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ALGEBRAIC GROUPS AS DIFFERENCE GALOIS GROUPS OF LINEAR
DIFFERENTIAL EQUATIONS

ANNETTE BACHMAYR AND MICHAEL WIBMER

ABSTRACT. We study the inverse problem in the difference Galois theory of linear differ-

ential equations over the difference-differential field C(z) with derivation % and endomor-

phism f(x) — f(x+ 1). Our main result is that every linear algebraic group, considered as
a difference algebraic group, occurs as the difference Galois group of some linear differential
equation over C(x).

INTRODUCTION

The Galois group of a polynomial over a field is a finite group. The inverse problem in the
Galois theory of polynomials asks to determine, for a given field, which finite groups occur.
For example, for the field C(z) of rational functions over C, it is known that every finite
group occurs (see e.g., [Sza09, Cor. 3.4.4]).

The Galois group of a linear differential equation over a differential field is a linear algebraic
group. The inverse problem in the Galois theory of linear differential equations asks to
determine, for a given differential field, which linear algebraic groups occur. For example,
for the field C(z) with derivation %, it is known that every linear algebraic group occurs.
This was first proved in [TT79], based on the solution of Hilbert’s 215 problem.

A difference-differential field is a field equipped with two commuting operators, a deriva-
tion and an endomorphism, usually denoted with o. The o-Galois group of a linear dif-
ferential equation over a difference-differential field is a linear difference algebraic group,
i.e., a subgroup of a general linear group defined by algebraic difference equations in the
matrix entries. The problem we are concerned with in this article is the inverse prob-
lem in the o-Galois theory of linear differential equations. It asks to determine, for a
given difference-differential field, which difference algebraic groups occur. We are mainly

interested in the difference-differential field C(z) with derivation - and endomorphism

dx
o: C(x) = C(z), f(z)— f(z+1).
As we will show, not every difference algebraic group occurs as a o-Galois group of a linear
differential equation over C(z). In fact, constant subgroups of unipotent linear algebraic
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groups do not occur (Corollary 6.16) and moreover, we isolate two properties that any o-
Galois group over C(z) must have (Theorem 6.1). On the positive side, our main result is
the following:

Theorem (Theorem 5.2). Every linear algebraic group, considered as a difference algebraic
group, occurs as a o-Galois group over C(zx).

If a linear algebraic group G, considered as a difference algebraic group, occurs as a o-
Galois group of a linear differential equation iy’ = Ay, then the Galois group of the linear
differential equation y’ = Ay is the linear algebraic group G. Thus the above theorem
generalizes the solution of the inverse problem in the Galois theory of linear differential
equations over C(x).

Our main tool for the proof of the above theorem is patching. In fact, we establish a
general patching result (Theorem 3.12) for o-Picard-Vessiot rings over difference-differential
fields that we deem of independent interest. Here a o-Picard-Vessiot ring is the analog of
the splitting field in the Galois theory of polynomials. This patching result is analogous
to known patching results in the Galois theories of linear differential equations ([BHH16,
Theorem 2.4]) and parameterized linear differential equations ([Mails, Theorem 2.2]) that
turned out to be very useful in the study of the corresponding inverse problems. We therefore
expect Theorem 3.12 to have further applications in the study of the inverse problem in the
o-Galois theory of linear differential equations.

To put our results into perspective, let us review the state of the art of the inverse problem
in the various Galois theories. The three most relevant Galois theories for us are the following:

(i) The Galois theory of linear differential equations, where the Galois groups are linear
algebraic groups. See e.g. [vdPS03].
(ii) The Galois theory of parameterized linear differential equations, where the Galois
groups are differential algebraic groups. See [CS07] and [Lan08§].
(iii) The o-Galois theory of linear differential equations, where the Galois groups are
difference algebraic groups. See [DVHW14].

Galois theory of linear differential equations. Building on work of several authors, the
inverse problem in the Galois theory of linear differential equations over k(x), where k is an
algebraically closed field of characteristic zero, was eventually solved in [Har05]: All linear
algebraic groups over k occur as Galois groups. For non-algebraically closed fields k, there
are only partial results. For example, if k is a Laurent series field, all linear algebraic groups
over k occur as Galois groups ([BHH16, Theorem 4.14]) and the same holds for £k = Q,
([BHHP20)).

Going beyond the solution of the inverse problem, there has been recent progress in the
study of differential embedding problems and the structure of the absolute differential Galois
group of k(x) using patching techniques. See  BHHW18, BHH18, BHHP20, Wib20, BHHW].

Galois theory of parameterized linear differential equations. If the coefficients of a
linear differential equation depend on an auxiliary parameter, one can differentiate the solu-
tions with respect to this parameter. The Galois group of a parameterized linear differential

equation is a differential algebraic group that measures the algebraic relations among the
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solutions and their derivatives with respect to the auxiliary parameter. From an algebraic
perspective, this setup is modeled by considering a field K with two commuting derivations
d and 0. A typical example is K = C(t, x), where x is the main variable and ¢ the parameter,
i.e., we are interested in linear differential equations with respect to § = % and the 0 = %—
derivatives of their solutions. More generally, if k is a field equipped with a derivation 0,
then K = k(z) is naturally equipped with two commuting derivations, § = % and 0, where
Jd(x) = 0. This Galois theory and its variants have proven to be very useful in questions of
hypertranscendence. See [HS08], [Arr13], [HMO17], [DHR18], [DV12].

The inverse problem in this Galois theory is not well-understood. For example, it is not
known which differential algebraic groups occur as Galois groups over C(t,z). The most
comprehensive result is only available under strong assumptions on k: Building on [MS12],
it was shown in [Drel4] that if £ is a universal 0-field, then a differential algebraic group over
k is a Galois group over k(x) if and only if it is the Kolchin closure of a finitely generated
subgroup. For certain differential algebraic groups, including linear algebraic groups, the
latter condition was translated into group theoretic conditions in [Sin13] and [MOS14].

For k a Laurent series field, it was shown in [Mail5] that a large class of linear algebraic
groups, considered as differential algebraic groups, occur as Galois groups. Also certain
differential algebraic groups occur in this situation ([Bacl8]). On the other hand, it is
also shown in [Bacl8] that many differential algebraic subgroups of the additive or the
multiplicative group do not occur over k(z), unless the 0-field k is fairly big.

o-Galois theory of linear differential equations. The o-Galois theory of linear differ-
ential equations is similar to the Galois theory of parameterized linear differential equations.
Again one considers a linear differential equation depending on a parameter . But instead
of deriving the solutions with respect to ¢, one applies a discrete transformation to ¢t and
the solutions, e.g., t — t + 1. The Galois groups are difference algebraic groups and they
measure the algebraic relations among the solutions and their transforms under a discrete
transformation usually denoted with o. From an algebraic perspective, this setup is modeled
by considering a field K, with two commuting operators, a derivation § and an endomor-
phism o. The inverse problem in this Galois theory is wide open. It appears that beyond
some initial observations in [DVHW17] nothing is known. In this paper, for the first time, a
significant class of difference algebraic groups is shown to occur as Galois groups.

It should also be noted that in [AS17], the authors consider J-Galois groups of linear
difference equations over C(z) with respect to the difference operator either the shift x +—
x + 1, a g-dilation = + gz or a Mahler operator = + x9. For certain classes of solvable
differential algebraic groups, they characterize which groups occur as d-Galois groups. It
seems plausible that using similar methods as in [AS17] it could also be shown that certain
solvable difference algebraic groups (that are not algebraic groups) occur as o-Galois groups.

The direct problem in the above Galois theories is to compute the Galois group of a given
(parameterized) linear differential equation. We note that progress in the inverse problem
can be helpful for the direct problem. For example, if it is already known that the Galois
group of a given (parameterized) differential equation is non-trivial and contained in a certain

group G, the information, that no non-trivial subgroup of GG is a Galois group would already
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imply that the searched for Galois group equals G. As we show (Prop. 6.14) this occurs,
e.g. for the additive group G = G,.

We conclude the introduction with an overview of the article. In the first section we recall
and establish some basic preparatory definitions and results concerning difference algebraic
groups and the o-Galois theory of linear differential equations. The main patching result
(Theorem 3.12) is established in Section 3. Roughly speaking, it states that if two difference
algebraic subgroups H; and Hs of some difference algebraic group occur as Galois groups in
a certain compatible fashion, then also the difference algebraic group generated by H; and
H; occurs. It follows from this result that to realize all linear algebraic groups (considered
as difference algebraic groups) as Galois groups it suffices to realize certain building blocks,
namely, the multiplicative group, the additive group and finite cyclic groups. Building on
work in the second section, these building blocks are then dealt with in Section 4. Our main
result, that all linear algebraic groups (considered as difference algebraic groups) occur as
Galois groups over C(z), where o(f(z)) = f(x + 1), is then established in Section 5. In the
final section we show that not all difference algebraic groups occur as Galois groups over
C(x). In fact, we isolate two properties that any Galois group over C(x) must have. The
fist property is that is has to be o-reduced. This follows rather directly from the fact that
o: C(x) — C(z) is bijective. The second property is o-connectedness. This boils down to
the fact that C(z) does not have any finite difference field extensions. We also show that no
proper non-trivial difference algebraic subgroup of the additive group G, is a o-Galois group
over C(z) and deduce from this that also the constant points of unipotent linear algebraic
groups do not occur.

The authors are grateful to Thomas Dreyfus and David Harbater for helpful discussions
related to the content of this paper.

1. BASICS ON DIFFERENCE (GALOIS THEORY

In this section we recall the necessary definitions concerning difference algebraic groups
and o-Picard-Vessiot theory. We also establish some results of a preparatory nature.
All rings are assume to be commutative and unital.

1.1. Difference algebraic groups. We begin by recalling some basic notions from differ-
ence algebra. Standard references for difference algebra are [Coh65] and [Lev08]. For more
background on difference algebraic groups see [DVHW14, Appendix A] or [Wib].

A difference ring, or o-ring for short, is a ring R together with an endomorphism o: R —
R. A morphism ¢: R — S of o-rings is a morphism of rings such that

R-Y-s
R—-3
commutes. A o-ring is a o-field if the underlying ring is a field.

Let k be a o-ring. A k-o-algebra is a o-ring R together with a morphism & — R of o-rings.

A morphism of k-o-algebras is a morphism of k-algebras that is also a morphism of o-rings.
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For a subset B of R, the smallest k-o-subalgebra of R that contains B is denoted by k{B}.
Note that k{B} is generated by B, c(B),c*(B),... as a k-algebra. If R = k{B} for a finite
subset B of R then R is called finitely o-generated. If R and S are k-o-algebras, then R®y, S
is a k-o-algebra with o defined by o(r ® s) = o(r) ® o(s) for r € R and s € S.

An ideal a of a o-ring R is a o-ideal if o(a) C a. In this case R/a is naturally a o-ring.

The o-polynomial ring k{y} = k{yi,...,yn} over k in the o-variables yi,...,y, is the
polynomial ring over k in the variables o'(y;) (1 < j < n, 0 < 4) with o: k{y} — k{y}
extending o: k — k as suggested by the naming of the variables. If f € k{yi,...,yn}
is a o-polynomial and z = (x1,...,2,) € R" for some k-o-algebra R, then the element
f(z) € R is obtained from f by substituting o*(y;) with o*(z;). For a k-o-algebra R and
F C k{y,...,yn} we set VR(F) = {z € R" | forall f € F : f(z) = 0}. Note that
R ~~ Vg(F) is naturally a functor from the category of k-c-algebras to the category of sets.

Let k be a o-field. A o-variety X over k is a functor R ~» X(R) from the category of
k-o-algebras to the category of sets that is isomorphic (as a functor) to a functor of the form
R ~~ Vg(F) forsomen > 1 and F C k{y1,...,yn}. Thus a functor X from the category of k-
o-algebras to the category of sets is a o-variety if and only if it is representable by a finitely
o-generated k-o-algebra, i.e., there exists a finitely o-generated k-c-algebra S such that
X ~ Hom(S, —). By the Yoneda Lemma, the k-c-algebra S is uniquely determined (up to an
isomorphism) by X. We therefore denote it with £{X } and call it the coordinate ring of X. A
morphism ¢: X — Y of o-varieties is a morphism of functors (i.e., a natural transformation).
Again, by the Yoneda Lemma, the category of o-varieties over k is anti-equivalent to the
category of finitely o-generated k-o-algebras. The morphism dual to ¢: X — Y is denoted
by ¢*: k{Y} — E{X}.

A o-closed o-subvariety Y of a o-variety X is a subfunctor Y of X defined by a o-ideal
a of k{X}, ie, Y(R) ={¢ € Hom(k{X},R) | a C ker(¢))} C Hom(k{X}, R) = X(R) for
every k-o-algebra R. Then Y is a o-variety with £{Y'} = k{X}/a. In terms of equations, if
F C G C k{y}, then R ~» Vg(G) is a o-closed o-subvariety of R ~» Vz(F).

If p: X — Y is a morphism of o-varieties, there exists a unique o-closed o-subvariety
¢(X) of Y such that ¢ factors through ¢(X) and for every other o-closed o-subvariety Z
of Y such that ¢ factors through Z we have ¢(X) C Z ([Wib, Lemma 1.5]). Indeed, ¢(X)
is the o-closed o-subvariety of Y defined by the kernel of ¢*: k[Y] — k[X]. A morphism
¢: X — Y of o-varieties is a o-closed embedding if it induces an isomorphism between X
and a o-closed o-subvariety of Y, i.e., the morphism X — ¢(X) is an isomorphism. This is
equivalent to ¢*: k{Y'} — k{X} being surjective.

The category of o-varieties over k has products. Indeed, if X and Y are o-varieties, the
functor R ~~ X(R) x Y(R) is a product of X and Y with coordinate ring k{X x Y} =
B{X} @0 HY).

If X is a o-variety over k and k'/k is an extension of o-fields, then X} denotes the o-
variety over kK’ obtained from X by base change from k to &', i.e., Xp(R') = X(R') for every
k'-o-algebra R and K'{ X} = k{X} @ k.

For every k-algebra R, there exists a k-o-algebra [o], R together with a morphism R —
[o]i R of k-algebras such that for every k-o-algebra S and k-algebra morphism R — S there



exists a unique morphism [0], R — S of k-o-algebra such that

R [0]: R
N

commutes. Explicitly, [0],R can be described as follows: For i > 0 let "R = R ®; k
denote the k-algebra obtained from the k-algebra R by base change via o'tk — k. Set
R[i] = R®,°R®y ... ®;° R and let 0]z R denote the union of the R[i]’s. We turn [o]; R into
a k-o-algebra by setting

d((ro @A) ®...0rHeoN) =101 ((ry®@c(A))®...0(r; (X)) € R[i + 1]

for (ro@X) ®...®@ (1, @ \i) € R[i]. If : R — S is a morphism of k-algebras, then so is
R — S — [0].S and we obtain a morphism [o]¢: [o]pxR — [0]xS of k-o-algebras. For later
use, we record a lemma:

Lemma 1.1. Let k be a o-field and let ¢: R — S be an injective morphism of k-algebras.
Then also o) : [o]R — [0S is injective.

Proof. The restriction of (o]t to R[i] is y @ ®. . .®7" which is injective. Here, “9: 'R —
'S is obtained from 1: R — S by base change via o': k — k. O

Any affine scheme X of finite type over k can be interpreted as a o-variety. Indeed, the
functor [o]pX from the category of k-o-algebras to the category of sets defined by R ~~
X(R) is a o-variety. If X = Spec(k[X]), then k{[o]yX} = [o|pk[X]. If ¢: X — YV is a
morphism of affine schemes of finite type over k, then [o]p¢: [0]pX — [0]x) defined by
([olkd)r = dr: X(R) — Y(R) for any k-o-algebra R is a morphism of o-varieties. A o-
closed o-subvariety Y of X' is a o-closed o-subvariety of [o]X. Such a Y is defined by a
o-ideal a of [0],k[X] = Uiok[X][i]. The closed subscheme Y[i] of X x °X x ... x 7 X defined
by a N k[X][i] is called the i-th order Zariski closure of Y in X'. Here X denotes the affine
scheme obtained from X by base change via o': k — k. Note that the i-th order Zariski
closure of [0],X, considered as a o-closed g-subvariety of X, is X X X x ... x 7X.

A o-algebraic group G (over k) is a group object in the category of o-varieties over k. For
example, if G is an affine group scheme of finite over k, then [0];G is a o-algebraic group
over k. A o-closed subgroup H of a o-algebraic group G is a o-subvariety such that H(R) is
a subgroup of G(R) for every k-o-algebra R. A o-closed subgroup of an affine group scheme
G of finite type over k is a o-closed subgroup of [¢]xG. If H is a closed subgroup of G, then
[o]xH is a o-closed subgroup of [o];G.

Lemma 1.2 ([Wib, Prop. 2.16]). Every o-algebraic group is isomorphic to a o-closed sub-
group of GL,, for some n > 1.

Let H;, © € I be a family of o-closed subgroups of a o-algebraic group G. Since the
intersection of a family of o-closed subgroups of G is a o-closed subgroup of GG, we see that
there exists a smallest o-closed subgroup (H; | i € I) such that H; is contained in (H; | i € I)

foreveryie I. If G = (H; |i € I), then G is generated by the H;’s.
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1.2. o-Picard-Vessiot theory. We first recall some basic definitions and results from
[DVHW14]. A §-ring is a ring R together with a derivation 6: R — R. An ideal a C R such
that d(a) C a is called a d-ideal. If every d-ideal of R is trivial, R is called 0-simple. The
§-constants of R are R® = {r € R | d(r) = 0}.

A do-ring is a ring R together with a derivation §: R — R and a ring endomorphism
o: R — R such that §(o(r)) = hic(d(r)) for all r € R for some fixed unit # € R°. If R is
a field, we speak of a do-field. There are the obvious notions of a morphism of do-rings, of
do-algebras etc. A typical example of a do-field is the field k(x) of rational functions over a
o-field k, considered as a do-field with § = - and o: k(z) — k(z) extending o: k — k by
o(x) = x. The do-field we are primarily interested in is the field C(z) with derivation § = -
and endomorphism o given by o(f(z)) = f(x + 1).

From now on let I denote a do-field of characteristic zero and let k = F° be the o-field
of d-constants of F'. We consider a linear differential equation d(y) = Ay with a matrix
Ae Frm,

Definition 1.3. A o-Picard-Vessiot ring' for §(y) = Ay is an F-do-algebra R such that
(i) there exists a matriz Y € GL,(R) with §(Y') = AY and R = F{Y,1/det(Y)},
(ii) R is 6-simple and
(iii) R’ = k.

The definition of a (classical) Picard-Vessiot ring for d(y) = Ay is identical to the above
definition other than R = F{Y,1/det(Y)} replaced with R = F[Y,1/det(Y)]. In practice,
o-Picard-Vessiot rings often arise as in the following lemma:

Lemma 1.4. Let E/F be an extension of do-fields such that E° = F°. If A € F™" and
Y € GL,(F) are such that §(Y') = AY, then R = F{Y,1/det(Y)} is a o-Picard-Vessiot ring
for 6(y) = Ay.

Proof. The field of fractions of R is a o-Picard-Vessiot extension for d(y) = Ay in the sense of
[DVHW14, Def. 1.2]. It thus follows from [DVHW14, Prop. 1.5] that R is a o-Picard-Vessiot
ring for §(y) = Ay. O

A o-Picard-Vessiot ring is an integral domain and ¢ and § extend uniquely to the field
of fractions of R. The field of fractions E of a o-Picard-Vessiot ring is a o-Picard-Vessiot
extension. The o-Galois group G of a o-Picard-Vessiot ring R/F' is the functor from the
category of k-o-algebras to the category of groups given by

G(S) = Aut® (R ®, S/F @ S)

for every k-o-algebra S. Here R ®; S is considered as a do-ring with ¢ being the trivial
derivation on S, ie., §(s) = 0 for s € S. The choice of a fundamental solution matrix
Y € GL,(R) for §(y) = Ay determines a o-closed embedding of G into GL,. Indeed,
for every k-o-algebra S and g € G(5) there exists a matrix ¢g(g) € GL,(S) such that
g(Y) = Y¢s(g). Then ¢: G — GL, is a o-closed embedding. We let Gal}?(R/F) denote

IThis definition differs from Definition [DVHW14, Def. 1.2] where the condition R’ = k is dropped.
Definition 1.3 is more convenient for us and [DVHW14, Prop. 1.5] shows that with our definition, o-Picard-

Vessiot rings correspond to o-Picard-Vessiot extensions.
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the image ¢(G) of G in GL,, and call it the o-Galois group of R/F with respect to Y. The
coordinate ring of G is k{G} = (R ®r R)° and the canonical map

(1) R®r k{G} - R®r R
is an isomorphism.

Example 1.5. Consider the differential equation §(y) = y over C(x) equipped with § = d/dz
and the shift operator o, i.e., o(f(x)) = f(x +1). Then R = C(x){e”, e "} is a o-Picard-
Vessiot ring for this equation by Lemma 1.4 applied to the field £ of meromorphic functions.
We compute o(e?) = e*™! = ¢ - e” and conclude R = C(z)[e*, e "]. Let S be a k-c-algebra
and let 7 be an automorphism on R ®c S of (F ®c S)-do-algebras. Then ~ is uniquely
determined by v(e®) and as 7 commutes with J, there exists an o € S* with v(e®) = e*a.
Moreover, v commutes with ¢ and hence o(a) = . Conversely, every a € S with o(a) = «
gives rise to such an automorphism (here we use that e” is transcendental over C(zx)). We
conclude that the o-Galois group of R is the constant subgroup of the multiplicative group:
G(S)={a € 5" | o(a) = a} for all k-c-algebras S.

Let S be a k-o-algebra and g € G(S). Then g: R®; S — R®;, S extends to an automor-
phism ¢: Frac(R®y.S) — Frac(R®y S) on the total ring of fractions of R®y S, which includes
E = Frac(R). An element a € E is invariant under g if g(a) = a. For a o-closed subgroup
H of G, the set of all elements in E that are invariant under H(S) for every k-o-algebra S
is denoted by E¥.

Theorem 1.6 (o-Galois correspondence, [DVHW14, Theorem 3.2]). The map H — E is
an inclusion reversing bijection between the o-closed subgroups of G and the intermediate
do-field of E/F. In particular, E¥ = F if and only if H = G.

The following proposition will be helpful for constructing explicit examples.

Proposition 1.7 ([DVHW14, Prop. 2.15]). Let R = F{Y,1/detY} be a o-Picard-Vessiot
ring for 6(y) = Ay, where A € F"*". Then, F[Y,o(Y),...,c"(Y),1/det(Y ...0%(Y))] is
a (classical) Picard-Vessiot ring with (classical) Galois group isomorphic to the i-th order
Zariski closure of Gall? (R/F) in GL, for everyi > 1.

Corollary 1.8. Let R = F{Y,1/detY} be a o-Picard-Vessiot ring for 6(y) = Ay and
define R; = F|Y,0(Y),...,c'(Y),1/det(Y ...c"(Y))] for i > 1. Let further H < GL,, be a
connected algebraic group with Gall? (R/F) < [o]yH. Then Gall? (R/F) = [o]H if and only
if dim(R;) = (i + 1) dim(H) for all i > 1.

Proof. Set G = Galy?(R/F). By Proposition 1.7, R;/F is a (classical) Picard-Vessiot ring
with (classical) Galois group G[i]. Hence dim(R;) = dim(G[i]) for all i > 1. If G = [o]H,
then G[i] = H x “H x ... x “H ~ H*! and thus dim(R;) = dim(G[i]) = (i + 1) dim(#) for
all i > 1. Conversely, assume that G is properly contained in [o];H. Then the defining ideal
a C [o]kk[H] of G as a o-closed subgroup of [¢]xH is non-zero and so a N k[H][i] is non-zero
for some i > 1. Hence G[i] is properly contained in H x “H X ... x “H ~ H*! and as H*!
is connected, we conclude dim(R;) = dim(G[i]) < dim(H™) = (i + 1) dim(H). O

For later use we record a lemma about the o-Galois group with respect to a fundamental

solution matrix.
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Lemma 1.9. Let R = F{Y,1/det(Y)} be a o-Picard-Vessiot ring for 6(y) = Ay. Then the
following holds.

(i) For every B € GL,(F), R is a o-Picard-Vessiot ring for §(y) = (BAB™'+§(B)B™')y
with fundamental solution matriz BY and we have Gal)%, (R/F) = Gall?(R/F) as
o-closed subgroups of GL,,.

(ii) Let Fy O Fy D F be do-field extensions with F{ = F and suppose that R C Fy as an
F-§o-subalgebra. Then Ry = Fi{Y,1/det(Y)} C Fy is a o-Picard-Vessiot ring over
Iy and @?(Rl/ﬂ) < @?(R/F) as o-closed subgroups of GL,,.

Proof. For (i), define Y = BY. Then 6(Y)Y ! = §(BY )Y 'B~' = BAB~'+§(B)B~!, since
5(Y) = AY. Also R = F{Y,1/det(Y)} = F{Y,1/det(Y)}. Hence R is a o-Picard-Vessiot
ring for §(y) = (BAB™' +46(B)B™!)y with fundamental solution matrix BY . Let S be a k-o-
algebra and let g € Aut® (R®;S/F ®;,5). Then Y "1g(Y) = Y 'B 'Bg(Y) = Y 'g(Y) and
thus the S-rational points of Gal%, (R/F) and Gal’(R/F) coincide as subsets of GL,(S)
and (i) follows.

For (ii), first note that R, is a o-Picard-Vessiot ring over F; by Lemma 1.4, since F{ = F?.
Let S be a k-o-algebra and let g; € Aut®’ (R, ®; S/F; ®; S). Then ¢1(Y) = Ys(g1) with
os(g1) € GL,(S). Hence ¢1(Y) has entries in R ®; S and thus g; restricts to an injective
homorphism g on R ®; S. As R®,, S is generated by the entries of Y = g(Y¢s(g1)™") and
1/det(Y) = g(1/ det(Y¢s(g7 1)), g is surjective and thus an element of Aut’ (R ®y S/F &y
S). As gy is uniquely determined by g;(Y) = ¢(Y), we obtain an inclusion Aut® (R, ®j
S/Fy @ S) < Aut®(R®; S/F @} S) that corresponds to a containment Gall? (Ry/Fy)(S) C
Gal¥? (R/F)(S) as subsets of GL,(S), since Y "1g,(Y) = Y~ 1g(Y). O

2. MULTIPLICATIVE, ADDITIVE, AND FINITE CYCLIC GROUPS AS 0-(GALOIS GROUPS

The patching method will allow to break down the task of realizing a given group G as a
o-Galois group to the task of realizing generating subgroups as o-Galois groups over certain
overfields (see Theorem 3.12). As our task is to realize all algebraic groups as o-Galois groups,
we need to find generating subgroups that we can explicitly realize as o-Galois groups. In
this section, we first prove that every algebraic group can be generated (as a o-algebraic
group) by finitely many subgroups that are each either isomorphic to the multiplicative, or
the additive, or a finite cyclic group. Then we show how these three types of groups can be
realized as o-Galois groups.

2.1. Generating algebraic groups as o-algebraic groups. It is known (see e.g., [BHH16,
Prop. 3.1 ]) that every linear algebraic group over an algebraically closed field of charac-
teristic zero can be generated by finitely many closed subgroups isomorphic to the additive
group G,, the multiplicative group G,, or a finite cyclic group. We will need a slightly refined
version of this result.

Lemma 2.1. Let G be a linear algebraic group over an algebraically closed field of charac-
teristic zero. Then there exist closed subgroups Hi, ..., H, of G such that

(i) each H; is isomorphic to either G,, G, or a finite cyclic group and

(ii) for somen > 1 and (i1,...,1,) € {1,...,7}" the multiplication map

¢: X =H; X ... xH; — G 1is surjective.
9
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Proof. 1t is shown in the proof of [BHH16, Prop. 3.1] that the identity component G° of G
can be generated by finitely many copies of G,’s and G,,’s. According to [Spr09, Cor. 2.2.7],
Condition (ii) above is automatically satisfied for generating subgroups that are connected.
So we can find finitely many closed subgroups Hi, ..., Hs of G° isomorphic to either G, or
G,, such that the multiplication map from #H; x ... x H, to G° is surjective. According
to a result of Borel and Serre ([BS64, Lemma 5.11}), there exists a finite subgroup W of
G that meets every connected component of G. Clearly W, is generated by finite cyclic
groups Hgsi1, - - ., H,, even in the strong sense of (ii). Thus the subgroups Hy, ..., H, satisfy
condition (ii). O

We now transfer the above result to o-algebraic groups.

Proposition 2.2. Let k be an algebraically closed o-field of characteristic zero and let G be
a linear algebraic group over k. Then the o-algebraic group G = [0]xG can be generated by
finitely many o-closed subgroups isomorphic to o) H, where H is G,,, G, or a finite cyclic
group.

Proof. Let Hy,...,H, and ¢: X — G be as in Lemma 2.1 and consider the morphism
lo]kp: X — G of o-varieties, where X = [o]zX = [0]xHi, X ... X [0]gH;.. Then [o]x¢
is the multiplication map, hence ([o]x¢)(X) C ([o]xHi| i = 1,...,7) € G. On the other
hand, ([o]x¢)(X) is the o-closed o-subvariety of G defined by the kernel of ([o]x¢)* =
lo]ko*: kK{G} — k{X}. Since ¢*: k[G] — Ek[X] is injective, also [o]pp*: kK{G} — k{X}
is injective (Lemma 1.1) and so ([0]x¢)(X) = G. Thus G = ([o]yH;| i = 1,...,7) as
desired. O

2.2. Realization of G,,, G, and finite cyclic groups as o-Galois groups. In this sub-
section, we present criteria for when a o-Picard-Vessiot ring has a o-Galois group isomorphic
to the additive group G,, the multiplicative group G,,, or a finite cyclic group (all interpreted
as o-algebraic groups). We let F' denote a do-field of characteristic zero and we let k = F°
be its o-field of d-constants.

We begin with the multiplicative case.

Proposition 2.3. Let L/F be a do-field extension with L’ = F°. Lety € L be an element
such that §(y)y~t € F. Then F{y,y~'} C L is a o-Picard-Vessiot ring with o-Galois group
G isomorphic to a o-closed subgroup of the multiplicative group G,,. We have G ~ [0];G,,
if and only if y,o(y),0%(y), ... are algebraically independent over F.

Proof. Define a = 6(y)y~' € F. By Lemma 1.4, R = F{y,y '} is a o-Picard Vessiot ring for
the differential equation 6(y) = ay. Thus @g”(R/ F) is a o-closed subgroup of GL; = Gy,.
Set G = Gal)’(R/F).

For every i > 1, define R; = Fly,0(y),...,0(y),1/(y...c'(y))]. By Corollary 1.8, G =
[0]kG,, if and only if dim(R;) =i+ 1 for all i > 1. Clearly, dim(R;) = i+ 1 holds if and only
if y,0(y),0%(y),...0'(y) are algebraically independent and the claim follows. O

We next treat the additive case.

Proposition 2.4. Let L/F be a do-field extension with L = F°. Lety € L be an element

such that 6(y) € F. Then F{y} C L is a o-Picard-Vessiot ring with o-Galois group G
10



isomorphic to a o-closed subgroup of the additive group G,. We have G ~ [0]xG, if and only
if y,0(y),0%(y), ... are algebraically independent over F.

Proof. Define a = §(y) € F and define matrices

_ 0 a 2x2 _ 1y
a=(0e)er v (1) eaum,

Then R = F{Y,1/det(Y)} = F{y} is a o-Picard-Vessiot ring for the differential equation
d(y) = Ay by Lemma 1.4. The o-Galois group of R is isomorphic to a o-closed subgroup
of G,. Indeed, if S is a k-o-algebra, g € Aut® (R ®; S/F ®; S) and ¢: G — GL, is the
o-closed embedding associated with the choice of YV, then

< 1 g(y) ) — g(Y) = Yos(g) = < g11 +ygor G12 + Ygo2 ) ’
0 1 g21 g22

where

¢s(g) = < g; i;z ) € GLy(9).

Thus, go1 = 0 and g1; = g0 = 1. This shows that ¢(G) = @?(R/F) is contained in the
o-closed subgroup H ~ [0];G, of GLy defined by

for any k-o-algebra S.
For every ¢ > 1, consider the F-d-algebra

Ri=Fly,o(y),...,0'(y)] = F[Y,o(Y),...,d'(Y),1/det(Y ...0'(Y))].

By Corollary 1.8, Gall?(R/F) = H holds if and and only if dim(R;) = i + 1 for all i >
1. Clearly, dim(R;) = i + 1 holds if and only if y,o(y),0%(y),...,0%(y) are algebraically
independent and the claim follows. 0

Finally, we treat the case of a finite cyclic group.

Proposition 2.5. Let L/F be a do-field extension with L° = F° algebraically closed. Let
y € L be such that y¢ € F for some d € N. Then F{y,y~'} C L is a o-Picard-Vessiot ring
with o-Galois group G isomorphic to a o-closed subgroup of H, where H is the finite cyclic
group of order d (considered as an algebraic group over k). We have G ~ [o]H if and only
if for every i € N, o'(y) has degree d over F(y,o(y),...,0 (y)).

Proof. Let b = y¢ € F. Then §(y) = %y and it follows from Lemma 1.4 that R =
F{y,y™'} = F(y,0(y),...) is a o-Picard-Vessiot ring. For every k-c-algebra S and g €
@za(R/F)(S) < GL1(S) we have b = g(b) = g(y?) = y?g? = bg? and it follows that g¢ = 1.
Thus @Z"(R /F') is a o-closed subgroup of 114, the algebraic group of d-th roots of unity over
k. Since k is algebraically closed, pg4 is isomorphic to H. So G is isomorphic to a o-closed
subgroup of H.

Assume that Gal)”(R/F) = [o]upa. As (0'(y))? = o'(b), o'(y) has degree at most d over
F(y,o(y),..., 0 y)). Fori >0, R, = Fly,...,0'(y)] = F(y,...,0%(y)) is a (classical)
Picard-Vessiot ring with (classical) Galois group isomorphic to ,uf;rl by Proposition 1.7. By
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the (classical) torsor theorem, R; ®r R; & R; ®y, k[p;™]. Hence the dimension of R; as an
F-vector space agrees with the dimension of k[u ZH] as a k-vector space, and the latter is
d*t. Thus [R; : Ro|[Rs : Ri]---[Ri: Ri—1] = d"™' and clearly, the field extension R;/R; 1
has degree at most d for every j > 0, since (07(y))¢ = o (b). Therefore [R; : R;_] = d and
o'(y) has degree d over F(y,c(y),...,a 1 (y)).

Conversely, if F[y,...,o0%(y)] has F-dimension d**! for every i > 1, then the i-th order
Zariski closure of @z"(R/ F) in GL; must equal pg X ... X g and so @g"(R/ F) must
equal [o]g - O

3. PATCHING AND 0-PICARD-VESSIOT THEORY

In this section, we prove a patching result for o-Picard-Vessiot rings that allows us to
glue together two o-Picard-Vessiot rings under certain assumptions. The proof relies on
factorization of the fundamental solution matrices, so it is crucial that the o-Galois groups
of the given o-Picard-Vessiot rings are embedded in GL,, for the same n. Therefore, we start
the section by showing that the represenation of a o-Galois group can be changed without
changing the o-Picard-Vessiot ring.

3.1. Changing the representation of a 0-Galois group. Let F' be a do-field of char-
acteristic zero and R a o-Picard-Vessiot ring over F' with o-Galois group G. The choice of
matrices A € F*" and Y € GL,(R) such that R is a o-Picard-Vessiot ring for d(y) = Ay
with fundamental solution matrix Y, determines a o-closed embedding of G into GL, via
G — @ff(R/ F). The following proposition shows that, conversely, if we start with a
o-closed embedding of G into GL,,, then we can find appropriate matrices A and Y.

Proposition 3.1. Let R/F be a o-Picard Vessiot ring with o-Galois group G and let G' be
a o-closed subgroup of GL,, isomorphic to G. Then there exist A € F™" and Y € GL,(R)
with §(Y) = AY such that R is a o-Picard-Vessiot ring for 6(y) = Ay and Gall?(R/F) = G’

Proof. Let X denote the o-variety over the o-field I’ represented by the F-o-algebra R. Then
X is naturally equipped with a right action ¢: X x Gr — X of the o-algebraic group Gg
over F: Forx € X(9),i.e., x: R — S is amorphism of F-g-algebras, and g € Gg(S) = G(S5)
the element ¢(z, g) € X (5) is the composition

R—R®,SLH R®rS — S,

where the first map is the inclusion into the first factor and the last map sends r ® s to z(r)s.
The morphism X x G — X x X, given by (z,g) — (z,é(z, g)) for x € X(S), g € Gr(S)
for any F-o-algebra S, is an isomorphism, since the dual map R ®r R ~ R ®p F{Gr} =
R ®y k{G} is the isomorphism (1). Thus X is a right Gp-torsor. In [BW, Lemma 4.4] it is
shown that every left torsor for a o-closed subgroup of GL,, is isomorphic to a o-closed o-
subvariety of GLj,, with action given by matrix multiplication. If X is a right G-torsor with
action ¢: X x G — X, then X is a left torsor with action G x X — X, (g,2) — ¢(z, g ).
Therefore, it follows that there exists a o-closed embedding ¢: X — GL, such that the
right action of Gr on X is given by matrix multiplication, where G is identified with the

o-closed subgroup G’ of GL,. The o-closed embedding ¢: X — GL, corresponds to a
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surjective morphism ¢*: F'{Z,1/det Z} — R of F-o-algebras, where Z is an n X n matrix
of o-indeterminates over F. Let Y € GL,(R) denote the image of Z.

For a k-o-algebra S, the action of an element g € G(S) on Y is given by g(Y) = Yy,
where g is considered as an element of GL,(S) via the isomorphism G — G’. Therefore,

9(8(V)Y 1) = 8(g(¥)g(Y) ™ = 6(Yg)(Yg)™ = 6(Y)gg™'Y = S(V)Y.

By Theorem 1.6 we have A = §(Y)Y ! € F™*™ and we see that R is a o-Picard-Vessiot ring
for d(y) = Ay with fundamental solution matrix Y and Gal?(R/F) = G'. O

3.2. A do-setup for applying patching methods. The method of patching over fields
was introduced by Harbater and Hartmann in [HH10]. In the most basic setup, they consider
fields F' C Fi, F, with a common overfield Fy and show that finite dimensional vector spaces
Vi over Fy and V5 over F; together with an isomorphism ¢ : Vi®p, Fo — Vo®p, Fy can be glued
together to an F-vector space V with isomorphisms ¢1: V®p Fy ~ V) and ¢o: V @p Fy, ~ 1,
such that (s ®p, Fy) o (¢1 @p, Fo)~t = ¢ if (F, Fy, Fy, Fy) satisfies two properties called
intersection and factorization. We call such quadruples diamonds with the factorization
property. In [BHHW18]|, we considered differential diamonds with the factorization property.

Definition 3.2. A diamond with the factorization property is a quadruple (F, Fy, Fy, Fy) of
fields with inclusions F C Fy, Fy and Fy, Fy C Fy such that Fy 0 Fy = F (intersection) and
such that for every n € N and every matriz A € GL,,(Fy), there exist matrices B € GL,(F})
and C € GL,(F,) with A= B - C (factorization). If in addition char(F') = 0 and all of the
fields are equipped with a derivation that is compatible with the inclusions, then (F, Fy, Fy, Fp)
1s called a differential diamond with the factorization property. Similarly, if all four fields
are do-fields of characteristic zero such that both § and o are compatible with the inclusions,
then we call (F, Fy, Fy, Fy) a do-diamond with the factorization property.

Over F' = C(x), diamonds with the factorization property arise as fields of meromorphic
functions on suitabel open subsets of X = P{, as the following lemma states.

Lemma 3.3 ([BHHW18|], Lemma 3.4). Let F' be a one-variable function field over C, or
equivalently the field of meromorphic functions on a compact Riemann surface X. Let Oy, Oq
be connected metric open subsets of X such that O; # X, O1UOy = X, and Oy := O1 N Oy
is connected. Let F; be the field of meromorphic functions on O;. Then (F, Fy, Fy, Fy) is a
diamond with the factorization property.

Example 3.4. Let X = P{ be the Riemann sphere and F = C(z). Consider the open
subsets O = {z € P{ | |z| < 1} and Oy = {z € P{ | |z| > 5}. Then O; UO; = X and
the annulus Oy = 01 N Oy = {z € P¢ | 3 < |z| < 1} is connected. Let F; be the field
of meromorphic functions on O;. Then (F, Fy, Fy, Fy) is a diamond with the factorization
property by Lemma 3.3.

Corollary 3.5. Let Uy D Uy D Uz DO -+ and V}, 2 Vo D V3 D --- be chains of proper
connected metric open subsets of the Riemann sphere X = Pg such that U, NV, is connected
and U, UV, = X for allr € N. Let Fy,., Fy. and Fy.ny. denote the fields of meromorphic
functions on U,, V, and U, NV, respectively, and let F = C(x) (the field of meromorphic

functions on X ). Define F} = liﬂFUT (with respect to the natural inclusions Fy, — Fy, for
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r < s) and similarly Fy = hﬂFVr and Fy = ligFUmVT. Then there are natural inclusions
F\,Fy, C Fy and (F, Fy, F5, Fy) is a diamond with the factorization property.

Proof. By Lemma 3.3, (F, Fy., Fy,, Fy,av.) is a diamond with the factorization property for
every r € N. Let f € Fj be contained in the intersection F; N F;. Then there exists an r € N
with f € Fy, N Fy, = F. Thus F; N F, = F. Similarly, for n € N and A € GL,(Fp) there
exists an r € N with A € GL,,(Fy,nv, ). Hence there exist matrices B € GL,,(Fy,) € GL,(F1)
and C € GL,(Fy,.) C GL,(Fy) with A= B - C. O

Example 3.6. Let X = P{ be the Riemann sphere and F' = C(z). Consider the open
subsets U, = {x € P¢ | |#] < 1} and V, = {z € P{ | || > 1 — 1}. Then for all 7 € N,
U, UV, = X and the annulus U, NV, = {z € PL | 1 — I < |z < 1} is connected. Define
F = liﬂFUr, = ligFVT and Fy = @FUMVT- Then F} = Fy, is the field of meromorphic
functions on the open set {zx € PL | |z| < 1}, F is the field of meromorphic functions on the
open set {z € PL | |x| > 1} that are meromorphic in x = 1 and Fy is the field of functions
that are meromorphic in x = 1.

We proceed with a lemma that equips fields ocurring as direct limits as in Corollary 3.5
with a structure of do-fields.

Lemma 3.7. Let Uy D Uy O U3z D --- be a chain of connected metric open subsets of the
Riemann sphere X = P{ and define Fy = ligFUT,. Then the natural derivations 6 on Fy,
induce a derwation d on Fy. If in addition there are homomorphisms o,: Fy, — Fy, ., for
all r € N such that

O Or+1

Fy, — Fy, and Fy,., — Fu,,
Or Or

Fy, — Fu,., Fy, —— Fu,,

commute, then Fy is a do-field with F? = C.

Proof. It is immediate that the derivations on Fy, induce a well-defined derivation on
the direct limit and also that the morphisms {o,},>; induce a well-defined endomorphism
o: F1 — I} that commutes with §. Finally, Fgr = C for all r and thus F? = C. O

In the proof of our main theorem, we will work with the following kind of fields.

Example 3.8. Fix a natural number m € N.

(i) For r € N, let V., = {x € PL | © ¢ [—7,0] + mi} be the connected metric open
subset of the Riemann sphere Pl obtained by deleting the translate [—r, 0] + mi of
the real interval [—r,0]. Note that Vi, 2 Vo, 2 V5,, 2 .... We let Fy, . denote
the field of meromorphic functions on V, ,,,. Then x — z + 1 defines a holomorphic
function V,11,, — Vi, that induces a homomorphism o,: Fy,, — Fy, ,,, for all
r € N. Moreover, o, is compatible with the natural derivations ¢ on Fy,,, and
Fy,,,,, and oy41: Py, — Py, restricts to o,: Fy,, — Fy,,, .. Hence the
direct limit

L(m) = lim Fy, .

reN
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is a do-field with F(m)? = C by Lemma 3.7.
(ii) For r € N, consider the subset

Upm ={z € Pt |z ¢ | J ([, 0] + 1)}
=1
of the Riemann sphere X = P{, where we delete the translates [—r, 0] + ¢, [—r, 0] +
2i,..., [-r,0] +mi of the real interval [—r,0]. Note that U, ,, is a connected metric
open subset of X and Uy, 2 Uyy, 2 Usy, 2 .... Let Fy, , denote the field of
meromorophic functions on U, ,,. Then z — x + 1 defines a holomorphic function
Ury1m — Uy, that induces a homomorphism o,.: Fy, ,, — Fy,,,, foral r € N.
Moreover, o, is compatible with the natural derivations 6 on Fy, . and Fy, ., . and
ors1: Py, — Fu,,.,, testricts to o, Fy,, — Py, ,,. Hence the direct limit
F(m) = lim Fy, ,

reN

is a do-field with F(m)° = C by Lemma 3.7.

Remark 3.9. Note that the o-fields L(m) and F(m) are not inversive, i.e., o is not sur-
jective. For example, the image of o contains no functions with a singularity at the point
(—=1/2 + mi). Assume to the contrary that there exists an f € L(m) or f € F(m) such
that f(x + 1) has a singularity at (—1/2 + mi). Then f has a singularity at 1/2 + mi, a
contradiction.

Using Lemma 3.7, we can now equip diamonds with the factorization property as in
Corollary 3.5 with a do-structure.

Corollary 3.10. Let Uy D Uy D U3 D --- and Vy, D Vo D V3 D --- be chains of proper
connected metric open subsets of the Riemann sphere X = Pg such that U, NV, is connected
and U, UV, = X for all r € N. Let Fy., Fy. and Fy.~v, denote the fields of meromor-
phic functions on U,, V. and U, N'V,, respectively, and let F = C(zx) denote the field of
meromorphic functions on X. Define Fy = liﬂFUr (with respect to the natural inclusions
Fy, — Fy, forr <s) and similarly Fy = ligFVT and Fy = ligFUmVT. For every r > 1 let
o, Fu.nv, = Fu,,ov,,, be a morphism such that o,.(Fy,) C Fy, .., o.(Fyv,) € Fy,,, and

or Or41

FUrﬁVr FUT+1ﬁVr+1 and FUT+1ﬁVr+1 > FUr+2ﬂVr+2
Or Or

Fu.av, — Fu,invips Fu,.av, — Fu,inv,,

commute. Then (F, Fy, Fy, Fy) is a do-diamond with the factorization property.

Proof. By Corollary 3.5, (F, Fy, Fy, Fy) is a diamond with the factorization property. For
all » € N, the fields Fy, are differential fields and the derivation is compatible with the
inclusions Fy, C Fy, for r < s, hence we can equip F; with a derivation and similarly for
F5 and Fy. These derivations are compatible with the natural inclusions F C F, F5 and
Fi, Fy C Fy and thus (F, Iy, Fy, Fy) is a differential diamond with the factorization property.

The morphisms {0, },>; induce a well-defined endomorphism o: Fy — F, that restricts to
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endomorphisms on F; and Fy. Moreover, §(a(f)) = o(d(f)) for all f € Fy and o restricts to
an endomorphism of F' because Fy, N Fy,. = F. Hence (F, Fy, Fy, Fy) is a do-diamond with
the factorization property. O

Using Corollary 3.10, we can now use the fields from Example 3.8 to obtain do-diamonds
(F,F(m —1),L(m), F(m)) for all m € N:

Example 3.11. Consider F' = C(z), X = P{ and fix a natural number m € N. For r € N,
let Uy, Vi.m be as defined in Example 3.8. Hence U, ,,—1 N V,.,, = U, is connected and
Urm-1 UV, = X for all r € N.

Define

F, = lmFy, , =F(m-1)
ﬁ 1
By = lmFy,, = Lim)
reN
FO = hglFUr,mflﬁVr,m = F(m)
reN
By Example 3.8 together with Corollary 3.10, (F, Fy, Fy, Fy) is a do-diamond with the fac-
torization property with F = C = F?.

3.3. A patching result for o-Picard-Vessiot rings. The next theorem allows us to glue
together two o-Picard-Vessiot rings under certain assumptions. The proof is similar to related
statements for Picard-Vessiot rings ([BHH16, Thm. 2.4]) and parameterized Picard-Vessiot
rings ([Mailb, Thm. 2.2]).

Theorem 3.12. Let (F, Fy, Fy, Fy) be a do-diamond with the factorization property such that
k:=F°=F{. Let G be a o-algebraic group over k generated by two o-closed subgroups H;
and Hy. Fori = 1,2, let R;/F; be a o-Picard-Vessiot ring with o-Galois group isomorphic
to H; such that R; C Fy as an F;-do-subalgebra. Then there exists a o-Picard-Vessiot ring
R/ F with o-Galois group isomorphic to G and R C Fy as an F-do-subalgebra.

Proof. According to Lemma 1.2, we can identify G with a o-closed subgroup of GL,, for a
suitable n € N and thus also view H; and Hs as o-closed subgroups of GL,. By Propo-
sition 3.1, for ¢ = 1,2, there exists a differential equation 6(y) = A,y with A; € F""
together with a fundamental solution matrix Y; € GL,(R;) such that Gal{?(R;/F;) = H;.
Since R; C Fy, we can consider the matrix Y;Y, ' € GL,(F,). The factorization property
implies that there exist matrices By € GL,(F}), By € GL,(F3) with Y1Y2_1 = Bl_lBg. Define
Y = B,Y; = ByYs € GL,(Fp) and A =6(Y)Y ! € F". Then for both i = 1,2,

A = §BY)Y B
= §(B)B; ' + BiA;B; ! € F
As F1 N Fy, = F,, we conclude that A has entries in F'. Consider the differential equation
5(y) = Ay over F and define R = F{Y,1/det(Y)} C Fy. Since F} = F°, R is a o-
Picard-Vessiot ring over F for §(y) = Ay by Lemma 1.4. Define H = Gal)?(R/F). We

claim that H = G as o-closed subgroups of GL,. For i = 1,2, R; = F{Y;,1/det(Y;)} =
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FA{Y,1/det(Y)} and
H; = Gal¥ (R;/F,) = Galy . (R;/F;) = Galy? (R;/ F))

by Lemma 1.9.(i). Furthermore, Gal$? (R;/F;) < Gal’?(R/F) by Lemma 1.9.(ii) as o-closed
subgroups of GL,,. Hence Hy, H, < H inside GL,, and thus G < H.
For both 7 =1, 2,
Frac(R)¢ C Frac(R)" C Frac(R;)" = F,
where the last equality follows from Theorem 1.6. Hence Frac(R)¢ C Fy N Fy, = F and
therefore G = H by Theorem 1.6. U

4. BUILDING BLOCKS

Theorem 3.12 breaks down the problem of realizing a given group as o-Galois group over
F = C(x) to the task of realizing suitable building blocks, i.e., realizing suitable, generating
subgroups as o-Galois groups over certain overfields of F. In this section, we explicitly
construct these building blocks.

4.1. Independence of translates. In this subsection, we provide results on the algebraic
or linear independence of translates of certain exponential, logarithmic and root functions
as a preparation for constructing o-Picard-Vessiot rings with o-Galois groups isomorphic to
[o]cH for H = G,,, G,, or a finite cyclic group.

The following lemma corresponds to the case H = G,,.

Lemma 4.1. For v € C, the (infinite) set of functions

1 1 1
eW(f-V)£m<x+1—v)£w<x+2—v)’

is algebraically independent over C(z).

Proof. Assume to the contrary that the set is algebraically dependent. Then there exists

1
T+m—y
By the theorem of Kolchin-Ostrowski (see e.g. Section 2 in [Kol68]), this can only happen if

there exist a non-zero vector (eq, ..., e,) € Z™ with

11 (o () <o

A T

foom@ti—n)?
On the other hand, we can factor f = « H;.:l(a: — ;)™ for suitable o € C, pairwise distinct
elements a; € C and n; € Z. Thus

an m € N such that exp ( ) exp (ﬁ) y .., €XP are algebraically dependent.

We compute

——ozg
:c—ozj

a contradiction. O
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We next treat the case H = G,.
Lemma 4.2. For v € C, the (infinite) set of functions

1 1 1
1 —+1),1 —+1),l —+1],...
Og<x—7+ ) Og(x+1—v+ ) Og<x+2—v+ )
is algebraically independent over C(x).

Proof. Assume to the contrary that the set is algebraically dependent. Then there exists

an m € N such that log (ﬁ%—l),log(wl ﬁ/—l—l) ,log(gchm >
dependent. By the theorem of Kolchin-Ostrowski (see e.g. Section 2 in [Kol68]), this can
only happen if there exist a non-zero vector (co, ooty Cm) € C™H with

f= chlog( Py 1)e<C(x).

+ 1) are algebraically

We compute

- —G - —G G
= . + . .
]Z; @F+j-N+j+1-7) ;((afﬂ—v) (x+J+1—v))
As f is contained in C(z), all terms need to cancel. As the terms with denominator (z — )
and (x+m+1—-y) cannot cancel with any other term, we conclude ¢y = ¢,, = 0. Inductively,

we obtain that c¢; = 0 for all 7, a contradiction. O
Finally, we treat the cyclic case.

Lemma 4.3. For~y € C and d > 1 a natural number, consider the (infinite) set of functions

[ 1 / 1 1
d 1,fi={¢ — 4+ 1, fo =4/ —+1,...
fo T —" h r+1—79 f2 T+2—7

Then for every j € N, f; has degree d over C(x)(fo, f1,..., fj-1)-

Proof. Define E' = C(z)(fo..., fj—1) and L = C(z)(f;). We claim that £ and L are linearly
disjoint over C(x). Recall that L/C(x) is cyclic and in particular Galois of degree d. Hence
it suffices to prove E N L = C(x).

Since ff = (x4 j+1—7)/(x+j—~), L/C(z) is totally ramified at (z+j+1—1~) as
f; has valuation 1/d at this place. Therefore, the subfield £ N L is also totally ramified at
(x +j+1— ) of ramification index

e=[ENL:C(x)].

On the other hand, £/C(z) is unramified at (x4 j+1—+). To see this, consider the chain
of fields Ey = C(x)(fo), E1 = Eo(f1),...,Ej—1 = Ej_o(fj—1) = E. Then it suffices to show
that F,,/E,,_1 is unramified at all places p lying over (z +j+1—~) form=1,...,7 — 1.
The minimal polynomial of E,,/E,, ; divides T% — (z +m + 1 — v)/(x + m — «) which has
coefficients in O, and reduces to a separable polynomial modulo p. Hence p splits completely
in E,,/En-1 ([Sti09, Thm. 3.3.7]) and the claim follows.

Therefore, the subfield £ N L of E is also unramified at (z + j + 1 — ), so e = 1 and we

conclude EN L = C(xz). O
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4.2. Constructing explicit o-Picard-Vessiot rings. In this section, we work over the
base field F' = C(z) considered as a do-field via § = - and o(f(z)) = f(z+1). For m € N,
let L(m) be as defined in Example 3.8.(i).

Proposition 4.4. Let m € N and let H be either G,,, G, or a finite cyclic group. Then
there ezists a o-Picard-Vessiot ring R over F' = C(x) with o-Galois group isomorphic to
[o]cH such that R C L(m) as an F-do-subalgebra.

Proof. We begin with H = G,,. Define a = —(z — mi)> € F. Then y = exp(—)
solves the differential equation d(y) = ay and y is holomorphic on Pg\{mi} D Vi ,,. Hence
y € Fy,,, € L(m). Define R = F{y,y '} € L(m). Then R/F is a o-Picard-Vessiot ring
for 6(y) = ay by Lemma 1.4, since L(m)° = C = F°. Using Proposition 2.3 together with

Lemma 4.1, we conclude that its o-Galois group is isomorphic to [o]cG,,.

We next treat the case H = G,. Recall that the complex logarithm is a holomorphic
function on C\R_, where R_ denotes the interval (—00,0]. As z — —— + 1 defines a
holomorphic function V; ,,, = C\R_, we conclude that y = log (ﬁ + 1) is holomorphic on
Vim and in particular, y € Fy,,, € L(m). Also note that d(y) is contained in C(z) = F.
Hence R = F{y} C L(m) is a o-Picard-Vessiot ring over F' with o-Galois group isomorphic
to [0]cG, by Proposition 2.4 together with Lemma 4.2.

Finally we treat the case that H is a finite cyclic group. Let d € N be the order of H.
Recall that the complex d-th root /= = exp(log(x)/d) is a holomorphic function on C\R_,
where R_ denotes the interval (—o00,0]. As x — —— + 1 defines a holomorphic function

Vi — C\R_, we conclude that y = {/—— + 1 is holomorphic on V;,, and in particular,

y € Fy,,, € L(m). Hence R = F{y,y~'} C L(m) is a o-Picard-Vessiot ring over F' with
o-Galois group [o]cH by Proposition 2.5 together with Lemma 4.3. O

5. MAIN RESULT

The following lemma allows to base change a o-Picard-Vessiot R/F from F to a do-
overfield Fy, O F without shrinking the o-Galois group under certain assumptions. An
analogous statement for Picard-Vessiot rings has been proved in [BHHW18, Lemma 2.9].

Lemma 5.1. Let (F, Iy, F5, Fy) be a quadruple of do-fields with F C Fy, Fy C Fy such that
FiNF, =F and FY = F°. Let R/F be a o-Picard-Vessiot ring such that R C Fy as an
F-do-subalgebra. Then the compositum FoyR C Fy is a o-Picard-Vessiot ring over Fy with
the same o-Galois group as R/ F.

Proof. Let G be the o-Galois group of R/F. By Lemma 1.9 (ii), Fo R/ F; is a o-Picard-Vessiot
ring with o-Galois group H a o-closed subgroup of G. We consider the functorial invariants
Frac(R)? C Frac(R) C Fy. As Frac(R)? C Frac(FoR)¥ = F, by Theorem 1.6, we conclude
Frac(R)? C Fy N Fy = F and thus H = G by Theorem 1.6. O

We are now in a position to prove our main theorem:

Theorem 5.2. Consider F = C(z) as do-field with § = 2 and o(f(z)) = f(z + 1). Then,

for every linear algebraic group G over C, there exists a o-Picard-Vessiot ring over F with
o-Galois group isomorphic to [o]cG.
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Proof. Set G = [o]|cG. By Proposition 2.2, there exist o-closed subgroups Hy, ..., H,, of G
with G = (Hq,..., H,,) and such that for each i, H; ~ [o]cH;, where H; is G,,, G,, or a
finite cyclig group (depending on 7).

For r € N; let

Unm = {z € Bt | & ¢ | (= 0] + 1)}
=1
as in Example 3.8.(ii) and let Fy;, ., denote the field of meromorophic functions on U, ,,. As
explained in Example 3.8, the direct limit F'(m) = lim Fy, ,, is a do-field extension of F with

reN

F(m)? = C. We claim that there exists a o-Picard-Vessiot ring R(m) over F with o-Galois
group G and R(m) C F(m) as a F-do-subalgebra. We prove the claim by induction on m.
If m =1, then F(m) = F(1) = L(1) with L(1) as defined in Example 3.8.(ii) and the
claim follows from Proposition 4.4 applied to m = 1.
Now assume that we constructed a o-Picard-Vessiot ring R(m — 1) C F(m — 1) with
o-Galois group (Hy, ..., H,_1). We define connected metric open subsets

Wm:{xep}c\x¢ [—7,0] +mi}

as in Example 3.8.(1). Hence U, ;-1 NV, = Uy is connected and U, U V., = X for
all r € N. We define

Fl = hglFUr,mfl :F(m—l)
reN
F, = hg”lFVr,m = L(m)

reN
FO = h&FUT,miannm = F(m)
reN
As explained in Example 3.11, (F, Iy, Fs, Fy) is a do-diamond with the factorization property
and moreover, F{ = C = F° holds. By Lemma 5.1, we can thus lift R(m — 1) C F} to a
o-Picard-Vessiot ring Ry = FyR(m — 1) over F, with o-Galois group (Hy,..., H,_1) and
R2 - FQ.

On the other hand, Proposition 4.4 provides us with a o-Picard-Vessiot ring é/ F with
o-Galois group H,, and R C L(m) = F} as a F-do-subalgebra. Again by Lemma 5.1, we may
lift R to a o-Picard-Vessiot ring Ry = F\R over F, with o-Galois group H,, and R; C Fj.

Using the patching result Theorem 3.12, we obtain a o-Picard-Vessiot ring R(m) over F'
with o-Galois group (Hy, ..., Hy,) and with R(m) C Fy = F(m) as claimed. O

6. DIFFERENCE ALGEBRAIC GROUPS THAT ARE NOT 0-(GALOIS GROUPS

Since, as shown above, all linear algebraic groups over C, considered as o-algebraic groups,
occur as o-Galois groups over C(x), one may feel tempted to conjecture that in fact all o-
algebraic groups over C occur as o-Galois groups over C(z). However, this is not true.
For example, as we will see below, the o-closed subgroup G of GL; defined by G(S) =
{g € GL1(S) | ¢> =1, o(g) = g} for any C-o-algebra S is not a o-Galois group over C(z).
Moreover, we show that no proper non-trivial subgroup of the additive group G, is a o-Galois
group over C(z).
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6.1. A necessary criterion. In this section, we will isolate two properties that any o-Galois
group over C(z) must have. The main result of this section is the following.

Theorem 6.1. If G is a o-Galois group over the do-field C(z) with derivation § = % and
endomorphism o given by o(f(z)) = f(x + 1), then G is o-reduced and o-connected.

The definition of o-reduced and o-connected is given below. Theorem 6.1 is proved at the
end of this section. The fact that every o-Galois group over C(z) is o-reduced follows rather
directly from [DVHW14] and the fact that o: C(x) — C(x) is surjective. On the other hand,
the fact that every o-Galois group over C(z) is o-connected, essentially goes back to the fact
that C(x) does not have any non-trivial finite difference field extensions.

We first discuss o-connected o-algebraic groups and the related notion of the group 7§ (G)
of o-connected components of a g-algebraic group G. We do not strive for a comprehensive
study of these notions. The interested reader is referred to Section 4.2 of [Wib15]. We will
only introduce the definitions and results necessary for proving Theorem 6.1. Most of the
required difference algebraic results appeared in [TW18].

Let k£ be a o-field. To motivate the definition of the group of o-connected components of
a o-algebraic group, let us first recall the definition of the group of connected components
of an algebraic group. See e.g., [Wat79, Chapter 6] or [Mill7, Section 2, g].

Recall that a group scheme G of finite type over k is étale if k[G] is an étale k-algebra,
i.e., k[G] ® k is a a finite direct product of copies of k. The group mo(G) of connected
components of G can be defined through the following universal property: There exists a
morphism G — 7y(G) of affine group schemes over k such that my(G) is étale and for every
étale group scheme H with a morphism G — H, there exists a unique morphism m(G) — H

such that

H

commutes. The identity component G° of G can be defined as the kernel of G — my(G).
The existence of my(G) can be established as follows: Let m(k[G]) denote the union of the
étale k-subalgebras of k[G]. Then one can show that my(k[G]) is an étale algebra and a Hopf
subalgebra of k[G]. So my(G) = Spec(m(k[G])) is an étale algebraic group and the morphism
G — mo(G) corresponding to the inclusion 7 (k[G]) — k[G] has the desired universal property.
To follow a similar path for difference algebraic groups we first need to define an appropri-
ate difference analog of étale algebras. Following [TW18] we make the following definition.

g To(g)

Definition 6.2. A k-o-algebra R is o-separable if o: R @i k' — R ® k' is injective for
every o-field extension k' of k. A o-separable k-o-algebra is strongly o-étale if it is an étale
k-algebra.

For a k-o-algebra R, we denote the union of all strongly o-étale k-o-subalgebras of R with
7§ (R/k). If the base o-field k is clear form the context we will usually write 7§ (R) instead

of m§(R/k). We know from [TW18, Rem. 1.18] that n§(R) is a k-o-subalgebra of R.
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Definition 6.3. A o-algebraic group G is strongly o-étale if k{G} is a strongly o-étale
k-o-algebra.

Example 6.4. Let G be the o-closed subgroup of GL; defined by G(S) = {g € GL.(9) | g*> =
1, o(g) = g} for any k-o-algebra S. Then k{G} = k x k, with o given by o(a,b) =
(o(a),o(b)). Thus G is strongly o-étale.

On the other hand, the group G defined by G(S) = {g € GL.(S) | ¢*> =1, o(g) = 1} for
any k-o-algebra S is not strongly o-étale.

The following proposition was essentially proved in [TW18], but there the results were
formulated in an algebraic manner. Here we give a more geometric interpretation.

Proposition 6.5. Let G be a o-algebraic group. Then there exists a strongly o-étale o-
algebraic group w5 (QG) together with a morphism G — ©§(G) of o-algebraic groups satisfying
the following universal property: If H is a strongly o-étale o-algebraic group with a morphism
G — H, then there exists a unique morphism ©(G) — H such that

G 5 (G)

£

H

commautes.

Proof. A k-o-Hopf algebra ([Wib, Def. 2.2]) is a Hopf algebra over k that has the structure
of a k-o-algebra such that the Hopf algebra structure maps are morphisms of k-o-algebras.
It follows directly from the definitions that the category of o-algebraic groups is equivalent
to the category of k-o-Hopf algebras that are finitely o-generated as k-o-algebra ([Wib,
Rem. 2.3]).

By Theorem 3.2 of [TW18] the k-o-subalgebra 7§ (k{G}) of k{G} is a k-o-Hopf-subalgebra
and by Theorem 4.5 of [Wib] every k-o-Hopf-subalgebra of a finitely o-generated k-o-Hopf
algebra is finitely o-generated. It follows that the o-algebraic group 7§(G) represented by
75 (k{GY}) is strongly o-étale. Moreover, since a quotient of a strongly o-étale k-o-algebra
is strongly o-étale ([TW18, Lemma 1.15]) the inclusion 7§ (k{G}) C k{G} has the following
property: If k{H} is a strongly o-étale k-o-Hopfalgebra with a morphism ¢: k{H} —
k{G} then ¢(k{H}) C 7J(k{G}). Geometrically, this translates to the required universal
property. O

Definition 6.6. Let G be a o-algebraic group. The strongly o-étale o-algebraic group ©§(G)
from Proposition 6.5 is called the group of o-connected components of G. If n§(G) is the
trivial group, then G is o-connected.

Remark 6.7. The terminology “o-connected” is justified by the following fact ([Wibl5,
Lemma 4.2.35]): A o-algebraic group G is o-connected if and only if Spec(k{G}) is connected
with respect to the o-topology. The closed sets of the o-topology on Spec(k{G}) are the
invariant (Zariski) closed sets.

Example 6.4 gives an example of g-algebraic group that is not o-connected. Any o-

algebraic group G such that £{G} is an integral domain is o-connected because in that case
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Spec(k{G?}) is connected and so a fortiori o-connected (Remark 6.7). One can also show that
any (even non-connected) algebraic group is o-connected when considered as a o-algebraic
group ([Wib15, Prop. 4.2.43]).

Example 6.8. Let GG be the o-closed subgroup of GLs such that for a k-o-algebra S and

g= (CCL Z) € GLy(S) we have g € G(S) if and only if

(ac(a) +bo(b))* =1,
o(a)o*(a) + o(b)a?(b) = ac(a) + bo(b).

To see that these equations indeed define a subgroup, note the following alternative descrip-
tion of GG. Let D be the o-closed subgroup of GL, defined by

D(S) = {(g 2) € GLy(S5) ‘ a>=1, o(a) = a}
for any k-o-algebra S. Then G(S) = {g € GLy(S) | o(g9)g” € D(S)}. This is a subgroup of
GL2(S) because D(S) lies in the center of GLy(5).

We claim that ¢: G — D, g+ o(g)g” satisfies the universal property of Proposition 6.5.
In particular, 7§ (G) is isomorphic to the o-algebraic group defined in Example 6.4. The
easiest way to see this is to use some results from [Wib15]. In [Wibl5, Prop. 4.2.41] it
is shown that if ¢: G — D is a morphism of o-algebraic groups such that the dual map
¢*: k{D} — k{G} is injective, D is strongly o-étale and ker(¢) is o-connected, then ¢
satisfies the universal property.

We first note that ¢ is a morphism of g-algebraic groups because D lies in the center of
GLy and that D is strongly o-étale because it is isomorphic to the group in Example 6.4. To
see that ¢* is is injective, note that ¢* sends the image of = in k[z]/(z* — 1) = k x k = k{D}
to the image of ac(a) + bo(b) in k{G}. Thus if ¢* was not injective, the latter image would
need to equal 1 or —1. However, neither is the case. For example, for the identity matrix
(1’0_1) (1’0_1)) € G(S), where S = k x k
with o(\, u) = (o(u),o(XN)), the expression ac(a)+bo(b) evaluates to —1. Finally, the kernel
N of ¢ is the o-closed subgroup of GL, defined by the equation o(g)g” = I,. Since this
equation can be rewritten as o(g) = (¢7)7!, we see that k{N} is isomorphic to k[GLy]. In
particular, k{ N} is an integral domain. Thus N is o-connected.

ao(a)+bo(b) evaluates to 1, but for the matrix

We will need two lemmas from [TW18].
Lemma 6.9 ([TW18, Lemma 1.25]). Let R and S be k-o-algebras. Then m{(R ®; S) =
5 (R) @ 73 (S)-

Lemma 6.10 ([TW18, Lemma 1.24]). Let R be a k-o-algebra and k'/k an extension of
o-fields. Then (R @y K'/K') = 7§ (R/k) @4 k'
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We now return to the o-Picard-Vessiot theory. As before, F'is a do-field of characteristic
zero and k is the o-field of d-constants of F.

Proposition 6.11. Let R/F be a o-Picard-Vessiot ring with o-Galois group G. Then
7§ (R/F) is a o-Picard-Vessiot ring over F' with o-Galois group isomorphic to 7§ (G).

Proof. We will first show that 7§ (R/F') is a finite field extension of F'. Note that if an étale
algebra (over a field) is an integral domain, then it is a field. Since R is an integral domain
and 7§ (R/F) is a union of étale algebras contained in R it follows that n§(R/F) is a field.
So n§(R/F) is an algebraic field extension of F' and a o-subfield of the field of fractions £ of
R. Since F is finitely o-generated as a o-field extension of F' and any intermediate o-field of
a finitely o-generated o-field extension is itself finitely o-generated ([Lev08, Theorem 4.4.1]),
it follows that «§(R/F) is finitely o-generated over F. Since n§(R/F’) is a union of finite
o-field extensions of F', we see that indeed 7§ (R/F) is a finite o-field extension of F'.

To see that nJ(R/F) is stable under the derivation 6: R — R, let a € n{(R/F) have
minimal polynomial f over F. Then 0 = §(f(a)) = f(a) + f'(a)d(a), where f° is the
polynomial obtained from f by applying d to the coefficients of f. Since f’(a) # 0, it follows
that 6(a) € 7§ (R/F). So n{(R/F) is an F-do-algebra.

We next apply 7§ (—/F) to the identity R ®r R = R®y k{G} = R®r (F @ k{G}) from
equation (1). Using Lemmas 6.9 and 6.10 we find

o (R/F) @p 75 (R/F) = 75 (R©p R/ F) = 75 (R/F) @p ng (F @) K{G}/F) =
=7 (R/F) @p (F @y (75 (R{G}/k)) = n§ (R/ F) @ 75 ({G}/ k) =
=5 (R/F) @y, k{m5(G)}.

Since 7 (k{G}/k) C k{G} = (R®r R)’, we see that 7J(R/F) ®r n§(R/F) is generated by
(75(R/F)@png(R/F))° as aleft 7§ (R/F)-module. Moreover, 7 (R/F)° = F°. Thus the ex-
tension 7§ (R/F')/ F of differential fields is a Picard-Vessiot extension in the sense of [AMT09,
Def. 1.8]. Since this definition is equivalent to the standard one ([AMT09, Theorem 3.11])
it follows that 7J(R/F') is a Picard-Vessiot extension for some linear differential equation
d(y) = Ay, with A € F™™. Since n{(R/F) is an algebraic extension, the Picard-Vessiot ring
and the Picard-Vessiot extension coincide. So the F-d-algebra 7§ (R/F') is a Picard-Vessiot
ring for §(y) = Ay. It is then clear that the F-do-algebra nJ(R/F) is a o-Picard-Vessiot
ring for §(y) = Ay.

Since (7§(R/F) ®@p 75(R/F))’ = n§(k{G}/k), we see that the o-Galois group 7J(R/F)
is isomorphic to 7§ (G). O

Corollary 6.12. Let F' be a do-field such that F' does not have any non-trivial finite differ-
ence field extensions. Then every o-Galois group over F is o-connected.

Proof. Let R be a o-Picard-Vessiot ring over F with o-Galois group G. As shown in the

first paragraph of the proof of Proposition 6.11, the F-o-algebra nf(R/F') is a finite o-field

extension of F. Thus, by assumption, it is trivial and consequently also its o-Galois group

7§ (G) is trivial. O
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Following [DVHW14], a o-algebraic group G is o-reduced if o: k{G} — k{G} is injective.
The group in Example 6.4 is o-reduced. An example of a g-algebraic group G that is not
o-reduced would be G = {g € GL,, | o(g) = I,,}.

Proof of Theorem 6.1. Let R be a o-Picard-Vessiot ring over C(z) with o-Galois group G.
In [DVHW14, Cor. 4.4] it is shown that a o-Galois group over a Jo-field F' such that
o: F' — F is an automorphism is o-reduced. Since o: C(z) — C(z), f(x)+— f(x+1)is an
automorphism, it follows that G is o-reduced.

The difference field C(z) (with o(f(z)) = f(x + 1)) does not have any non-trivial finite
difference field extensions (see the proof of Theorem XIX in Chapter 9 of [Coh65]). It thus
follows from Corollary 6.12 that G is o-connected. U

6.2. Unipotent groups. In this section, we show that being o-reduced and o-connected is
far from sufficient for being a o-Galois group over C(z). In fact, we show that no proper
non-trivial o-closed subgroup of G, is a o-Galois group over C(z). As a consequence of this
result we also deduce that the constant subgroups of unipotent linear algebraic groups do
not occur as o-Galois groups over C(x).

Lemma 6.13. Let F be a do-field of characteristic zero with field of constants k = F°.
Let G be a o-closed subgroup of the additive group G, over k and let R/F be a o-Picard-
Vessiot ring with o-Galois group G. Then there ezists an element y € R with R = F{y} and
i(y) € F.

Proof. Let X be the o-variety over the o-field F' represented by the F-g-algebra R. As
explained in the first paragraph of the proof of Prop 3.1, there is a canonical structure on X
as a right G'p-torsor and we may thus also consider X as a left Gp-torsor and use the results
on left Gp-torsors in [BW]. Either G = G, and thus X is the trivial G-torsor ([BW, Cor.
3.6]) or there exists an expression L(y) = 0"(y) + \—10"" (y) + - -+ + Mio(y) + Aoy with
Ai € ksuch that G(S) = {g € S| L(g) = 0} for all k-o-algebras S ([DVHW17, Cor. A.3]). In
the latter case, it was shown in Example 5.4 of [BW] that there exists an a € F' such that X
is isomorphic as Gg-torsor to the torsor X, defined as the o-closed o-subvariety of A} given
by the equation L(y) = a with G-action given by addition. We conclude that in both cases,
X is a o-closed g-subvariety of A}, thus there exists an y € R with R = F{X} = F{y}.
Moreover, the Gg-action is given by addition, so

9(6(y)) = 0(g(y)) = 6(y +g) = d(y) + d(g) = 8(y)
for every g € G(S). It thus follows from the Galois correspondence that §(y) € F'. O

Recall that every element of C(z) has a unique partial fraction decomposition

T T2 Tm
o Qg Oy
) + E J 4 E S R T E T
g( ) = [L’—Fﬁj 1 (l’+ﬁ2j)2 =1 (l"l'ﬁmj)m

with g € Clz], m,r,79,...,7, € N and oy, oy, 8;, B € C. The term 377, :cj-—JBJ is called
the logarithmic part. An element in C(x) has an antiderivative inside C(z) if and only if its

logarithmic part vanishes.
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Proposition 6.14. Let G be a non-trivial proper o-closed subgroup of the additive group G,
over C. Then G is not a o-Galois group over the o-field C(z) with derivation 6 = - and
endomorphism o given by o(f(z)) = f(x +1).

Proof. Suppose, for a contradiction, that R/C(z) is a o-Picard-Vessiot ring with o-Galois
group G. By Lemma 6.13, there exists an element y € R with R = C(x){y} and d(y) € C(x).
Set a = §(y) € C(x). As § and o commute, §(c'(y)) = o'(a) for all | € N. By Proposition 2.4,
there exists an n € N such that y,o(y),o%(y),...,0"(y) are algebraically dependent over
C(x). By the theorem of Kolchin-Ostrowski (see e.g. Section 2 in [Kol68]), this can only
happen if there exists a non-zero vector (co,...,c,) € C"! with 27:0 col(y) € C(z). We
may assume that cn # 0. We differentiate and obtain that >, ¢;0'(a) has no logarithmic
part. Let > " i1 + ﬁ be the logarithmic part of a with pairwise distinct 1, ..., 3, and non-

zero elements «;. Then the logarithmic part of Y., ¢;0'(a) equals

cx
O—sz+l4j—ﬁj

=0 j=1

We claim that the logarithmic part of a is zero, i.e., > "

=17 + B is an empty sum. Otherwise,

we can choose jo with 1 < jo < r such that Re(f,) is maximal among all elements Re(5;).
Then the term with denominator x +n+ f;, cannot cancel with any other term (here we use

that fy,..., [, are pairwise distinct) and hence ¢,a;, = 0, a contradiction. Therefore, the
logarithmic part of a vanishes and hence y € C(x), R = C(z) and G = {1}, contradicting
that G is non-trivial. O

We consider expressions of the form L£(y) = 0™(y) + A—10"" (y) + - - -+ Mo (y) + Aoy with
Ai € C and the corresponding o-closed subgroups G, of G, with G.(S) = {g € S | L(g) = 0}
for all C-o-algebras S. Every proper o-closed subgroup of the additive group G, is isomorphic
to such a G, ([DVHW17, Cor. A.3)).

Remark 6.15. Note that G is o-reduced if and only if \g # 0 and it is always o-connected.
Indeed, o: C{G.} — C{G.} is injective if and only if \g # 0 and C{G.} is an integral
domain, thus Gy is connected and in particular o-connected. Hence most of the groups in
Proposition 6.1/ satisfy the necessary conditions given in Theorem 6.1 but yet do not occur
as o-Galois groups.

We remark that the multiplicative case differs from the additive case. Indeed, the constant
points of the multiplicative group G,, do occur as o-Galois group over C(z) (see Example 1.5),
whereas Proposition 6.14 implies that the constant subgroup of the additive group does not
occur as o-Galois group over C(z).

To generalize this result from G, to all unipotent groups, we need some basics about
quotients of o-algebraic groups ([DVHW14, A.9] or [Wibl5, Chapter 3]): Let G be a o-
algebraic group and N a normal o-closed subgroup. The quotient G/N can be defined
through the usual universal property. A morphism ¢: G — H of o-algebraic groups is a
quotient map (i.e., can be identified with the canonical map G — G/N for some normal

o-closed subgroup N of G) if and only if the dual map ¢*: k{H} — k{G} is injective.
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Corollary 6.16. Let G < GL, be a non-trivial unipotent linear algebraic group over C and
let G be the constant subgroup of G, i.e., G(S) = {g € G(5) | 0(g9) = g} for all C-c-algebras
S. Then G is not a o-Galois group over the do-field C(z) with derivation § = - and
endomorphism o given by o(f(z)) = f(x +1).

Proof. Over a field of characteristic zero, every non-trivial unipotent linear algebraic group
has a quotient isomorphic to G, ([Mill7, Prop. 14.21 and Rem. 14.24 (a)]). Let 7: G — G,
be such a quotient map. We claim that 7 induces a quotient map ¢: G — H, where H is
the constant subgroup of G, i.e., H(S) ={g € S| o(g) = g} for all C-g-algebras S.

The morphism 7: G — G, is given by a polynomial p € C[X;;,1/det(X)] = C|GL,]. So
7(g) = p(g) for g € G(T') < GL,(T') and T" a C-algebra. The induced morphism G — [0];G,,
of o-algebraic groups is also given by g — p(g) for ¢ € G(S5) and S a C-o-algebra and
therefore maps into H. To see that the dual of ¢: G — H is injective, note that the dual
m*: C[t] = C|G,] — C|[G], t — P of 7 is injective because 7 is dominant. The coordinate
ring of G is C{G} = C[G| with o the identity and similarly for H. Moreover, ¢* agrees with
7* as a morphism of C-algebras. In particular, ¢* is injective and so ¢ is a quotient map.

Now suppose, for a contradiction, that G is a o-Galois group over C(x). Then, by the
second fundamental theorem of o-Galois theory ([DVHW14, Thm. 3.3]), also H would be a
o-Galois group C(z). This contradicts Proposition 6.14. O
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