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ABSTRACT

Flow boiling has become a reliable mode of compensating with larger power densities and greater functions of
devices because it is able to utilize both the latent and sensible heat contained within a specified coolant. There
are currently very few available tools proven reliable when predicting heat transfer coefficients during flow
boiling in mini/micro-channels. The most popular methods rely on semi-empirical correlations derived from
experimental data. These correlations can only be applied to a very narrow subset of testing conditions. This
study uses a number of data science methods and techniques to accurately predict the heat transfer coefficient
during flow boiling in mini/micro-channels on a database consisting of 16,953 observations collected across 50
experiments using 12 working fluids. Exploratory data science is used to obtain confidence in the data and
investigate relationships between feature variables before employing machine learning algorithms. Missing data
is imputed using random forest nonparametric imputation. A variety of feature analysis techniques are employed
to combine and select different optimal feature variables as input values such as principal component analysis to
reduce the overall dimensionality of the dataset and the Boruta package, recursive feature elimination, Least
Absolute Shrinkage and Selection Operator (LASSO) regression, and stepwise selection to reduce the number of
original variables used when modeling while preserving as much information as possible. A variety of models
including linear modeling, generalized additive modeling, random forests, support vector machines, and neural
networks are used to predict the heat transfer coefficient and compare the results with existing universal cor-
relations. The support vector machine model performed best, with a Mean Absolute Percentage Error (MAPE) of
11.3%. The heat flux, vapor-only Froude number, and quality proved to be especially significant contributing
variables across 90% of over 110 different models. Machine learning proved to be an extremely useful tool when
predicting the heat transfer coefficient across a variety of different fluids but did struggle to predict extremely
high outlier data where water was the working fluid.

1. Introduction

1.1. Mini and micro-channels for thermal management

have seen popular use when dealing with high density systems because
of their increased capacity for temperature uniformity, their high power
density as a result of their high surface area-to-volume ratio, and their
lower liquid requirement than other traditional modes of convective
heat transfer due to the normally required much lower mass flow rates

The rapid advancement of high performance electronic systems over [1]. In addition, the smaller surface temperature variations, can also

the past several decades has come with an increasing demand for better
thermal management systems. Traditional thermal management sys-
tems use single-phase liquid or air flows to meet the cooling needs. Flow
boiling in mini/micro-channels has become a reliable mode of adapting
to larger power densities because it is able to utilize both the latent and
sensible heat contained within a specified coolant. Mini/Micro-channels
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reduce thermo-mechanical stresses on the objects being cooled and
improve durability. With advances over the past few decades, mini/
micro-channels have also become easy to manufacture in both single
and multi-channel configurations of various cross-sectional geometries
[2,3]. Their primary drawbacks include high pressure drops and a pro-
pensity for flow instability and two-phase choking. Another drawback is
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Nomenclature Wey saturated liquid Weber number, We; =
[G(1 — x)2Dn/ (py0)
Bd Bond number, Bd = g(p; —p,)D3 /o Weg saturated vapor Weber number, We, = (Gx)*Dy/ ()
Bo Boiling Number, Bo = qu"/Ghy, Wefo liquid-only Weber number, Wey, = G2Dy/(p;0)
Co Convection number, Co = [(1 — x)/x]*® (pe/py) o° Wego vapor-only Weber number,Wey, = G?Dy/(p,0)
[ Specific heat at constant pressure, [kJ/(kgK)] X Mole Fraction
Cy Specific heat at constant volume, [kJ/(kgK)] x Quality, generic variable
Dp Hydraulic diameter of flow channel, [mm] Xy Lockhart-Martinelli parameter,X,; =
Fry Saturated liquid Froude number, Fry = 01 0.9 05
[G(1 — X))/ (3gDn) (-) (—) (—)
Fry Saturated vapor Froude number, Fry, = (Gx)?/ pggDh) Greek Symbol
Fry Liquid-only Froude number, Fry, = G*/(p7gDh » Aspect ratio
Frgo Vapor—only. Froude m;mber, Fry = G?/ /)ggDh P Weighted coefficient
G Massivelocuy, [kg/ m’s] 5 A Weighted coefficient error term
g Gravity acceleration, [m/s”] Dynamic viscosity
h Heat transfer coefficient, [kW/(m?K)] K y R L
) ) Principal component weighting factor
hye Latent heat of vaporization, [kJ/(kgK)] P Density
k Thermal conductivity, [W/(mK)] - Surface tension
L Channel length, [mm]
M Molecular mass, [kg/mol] Subscripts
MAE Mean absolute error cb Convective boiling
MAPE  Mean absolute percentage error di After diffusion
MSE Mean square error f Saturated liquid, fluid
n Number of input parameters FB Flow boiling
P Saturation pressure, [Pa] fo Liquid only
P, Critical pressure, [Pa] g Saturated vapor
Pey Saturated liquid Peclet number, Pes = Res Pry go Vapor only
Pe, Saturated vapor Peclet number, Pe; = Reg Pry nb Nucleate boiling
Pr Wetted perimeter of channel, [mm] obs Observed
Py Heated perimeter of channel, [mm] pred Predicted
Pr Reduced pressure, P = P./P tp Two phase
Pry Saturated liquid Prandtl number,Pry = pgcyr/ks w Channel wall
Pry Saturated vapor Prandtl number,Pry = pCpg/kq Tt turbulent liquid-turbulent vapor
q Heat flux, [kJ/m?]
dy Heat flux based on heated perimeter of channel, [kJ/m?] Acronyms .
R Relative roughness, R = e/Dy, ¢ Circular
R? Coefficient of determination R Rect.angular
Res Saturated liquid Reynolds number, Ref = G(1-x)Drn/ps H Hor1.zonta1
Reg Saturated vapor Reynolds number, Re; = GXxDy/ig vu Vertical Upflow
Rey, Liquid-only Reynolds number, Res, = GDy/ui¢ C+L Clolpper + Lexan
Reg, Vapor-only Reynolds number, Rey, = GDp/jig S+1L Slll‘COI‘I + Lexan
RMSE Root Mean Square Error 55 Stalnless. Steel‘ A
Suy Saturated liquid Suratman number, CB Convective ].3c.)111ng
Sug Saturated vapor Suratman number, NB Nucleate Boiling
T Saturation temperature, [K]
Stratified Slug Slugiwavy Wavylannular

|
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Fig. 1. Different strata of two phase flow. Adapted from: Ghajar et al. [5].

that flow boiling in mini/micro-channels is also a very different phe-
nomenon than in macro-channels where many experiments [4,5] and
modelling [6-8] has been conducted [9]. Current delineations in
channel size are often arbitrary and do not account for a difference in
flow behavior. Additionally, established experimental research to

predict fluid characteristics on a macro-channel level does so under
turbulent flow conditions, but most conditions on a mini/micro-scale
level have liquid Reynolds numbers below 2300 and are thus laminar
[3,10]. As aresult, very little macro-channel flow data can be considered
when looking at flow boiling in mini/micro-channels.
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Fig. 2. Flow-Pattern Map. Adapted from: Yadigaroglu et al. [6].

1.2. Flow boiling regimes and heat transfer

Flow boiling behavior is categorized into the different types as shown
in Fig. 1 based on the presence of bubble formation, coalescence, slug or
plug formation, or dryout conditions and has often been determined
with the help of flow-pattern maps such as the one depicted in Fig. 2
[10,11]. These maps chart the flow behavior on a two-dimensional plane
as a function of different transition criteria but are often limited to
adiabatic conditions. Local flow boiling behavior is often necessary for
design parameters, and many applications use diabatic flow boiling.
There are many different possible flow regimes that can occur. During
boiling, the fluid often starts as a pure liquid. As trace amounts of vapor
begin to appear, small bubbles start to form. The increase in the flow rate
of that vapor leads to plug flow, and when long, elliptical bubbles form
in the center and along the length of the channel, slug flow occurs [12].
When the shear forces exerted by the vapor center propel the liquid to a
very thin area along the walls of the channel, annular flow occurs. If
both gas and liquid flow rates increase, the flow will become an unstable
churn flow regime pattern. At very high gas flow rates, the liquid film on
the walls of the channel could be aerosolized into droplets by the fast-
moving gas in a state known as mist flow [13]. Additionally, Cubaud
and Ho [14] have identified a wedge flow behavior that exists as an
intermediary state between bubbly and slug flow where the liquid film
on the walls of the channel has dry patches which can significantly affect
pressure drops and thin film evaporation. The pattern behaviors are
often determined subjectively and can follow numerous naming con-
ventions or employ a multitude of subcategories [10]. A way to stan-
dardize flow boiling behavior would likely prove valuable in future
research. These different flow behaviors largely describe different
ranges of vapor quality, and numerous experiments have shown that key
heat transfer trends in microchannels fluctuate dramatically at different
vapor qualities. For example, at lower vapor qualities, the heat transfer
coefficient has a slightly negative or no relationship to quality, but at
higher qualities, the heat transfer coefficient has a strong negative
relationship to quality [15]. Both the Bertsch [101] and Kim & Mudawar
[102] semi-empirical correlations used as baselines for comparison in
this study contain vapor quality terms when calculating the heat transfer
coefficient. Flow boiling instabilities can cause large amplitude oscilla-
tions in mass flow rate, pressure, temperature, and other fluid parame-
ters and can significantly influence the local heat transfer coefficient.

Channel surface parameters, surface wettability, thermal conductivity,
or size of the inlet/outlet manifold can also act as confounding proper-
ties that cause flow instability by causing unanticipated rapid nucleation
or bubble growth [16]. The channel inlets and outlets can be altered in
some cases to reduce the amount of flow instabilities, but it is unclear as
to whether these instabilities always lead to lower rates of heat transfer.
Therefore, the variations in flow behavior and corresponding heat
transfer makes it difficult to predict the heat transfer coefficients in
mini/micro-channel.

1.3. Predicting flow boiling data in mini/micro-channels

There are currently very few available tools or methods proven
reliable when predicting heat transfer coefficients during flow boiling in
mini/micro-channels. The most popular methods rely on empirical and
semi-empirical correlations [17,18] derived from experimental data.
These correlations can mostly only be applied to a very narrow subset of
testing conditions for a very limited variety of fluids, channel sizes, and
channel geometries [14]. Currently, the results can produce different
and contradicting trends with high errors if tested outside the devel-
opment range based on the experimental setup and procedure used by
different researchers. These errors can be the result of experimental and
measurement inaccuracies of input parameters, known as parameter
uncertainty, or errors in the prediction itself due to approximations
made when creating the model known as form uncertainty. Another
predicting method to predict the heat transfer coefficients is the use of
theoretical models based on the physical behavior of the flow. For
example, the annular flow condensation model developed by Kim and
Mudawar [19] can predict steady-state variations of fluid flow and
thermal behavior including heat transfer coefficient. However, its
applicability is narrow and limited to annular flow regime. With the
recent developments in computing techniques, computational fluid dy-
namics (CFD) simulations [20-23] has become very promising
comparing with traditional techniques. The advantages of CFD ap-
proaches are capability of predicting transient flow and heat transfer
behavior with detailed information of void fraction, phase velocities and
temperatures. However, the low accuracy due to model development
and the high computational cost have limited the utilization of CFD
methods [24].

Machine learning can help identify and revise elements causing
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Table 1
Displays flow boiling heat transfer data organized by experiment along with relevant experiment setup characteristics [21-70].
Author(s) Channel Channel material Dy [mm] Relative roughness R, Fluid(s) G [kg/mzs] Data
geometry” e/Dy points
Wambsganss et al. (1993) C single, H Stainless steel 2.92 Smooth R113 50-300 92
Tran (1998) C single, H Brass 2.46 Smooth R134a 33-502 302
Wang et al. (1998) C single, H Copper 6.5 Smooth R22 100-400 63
Yan and Lin (1998) C multi, H Copper 2.0 - R134a 50-200 137
Bao et al. (2000) C single, H Copper 1.95 Smooth R11,R123 167-560 164
Qu and Mudawar (2003) R multi, H Copper + Lexan 0.349 - Water 135-402 335
cover
Sumith et al. (2003) C single, VU Stainless steel 1.45 - Water 23-153 85
Yun et al. (2003) C single, H Stainless steel 6.0 Smooth R134a, CO, 170-340 182
Huo et al. (2004) C single, VU Stainless steel 2.01, 4.26 0.0009, 0.0004 R134a 100-500 365
Lee and Mudawar (2005) R multi, H Copper + Lexan 0.349 - R134a 61-657 111
cover
Saitoh et al. (2005) C single, H Stainless steel 0.51, 1.12, 3.1 Smooth R134a 150, 300 420
Yun et al. (2005) R multi, H Stainless steel 1.14,1.53,1.54 - COy 200-400 57
Muwanga and Hassan (2007) C single, H Stainless steel 1.067 — FC72 770-1040 454
Zhao and Bansal (2007) C single, H Stainless steel 4.57 Smooth CO, 140-231 22
Agostini et al. (2008) R multi, H Silicon + Lexan 0.336 0.0005 R236fa 281-1370 593
cover
Consolini (2008) C single, H Stainless steel 0.51, 0.79 0.0047, 0.0022 R134a, R236fa, R245fa 274-1435 650
Bertsch et al. (2009) R multi, H Copper + Lexan 0.544, 1.089 <0.0009, <0.0006 R134a, R245fa 19-336 332
cover
In and Jeong (2009) C single, H Stainless steel 0.19 - R123, R134a 314-470 256
Mastrullo et al. (2009) C single, H Stainless steel 6.0 Smooth CO, 200-349 143
Ohta et al. (2009) C single, H Stainless steel 0.51 - FC72 107, 215 24
Wang et al. (2009) C single, H Stainless steel 1.3 - R134a 321-836 365
Ducoulombier (2010) C single, H Stainless steel 0.529 0.0015-0.0030 CO, 200-1400 1573
Hamdar et al. (2010) R single, H Aluminum 1.0 - R152a 210-580 50
Martin-Callizo (2010) C single, VU Stainless steel 0.64 0.0012 R134a, R22 185-535 381
Ong (2010) C single, H Stainless steel 1.03, 2.20, 0.0006, 0.0004, R134a, R236fa, R245fa 199-1608 2504
3.04, 0.0003
Tibirica and Ribatski (2010) C single, H Stainless steel 2.32 0.0001 R134a, R245fa 50-700 130
Ali et al. (2011) C single, VU Stainless steel 1.7 0.0001 R134a 75-600 152
Bang et al. (2011) C single, H Stainless steel 1.73 - Water 100 65
Copetti et al. (2011) C single, H Stainless steel 2.62 0.0008 R134a 240-932 876
Mahmoud et al. (2011) C single, VU Stainless steel 1.1 0.0012 R134a 128-549 152
Oh and Son (2011a) C single, H Stainless steel 4.57 Smooth CO, 400-900 107
Oh and Son (2011b) C single, H Copper 1.77, 3.36, 5.35 Smooth R134a, R22 200-500 153
Wu et al. (2011) C single, H Stainless steel 1.42 - CO, 300-600 419
Costa-Patry & John (2012) R multi, H Copper 0.295 - R134a, 205-569 510
R245fa,
R1234ze
Karayiannis et al. (2012) C single, VU Stainless steel 1.1 0.0012 R134a 215-550 545
Lietal (2012) C single, H Stainless steel 2.0 Smooth R1234yf, R32 100-400 169
Tibirica et al. (2012) C single, H Stainless steel 1.0, 2.2 0.0006, 0.0004 R1234ze 300-600 30
Balasubramanian et al. (2013) R multi, H Copper 0.489, 0.504 0.00409, 0.00397 water 88-751 332
Davide Del Col et al. (2013) C single, H Copper 0.96 0.001354 R134a, R1234yf 200-600 93
Grauso et al. (2013) C single, H Stainless steel 6 Smooth R1234ze(E), R134a 270.75-285.25 575
Vakili-Farahani et al. (2013) R multi, VU Aluminum 1.44 — R245fa, R1234ze 100-400 138
Charnay et al. (2014) C single, H Stainless steel 3.0 - R245fa 300-1500 285
Wang et al. (2014) C single, H Copper 6.0 Smooth Propane 63.9-102.8 127
Anwar et al. (2015) C single, VU Stainless steel 1.6 0.000594 R1234yf 300-500 256
Charnay et al. (2015) C single, H Stainless steel 3.0 - R245fa 300-1000 337
Markal et al. (2016) R multi, H Silicon 0.15 - Water 51-92.6 20
Xu et al. (2016) C single, H Copper 0.501, 1.084, - R134a 185-910 225
2.0235
Sempértegui-Tapia & Ribatski C multi, H Stainless steel 0.868, 1.1 0.0026, 0.0097 R134a 200-800 685
(2017)
Sempértegui-Tapia & Ribatski ~ C single, H Stainless steel 1.1 0.0026 R134a, R600a, R1234yf, 200-500 862
(2017) R1234ze
Fayyadh et al. (2017) R multi, H Copper 0.42 0.000716 R134a 50-300 50
Total 16,953

@ C: circular, R: rectangular, H: horizontal, VU: vertical upward.

uncertainty to improve the model’s ability to make accurate predictions.
Machine learning methods have been used before to try and predict fluid
characteristics, most commonly Artificial Neural Networks (ANNs) [25].
Such methods are useful because they are often able to obtain quicker
and have a higher probability of generalization than large, numerical
methods that may require numerous time and data. The trade-off is that
sometimes the exact process of reaching the end result can be obscured
within the layers of the ANN or other methods. That is to say that these
methods do not necessarily follow traditional means to determine the

solutions but instead learn the solutions using pattern analysis and
learning from examples. Whereas two phase flow correlations would
normally require an iterative procedure because of how fluid properties
depend on temperature, ANNs only need input and output variables to
train and input samples to test whether or not it recognized the correct
patterns. Existing models usually use one or two hidden layers and a
relatively low number of features [2].
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1.4. Objectives of study

Qiu et al. [26] has amassed a database containing flow boiling heat

Characteristic Fluids CO,, FC72, Propane, R11, R113, R123,
Variables R1234ze, R1234yf, R134a, R152a, R22, transfer coefficient data from 50 different experiments using a total of 12
R236fa, R245fa, R32, R600a, Water different fluids [27-76]. These experiments collected approximately 61
Channel Material  Stainless Steel, Aluminum, Brass, different features describing either fluid or channel properties. For the
Copper, Copper + Lexan, Silicon, . e .
Silicon + Lexan experiments conducted, the observed flow boiling behavior ranged from
Channel Geometry  Circular, Rectangular flow completely in the vapor region to completely in the liquid region
Channel Horizontal, Vertical Up and channels, ranging from 0.15 to 6.5 mm in hydraulic diameter.
Orientation Table 1 contains important channel, fluid, and setup information about
Channel Numbers Single, Multi-channels . . . . .
Flow Boiling Convective Boiling, Nucleate Boiling each experiment compiled into the database. This study will use a
Characteristic number of data science methods to try and determine a technique that
can be employed to accurately predict the heat transfer coefficient
Numeric Dy, T, G, X, h, q", & R, P, Pc, pg Py My Cug, CogCpg, oo e My dgring flow boiling .in min.i/micro.-channels. Explo.rator}.f data scie.nce
Variables ke, ky, 0, PH, PE, Pry, Pry, Rey, Rey, Rego, Regy, B0, PR, X, Wey, will be used to obtain confidence in the data and investigate relation-
Wes, Wego, Weyo, Fre, Fry, Fryy, Fryy, Co, Bd, Sug, Suy, Peg, Pes ships between feature variables before employing machine learning al-
gorithms. Missing data was filled in using random forest nonparametric
imputation. A variety of feature analysis techniques were employed to
combine and select different optimal feature variables as input values
before training any models including principal component analysis to
Table 3
Summaries of all fluid variables.
Variable Min. 1st Quartile Median Mean 3rd Quartile Max.
Dy, (mm) 0.150 0.529 1.1 1.681 2.2 6.5
T (K) 233.2 288.1 304.1 302.6 305.1 474.5
G (kg/m?s) 19.45 299.80 400.00 463.44 568.00 1608.00
x 0.0001 0.1160 0.272 0.337 0.521 0.998
h (W/m?K) 292 5490 8620 10,893 13,000 1,614,499
q“ (W/em?) 0.215 2.000 3.5 5.896 6.7 95.917
a 0.104 0.324 0.328 0.918 1.060 3.870
R 0.000 0.000 0.001 0.001 0.001 0.005
P (bar) 0.999 3.314 6.078 9.157 7.99 57.291
P(bar) 18.30 36.40 40.59 54.67 40.60 341.59
pylkg/m®) 0.597 18.383 29.539 35.934 40.175 194.2
ps(kg/m®) 529.8 1084.5 1183.5 1162.7 1265.6 1593.4
hyy(kJ/kg) 92.61 163.52 177.35 286.48 194.74 2256.44
Cy¢(kJ/kg/K) 0.568 0.8113 0.84 0.889 0.872 2.076
Cy(kJ/kg/K) 0.610 0.907 0.92 1.045 0.944 3.768
Cpg(kJ/kg/K) 0.658 0.944 1.065 1.2 1.221 4.559
Cps(kJ/kg/K) 0.918 1.352 1.428 1.715 1.539 4.503
Hg(uPa*s) 6.492 11.175 11.869 11.936 12.350 18.187
py(pPa*s) 66.15 164.57 193.72 213.17 264.88 456.06
kg (W/m/K) 0.00940 0.0134 0.0144 0.0153 0.0162 0.0403
ke(W/m/K) 0.053 0.0742 0.0809 0.113 0.088 0.683
6(N/m) 0.0012 0.00724 0.0083 0.0107 0.01 0.0589
PH(mm) 0.450 2.287 3.456 5.441 6.912 20.420
PF(mm) 0.596 2.481 3.455 5.498 6.911 20.420
Pr, 0.670 0.812 0.879 0.938 0.937 6.7
Pry 0.906 3.228 3.414 3.692 4.093 8.914
Re, 2.9 3504.4 10269.0 19250.1 24418.4 359794.7
Res 1.95 640.58 1429.94 2445.88 2888.41 55245.35
Reg 623.5 21466.3 39099.2 59178.6 73641.0 410851.8
Rey, 27.15 1176.75 2684.29 3819.89 4482.29 55,270
Bo 31x10°° 24x107* 49x10°* 7.3%x107* 87x 1074 2.2x 1072
PR 0.00459 0.0861 0.150 0.177 0.202 0.776
X 0.0006 0.197 0.466 1.637 1.147 590.779
We, 0.000 8.707 52.410 231.062 218.998 20918.88
Wey 0.000 1.753 7.429 27.057 24.174 3139.78
Wego 1.37 333.64 763.65 1777.61 1905.44 32696.92
Weg, 0.0069 7.764 21.824 54.169 53.029 3142.589
Fry 0.0 197.6 1162.4 18957.2 4891.0 2899757.5
Fry 0.0000 0.941 4.167 15.883 14.215 434.5072
Frg 27 4720 15,153 2,220,191 53,536 328,588,796
Fry, 0.0225 3.117 10.585 32.458 30.750 439.105
Co 0.00088 0.148 0.319 0.839 0.714 240.050
Bd 0.00359 0.502 1.743 7.051 7.460 98.608
Sug 35,116 1,072,748 2,030,903 2,875,745 4,029,987 14,043,660
Suy 29,502 190,951 290,002 444,463 567,425 3,136,614
Pey 2.9 3013.3 9346.9 18392.7 23428.8 485744.1
Pes 7.18 2197.96 5165.76 8813.41 10814.26 181846.28
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Fig. 3. The distribution of Roughness values with (a) values missing and (b) imputed values.

reduce the overall dimensionality of the dataset and the Boruta package,
variable importance, LASSO regression, genetic algorithms, and step-
wise selection to reduce the number of original variables used when
modeling while preserving as much information as possible. Seven
different types of modeling were then performed on the datasets
including multiple linear regression modeling, generalized additive
modeling, multivariate adaptive regression splines, random forest
modeling, gradient boosting machines, support vector machines and
feedforward neural networks. These models were compared to semi-
empirical correlations and analyzed for significant feature
contributions.

2. Exploratory data analysis
Using machine learning methods to try to predict the heat transfer

coefficient during multiphase flow in mini/micro-channels requires a
large database with enough observations to sufficiently represent the

flow under a variety of possible conditions. If the data used to create the
model does not adequately represent the flow conditions one may
encounter when collecting data during two-phase flow conditions, the
model will not be very accurate. It is important to analyze and assess the
database being used to define its limits and the limits of any models
created from it. Data exploration and analysis was done using Rstudio,
an Integrated Development Environment (IDE) for R, a programming
language primarily used for statistical analysis, data analytics, and
graphics visualization [77,78].

When performing data analysis, it is important to have data used for
training models and independent data used for testing. The datasets
should be representative of similar populations but cannot contain any
overlapping observations so that data used to verify the model can
remain completely independent. The dataset was generated to contain a
total of 53 variables that included characteristic and numeric variables
as shown in Table 2.

The training data is 75 percent of the full dataset and is used to help
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Fig. 4. Frequency Distributions of Categorical Flow Boiling Variables by (a) Fluid, (b) Channel Material, (c) Channel Geometry, (d) Channel Orientation, (e) Heat

Transfer Characteristics, and (f) Number of Channels.

teach patterns to the model. The other 25 percent of the data is the
testing data, which is meant to help understand how the model would
perform with independent data collected in separate experiments. It
helps determine performance and accuracy completely free of bias [77].
It’s important that the data in both training and testing sets are pro-
portionate and representative of the full dataset, so the data is divided
into 75% and 25% sample sizes while keeping the proportions of each

individual fluid data equal to their proportions in the full dataset. After
aggregating and cleaning the data, it is important to get a large overview
of the dataset and the values for each variable. The six variable sum-
maries in Table 3 primarily illuminate the range of each numeric vari-
able and the orders of magnitude for each variable compared to each
other. For example, the Reynolds number ranges from an order of
magnitude of one to an order of magnitude of 10%, the heat transfer
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Fig. 5. Stacked Frequency Distributions of Categorical Flow Boiling Variables.

coefficient ranges from an order of magnitude of 102 to an order of
magnitude of 10°, and the Martinelli parameter ranges from an order of
magnitude from 10~* to an order of magnitude of 102. This informs us
that it will be necessary to scale and center the variables. It is also
important to get a profile of any missing data in the dataset.

With 16,953 observations, it is very difficult to know how much is
missing just by glancing at the dataset. The heat transfer characteristics,
Roughness, Aspect Ratio, C,; and C,s all have missing values. The
channel aspect ratio, is a parameter relevant to only rectangular chan-
nels and is not needed for 80% of the observations, so the variable was
completely removed from the dataset. The channel roughness is missing
in approximately 34% of observations, and the heat transfer character-
istics, C,, and C, ¢ are missing in approximately 16% of observations.
These percentages are much smaller and the variables may have some
correlation with the heat transfer coefficient, so they were not excluded.
Instead, they were left blank for any method that could be run with
empty values and filled in using Random Forest Non-Parametric Impu-
tation [79]. A random forest algorithm will make the same number of
decision trees as their observations in the dataset, and then take a
sample of the same size with replacement from that data set. Each tree is
split with a random selection of possible variables. The size of this se-
lection is determined by the user. The missing variables are then
imputed using the average values of all trees. A random forest model can
handle the 53 variables contained in the dataset and identify and report
the most important contributing variables. It is also able to estimate the
error on an equivalently sized testing dataset not included in the model,
known as the Out of Bag (OOB) error. The imputed values have main-
tained the approximate distribution of the original dataset, but values
have been added based on the other variables in the dataset. An example
of this can be shown in Fig. 3(a) and (b). The OOB error rates for all
missing values were all on the order of magnitude of 1077, so consid-
ering the percentage of missing values in each variable, and the expected
contribution to the heat transfer coefficient, this imputed data is
considered sufficient for future analysis, as there is a low probability of
any results or conclusions being over reliant on the imputed data.

The data is very unevenly distributed as observed in Table 1. The
majority of the data appears to be skewed right, meaning a large number
of values occupy the lower part of the data range. For example, the heat
transfer coefficient and dependent variable, h, has a median of

approximately 8620 W/m?2+K but a maximum value of 1,614,499/m?+K,
which appears a bit high. Similar results are observed in a number of
other variables such as We, X, Fr, Co, Bd, and Re. For these values, it
appears 90% of the data is concentrated in the lowest two bin widths, or
approximately the lowest 10% of the range of data, and the rest of the
data is spread out as far as five standard deviations above the mean.
Some of this could be caused by outliers, and/or experimental error, but
more is revealed when looking at the bar frequency charts for categor-
ical factor data in Fig. 4. Approximately 7000 observations, over 40% of
the total data, are from experiments using R134a. Approximately 13,000
observations, over 75% of the total data, are explained by only 4 of the
12 different fluids. With this irregular distribution of data, it is more
likely that the results will demonstrate a network that can predict the
heat transfer coefficient for a specific subset of conditions than for the
complete range of conditions represented in the database. When the
fluid, channel material, channel orientation, heat transfer characteris-
tics, channel geometry, and number of channels are all largely skewed in
favor of one value, it creates unbalanced results and insignificant in-
formation for underrepresented conditions [80]. This works against the
training effects of those conditions and makes validation and testing
more difficult. Approximately 75% of the data comes from experiments
that use circular channels rather than rectangular channels and whose
channels are made out of stainless steel. Over 85% of the data comes
from experiments that use a single channel over multiple and place the
channel in a horizontal orientation. By combining this information into a
stacked bar plot, we can achieve a better visualization of how the
imbalanced data is distributed in Fig. 5.

An ideal database would contain equal proportions within each
factor variable or enough data so that each factor has a representation of
more than at least 10% of the total number of samples to make sure there
is a big enough sample size. The channel material and fluid variables
specifically have some factors with extremely low numbers of observa-
tions, such as R152a, which has 38 out of the 16,953 observations in the
dataset.

After further exploring many of these variables with extremely un-
even distributions, there are three primary correlations for a majority of
these outlying variables. The first is that a majority of these outliers
come from experiments using water as the working fluid, especially from
the Balasubramanian et al. experiment [64]. It’s unclear what specif-
ically about this experiment causes significantly higher values for most
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Fig. 6. Pearson’s Correlation vs. h for (a) Full, (b) Microchannel, and (c) Unicategorical datasets.

of the variables, but one theory is that the experiment uses a signifi-
cantly higher magnitude of mass velocity (500-700 kg/m?ss) compared
to other experiments using water at much lower magnitudes of mass
velocities (80-150 kg/m?2+s). The final major correlation is that a sig-
nificant portion of the outliers were from experiments conducted using
channels with diameters greater than 3 mm. There is no definitive
classification system between microchannels, minichannels, and con-
ventional channels, however, one of the most commonly accepted
classification systems found in existing research differentiates these
types of channels by using a channel diameter of 3 mm as the threshold
that separates a microchannel from a minichannel [81]. It is possible
that the fluid properties in experiments where the channel diameter is
greater than 3 mm mimic minichannel or conventional channel flow as
opposed to microchannel flow.

As a result of this further explanation, all additional methods will be
conducted on the full dataset and two data subsets to determine if these
outliers have a significant impact on the ability to predict the heat
transfer coefficient. The first subset of data, as previously mentioned,
will contain all observations from the largest single categorical subset of
data. Looking at Fig. 5, it can be seen that this subset consists of a single
circular channel made out of stainless steel in a horizontal orientation
with both nucleate and convection boiling characteristics. All relevant
fluids used in experiments with the aforementioned channel type were
used. The second subset will contain all observations from experiments
with channel diameters of<3 mm. The single categorical dataset con-
tains 7245 of the original 16,953 observations and will be referred to as
the unicategorical dataset, and the microchannel dataset contains
14,169 observations.

Correlation plots can provide a look at how variables are related. The
Pearson’s correlation plots in Fig. 6 (a) can show how all independent
variables in the full dataset are correlated with h. The heat transfer co-
efficient does not have any strong positive or negative correlations with
a single variable beyond a measure of 0.5, so there are not obvious
variables to look to include when performing feature selection. The

results vary from —0.22 to 0.52, which is a moderately weak negative
correlation to a moderate positive correlation. Looking at the correlation
values for the microchannel dataset as shown in Fig. 6(b), we see an
extremely similar trend. The overall range of correlations is the same,
and the absolute value of the strength of most of the variables is also
within 0.03-0.05 of the full dataset, but some values with a weak
negative correlation shift to a weak positive correlation and vice versa.
For the unicategorical dataset as shown in Fig. 6(c), however, the cor-
relations appear to change significantly. There are now 10 variables
with a positive correlation greater than 0.5 as opposed to 2, and the
upper limit of the positive correlation values approaches 0.56 instead of
0.52. Additionally, the lower limit of the negative correlation values
approaches —0.52 and there are 11 values with a stronger negative
correlation and the lower limit of the full dataset, —0.22. This indicates
that it may be easier for a machine learning algorithm to predict the heat
transfer coefficient for a specific set of variables for a specific case of
categorical variables as opposed to for the whole dataset. This infor-
mation is particularly useful when it comes to dimensionality reduction
to narrow the total number of input variables. Every additional input
that a machine learning algorithm incorporates significantly increases
the total processing time and complexity.

3. Feature selection

Dimensionality reduction aims at reducing the number of indepen-
dent variables by eliminating those that do not have a significant impact
on h or performing linear combinations to turn existing variables into
new variables. Feature selection is a process for calculating and choosing
the features that contribute most to the dependent variable and
removing the irrelevant or extraneous features that can decrease the
accuracy of the model. Feature selection is a common method of
reducing the number of variables, however, most feature selection
methods include a manual component of selecting an arbitrary contri-
bution value, below which the variables are deemed irrelevant [82].
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Other variable reducing methods such as Principal Component Analysis
(PCA) create new variables from linear combinations of existing vari-
ables to reduce complexity and dimensionality while minimizing the
loss of information. Dimensionality reduction using PCA along with five
different feature selection methods were performed to get a large range
of different feature sizes and combinations.

3.1. Principal component analysis

PCA is a technique that treats each unique variable as a dimension
and attempts to project all of the data onto a lower set of dimensions
using linear combinations and removes all of the irrelevant variables
while maintaining as much of the information as possible [83]. It is an
unsupervised learning method, meaning the dependent variable is
removed before the linear combinations are determined. Each of these
individual linear combinations are known as principal components. If
there are n predictors numbered p;,ps, ...,pn, there can exist m relevant
principal components where Z = ®,p; + ®,p, + ... + ®),p,. Here, disa
weighting factor based on the average squared euclidean distance be-
tween each predictor, p and placed under a constraint such that the sum
of the squares of the loading factors is equal to one. The first principal
component creates a line in a space of p dimensions closest to the n
observations in the direction of the greatest variance in the dataset. The
first principal component will capture the largest amount of information
and variability in the data. The second principal component follows the
same formula in a direction orthogonal to the first principal component
while also capturing the greatest amount of the remaining variance that
is possible. Therefore, there should be zero correlation between any of
the remaining principal components. All successive principal compo-
nents will follow the same trend, capturing the greatest amount of
remaining variance with zero correlation with the previous components
[84].

3.2. Boruta

The first algorithm employed for feature selection was the Boruta
package in R [85]. Boruta utilizes random forest algorithms, similar to
those used in variable imputation, to assess the importance of each
feature and keep only those that surpass a threshold. Typically, the
thresholds used in this type of assessment have a level of arbitrariness to
them. They are usually assigned a value consistent with common prac-
tice or that captures a level of variance or importance that is acceptable
to the user. Boruta chooses the threshold on its own using shadow fea-
tures. Before starting the random forests, Boruta duplicates the entered
dataset but randomly shuffles the rows within each feature, resulting in
a permuted “shadow dataset” attached to the original one [86]. Then a
random forest model is fitted on the combined data frame. This model
creates a large number of decision trees, which create partitions in the
data in an attempt to generate a set of variables that capture the greatest
overall contribution to h. The more accuracy lost due to a random
partition of values within a variable, the greater the importance of the
variable [87]. Once a single iteration of the random forest is complete,
the Z-score for the accuracy loss is calculated across all individual de-
cision trees for each feature. This Z-score is compared with the Z-scored
for the equivalent feature in the “shadow dataset.” If the Z-score is
greater, i.e., if the average accuracy loss across all decision trees divided
by the standard deviation is higher than the maximum Z-score of any
completely randomized feature, that feature is judged to be an important
contributor in the dataset. This algorithm dictates that a feature is a
significant contributor to an individual model if the average loss in ac-
curacy of a model due to a random partition with respect to a given
feature is greater than the average loss in accuracy of a model due to a
random partition with respect to its randomized counterpart [87].
Boruta performs 20 or 100 iterations of this procedure while treating
each variable’s significance or insignificance as a binary outcome of a
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series of trials. This creates a binomial distribution that Boruta uses to
determine whether or not the variable is rejected, accepted, or tentative
depending on whether or not the p-value of the number of confirmations
in 100 trials of a binomial distribution is significantly greater than,
significantly less than, or around the value of 0.05. This provides a
statistical benchmark for feature selection in both classification and
regression problems while still accounting for multivariate correlations
and dependencies. This is a computationally expensive algorithm with a
long runtime of approximately 2 h on the same GPU node with 2 cores
and 36 GB of memory, but it has been shown to produce results that are
reliable when analyzed alongside other feature selection methods [86].

3.3. Recursive partitioning

Recursive partitioning, or the recursive partitioning method, works
by creating a decision tree to split the dependent variable into groups as
homogeneous as possible. Each split is made without consideration for
how effective the split will be in the future, meaning it focuses on local
optimization and may not locate the universally best possible decision
tree [88]. The tree stops splitting when doing so no longer reduces the
mean squared error when predicting the dependent variable. This
splitting could potentially continue until each unique value of the heat
transfer coefficient, a continuous numerical variable in the dataset was
partitioned, but that would significantly increase the chance of over-
fitting any future models. In order to reduce the decision tree to a model
that appropriately fits the dataset, recursive partitioning adds a penalty
proportional to the number of branches in the decision tree while
minimizing the variance of the dependent variable. The variable
importance metric is the sum of the reduction in the mean squared error
at each branch of the tree [89].

3.4. Recursive feature elimination

Recursive Feature Elimination (RFE) builds a random forest or other
specified model using all variables in the dataset, calculates the
importance for each variable using the reduction in the mean squared
error at each branch of the tree added together for each variable, similar
to recursive partitioning, ranks the variables by importance, removes
the worst variables, builds another model, and repeats the process until
the pre-specified number of features remain [90]. Each individual
repetition of this process is known as backwards selection. For each
dataset, RFE algorithms were performed with 10, 20, 30, 40, 50, 60, and
all 81 features.

3.5. LASSO

LASSO stands for Least Absolute Shrinkage and Selection Operator
and works by building a regression model with all variables and then
penalizing the variables with the smallest coefficients by driving them to
zero to reduce overfitting. That is, the values of scaled variables that
have a smaller weighted coefficient in a linear model contribute less to
the overall model and are driven to zero by LASSO [91]. First the dataset
is trained on a generalized linear model. A generalized linear model is a
method that models the dependent variable using a linear combination
of every feature in the dataset with an intercept as a systematic
component and adds two additional components. The first is a link
function that uses the linear model to explain the mean of the dependent
variable. The second is a variance function that uses the mean to
calculate the variance and probability distribution of the dependent
variable to try and estimate its randomness. Then the weight of the
tuning parameter that drives the smallest coefficients to zero is calcu-
lated by finding the value that produces the lowest mean squared error
in the model [92]. All of the remaining nonzero coefficients will be used
when modeling.
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3.6. Stepwise selection

The stepwise selection method works by training first two linear
models: one with no features included in the training model, only an
intercept, and one with every feature included when training the model.
The method then employs an algorithm which iteratively and system-
atically adds and subtracts variables from the two models until it reaches
the model with the lowest Akaike Information Criterion (AIC) score. An
AIC score is a criterion that evaluates all models in a method relative to
each other and outputting a value based on the model’s fit to the training
data and its complexity. A more complex model incurs a higher penalty,
and a lower AIC score signifies a better model. The model’s fit to the
training data is measured using likelihood estimation which takes the
logarithm of the probability of seeing the dependent variable values in
the training data as an output of the constructed model. The best model
is the one that achieves the best balance of increasing the number of
features to have a higher likelihood of achieving outputs closest to the
values of the heat transfer coefficient while keeping the model’s
complexity as low as possible. Table A.1 summarizes the amount of and
which features were selected using each method for each dataset.

4. Modeling analysis

Feature selection provided various combinations of independent
variables that could be used to predict the heat transfer coefficient. This
allowed us to test various types of models. A total of seven different
types of models were used to test the six different subsets of variables for
each of the three datasets for a total of 126 individual models. These
types of models are: multiple linear regression models, generalized ad-
ditive models (GAMs), multivariate adaptive regression splines (MARS),
random forest models, gradient boosted machines (GBMs), support
vector machines (SVMs), and artificial neural networks (ANNs).

The primary measure of accuracy used in comparing and analyzing
these models will be the Mean Absolute Percentage Error (MAPE),
defined as the absolute value of the ratio of the difference between the
observed and predicted values divided by the observed value summed
for every observation and divided by the total number of observations i.
e.

1 n
MAPE = EZi:l

This value is used as a primary basis of accuracy for a number of
reasons [93]. The experimental heat transfer coefficients range from 292
to 1,614,499 W/m?.K meaning that a divide by zero or approximate
situation resulting in an infinite error is unlikely to occur. The mean heat
transfer coefficient is approximately 11,000, so any RMSE or MAPE used
in absolute terms will be fairly large. It is easier to comprehend the error
as a percentage of the average value of the heat transfer coefficient when
comparing models. The RMSE will still be reported as a secondary
measure of accuracy and is defined as

RMSE = \/Zil (XObs_i

n

Xobs.[ - Xpred.i

*100
Xobs.i

(€8]

- Xpred.i)z (2)

4.1. Multiple linear regression models

Multiple linear regression modeling is the practice of building linear
models explaining a single, continuous, dependent variable using mul-
tiple, continuous or categorical, independent variables. Essentially it
transforms the simple linear relationship y = mx + B, where y is the
dependent variable, m is the slope of the line, x is the independent
variable, and B is the intercept, into a relationship of linear combina-
tions that can be described as

Yy =P+ Bixi + Ppxa + - + X, 3
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Here, f is a numerical coefficient and x is the value for a dependent
variable amongst a total of n dependent variables [94]. Each variable is
only included at the first degree to form a complex linear relationship.
Many of the models were manually tuned afterwards by selectively
removing features and performing transformations. For example, it was
observed that applying a logarithmic or square root transformation to
the dependent variable dramatically increased the accuracy of the linear
models.

4.2. Generalized additive models (GAMs)

Generalized additive models transform the standard equation
modeling the response as a combination of linear terms into an equation
modeling the response as a combination of functions in the form of

y= ﬁ() +f1 (xl) +fZ(x2) o+ +f;1(xn) (4)

Each f(x) is its own unique function. This method also maintains the
additive features of linear models in that each term is specified. GAMs
assist in eliminating the necessity of deciding the order of a polynomial
and make models more equipped to deal with high rates of change,
especially at the extreme ends of the model [95]. These functions, often
called splines or smooth functions, are summed expansions of simpler,
weighted basis functions evaluated at the values of each variable. The
number of basis functions is determined by specifying knots, which are
specific variables that the user desires to be nonlinear, and the basis
function is only nonzero for the knot in which it was defined. The default
basis function for the package used to make these GAMs is thin-plate
spline function, which is a basis function developed after a physical
model with a closed solution and few necessary tuning steps but that
often comes at a higher computational cost. This model is typically seen
as

g(y) =By +f(x) +4 %)

Here, f, is a simple intercept, f(x) is a function to the n® degree
where n is often determined for each knot to generalize cross-validation,
and / is an error term that smooths the data based on a penalized least
squares method often likened to the amount of pressure needed to bend
a thin sheet of metal between variable values x; and x, [95]. It is a
penalized term used to avoid overfitting. This is a useful basis function
for the fluid dataset because we have very little prior knowledge as to
the relationships between variables and can therefore not easily deter-
mine where knots should be placed and/or to what degree [95].

4.3. Multivariate adaptive regression splines (MARS)

MARS models have a similar foundation of basis functions to GAMS
but often act as an extension of GAMS because they do not make the
assumption that the weighted coefficients of independent variables are
uniform across their range of values. MARS models are also built using
an iterative method beginning with one of two possible values for basis
functions. The first is a constant value of 1, signifying an intercept. The
second is a characteristic hinge function taking the form max(0,x —c)
where x is the value of an independent variable, and ¢ is a constant
representing the location of a knot that separates two piecewise linear
functions [96,97]. The basis function can also be the product of two or
more hinge functions that can model interactions between multiple in-
dependent variables. A single independent variable can include multiple
knots for every instance the linear function changes. MARS models are
then built by creating independent linear regression models for each
independent variable and dividing those models across the entire range
of the independent variable based on where the slope of the line
changes, and the exact value of the hinge function is determined by the
maximum reduction in the sum-of-squares residual error [96]. In order
to counteract overfitting, the MARS model then constructs a least-
squares model to prune itself by iteratively removing the least influen-
tial knots until the best configuration of knots for each variable is
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determined these configurations are then compared multiple times using
generalized cross validation [97]. The user can tune this process by
specifying the degree of interactions at the knots and the number of
terms to keep during the pruning process.

4.4. Random forest models

Random Forests use an ensemble of decisions trees to create parti-
tions in the dataset based on which variables can best predict the heat
transfer coefficient [98]. A process known as bagging limits the variance
of individual decision trees, but relationships between the independent
and dependent variables often result in extremely similar tree compo-
sition and dependencies between trees. Additional randomness is
introduced to the dataset using bootstrap resampling while only
considering some of the variables at each partition within a given de-
cision tree.

4.5. Gradient boosted machines

Gradient Boosted Machines (GBMs) rely on an extensive network
(often thousands) of decision trees with a very limited number of par-
titions that are dependent and build off one another to learn and, in
aggregate, produce models with high predictive accuracy. Rather than
averaging the predictions of independent decision trees, GBMs first
select a weak learning model as its base-learning model. Typically, and
in this case, the weak learning model consists of generating shallow
decision trees with low computational cost. These shallow trees iterate
and sequentially learn from one another, gradually correcting the ele-
ments of the weak model with the most errors in future iterations while
avoiding overfitting thanks to only making small improvements at a
time and using cross validation to limit overfitting throughout the pro-
cess. Similar to GAMs, each successive decision tree is additive, and the
overall GBM model can be described using the equation GBM(x) =
Z,Llf“(x) where GBM is the overall model, T is the total number of
decision trees, and f is each individual decision tree [98]. Every subse-
quent decision tree is fitted to the residuals of the previous decision tree
until overfitting is detected via cross validation.

4.6. Support vector machines

Support vector machines (SVMs) are a machine learning algorithm
typically used for classification because their function is to analyze data
across multiple dimensions and determine the optimal way to separate
data into different classes. It performs this analysis by transforming the
data into a higher level of dimensions using a specified kernel function
that uses a predetermined formula, often based on known statistical
nonlinear optimization techniques, to transform the data into a higher
dimensional space before trying to separate the observations [98]. The
“line” or separator used to differentiate observations in higher dimen-
sional space or to predict a continuous dependent variable for a
regression problem is called a hyperplane. When conducting support
vector regression, the objective is to define two decision boundaries a
fixed distance on either side of the hyperplane. This distance is chosen
based on the data points that lie closest to the hyperplane. This tech-
nique is very effective for datasets with many variables because the
kernel function, while heavily influential to the outcome of the model,
can effectively transform and enlarge the feature space [99]. Support
vector regression models also do not dependent on the distribution of
the features or dependent variable in the dataset, which is useful as the
features in the fluid dataset are not normally distributed. The outcome of
the support vector regression model is instead heavily dependent on the
choice of the kernel function that is typically selected via tuning.
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Table 4
Optimal neural network tuning parameters.
Parameter Value
Layers 1 Input, 8 Hidden, 1 Output
Input Layer Size 500 Units
Hidden Layer Size 105, 75, 70, 60, 50, 30, 20, 10 Units
Output Layer Size 1 Unit
Activation ReLU
Function
L, Regularization 0.001
Batch Employed After Each Hidden Layer
Normalization
Optimizer Adam
Learning Rate 0.001
p1 Decay Rate 0.9
P, Decay Rate 0.999
Loss Metric MSE
Validation Metric MAPE

Epochs 400 (Early stopping at 30 consecutive epochs with no loss
reduction) (Learning rate divided by 10 at 10 consecutive
epochs with no loss reduction)

Batch Size 200

Validation Split 0.2

4.7. Neural networks

Artificial neural networks (ANNs) are a class of machine learning
methods inspired by the brain. The algorithm accepts inputs that
simulate the function of biological dendrites absorbing information into
a neuron. A transfer function, net input, and activation function act as a
biological cell body that communicates a generated response signal only
if a sufficient amount of information, a metric determined by each in-
dividual neuron, is absorbed via the dendrites. There are endless com-
binations of constructions that can form a neural network. Typically,
basic neural networks begin with an input layer that reads user-entered
values, a hidden layer that conducts a majority of the learning, and an
output layer that displays the results. The network typically reads the
data and converts it into m input vectors each labeled X; [100]. The
connections are then mapped between neurons and labeled using
weights that describe the neuron the information is coming from, i, the
neuron the information is going to, j, and what two layers this connec-

tion lies between, k. These labels take the form wi(jk). When the data is

initially fed into a simple model, the weights often start out assigned at
random. Hidden layers can also take in additional inputs known as bias
terms which are constants, each with their own weight, that describe
how the chunk of information contained within a given neuron com-
pares to the average of the overall data. The bias terms and weighted
inputs in a given neuron are added together and assessed to see if they
contain sufficient information using an activation function ®. A neuron’s
output to the subsequent layer, therefore, can be described as
¥j = O(bj) + k [98]. After all of the outputs are determined, a perfor-
mance function P is used to compare the actual output values to the
predicted ones. This function is usually derived from a user-specified
metric. For the models being conducted on the fluid dataset, the func-
tion used was the mean squared error (MSE) defined as MSE =

i — %)% The neural network iteratively adjusts the weights

) 5P

. . e d I 5P P . .
using the function AW =r <§wO’ gy 6wn) where r is a learning rate

that essentially specifies a step size for the calculation [99]. Then using
back-propagation, the weights are updated with the new values, and the
process can be iterated until the MSE converges at a specified value or
until a pre-specified number of iterations occur. The hidden layers then
connect to an output layer that forms the results into n output vectors
each labeled y;. As the dataset becomes more complex and the number
of hidden layers and mapped connections needed increases, the amount
of computation grows exponentially. The feedforward deep neural
network used on the fluid dataset uses many hidden layers that can
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Table 5
Previous universal saturated flow boiling heat transfer correlations.
Author(s) Equation Remarks
Bertsch et al. hp = hup*S + heoF, Dy = 0.16 — 2.92 mm, G = 20 — 3000 kg/m?s
[101]

S=1-x,F =1+ 80(x? — x6)e06C, C = g

8(ps — pg)D;
huy = 55P10{'12(*logl(}PR)70»55M70‘5q.};10.67: hey = hcb.fo(l —x) + hcbgox
D

0.0668 T"Reﬂ,prf k

hevgo = | 3.66 D 7% | by hepgo =
1+0.04 (T”Refoprf>
Dy
266 0.0668 " RegoPre K

D 2/3 Dh)
1+0.04 (T"Regoprg>

Working fluid: water, nitrogen, methanol, pentane, heptane, benzene,
FC-77,R11, R113, R12, R123, R134a, R141b, R236fa, R245fa, R410A
3,899 data points

Kim & b — (h2 R )0»5 Dp=0.19-6.5mm, G =19 -1608 kg/mzs,
Mudawar ? b T eb) Rey, = 57 — 49,820, Pg = 0.005 - 0.69
[102] P\’ 051 ks Working fluid: water, CO,, FC-72, R11, R113, R123, R1234yf,
hm = |2345(Bo—-) P31 — 0.023Re28prd4) L > T ’ > ’
b [ ( OPF) %> (1= %) ( & Ty )D,.’ R1234ze, R134a, R152a, R22, R236fa, R245fa, R32, R404A, R407C,
by = R410A, R417A
. X 10,805 data points
Pu\"% o2 ~0.51 1\ % (pg) 0% 08p,04) Kf ’
2(Bo-2 052(7 _ 5(— Ze 1023Re28pr04) L
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Fig. 7. Plots showing the Actual vs. Predicted Heat Transfer Coefficients using the correlation from Bertsch et al. [95] for the (a) Full, (b) Microchannel, and (c)

Unicategorical datasets.

better model the complex and nonlinear relationships of the experi-
mental conditions and fluid properties to the heat transfer coefficient.
More so than any of the previous models performed on this dataset,
neural networks contain the greatest number of parameters that need to
be predetermined by the user. It is unlikely that the first neural network
parameters selected by the user is also the one that performs best on
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training dataset and is best able to be generalized to new data when run
using the testing dataset. If the neural network is unable to match the
training dataset very well, it is underfitting the data, and if the testing
error is significantly higher than the training error, the neural network is
likely overfitting the training dataset. The optimal neural network tun-
ing parameters are shown in Table 4.
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Fig. 8. Plots showing the Actual vs. Predicted Heat Transfer Coefficients using the correlation from Kim and Mudawar [96] for the (a) Full, (b) Microchannel, and (c)

Unicategorical datasets.

5. Results and discussion
5.1. Semi-empirical correlations

Seven different types of models were performed using six different
subsets of features on three different subsets of data for a total of 126
models. The features are scaled to a median of 0 and a standard devia-
tion of 1 in order to make sure every feature is initially weighted equally.
These models are compared with each other as well as two semi-
empirical correlations that are used as a baseline. The two primary
universal correlations summarized in Table 5, Berstch et al. [101] and
Kim and Mudawar [102], used databases containing 389 and 10,805
observations respectively, while the fluid database being used here
contains 16,953 observations. Additionally, there are experiments with
fluids contained in this database, such as propane or FC72, that are not
used in some or all of the previous correlations. We must also note that
there are limitations to all of these previous correlations. The correlation
from Berstch et al. [101] requires information regarding the length of
the channel, which is not always provided in the experiments. The
correlation from Kim and Mudawar [102] is only valid for data that
meets the pre-dryout criterion determined by the dryout incipience
quality, another numerically derived correlation that requires additional
calculations and excludes observations beyond a certain threshold.

Nevertheless, these previous correlations provide a well-founded
baseline for comparison when building models for which to predict
the heat transfer coefficient. Heat transfer coefficients were calculated
using the properties measured in the fluid database and compared with
the experimentally measured heat transfer coefficients.

The Bertsch et al. [101] correlation uses approximately 20% of the
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data points of our full dataset and does not include many of the fluids or
experimental conditions, and therefore has a relatively high MAPE of
46.2% for the full dataset, 46.5% for the microchannel dataset, and
50.6% for the unicategorical dataset as shown in Fig. 7(a), (b), and (c)
respectively. The Kim and Mudawar [102] correlation is only valid for
predryout data which, for the full dataset, amounted to 13,479 of the
original 16,953 observations. Nevertheless, it performed more accu-
rately than the Bertsch correlation with an MAPE of 25.7% for the full
dataset, 26.8% for the microchannel dataset, and 20.4% percent for the
unicategorical dataset as shown in Fig. 8(a), (b), and (c) respectively,
and serves as the best point of comparison for future models. With these
metrics able to be used for comparison, we can begin to compare the
results of the models built using the fluid database.

5.2. Model performance

The full results of the models including the type of model, feature
selection method used, dataset, MAPE, and RMSE are included in
Table 6. The support vector machine models in Fig. 9(a), (b), and (c)
produced the best overall models across the full, microchannel, and
unicategorical datasets respectively. This may be due to the significantly
fewer tuning parameters necessary for support vector machines. Support
vector machines are only defined by the kernel function used to trans-
form the data in n-dimensional space, the regularization penalty which
specifies how much distance away from the hyperplane is allowed, and
gamma, which determines how much influence points a given distance
away have on the placement of the hyperplane. Support vector machines
also do not require as much data as other models such as neural net-
works, are less likely to overfit the data, and are more likely to find the
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The full results of the models including the type of model, feature selection method used, dataset, MAPE, RMSE, and average computation time.

Model Type Average Computation Time Feature Selection Method MAPE (Full, Microchannel, RMSE (Full, Microchannel,
(sec) Unicategorical) Unicategorical
Linear 3.5 PCA 46.70%, 43.40%, 44.90% 26851.1, 26354.6, 5149.6
Boruta 26.35%, 28.10%, 23.80% 23146.0, 26317.2, 3688.0
Recursive Partitioning 40.00%, 39.10%, 33.90% 23335.7, 25338.5, 4272.4
Recursive Feature 29.9%, 35.50%, 828.80% 23261.5, 24970.3, 76620.4
Elimination
LASSO 26.95%, 27.06%, 22.73% 23207.3, 25107.8, 3630.7
Stepwise Selection 27.68%, 28.44%, 22.40% 23080.0, 25076.6, 3549.2
GAM 20 PCA 36.18%, 35.72%, 40.57% 7803.9, 6924.3, 4568.0
Boruta 18.32%, 21.60%, 17.29% 4071.7, 5182.2, 3158.4
Recursive Partitioning 26.77%, 27.91%, 26.31% 4460.0, 4784.9, 3936.0
Recursive Feature 20.99%, 26.11%, 29.03% 4395.7, 5690.2, 3980.0
Elimination
LASSO 20.48%, 18.82%, 16.89% 4120.5, 3845.1, 3040.6
Stepwise Selection 20.56%, 21.28%, 18.02% 3781.7, 4117.4, 3002.4
MARS 195 PCA 35.01%, 5.67 x 108%, 44.75% 6690.7,8.4 x 10°, 8972.0
Boruta 20.47%, 21.41%, 14.36% 3852.7, 3896.7, 2455.7
Recursive Partitioning 298.88%, 75.78%, 25.73% 26281.7, 9999.1, 3738.5
Recursive Feature 22.45%, 27.97%, 33.74% 3944.1, 6563.4, 6942.8
Elimination
LASSO 19.86%, 19.92%, 14.34% 3367.3, 4244.2, 2396.6
Stepwise Selection 20.03%, 20.06%, 16.19% 4994.2, 7873.4, 2295.5
Random Forest 252 PCA 35.04%, 34.13%, 32.53% 6445.7, 6744.0, 4754.7
Boruta 16.14%, 16.23%, 15.25% 4473.6, 3409.4, 3395.9
Recursive Partitioning 24.76%, 26.45%, 20.47% 5668.2, 6002.4, 3421.5
Recursive Feature 13.51%, 17.84%, 14.37% 3107.2, 3348.5, 2408.2
Elimination
LASSO 15.30%, 13.97%, 13.05% 2726.0, 2766.7, 2458.6
Stepwise Selection 15.32%, 15.50%, 11.94% 2854.2, 3226.8, 2060.4
GBM 407 PCA 40.39%, 44.58%, 41.24% 7605.9, 8924.7, 5217.8
Boruta 19.60%, 22.63%, 15.16% 8175.0, 4425.3, 2126.3
Recursive Partitioning 33.82%, 33.92%, 29.18% 7852.3, 8552.4, 4039.7
Recursive Feature 22.14%, 21.49%, 17.70% 3506.2, 3849.9, 2388.4
Elimination
LASSO 14.03%, 14.27%, 17.50% 2829.7, 4576.6, 3365.0
Stepwise Selection 20.46%, 20.01%, 12.98% 3534.4, 8321.2, 2153.0
SVM 562 PCA 56.40%, 51.18%, 46.97% 8689.1, 8938.5, 4695.1
Boruta 11.32%, 16.13%, 14.98% 2542.8, 5039.1, 2864.7
Recursive Partitioning 25.17%, 26.05%, 24.92% 5397.1, 5819.4, 3395.6
Recursive Feature 17.78%, 22.43%, 16.82% 4932.8, 5355.3, 3053.5
Elimination
LASSO 16.12%, 11.02%, 10.64% 4737.5, 2641.0, 2293.4
Stepwise Selection 17.15%, 16.26%, 14.80% 4816.2, 5019.3, 2882.7
Neural 878 PCA 70.83%, 72.45%, 47.70% 9890.1, 10284.8, 4937.1
Network Boruta 13.57%, 14.94%, 14.54% 3248.6, 4332.0, 2270.1

Recursive Partitioning
Recursive Feature
Elimination

LASSO

Stepwise Selection

23.79%, 23.72%, 23.93%
15.20%, 17.54%, 13.34%

16.15%, 16.39%, 13.73%
15.88%, 14.23%, 14.66%

4400.6, 4364.4, 3520.4
5853.9, 3549.7, 2536.0

3847.5, 5170.9, 2378.4
3696.6, 3835.2, 2645.1

global optimum in the dataset. For the full dataset, the Boruta selection
method produced the best full dataset model with an MAPE of 11.32%.
Very few observations, including those with large heat transfer co-
efficients, resulted in predicted value outside of a 30% prediction error.
The model used a radial basis function as the kernel and approximately
7583 individual support vectors to predict the heat transfer coefficient.
For the microchannel dataset, the LASSO selection method produced the
best model with an MAPE of 11.02%. The model used a radial basis
function as the kernel and approximately 7302 individual support vec-
tors to predict the heat transfer coefficient. Overall, the microchannel
dataset typically resulted in models that with an average MAPE 2-3%
worse than the full dataset and had very similar patterns of overall
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Pearson correlations (Fig. 6) and feature importance plots (Fig. 10). It is
unlikely that the microchannel dataset has significant usefulness when it
comes to predicting untrained data, and further discussion and analysis
will only address the full and unicategorical datasets as relevant. For the
unicategorical dataset, the LASSO selection method produced the best
overall model with an MAPE of 10.64%. This is the best model con-
ducted with this fluid database. The model used a radial basis function as
the kernel and approximately 2058 individual support vectors to predict
the heat transfer coefficient. This suggests it was almost four times as
easy for the support vector machine to map the unicategorical data as
the full dataset. Some of this could be due to having less data to cate-
gorize while some can also be contributed to fewer outliers and uneven
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Fig. 9. Experimental vs. Predicted heat transfer coefficients for the best performing models (Support Vector Machines) displaying RMSE and MAPE for the (a) Boruta
Selection Method - Full Dataset, (b) LASSO Selection Method - Microchannel Dataset, and (c) LASSO Selection Method - Unicategorical Dataset.

distributions making the data easier to model.

Looking at Table 6, we can see that a number of other models were
able to achieve MAPE values only 2-3 percent higher than the support
vector machines. The support vector machines use the Radial Basis
Function Kernel which is a function that tries to measure the Euclidian
distance between the input data in parametrized space and a fixed point
representing the actual heat transfer coefficient. The only tuning pa-
rameters for support vector machines involve specifying the influence of
a single data point on the ability to shift a support vector, and the
penalty incurred in the model when an observation falls outside the
determined maximum Euclidian distance. Both neural networks and
random forest models have a significantly higher number of tuning
parameters that require adjusting sample sizes, specifying the number of
layers or decisions trees, applying regularization parameters at each
layer, weighing specific features, etc. As a result, there is a higher pos-
sibility that the MAPE values reached using the random forest models
and the neural networks are local minima instead of global minima.

In this study containing a moderately sized dataset with a large
number of potential input variables, support vector machines performed
well because they have a nonlinear mapping function, and they are
tuned to find a balance between minimizing the effect of outliers while
penalizing inaccuracy for each feature. For a medium-sized dataset with
a large number of possible input variables the support vector machine
was better at finding this balance than the neural network or random
forest models, which can be more effected by unevenly distributed input
variables, outlier values, and sampling sizes/methods that are defined
by the user. Tuning models is a time-consuming process with no auto-
mated way of quickly guaranteeing the optimal set of parameters. It is
possible that with additional time and a different approach, higher
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performing random forest models and neural networks could be ach-
ieved. Additionally, the large number of user-defined tuning parameters
for neural networks make them significantly more computationally
expensive. As seen in Table 6, the neural networks took an average of
56% longer to train and run than support vector machines.

Another important feature in determining the efficacy of these
models is interpretability. The Bertsch and Kim & Mudawar correlations
have an MAPE two to four times higher than the support vector machine
or neural network, and they’re limited to a specific range of fluids and
experimental conditions, but they’re extremely interpretable when it
comes to understanding the mathematical relationships between
experimental parameters and the heat transfer coefficient. They have a
mathematical relationship with a known range of error. Support vector
machines build a nonlinear mathematical relationship based on
Euclidian distance in parametrized space, but it is difficult to determine
exact numerical relationships for each variable. With a more specific
kernel function and fewer input variables, it is possible to extract a
mathematical relationship between the input variables and the heat
transfer coefficient, but with such a high level of dimensionality,
normalization, and transformation in this dataset, it’s only feasible to
approximate trends. Neural networks are even more difficult, as the
combination of activation functions, multiple transformation layers,
random sampling, and regularization makes it even more difficult to
determine relationships between the input variables and the output.
Machine learning can improve numerical accuracy at the expense of
interpretability. Lowering the dimensionality of the input variables and
adjusting the kernel function to reflect known mathematical relation-
ships between the input variables and the heat transfer coefficient in the
future may help bridge the gap between semi-empirical correlations and



A. Bard et al.

Overall Feature Importance - Full Dataset

0.25 .
0.20 1
§ S
g 0.15 1
5
a
g
010 ]
0.05 H .
. I
q” x Fr, Cp, D, Fr, G Re; Bo R
(a) Feature

Applied Thermal Engineering 210 (2022) 118305

Overall Feature Importance - Microchannel Dataset

Hﬂﬂﬂﬂ

Fr,

0

R pr Fry Dy Fr, Cp,

Feature

Overall Feature Importance - Unicategorical Dataset

0.20
0.15 |

8

5

5 0.10 |

j=¥

£
0.05 |
0.00

qQ" Cps

(b)
0.5
04

9 03

Q

g

£

Q

j=%

= 02}
0.1

(c) 00

H ’_‘ I O o o o o
X q" Cpy k, Fr, Pe, P We,

Cp,

Feature

Fig. 10. Aggregated Feature Importance for the top 10 most significant variables across all models for the a) full, b) microchannel, and c) unicategorical datasets.

machine learning. Ultimately, the user must decide on the acceptable

balance between interpretability and accuracy.

5.3. Significant feature contributors

Using the Pearson’s correlation plots in Fig. 6 as an initial indicator
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and the aggregate feature importance plots in Fig. 10, it is possible to
identify the variables with the greatest overall contribution to a large
number of models. Looking at the average variable importance across all
models, the quality, heat flux, and vapor-only Froude number were the
most significant contributing features to the models in predicting the
heat transfer coefficient. Further analysis of these top contributors can

ICE Curve
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(b) 0.2

Fig. 11. Individual Conditional Expectation (ICE) curves for Quality () for a support vector machine with the (a) full dataset using the Boruta selection method and

(b) Unicategorical dataset using the LASSO selection method.
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Fig. 12. Individual Conditional Expectation (ICE) curves for the heat flux for a support vector machine with the (a) full dataset using the Boruta selection method and

(b) Unicategorical dataset using the LASSO selection method.

be done using Individual Conditional Expectation (ICE) curves, which
show how the heat transfer coefficient is likely to change across the full
range of values for a given individual variable. The depending variable is
not the heat transfer coefficient directly, but rather a normalized value
equivalent to the transformed dependent variable subtracted from me-
dian of the transformed dependent variable. This a more direct mea-
surement of the influence a given feature has over a modeled variable
when compared to the average (or when the given feature has no in-
fluence at all).

One of the top contributing features when predicting the heat
transfer coefficient is the quality, indicating that the proportion of the
fluid that is a saturated liquid is very influential in the fluid’s effec-
tiveness when transferring heat. A fluid can more effectively transfer
heat within the two-phase regime, so the closer a fluid’s quality is to a
saturated liquid or saturated vapor, the lower the heat transfer coeffi-
cient. This can be seen in the ICE curves for the full and unicategorical
dataset in Fig. 11(a) and (b). Higher qualities tend to cause a sharper
decrease in the heat transfer coefficient, possibly do to the dryout phe-
nomena where an increased relative amount of vapor can lead to less
fluid on the edges of the channel which can lower the fluid’s overall
ability to transfer heat. Looking at the major inflection points for quality
from the support vector machine models using the LASSO selection
method for the unicategorical dataset, it appears that inflection points
occur at qualities of approximately 0.2, 0.58, and 0.75 respectively.
These qualities occur at a wide variety of experimental setup conditions
and working fluids. The overall trend is that the heat transfer coefficient
increases with quality until x is approximately 0.75, where there is a
sharp decrease. This behavior seems to correspond to transition in flow
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boiling regimes discussed in [102] with bubbly flow, annular flow, and
dryout point being the major influencers.

Another flow property not solely dependent on the experimental
conditions or the working fluid is the heat flux. The impact of the heat
flux can be seen in the ICE curves for the full and unicategorical dataset
in Fig. 12(a) and 12(b). There are inflection points that appear to occur
when the heat flux is approximately 6, 10, 14 W/cm? in the uni-
categorical dataset and 42.6, and 82.5 W/cm? for the full dataset. The
two values in the full dataset are likely heavily driven by the Balasu-
bramanian experiment [64], which reports heat flux values significantly
higher than many of the other experiments and is not included in the
unicategorical dataset. The lower three values occur at a wide variety of
experimental setup conditions and working fluids. Two trends are
clearly observed in the curves: first, part of the data shows a drop in heat
transfer after around 5.9 W/cm? corresponding to the nucleate domi-
nant boiling behavior, which is expected from dominant bubbly and slug
flow regimes, and second, the remaining data shows an increase in heat
transfer after 10 W/cm? corresponding to the convective dominant
boiling behavior, which signifies a short bubbly and a long dominant
annular flow regime [94]. In addition, we can see that the heat transfer
coefficient has a strong positive relationship as the heat flux starts to
increase, but it quickly levels off into an independent relationship.

The primary contributing flow characteristic is the Froude number,
specifically the vapor-only Froude number, which describes the relative
flow inertia to the external field. The impact of the vapor-only Froude
number can be seen in the ICE curves for the full and unicategorical
dataset in Fig. 13(a) and (b). There are inflection points appear to occur
when the vapor-only Froude numbers of 2.5e7, 1.1e8, 1.5e8, 2.6e8, and
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Fig. 13. Individual Conditional Expectation (ICE) curves for the vapor-only Froude number (Frg,) for a support vector machine with the (a) full dataset using the
Boruta selection method and (b) unicategorical dataset using the LASSO selection method.
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3.3e8 across both models. Many of the values in the full dataset are
heavily influenced by the outliers in the dataset and the Balasu-
bramanian experiment [64]. Balasubramanian experiment contained
significantly higher than average values for vapor-only Froude numbers
across a large range of the temperature and fluid domain which resulted
in a larger influence on the heat transfer coefficient. In the uni-
categorical dataset, however, the Balasubramanian experiment is not
included, and the result is that the Froude number has a significant
impact on the heat transfer coefficient at lower values as shown in the
sharper initial increase at 2.5e7. Overall additional testing is necessary
to determine the specific nature and numerical values related the trends
between many of these features and the heat transfer coefficient and
investigate the impact of individual experiments that weren’t identified
as outliers in the exploratory data analysis process such as the Balasu-
bramanian experiment [64].

This study represents a thorough examination of feature engineering
and numerical modeling techniques and their potential usefulness when
predicting heat transfer coefficients in microchannels. Designing and
executing physical experiments with microchannels and in thermal en-
gineering at large is typically a costly and intensive process. There is
great utility in machine learning and feature engineering when it comes
to constricting the potential controlled variables and the boundary
conditions of experimental properties. Many thermal engineering
problems are complex analyses with nonlinear components and different
effects late in time. Rather than relying on human factors such as pre-
vious experience and observations of past experiments, machine
learning and feature engineering can be used to refine a smaller set of
physical control variables such as channel diameter, channel length,
type of fluid, temperature, and pressure. Even if the machine learning
model cannot satisfactorily predict the heat transfer coefficient with
enough accuracy to place confidence in the simulation alone, narrowing
the physical design criteria is useful for many complex processes in
thermal engineering.

6. Conclusions

This research was dedicated to developing better models for pre-
dicting the heat transfer coefficient for flow boiling in mini/micro-
channels using machine learning methods. The data used consisted of
a fluid database of experimental data with 16,953 observations from 50
experiments with a total of 12 working fluids. Six different variable
selection methods were used to obtain a varying number and distribu-
tion of features to include when modeling. Seven different modeling
types were used to try and obtain the best predictions for the heat
transfer coefficient. The key findings are as follows:

1. PCA and recursive partitioning did not seem to capture enough
variance in the dataset, while the other four selection methods,
including Boruta, recursive feature elimination, LASSO and stepwise
selection, had mixed success depending on the model and subset of
data being used.

2. The best overall model was obtained using a SVM with the LASSO
selection method on the unicategorical dataset and achieved an
MAPE value of 10.64%, while the best model trained on the full
database used a support vector machine with the Boruta selection
method on the full dataset and achieved an MAPE value of 11.33%.

3. The prediction capability of machine learning models, particularly
SVM, appeared to far exceed the capabilities of semi-empirical cor-
relations such as the Kim and Mudawar correlation.

4. The Froude number, the heat flux, and the quality are significant
contributors to over 90% of all models performed using this fluids
database. The mass velocity, channel roughness, and pressure co-
efficients C,s and C,, are also significant contributors in many
models.
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