

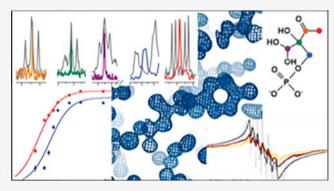
pubs.acs.org/JACS Article

Evidence for the Chemical Mechanism of RibB (3,4-Dihydroxy-2-butanone 4-phosphate Synthase) of Riboflavin Biosynthesis

3 Nikola Kenjić, Kathleen M. Meneely, Daniel J. Wherritt, Melissa C. Denler, Timothy A. Jackson,

4 Graham R. Moran, and Audrey L. Lamb*

Cite This: https://doi.org/10.1021/jacs.2c03376


ACCESS

Metrics & More

Article Recommendations

Supporting Information

5 ABSTRACT: RibB (3,4-dihydroxy-2-butanone 4-phosphate syn-6 thase) is a magnesium-dependent enzyme that excises the C4 of D-7 ribulose-5-phosphate (D-RuSP) as formate. RibB generates the 8 four-carbon substrate for lumazine synthase that is incorporated 9 into the xylene moiety of lumazine and ultimately the riboflavin 10 isoalloxazine. The reaction was first identified by Bacher and co-11 workers in the 1990s, and their chemical mechanism hypothesis 12 became canonical despite minimal direct evidence. X-ray crystal 13 structures of RibB typically show two metal ions when solved in the 14 presence of non-native metals and/or liganding non-substrate 15 analogues, and the consensus hypothetical mechanism has 16 incorporated this cofactor set. We have used a variety of 17 biochemical approaches to further characterize the chemistry

18 catalyzed by RibB from *Vibrio cholera* (VcRibB). We show that full activity is achieved at metal ion concentrations equal to the enzyme concentration. This was confirmed by electron paramagnetic resonance of the enzyme reconstituted with manganese and crystal structures liganded with Mn²⁺ and a variety of sugar phosphates. Two transient species prior to the formation of products were identified using acid quench of single turnover reactions in combination with NMR for singly and fully ¹³C-labeled D-RuSP. These data indicate that dehydration of C1 forms the first transient species, which undergoes rearrangement by a 1,2 migration, fusing C5 to C3 and generating a hydrated C4 that is poised for elimination as formate. Structures determined from time-dependent Mn²⁺ soaks of VcRibB-D-RuSP crystals show accumulation in crystallo of the same intermediates. Collectively, these data reveal for the first time crucial transient chemical states in the mechanism of RibB.

26 INTRODUCTION

Riboflavin is the direct precursor for the production of flavin adenine mononucleotide and subsequently flavin adenine dinucleotide, essential cofactors in redox and non-redox reactions in all forms of life. Riboflavin is required for fundamental cellular processes, such as primary metabolism, the electron transport chain of cellular respiration, folate synthesis, iron absorption, DNA repair, and inflammation/ immune responses. Plants and bacteria have genes for the enzymatic production of riboflavin, but animals must obtain riboflavin (vitamin B2) from their diet. Not surprisingly, riboflavin biosynthesis has drawn attention as a target for antibacterial/antimicrobial drug design.

Riboflavin biosynthesis has a convergent pathway with the initial substrates of the individual branches being guanosine triphosphate and D-ribulose 5-phosphate (D-RuSP, a five-carbon sugar phosphate of the pentose phosphate pathway), both prevalent metabolites. 3,4-Dihydroxy-2-butanone 4-44 phosphate (DHBP) synthase, or RibB, is a magnesium-st dependent enzyme that dehydrates the first carbon and ferenoves the fourth carbon of D-RuSP to make the four-

carbon, DHBP product (Figure 1A). Evidence for this 47 f1 unexpected chemistry is from classic biochemistry feeding 48 studies and endpoint assays with ¹³C-labeled ribose, acetate, 49 glucose, glycerol, and ribulose-5-phosphate employing ¹³C 50 NMR detection. ^{10–16} The enzyme mechanism that has been 51 proposed is necessarily complicated and requires at least four 52 steps: (1) dehydration at C1 to generate the methyl, (2) a 53 skeletal rearrangement to link C3 and C5, and a (3) hydration 54 at C4 to facilitate (4) deformylation. The order of events as 55 accepted in the literature is shown in Figure 1B, ¹⁶ which we 56 refer to as the "canonical" mechanism. The inversion of the 57 stereochemistry at C3 has previously been established by CD 58 spectroscopy (Figure 1A). ¹⁵ Due to the complexity of the 59 reaction, it is not surprising that the RibB reaction is 60

Received: March 29, 2022

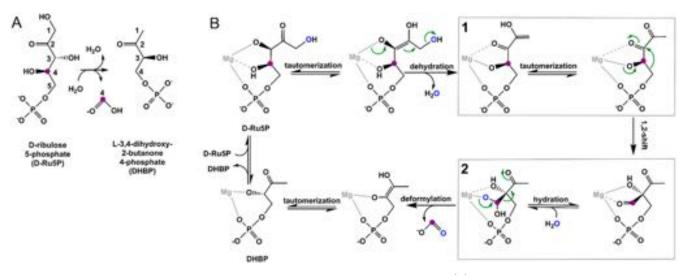


Figure 1. Hypothetical canonical mechanism depicted in the context of the findings of this study. (A) RibB catalyzes the conversion of D-ribulose 5-phosphate (D-Ru5P) to L-3,4-dihydroxy-2-butanone 4-phosphate (DHBP), dehydrating C1 and removing C4 as formate. (B) Mechanism proposed in the literature has four key steps: dehydration, 1,2-shift, hydration, and deformylation. Boxes indicate intermediate states identified in this study. Structures drawn in the Natta projection.

61 considered to be one of the rate-limiting steps in riboflavin 62 biosynthesis,¹⁷ with RibB enzymes demonstrating turnover 63 numbers on the order of six per minute.¹⁸

The structure of RibB appears to be a standard $\alpha+\beta$ 65 structure, in which α -helices pack against both sides of a 66 central β -sheet (Figure 2). However, the connectivity of the

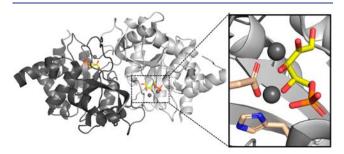


Figure 2. V. cholerae RibB structure (PDB: 4P8E). RibB is a dimer (monomers light and dark gray). This structure contains the D-RuSP substrate (yellow sticks with red oxygens and orange phosphorous) and is inactivate because the required magnesium ion(s) have been substituted by the two zinc ions (gray spheres). The inset shows magnification of the active site, highlighting two residues, Glu39 and His154 colored wheat, which coordinate to the two reported metal ions and will be shown in all subsequent images of the active site.

67 secondary structure is unique and dictates that RibB has a 68 distinctive fold. $^{19-21}$ Indeed, if one performs a homology 69 search using PDBeFold²² and sets low thresholds, 51 RibB 70 chains are returned with very high secondary structure 71 matching (over 80%) and strikingly similar root mean squared 72 deviation (rmsd) (1.5 Å or less for at least 180 of 216 $C\alpha$ 73 carbons). Additionally, four protein structures of unknown 74 function are identified, which show a clear deviation in 75 comparison statistics (rmsd doubles, Q score halves). The 76 active site is surrounded by two mobile loops. The shorter 77 loop, loop 1, is composed of acidic residues that are important 78 for binding of the substrate and metal. The longer loop, loop 2, 79 shows conformational flexibility with the substrate and metal 80 binding. 20,21,23

The majority of structures reported in the PDB are for nonactive states, with Mn²⁺, Zn²⁺, and Ca²⁺ substituted for the 82 catalytic Mg²⁺. Others have sulfate or phosphate in the active 83 site, and a few have a metal and/or substrate or substrate 84 analogues bound. ^{19-21,23-28} It is widely accepted that the 85 enzyme requires two magnesium ions to be catalytically active, 86 but this is based on noncatalytic zinc-substituted structures of a 87 ternary protein—metal—substrate complex. ^{23,27} However, 88 RibB-ribulose 5-phosphate complex structures show that the 89 substrate binds in the absence of metal with the phosphate 90 highly coordinated by amino acid side chains. ²⁸ Indeed, there 91 are several structures in which sulfate or phosphate bind in the 92 substrate-phosphate site in the absence of metal, indicating 93 that the metal ion is not required for substrate binding. ^{20,27} 94

We have sought to provide evidence for the chemical 95 mechanism of RibB. Initially, we determined that RibB uses a 96 mononuclear magnesium center for catalysis using perturba-97 tion of tyrosine fluorescence, activity assays, and electron 98 paramagnetic resonance (EPR) data. Furthermore, we showed 99 that RibB activity is pH dependent, which correlates with 100 magnesium binding. Using acid quench of a single turnover 101 reaction in combination with nuclear magnetic resonance and 102 X-ray crystallography employing time-dependent crystal 103 soaked with the native substrate, we identified two catalytic 104 intermediates that accumulate in the catalytic cycle of RibB 105 that give credence to the hypothesis of a 1,2-shift followed by 106 deformylation for the excision of the 4-carbon from the 5- 107 carbon D-ribulose 5-phosphate.

■ METHODS

RibB Overexpression and Purification. The overexpression 110 construct for the RibB gene was prepared by GenScript. The ribB 111 gene from *Vibrio cholerae* (*V. cholerae*) (sequence ID: AE003853.1, 112 strain: N16961, taxid: 243277) was initially synthesized and cloned 113 into the pUC15 vector. This gene was then transferred to the pET28a 114 + vector that yields the VcRibB protein with an N-terminal 6 His tag. 115 The VcRibB construct was transformed into BL21(DE3) *Escherichia* 116 *coli* (*E. coli*) (New England Biolabs) and grown overnight at 37 °C in 117 50 mL of LB broth, Miller (Fisher) with 50 μ g/mL kanamycin in a 118 shaker incubator (250 rpm). 1L of the Miller formulation of LB broth 119 with 50 μ g/mL kanamycin was inoculated with 10 mL of the 120

121 overnight culture and grown at 37 °C in a baffled flask in a shaker 122 incubator (250 rpm). When the culture OD_{600nm} reached 0.8, protein 123 expression was induced with a final concentration of 0.5 mM 124 isopropyl β -D-1-thiogalactopyranoside (IPTG) and was further 125 incubated at 37 °C for 4 h with shaking. The cells were harvested 126 by centrifugation (6000g, 10 min, 4 °C). The cell pellet was 127 resuspended in 10 mL of 50 mM Tris-HCl (pH 8.0), 50 mM 128 imidazole, and 500 mM NaCl per liter of culture broth. Resuspended 129 cells were lysed by passage through a French Press three times at 130 13,000 psi. The cell lysate was centrifuged at 12,000g for 40 min at 4 131 °C. The supernatant was injected onto a 25 mL Chelating Sepharose 132 Fast Flow (GE Healthcare) column charged with nickel chloride and 133 pre-equilibrated with 50 mM Tris-HCl (pH 8.0), 50 mM imidazole, 134 and 500 mM NaCl. The protein was eluted with a 250 mL linear 135 gradient increasing the imidazole concentration to 500 mM imidazole 136 (RibB eluted at ~200 mM imidazole) or with a step gradient of 300 137 mM imidazole. The protein was concentrated to 30 mL using an 138 Amicon nitrogen gas-pressurized concentrator with a 10 kDa cutoff 139 filter and injected onto a 120 mL Superdex 200 gel-filtration column 140 (GE Healthcare), pre-equilibrated with 25 mM Tris-HCl (pH 8.0). 141 RibB eluted as a dimer and was concentrated using an Amicon 142 Ultracell 30 K centrifugal concentrator to 40 mg/mL, as determined 143 by Bradford, and stored at -80 °C for later use. The purification yield 144 was 250 mg of protein per liter of culture.

RibB Purification in the Presence of EDTA. To remove the 146 residual divalent metal ions, prior to the size exclusion step, the 147 protein was incubated with a final concentration of 2 mM EDTA for 148 10 min on ice. The buffer for the size exclusion column contained 100 149 μ M EDTA. Before binding and activity assay experiments 150 commenced, the protein was exchanged again into freshly made 25 151 mM Tris-HCl (pH 8.0), 100 μ M EDTA, and concentrated to 37.7 152 mg/mL using an Amicon Ultracell 30 K centrifugal concentrator.

Steady-State Kinetics Varying the D-Ribulose 5-Phosphate 154 **Concentration.** We adapted the previously developed assay 18,23 to 155 compare the kinetic parameters of our purified enzyme for differing 156 metals and sugar phosphates. A major change to assay included using 157 the actual sugar phosphates as substrates as opposed to the addition of 158 pentose phosphate isomerase to generate D-ribulose 5-phosphate 159 during assay incubation. D-ribulose 5-phosphate (D-RuSP), D-ribose 5-160 phosphate (D-R5P), D-xylulose 5-phosphate (D-Xy5P), and L-xylulose 161 5-phosphate (L-Xy5P) (Sigma-Aldrich) were dissolved in 50 mM 162 Tris-HCl (pH 7.5) to a concentration of 90 mM. Sugar phosphate, 10 $_{163}$ μ M enzyme, and $_{10}$ mM MgCl $_{2}$ were mixed to a final volume of 200 $_{164} \mu L$ and incubated for 30 min at room temperature with sugar 165 phosphate concentrations varied from 0 to 4 mM for D-Ru5P, 0-200 166 mM for D-R5P, 0-8 mM for D-Xy5P, and 0-20 mM for L-Xy5P. The 167 reaction was quenched by the addition of 175 μ L of freshly made 200 168 mM naphthol (dissolved in 1 N NaOH) and 250 μ L of 270 mM 169 creatine (dissolved in water), and the color was allowed to develop for 170 30 min. 18 The product was detected by an absorption scan from 450 171 to 650 nm using a Cary 50 Bio UV-visible spectrophotometer. The 172 absorbance at λ_{max} (525 nm) was corrected by subtracting the 173 absorbance at 650 nm and then converted to the concentration (in 174 nM) using a 3,4-butadione standard curve, not the 3,4-dihydroxy-2-175 butanone phosphate (DHBP), as was carried out previously. 18 Values 176 for $V_{\rm max}$ and $K_{\rm M}$ are averages of three trials collected twice on separate 177 days, and errors are reported as the standard deviation of these values. 178 The data for the biological substrate (D-Ru-5P) and metals (Mg²⁺ and 179 Mn²⁺) were fit to the Michaelis-Menten equation using Kaleidgraph 180 (Synergy Software). The data for the other sugar phosphates were fit 181 to the substrate inhibition model to give a trend line illustrative of the 182 data, but numbers are not reported due to poor fit (see the Results 183 section). Error propagation was used in the determination of error 184 values for $k_{\rm cat}$ and $k_{\rm cat}/K_{\rm M}$. For the pH titration, D-Ru5P was the 185 varied substrate, and a 100 mM succinic acid, phosphate, glycine 186 (SPG) buffer system was used at pH values of 5.0, 5.4, 5.8, 6, 6.5, 7.0, 187 8.0, and 9.0, as described by Newman.²⁹ pH profiles of k_{cat} and k_{cat} 188 $K_{\rm M}$ values for substrates were fit to the following equation:

Kinetic parameters at each pH were determined in triplicate. The 189 values presented are the averages of these three trials, and the 190 reported errors are the standard deviation.

Steady-State Kinetics Varying the Metal Ion Concentration. 192 The dependence of the steady-state kinetic parameters on the 193 magnesium concentration was determined with D-RuSP with one 194 alteration in the procedure. The standard reaction mixture (200 μ L) 195 contained diluted MgCl₂ (Fisher 99.9% pure; 0–800 μ M), 1.8 mM 196 RuSP, and 10 μ M enzyme. The dependence of the steady-state kinetic 197 parameters on the manganese concentration was obtained in the same 198 manner as with Mg²⁺ but used 1 μ M enzyme and pure MnCl₂ (Fisher 199 99% pure; 0–250 μ M), and the incubation time prior to quenching 200 was increased to 150 min.

Metal-Binding Stoichiometry. VcRibB has no tryptophan 202 residues, and changes in intrinsic tyrosine fluorescence were used to 203 observed metal binding. The data were measured using a Cary 50 204 Eclipse fluorometer with an excitation wavelength of 280 nm and 205 emission recorded from 290 to 400 nm (excitation slit: 10 nm; 206 emission slit: 5 nm). The 200 µL of the reaction mixture containing 207 50 mM tris-HCl (pH 7.5), 100 μM EDTA, 1.8 mM D-RuSP, and 60 208 μ M RibB [50 mM Tris-HCl, 100 μ M EDTA (pH 8)] was titrated 209 with 1 μ L increments of 2 mM MgCl₂ and 100 μ M EDTA solution. 210 The reported Mg²⁺ concentration accounts for the dilution. Tyrosine 211 fluorescence at 302 nm was corrected with the fluorescence for a 212 control sample (titrated in the presence of 100 µM EDTA). 213 Experiments were repeated three times, and data points reported 214 are an average of three trials with the error reported as the standard 215 deviation of the trials. For the pH-dependence of Mg binding, 216 magnesium chloride was the varied component, and a 50 mM SPG 217 buffer system was used for pH values of 4.5-9.0. Binding curves at 218 each pH were determined in triplicate. The values presented are the 219 averages of the three trials, and the reported errors are the standard 220

Circular Dichroism Spectroscopy. The spectra of each $200~\mu L$ 222 sample containing 100~mM SPG buffer at pH 4-9 with $5~\mu M$ enzyme 223 were collected using a Jasco J-1100~CD spectropolarimeter with a 1~224 mm pathlength. Each scan analyzed was an average of three scans at 225~50~nm/min with a 1.00~nm bandwidth and a digital integration time 226~(D.I.T.) of 4~s. Data were collected from 185~to~260~nm at 0.1~nm 227~to~228 intervals.

Metal Stoichiometry Evaluated from RibB Activity. In each 229 reaction mixture of 200 μ L, the final concentration of components 230 was 50 mM Tris-HCl (pH 7.5), 100 μ M EDTA, and 1.8 mM D-Ru5P. 231 MgCl₂ was titrated in successive assays in increments of 20 μ M from 0 232 to 220 μ M. The reaction was initiated by the addition of 60 μ M RibB 233 protein purified in the presence of EDTA and incubated for 1 h at 234 room temperature. Steady-state data were calculated using the above 235 procedure. The experiment was repeated three times, and values 236 reported are the averages of three trials with errors reported as 237 standard deviations.

EPR of Mn(II)/RibB. EPR samples (300 μ L of the final volume) 239 were prepared by mixing RibB, MnCl₂, and sugar phosphate substrate 240 (D-RuSP or L-XySP) in millimolar ratios (as defined by the 241 experiments, e.g., 3:3:3) in 50 mM Tris-HCl (pH 7.5) and 10% 242 glycerol at 4 °C. Reactions were initiated by the addition of enzyme 243 into the 4 mm quartz EPR tube that contained the metal and sugar 244 phosphate components. The reaction was quenched at the specific 245 times by submerging the EPR tube in liquid nitrogen. X-band EPR 246 data were collected on a 9 GHz Bruker EMXPlus spectrometer. 247 Experiments were run at 10 K with the use of an Oxford ESR900 248 continuous-flow liquid helium cryostat equipped with an Oxford 249 ITC503 temperature system. Perpendicular-mode data were collected 250 in a dual-mode Bruker ER4116DM cavity. Spectra were recorded 251 using the following non-saturating conditions: 9.64 GHz microwave 252 frequency, 2.0 mW microwave power, 4 G modulation amplitude, 100 253 kHz modulation frequency, and 40.96 ms time constant.

RibB Crystallization. All crystals were grown at room temper- 255 ature using the hanging-drop vapor diffusion method. Each drop (3 256 μ L) was prepared by mixing protein and the precipitant solution in 257 equal amounts. Seven crystal structures are described herein [apo- 258

259 RibB (7UEZ); RibB/D-Ru5P (7UF0); RibB/D-R5P/Mn (7UF1); 260 RibB/D-Xy5P/Mn (7UF2); RibB/L-Xy5P/2Mn (7UF3); RibB/Int1/ 261 Mn (7UF4); and RibB/Int2/Mn (7UF5)]. RibB protein at 40 mg/ 262 mL was used to grow cube-shaped apo-RibB crystals using a 263 precipitant solution of 0.1 M Na₂HPO₄/NaH₂PO₄ (pH 9.3), 16% 264 (w/v) PEG 3350, and 0.3 M glycine that reach maximal size in three 265 weeks. These crystals were cryoprotected with 20% PEG (w/v) 3350, 266 5.2 mM D-RuSP, and 0.2 mM MgCl₂ and flash-cooled. The remaining 267 structures were determined from rod-shaped crystals grown using a 268 precipitant solution of 0.1 M lithium acetate and 12-18% (w/v) PEG 269 3350 and reached maximal size in 2 days. The protein concentration 270 for crystal growth was 32.9 mg/mL, and the protein was pre-271 incubated with the appropriate sugar phosphate prior to drop 272 formation (the sugar phosphate for the intermediate structures was D-273 Ru5P). In all cases, the sugar phosphate was at 15× molar excess, 274 except D-R5P. In this case, flakes of D-R5P were added directly to the 275 protein solution. In preparation for data collection, the RibB: D-R5P 276 crystals were transferred to a precipitant solution with 4 mM MnCl₂ 277 and 30% (v/v) ethylene glycol. The remaining crystals were soaked in 278 the precipitant solution with 40 mM of a non-substrate sugar 279 phosphate or D-Ru5P for the intermediate structures. Just before flash 280 cooling, the crystals were transferred to a cryoprotectant solution 281 which was the precipitant solution with 30% (v/v) ethylene glycol. 282 For the RibB/D-Xy5P/Mn . RibB/L-Xy5P/2Mn; RibB/Int1/Mn; 283 RibB/Int2/Mn structures, the cryoprotectant solution also contained 284 4 mM MnCl₂. For the intermediate 1 structure, the crystal remained 285 in the second soaking solution for 3 min and for the intermediate 2 286 structure for 70 min.

X-ray Crystal Structure Determination. The X-ray diffraction 287 288 data for all RibB crystal structures reported were collected at 100 K 289 using the Stanford Synchrotron Radiation Laboratory (SSRL, 290 Stanford, CA) beamlines 12-2 (apo-RibB structure) and 9-2 (all 291 other structures). The software package Blu-Ice^{30,31} was used to 292 collect 1200 oscillation images (0.15° per image) with an exposure 293 time of 0.2 s. The incident wavelength for the apo-RibB structure was 294 0.8526 Å, and for all remaining structures, it was 0.9795 Å. Data 295 collection and refinement statistics are in Table S1. All phasing 296 solutions were obtained by molecular replacement using PHENIX, 297 Phaser-MR.³² The model for the apo-RibB molecular replacement 298 calculation was PDB:4P8J, whereas all other used 4P8E.²³ The log 299 likelihood gain and TFZ score for each solution are also found in 300 Table S2. Solutions were subjected to alternating cycles of model 301 building and refinement using Coot³³ and Phenix.Refine.^{34,35} Water 302 molecules were added automatically and inspected manually using 303 Coot. All ligands were added manually (sugar phosphates, intermediates, metals, and ethylene glycol) with restraints for the 305 sugar phosphates generated using eLBOW³⁶ and REEL.³⁷ Anisotropic 306 B-factors were only used for the high-resolution apo-RibB structure. 307 The components of the final models (residues, waters, metals, and 308 sugar phosphates) are summarized in Table S2. Structures figures 309 were prepared using Pymol (Schrodinger).

6-Phosphogluconate Dehydrogenase (Ec6PGDH) Prepara-311 tion. The overexpression construct for the E. coli K-12 (ATCC 312 #47076) Ec6PGDH was prepared by GenScript. The gene was 313 synthesized and placed into a pET-28b(+) vector, and the vector was 314 transformed into BL21(DE3) E. coli. This overexpression construct 315 yields protein with an N-terminal 6 His tag. The transformed bacteria 316 were grown overnight at 37 °C in 100 mL of LB broth with 50 μ g/mL 317 kanamycin in a shaker incubator (250 rpm). 1L of LB broth with 50 318 μ g/mL kanamycin was inoculated with 35 mL of the overnight culture 319 and grown at 37 °C in a baffled flask in a shaker incubator (250 rpm). 320 When the culture OD_{600nm} reached 0.9, protein expression was 321 induced with a final concentration of 1 mM IPTG and was further 322 incubated at $20\,$ °C for overnight with shaking. The cells were 323 harvested by centrifugation (6000g, 10 min, 4 °C). The cell pellet was 324 resuspended in 10 mL of 25 mM Tris-HCl (pH 8.0), 50 mM 325 imidazole, and 500 mM NaCl per liter of culture broth. Resuspended 326 cells were lysed by passage through a French Press three times at 327 13,000 psi. The cell lysate was centrifuged at 12,000g for 30 min at 4 328 °C. The supernatant was injected onto a 25 mL Chelating Sepharose

Fast Flow (GE Healthcare) column charged with nickel chloride and 329 pre-equilibrated with 25 mM Tris-HCl (pH 8.0), 50 mM imidazole, 330 and 500 mM NaCl. The protein was eluted with a step gradient with 331 an imidazole concentration of 300 mM imidazole. The fractions 332 containing the Ec6PGDH were dialyzed into 25 mM Tris-HCl (pH 333 8.0) and stored for later use at -80 °C. The final yield was 648 mg 334 per liter of culture, as determined by Bradford analysis.

Preparation of ¹³C-Labeled Ribulose 5-Phosphate. Singly 336 and uniformly ${}^{13}\text{C-labeled}$ D-ribulose 5-phosphate was prepared by 337 reconstitution of the pentose phosphate pathway following the 338 published protocol.³⁸ In a final volume of 4 mL, 50 mM Tris-HCl 339 (pH 7.5), 40 mM MgCl₂, 40 mM ATP, 37 mM labeled ¹³C glucose 340 (Cambridge Isotope Laboratories and Sigma), and 10 mM DTT 341 (GoldBio) were mixed, and the pH was adjusted to 7.8 using 1 M 342 NaOH. Hexokinase [60 U, Sigma-Aldrich, Saccharomyces cerevisiae (S. 343 cerevisiae)] was added, and the solution was incubated at 37 °C for 30 344 min. In a second vial, 4 mL of 75 mM ammonium acetate, 10 mM 345 NADP⁺, and 70 mM α -ketoglutarate were mixed, and the pH was 346 adjusted to 7.8 with 1 M NaOH. The two vials were combined, and 347 20 µM Ec6PGDH (final concentration), 20 U glutamate dehydrogen- 348 ase (Sigma-Aldrich, bovine liver), and 12 U glucose 6-phosphate 349 dehydrogenase (Sigma-Aldrich, S. cerevisiae) were added. The 350 reaction was incubated at 37 °C for 3 h. Barium chloride, at a final 351 concentration of 50 mM, was added to the solution. The solution was 352 mixed and incubated on ice for 5 min. A white precipitate formed and 353 was pelleted by centrifugation (4300g, 20 min, 4 °C). The 354 supernatant was incubated in 80% ethanol at -20 °C for 30 min. 355 The precipitate was washed in 90% ethanol twice and dried under 356 nitrogen. The dried white solid was resuspended in 15 mL of water, 357 and sodium sulfate was added to 100 mM. The white precipitate was 358 removed by centrifugation (4300g, 20 min, 4 °C). The supernatant 359 was lyophilized producing a white powder that was resuspended in 50 360 mM Tris-HCl (pH 8.0). The concentration of D $-[^{13}\bar{C}]$ -Ru5P was 361 determined by colorimetric assay¹⁸ and the standard curve using 362 unlabeled D-Ru5P (Sigma-Aldrich), as previously described. The D- 363 Ru5P was authenticated by 13C NMR using published peak 364 assignments.16

Acid-Quenched Single Turnover Monitored by NMR. RibB in 366 50 mM Tris-HCl (pH 8.0) was concentrated to 120 mg/mL (5.0 367 mM). The reaction mixture contained 50 mM Tris-HCl (pH 8.0), 368 20% D₂O₂ 3 mM MgCl₂, and 2.8 mM RibB. The reaction was 369 equilibrated to 4 °C and initiated by the addition of 2 mM D -[13C]- 370 Ru5P. At specific times, 500 μ L was withdrawn and quenched by the 371 addition of 50 µL of 4 M H₂SO₄. The quenched reaction mixtures 372 were stored in -20 °C until NMR data acquisition. All ¹³C NMR 373 spectra were recorded on a Bruker Avance III HD (500 MHz) 374 equipped with a Prodigy CryoProbe at 298 K. ¹H decoupled ¹³C 375 spectra (pulse sequence: udeft) were recorded with 256 scans, a pre- 376 acquisition delay of 4 s, and a sweep width of 240 ppm. ¹H coupled 377 ^{13}C spectra (pulse sequence: zggd) were recorded with 256 or 4096 $_{378}$ scans, a pre-acquisition delay of 3 s, and a sweep width of 250 ppm. 379 The spectra were referenced based on the published spectra.¹ 380

RESULTS

RibB Production and Activity. V. cholerae RibB with an 382 N-terminal histidine tag was heterologously expressed in E. coli 383 and purified in two chromatographic steps, nickel affinity and 384 gel filtration. Steady-state kinetic parameters were determined 385 using colorometric assay that was originally designed from 386 high-throughput screening using the E. coli isozyme. Assay 387 measures the production of terminal ketones in the presence of 388 saturating amounts of creatine and naphthol. However, for 389 screening, the substrate was developed in situ from ribose 5- 390 phosphate using pentose phosphate isomerase to generate 391 ribulose 5-phosphate. We have adapted the assay such that we 392 provide the sugar phosphate of interest directly, using 393 dihydroxybutanone to generate a standard curve for 394 quantitation. The assay yielded kinetic parameters when D- 395 396 RuSP was used as the varied substrate, $k_{\rm cat} = 2.2 \pm 0.2 \, {\rm min}^{-1};$ 397 $K_{\rm m} = 277 \pm 3 \, \mu {\rm M};$ and $k_{\rm cat}/K_{\rm m} = 130 \pm 10 \, {\rm M}^{-1} {\rm s}^{-1}.$ When 398 Mg²⁺ was the varied component, $k_{\rm cat} = 2.7 \pm 0.4 \, {\rm min}^{-1};$ $K_{\rm m} = 399 \, 70 \pm 10 \, \mu {\rm M};$ and $k_{\rm cat}/K_{\rm m} = 600 \pm 200 \, {\rm M}^{-1} {\rm s}^{-1}.$ When Mn²⁺ 400 was substituted for Mg²⁺ as the varied component, $k_{\rm cat} = 0.7 \pm 401 \, {\rm min}^{-1};$ $K_{\rm m} = 11 \pm 1 \, \mu {\rm M};$ and $k_{\rm cat}/K_{\rm m} = 1050 \pm 20 \, {\rm M}^{-1} {\rm s}^{-1}.$ 402 This represents an almost two-fold increase in the catalytic 403 efficiency for Mn²⁺ compared to Mg²⁺. The Michaelis—Menten 404 plots are found in Figure S1.

RibB is a Mononuclear Metal Enzyme. RibB is reported 406 to be a Mg-dependent enzyme, and crystal structures with a 407 variety of metals bound (Mg²⁺, Zn²⁺, and Ca²⁺) show two 408 metal ions in the active site (Figure 2). For this reason, 409 proposed chemical mechanisms have assumed the involvement 410 of two Mg^{2+} ions. ^{20,21,23,27} To test this assumption, RibB was 411 titrated with metals $(Mg^{2+}, Zn^{2+}, and Mn^{2+})$ against a known 412 concentration of enzyme (60 μ M), and metal binding was 413 measured by intrinsic tyrosine fluorescence. Because adventi-414 tious metals from protein production and purification were 415 difficult to remove, the protein was purified in the presence of 416 100 μ M EDTA, and all buffers for these experiments contained 417 100 µM EDTA. Therefore, assuming EDTA has a higher 418 affinity for the added metal ions than RibB, a change in 419 fluorescence is expected once the metal concentration exceeds 420 100 μ M, and the change should come to a limit once sufficient 421 metal is bound that the tyrosine environment is no longer 422 changing appreciably. The titration experiment shows that 423 tyrosine fluorescence begins increasing once 100 μ M metal is 424 added (the EDTA is saturated) and appears to saturate at 425 ~160 μ M (equivalent to the EDTA concentration added to 426 the protein concentration), keeping in mind the large error of 427 this low signal assay. In other words, one equivalent of metal 428 saturates the change in the signal (Figure 3A). A similar 429 titration was performed measuring activity instead of tyrosine 430 fluorescence. Activity assay confirms that RibB is inactive in 431 the presence of Zn²⁺ but active in the presence of Mg²⁺ and 432 Mn²⁺ and shows that no more than one metal ion is required 433 for full activity (Figure 3B). One would be tempted to propose 434 that additional Mn²⁺ ions over 1:1 ratio was inhibitory; 435 however, after the addition of one equivalent of Mn²⁺, enzyme 436 precipitation is observed, which is the likely cause of the 437 decrease in the activity above 160 μ M Mn²⁺. Mn²⁺ has also 438 been reported to interfere with the color development in 439 assay. 18

Before discussing the EPR spectra for this present system, 441 we briefly summarize prior relevant EPR studies of Mn-442 substituted dinitrogenase reductase. When subjected to EPR, 443 di-nuclear Mn²⁺ center of dinitrogenase reductase shows 444 characteristic sets of 55Mn hyperfine lines at 2800G and 445 3800G with hyperfine splitting of 45G. However, the spectra 446 also reveal a high intensity six peak pattern at 3400G suggestive 447 of free Mn²⁺ metal ions in solution (i.e., hexa-aqua Mn²⁺).⁴¹ 448 Following a similar methodology, we first mixed D-RuSP with 449 Mn²⁺: the spectra showed the high intensity pattern expected 450 for free Mn²⁺ (black trace, Figure 4). RibB with an equimolar 451 concentration of Mn²⁺ showed the same six peak pattern but at 452 significantly lowered intensity, indicating binding of Mn²⁺ to 453 the protein (blue trace). Equimolar RibB and Mn²⁺ (3 mM) 454 were mixed with catalytically inactive substrate analogue L-455 Xy5P (2 mM) and incubated for 10 min before being freeze-456 quenched. This spectrum shows hyperfine splitting of 46G at 457 2800G and 4000G, characteristic of a di-Mn²⁺ center (dark red 458 trace). As we will see in the crystal structures described below,

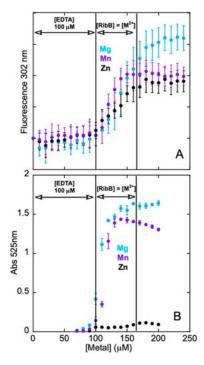


Figure 3. RibB is a mononuclear metal enzyme by binding and activity assays. (A) Intrinsic tyrosine fluorescence shows a 1:1 stoichiometry of metal/RibB for Mg(II), Zn(II), or Mn(II), once the concentration of EDTA is surpassed. (B) Activity assays show one equivalent of Mg(II) or Mn(II) is required for full activity, and that Zn(II) is noncatalytic. [RibB] = $60~\mu$ M, EDTA = $100~\mu$ M.

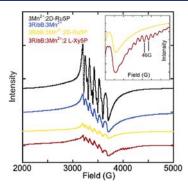


Figure 4. RibB is a mononuclear metal enzyme by EPR. EPR samples were prepared by mixing RibB, MnCl₂, and sugar phosphate substrate (D-Ru5P or L-Xy5P) in the millimolar ratios shown. The enzyme was added as the final component, and the reaction was quenched by freezing in liquid nitrogen after a 10 min incubation. The non-substrate sugar phosphate L-Xy5P sample shows the characteristic hyperfine splitting for a di-manganese center (inset, brown), whereas the substrate D-Ru5P sample does not exhibit this feature (gold) indicating only one metal in the catalytic site for turnover.

the L-Xy5P structure has a di-Mn²⁺ center. Finally, equimolar 459 RibB and Mn²⁺ (3 mM) were mixed with substrate D-Ru5P (2 460 mM) and incubated for 10 min (approximately two half-lives 461 of the $k_{\rm cat}$ value or 75% complete) before being quenched by 462 freezing. Note the characteristic six peak pattern at 3400G 463 suggestive of metal binding within the enzyme (gold trace), 464 without hyperfine splitting below 3200G, indicating one Mn²⁺ 465 in the active complex.

RibB Catalysis is pH Dependent. RibB shows a 467 significant decrease in steady-state kinetic parameters at pH 468

469 values below pH 7, leading to the initial hypothesis that a 470 catalytic base could be important in the mechanism (Figure 471 5A). To ensure that the pH dependence of catalytic activity

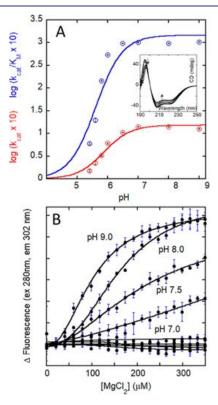


Figure 5. RibB shows a pH dependence for catalytic activity that is associated with the binding of the catalytically required magnesium ion. (A) Steady-state kinetic parameters show a significant decrease in activity at pH values below 7. Inset. RibB maintained a primarily α -helical structure from pH 4 to pH 9, arrows indicate trend with increasing pH. (B) Catalytically required metal only binds to the protein at pH values above pH 6.

472 was not merely a function of protein folding, circular dichroism 473 spectra were measured from pH 4 to 9, showing that the 474 protein retained a predominantly α -helical fold at all pH values 475 (Figure 5A inset). Magnesium ion-binding isotherms across 476 the same pH range using the tyrosine fluorescence assay 477 showed that the metal ion binds to the enzyme with high 478 affinity at pH values above 7 (Figure 5B). Therefore, the 479 catalytic dependence, as shown in Figure 5A, is associated with 480 the protein's ability to bind the catalytically required 481 magnesium ion. Since the magnesium ion is coordinated by 482 His154, it is tempting to speculate that the pH effect is due to 483 the deprotonation of this residue, providing a lone pair of 484 electrons for metal ion coordination.

Active and Inactive Metal—Substrate Complexes in the RibB Active Site. The enzymatic activity of RibB with different 5-carbon sugar phosphates was compared with their modes in the active site. First, the apo-RibB structure was determined to very high resolution (1.08 Å). A representative electron density map is found in Figure S2. The RibB active site is enclosed by two mobile loops. Residues 23—42 comprise Loop 1, which contains Glu39. In the apositive structure, Loop 1 is in an open conformation, with Glu39 pointing away from the active site, unavailable to chelate the metal ion required for catalysis. Residues 83—97 comprise Loop 2, which is disordered in this structure. A second metal

ion chelating residue, His154, is the terminal residue of a helix 497 composed of residues 154–165. This secondary structural 498 element holds the backbone of His154 in place but without 499 sugar phosphate or metal or closed loops 1 and 2, and the side 500 chain has a rotameric conformation that differs from that 501 observed for all other structures solved (Figure 6A).

The structure of RibB was determined with the biological 503 substrate D-ribulose 5-phosphate in the absence of a metal ion 504 (RibB/D-Ru5P; Figure 6B). D-Ru5P binds in an extended 505 conformation similar to that seen in the reported D-Ru5P:2Zn 506 structure, as shown in Figure 2. Both loops 1 and 2 are in their 507 closed conformations in this structure, and Glu39 and His154 508 are positioned for metal chelation. Crystals of this kind were 509 soaked with Mn2+ for the structures of the reaction 510 intermediates, described below. As noted above (and for 511 easy comparison here), when magnesium ions are added, RibB 512 demonstrates a $K_{\rm m}$ = 277 \pm 3 $\mu{\rm M}$ with D-RuSP. Ribose 5-513 phosphate (D-R5P) is the aldopentose analogue of the 514 ketopentose biological substrate ribulose 5-phosphate (D- 515 Ru5P). D-R5P is a poor substrate for RibB, with a $K_{\rm m}$ 516 estimated to be 25-50 mM (Figure S1B, blue). The data do 517 not fit to a Michaelis-Menten model due to significant 518 inhibition at higher concentrations of the substrate. A crystal 519 structure with the sugar phosphate shows a binding mode 520 similar to D-Ru5P and can be trapped in the presence of 521 manganese, chelated as expected in the active site by Glu-39 522 and His-154 (Figure 6C). The aldopentose D-xylulose 5- 523 phosphate (D-Xy5P) is a better substrate ($K_{\rm m}$ estimated at 2-3 524 mM) but with a similar inhibition profile to D-R5P (Figure 525 S1A, dark red). The structure of RibB with Mn²⁺ and D-Xy5P 526 was determined and is shown in Figure 6D. This sugar 527 phosphate binds in a more elongated pose with the hydroxyls 528 of C3 and C4 in an alternate conformation than seen in D- 529 Ru5P and D-R5P, due to the change in chirality at C3. Finally, 530 the structure was determined with the aldopentose L-xylulose 531 5-phosphate (L-Xy5P), showing two manganese ions and a 532 significantly different, more twisted binding mode (Figure 6E). 533 This sugar phosphate showed no activity at any concentration 534

Assignment of NMR Spectra of Acid-Quenched RibB 536 D-Ru5P Reactions. The exceptionally slow turnover number 537 of VcRibB at 4 °C provided the opportunity to halt the 538 reaction at specific times and analyze the reaction mixture in a 539 time-dependent manner. The quenched samples were analyzed 540 using ¹³C NMR for both fully labeled D-Ru5P and repeated 541 using substrate singly labeled at each carbon. Figure 7 depicts 542 f7 representative ¹H decoupled ¹³C NMR resonances of the 543 substrate, products, and two distinct reaction states and as such 544 do not represent discrete reaction times.

In this figure, the resonances of individual carbons are color- 546 coded so that the reaction path traversed, and destination of 547 individual carbons is apparent. Overlayed in gray are the ¹H 548 decoupled ¹³C NMR resonances observed for the fully ¹³C- 549 labeled substrate. All NMR spectra including ¹H spectra for 550 singly ¹³C-labeled substrates collected are shown in Figures 551 S3-S12. The assignment based on these spectra are 552 summarized at the right in Figure 7, and the ¹H decoupled-¹³ 553 C resonances and multiplicities for the four reaction states 554 observed are listed in Table S3. Definitive assignment of the 555 progression for each carbon was made from the singly ¹³C- 556 labeled substrates (Figures S3-S8); these data show two 557 intermediate states accumulate and decay between 0 and 5 558 min. Conversion of C1 from an alcohol to a primary alkyl state 559

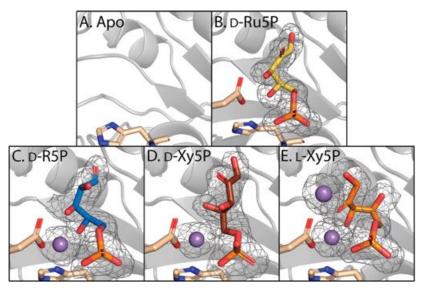


Figure 6. Structures of RibB with sugar phosphates that are substrate analogues show only one metal ion in the active site, and the sugar phosphates bind in an elongated fashion. The RibB structure with a variety of sugar phosphate molecules with metal coordinating residues, Glu39 and His154 shown as wheat colored. (A) RibB was crystallized in the absence of sugar phosphate in an open conformation such that the active site loop containing Glu39 coordinating the metal ion is not visible in this image. (B) Addition of D-Ru5P (yellow sticks) to the crystal orders the active site loop of RibB with an extended conformation of the sugar phosphate, as seen in previous structures. The substrates (C) D-RSP (blue) and (D) D-Xy5P (dark red) have the sugar phosphates in a similar elongated conformation and contain one Mn²⁺ ion in the active site. (E) L-Xy5P (orange) is not a substrate for RibB and binds in the active site in a twisted conformation and coordinates two Mn²⁺ metals. Manganese ions are depicted as purple spheres. The maps are Polder maps contoured at 3 σ .⁴²

560 is observed as a 40 ppm upfield shift which is retained as the 561 molecule is converted to a subsequent intermediate before 562 resolving to the product. In contrast, C2 retains a resonance 563 consistent with a ketone throughout the reaction. In the 564 progression from D-RuSP to intermediate 1, C3 moves ~22 565 ppm downfield to a chemical shift of 96.2 ppm indicative of a 566 gem-diol carbon. This is interpreted as a hydration artifact 567 arising from acid quench and indicates that C3 is likely a carbonyl in the first transient observed. The resonance for this carbon moves upfield in the subsequent intermediate state, 570 revealing its return to an alcohol state, and this state is retained 571 in the DHBP product. C4 resonates as a hydroxyl bearing 572 carbon in both the substrate and intermediate 1 states but 573 moves downfield to resonate as a gem-diol in the second 574 transient species to then resolves as a formate carboxylate in 575 the spectrum of the products. For the species observed, the chemical nature of C5 does not change and thus resonates 577 within a 2 ppm range throughout the reaction and moreover exhibits a consistent small 4-5 Hz coupling to the two-bond distant ³¹P of the phosphate moiety. The transient species 580 observed definitively indicate the accumulation and decay of 581 two intermediate states in single turnover of VcRibB. Neither 582 of the assigned states definitively identify a single species but are each consistent with acid quench of two successive states, shown as boxed in Figure 1.

Remarkably, the same two intermediate states are observed by X-ray crystallography. Crystals grown with the substrate D-887 Ru5P were soaked for 3 min in a cryo-protectant solution s88 containing Mn²⁺ before being plunged in liquid nitrogen to s89 stop the reaction and prepare the crystal for diffraction. When this structure was solved, the density of the closed active site is best modeled to contain 80% substrate (D-Ru5P) and 20% of s92 intermediate 1, with the 2-keto, 3,3-diol (Figure 7B) produced by the acid quench NMR experiment, more accurately depicted as a 2,3-diketone (Figure 8A). Crystals soaked for

70 min in the Mn²⁺-containing cryo-protectant display density 595 consistent with 56% Intermediate 2 that was modeled as the 596 gem-diol. While the acid quench NMR data are consistent with 597 hydration by the enzyme to make the gem diol, it is also 598 possible that the acid quench performed the hydration of the 599 preceding aldehyde intermediate (Figure 1). However, the 600 crystallographic data shows density consistent with the C4 gem 601 diol (Figures 1 and 7C). This intermediate is modeled as the 602 predominant fraction of the density and has the sp³ C3 603 somewhat flattened. This geometry is suggestive of strain that 604 would facilitate formate elimination and formation of the 605 trigonal planar C3 enol of the DHBP tautomer (Figure 1). The 606 remaining 44% of the density was fit to the two products, 607 dihydroxybutanone phosphate and formate (Figure 8B).

DISCUSSION

The identity of the four-carbon unit required in the 610 condensation of 5-amino-6-ribitylamino-2,4-pyrimidinedione 611 to form the xylene moiety of 6,7-dimethyl-8-ribityllumazine in 612 the biosynthesis of riboflavin was a long-standing matter of 613 conjecture. In the mid-1950s, Plaut and Broberg demonstrated 614 that the xylene methyl groups and the carbons to which they 615 were attached were derived from the C1 and C6 of 616 glucose. 43,44 Later intermediates of the butanediol pathway 617 were implicated, 45,46 and then, the pentose phosphate pathway 618 before both were rejected.⁴⁷ Dismutation of the 5-amino-6- 619 ribitylamino-2,4-pyrimidinedione ring was also proposed, in 620 which the ribityl was the source of the four carbons. 48,49 621 Eventually, Alworth and co-workers identified the origin of the 622 methyl groups in the 5,6-dimethylbenzimidazole moiety of 623 cobalamin as derived from ribose-5-phosphate and given that 624 the origin of this moiety is from riboflavin, pentose sugar 625 phosphates were again implicated as the source of the four 626 carbons. 50-55 This proposal was later confirmed using 13C 627 labeling that also revealed that the C6-methyl, C6, and C7 628

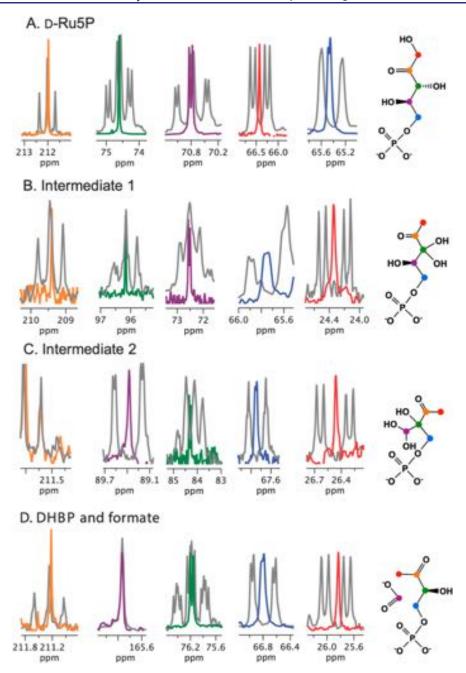


Figure 7. Identification of two reaction intermediates by single turnover NMR. RibB was followed as a single turnover reaction using ¹³C D-Ru5P and quenched with acid at various time points. The D-Ru5P is converted to DHBP and formate with the transient appearance of two distinct intermediates. Fully labeled ¹³C (gray) and each singly labeled carbon were followed through the reaction and shown in colors; C1 (red), C2 (orange), C3 (green), C4 (purple), and C5 (blue).

629 came from C1—C3 of pentoses but oddly, the C7-methyl came 630 from pentose C5. 12,13,56,57 This was the first evidence that a 631 rearrangement reaction was required. In 1985, an activity was 632 identified that formed a 4-carbon product that was a substrate 633 for lumazine synthase, at last quelling prior notions that a 634 pentose was the substrate. S8 Ultimately, D-ribulose 5-phosphate 635 was recognized as the substrate for this newly identified 636 enzyme, and the 13C-labeled substrate was used to show that 637 formate and L-3,4-dihydroxy-2-butanone-4-phosphate were the 638 products, 15 putting to rest a 35-year biochemical enigma.

Soon after establishment of the reaction, a mechanism was 640 proposed, in which the skeletal rearrangement of D-ribulose 5-641 phosphate was achieved via an anionotropic 1,2-migration such

that the C5 attacks the pentose C3, instigating the elimination 642 of C4 as a formate via a gem diol moiety (Figure 1). 16 This 643 soundly reasoned mechanism was consistent with labeling and 644 incorporation studies that show solvent deuterium incorpo- 645 ration at C1 and C3. The canonical mechanism has been 646 rewritten in numerous articles since its initial pro- 647 posal 20,21,23,59,60 and once the first structures of RibB were 648 published, the mechanistic proposal has been redrawn in the 649 context of the active site residues. 650

These initial X-ray crystal structures were of RibB ₆₅₁ reconstituted with Mg, Mn, or Zn ions and revealed either ₆₅₂ one or two metal ions within the active site. ^{19–21,27} Contextual ₆₅₃ chemical mechanisms have generally incorporated two metal ₆₅₄

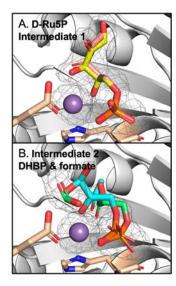


Figure 8. Identification of two reaction intermediates by single turnover X-ray crystallography. (A) RibB crystals were grown with Dribulose 5-phosphate and soaked with MnCl₂ for 3 min. The map is best modeled with 80% substrate (yellow) and 20% Intermediate 1 as the 2,3-diketone (pink). (B) Crystals soaked for 70 min produced a structure with density that is modeled as 56% intermediate 2 in the gem diol form (cyan) and 44% of the two products, dihydroxybutanone phosphate and formate (green). Both structures show a single manganese ion in the active site (purple). The maps are Polder maps contoured at 3σ .

655 ions, and this cofactor set has become the accepted native 656 active site configuration. Within RibB, the second metal ion 657 has only two direct coordinating contacts, one with the 658 substrate C2 carbonyl and one with Glu39. In contrast, the 659 metal ion liganded to the substrate C3 and C4 hydroxyl 660 groups, and the terminal phosphate of D-Ru5P is also 661 coordinated to His154 and Glu39 (VcRibB residue num-662 bers). In each case, the structures solved with two metal ions 663 were either of a vestigial, non-active form of RibB or were

solved when liganded to substrate analogue sugar phosphates 664 and so do not depict a native state of the enzyme. Moreover, in 665 each case, when the chemical mechanism of RibB has been 666 presented, it has rightly been described as hypothetical as little 667 direct evidence for the chemical species involved in the 668 reaction was available. We present the first direct evidence for 669 the mechanism of RibB. These data show that the general 670 reasoning of the canonical mechanism by Bacher *et al.* holds, 671 but that it is achieved with the involvement of a single active 672 site metal ion.

The slow turnover rate of VcRibB facilitated acid quench of 674 the reaction, and selective ¹³C-labeling of D-Ru5P via 675 reconstitution of the pentose phosphate pathway gave the 676 means for unambiguous assignment of the origin and 677 destination of all carbons that constitute two transient species 678 observed to accumulate under single turnover conditions 679 (Figure 7). These data indicate elimination of the C1-hydroxyl 680 from an ene-diol species to form a 2,3-diketone that is 681 observed to accumulate with acid quench in the hydrated 2- 682 keto, 3,3-diol state (Figure 9). With regard to the chemical 683 f9 mechanism, this localizes the quenched intermediate to either 684 the 1-ene-2-ol-3-one species or the ensuing 2,3-diketone. The 685 subsequent transient liberated in acid quench is the result of 686 rearrangement and has the C5 bonded to C3 with C4 as a gem 687 diol that is poised for elimination as formate. This is the first 688 observation of this fundamental RibB transient, and con- 689 firmation of its existence arguably dictates much of the 690 preceding and subsequent chemistry in the RibB catalytic 691 cycle.

One primary role of the magnesium (or manganese) ion in 693 RibB is Lewis acidity, stabilizing hydroxide states of 694 coordinated hydroxyls and waters, thereby inducing tautome-695 rizations, hydration, and two elimination reactions. It is not 696 immediately apparent that a second metal ion is required to 697 accomplish this chemistry, and each structure of VcRibB 698 solved with a substrate or intermediate state bound that we 699 present here has only one metal ion, and full activity is 700 achieved with equimolar Mg or Mn (Figure 5). While this 701

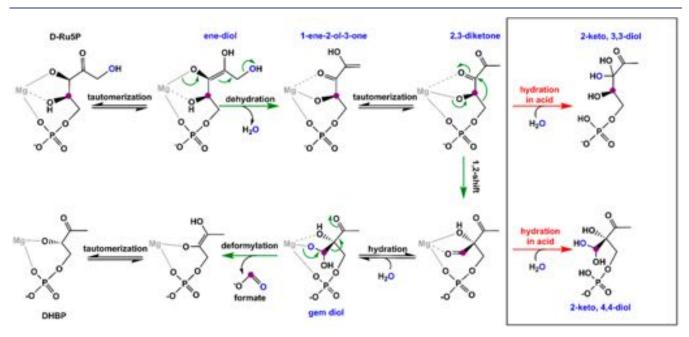


Figure 9. Evidence-based mechanism. Boxed reactions indicate hydrated acid-quenched products identified in the NMR data.

766

767

768

769

771

774

775

776

787

788

792

793

794

795

796

810

811

812

702 observation does not rule out transient involvement of a 703 rapidly exchanging second metal ion amid relative slow 704 chemistry, it does indicate that one metal ion has a dominant 705 role and anchors substrate binding and much of the catalytic 706 cycle. In Figure 8, we show density for a single metal ion in two 707 states of catalysis representative of four distinct species, 708 modeled as a 4:1 ratio of the ES complex and the 2,3-diketone 709 intermediate (intermediate 1), and the rearranged and 710 hydrated intermediate (intermediate 2) added to a roughly 711 equal fraction of the product complex.

Structures of VcRibB with the native substrate, D-Ru5P, were 713 solved in the presence of Mn ions that induce even slower rates 714 of turnover (Figure 8). The structure of the VcRibB·Mn·D-715 Ru5P complex has the metal ion coordinated to the C3 and C4 716 hydroxyl substituents and the phosphate of the substrate. 717 Within a 3 min incubation period, the reaction advances in 718 crystallo to partial elimination of the C2-hydroxyl retaining 719 coordination to the same oxygen atoms presumably with the 720 C3 now in the keto state and the tautomeric state of the C1-721 C2 enol/keto group unknown. The observed conformation of 722 intermediate 1 when best fit to the available density at 2.2 Å 723 resolution indicates a Bürgi-Dunitz angle within 10° of 724 optimal for the nucleophilic attack of C5 on C3. This 725 conformation has an altitude 117° and an azimuth 145° across gap of 2.4 Å, 61 a geometry that promotes the migration 727 reaction that forms intermediate 2 (Figure 8A). The exact 728 mechanism of migration is not apparent from these data. Shifts 729 of this type are analogous to Pinacol rearrangements where 730 migration is induced by an adjacent carbonium ion. 62 At this stage of catalysis, the Lewis acidity of the metal ion of RibB 732 presumably works to denude the C3 carbonyl carbon of 733 electrons increasing its electrophilicity. Whether the migration 734 is concerted and involves a single transition state with partial 735 bonding of C5 to both C4 and C3 or stepwise with the 736 formation of a C5 carbanion is a nuanced chemical argument 737 that is beyond the reach of the data presented. However, the 738 first definitive observation of the predicted migration product 739 (intermediate 2) confines the mechanistic possibilities 740 considerably and confirms an otherwise unsubstantiated 741 mechanism first proposed in 1991. 16

The crystallographic intermediate 2 state, as shown in Figure 743 8B, has density for the C4 gem diol. This is therefore the same 744 as the species observed as the second transient in acid quench 745 NMR data (Figure 7), indicating that the decay of the gem diol 746 to form formate and the enol form of the DHBP product is the 747 rate-limiting chemical step. The product complex includes 748 density for formate and DHBP and is the first experimental 749 observation of these products formed in situ.

750 CONCLUSIONS

751 31 years after the initial hypothetical chemical mechanism for 752 RibB was offered, definitive evidence for the accumulation, 753 decay, and chemical identity of two sequential transients is 754 presented. These data indicate that the fundamental steps of 755 1,2-shift of carbon-five and formate elimination from a gem 756 diol bonded to a quaternary carbon-three define the salient and 757 unique catalytic steps of the enzyme's catalytic cycle.

ASSOCIATED CONTENT

759 Supporting Information

760 The Supporting Information is available free of charge at 761 https://pubs.acs.org/doi/10.1021/jacs.2c03376.

Additional crystallographic details; steady-state kinetics; 762 NMR time-course data; proton-coupled NMR data; 763 chemical shifts; and coupling constants for intermediate 764 states (PDF)

AUTHOR INFORMATION

Corresponding Author

Audrey L. Lamb - Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States; Department of Chemistry, University of Texas at San 770 Antonio, San Antonio, Texas 78249, United States; orcid.org/0000-0002-2352-2130; Email: audrey.lamb@ 772 utsa.edu

Authors

Nikola Kenjić - Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States; orcid.org/0000-0002-2871-7674

Kathleen M. Meneely – Department of Molecular Biosciences, 778 University of Kansas, Lawrence, Kansas 66045, United States; Department of Chemistry, University of Texas at San 780 Antonio, San Antonio, Texas 78249, United States; 781 orcid.org/0000-0002-0372-9695 782

Daniel J. Wherritt - Department of Chemistry, University of 783 Texas at San Antonio, San Antonio, Texas 78249, United 784 States; o orcid.org/0000-0002-8616-9864

Melissa C. Denler – Department of Chemistry, University of 786 Kansas, Lawrence, Kansas 66045, United States; orcid.org/0000-0003-2443-6178

Timothy A. Jackson – Department of Chemistry, University of 789 Kansas, Lawrence, Kansas 66045, United States; 790 orcid.org/0000-0002-3529-2715 791

Graham R. Moran – Department of Chemistry and Biochemistry, University of Loyola, Chicago, Illinois 60660, United States; orcid.org/0000-0002-6807-1302

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c03376

Funding

This publication was made possible by funds from NIH Grants 798 R01 GM127655 and NSF grant 1904494/2041047 to A.L.L. 799 and the University of Kansas General Research Fund. G.R.M. 800 was supported by NSF Grant 1904480 and the Loyola 801 University College of Arts and Sciences. N.K. was supported 802 by the Weaver International Fellowship. M.C.D. was supported 803 by the National Institutes of Health Graduate Training 804 Program in the Dynamic Aspects of Chemical Biology (T32 805 GM008545). The content is solely the responsibility of the 806 authors and does not necessarily represent the official views of 807 the National Institute of General Medical Sciences or the 808 National Institutes of Health.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Use of the Stanford Synchrotron Radiation Lightsource, SLAC 813 National Accelerator Laboratory, is supported by the U.S. 814 Department of Energy, Office of Science, Office of Basic 815 Energy Sciences under Contract DE-AC02-76SF00515. The 816 Stanford Synchrotron Radiation Lightsource Structural Mo- 817 lecular Biology Program is supported by the U.S. Department 818 of Energy Office of Biological and Environmental Research and 819 820 by NIGMS, the National Institutes of Health Grant 821 P41GM103393. We thank the staff at the Stanford 822 Synchrotron Radiation Laboratory for their support and 823 assistance. We are grateful to Justin T. Douglas and Sarah A. 824 Neuenswander of the University of Kansas NMR facility for 825 support and assistance. The authors would also like to express 826 thanks to James Devery of the Loyola University Chicago for 827 helpful discussions regarding rearrangement mechanisms.

828 REFERENCES

- 829 (1) Thakur, K.; Tomar, S. K.; Singh, A. K.; Mandal, S.; Arora, S. 830 Riboflavin and health: A review of recent human research. *Crit. Rev.* 831 *Food Sci. Nutr.* **2017**, *57*, 3650–3660.
- 832 (2) Bacher, A.; Eberhardt, S.; Fischer, M.; Kis, K.; Richter, G. 833 Biosynthesis of vitamin B2 (riboflavin). *Annu. Rev. Nutr.* **2000**, *20*, 834 153–167.
- 835 (3) Powers, H. J.; Weaver, L. T.; Austin, S.; Beresford, J. K. A 836 proposed intestinal mechanism for the effect of riboflavin deficiency 837 on iron loss in the rat. *Br. J. Nutr.* **1993**, *69*, 553–561.
- 838 (4) Thiagarajan, V.; Byrdin, M.; Eker, A. P. M.; Müller, P.; Brettel, 839 K. Kinetics of cyclobutane thymine dimer splitting by DNA 840 photolyase directly monitored in the UV. *Proc. Natl. Acad. Sci.* 841 U.S.A. **2011**, *108*, 9402–9407.
- 842 (5) Lakshmi, R.; Lakshmi, A. V.; Divan, P. V.; Bamji, M. S. Effect of 843 riboflavin or pyridoxine deficiency on inflammatory response. *Indian J. Biochem. Biophys.* **1991**, 28, 481–484.
- 845 (6) Schramm, M.; Wiegmann, K.; Schramm, S.; Gluschko, A.; Herb, 846 M.; Utermöhlen, O.; Krönke, M. Riboflavin (vitamin B2) deficiency 847 impairs NADPH oxidase 2 (Nox2) priming and defense against 848 Listeria monocytogenes. *Eur. J. Immunol.* **2014**, *44*, 728–741.
- 849 (7) Long, Q.; Ji, L.; Wang, H.; Xie, J. Riboflavin biosynthetic and 850 regulatory factors as potential novel anti-infective drug targets. *Chem.* 851 *Biol. Drug Des.* **2010**, *75*, 339–347.
- 852 (8) Sassetti, C. M.; Boyd, D. H.; Rubin, E. J. Genes required for 853 mycobacterial growth defined by high density mutagenesis. *Mol.* 854 *Microbiol.* **2003**, *48*, 77–84.
- 855 (9) Mack, M.; Grill, S. Riboflavin analogs and inhibitors of riboflavin 856 biosynthesis. *Appl. Microbiol. Biotechnol.* **2006**, *71*, 265–275.
- 857 (10) Bacher, A.; Le Van, Q.; Buhler, M.; Keller, P.J.; Eimicke, V.; 858 Floss, H. G. Biosynthesis of riboflavin. Incorporation of D-859 [1⁻¹3C]Ribose. *J. Am. Chem. Soc.* **1982**, *104*, 3753–3755.
- 860 (11) Bacher, A.; Le Van, Q.; Keller, P. J.; Floss, H. G. Biosynthesis of 861 riboflavin. Incorporation of 13C-labeled precursors into the xylene 862 ring. *J. Biol. Chem.* **1983**, 258, 13431–13437.
- 863 (12) Bacher, A.; Le Van, Q. L.; Keller, P. J.; Floss, H. G. Biosynthesis 864 of riboflavin. Incorporation of multiply ¹³C-labeled precursors into the 865 xylene ring. *J. Am. Chem. Soc.* **1985**, *107*, 6380–6385.
- 866 (13) Le Van, Q.; Keller, P. J.; Bown, D. H.; Floss, H. G.; Bacher, A. 867 Biosynthesis of riboflavin in Bacillus subtilis: origin of the four-carbon 868 moiety. *J. Bacteriol.* **1985**, *162*, 1280–1284.
- 869 (14) Volk, R.; Bacher, A. Biosynthesis of riboflavin. The structure of 870 teh four-carbon precursor. *J. Am. Chem. Soc.* **1988**, *110*, 3651–3653.
- 871 (15) Volk, R.; Bacher, A. Studies on the 4-carbon precursor in the 872 biosynthesis of riboflavin. Purification and properties of L-3,4-873 dihydroxy-2-butanone-4-phosphate synthase. *J. Biol. Chem.* **1990**, 874 265, 19479—19485.
- 875 (16) Volk, R.; Bacher, A. Biosynthesis of riboflavin. Studies on the 876 mechanism of L-3,4-dihydroxy-2-butanone 4-phosphate synthase. *J. Biol. Chem.* **1991**, 266, 20610–20618.
- 878 (17) Kelly, M. J. S.; Ball, L. J.; Krieger, C.; Yu, Y.; Fischer, M.; 879 Schiffmann, S.; Schmieder, P.; Kühne, R.; Bermel, W.; Bacher, A.; 880 Richter, G.; Oschkinat, H. The NMR structure of the 47-kDa dimeric 881 enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand 882 binding studies reveal the location of the active site. *Proc. Natl. Acad.* 883 *Sci. U.S.A.* 2001, 98, 13025–13030.
- 884 (18) Picollelli, M. A.; Viitanen, P. V.; Jordan, D. B. Spectrophoto-885 metric determination of 3, 4-dihydroxy-2-butanone-4-phosphate 886 synthase activity. *Anal. Biochem.* **2000**, 287, 347–349.

- (19) Liao, D.-I.; Calabrese, J. C.; Wawrzak, Z.; Viitanen, P. V.; 887 Jordan, D. B. Crystal structure of 3,4-dihydroxy-2-butanone 4- 888 phosphate synthase of riboflavin biosynthesis. *Structure* **2001**, *9*, 889 11–18.
- (20) Liao, D.-I.; Zheng, Y.-J.; Viitanen, P. V.; Jordan, D. B. Structural 891 definition of the active site and catalytic mechanism of 3,4-dihydroxy-892 2-butanone-4-phosphate synthase. *Biochemistry* **2002**, 41, 1795–1806. 893
- (21) Steinbacher, S.; Schiffmann, S.; Richter, G.; Huber, R.; Bacher, 894 A.; Fischer, M. Structure of 3,4-dihydroxy-2-butanone 4-phosphate 895 synthase from Methanococcus jannaschii in complex with divalent 896 metal ions and the substrate ribulose 5-phosphate: implications for 897 the catalytic mechanism. *J. Biol. Chem.* 2003, 278, 42256–42265.
- (22) consortium, P. D.-K. PDBe-, KB a community-driven resource 899 for structural and functional annotations. *Nucleic Acids Res.* **2020**, 48, 900 D344–D353.
- (23) Islam, Z.; Kumar, A.; Singh, S.; Salmon, L.; Karthikeyan, S. 902 Structural basis for competitive inhibition of 3,4-dihydroxy-2- 903 butanone-4-phosphate synthase from Vibrio cholerae. *J. Biol. Chem.* 904 **2015**, 290, 11293–11308.
- (24) Singh, M.; Kumar, P.; Yadav, S.; Gautam, R.; Sharma, N.; 906 Karthikeyan, S. The crystal structure reveals the molecular mechanism 907 of bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP 908 cyclohydrolase II (Rv1415) from Mycobacterium tuberculosis. *Acta* 909 *Crystallogr., Sect. D: Biol. Crystallogr.* 2013, 69, 1633–1644.
- (25) Liao, D. I.; Viitanen, P. V.; Jordan, D. B. Cloning, expression, 911 purification and crystallization of dihydroxybutanone phosphate 912 synthase from Magnaporthe grisea. *Acta Crystallogr., Sect. D: Biol.* 913 *Crystallogr.* **2000**, 56, 1495–1497.
- (26) Steinbacher, S.; Schiffmann, S.; Bacher, A.; Fischer, M. Metal 915 sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from 916 Methanococcus jannaschii in complex with the substrate ribulose 5- 917 phosphate. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* **2004**, *60*, 1338– 918 1340.
- (27) Kumar, P.; Singh, M.; Gautam, R.; Karthikeyan, S. Potential 920 anti-bacterial drug target: structural characterization of 3,4-dihydroxy- 921 2-butanone-4-phosphate synthase from Salmonella typhimurium LT2. 922 *Proteins* **2010**, 78, 3292–3303.
- (28) Echt, S.; Bauer, S.; Steinbacher, S.; Huber, R.; Bacher, A.; 924 Fischer, M. Potential anti-infective targets in pathogenic yeasts: 925 structure and properties of 3,4-dihydroxy-2-butanone 4-phosphate 926 synthase of Candida albicans. *J. Mol. Biol.* **2004**, 341, 1085–1096. 927
- (29) Newman, J. Novel buffer systems for macromolecular 928 crystallization. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* **2004**, *60*, 929 610–612.
- (30) McPhillips, T. M.; McPhillips, S. E.; Chiu, H.-J.; Cohen, A. E.; 931 Deacon, A. M.; Ellis, P. J.; Garman, E.; Gonzalez, A.; Sauter, N. K.; 932 Phizackerley, R. P.; Soltis, S. M.; Kuhn, P. Blu-Ice and the Distributed 933 Control System: software for data acquisition and instrument control 934 at macromolecular crystallography beamlines. *J. Synchrotron Radiat.* 935 **2002**, *9*, 401–406.
- (31) Soltis, S. M.; Cohen, A. E.; Deacon, A.; Eriksson, T.; González, 937 A.; McPhillips, S.; Chui, H.; Dunten, P.; Hollenbeck, M.; Mathews, I.; 938 Miller, M.; Moorhead, P.; Phizackerley, R. P.; Smith, C.; Song, J.; van 939 dem Bedem, H.; Ellis, P.; Kuhn, P.; McPhillips, T.; Sauter, N.; Sharp, 940 K.; Tsyba, I.; Wolf, G. New paradigm for macromolecular 941 crystallography experiments at SSRL: automated crystal screening 942 and remote data collection. *Acta Crystallogr., Sect. D* 2008, 64, 1210— 943 1221.
- (32) McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. 945 D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. *J. Appl.* 946 *Crystallogr.* **2007**, 40, 658–674.
- (33) Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features 948 and development of Coot. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 949 **2010**, 66, 486–501.
- (34) Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, 951 I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-952 Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. 953 J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. 954 H. PHENIX: a comprehensive Python-based system for macro-955

- 956 molecular structure solution. *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 957 **2010**, *66*, 213–221.
- 958 (35) Afonine, P. V.; Grosse-Kunstleve, R. W.; Echols, N.; Headd, J. 959 J.; Moriarty, N. W.; Mustyakimov, M.; Terwilliger, T. C.; Urzhumtsev, 960 A.; Zwart, P. H.; Adams, P. D. Towards automated crystallographic 961 structure refinement with phenix.refine. *Acta Crystallogr., Sect. D: Biol.* 962 *Crystallogr.* 2012, 68, 352–367.
- 963 (36) Moriarty, N. W.; Grosse-Kunstleve, R. W.; Adams, P. D. 964 electronic Ligand Builder and Optimization Workbench (eLBOW): a 965 tool for ligand coordinate and restraint generation. *Acta Crystallogr.*, 966 Sect. D: Biol. Crystallogr., 2009, 65, 1074–1080.
- 967 (37) Moriarty, N. W.; Draizen, E. J.; Adams, P. D. An editor for the 968 generation and customization of geometry restraints. *Acta Crystallogr.*, 969 Sect. D: Struct. Biol. **2017**, 73, 123–130.
- 970 (38) Richter, G.; Krieger, C.; Volk, R.; Kis, K.; Ritz, H.; Götze, E.; 971 Bacher, A. Biosynthesis of riboflavin: 3,4-dihydroxy-2-butanone-4-972 phosphate synthase[34] Biosynthesis of riboflavin: 3,4-dihydroxy-2-973 butanone-4-phosphate synthase. *Methods Enzymol.* 1997, 280, 374–974 382.
- 975 (39) Westerfeld, W. W. A Colorimetric Determination of Blood 976 Acetion. J. Biol. Chem. 1945, 161, 495–502.
- 977 (40) Speckman, R. A.; Collins, E. B. Specificity of the Westfield 978 adaptation of the Voges Proskauer test. *Appl. Environ. Microbiol.* 979 **1982**, 44, 40–43.
- 980 (41) Antharavally, B. S.; Poyner, R. R.; Ludden, P. W. EPR Spectral 981 Evidence for Binuclear Mn(II) Center in Dintorgenase Reductase-982 Activating Glycohydrolase from Rhodospirillum rubrum. *J. Am. Chem.* 983 Soc. 1998, 120, 8897–8898.
- 984 (42) Liebschner, D.; Afonine, P. V.; Moriarty, N. W.; Poon, B. K.; 985 Sobolev, O. V.; Terwilliger, T. C.; Adams, P. D. Polder maps: 986 improving OMIT maps by excluding bulk solvent. *Acta Crystallogr.*, 987 Sect. D: Struct. Biol. 2017, 73, 148–157.
- 988 (43) Plaut, G. W. E. Biosynthesis of riboflavin. II. Incorporation of 989 C14-labeled compounds into ring A. J. Biol. Chem. **1954**, 211, 111–990 116.
- 991 (44) Plaut, G. W. E.; Broberg, P. L. Biosynthesis of riboflavin. III. 992 Incorporation of C14-labeled compounds into the ribityl side chain. *J.* 993 *Biol. Chem.* **1956**, 219, 131–138.
- 994 (45) Bryn, K.; Stormer, F. Decreased riboflavin formation in mutants 995 of Aerobacter (Enterobacter) aerogenes deficient in the butanediol 996 pathway. *Biochim. Biophys. Acta* **1976**, 428, 257–259.
- 997 (46) Nakajima, K.; Mitsuda, H. Possibility of diacetyl and related 998 compounds as the 4-carbon compound necessary for the formation of 999 riboflavin in Ashbya gossypii. *Acta Vitaminol. Enzymol.* **1984**, *6*, 271–1000 282.
- 1001 (47) Jabasini, M. T.; Al-Khalidi, U. A. S. Asymmetric labelling of the 1002 xylene ring in riboflavin. *Int. J. Biochem.* **1975**, *6*, 735–739.
- 1003 (48) Bresler, S. E.; Perumov, D. A.; Chernik, T. P.; Skvortsova, A. P. 1004 [Operon for riboflavin synthesis in Bacillus subtilis. XI. Determination 1005 of the type of regulation using a test for dominance of operator-1006 constitutive and regulator-constitutive mutations]. *Genetika* **1976**, *12*, 1007 124–130.
- 1008 (49) Hollander, I. J.; Braman, J. C.; Brown, G. M. Biosynthesis of 1009 riboflavin: enzymatic conversion of 5-amino-2,4-dioxy-6-ribitylamino-1010 pyrimidine to 6,7-dimethyl-8-ribityllumazine. *Biochem. Biophys. Res.* 1011 *Commun.* **1980**, *94*, 515–521.
- 1012 (50) Alworth, W. L.; Dove, M. F.; Baker, H. N. Biosynthesis of the 1013 dimethylbenzene moiety of riboflavin and dimethylbenzimidazole: 1014 evidence for the involvement of C-1 of a pentose as a precursor. 1015 *Biochemistry* **1977**, *16*, 526–531.
- 1016 (51) Hörig, J.; Renz, P. Biosynthesis of vitamin B12. Formation of 1017 free 5,6-dimethylbenzimidazole and alpha-ribazole from riboflavin by 1018 Propionibacterium freudenreichii. *FEBS Lett.* **1977**, *80*, 337–339.
- 1019 (S2) Hörig, J. A.; Renz, P.; Heckmann, G. [S-15N]Riboflavin as 1020 precursor in the biosynthesis of the 5,6-dimethylbenzimidazole 1021 moiety of vitamin B12. A study by 1H and 15N magnetic resonance 1022 spectroscopy. *J. Biol. Chem.* 1978, 253, 7410–7414.

- (53) Kühnle, H. F.; Renz, P. Biosynthesis of 5,6-dimethylbenzimi- 1023 dazole. Precursor-function of 6,7-dimethyl-8-ribityllumazine. Z. 1024 Naturforsch., B 1971, 26, 1017–1020.
- (54) Renz, P. Riboflavin as precursor in the biosynthesis of the 5,6-1026 Dimethylbenzimidazole-moiety of vitamin B(12). FEBS Lett. 1970, 6, 1027 187–189.
- (55) Renz, P.; Weyhenmeyer, R. Biosynthesis of 5, 6-dimethylbenzi- 1029 midazole from riboflavin Transformation of C-1' of riboflavin into C- 1030 2 of 5, 6-dimethylbenzimidazole. *FEBS Lett.* **1972**, 22, 124–126. 1031
- (56) Bacher, A.; Levan, Q.; Buehler, M.; Keller, P. J.; Eimicke, V.; 1032 Floss, H. G. Biosynthesis of Riboflavin—Incorporation of D-[1-C- 1033 13]-Labeled Ribose. J. Am. Chem. Soc. 1982, 104, 3754–3755.
- (57) Floss, H. G.; Quang Le Van, Q.; Keller, P. J.; Bacher, A. 1035 Biosynthesis of Riboflavin an Unusual Rearrangement in the 1036 Formation of 6,7-Dimethyl-8-Ribityllumazine. *J. Am. Chem. Soc.* 1983, 1037 105, 2493–2494.
- (58) Neuberger, G.; Bacher, A. Biosynthesis of riboflavin. An 1039 aliphatic intermediate in the formation of 6,7-dimethyl-8-ribitylluma- 1040 zine from pentose phosphate. *Biochem. Biophys. Res. Commun.* 1985, 1041 127, 175–181.
- (59) Fischer, M.; Römisch, W.; Schiffmann, S.; Kelly, M.; Oschkinat, 1043 H.; Steinbacher, S.; Huber, R.; Eisenreich, W.; Richter, G.; Bacher, A. 1044 Biosynthesis of riboflavin in archaea studies on the mechanism of 3,4-1045 dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jan-1046 naschii. *J. Biol. Chem.* **2002**, 277, 41410–41416.
- (60) Richter, G.; Kelly, M.; Krieger, C.; Yu, Y.; Bermel, W.; Karlsson, 1048 G.; Bacher, A.; Oschkinat, H. NMR studies on the 46-kDa dimeric 1049 protein, 3,4-dihydroxy-2-butanone 4-phosphate synthase, using 2H, 1050 13C, and 15N-labelling. *Eur. J. Biochem.* 1999, 261, 57–65.
- (61) Bürgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff, G. 1052 Stereochemistry of reaction paths at carbonyl centres. *Tetrahedron* 1053 1974, 30, 1563–1572.
- (62) Nakamura, K.; Osamura, Y. Theoretical-Study of the Reaction- 1055 Mechanism and Migratory Aptitude of the Pinacol Rearrangement. J. 1056 Am. Chem. Soc. 1993, 115, 9112–9120.