we determined that RibB uses a
mononuclear magnesium center for catalysis using perturba-
tion of tyrosine fluorescence, activity assays, and electron
paramagnetic resonance (EPR) data. Furthermore, we showed
that RibB activity is pH dependent, which correlates with
magnesium binding. Using acid quench of a single turnover
reaction in combination with nuclear magnetic resonance and
X-ray crystallography employing time-dependent crystal
soaked with the native substrate, we identified two catalytic
intermediates that accumulate in the catalytic cycle of RibB
that give credence to the hypothesis of a 1,2-shift followed by
deformylation for the excision of the 4-carbon from the S-
carbon Dp-ribulose S-phosphate.

B METHODS

RibB Overexpression and Purification. The overexpression
construct for the RibB gene was prepared by GenScript. The ribB
gene from Vibrio cholerae (V. cholerae) (sequence ID: AE003853.1,
strain: N16961, taxid: 243277) was initially synthesized and cloned
into the pUC1S vector. This gene was then transferred to the pET28a
+ vector that yields the VcRibB protein with an N-terminal 6 His tag.
The VcRibB construct was transformed into BL21(DE3) Escherichia
coli (E. coli) (New England Biolabs) and grown overnight at 37 °C in
50 mL of LB broth, Miller (Fisher) with 50 yg/mL kanamycin in a
shaker incubator (250 rpm). 1L of the Miller formulation of LB broth
with 50 pg/mL kanamycin was inoculated with 10 mL of the
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overnight culture and grown at 37 °C in a baffled flask in a shaker
incubator (250 rpm). When the culture OD,,, reached 0.8, protein
expression was induced with a final concentration of 0.5 mM
isopropyl f-p-1-thiogalactopyranoside (IPTG) and was further
incubated at 37 °C for 4 h with shaking. The cells were harvested
by centrifugation (6000g, 10 min, 4 °C). The cell pellet was
resuspended in 10 mL of S0 mM Tris-HCl (pH 8.0), SO mM
imidazole, and 500 mM NaCl per liter of culture broth. Resuspended
cells were lysed by passage through a French Press three times at
13,000 psi. The cell lysate was centrifuged at 12,000g for 40 min at 4
°C. The supernatant was injected onto a 25 mL Chelating Sepharose
Fast Flow (GE Healthcare) column charged with nickel chloride and
pre-equilibrated with S0 mM Tris-HCI (pH 8.0), SO mM imidazole,
and 500 mM NaCl. The protein was eluted with a 250 mL linear
gradient increasing the imidazole concentration to 500 mM imidazole
(RibB eluted at ~200 mM imidazole) or with a step gradient of 300
mM imidazole. The protein was concentrated to 30 mL using an
Amicon nitrogen gas-pressurized concentrator with a 10 kDa cutoff
filter and injected onto a 120 mL Superdex 200 gel-filtration column
(GE Healthcare), pre-equilibrated with 25 mM Tris-HCI (pH 8.0).
RibB eluted as a dimer and was concentrated using an Amicon
Ultracell 30 K centrifugal concentrator to 40 mg/mL, as determined
by Bradford, and stored at —80 °C for later use. The purification yield
was 250 mg of protein per liter of culture.

RibB Purification in the Presence of EDTA. To remove the
residual divalent metal ions, prior to the size exclusion step, the
protein was incubated with a final concentration of 2 mM EDTA for
10 min on ice. The buffer for the size exclusion column contained 100
UM EDTA. Before binding and activity assay experiments
commenced, the protein was exchanged again into freshly made 25
mM Tris-HCl (pH 8.0), 100 uM EDTA, and concentrated to 37.7
mg/mL using an Amicon Ultracell 30 K centrifugal concentrator.

Steady-State Kinetics Varying the p-Ribulose 5-Phosphate
Concentration. We adapted the previously developed assay'®”* to
compare the kinetic parameters of our purified enzyme for differing
metals and sugar phosphates. A major change to assay included using
the actual sugar phosphates as substrates as opposed to the addition of
pentose phosphate isomerase to generate D-ribulose S-phosphate
during assay incubation. p-ribulose S-phosphate (D-RuSP), p-ribose 5-
phosphate (p-RSP), p-xylulose S-phosphate (p-XySP), and L-xylulose
S-phosphate (L-XySP) (Sigma-Aldrich) were dissolved in S0 mM
Tris-HCI (pH 7.5) to a concentration of 90 mM. Sugar phosphate, 10
UM enzyme, and 10 mM MgCl, were mixed to a final volume of 200
#L and incubated for 30 min at room temperature with sugar
phosphate concentrations varied from 0 to 4 mM for p-RuSP, 0—200
mM for p-R5P, 0—8 mM for p-XySP, and 0—20 mM for L-XySP. The
reaction was quenched by the addition of 175 uL of freshly made 200
mM naphthol (dissolved in 1 N NaOH) and 250 L of 270 mM
creatine (dissolved in water), and the color was allowed to develop for
30 min."® The product was detected by an absorption scan from 450
to 650 nm using a Cary SO Bio UV—visible spectrophotometer. The
absorbance at A, (525 nm) was corrected by subtracting the
absorbance at 650 nm and then converted to the concentration (in
nM) using a 3,4-butadione standard curve, not the 3,4-dihydroxy-2-
butanone phosphate (DHBP), as was carried out previously."® Values
for V.., and Ky are averages of three trials collected twice on separate
days, and errors are reported as the standard deviation of these values.
The data for the biological substrate (p-Ru-5P) and metals (Mg®" and
Mn?*) were fit to the Michaelis—Menten equation using Kaleidgraph
(Synergy Software). The data for the other sugar phosphates were fit
to the substrate inhibition model to give a trend line illustrative of the
data, but numbers are not reported due to poor fit (see the Results
section). Error propagation was used in the determination of error
values for k., and k./Ky. For the pH titration, D-RuSP was the
varied substrate, and a 100 mM succinic acid, phosphate, glycine
(SPG) buffer system was used at pH values of 5.0, 5.4, 5.8, 6, 6.5, 7.0,
8.0, and 9.0, as described by Newman.”® pH profiles of ke, and k/
Ky values for substrates were fit to the following equation:

Kinetic parameters at each pH were determined in triplicate. The
values presented are the averages of these three trials, and the
reported errors are the standard deviation.

Steady-State Kinetics Varying the Metal lon Concentration.
The dependence of the steady-state kinetic parameters on the
magnesium concentration was determined with D-RuSP with one
alteration in the procedure. The standard reaction mixture (200 uL)
contained diluted MgCl, (Fisher 99.9% pure; 0—800 M), 1.8 mM
RuSP, and 10 #M enzyme. The dependence of the steady-state kinetic
parameters on the manganese concentration was obtained in the same
manner as with Mg** but used 1 uM enzyme and pure MnCl, (Fisher
99% pure; 0—250 uM), and the incubation time prior to quenching
was increased to 150 min.

Metal-Binding Stoichiometry. VcRibB has no tryptophan
residues, and changes in intrinsic tyrosine fluorescence were used to
observed metal binding. The data were measured using a Cary S0
Eclipse fluorometer with an excitation wavelength of 280 nm and
emission recorded from 290 to 400 nm (excitation slit: 10 nm;
emission slit: S nm). The 200 uL of the reaction mixture containing
50 mM tris-HCl (pH 7.5), 100 uM EDTA, 1.8 mM p-RuSP, and 60
uM RibB [S0 mM Tris-HCl, 100 uM EDTA (pH 8)] was titrated
with 1 pL increments of 2 mM MgCl, and 100 yM EDTA solution.
The reported Mg** concentration accounts for the dilution. Tyrosine
fluorescence at 302 nm was corrected with the fluorescence for a
control sample (titrated in the presence of 100 uM EDTA).
Experiments were repeated three times, and data points reported
are an average of three trials with the error reported as the standard
deviation of the trials. For the pH-dependence of Mg binding,
magnesium chloride was the varied component, and a 50 mM SPG
buffer system was used for pH values of 4.5—9.0. Binding curves at
each pH were determined in triplicate. The values presented are the
averages of the three trials, and the reported errors are the standard
deviation.

Circular Dichroism Spectroscopy. The spectra of each 200 uL
sample containing 100 mM SPG buffer at pH 4—9 with 5 yuM enzyme
were collected using a Jasco J-1100 CD spectropolarimeter with a 1
mm pathlength. Each scan analyzed was an average of three scans at
50 nm/min with a 1.00 nm bandwidth and a digital integration time
(D.LT.) of 4 s. Data were collected from 185 to 260 nm at 0.1 nm
intervals.

Metal Stoichiometry Evaluated from RibB Activity. In each
reaction mixture of 200 uL, the final concentration of components
was S0 mM Tris-HCl (pH 7.5), 100 uM EDTA, and 1.8 mM p-RuSP.
MgCl, was titrated in successive assays in increments of 20 sM from 0
to 220 uM. The reaction was initiated by the addition of 60 uM RibB
protein purified in the presence of EDTA and incubated for 1 h at
room temperature. Steady-state data were calculated using the above
procedure. The experiment was repeated three times, and values
reported are the averages of three trials with errors reported as
standard deviations.

EPR of Mn(ll)/RibB. EPR samples (300 yL of the final volume)
were prepared by mixing RibB, MnCl,, and sugar phosphate substrate
(p-RuSP or L-XySP) in millimolar ratios (as defined by the
experiments, eg, 3:3:3) in 50 mM Tris-HCl (pH 7.5) and 10%
glycerol at 4 °C. Reactions were initiated by the addition of enzyme
into the 4 mm quartz EPR tube that contained the metal and sugar
phosphate components. The reaction was quenched at the specific
times by submerging the EPR tube in liquid nitrogen. X-band EPR
data were collected on a 9 GHz Bruker EMXPlus spectrometer.
Experiments were run at 10 K with the use of an Oxford ESR900
continuous-flow liquid helium cryostat equipped with an Oxford
ITCS503 temperature system. Perpendicular-mode data were collected
in a dual-mode Bruker ER4116DM cavity. Spectra were recorded
using the following non-saturating conditions: 9.64 GHz microwave
frequency, 2.0 mW microwave power, 4 G modulation amplitude, 100
kHz modulation frequency, and 40.96 ms time constant.

RibB Crystallization. All crystals were grown at room temper-
ature using the hanging-drop vapor diffusion method. Each drop (3
uL) was prepared by mixing protein and the precipitant solution in
equal amounts. Seven crystal structures are described herein [apo-
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259 RibB (7UEZ); RibB/p-RuSP (7UF0); RibB/p-RSP/Mn (7UF1);
260 RibB/p-XySP/Mn (7UF2); RibB/L-XySP/2Mn (7UF3); RibB/Int1/
261 Mn (7UF4); and RibB/Int2/Mn (7UFS)]. RibB protein at 40 mg/
262 mL was used to grow cube-shaped apo-RibB crystals using a
263 precipitant solution of 0.1 M Na,HPO,/NaH,PO, (pH 9.3), 16%
264 (w/v) PEG 3350, and 0.3 M glycine that reach maximal size in three
265 weeks. These crystals were cryoprotected with 20% PEG (w/v) 3350,
266 5.2 mM p-RuSP, and 0.2 mM MgCl, and flash-cooled. The remaining
267 structures were determined from rod-shaped crystals grown using a
268 precipitant solution of 0.1 M lithium acetate and 12—18% (w/v) PEG
269 3350 and reached maximal size in 2 days. The protein concentration
270 for crystal growth was 32.9 mg/mL, and the protein was pre-
271 incubated with the appropriate sugar phosphate prior to drop
272 formation (the sugar phosphate for the intermediate structures was D-
273 RuSP). In all cases, the sugar phosphate was at 15X molar excess,
274 except D-RSP. In this case, flakes of D-RSP were added directly to the
275 protein solution. In preparation for data collection, the RibB: p-RSP
276 crystals were transferred to a precipitant solution with 4 mM MnCl,
277 and 30% (v/v) ethylene glycol. The remaining crystals were soaked in
278 the precipitant solution with 40 mM of a non-substrate sugar
279 phosphate or D-RuSP for the intermediate structures. Just before flash
280 cooling, the crystals were transferred to a cryoprotectant solution
281 which was the precipitant solution with 30% (v/v) ethylene glycol.
282 For the RibB/p-XySP/Mn . RibB/1-XySP/2Mn; RibB/Intl/Mn;
283 RibB/Int2/Mn structures, the cryoprotectant solution also contained
284 4 mM MnCl,. For the intermediate 1 structure, the crystal remained
285 in the second soaking solution for 3 min and for the intermediate 2
286 structure for 70 min.

287 X-ray Crystal Structure Determination. The X-ray diffraction
288 data for all RibB crystal structures reported were collected at 100 K
280 using the Stanford Synchrotron Radiation Laboratory (SSRL,
290 Stanford, CA) beamlines 12—2 (apo-RibB structure) and 9-2 (all
291 other structures). The software package Blu-Ice’®’' was used to
292 collect 1200 oscillation images (0.15° per image) with an exposure
293 time of 0.2 s. The incident wavelength for the apo-RibB structure was
204 0.8526 A, and for all remaining structures, it was 0.9795 A. Data
295 collection and refinement statistics are in Table S1. All phasing
296 solutions were obtained by molecular replacement using PHENIX,
297 Phaser-MR.>> The model for the apo-RibB molecular replacement
298 calculation was PDB:4P8], whereas all other used 4P8E.>’ The log
299 likelihood gain and TFZ score for each solution are also found in
300 Table S2. Solutions were subjected to alternating cycles of model
301 building and refinement using Coot™ and Phenix.Refine.***> Water
302 molecules were added automatically and inspected manually using
303 Coot. All ligands were added manually (sugar phosphates,
304 intermediates, metals, and ethylene glycol) with restraints for the
305 sugar phosphates generated using eLBOW>® and REEL.*” Anisotropic
306 B-factors were only used for the high-resolution apo-RibB structure.
307 The components of the final models (residues, waters, metals, and
308 sugar phosphates) are summarized in Table S2. Structures figures
309 were prepared using Pymol (Schrodinger).

310 6-Phosphogluconate Dehydrogenase (Ec6PGDH) Prepara-
311 tion. The overexpression construct for the E. coli K-12 (ATCC
312 #47076) Ec6PGDH was prepared by GenScript. The gene was
313 synthesized and placed into a pET-28b(+) vector, and the vector was
314 transformed into BL21(DE3) E. coli. This overexpression construct
315 yields protein with an N-terminal 6 His tag. The transformed bacteria
316 were grown overnight at 37 °C in 100 mL of LB broth with 50 y#g/mL
317 kanamycin in a shaker incubator (250 rpm). 1L of LB broth with SO
318 pig/mL kanamycin was inoculated with 35 mL of the overnight culture
319 and grown at 37 °C in a baffled flask in a shaker incubator (250 rpm).
320 When the culture ODggp,,, reached 0.9, protein expression was
321 induced with a final concentration of 1 mM IPTG and was further
322 incubated at 20 °C for overnight with shaking. The cells were
323 harvested by centrifugation (6000g, 10 min, 4 °C). The cell pellet was
324 resuspended in 10 mL of 25 mM Tris-HCl (pH 8.0), S0 mM
325 imidazole, and 500 mM NaCl per liter of culture broth. Resuspended
326 cells were lysed by passage through a French Press three times at
327 13,000 psi. The cell lysate was centrifuged at 12,000g for 30 min at 4
328 °C. The supernatant was injected onto a 25 mL Chelating Sepharose
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Fast Flow (GE Healthcare) column charged with nickel chloride and 329
pre-equilibrated with 25 mM Tris-HCl (pH 8.0), S0 mM imidazole, 330
and 500 mM NaCl. The protein was eluted with a step gradient with 331
an imidazole concentration of 300 mM imidazole. The fractions 332
containing the Ec6PGDH were dialyzed into 25 mM Tris-HCI (pH 333
8.0) and stored for later use at —80 °C. The final yield was 648 mg 334
per liter of culture, as determined by Bradford analysis. 338

Preparation of '3C-Labeled Ribulose 5-Phosphate. Singly 336
and uniformly "*C-labeled p-ribulose S-phosphate was prepared by 337
reconstitution of the pentose phosphate pathway following the 338
published protocol.>® In a final volume of 4 mL, 50 mM Tris-HCl 339
(pH 7.5), 40 mM MgCl,, 40 mM ATP, 37 mM labeled *C glucose 340
(Cambridge Isotope Laboratories and Sigma), and 10 mM DTT 341
(GoldBio) were mixed, and the pH was adjusted to 7.8 using 1 M 342
NaOH. Hexokinase [60 U, Sigma-Aldrich, Saccharomyces cerevisiae (S. 343
cerevisiae) ] was added, and the solution was incubated at 37 °C for 30 344
min. In a second vial, 4 mL of 75 mM ammonium acetate, 10 mM 345
NADP", and 70 mM a-ketoglutarate were mixed, and the pH was 346
adjusted to 7.8 with 1 M NaOH. The two vials were combined, and 347
20 uM Ec6PGDH (final concentration), 20 U glutamate dehydrogen- 348
ase (Sigma-Aldrich, bovine liver), and 12 U glucose 6-phosphate 349
dehydrogenase (Sigma-Aldrich, S. cerevisize) were added. The 350
reaction was incubated at 37 °C for 3 h. Barium chloride, at a final 351
concentration of 50 mM, was added to the solution. The solution was 352
mixed and incubated on ice for S min. A white precipitate formed and 353
was pelleted by centrifugation (4300g, 20 min, 4 °C). The 354
supernatant was incubated in 80% ethanol at —20 °C for 30 min. 355
The precipitate was washed in 90% ethanol twice and dried under 356
nitrogen. The dried white solid was resuspended in 15 mL of water, 357
and sodium sulfate was added to 100 mM. The white precipitate was 358
removed by centrifugation (4300g, 20 min, 4 °C). The supernatant 359
was lyophilized producing a white powder that was resuspended in 50 360
mM Tris-HCI (pH 8.0). The concentration of D -['*C]-RuSP was 361
determined by colorimetric assay'® and the standard curve using 362
unlabeled p-RuSP (Sigma-Aldrich), as previously described. The D- 363
RuSP was authenticated by '*C NMR using published peak 364
assignments.16 365

Acid-Quenched Single Turnover Monitored by NMR. RibB in 366
50 mM Tris-HCl (pH 8.0) was concentrated to 120 mg/mL (5.0 367
mM). The reaction mixture contained SO mM Tris-HCl (pH 8.0), 368
20% D,0, 3 mM MgCl, and 2.8 mM RibB. The reaction was 369
equilibrated to 4 °C and initiated by the addition of 2 mM D -[**C]- 370
RuSP. At specific times, 500 yL was withdrawn and quenched by the 371
addition of S0 uL of 4 M H,SO,. The quenched reaction mixtures 372
were stored in —20 °C until NMR data acquisition. All *C NMR 373
spectra were recorded on a Bruker Avance III HD (500 MHz) 374
equipped with a Prodigy CryoProbe at 298 K. 'H decoupled *C 37s
spectra (pulse sequence: udeft) were recorded with 256 scans, a pre- 376
acquisition delay of 4 s, and a sweep width of 240 ppm. 'H coupled 377
3C spectra (pulse sequence: zggd) were recorded with 256 or 4096 378
scans, a pre-acquisition delay of 3 s, and a sweep width of 250 ppm. 379
The spectra were referenced based on the published spectra.'® 380

B RESULTS 381

RibB Production and Activity. V. cholerae RibB with an 3s2
N-terminal histidine tag was heterologously expressed in E. coli 383
and purified in two chromatographic steps, nickel affinity and 384
gel filtration. Steady-state kinetic parameters were determined 385
using colorometric assay that was originally designed from 386
high-throughput screening using the E. coli isozyme. Assay 387
measures the production of terminal ketones in the presence of 388
saturating amounts of creatine and naphthol.*”** However, for 39
screening, the substrate was developed in situ from ribose S- 390
phosphate using pentose phosphate isomerase to generate 391
ribulose 5-phosphate. We have adapted the assay such that we 392
provide the sugar phosphate of interest directly, using 393
dihydroxybutanone to generate a standard curve for 394
quantitation. The assay yielded kinetic parameters when D- 395
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396 RuSP was used as the varied substrate, k., = 2.2 + 0.2 min™};
397 K, = 277 + 3 uM; and k_/K,, = 130 + 10 M~'s™". When
398 Mg** was the varied component, k., = 2.7 + 0.4 min™}; K, =
399 70 + 10 uM; and k_/K,, = 600 =+ 200 M~'s™". When Mn>*
400 was substituted for Mg*" as the varied component, k., = 0.7 +
401 0.1 min™% K, = 11 + 1 uM; and k_,/K,, = 1050 & 20 M~'s™",
402 This represents an almost two-fold increase in the catalytic
403 efficiency for Mn** compared to Mg**. The Michaelis—Menten
404 plots are found in Figure S1.

405  RibB is a Mononuclear Metal Enzyme. RibB is reported
406 to be a Mg-dependent enzyme, and crystal structures with a
407 variety of metals bound (Mg**, Zn**, and Ca’**) show two
408 metal ions in the active site (Figure 2). For this reason,
409 proposed chemical mechanisms have assumed the involvement
410 of two Mg** ions.””*"*»*” To test this assumption, RibB was
411 titrated with metals (Mg, Zn**, and Mn*") against a known
412 concentration of enzyme (60 uM), and metal binding was
413 measured by intrinsic tyrosine fluorescence. Because adventi-
414 tious metals from protein production and purification were
415 difficult to remove, the protein was purified in the presence of
416 100 uM EDTA, and all buffers for these experiments contained
417 100 uM EDTA. Therefore, assuming EDTA has a higher
418 affinity for the added metal ions than RibB, a change in
419 fluorescence is expected once the metal concentration exceeds
420 100 uM, and the change should come to a limit once sufficient
41 metal is bound that the tyrosine environment is no longer
422 changing appreciably. The titration experiment shows that
423 tyrosine fluorescence begins increasing once 100 yM metal is
44 added (the EDTA is saturated) and appears to saturate at
#25 ~160 uM (equivalent to the EDTA concentration added to
426 the protein concentration), keeping in mind the large error of
427 this low signal assay. In other words, one equivalent of metal
428 saturates the change in the signal (Figure 3A). A similar
429 titration was performed measuring activity instead of tyrosine
430 fluorescence. Activity assay confirms that RibB is inactive in
431 the presence of Zn>" but active in the presence of Mg** and
432 Mn*" and shows that no more than one metal ion is required
433 for full activity (Figure 3B). One would be tempted to propose
434 that additional Mn*" ions over 1:1 ratio was inhibitory;
435 however, after the addition of one equivalent of Mn**, enzyme
436 precipitation is observed, which is the likely cause of the
437 decrease in the activity above 160 uM Mn**. Mn** has also
438 been reported to interfere with the color development in
439 assay.'®

440  Before discussing the EPR spectra for this present system,
441 we briefly summarize prior relevant EPR studies of Mn-
442 substituted dinitrogenase reductase. When subjected to EPR,
443 di-nuclear Mn®>* center of dinitrogenase reductase shows
444 characteristic sets of *Mn hyperfine lines at 2800G and
445 3800G with hyperfine splitting of 45G. However, the spectra
446 also reveal a high intensity six peak pattern at 3400G suggestive
447 of free Mn®* metal ions in solution (i, hexa-aqua Mn?).*!
448 Following a similar methodology, we first mixed p-RuSP with
449 Mn®": the spectra showed the high intensity pattern expected
450 for free Mn** (black trace, Figure 4). RibB with an equimolar
451 concentration of Mn?* showed the same six peak pattern but at
452 significantly lowered intensity, indicating binding of Mn?** to
453 the protein (blue trace). Equimolar RibB and Mn** (3 mM)
454 were mixed with catalytically inactive substrate analogue L-
455 XySP (2 mM) and incubated for 10 min before being freeze-
4s6 quenched. This spectrum shows hyperfine splitting of 46G at
457 2800G and 4000G, characteristic of a di-Mn?* center (dark red
458 trace). As we will see in the crystal structures described below,
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Figure 3. RibB is a mononuclear metal enzyme by binding and
activity assays. (A) Intrinsic tyrosine fluorescence shows a 1:1
stoichiometry of metal/RibB for Mg(Il), Zn(II), or Mn(II), once the
concentration of EDTA is surpassed. (B) Activity assays show one
equivalent of Mg(II) or Mn(II) is required for full activity, and that
Zn(II) is noncatalytic. [RibB] = 60 uM, EDTA = 100 uM.
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Figure 4. RibB is a mononuclear metal enzyme by EPR. EPR samples
were prepared by mixing RibB, MnCl,, and sugar phosphate substrate
(p-RuSP or 1L-XySP) in the millimolar ratios shown. The enzyme was
added as the final component, and the reaction was quenched by
freezing in liquid nitrogen after a 10 min incubation. The non-
substrate sugar phosphate L-XySP sample shows the characteristic
hyperfine splitting for a di-manganese center (inset, brown), whereas
the substrate D-RuSP sample does not exhibit this feature (gold)
indicating only one metal in the catalytic site for turnover.

the L-XySP structure has a di-Mn®" center. Finally, equimolar
RibB and Mn** (3 mM) were mixed with substrate p-RuSP (2
mM) and incubated for 10 min (approximately two half-lives
of the k., value or 75% complete) before being quenched by
freezing. Note the characteristic six peak pattern at 3400G
suggestive of metal binding within the enzyme (gold trace),
without hyperfine splitting below 3200G, indicating one Mn**
in the active complex.

RibB Catalysis is pH Dependent. RibB shows a

significant decrease in steady-state kinetic parameters at pH
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469 values below pH 7, leading to the initial hypothesis that a
470 catalytic base could be important in the mechanism (Figure
471 SA). To ensure that the pH dependence of catalytic activity

a5
S 3
=
X 25
W
o
- 2
-]
_. 15
[:l
- 1t
o 05

A Fluorescence {ex 280nm, em 302 nm)

0 100 200 300
[MgCL,] (M)

Figure S. RibB shows a pH dependence for catalytic activity that is
associated with the binding of the catalytically required magnesium
ion. (A) Steady-state kinetic parameters show a significant decrease in
activity at pH values below 7. Inset. RibB maintained a primarily a-
helical structure from pH 4 to pH 9, arrows indicate trend with
increasing pH. (B) Catalytically required metal only binds to the
protein at pH values above pH 6.

472 was not merely a function of protein folding, circular dichroism
473 spectra were measured from pH 4 to 9, showing that the
474 protein retained a predominantly a-helical fold at all pH values
475 (Figure SA inset). Magnesium ion-binding isotherms across
476 the same pH range using the tyrosine fluorescence assay
477 showed that the metal ion binds to the enzyme with high
478 affinity at pH values above 7 (Figure SB). Therefore, the
479 catalytic dependence, as shown in Figure SA, is associated with
480 the protein’s ability to bind the catalytically required
481 magnesium ion. Since the magnesium ion is coordinated by
482 His154, it is tempting to speculate that the pH effect is due to
483 the deprotonation of this residue, providing a lone pair of
484 electrons for metal ion coordination.

485 Active and Inactive Metal-Substrate Complexes in
436 the RibB Active Site. The enzymatic activity of RibB with
47 different S-carbon sugar phosphates was compared with their
488 binding modes in the active site. First, the apo-RibB structure
439 was determined to very high resolution (1.08 A). A
490 representative electron density map is found in Figure S2.
491 The RibB active site is enclosed by two mobile loops. Residues
492 33—42 comprise Loop 1, which contains Glu39. In the apo-
493 structure, Loop 1 is in an open conformation, with Glu39
494 pointing away from the active site, unavailable to chelate the
495 metal ion required for catalysis. Residues 83—97 comprise
496 Loop 2, which is disordered in this structure. A second metal

O

—

ion chelating residue, His154, is the terminal residue of a helix 497
composed of residues 154—165. This secondary structural 498
element holds the backbone of His154 in place but without 499
sugar phosphate or metal or closed loops 1 and 2, and the side s00
chain has a rotameric conformation that differs from that so1
observed for all other structures solved (Figure 6A). 502 f6

The structure of RibB was determined with the biological s03
substrate D-ribulose S-phosphate in the absence of a metal ion s04
(RibB/p-RuSP; Figure 6B). p-RuSP binds in an extended sos
conformation similar to that seen in the reported D-RuSP:2Zn s06
structure, as shown in Figure 2. Both loops 1 and 2 are in their s07
closed conformations in this structure, and Glu39 and His154 sos
are positioned for metal chelation. Crystals of this kind were s09
soaked with Mn** for the structures of the reaction sio
intermediates, described below. As noted above (and for si1
easy comparison here), when magnesium ions are added, RibB s12
demonstrates a K, = 277 + 3 uM with D-RuSP. Ribose 5- s13
phosphate (p-RSP) is the aldopentose analogue of the sis
ketopentose biological substrate ribulose S-phosphate (p- sis
RuSP). p-RSP is a poor substrate for RibB, with a K, si6
estimated to be 25—50 mM (Figure S1B, blue). The data do s17
not fit to a Michaelis—Menten model due to significant 518
inhibition at higher concentrations of the substrate. A crystal s19
structure with the sugar phosphate shows a binding mode s20
similar to D-RuSP and can be trapped in the presence of s21
manganese, chelated as expected in the active site by Glu-39 522
and His-154 (Figure 6C). The aldopentose D-xylulose S- 523
phosphate (D-XySP) is a better substrate (K, estimated at 2—3 s24
mM) but with a similar inhibition profile to p-RSP (Figure s2s
S1A, dark red). The structure of RibB with Mn** and p-XySP s26
was determined and is shown in Figure 6D. This sugar 527
phosphate binds in a more elongated pose with the hydroxyls s28
of C3 and C4 in an alternate conformation than seen in D- 529
RuSP and p-R5P, due to the change in chirality at C3. Finally, s30
the structure was determined with the aldopentose L-xylulose s31
S-phosphate (1-XySP), showing two manganese ions and a s32
significantly different, more twisted binding mode (Figure 6E). 533
This sugar phosphate showed no activity at any concentration s34
tested. 535

Assignment of NMR Spectra of Acid-Quenched RibB s3s
D-Ru5P Reactions. The exceptionally slow turnover number 537
of VcRibB at 4 °C provided the opportunity to halt the s38
reaction at specific times and analyze the reaction mixture in a 539
time-dependent manner. The quenched samples were analyzed s40
using *C NMR for both fully labeled p-RuSP and repeated s41
using substrate singly labeled at each carbon. Figure 7 depicts 542 7
representative 'H decoupled *C NMR resonances of the 543
substrate, products, and two distinct reaction states and as such s44
do not represent discrete reaction times. 545

In this figure, the resonances of individual carbons are color- s46
coded so that the reaction path traversed, and destination of s47
individual carbons is apparent. Overlayed in gray are the 'H sas
decoupled *C NMR resonances observed for the fully "*C- s49
labeled substrate. All NMR spectra including 'H spectra for sso
singly '*C-labeled substrates collected are shown in Figures ssi
S§3—S12. The assignment based on these spectra are ss2
summarized at the right in Figure 7, and the 'H decoupled-" ss3
C resonances and multiplicities for the four reaction states ss4
observed are listed in Table S3. Definitive assignment of the sss
progression for each carbon was made from the singly *C- ss6
labeled substrates (Figures S3—S8); these data show two ss7
intermediate states accumulate and decay between 0 and S sss
min. Conversion of C1 from an alcohol to a primary alkyl state 559
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A Apo s

Figure 6. Structures of RibB with sugar phosphates that are substrate analogues show only one metal ion in the active site, and the sugar
phosphates bind in an elongated fashion. The RibB structure with a variety of sugar phosphate molecules with metal coordinating residues, Glu39
and His154 shown as wheat colored. (A) RibB was crystallized in the absence of sugar phosphate in an open conformation such that the active site
loop containing Glu39 coordinating the metal ion is not visible in this image. (B) Addition of p-RuSP (yellow sticks) to the crystal orders the active
site loop of RibB with an extended conformation of the sugar phosphate, as seen in previous structures. The substrates (C) p-RSP (blue) and (D)
p-XySP (dark red) have the sugar phosphates in a similar elongated conformation and contain one Mn?" ion in the active site. (E) L-XySP (orange)
is not a substrate for RibB and binds in the active site in a twisted conformation and coordinates two Mn>" metals. Manganese ions are depicted as

purple spheres. The maps are Polder maps contoured at 3 A

s60 is observed as a 40 ppm upfield shift which is retained as the
s61 molecule is converted to a subsequent intermediate before
s62 resolving to the product. In contrast, C2 retains a resonance
s63 consistent with a ketone throughout the reaction. In the
se4 progression from D-RuSP to intermediate 1, C3 moves ~22
s6s ppm downfield to a chemical shift of 96.2 ppm indicative of a
seé6 gem-diol carbon. This is interpreted as a hydration artifact
s67 arising from acid quench and indicates that C3 is likely a
ses carbonyl in the first transient observed. The resonance for this
seé9 carbon moves upfield in the subsequent intermediate state,
570 revealing its return to an alcohol state, and this state is retained
571 in the DHBP product. C4 resonates as a hydroxyl bearing
s72 carbon in both the substrate and intermediate 1 states but
573 moves downfield to resonate as a gem-diol in the second
574 transient species to then resolves as a formate carboxylate in
s7s the spectrum of the products. For the species observed, the
576 chemical nature of CS does not change and thus resonates
s77 within a 2 ppm range throughout the reaction and moreover
578 exhibits a consistent small 4—5 Hz coupling to the two-bond
579 distant *'P of the phosphate moiety. The transient species
sgo observed definitively indicate the accumulation and decay of
s81 two intermediate states in single turnover of VcRibB. Neither
s82 of the assigned states definitively identify a single species but
sg3 are each consistent with acid quench of two successive states,
584 shown as boxed in Figure 1.

s¢s  Remarkably, the same two intermediate states are observed
s86 by X-ray crystallography. Crystals grown with the substrate p-
587 RuSP were soaked for 3 min in a cryo-protectant solution
58 containing Mn** before being plunged in liquid nitrogen to
589 stop the reaction and prepare the crystal for diffraction. When
s90 this structure was solved, the density of the closed active site is
591 best modeled to contain 80% substrate (D-RuSP) and 20% of
s92 intermediate 1, with the 2-keto, 3,3-diol (Figure 7B) produced
593 by the acid quench NMR experiment, more accurately
so4 depicted as a 2,3-diketone (Figure 8A). Crystals soaked for

—

—

—

70 min in the Mn**-containing cryo-protectant display density sos
consistent with 56% Intermediate 2 that was modeled as the 59
gem-diol. While the acid quench NMR data are consistent with 597
hydration by the enzyme to make the gem diol, it is also s98
possible that the acid quench performed the hydration of the s99
preceding aldehyde intermediate (Figure 1). However, the 600
crystallographic data shows density consistent with the C4 gem 601
diol (Figures 1 and 7C). This intermediate is modeled as the 602
predominant fraction of the density and has the sp® C3 603
somewhat flattened. This geometry is suggestive of strain that 604
would facilitate formate elimination and formation of the 60s
trigonal planar C3 enol of the DHBP tautomer (Figure 1). The 606
remaining 44% of the density was fit to the two products, 607
dihydroxybutanone phosphate and formate (Figure 8B). 608

B DISCUSSION 609

The identity of the four-carbon unit required in the 610
condensation of S-amino-6-ribitylamino-2,4-pyrimidinedione 611
to form the xylene moiety of 6,7-dimethyl-8-ribityllumazine in 612
the biosynthesis of riboflavin was a long-standing matter of 613
conjecture. In the mid-1950s, Plaut and Broberg demonstrated 614
that the xylene methyl groups and the carbons to which they 615
were attached were derived from the C1 and C6 of 616
glucose.””** Later intermediates of the butanediol pathway 617
were implicated,’”*° and then, the pentose phosphate pathway 618
before both were rejected.*” Dismutation of the S-amino-6- 619
ribitylamino-2,4-pyrimidinedione ring was also proposed, in 620
which the ribityl was the source of the four carbons."* 61
Eventually, Alworth and co-workers identified the origin of the 622
methyl groups in the S,6-dimethylbenzimidazole moiety of 623
cobalamin as derived from ribose-5-phosphate and given that 624
the origin of this moiety is from riboflavin, pentose sugar 625
phosphates were again implicated as the source of the four 626
carbons.”*™>° This proposal was later confirmed using *C 627
labeling that also revealed that the C6-methyl, C6, and C7 628
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Figure 7. Identification of two reaction intermediates by single turnover NMR. RibB was followed as a single turnover reaction using '*C p-RuSP
and quenched with acid at various time points. The p-RuSP is converted to DHBP and formate with the transient appearance of two distinct
intermediates. Fully labeled *C (gray) and each singly labeled carbon were followed through the reaction and shown in colors; C1 (red), C2

(orange), C3 (green), C4 (purple), and C5 (blue).

629 came from C1—C3 of pentoses but oddly, the C7-methyl came
630 from pentose CS5.'>'*°%*” This was the first evidence that a
631 rearrangement reaction was required. In 1985, an activity was
632 identified that formed a 4-carbon product that was a substrate
633 for lumazine synthase, at last quelling prior notions that a
634 pentose was the substrate.”® Ultimately, p-ribulose 3-phosphate
635 was recognized as the substrate for this newly identified
636 enzyme, and the '*C-labeled substrate was used to show that
637 formate and L-3,4-dihydroxy-2-butanone-4-phosphate were the
638 products,” putting to rest a 35-year biochemical enigma.

639 Soon after establishment of the reaction, a mechanism was
640 proposed, in which the skeletal rearrangement of p-ribulose $-
641 phosphate was achieved via an anionotropic 1,2-migration such

that the CS$ attacks the pentose C3, instigating the elimination 642
of C4 as a formate via a gem diol moiety (Figure 1).'® This 643
soundly reasoned mechanism was consistent with labeling and 644
incorporation studies that show solvent deuterium incorpo- 64s
ration at Cl and C3. The canonical mechanism has been 46
rewritten in numerous articles since its initial pro- 647
posal””*1¥3%%% and once the first structures of RibB were s
published, the mechanistic proposal has been redrawn in the 649
context of the active site residues.””** 650

These initial X-ray crystal structures were of RibB 6s1
reconstituted with Mg, Mn, or Zn ions and revealed either 652
one or two metal ions within the active site.'” >"*” Contextual ¢s3
chemical mechanisms have generally incorporated two metal 654
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Figure 8. Identification of two reaction intermediates by single
turnover X-ray crystallography. (A) RibB crystals were grown with p-
ribulose 5-phosphate and soaked with MnCl, for 3 min. The map is
best modeled with 80% substrate (yellow) and 20% Intermediate 1 as
the 2,3-diketone (pink). (B) Crystals soaked for 70 min produced a
structure with density that is modeled as 56% intermediate 2 in the
gem diol form (cyan) and 44% of the two products, dihydrox-
ybutanone phosphate and formate (green). Both structures show a
single manganese ion in the active site (purple). The maps are Polder
maps contoured at 30.

6ss ions, and this cofactor set has become the accepted native
656 active site configuration. Within RibB, the second metal ion
657 has only two direct coordinating contacts, one with the
6s8 substrate C2 carbonyl and one with Glu39. In contrast, the
659 metal jon liganded to the substrate C3 and C4 hydroxyl
660 groups, and the terminal phosphate of p-RuSP is also
661 coordinated to His154 and Glu39 (VcRibB residue num-
662 bers).”" In each case, the structures solved with two metal ions
663 were either of a vestigial, non-active form of RibB or were

solved when liganded to substrate analogue sugar phosphates 664
and so do not depict a native state of the enzyme. Moreover, in 665
each case, when the chemical mechanism of RibB has been 666
presented, it has rightly been described as hypothetical as little 667
direct evidence for the chemical species involved in the 668
reaction was available. We present the first direct evidence for 669
the mechanism of RibB. These data show that the general 670
reasoning of the canonical mechanism by Bacher et al. holds, 671
but that it is achieved with the involvement of a single active ¢72
site metal ion. 673

The slow turnover rate of VcRibB facilitated acid quench of 674
the reaction, and selective 13C-labeling of D-RuSP via 675
reconstitution of the pentose phosphate pathway gave the 676
means for unambiguous assignment of the origin and 677
destination of all carbons that constitute two transient species 673
observed to accumulate under single turnover conditions 679
(Figure 7). These data indicate elimination of the C1-hydroxyl 6so
from an ene-diol species to form a 2,3-diketone that is 681
observed to accumulate with acid quench in the hydrated 2- 6s2
keto, 3,3-diol state (Figure 9). With regard to the chemical 683 &
mechanism, this localizes the quenched intermediate to either ¢s4
the 1-ene-2-ol-3-one species or the ensuing 2,3-diketone. The sss
subsequent transient liberated in acid quench is the result of 6ss
rearrangement and has the C5 bonded to C3 with C4 as a gem 687
diol that is poised for elimination as formate. This is the first 688
observation of this fundamental RibB transient, and con- 689
firmation of its existence arguably dictates much of the 69
preceding and subsequent chemistry in the RibB catalytic 691
cycle. 692

One primary role of the magnesium (or manganese) ion in 693
RibB is Lewis acidity, stabilizing hydroxide states of 694
coordinated hydroxyls and waters, thereby inducing tautome- 695
rizations, hydration, and two elimination reactions. It is not 696
immediately apparent that a second metal ion is required to 697
accomplish this chemistry, and each structure of VcRibB 698
solved with a substrate or intermediate state bound that we 699
present here has only one metal ion, and full activity is 700
achieved with equimolar Mg or Mn (Figure S5). While this 701
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Figure 9. Evidence-based mechanism. Boxed reactions indicate hydrated acid-quenched products identified in the NMR data.
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702 observation does not rule out transient involvement of a
703 rapidly exchanging second metal ion amid relative slow
704 chemistry, it does indicate that one metal ion has a dominant
705 role and anchors substrate binding and much of the catalytic
706 cycle. In Figure 8, we show density for a single metal ion in two
707 states of catalysis representative of four distinct species,
708 modeled as a 4:1 ratio of the ES complex and the 2,3-diketone
709 intermediate (intermediate 1), and the rearranged and
710 hydrated intermediate (intermediate 2) added to a roughly
711 equal fraction of the product complex.

712 Structures of VcRibB with the native substrate, D-RuSP, were
713 solved in the presence of Mn ions that induce even slower rates
714 of turnover (Figure 8). The structure of the VcRibB-Mn-D-
715 RuSP complex has the metal ion coordinated to the C3 and C4
716 hydroxyl substituents and the phosphate of the substrate.
717 Within a 3 min incubation period, the reaction advances in
718 crystallo to partial elimination of the C2-hydroxyl retaining
719 coordination to the same oxygen atoms presumably with the
720 C3 now in the keto state and the tautomeric state of the C1—
721 C2 enol/keto group unknown. The observed conformation of
722 intermediate 1 when best fit to the available density at 2.2 A
723 resolution indicates a Birgi—Dunitz angle within 10° of
724 optimal for the nucleophilic attack of CS on C3. This
725 conformation has an altitude 117° and an azimuth 145° across
76 a gap of 2.4 A°' a geometry that promotes the migration
727 reaction that forms intermediate 2 (Figure 8A). The exact
728 mechanism of migration is not apparent from these data. Shifts
729 of this type are analogous to Pinacol rearrangements where
730 migration is induced by an adjacent carbonium ion.”> At this
731 stage of catalysis, the Lewis acidity of the metal ion of RibB
732 presumably works to denude the C3 carbonyl carbon of
733 electrons increasing its electrophilicity. Whether the migration
734 is concerted and involves a single transition state with partial
735 bonding of CS to both C4 and C3 or stepwise with the
736 formation of a CS carbanion is a nuanced chemical argument
737 that is beyond the reach of the data presented. However, the
738 first definitive observation of the predicted migration product
739 (intermediate 2) confines the mechanistic possibilities
740 considerably and confirms an otherwise unsubstantiated
741 mechanism first proposed in 1991."°

742 The crystallographic intermediate 2 state, as shown in Figure
743 8B, has density for the C4 gem diol. This is therefore the same
744 as the species observed as the second transient in acid quench
745 NMR data (Figure 7), indicating that the decay of the gem diol
746 to form formate and the enol form of the DHBP product is the
747 rate-limiting chemical step. The product complex includes
748 density for formate and DHBP and is the first experimental
749 observation of these products formed in situ.

—_

—

—

7so Il CONCLUSIONS

751 31 years after the initial hypothetical chemical mechanism for
752 RibB was offered, definitive evidence for the accumulation,
753 decay, and chemical identity of two sequential transients is
754 presented. These data indicate that the fundamental steps of
755 1,2-shift of carbon-five and formate elimination from a gem
756 diol bonded to a quaternary carbon-three define the salient and
757 unique catalytic steps of the enzyme’s catalytic cycle.
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