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A B S T R A C T   

Flow boiling has become a reliable mode of compensating with larger power densities and greater functions of 
devices because it is able to utilize both the latent and sensible heat contained within a specified coolant. There 
are currently very few available tools proven reliable when predicting heat transfer coefficients during flow 
boiling in mini/micro-channels. The most popular methods rely on semi-empirical correlations derived from 
experimental data. These correlations can only be applied to a very narrow subset of testing conditions. This 
study uses a number of data science methods and techniques to accurately predict the heat transfer coefficient 
during flow boiling in mini/micro-channels on a database consisting of 16,953 observations collected across 50 
experiments using 12 working fluids. Exploratory data science is used to obtain confidence in the data and 
investigate relationships between feature variables before employing machine learning algorithms. Missing data 
is imputed using random forest nonparametric imputation. A variety of feature analysis techniques are employed 
to combine and select different optimal feature variables as input values such as principal component analysis to 
reduce the overall dimensionality of the dataset and the Boruta package, recursive feature elimination, Least 
Absolute Shrinkage and Selection Operator (LASSO) regression, and stepwise selection to reduce the number of 
original variables used when modeling while preserving as much information as possible. A variety of models 
including linear modeling, generalized additive modeling, random forests, support vector machines, and neural 
networks are used to predict the heat transfer coefficient and compare the results with existing universal cor
relations. The support vector machine model performed best, with a Mean Absolute Percentage Error (MAPE) of 
11.3%. The heat flux, vapor-only Froude number, and quality proved to be especially significant contributing 
variables across 90% of over 110 different models. Machine learning proved to be an extremely useful tool when 
predicting the heat transfer coefficient across a variety of different fluids but did struggle to predict extremely 
high outlier data where water was the working fluid.   

1. Introduction 

1.1. Mini and micro-channels for thermal management 

The rapid advancement of high performance electronic systems over 
the past several decades has come with an increasing demand for better 
thermal management systems. Traditional thermal management sys
tems use single-phase liquid or air flows to meet the cooling needs. Flow 
boiling in mini/micro-channels has become a reliable mode of adapting 
to larger power densities because it is able to utilize both the latent and 
sensible heat contained within a specified coolant. Mini/Micro-channels 

have seen popular use when dealing with high density systems because 
of their increased capacity for temperature uniformity, their high power 
density as a result of their high surface area-to-volume ratio, and their 
lower liquid requirement than other traditional modes of convective 
heat transfer due to the normally required much lower mass flow rates 
[1]. In addition, the smaller surface temperature variations, can also 
reduce thermo-mechanical stresses on the objects being cooled and 
improve durability. With advances over the past few decades, mini/ 
micro-channels have also become easy to manufacture in both single 
and multi-channel configurations of various cross-sectional geometries 
[2,3]. Their primary drawbacks include high pressure drops and a pro
pensity for flow instability and two-phase choking. Another drawback is 
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that flow boiling in mini/micro-channels is also a very different phe
nomenon than in macro-channels where many experiments [4,5] and 
modelling [6–8] has been conducted [9]. Current delineations in 
channel size are often arbitrary and do not account for a difference in 
flow behavior. Additionally, established experimental research to 

predict fluid characteristics on a macro-channel level does so under 
turbulent flow conditions, but most conditions on a mini/micro-scale 
level have liquid Reynolds numbers below 2300 and are thus laminar 
[3,10]. As a result, very little macro-channel flow data can be considered 
when looking at flow boiling in mini/micro-channels. 

Nomenclature 

Bd Bond number, Bd = g
(
ρf −ρg

)
D2

h/σ 
Bo Boiling Number, Bo = qH˝/Ghfg 
Co Convection number, Co = [(1 − x)/x ]

0.8(
ρg/ρf

)0.5 

cp Specific heat at constant pressure, [kJ/(kgK)] 
cv Specific heat at constant volume, [kJ/(kgK)] 
Dh Hydraulic diameter of flow channel, [mm] 
Frf Saturated liquid Froude number, Frf =

[G(1 − x)]
2
/
(

ρ2
f gDh

)

Frg Saturated vapor Froude number, Frg = (Gx)
2
/
(

ρ2
g gDh

)

Frfo Liquid-only Froude number, Frfo = G2/
(

ρ2
f gDh

)

Frgo Vapor-only Froude number, Frgo = G2/
(

ρ2
g gDh

)

G Mass velocity, [kg/m2s] 
g Gravity acceleration, [m/s2] 
h Heat transfer coefficient, [kW/(m2K)] 
hfg Latent heat of vaporization, [kJ/(kgK)] 
k Thermal conductivity, [W/(mK)] 
L Channel length, [mm] 
M Molecular mass, [kg/mol] 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
MSE Mean square error 
n Number of input parameters 
P Saturation pressure, [Pa] 
Pc Critical pressure, [Pa] 
Pef Saturated liquid Peclet number, Pef = Ref Prf 
Peg Saturated vapor Peclet number, Peg = Reg Prg 
PF Wetted perimeter of channel, [mm] 
PH Heated perimeter of channel, [mm] 
PR Reduced pressure, PR = Pc/P 
Prf Saturated liquid Prandtl number,Prf = μf cpf /kf 
Prg Saturated vapor Prandtl number,Prg = μgcpg/kg 

q’’ Heat flux, [kJ/m2] 
q’’

H Heat flux based on heated perimeter of channel, [kJ/m2] 
R Relative roughness, R = e/Dh 
R2 Coefficient of determination 
Ref Saturated liquid Reynolds number, Ref = G(1-x)Dh/μf 
Reg Saturated vapor Reynolds number, Reg = GxDh/μg 
Refo Liquid-only Reynolds number, Refo = GDh/μf 
Rego Vapor-only Reynolds number, Rego = GDh/μg 
RMSE Root Mean Square Error 
Suf Saturated liquid Suratman number, 
Sug Saturated vapor Suratman number, 
T Saturation temperature, [K] 

Wef saturated liquid Weber number, Wef =

[G(1 − x)]
2Dh/

(
ρf σ

)

Weg saturated vapor Weber number, Weg = (Gx)
2Dh/

(
ρgσ

)

Wefo liquid-only Weber number, Wefo = G2Dh/
(
ρf σ

)

Wego vapor-only Weber number,Wego = G2Dh/
(
ρgσ

)

X Mole Fraction 
x Quality, generic variable 
Xtt Lockhart-Martinelli parameter,Xtt =

(
μf
μg

)0.1(
1−x

x

)0.9(
ρg
ρf

)0.5 

Greek Symbol 
α Aspect ratio 
β Weighted coefficient 
λ Weighted coefficient error term 
μ Dynamic viscosity 
Φ Principal component weighting factor 
ρ Density 
σ Surface tension 

Subscripts 
cb Convective boiling 
di After diffusion 
f Saturated liquid, fluid 
FB Flow boiling 
fo Liquid only 
g Saturated vapor 
go Vapor only 
nb Nucleate boiling 
obs Observed 
pred Predicted 
tp Two phase 
w Channel wall 
Tt turbulent liquid-turbulent vapor 

Acronyms 
C Circular 
R Rectangular 
H Horizontal 
VU Vertical Upflow 
C + L Copper + Lexan 
S + L Silicon + Lexan 
SS Stainless Steel 
CB Convective Boiling 
NB Nucleate Boiling  

Fig. 1. Different strata of two phase flow. Adapted from: Ghajar et al. [5].  
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1.2. Flow boiling regimes and heat transfer 

Flow boiling behavior is categorized into the different types as shown 
in Fig. 1 based on the presence of bubble formation, coalescence, slug or 
plug formation, or dryout conditions and has often been determined 
with the help of flow-pattern maps such as the one depicted in Fig. 2 
[10,11]. These maps chart the flow behavior on a two-dimensional plane 
as a function of different transition criteria but are often limited to 
adiabatic conditions. Local flow boiling behavior is often necessary for 
design parameters, and many applications use diabatic flow boiling. 
There are many different possible flow regimes that can occur. During 
boiling, the fluid often starts as a pure liquid. As trace amounts of vapor 
begin to appear, small bubbles start to form. The increase in the flow rate 
of that vapor leads to plug flow, and when long, elliptical bubbles form 
in the center and along the length of the channel, slug flow occurs [12]. 
When the shear forces exerted by the vapor center propel the liquid to a 
very thin area along the walls of the channel, annular flow occurs. If 
both gas and liquid flow rates increase, the flow will become an unstable 
churn flow regime pattern. At very high gas flow rates, the liquid film on 
the walls of the channel could be aerosolized into droplets by the fast- 
moving gas in a state known as mist flow [13]. Additionally, Cubaud 
and Ho [14] have identified a wedge flow behavior that exists as an 
intermediary state between bubbly and slug flow where the liquid film 
on the walls of the channel has dry patches which can significantly affect 
pressure drops and thin film evaporation. The pattern behaviors are 
often determined subjectively and can follow numerous naming con
ventions or employ a multitude of subcategories [10]. A way to stan
dardize flow boiling behavior would likely prove valuable in future 
research. These different flow behaviors largely describe different 
ranges of vapor quality, and numerous experiments have shown that key 
heat transfer trends in microchannels fluctuate dramatically at different 
vapor qualities. For example, at lower vapor qualities, the heat transfer 
coefficient has a slightly negative or no relationship to quality, but at 
higher qualities, the heat transfer coefficient has a strong negative 
relationship to quality [15]. Both the Bertsch [101] and Kim & Mudawar 
[102] semi-empirical correlations used as baselines for comparison in 
this study contain vapor quality terms when calculating the heat transfer 
coefficient. Flow boiling instabilities can cause large amplitude oscilla
tions in mass flow rate, pressure, temperature, and other fluid parame
ters and can significantly influence the local heat transfer coefficient. 

Channel surface parameters, surface wettability, thermal conductivity, 
or size of the inlet/outlet manifold can also act as confounding proper
ties that cause flow instability by causing unanticipated rapid nucleation 
or bubble growth [16]. The channel inlets and outlets can be altered in 
some cases to reduce the amount of flow instabilities, but it is unclear as 
to whether these instabilities always lead to lower rates of heat transfer. 
Therefore, the variations in flow behavior and corresponding heat 
transfer makes it difficult to predict the heat transfer coefficients in 
mini/micro-channel. 

1.3. Predicting flow boiling data in mini/micro-channels 

There are currently very few available tools or methods proven 
reliable when predicting heat transfer coefficients during flow boiling in 
mini/micro-channels. The most popular methods rely on empirical and 
semi-empirical correlations [17,18] derived from experimental data. 
These correlations can mostly only be applied to a very narrow subset of 
testing conditions for a very limited variety of fluids, channel sizes, and 
channel geometries [14]. Currently, the results can produce different 
and contradicting trends with high errors if tested outside the devel
opment range based on the experimental setup and procedure used by 
different researchers. These errors can be the result of experimental and 
measurement inaccuracies of input parameters, known as parameter 
uncertainty, or errors in the prediction itself due to approximations 
made when creating the model known as form uncertainty. Another 
predicting method to predict the heat transfer coefficients is the use of 
theoretical models based on the physical behavior of the flow. For 
example, the annular flow condensation model developed by Kim and 
Mudawar [19] can predict steady-state variations of fluid flow and 
thermal behavior including heat transfer coefficient. However, its 
applicability is narrow and limited to annular flow regime. With the 
recent developments in computing techniques, computational fluid dy
namics (CFD) simulations [20–23] has become very promising 
comparing with traditional techniques. The advantages of CFD ap
proaches are capability of predicting transient flow and heat transfer 
behavior with detailed information of void fraction, phase velocities and 
temperatures. However, the low accuracy due to model development 
and the high computational cost have limited the utilization of CFD 
methods [24]. 

Machine learning can help identify and revise elements causing 

Fig. 2. Flow-Pattern Map. Adapted from: Yadigaroglu et al. [6].  
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uncertainty to improve the model’s ability to make accurate predictions. 
Machine learning methods have been used before to try and predict fluid 
characteristics, most commonly Artificial Neural Networks (ANNs) [25]. 
Such methods are useful because they are often able to obtain quicker 
and have a higher probability of generalization than large, numerical 
methods that may require numerous time and data. The trade-off is that 
sometimes the exact process of reaching the end result can be obscured 
within the layers of the ANN or other methods. That is to say that these 
methods do not necessarily follow traditional means to determine the 

solutions but instead learn the solutions using pattern analysis and 
learning from examples. Whereas two phase flow correlations would 
normally require an iterative procedure because of how fluid properties 
depend on temperature, ANNs only need input and output variables to 
train and input samples to test whether or not it recognized the correct 
patterns. Existing models usually use one or two hidden layers and a 
relatively low number of features [2]. 

Table 1 
Displays flow boiling heat transfer data organized by experiment along with relevant experiment setup characteristics [21–70].  

Author(s) Channel 
geometrya 

Channel material Dh [mm] Relative roughness R, 
e/Dh 

Fluid(s) G [kg/m2s] Data 
points 

Wambsganss et al. (1993) C single, H Stainless steel 2.92 Smooth R113 50–300 92 
Tran (1998) C single, H Brass 2.46 Smooth R134a 33–502 302 
Wang et al. (1998) C single, H Copper 6.5 Smooth R22 100–400 63 
Yan and Lin (1998) C multi, H Copper 2.0 – R134a 50–200 137 
Bao et al. (2000) C single, H Copper 1.95 Smooth R11, R123 167–560 164 
Qu and Mudawar (2003) R multi, H Copper + Lexan 

cover 
0.349 – Water 135–402 335 

Sumith et al. (2003) C single, VU Stainless steel 1.45 – Water 23–153 85 
Yun et al. (2003) C single, H Stainless steel 6.0 Smooth R134a, CO2 170–340 182 
Huo et al. (2004) C single, VU Stainless steel 2.01, 4.26 0.0009, 0.0004 R134a 100–500 365 
Lee and Mudawar (2005) R multi, H Copper + Lexan 

cover 
0.349 – R134a 61–657 111 

Saitoh et al. (2005) C single, H Stainless steel 0.51, 1.12, 3.1 Smooth R134a 150, 300 420 
Yun et al. (2005) R multi, H Stainless steel 1.14, 1.53, 1.54 – CO2 200–400 57 
Muwanga and Hassan (2007) C single, H Stainless steel 1.067 – FC72 770–1040 454 
Zhao and Bansal (2007) C single, H Stainless steel 4.57 Smooth CO2 140–231 22 
Agostini et al. (2008) R multi, H Silicon + Lexan 

cover 
0.336 0.0005 R236fa 281–1370 593 

Consolini (2008) C single, H Stainless steel 0.51, 0.79 0.0047, 0.0022 R134a, R236fa, R245fa 274–1435 650 
Bertsch et al. (2009) R multi, H Copper + Lexan 

cover 
0.544, 1.089 <0.0009, <0.0006 R134a, R245fa 19–336 332 

In and Jeong (2009) C single, H Stainless steel 0.19 – R123, R134a 314–470 256 
Mastrullo et al. (2009) C single, H Stainless steel 6.0 Smooth CO2 200–349 143 
Ohta et al. (2009) C single, H Stainless steel 0.51 – FC72 107, 215 24 
Wang et al. (2009) C single, H Stainless steel 1.3 – R134a 321–836 365 
Ducoulombier (2010) C single, H Stainless steel 0.529 0.0015–0.0030 CO2 200–1400 1573 
Hamdar et al. (2010) R single, H Aluminum 1.0 – R152a 210–580 50 
Martín-Callizo (2010) C single, VU Stainless steel 0.64 0.0012 R134a, R22 185–535 381 
Ong (2010) C single, H Stainless steel 1.03, 2.20, 

3.04, 
0.0006, 0.0004, 
0.0003 

R134a, R236fa, R245fa 199–1608 2504 

Tibiriçá and Ribatski (2010) C single, H Stainless steel 2.32 0.0001 R134a, R245fa 50–700 130 
Ali et al. (2011) C single, VU Stainless steel 1.7 0.0001 R134a 75–600 152 
Bang et al. (2011) C single, H Stainless steel 1.73 – Water 100 65 
Copetti et al. (2011) C single, H Stainless steel 2.62 0.0008 R134a 240–932 876 
Mahmoud et al. (2011) C single, VU Stainless steel 1.1 0.0012 R134a 128–549 152 
Oh and Son (2011a) C single, H Stainless steel 4.57 Smooth CO2 400–900 107 
Oh and Son (2011b) C single, H Copper 1.77, 3.36, 5.35 Smooth R134a, R22 200–500 153 
Wu et al. (2011) C single, H Stainless steel 1.42 – CO2 300–600 419 
Costa-Patry & John (2012) R multi, H Copper 0.295 – R134a, 

R245fa, 
R1234ze 

205–569 510 

Karayiannis et al. (2012) C single, VU Stainless steel 1.1 0.0012 R134a 215–550 545 
Li et al. (2012) C single, H Stainless steel 2.0 Smooth R1234yf, R32 100–400 169 
Tibiriçá et al. (2012) C single, H Stainless steel 1.0, 2.2 0.0006, 0.0004 R1234ze 300–600 30 
Balasubramanian et al. (2013) R multi, H Copper 0.489, 0.504 0.00409, 0.00397 water 88–751 332 
Davide Del Col et al. (2013) C single, H Copper 0.96 0.001354 R134a, R1234yf 200–600 93 
Grauso et al. (2013) C single, H Stainless steel 6 Smooth R1234ze(E), R134a 270.75–285.25 575 
Vakili-Farahani et al. (2013) R multi, VU Aluminum 1.44 – R245fa, R1234ze 100–400 138 
Charnay et al. (2014) C single, H Stainless steel 3.0 – R245fa 300–1500 285 
Wang et al. (2014) C single, H Copper 6.0 Smooth Propane 63.9–102.8 127 
Anwar et al. (2015) C single, VU Stainless steel 1.6 0.000594 R1234yf 300–500 256 
Charnay et al. (2015) C single, H Stainless steel 3.0 – R245fa 300–1000 337 
Markal et al. (2016) R multi, H Silicon 0.15 – Water 51–92.6 20 
Xu et al. (2016) C single, H Copper 0.501, 1.084, 

2.0235 
– R134a 185–910 225 

Sempértegui-Tapia & Ribatski 
(2017) 

C multi, H Stainless steel 0.868, 1.1 0.0026, 0.0097 R134a 200–800 685 

Sempértegui-Tapia & Ribatski 
(2017) 

C single, H Stainless steel 1.1 0.0026 R134a, R600a, R1234yf, 
R1234ze 

200–500 862 

Fayyadh et al. (2017) R multi, H Copper 0.42 0.000716 R134a 50–300 50 
Total       16,953  

a C: circular, R: rectangular, H: horizontal, VU: vertical upward. 
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1.4. Objectives of study 

Qiu et al. [26] has amassed a database containing flow boiling heat 
transfer coefficient data from 50 different experiments using a total of 12 
different fluids [27–76]. These experiments collected approximately 61 
different features describing either fluid or channel properties. For the 
experiments conducted, the observed flow boiling behavior ranged from 
flow completely in the vapor region to completely in the liquid region 
and channels, ranging from 0.15 to 6.5 mm in hydraulic diameter. 
Table 1 contains important channel, fluid, and setup information about 
each experiment compiled into the database. This study will use a 
number of data science methods to try and determine a technique that 
can be employed to accurately predict the heat transfer coefficient 
during flow boiling in mini/micro-channels. Exploratory data science 
will be used to obtain confidence in the data and investigate relation
ships between feature variables before employing machine learning al
gorithms. Missing data was filled in using random forest nonparametric 
imputation. A variety of feature analysis techniques were employed to 
combine and select different optimal feature variables as input values 
before training any models including principal component analysis to 

Table 2 
Summaries for all characteristic and numeric variables.  

Characteristic 
Variables 

Fluids CO2, FC72, Propane, R11, R113, R123, 
R1234ze, R1234yf, R134a, R152a, R22, 
R236fa, R245fa, R32, R600a, Water 

Channel Material Stainless Steel, Aluminum, Brass, 
Copper, Copper + Lexan, Silicon, 
Silicon + Lexan 

Channel Geometry Circular, Rectangular 
Channel 
Orientation 

Horizontal, Vertical Up 

Channel Numbers Single, Multi-channels 
Flow Boiling 
Characteristic 

Convective Boiling, Nucleate Boiling  

Numeric 
Variables 

Dh, T, G, x, h, q”, α, R, P, PC, ρg, ρf , hfg, Cv,g, Cv,f , Cp,g , Cp,f , μg, μf , 
kg, kf , σ, PH, PF, Prg, Prf , Reg, Ref , Rego, Refo, Bo, PR, Xtt , Weg, 
Wef , Wego, Wefo, Frg, Frf , Frgo , Frfo, Co, Bd, Sug, Suf , Peg, Pef  

Table 3 
Summaries of all fluid variables.  

Variable Min. 1st Quartile Median Mean 3rd Quartile Max. 

Dh (mm) 0.150 0.529 1.1 1.681 2.2 6.5 
T (K) 233.2 288.1 304.1 302.6 305.1 474.5 
G (kg/m2s) 19.45 299.80 400.00 463.44 568.00 1608.00 
x 0.0001 0.1160 0.272 0.337 0.521 0.998 
h (W/m2K) 292 5490 8620 10,893 13,000 1,614,499 
q“ (W/cm2) 0.215 2.000 3.5 5.896 6.7 95.917 
α 0.104 0.324 0.328 0.918 1.060 3.870 
R 0.000 0.000 0.001 0.001 0.001 0.005 
P (bar) 0.999 3.314 6.078 9.157 7.99 57.291 
Pc(bar) 18.30 36.40 40.59 54.67 40.60 341.59 
ρg(kg/m3) 0.597 18.383 29.539 35.934 40.175 194.2 
ρf (kg/m3) 529.8 1084.5 1183.5 1162.7 1265.6 1593.4 
hfg(kJ/kg) 92.61 163.52 177.35 286.48 194.74 2256.44 
Cv,g(kJ/kg/K) 0.568 0.8113 0.84 0.889 0.872 2.076 
Cv,f (kJ/kg/K) 0.610 0.907 0.92 1.045 0.944 3.768 
Cp,g(kJ/kg/K) 0.658 0.944 1.065 1.2 1.221 4.559 
Cp,f (kJ/kg/K) 0.918 1.352 1.428 1.715 1.539 4.503 
μg(μPa*s) 6.492 11.175 11.869 11.936 12.350 18.187 
μf (μPa*s) 66.15 164.57 193.72 213.17 264.88 456.06 
kg(W/m/K) 0.00940 0.0134 0.0144 0.0153 0.0162 0.0403 
kf (W/m/K) 0.053 0.0742 0.0809 0.113 0.088 0.683 
σ(N/m) 0.0012 0.00724 0.0083 0.0107 0.01 0.0589 
PH(mm) 0.450 2.287 3.456 5.441 6.912 20.420 
PF(mm) 0.596 2.481 3.455 5.498 6.911 20.420 
Prg 0.670 0.812 0.879 0.938 0.937 6.7 
Prf 0.906 3.228 3.414 3.692 4.093 8.914 
Reg 2.9 3504.4 10269.0 19250.1 24418.4 359794.7 
Ref 1.95 640.58 1429.94 2445.88 2888.41 55245.35 
Rego 623.5 21466.3 39099.2 59178.6 73641.0 410851.8 
Refo 27.15 1176.75 2684.29 3819.89 4482.29 55,270 
Bo 3.1 × 10−5 2.4 × 10−4 4.9 × 10−4 7.3 × 10−4 8.7 × 10−4 2.2 × 10−2 

PR 0.00459 0.0861 0.150 0.177 0.202 0.776 
Xtt 0.0006 0.197 0.466 1.637 1.147 590.779 
Weg 0.000 8.707 52.410 231.062 218.998 20918.88 
Wef 0.000 1.753 7.429 27.057 24.174 3139.78 
Wego 1.37 333.64 763.65 1777.61 1905.44 32696.92 
Wefo 0.0069 7.764 21.824 54.169 53.029 3142.589 
Frg 0.0 197.6 1162.4 18957.2 4891.0 2899757.5 
Frf 0.0000 0.941 4.167 15.883 14.215 434.5072 
Frgo 27 4720 15,153 2,220,191 53,536 328,588,796 
Frfo 0.0225 3.117 10.585 32.458 30.750 439.105 
Co 0.00088 0.148 0.319 0.839 0.714 240.050 
Bd 0.00359 0.502 1.743 7.051 7.460 98.608 
Sug 35,116 1,072,748 2,030,903 2,875,745 4,029,987 14,043,660 
Suf 29,502 190,951 290,002 444,463 567,425 3,136,614 
Peg 2.9 3013.3 9346.9 18392.7 23428.8 485744.1 
Pef 7.18 2197.96 5165.76 8813.41 10814.26 181846.28  
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reduce the overall dimensionality of the dataset and the Boruta package, 
variable importance, LASSO regression, genetic algorithms, and step
wise selection to reduce the number of original variables used when 
modeling while preserving as much information as possible. Seven 
different types of modeling were then performed on the datasets 
including multiple linear regression modeling, generalized additive 
modeling, multivariate adaptive regression splines, random forest 
modeling, gradient boosting machines, support vector machines and 
feedforward neural networks. These models were compared to semi- 
empirical correlations and analyzed for significant feature 
contributions. 

2. Exploratory data analysis 

Using machine learning methods to try to predict the heat transfer 
coefficient during multiphase flow in mini/micro-channels requires a 
large database with enough observations to sufficiently represent the 

flow under a variety of possible conditions. If the data used to create the 
model does not adequately represent the flow conditions one may 
encounter when collecting data during two-phase flow conditions, the 
model will not be very accurate. It is important to analyze and assess the 
database being used to define its limits and the limits of any models 
created from it. Data exploration and analysis was done using Rstudio, 
an Integrated Development Environment (IDE) for R, a programming 
language primarily used for statistical analysis, data analytics, and 
graphics visualization [77,78]. 

When performing data analysis, it is important to have data used for 
training models and independent data used for testing. The datasets 
should be representative of similar populations but cannot contain any 
overlapping observations so that data used to verify the model can 
remain completely independent. The dataset was generated to contain a 
total of 53 variables that included characteristic and numeric variables 
as shown in Table 2. 

The training data is 75 percent of the full dataset and is used to help 

Fig. 3. The distribution of Roughness values with (a) values missing and (b) imputed values.  
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teach patterns to the model. The other 25 percent of the data is the 
testing data, which is meant to help understand how the model would 
perform with independent data collected in separate experiments. It 
helps determine performance and accuracy completely free of bias [77]. 
It’s important that the data in both training and testing sets are pro
portionate and representative of the full dataset, so the data is divided 
into 75% and 25% sample sizes while keeping the proportions of each 

individual fluid data equal to their proportions in the full dataset. After 
aggregating and cleaning the data, it is important to get a large overview 
of the dataset and the values for each variable. The six variable sum
maries in Table 3 primarily illuminate the range of each numeric vari
able and the orders of magnitude for each variable compared to each 
other. For example, the Reynolds number ranges from an order of 
magnitude of one to an order of magnitude of 104, the heat transfer 

Fig. 4. Frequency Distributions of Categorical Flow Boiling Variables by (a) Fluid, (b) Channel Material, (c) Channel Geometry, (d) Channel Orientation, (e) Heat 
Transfer Characteristics, and (f) Number of Channels. 
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coefficient ranges from an order of magnitude of 102 to an order of 
magnitude of 106, and the Martinelli parameter ranges from an order of 
magnitude from 10−4 to an order of magnitude of 102. This informs us 
that it will be necessary to scale and center the variables. It is also 
important to get a profile of any missing data in the dataset. 

With 16,953 observations, it is very difficult to know how much is 
missing just by glancing at the dataset. The heat transfer characteristics, 
Roughness, Aspect Ratio, Cv,g and Cv,f all have missing values. The 
channel aspect ratio, is a parameter relevant to only rectangular chan
nels and is not needed for 80% of the observations, so the variable was 
completely removed from the dataset. The channel roughness is missing 
in approximately 34% of observations, and the heat transfer character
istics, Cv,g and Cv,f are missing in approximately 16% of observations. 
These percentages are much smaller and the variables may have some 
correlation with the heat transfer coefficient, so they were not excluded. 
Instead, they were left blank for any method that could be run with 
empty values and filled in using Random Forest Non-Parametric Impu
tation [79]. A random forest algorithm will make the same number of 
decision trees as their observations in the dataset, and then take a 
sample of the same size with replacement from that data set. Each tree is 
split with a random selection of possible variables. The size of this se
lection is determined by the user. The missing variables are then 
imputed using the average values of all trees. A random forest model can 
handle the 53 variables contained in the dataset and identify and report 
the most important contributing variables. It is also able to estimate the 
error on an equivalently sized testing dataset not included in the model, 
known as the Out of Bag (OOB) error. The imputed values have main
tained the approximate distribution of the original dataset, but values 
have been added based on the other variables in the dataset. An example 
of this can be shown in Fig. 3(a) and (b). The OOB error rates for all 
missing values were all on the order of magnitude of 10−7, so consid
ering the percentage of missing values in each variable, and the expected 
contribution to the heat transfer coefficient, this imputed data is 
considered sufficient for future analysis, as there is a low probability of 
any results or conclusions being over reliant on the imputed data. 

The data is very unevenly distributed as observed in Table 1. The 
majority of the data appears to be skewed right, meaning a large number 
of values occupy the lower part of the data range. For example, the heat 
transfer coefficient and dependent variable, h, has a median of 

approximately 8620 W/m2∙K but a maximum value of 1,614,499/m2∙K, 
which appears a bit high. Similar results are observed in a number of 
other variables such as We, Xtt , Fr, Co, Bd, and Re. For these values, it 
appears 90% of the data is concentrated in the lowest two bin widths, or 
approximately the lowest 10% of the range of data, and the rest of the 
data is spread out as far as five standard deviations above the mean. 
Some of this could be caused by outliers, and/or experimental error, but 
more is revealed when looking at the bar frequency charts for categor
ical factor data in Fig. 4. Approximately 7000 observations, over 40% of 
the total data, are from experiments using R134a. Approximately 13,000 
observations, over 75% of the total data, are explained by only 4 of the 
12 different fluids. With this irregular distribution of data, it is more 
likely that the results will demonstrate a network that can predict the 
heat transfer coefficient for a specific subset of conditions than for the 
complete range of conditions represented in the database. When the 
fluid, channel material, channel orientation, heat transfer characteris
tics, channel geometry, and number of channels are all largely skewed in 
favor of one value, it creates unbalanced results and insignificant in
formation for underrepresented conditions [80]. This works against the 
training effects of those conditions and makes validation and testing 
more difficult. Approximately 75% of the data comes from experiments 
that use circular channels rather than rectangular channels and whose 
channels are made out of stainless steel. Over 85% of the data comes 
from experiments that use a single channel over multiple and place the 
channel in a horizontal orientation. By combining this information into a 
stacked bar plot, we can achieve a better visualization of how the 
imbalanced data is distributed in Fig. 5. 

An ideal database would contain equal proportions within each 
factor variable or enough data so that each factor has a representation of 
more than at least 10% of the total number of samples to make sure there 
is a big enough sample size. The channel material and fluid variables 
specifically have some factors with extremely low numbers of observa
tions, such as R152a, which has 38 out of the 16,953 observations in the 
dataset. 

After further exploring many of these variables with extremely un
even distributions, there are three primary correlations for a majority of 
these outlying variables. The first is that a majority of these outliers 
come from experiments using water as the working fluid, especially from 
the Balasubramanian et al. experiment [64]. It’s unclear what specif
ically about this experiment causes significantly higher values for most 

Fig. 5. Stacked Frequency Distributions of Categorical Flow Boiling Variables.  
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of the variables, but one theory is that the experiment uses a signifi
cantly higher magnitude of mass velocity (500–700 kg/m2∙s) compared 
to other experiments using water at much lower magnitudes of mass 
velocities (80–150 kg/m2∙s). The final major correlation is that a sig
nificant portion of the outliers were from experiments conducted using 
channels with diameters greater than 3 mm. There is no definitive 
classification system between microchannels, minichannels, and con
ventional channels, however, one of the most commonly accepted 
classification systems found in existing research differentiates these 
types of channels by using a channel diameter of 3 mm as the threshold 
that separates a microchannel from a minichannel [81]. It is possible 
that the fluid properties in experiments where the channel diameter is 
greater than 3 mm mimic minichannel or conventional channel flow as 
opposed to microchannel flow. 

As a result of this further explanation, all additional methods will be 
conducted on the full dataset and two data subsets to determine if these 
outliers have a significant impact on the ability to predict the heat 
transfer coefficient. The first subset of data, as previously mentioned, 
will contain all observations from the largest single categorical subset of 
data. Looking at Fig. 5, it can be seen that this subset consists of a single 
circular channel made out of stainless steel in a horizontal orientation 
with both nucleate and convection boiling characteristics. All relevant 
fluids used in experiments with the aforementioned channel type were 
used. The second subset will contain all observations from experiments 
with channel diameters of<3 mm. The single categorical dataset con
tains 7245 of the original 16,953 observations and will be referred to as 
the unicategorical dataset, and the microchannel dataset contains 
14,169 observations. 

Correlation plots can provide a look at how variables are related. The 
Pearson’s correlation plots in Fig. 6 (a) can show how all independent 
variables in the full dataset are correlated with h. The heat transfer co
efficient does not have any strong positive or negative correlations with 
a single variable beyond a measure of 0.5, so there are not obvious 
variables to look to include when performing feature selection. The 

results vary from −0.22 to 0.52, which is a moderately weak negative 
correlation to a moderate positive correlation. Looking at the correlation 
values for the microchannel dataset as shown in Fig. 6(b), we see an 
extremely similar trend. The overall range of correlations is the same, 
and the absolute value of the strength of most of the variables is also 
within 0.03–0.05 of the full dataset, but some values with a weak 
negative correlation shift to a weak positive correlation and vice versa. 
For the unicategorical dataset as shown in Fig. 6(c), however, the cor
relations appear to change significantly. There are now 10 variables 
with a positive correlation greater than 0.5 as opposed to 2, and the 
upper limit of the positive correlation values approaches 0.56 instead of 
0.52. Additionally, the lower limit of the negative correlation values 
approaches −0.52 and there are 11 values with a stronger negative 
correlation and the lower limit of the full dataset, −0.22. This indicates 
that it may be easier for a machine learning algorithm to predict the heat 
transfer coefficient for a specific set of variables for a specific case of 
categorical variables as opposed to for the whole dataset. This infor
mation is particularly useful when it comes to dimensionality reduction 
to narrow the total number of input variables. Every additional input 
that a machine learning algorithm incorporates significantly increases 
the total processing time and complexity. 

3. Feature selection 

Dimensionality reduction aims at reducing the number of indepen
dent variables by eliminating those that do not have a significant impact 
on h or performing linear combinations to turn existing variables into 
new variables. Feature selection is a process for calculating and choosing 
the features that contribute most to the dependent variable and 
removing the irrelevant or extraneous features that can decrease the 
accuracy of the model. Feature selection is a common method of 
reducing the number of variables, however, most feature selection 
methods include a manual component of selecting an arbitrary contri
bution value, below which the variables are deemed irrelevant [82]. 

Fig. 6. Pearson’s Correlation vs. h for (a) Full, (b) Microchannel, and (c) Unicategorical datasets.  
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Other variable reducing methods such as Principal Component Analysis 
(PCA) create new variables from linear combinations of existing vari
ables to reduce complexity and dimensionality while minimizing the 
loss of information. Dimensionality reduction using PCA along with five 
different feature selection methods were performed to get a large range 
of different feature sizes and combinations. 

3.1. Principal component analysis 

PCA is a technique that treats each unique variable as a dimension 
and attempts to project all of the data onto a lower set of dimensions 
using linear combinations and removes all of the irrelevant variables 
while maintaining as much of the information as possible [83]. It is an 
unsupervised learning method, meaning the dependent variable is 
removed before the linear combinations are determined. Each of these 
individual linear combinations are known as principal components. If 
there are n predictors numbered p1,p2, ...,pn, there can exist m relevant 
principal components where Zj = Φj

1p1 + Φj
2p2 + ... + Φj

npn. Here, Φ is a 
weighting factor based on the average squared euclidean distance be
tween each predictor, p and placed under a constraint such that the sum 
of the squares of the loading factors is equal to one. The first principal 
component creates a line in a space of p dimensions closest to the n 
observations in the direction of the greatest variance in the dataset. The 
first principal component will capture the largest amount of information 
and variability in the data. The second principal component follows the 
same formula in a direction orthogonal to the first principal component 
while also capturing the greatest amount of the remaining variance that 
is possible. Therefore, there should be zero correlation between any of 
the remaining principal components. All successive principal compo
nents will follow the same trend, capturing the greatest amount of 
remaining variance with zero correlation with the previous components 
[84]. 

3.2. Boruta 

The first algorithm employed for feature selection was the Boruta 
package in R [85]. Boruta utilizes random forest algorithms, similar to 
those used in variable imputation, to assess the importance of each 
feature and keep only those that surpass a threshold. Typically, the 
thresholds used in this type of assessment have a level of arbitrariness to 
them. They are usually assigned a value consistent with common prac
tice or that captures a level of variance or importance that is acceptable 
to the user. Boruta chooses the threshold on its own using shadow fea
tures. Before starting the random forests, Boruta duplicates the entered 
dataset but randomly shuffles the rows within each feature, resulting in 
a permuted “shadow dataset” attached to the original one [86]. Then a 
random forest model is fitted on the combined data frame. This model 
creates a large number of decision trees, which create partitions in the 
data in an attempt to generate a set of variables that capture the greatest 
overall contribution to h. The more accuracy lost due to a random 
partition of values within a variable, the greater the importance of the 
variable [87]. Once a single iteration of the random forest is complete, 
the Z-score for the accuracy loss is calculated across all individual de
cision trees for each feature. This Z-score is compared with the Z-scored 
for the equivalent feature in the “shadow dataset.” If the Z-score is 
greater, i.e., if the average accuracy loss across all decision trees divided 
by the standard deviation is higher than the maximum Z-score of any 
completely randomized feature, that feature is judged to be an important 
contributor in the dataset. This algorithm dictates that a feature is a 
significant contributor to an individual model if the average loss in ac
curacy of a model due to a random partition with respect to a given 
feature is greater than the average loss in accuracy of a model due to a 
random partition with respect to its randomized counterpart [87]. 
Boruta performs 20 or 100 iterations of this procedure while treating 
each variable’s significance or insignificance as a binary outcome of a 

series of trials. This creates a binomial distribution that Boruta uses to 
determine whether or not the variable is rejected, accepted, or tentative 
depending on whether or not the p-value of the number of confirmations 
in 100 trials of a binomial distribution is significantly greater than, 
significantly less than, or around the value of 0.05. This provides a 
statistical benchmark for feature selection in both classification and 
regression problems while still accounting for multivariate correlations 
and dependencies. This is a computationally expensive algorithm with a 
long runtime of approximately 2 h on the same GPU node with 2 cores 
and 36 GB of memory, but it has been shown to produce results that are 
reliable when analyzed alongside other feature selection methods [86]. 

3.3. Recursive partitioning 

Recursive partitioning, or the recursive partitioning method, works 
by creating a decision tree to split the dependent variable into groups as 
homogeneous as possible. Each split is made without consideration for 
how effective the split will be in the future, meaning it focuses on local 
optimization and may not locate the universally best possible decision 
tree [88]. The tree stops splitting when doing so no longer reduces the 
mean squared error when predicting the dependent variable. This 
splitting could potentially continue until each unique value of the heat 
transfer coefficient, a continuous numerical variable in the dataset was 
partitioned, but that would significantly increase the chance of over
fitting any future models. In order to reduce the decision tree to a model 
that appropriately fits the dataset, recursive partitioning adds a penalty 
proportional to the number of branches in the decision tree while 
minimizing the variance of the dependent variable. The variable 
importance metric is the sum of the reduction in the mean squared error 
at each branch of the tree [89]. 

3.4. Recursive feature elimination 

Recursive Feature Elimination (RFE) builds a random forest or other 
specified model using all variables in the dataset, calculates the 
importance for each variable using the reduction in the mean squared 
error at each branch of the tree added together for each variable, similar 
to recursive partitioning, ranks the variables by importance, removes 
the worst variables, builds another model, and repeats the process until 
the pre-specified number of features remain [90]. Each individual 
repetition of this process is known as backwards selection. For each 
dataset, RFE algorithms were performed with 10, 20, 30, 40, 50, 60, and 
all 81 features. 

3.5. LASSO 

LASSO stands for Least Absolute Shrinkage and Selection Operator 
and works by building a regression model with all variables and then 
penalizing the variables with the smallest coefficients by driving them to 
zero to reduce overfitting. That is, the values of scaled variables that 
have a smaller weighted coefficient in a linear model contribute less to 
the overall model and are driven to zero by LASSO [91]. First the dataset 
is trained on a generalized linear model. A generalized linear model is a 
method that models the dependent variable using a linear combination 
of every feature in the dataset with an intercept as a systematic 
component and adds two additional components. The first is a link 
function that uses the linear model to explain the mean of the dependent 
variable. The second is a variance function that uses the mean to 
calculate the variance and probability distribution of the dependent 
variable to try and estimate its randomness. Then the weight of the 
tuning parameter that drives the smallest coefficients to zero is calcu
lated by finding the value that produces the lowest mean squared error 
in the model [92]. All of the remaining nonzero coefficients will be used 
when modeling. 
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3.6. Stepwise selection 

The stepwise selection method works by training first two linear 
models: one with no features included in the training model, only an 
intercept, and one with every feature included when training the model. 
The method then employs an algorithm which iteratively and system
atically adds and subtracts variables from the two models until it reaches 
the model with the lowest Akaike Information Criterion (AIC) score. An 
AIC score is a criterion that evaluates all models in a method relative to 
each other and outputting a value based on the model’s fit to the training 
data and its complexity. A more complex model incurs a higher penalty, 
and a lower AIC score signifies a better model. The model’s fit to the 
training data is measured using likelihood estimation which takes the 
logarithm of the probability of seeing the dependent variable values in 
the training data as an output of the constructed model. The best model 
is the one that achieves the best balance of increasing the number of 
features to have a higher likelihood of achieving outputs closest to the 
values of the heat transfer coefficient while keeping the model’s 
complexity as low as possible. Table A.1 summarizes the amount of and 
which features were selected using each method for each dataset. 

4. Modeling analysis 

Feature selection provided various combinations of independent 
variables that could be used to predict the heat transfer coefficient. This 
allowed us to test various types of models. A total of seven different 
types of models were used to test the six different subsets of variables for 
each of the three datasets for a total of 126 individual models. These 
types of models are: multiple linear regression models, generalized ad
ditive models (GAMs), multivariate adaptive regression splines (MARS), 
random forest models, gradient boosted machines (GBMs), support 
vector machines (SVMs), and artificial neural networks (ANNs). 

The primary measure of accuracy used in comparing and analyzing 
these models will be the Mean Absolute Percentage Error (MAPE), 
defined as the absolute value of the ratio of the difference between the 
observed and predicted values divided by the observed value summed 
for every observation and divided by the total number of observations i. 
e. 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Xobs,i − Xpred,i

Xobs,i

⃒
⃒
⃒
⃒*100 (1) 

This value is used as a primary basis of accuracy for a number of 
reasons [93]. The experimental heat transfer coefficients range from 292 
to 1,614,499 W/m2∙K meaning that a divide by zero or approximate 
situation resulting in an infinite error is unlikely to occur. The mean heat 
transfer coefficient is approximately 11,000, so any RMSE or MAPE used 
in absolute terms will be fairly large. It is easier to comprehend the error 
as a percentage of the average value of the heat transfer coefficient when 
comparing models. The RMSE will still be reported as a secondary 
measure of accuracy and is defined as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1

(
Xobs,i − Xpred,i

)2

n

√

(2)  

4.1. Multiple linear regression models 

Multiple linear regression modeling is the practice of building linear 
models explaining a single, continuous, dependent variable using mul
tiple, continuous or categorical, independent variables. Essentially it 
transforms the simple linear relationship y = mx + B, where y is the 
dependent variable, m is the slope of the line, x is the independent 
variable, and B is the intercept, into a relationship of linear combina
tions that can be described as 

y = β0 + β1x1 + β2x2 + ⋯ + βnxn (3) 

Here, β is a numerical coefficient and x is the value for a dependent 
variable amongst a total of n dependent variables [94]. Each variable is 
only included at the first degree to form a complex linear relationship. 
Many of the models were manually tuned afterwards by selectively 
removing features and performing transformations. For example, it was 
observed that applying a logarithmic or square root transformation to 
the dependent variable dramatically increased the accuracy of the linear 
models. 

4.2. Generalized additive models (GAMs) 

Generalized additive models transform the standard equation 
modeling the response as a combination of linear terms into an equation 
modeling the response as a combination of functions in the form of 

y = β0 + f1(x1) + f2(x2) + ⋯ + fn(xn) (4) 

Each f(x) is its own unique function. This method also maintains the 
additive features of linear models in that each term is specified. GAMs 
assist in eliminating the necessity of deciding the order of a polynomial 
and make models more equipped to deal with high rates of change, 
especially at the extreme ends of the model [95]. These functions, often 
called splines or smooth functions, are summed expansions of simpler, 
weighted basis functions evaluated at the values of each variable. The 
number of basis functions is determined by specifying knots, which are 
specific variables that the user desires to be nonlinear, and the basis 
function is only nonzero for the knot in which it was defined. The default 
basis function for the package used to make these GAMs is thin-plate 
spline function, which is a basis function developed after a physical 
model with a closed solution and few necessary tuning steps but that 
often comes at a higher computational cost. This model is typically seen 
as 

g(y) = β0 + f (x) + λ (5) 

Here, β0 is a simple intercept, f(x) is a function to the nth degree 
where n is often determined for each knot to generalize cross-validation, 
and λ is an error term that smooths the data based on a penalized least 
squares method often likened to the amount of pressure needed to bend 
a thin sheet of metal between variable values x1 and x2 [95]. It is a 
penalized term used to avoid overfitting. This is a useful basis function 
for the fluid dataset because we have very little prior knowledge as to 
the relationships between variables and can therefore not easily deter
mine where knots should be placed and/or to what degree [95]. 

4.3. Multivariate adaptive regression splines (MARS) 

MARS models have a similar foundation of basis functions to GAMS 
but often act as an extension of GAMS because they do not make the 
assumption that the weighted coefficients of independent variables are 
uniform across their range of values. MARS models are also built using 
an iterative method beginning with one of two possible values for basis 
functions. The first is a constant value of 1, signifying an intercept. The 
second is a characteristic hinge function taking the form max(0, x −c)

where x is the value of an independent variable, and c is a constant 
representing the location of a knot that separates two piecewise linear 
functions [96,97]. The basis function can also be the product of two or 
more hinge functions that can model interactions between multiple in
dependent variables. A single independent variable can include multiple 
knots for every instance the linear function changes. MARS models are 
then built by creating independent linear regression models for each 
independent variable and dividing those models across the entire range 
of the independent variable based on where the slope of the line 
changes, and the exact value of the hinge function is determined by the 
maximum reduction in the sum-of-squares residual error [96]. In order 
to counteract overfitting, the MARS model then constructs a least- 
squares model to prune itself by iteratively removing the least influen
tial knots until the best configuration of knots for each variable is 
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determined these configurations are then compared multiple times using 
generalized cross validation [97]. The user can tune this process by 
specifying the degree of interactions at the knots and the number of 
terms to keep during the pruning process. 

4.4. Random forest models 

Random Forests use an ensemble of decisions trees to create parti
tions in the dataset based on which variables can best predict the heat 
transfer coefficient [98]. A process known as bagging limits the variance 
of individual decision trees, but relationships between the independent 
and dependent variables often result in extremely similar tree compo
sition and dependencies between trees. Additional randomness is 
introduced to the dataset using bootstrap resampling while only 
considering some of the variables at each partition within a given de
cision tree. 

4.5. Gradient boosted machines 

Gradient Boosted Machines (GBMs) rely on an extensive network 
(often thousands) of decision trees with a very limited number of par
titions that are dependent and build off one another to learn and, in 
aggregate, produce models with high predictive accuracy. Rather than 
averaging the predictions of independent decision trees, GBMs first 
select a weak learning model as its base-learning model. Typically, and 
in this case, the weak learning model consists of generating shallow 
decision trees with low computational cost. These shallow trees iterate 
and sequentially learn from one another, gradually correcting the ele
ments of the weak model with the most errors in future iterations while 
avoiding overfitting thanks to only making small improvements at a 
time and using cross validation to limit overfitting throughout the pro
cess. Similar to GAMs, each successive decision tree is additive, and the 
overall GBM model can be described using the equation GBM(x) =
∑T

n=1fn(x) where GBM is the overall model, T is the total number of 
decision trees, and f is each individual decision tree [98]. Every subse
quent decision tree is fitted to the residuals of the previous decision tree 
until overfitting is detected via cross validation. 

4.6. Support vector machines 

Support vector machines (SVMs) are a machine learning algorithm 
typically used for classification because their function is to analyze data 
across multiple dimensions and determine the optimal way to separate 
data into different classes. It performs this analysis by transforming the 
data into a higher level of dimensions using a specified kernel function 
that uses a predetermined formula, often based on known statistical 
nonlinear optimization techniques, to transform the data into a higher 
dimensional space before trying to separate the observations [98]. The 
“line” or separator used to differentiate observations in higher dimen
sional space or to predict a continuous dependent variable for a 
regression problem is called a hyperplane. When conducting support 
vector regression, the objective is to define two decision boundaries a 
fixed distance on either side of the hyperplane. This distance is chosen 
based on the data points that lie closest to the hyperplane. This tech
nique is very effective for datasets with many variables because the 
kernel function, while heavily influential to the outcome of the model, 
can effectively transform and enlarge the feature space [99]. Support 
vector regression models also do not dependent on the distribution of 
the features or dependent variable in the dataset, which is useful as the 
features in the fluid dataset are not normally distributed. The outcome of 
the support vector regression model is instead heavily dependent on the 
choice of the kernel function that is typically selected via tuning. 

4.7. Neural networks 

Artificial neural networks (ANNs) are a class of machine learning 
methods inspired by the brain. The algorithm accepts inputs that 
simulate the function of biological dendrites absorbing information into 
a neuron. A transfer function, net input, and activation function act as a 
biological cell body that communicates a generated response signal only 
if a sufficient amount of information, a metric determined by each in
dividual neuron, is absorbed via the dendrites. There are endless com
binations of constructions that can form a neural network. Typically, 
basic neural networks begin with an input layer that reads user-entered 
values, a hidden layer that conducts a majority of the learning, and an 
output layer that displays the results. The network typically reads the 
data and converts it into m input vectors each labeled xi

→ [100]. The 
connections are then mapped between neurons and labeled using 
weights that describe the neuron the information is coming from, i, the 
neuron the information is going to, j, and what two layers this connec
tion lies between, k. These labels take the form w(k)

ij . When the data is 
initially fed into a simple model, the weights often start out assigned at 
random. Hidden layers can also take in additional inputs known as bias 
terms which are constants, each with their own weight, that describe 
how the chunk of information contained within a given neuron com
pares to the average of the overall data. The bias terms and weighted 
inputs in a given neuron are added together and assessed to see if they 
contain sufficient information using an activation function Θ. A neuron’s 
output to the subsequent layer, therefore, can be described as 
yj = Θ(bj) + k [98]. After all of the outputs are determined, a perfor
mance function P is used to compare the actual output values to the 
predicted ones. This function is usually derived from a user-specified 
metric. For the models being conducted on the fluid dataset, the func
tion used was the mean squared error (MSE) defined as MSE =

1
n
∑n

i=1(yi − ŷi)
2. The neural network iteratively adjusts the weights 

using the function Δw→ = r*
(

δP
δw0

, δP
δw1

, ..., δP
δwn

)

where r is a learning rate 

that essentially specifies a step size for the calculation [99]. Then using 
back-propagation, the weights are updated with the new values, and the 
process can be iterated until the MSE converges at a specified value or 
until a pre-specified number of iterations occur. The hidden layers then 
connect to an output layer that forms the results into n output vectors 
each labeled yi

→. As the dataset becomes more complex and the number 
of hidden layers and mapped connections needed increases, the amount 
of computation grows exponentially. The feedforward deep neural 
network used on the fluid dataset uses many hidden layers that can 

Table 4 
Optimal neural network tuning parameters.  

Parameter Value 

Layers 1 Input, 8 Hidden, 1 Output 
Input Layer Size 500 Units 
Hidden Layer Size 105, 75, 70, 60, 50, 30, 20, 10 Units 
Output Layer Size 1 Unit 
Activation 

Function 
ReLU 

L2 Regularization 0.001 
Batch 

Normalization 
Employed After Each Hidden Layer 

Optimizer Adam 
Learning Rate 0.001 
β1 Decay Rate 0.9 
β2 Decay Rate 0.999 
Loss Metric MSE 
Validation Metric MAPE 
Epochs 400 (Early stopping at 30 consecutive epochs with no loss 

reduction) (Learning rate divided by 10 at 10 consecutive 
epochs with no loss reduction) 

Batch Size 200 
Validation Split 0.2  
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better model the complex and nonlinear relationships of the experi
mental conditions and fluid properties to the heat transfer coefficient. 

More so than any of the previous models performed on this dataset, 
neural networks contain the greatest number of parameters that need to 
be predetermined by the user. It is unlikely that the first neural network 
parameters selected by the user is also the one that performs best on 

training dataset and is best able to be generalized to new data when run 
using the testing dataset. If the neural network is unable to match the 
training dataset very well, it is underfitting the data, and if the testing 
error is significantly higher than the training error, the neural network is 
likely overfitting the training dataset. The optimal neural network tun
ing parameters are shown in Table 4. 

Table 5 
Previous universal saturated flow boiling heat transfer correlations.  

Author(s) Equation Remarks 

Bertsch et al.  
[101] 

htp = hnb∙S + hcb∙F,  

S = 1 −x, F = 1 + 80(x2 − x6)e−0.6C, C =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ

g(ρf − ρg)D2
h

√

hnb = 55P0.12
R (−log10PR)

−0.55M−0.5q’’
H

0.67, hcb = hcb,fo(1 −x) + hcb,gox 

hcb,fo =

⎛

⎜
⎜
⎜
⎝

3.66 +
0.0668

Dh

L
RefoPrf

1 + 0.04
(

Dh

L
RefoPrf

)2/3

⎞

⎟
⎟
⎟
⎠

kf

Dh
, hcb,go =

⎛

⎜
⎜
⎜
⎝

3.66 +
0.0668

Dh

L
RegoPrg

1 + 0.04
(

Dh

L
RegoPrg

)2/3

⎞

⎟
⎟
⎟
⎠

kg

Dh
, 

Dh = 0.16 – 2.92 mm, G = 20 – 3000 kg/m2s 
Working fluid: water, nitrogen, methanol, pentane, heptane, benzene, 
FC-77, R11, R113, R12, R123, R134a, R141b, R236fa, R245fa, R410A 
3,899 data points 

Kim & 
Mudawar  
[102] 

htp =
(

h2
nb + h2

cb

)0.5
,  

hnb =

[

2345
(

Bo
PH

PF

)0.7
P0.38

R (1 − x)
−0.51

]
(

0.023Re0.8
f Pr0.4

f

) kf

Dh
,  

hcb =
[

5.2
(

Bo
PH

PF

)0.08
We−0.52

fo (1 − x)
−0.51

+3.5
(

1
Xtt

)0.94(ρg

ρf

)0.25
]

(
0.023Re0.8

f Pr0.4
f

) kf

Dh
, 

Dh = 0.19 – 6.5 mm, G = 19 – 1608 kg/m2s, 
Refo = 57 – 49,820, PR = 0.005 – 0.69 
Working fluid: water, CO2, FC-72, R11, R113, R123, R1234yf, 
R1234ze, R134a, R152a, R22, R236fa, R245fa, R32, R404A, R407C, 
R410A, R417A 
10,805 data points  

Fig. 7. Plots showing the Actual vs. Predicted Heat Transfer Coefficients using the correlation from Bertsch et al. [95] for the (a) Full, (b) Microchannel, and (c) 
Unicategorical datasets. 
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5. Results and discussion 

5.1. Semi-empirical correlations 

Seven different types of models were performed using six different 
subsets of features on three different subsets of data for a total of 126 
models. The features are scaled to a median of 0 and a standard devia
tion of 1 in order to make sure every feature is initially weighted equally. 
These models are compared with each other as well as two semi- 
empirical correlations that are used as a baseline. The two primary 
universal correlations summarized in Table 5, Berstch et al. [101] and 
Kim and Mudawar [102], used databases containing 389 and 10,805 
observations respectively, while the fluid database being used here 
contains 16,953 observations. Additionally, there are experiments with 
fluids contained in this database, such as propane or FC72, that are not 
used in some or all of the previous correlations. We must also note that 
there are limitations to all of these previous correlations. The correlation 
from Berstch et al. [101] requires information regarding the length of 
the channel, which is not always provided in the experiments. The 
correlation from Kim and Mudawar [102] is only valid for data that 
meets the pre-dryout criterion determined by the dryout incipience 
quality, another numerically derived correlation that requires additional 
calculations and excludes observations beyond a certain threshold. 

Nevertheless, these previous correlations provide a well-founded 
baseline for comparison when building models for which to predict 
the heat transfer coefficient. Heat transfer coefficients were calculated 
using the properties measured in the fluid database and compared with 
the experimentally measured heat transfer coefficients. 

The Bertsch et al. [101] correlation uses approximately 20% of the 

data points of our full dataset and does not include many of the fluids or 
experimental conditions, and therefore has a relatively high MAPE of 
46.2% for the full dataset, 46.5% for the microchannel dataset, and 
50.6% for the unicategorical dataset as shown in Fig. 7(a), (b), and (c) 
respectively. The Kim and Mudawar [102] correlation is only valid for 
predryout data which, for the full dataset, amounted to 13,479 of the 
original 16,953 observations. Nevertheless, it performed more accu
rately than the Bertsch correlation with an MAPE of 25.7% for the full 
dataset, 26.8% for the microchannel dataset, and 20.4% percent for the 
unicategorical dataset as shown in Fig. 8(a), (b), and (c) respectively, 
and serves as the best point of comparison for future models. With these 
metrics able to be used for comparison, we can begin to compare the 
results of the models built using the fluid database. 

5.2. Model performance 

The full results of the models including the type of model, feature 
selection method used, dataset, MAPE, and RMSE are included in 
Table 6. The support vector machine models in Fig. 9(a), (b), and (c) 
produced the best overall models across the full, microchannel, and 
unicategorical datasets respectively. This may be due to the significantly 
fewer tuning parameters necessary for support vector machines. Support 
vector machines are only defined by the kernel function used to trans
form the data in n-dimensional space, the regularization penalty which 
specifies how much distance away from the hyperplane is allowed, and 
gamma, which determines how much influence points a given distance 
away have on the placement of the hyperplane. Support vector machines 
also do not require as much data as other models such as neural net
works, are less likely to overfit the data, and are more likely to find the 

Fig. 8. Plots showing the Actual vs. Predicted Heat Transfer Coefficients using the correlation from Kim and Mudawar [96] for the (a) Full, (b) Microchannel, and (c) 
Unicategorical datasets. 
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global optimum in the dataset. For the full dataset, the Boruta selection 
method produced the best full dataset model with an MAPE of 11.32%. 
Very few observations, including those with large heat transfer co
efficients, resulted in predicted value outside of a 30% prediction error. 
The model used a radial basis function as the kernel and approximately 
7583 individual support vectors to predict the heat transfer coefficient. 
For the microchannel dataset, the LASSO selection method produced the 
best model with an MAPE of 11.02%. The model used a radial basis 
function as the kernel and approximately 7302 individual support vec
tors to predict the heat transfer coefficient. Overall, the microchannel 
dataset typically resulted in models that with an average MAPE 2–3% 
worse than the full dataset and had very similar patterns of overall 

Pearson correlations (Fig. 6) and feature importance plots (Fig. 10). It is 
unlikely that the microchannel dataset has significant usefulness when it 
comes to predicting untrained data, and further discussion and analysis 
will only address the full and unicategorical datasets as relevant. For the 
unicategorical dataset, the LASSO selection method produced the best 
overall model with an MAPE of 10.64%. This is the best model con
ducted with this fluid database. The model used a radial basis function as 
the kernel and approximately 2058 individual support vectors to predict 
the heat transfer coefficient. This suggests it was almost four times as 
easy for the support vector machine to map the unicategorical data as 
the full dataset. Some of this could be due to having less data to cate
gorize while some can also be contributed to fewer outliers and uneven 

Table 6 
The full results of the models including the type of model, feature selection method used, dataset, MAPE, RMSE, and average computation time.  

Model Type Average Computation Time 
(sec) 

Feature Selection Method MAPE (Full, Microchannel, 
Unicategorical) 

RMSE (Full, Microchannel, 
Unicategorical 

Linear 3.5 PCA 46.70%, 43.40%, 44.90% 26851.1, 26354.6, 5149.6 
Boruta 26.35%, 28.10%, 23.80% 23146.0, 26317.2, 3688.0 
Recursive Partitioning 40.00%, 39.10%, 33.90% 23335.7, 25338.5, 4272.4 
Recursive Feature 
Elimination 

29.9%, 35.50%, 828.80% 23261.5, 24970.3, 76620.4 

LASSO 26.95%, 27.06%, 22.73% 23207.3, 25107.8, 3630.7 
Stepwise Selection 27.68%, 28.44%, 22.40% 23080.0, 25076.6, 3549.2  

GAM 20 PCA 36.18%, 35.72%, 40.57% 7803.9, 6924.3, 4568.0 
Boruta 18.32%, 21.60%, 17.29% 4071.7, 5182.2, 3158.4 
Recursive Partitioning 26.77%, 27.91%, 26.31% 4460.0, 4784.9, 3936.0 
Recursive Feature 
Elimination 

20.99%, 26.11%, 29.03% 4395.7, 5690.2, 3980.0 

LASSO 20.48%, 18.82%, 16.89% 4120.5, 3845.1, 3040.6 
Stepwise Selection 20.56%, 21.28%, 18.02% 3781.7, 4117.4, 3002.4  

MARS 195 PCA 35.01%, 5.67 × 108%, 44.75% 6690.7,8.4 × 109, 8972.0 
Boruta 20.47%, 21.41%, 14.36% 3852.7, 3896.7, 2455.7 
Recursive Partitioning 298.88%, 75.78%, 25.73% 26281.7, 9999.1, 3738.5 
Recursive Feature 
Elimination 

22.45%, 27.97%, 33.74% 3944.1, 6563.4, 6942.8 

LASSO 19.86%, 19.92%, 14.34% 3367.3, 4244.2, 2396.6 
Stepwise Selection 20.03%, 20.06%, 16.19% 4994.2, 7873.4, 2295.5  

Random Forest 252 PCA 35.04%, 34.13%, 32.53% 6445.7, 6744.0, 4754.7 
Boruta 16.14%, 16.23%, 15.25% 4473.6, 3409.4, 3395.9 
Recursive Partitioning 24.76%, 26.45%, 20.47% 5668.2, 6002.4, 3421.5 
Recursive Feature 
Elimination 

13.51%, 17.84%, 14.37% 3107.2, 3348.5, 2408.2 

LASSO 15.30%, 13.97%, 13.05% 2726.0, 2766.7, 2458.6 
Stepwise Selection 15.32%, 15.50%, 11.94% 2854.2, 3226.8, 2060.4  

GBM 407 PCA 40.39%, 44.58%, 41.24% 7605.9, 8924.7, 5217.8 
Boruta 19.60%, 22.63%, 15.16% 8175.0, 4425.3, 2126.3 
Recursive Partitioning 33.82%, 33.92%, 29.18% 7852.3, 8552.4, 4039.7 
Recursive Feature 
Elimination 

22.14%, 21.49%, 17.70% 3506.2, 3849.9, 2388.4 

LASSO 14.03%, 14.27%, 17.50% 2829.7, 4576.6, 3365.0 
Stepwise Selection 20.46%, 20.01%, 12.98% 3534.4, 8321.2, 2153.0  

SVM 562 PCA 56.40%, 51.18%, 46.97% 8689.1, 8938.5, 4695.1 
Boruta 11.32%, 16.13%, 14.98% 2542.8, 5039.1, 2864.7 
Recursive Partitioning 25.17%, 26.05%, 24.92% 5397.1, 5819.4, 3395.6 
Recursive Feature 
Elimination 

17.78%, 22.43%, 16.82% 4932.8, 5355.3, 3053.5 

LASSO 16.12%, 11.02%, 10.64% 4737.5, 2641.0, 2293.4 
Stepwise Selection 17.15%, 16.26%, 14.80% 4816.2, 5019.3, 2882.7  

Neural 
Network 

878 PCA 70.83%, 72.45%, 47.70% 9890.1, 10284.8, 4937.1 
Boruta 13.57%, 14.94%, 14.54% 3248.6, 4332.0, 2270.1 
Recursive Partitioning 23.79%, 23.72%, 23.93% 4400.6, 4364.4, 3520.4 
Recursive Feature 
Elimination 

15.20%, 17.54%, 13.34% 5853.9, 3549.7, 2536.0 

LASSO 16.15%, 16.39%, 13.73% 3847.5, 5170.9, 2378.4 
Stepwise Selection 15.88%, 14.23%, 14.66% 3696.6, 3835.2, 2645.1  
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distributions making the data easier to model. 
Looking at Table 6, we can see that a number of other models were 

able to achieve MAPE values only 2–3 percent higher than the support 
vector machines. The support vector machines use the Radial Basis 
Function Kernel which is a function that tries to measure the Euclidian 
distance between the input data in parametrized space and a fixed point 
representing the actual heat transfer coefficient. The only tuning pa
rameters for support vector machines involve specifying the influence of 
a single data point on the ability to shift a support vector, and the 
penalty incurred in the model when an observation falls outside the 
determined maximum Euclidian distance. Both neural networks and 
random forest models have a significantly higher number of tuning 
parameters that require adjusting sample sizes, specifying the number of 
layers or decisions trees, applying regularization parameters at each 
layer, weighing specific features, etc. As a result, there is a higher pos
sibility that the MAPE values reached using the random forest models 
and the neural networks are local minima instead of global minima. 

In this study containing a moderately sized dataset with a large 
number of potential input variables, support vector machines performed 
well because they have a nonlinear mapping function, and they are 
tuned to find a balance between minimizing the effect of outliers while 
penalizing inaccuracy for each feature. For a medium-sized dataset with 
a large number of possible input variables the support vector machine 
was better at finding this balance than the neural network or random 
forest models, which can be more effected by unevenly distributed input 
variables, outlier values, and sampling sizes/methods that are defined 
by the user. Tuning models is a time-consuming process with no auto
mated way of quickly guaranteeing the optimal set of parameters. It is 
possible that with additional time and a different approach, higher 

performing random forest models and neural networks could be ach
ieved. Additionally, the large number of user-defined tuning parameters 
for neural networks make them significantly more computationally 
expensive. As seen in Table 6, the neural networks took an average of 
56% longer to train and run than support vector machines. 

Another important feature in determining the efficacy of these 
models is interpretability. The Bertsch and Kim & Mudawar correlations 
have an MAPE two to four times higher than the support vector machine 
or neural network, and they’re limited to a specific range of fluids and 
experimental conditions, but they’re extremely interpretable when it 
comes to understanding the mathematical relationships between 
experimental parameters and the heat transfer coefficient. They have a 
mathematical relationship with a known range of error. Support vector 
machines build a nonlinear mathematical relationship based on 
Euclidian distance in parametrized space, but it is difficult to determine 
exact numerical relationships for each variable. With a more specific 
kernel function and fewer input variables, it is possible to extract a 
mathematical relationship between the input variables and the heat 
transfer coefficient, but with such a high level of dimensionality, 
normalization, and transformation in this dataset, it’s only feasible to 
approximate trends. Neural networks are even more difficult, as the 
combination of activation functions, multiple transformation layers, 
random sampling, and regularization makes it even more difficult to 
determine relationships between the input variables and the output. 
Machine learning can improve numerical accuracy at the expense of 
interpretability. Lowering the dimensionality of the input variables and 
adjusting the kernel function to reflect known mathematical relation
ships between the input variables and the heat transfer coefficient in the 
future may help bridge the gap between semi-empirical correlations and 

Fig. 9. Experimental vs. Predicted heat transfer coefficients for the best performing models (Support Vector Machines) displaying RMSE and MAPE for the (a) Boruta 
Selection Method - Full Dataset, (b) LASSO Selection Method - Microchannel Dataset, and (c) LASSO Selection Method - Unicategorical Dataset. 
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machine learning. Ultimately, the user must decide on the acceptable 
balance between interpretability and accuracy. 

5.3. Significant feature contributors 

Using the Pearson’s correlation plots in Fig. 6 as an initial indicator 

and the aggregate feature importance plots in Fig. 10, it is possible to 
identify the variables with the greatest overall contribution to a large 
number of models. Looking at the average variable importance across all 
models, the quality, heat flux, and vapor-only Froude number were the 
most significant contributing features to the models in predicting the 
heat transfer coefficient. Further analysis of these top contributors can 

Fig. 10. Aggregated Feature Importance for the top 10 most significant variables across all models for the a) full, b) microchannel, and c) unicategorical datasets.  

Fig. 11. Individual Conditional Expectation (ICE) curves for Quality () for a support vector machine with the (a) full dataset using the Boruta selection method and 
(b) Unicategorical dataset using the LASSO selection method. 

A. Bard et al.                                                                                                                                                                                                                                    



Applied Thermal Engineering 210 (2022) 118305

18

be done using Individual Conditional Expectation (ICE) curves, which 
show how the heat transfer coefficient is likely to change across the full 
range of values for a given individual variable. The depending variable is 
not the heat transfer coefficient directly, but rather a normalized value 
equivalent to the transformed dependent variable subtracted from me
dian of the transformed dependent variable. This a more direct mea
surement of the influence a given feature has over a modeled variable 
when compared to the average (or when the given feature has no in
fluence at all). 

One of the top contributing features when predicting the heat 
transfer coefficient is the quality, indicating that the proportion of the 
fluid that is a saturated liquid is very influential in the fluid’s effec
tiveness when transferring heat. A fluid can more effectively transfer 
heat within the two-phase regime, so the closer a fluid’s quality is to a 
saturated liquid or saturated vapor, the lower the heat transfer coeffi
cient. This can be seen in the ICE curves for the full and unicategorical 
dataset in Fig. 11(a) and (b). Higher qualities tend to cause a sharper 
decrease in the heat transfer coefficient, possibly do to the dryout phe
nomena where an increased relative amount of vapor can lead to less 
fluid on the edges of the channel which can lower the fluid’s overall 
ability to transfer heat. Looking at the major inflection points for quality 
from the support vector machine models using the LASSO selection 
method for the unicategorical dataset, it appears that inflection points 
occur at qualities of approximately 0.2, 0.58, and 0.75 respectively. 
These qualities occur at a wide variety of experimental setup conditions 
and working fluids. The overall trend is that the heat transfer coefficient 
increases with quality until x is approximately 0.75, where there is a 
sharp decrease. This behavior seems to correspond to transition in flow 

boiling regimes discussed in [102] with bubbly flow, annular flow, and 
dryout point being the major influencers. 

Another flow property not solely dependent on the experimental 
conditions or the working fluid is the heat flux. The impact of the heat 
flux can be seen in the ICE curves for the full and unicategorical dataset 
in Fig. 12(a) and 12(b). There are inflection points that appear to occur 
when the heat flux is approximately 6, 10, 14 W/cm2 in the uni
categorical dataset and 42.6, and 82.5 W/cm2 for the full dataset. The 
two values in the full dataset are likely heavily driven by the Balasu
bramanian experiment [64], which reports heat flux values significantly 
higher than many of the other experiments and is not included in the 
unicategorical dataset. The lower three values occur at a wide variety of 
experimental setup conditions and working fluids. Two trends are 
clearly observed in the curves: first, part of the data shows a drop in heat 
transfer after around 5.9 W/cm2 corresponding to the nucleate domi
nant boiling behavior, which is expected from dominant bubbly and slug 
flow regimes, and second, the remaining data shows an increase in heat 
transfer after 10 W/cm2 corresponding to the convective dominant 
boiling behavior, which signifies a short bubbly and a long dominant 
annular flow regime [94]. In addition, we can see that the heat transfer 
coefficient has a strong positive relationship as the heat flux starts to 
increase, but it quickly levels off into an independent relationship. 

The primary contributing flow characteristic is the Froude number, 
specifically the vapor-only Froude number, which describes the relative 
flow inertia to the external field. The impact of the vapor-only Froude 
number can be seen in the ICE curves for the full and unicategorical 
dataset in Fig. 13(a) and (b). There are inflection points appear to occur 
when the vapor-only Froude numbers of 2.5e7, 1.1e8, 1.5e8, 2.6e8, and 

Fig. 12. Individual Conditional Expectation (ICE) curves for the heat flux for a support vector machine with the (a) full dataset using the Boruta selection method and 
(b) Unicategorical dataset using the LASSO selection method. 

Fig. 13. Individual Conditional Expectation (ICE) curves for the vapor-only Froude number (Frgo) for a support vector machine with the (a) full dataset using the 
Boruta selection method and (b) unicategorical dataset using the LASSO selection method. 
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3.3e8 across both models. Many of the values in the full dataset are 
heavily influenced by the outliers in the dataset and the Balasu
bramanian experiment [64]. Balasubramanian experiment contained 
significantly higher than average values for vapor-only Froude numbers 
across a large range of the temperature and fluid domain which resulted 
in a larger influence on the heat transfer coefficient. In the uni
categorical dataset, however, the Balasubramanian experiment is not 
included, and the result is that the Froude number has a significant 
impact on the heat transfer coefficient at lower values as shown in the 
sharper initial increase at 2.5e7. Overall additional testing is necessary 
to determine the specific nature and numerical values related the trends 
between many of these features and the heat transfer coefficient and 
investigate the impact of individual experiments that weren’t identified 
as outliers in the exploratory data analysis process such as the Balasu
bramanian experiment [64]. 

This study represents a thorough examination of feature engineering 
and numerical modeling techniques and their potential usefulness when 
predicting heat transfer coefficients in microchannels. Designing and 
executing physical experiments with microchannels and in thermal en
gineering at large is typically a costly and intensive process. There is 
great utility in machine learning and feature engineering when it comes 
to constricting the potential controlled variables and the boundary 
conditions of experimental properties. Many thermal engineering 
problems are complex analyses with nonlinear components and different 
effects late in time. Rather than relying on human factors such as pre
vious experience and observations of past experiments, machine 
learning and feature engineering can be used to refine a smaller set of 
physical control variables such as channel diameter, channel length, 
type of fluid, temperature, and pressure. Even if the machine learning 
model cannot satisfactorily predict the heat transfer coefficient with 
enough accuracy to place confidence in the simulation alone, narrowing 
the physical design criteria is useful for many complex processes in 
thermal engineering. 

6. Conclusions 

This research was dedicated to developing better models for pre
dicting the heat transfer coefficient for flow boiling in mini/micro- 
channels using machine learning methods. The data used consisted of 
a fluid database of experimental data with 16,953 observations from 50 
experiments with a total of 12 working fluids. Six different variable 
selection methods were used to obtain a varying number and distribu
tion of features to include when modeling. Seven different modeling 
types were used to try and obtain the best predictions for the heat 
transfer coefficient. The key findings are as follows:  

1. PCA and recursive partitioning did not seem to capture enough 
variance in the dataset, while the other four selection methods, 
including Boruta, recursive feature elimination, LASSO and stepwise 
selection, had mixed success depending on the model and subset of 
data being used.  

2. The best overall model was obtained using a SVM with the LASSO 
selection method on the unicategorical dataset and achieved an 
MAPE value of 10.64%, while the best model trained on the full 
database used a support vector machine with the Boruta selection 
method on the full dataset and achieved an MAPE value of 11.33%.  

3. The prediction capability of machine learning models, particularly 
SVM, appeared to far exceed the capabilities of semi-empirical cor
relations such as the Kim and Mudawar correlation.  

4. The Froude number, the heat flux, and the quality are significant 
contributors to over 90% of all models performed using this fluids 
database. The mass velocity, channel roughness, and pressure co
efficients Cp,f and Cp,g are also significant contributors in many 
models. 
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[82] A. Jović, K. Brkić, N. Bogunović, A review of feature selection methods with 
applications, in: 2015 38th International Convention on Information and 
Communication Technology, Electronics and Microelectronics (MIPRO) 2015 
(2015) 1200–1205, https://doi.org/10.1109/MIPRO.2015.7160458. 

[83] C.R. Rao, The Use and Interpretation of Principal Component Analysis in Applied 
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