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ALGEBRAIC GROUPS AS DIFFERENCE GALOIS GROUPS OF LINEAR

DIFFERENTIAL EQUATIONS

ANNETTE BACHMAYR AND MICHAEL WIBMER

Abstract. We study the inverse problem in the difference Galois theory of linear differ-

ential equations over the difference-differential field C(x) with derivation d

dx
and endomor-

phism f(x) 7→ f(x+ 1). Our main result is that every linear algebraic group, considered as

a difference algebraic group, occurs as the difference Galois group of some linear differential

equation over C(x).

Introduction

The Galois group of a polynomial over a field is a finite group. The inverse problem in the
Galois theory of polynomials asks to determine, for a given field, which finite groups occur.
For example, for the field C(x) of rational functions over C, it is known that every finite
group occurs (see e.g., [Sza09, Cor. 3.4.4]).

The Galois group of a linear differential equation over a differential field is a linear algebraic
group. The inverse problem in the Galois theory of linear differential equations asks to
determine, for a given differential field, which linear algebraic groups occur. For example,
for the field C(x) with derivation d

dx
, it is known that every linear algebraic group occurs.

This was first proved in [TT79], based on the solution of Hilbert’s 21st problem.
A difference-differential field is a field equipped with two commuting operators, a deriva-

tion and an endomorphism, usually denoted with σ. The σ-Galois group of a linear dif-
ferential equation over a difference-differential field is a linear difference algebraic group,
i.e., a subgroup of a general linear group defined by algebraic difference equations in the
matrix entries. The problem we are concerned with in this article is the inverse prob-
lem in the σ-Galois theory of linear differential equations. It asks to determine, for a
given difference-differential field, which difference algebraic groups occur. We are mainly
interested in the difference-differential field C(x) with derivation d

dx
and endomorphism

σ : C(x) → C(x), f(x) 7→ f(x+ 1).
As we will show, not every difference algebraic group occurs as a σ-Galois group of a linear

differential equation over C(x). In fact, constant subgroups of unipotent linear algebraic
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groups do not occur (Corollary 6.16) and moreover, we isolate two properties that any σ-
Galois group over C(x) must have (Theorem 6.1). On the positive side, our main result is
the following:

Theorem (Theorem 5.2). Every linear algebraic group, considered as a difference algebraic
group, occurs as a σ-Galois group over C(x).

If a linear algebraic group G, considered as a difference algebraic group, occurs as a σ-
Galois group of a linear differential equation y′ = Ay, then the Galois group of the linear
differential equation y′ = Ay is the linear algebraic group G. Thus the above theorem
generalizes the solution of the inverse problem in the Galois theory of linear differential
equations over C(x).

Our main tool for the proof of the above theorem is patching. In fact, we establish a
general patching result (Theorem 3.12) for σ-Picard-Vessiot rings over difference-differential
fields that we deem of independent interest. Here a σ-Picard-Vessiot ring is the analog of
the splitting field in the Galois theory of polynomials. This patching result is analogous
to known patching results in the Galois theories of linear differential equations ([BHH16,
Theorem 2.4]) and parameterized linear differential equations ([Mai15, Theorem 2.2]) that
turned out to be very useful in the study of the corresponding inverse problems. We therefore
expect Theorem 3.12 to have further applications in the study of the inverse problem in the
σ-Galois theory of linear differential equations.

To put our results into perspective, let us review the state of the art of the inverse problem
in the various Galois theories. The three most relevant Galois theories for us are the following:

(i) The Galois theory of linear differential equations, where the Galois groups are linear
algebraic groups. See e.g. [vdPS03].

(ii) The Galois theory of parameterized linear differential equations, where the Galois
groups are differential algebraic groups. See [CS07] and [Lan08].

(iii) The σ-Galois theory of linear differential equations, where the Galois groups are
difference algebraic groups. See [DVHW14].

Galois theory of linear differential equations. Building on work of several authors, the
inverse problem in the Galois theory of linear differential equations over k(x), where k is an
algebraically closed field of characteristic zero, was eventually solved in [Har05]: All linear
algebraic groups over k occur as Galois groups. For non-algebraically closed fields k, there
are only partial results. For example, if k is a Laurent series field, all linear algebraic groups
over k occur as Galois groups ([BHH16, Theorem 4.14]) and the same holds for k = Qp

([BHHP20]).
Going beyond the solution of the inverse problem, there has been recent progress in the

study of differential embedding problems and the structure of the absolute differential Galois
group of k(x) using patching techniques. See [BHHW18, BHH18, BHHP20, Wib20, BHHW].

Galois theory of parameterized linear differential equations. If the coefficients of a
linear differential equation depend on an auxiliary parameter, one can differentiate the solu-
tions with respect to this parameter. The Galois group of a parameterized linear differential
equation is a differential algebraic group that measures the algebraic relations among the
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solutions and their derivatives with respect to the auxiliary parameter. From an algebraic
perspective, this setup is modeled by considering a field K with two commuting derivations
δ and ∂. A typical example is K = C(t, x), where x is the main variable and t the parameter,
i.e., we are interested in linear differential equations with respect to δ = d

dx
and the ∂ = d

dt
-

derivatives of their solutions. More generally, if k is a field equipped with a derivation ∂,
then K = k(x) is naturally equipped with two commuting derivations, δ = d

dx
and ∂, where

∂(x) = 0. This Galois theory and its variants have proven to be very useful in questions of
hypertranscendence. See [HS08], [Arr13], [HMO17], [DHR18], [DV12].

The inverse problem in this Galois theory is not well-understood. For example, it is not
known which differential algebraic groups occur as Galois groups over C(t, x). The most
comprehensive result is only available under strong assumptions on k: Building on [MS12],
it was shown in [Dre14] that if k is a universal ∂-field, then a differential algebraic group over
k is a Galois group over k(x) if and only if it is the Kolchin closure of a finitely generated
subgroup. For certain differential algebraic groups, including linear algebraic groups, the
latter condition was translated into group theoretic conditions in [Sin13] and [MOS14].

For k a Laurent series field, it was shown in [Mai15] that a large class of linear algebraic
groups, considered as differential algebraic groups, occur as Galois groups. Also certain
differential algebraic groups occur in this situation ([Bac18]). On the other hand, it is
also shown in [Bac18] that many differential algebraic subgroups of the additive or the
multiplicative group do not occur over k(x), unless the ∂-field k is fairly big.

σ-Galois theory of linear differential equations. The σ-Galois theory of linear differ-
ential equations is similar to the Galois theory of parameterized linear differential equations.
Again one considers a linear differential equation depending on a parameter t. But instead
of deriving the solutions with respect to t, one applies a discrete transformation to t and
the solutions, e.g., t 7→ t + 1. The Galois groups are difference algebraic groups and they
measure the algebraic relations among the solutions and their transforms under a discrete
transformation usually denoted with σ. From an algebraic perspective, this setup is modeled
by considering a field K, with two commuting operators, a derivation δ and an endomor-
phism σ. The inverse problem in this Galois theory is wide open. It appears that beyond
some initial observations in [DVHW17] nothing is known. In this paper, for the first time, a
significant class of difference algebraic groups is shown to occur as Galois groups.

It should also be noted that in [AS17], the authors consider δ-Galois groups of linear
difference equations over C(x) with respect to the difference operator either the shift x 7→
x + 1, a q-dilation x 7→ qx or a Mahler operator x 7→ xq. For certain classes of solvable
differential algebraic groups, they characterize which groups occur as δ-Galois groups. It
seems plausible that using similar methods as in [AS17] it could also be shown that certain
solvable difference algebraic groups (that are not algebraic groups) occur as σ-Galois groups.

The direct problem in the above Galois theories is to compute the Galois group of a given
(parameterized) linear differential equation. We note that progress in the inverse problem
can be helpful for the direct problem. For example, if it is already known that the Galois
group of a given (parameterized) differential equation is non-trivial and contained in a certain
group G, the information, that no non-trivial subgroup of G is a Galois group would already
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imply that the searched for Galois group equals G. As we show (Prop. 6.14) this occurs,
e.g. for the additive group G = Ga.

We conclude the introduction with an overview of the article. In the first section we recall
and establish some basic preparatory definitions and results concerning difference algebraic
groups and the σ-Galois theory of linear differential equations. The main patching result
(Theorem 3.12) is established in Section 3. Roughly speaking, it states that if two difference
algebraic subgroups H1 and H2 of some difference algebraic group occur as Galois groups in
a certain compatible fashion, then also the difference algebraic group generated by H1 and
H2 occurs. It follows from this result that to realize all linear algebraic groups (considered
as difference algebraic groups) as Galois groups it suffices to realize certain building blocks,
namely, the multiplicative group, the additive group and finite cyclic groups. Building on
work in the second section, these building blocks are then dealt with in Section 4. Our main
result, that all linear algebraic groups (considered as difference algebraic groups) occur as
Galois groups over C(x), where σ(f(x)) = f(x+ 1), is then established in Section 5. In the
final section we show that not all difference algebraic groups occur as Galois groups over
C(x). In fact, we isolate two properties that any Galois group over C(x) must have. The
fist property is that is has to be σ-reduced. This follows rather directly from the fact that
σ : C(x) → C(x) is bijective. The second property is σ-connectedness. This boils down to
the fact that C(x) does not have any finite difference field extensions. We also show that no
proper non-trivial difference algebraic subgroup of the additive group Ga is a σ-Galois group
over C(x) and deduce from this that also the constant points of unipotent linear algebraic
groups do not occur.

The authors are grateful to Thomas Dreyfus and David Harbater for helpful discussions
related to the content of this paper.

1. Basics on difference Galois theory

In this section we recall the necessary definitions concerning difference algebraic groups
and σ-Picard-Vessiot theory. We also establish some results of a preparatory nature.

All rings are assume to be commutative and unital.

1.1. Difference algebraic groups. We begin by recalling some basic notions from differ-
ence algebra. Standard references for difference algebra are [Coh65] and [Lev08]. For more
background on difference algebraic groups see [DVHW14, Appendix A] or [Wib].

A difference ring, or σ-ring for short, is a ring R together with an endomorphism σ : R →
R. A morphism ψ : R → S of σ-rings is a morphism of rings such that

R
ψ

//

σ
��

S

σ
��

R
ψ // S

commutes. A σ-ring is a σ-field if the underlying ring is a field.
Let k be a σ-ring. A k-σ-algebra is a σ-ring R together with a morphism k → R of σ-rings.

A morphism of k-σ-algebras is a morphism of k-algebras that is also a morphism of σ-rings.
4



For a subset B of R, the smallest k-σ-subalgebra of R that contains B is denoted by k{B}.
Note that k{B} is generated by B, σ(B), σ2(B), . . . as a k-algebra. If R = k{B} for a finite
subset B of R then R is called finitely σ-generated. If R and S are k-σ-algebras, then R⊗k S
is a k-σ-algebra with σ defined by σ(r ⊗ s) = σ(r)⊗ σ(s) for r ∈ R and s ∈ S.

An ideal a of a σ-ring R is a σ-ideal if σ(a) ⊆ a. In this case R/a is naturally a σ-ring.
The σ-polynomial ring k{y} = k{y1, . . . , yn} over k in the σ-variables y1, . . . , yn is the

polynomial ring over k in the variables σi(yj) (1 ≤ j ≤ n, 0 ≤ i) with σ : k{y} → k{y}
extending σ : k → k as suggested by the naming of the variables. If f ∈ k{y1, . . . , yn}
is a σ-polynomial and x = (x1, . . . , xn) ∈ Rn for some k-σ-algebra R, then the element
f(x) ∈ R is obtained from f by substituting σi(yj) with σi(xj). For a k-σ-algebra R and
F ⊆ k{y1, . . . , yn} we set VR(F ) = {x ∈ Rn | for all f ∈ F : f(x) = 0}. Note that
R  VR(F ) is naturally a functor from the category of k-σ-algebras to the category of sets.

Let k be a σ-field. A σ-variety X over k is a functor R  X(R) from the category of
k-σ-algebras to the category of sets that is isomorphic (as a functor) to a functor of the form
R  VR(F ) for some n ≥ 1 and F ⊆ k{y1, . . . , yn}. Thus a functor X from the category of k-
σ-algebras to the category of sets is a σ-variety if and only if it is representable by a finitely
σ-generated k-σ-algebra, i.e., there exists a finitely σ-generated k-σ-algebra S such that
X ≃ Hom(S,−). By the Yoneda Lemma, the k-σ-algebra S is uniquely determined (up to an
isomorphism) byX . We therefore denote it with k{X} and call it the coordinate ring ofX . A
morphism φ : X → Y of σ-varieties is a morphism of functors (i.e., a natural transformation).
Again, by the Yoneda Lemma, the category of σ-varieties over k is anti-equivalent to the
category of finitely σ-generated k-σ-algebras. The morphism dual to φ : X → Y is denoted
by φ∗ : k{Y } → k{X}.

A σ-closed σ-subvariety Y of a σ-variety X is a subfunctor Y of X defined by a σ-ideal
a of k{X}, i.e., Y (R) = {ψ ∈ Hom(k{X}, R) | a ⊆ ker(ψ)} ⊆ Hom(k{X}, R) = X(R) for
every k-σ-algebra R. Then Y is a σ-variety with k{Y } = k{X}/a. In terms of equations, if
F ⊆ G ⊆ k{y}, then R  VR(G) is a σ-closed σ-subvariety of R  VR(F ).

If φ : X → Y is a morphism of σ-varieties, there exists a unique σ-closed σ-subvariety
φ(X) of Y such that φ factors through φ(X) and for every other σ-closed σ-subvariety Z
of Y such that φ factors through Z we have φ(X) ⊆ Z ([Wib, Lemma 1.5]). Indeed, φ(X)
is the σ-closed σ-subvariety of Y defined by the kernel of φ∗ : k[Y ] → k[X ]. A morphism
φ : X → Y of σ-varieties is a σ-closed embedding if it induces an isomorphism between X
and a σ-closed σ-subvariety of Y , i.e., the morphism X → φ(X) is an isomorphism. This is
equivalent to φ∗ : k{Y } → k{X} being surjective.

The category of σ-varieties over k has products. Indeed, if X and Y are σ-varieties, the
functor R  X(R) × Y (R) is a product of X and Y with coordinate ring k{X × Y } =
k{X} ⊗k k{Y }.

If X is a σ-variety over k and k′/k is an extension of σ-fields, then Xk′ denotes the σ-
variety over k′ obtained from X by base change from k to k′, i.e., Xk′(R

′) = X(R′) for every
k′-σ-algebra R′ and k′{Xk′} = k{X} ⊗k k

′.
For every k-algebra R, there exists a k-σ-algebra [σ]kR together with a morphism R →

[σ]kR of k-algebras such that for every k-σ-algebra S and k-algebra morphism R → S there
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exists a unique morphism [σ]kR → S of k-σ-algebra such that

R //

��❃
❃❃

❃❃
❃❃

❃
[σ]kR

||③③
③③
③③
③③

S

commutes. Explicitly, [σ]kR can be described as follows: For i ≥ 0 let σi

R = R ⊗k k
denote the k-algebra obtained from the k-algebra R by base change via σi : k → k. Set
R[i] = R⊗k

σR⊗k . . .⊗k
σi

R and let [σ]kR denote the union of the R[i]’s. We turn [σ]kR into
a k-σ-algebra by setting

σ((r0 ⊗ λ0)⊗ . . .⊗ (ri ⊗ λi)) = (1⊗ 1)⊗ (r0 ⊗ σ(λ0))⊗ . . .⊗ (ri ⊗ σ(λi)) ∈ R[i+ 1]

for (r0 ⊗ λ0) ⊗ . . . ⊗ (ri ⊗ λi) ∈ R[i]. If ψ : R → S is a morphism of k-algebras, then so is
R → S → [σ]kS and we obtain a morphism [σ]kψ : [σ]kR → [σ]kS of k-σ-algebras. For later
use, we record a lemma:

Lemma 1.1. Let k be a σ-field and let ψ : R → S be an injective morphism of k-algebras.
Then also [σ]kψ : [σ]kR → [σ]kS is injective.

Proof. The restriction of [σ]kψ to R[i] is ψ⊗σψ⊗. . .⊗σi

ψ which is injective. Here, σi

ψ : σi

R →
σi

S is obtained from ψ : R → S by base change via σi : k → k. �

Any affine scheme X of finite type over k can be interpreted as a σ-variety. Indeed, the
functor [σ]kX from the category of k-σ-algebras to the category of sets defined by R  

X (R) is a σ-variety. If X = Spec(k[X ]), then k{[σ]kX} = [σ]kk[X ]. If φ : X → Y is a
morphism of affine schemes of finite type over k, then [σ]kφ : [σ]kX → [σ]kY defined by
([σ]kφ)R = φR : X (R) → Y(R) for any k-σ-algebra R is a morphism of σ-varieties. A σ-
closed σ-subvariety Y of X is a σ-closed σ-subvariety of [σ]kX . Such a Y is defined by a

σ-ideal a of [σ]kk[X ] = ∪i≥0k[X ][i]. The closed subscheme Y [i] of X × σX × . . .× σiX defined

by a ∩ k[X ][i] is called the i-th order Zariski closure of Y in X . Here σiX denotes the affine
scheme obtained from X by base change via σi : k → k. Note that the i-th order Zariski
closure of [σ]kX , considered as a σ-closed σ-subvariety of X , is X × σX × . . .× σiX .

A σ-algebraic group G (over k) is a group object in the category of σ-varieties over k. For
example, if G is an affine group scheme of finite over k, then [σ]kG is a σ-algebraic group
over k. A σ-closed subgroup H of a σ-algebraic group G is a σ-subvariety such that H(R) is
a subgroup of G(R) for every k-σ-algebra R. A σ-closed subgroup of an affine group scheme
G of finite type over k is a σ-closed subgroup of [σ]kG. If H is a closed subgroup of G, then
[σ]kH is a σ-closed subgroup of [σ]kG.

Lemma 1.2 ([Wib, Prop. 2.16]). Every σ-algebraic group is isomorphic to a σ-closed sub-
group of GLn for some n ≥ 1.

Let Hi, i ∈ I be a family of σ-closed subgroups of a σ-algebraic group G. Since the
intersection of a family of σ-closed subgroups of G is a σ-closed subgroup of G, we see that
there exists a smallest σ-closed subgroup 〈Hi | i ∈ I〉 such that Hi is contained in 〈Hi | i ∈ I〉
for every i ∈ I. If G = 〈Hi | i ∈ I〉, then G is generated by the Hi’s.
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1.2. σ-Picard-Vessiot theory. We first recall some basic definitions and results from
[DVHW14]. A δ-ring is a ring R together with a derivation δ : R → R. An ideal a ⊆ R such
that δ(a) ⊆ a is called a δ-ideal. If every δ-ideal of R is trivial, R is called δ-simple. The
δ-constants of R are Rδ = {r ∈ R | δ(r) = 0}.

A δσ-ring is a ring R together with a derivation δ : R → R and a ring endomorphism
σ : R → R such that δ(σ(r)) = ℏσ(δ(r)) for all r ∈ R for some fixed unit ℏ ∈ Rδ. If R is
a field, we speak of a δσ-field. There are the obvious notions of a morphism of δσ-rings, of
δσ-algebras etc. A typical example of a δσ-field is the field k(x) of rational functions over a
σ-field k, considered as a δσ-field with δ = d

dx
and σ : k(x) → k(x) extending σ : k → k by

σ(x) = x. The δσ-field we are primarily interested in is the field C(x) with derivation δ = d
dx

and endomorphism σ given by σ(f(x)) = f(x+ 1).
From now on let F denote a δσ-field of characteristic zero and let k = F δ be the σ-field

of δ-constants of F . We consider a linear differential equation δ(y) = Ay with a matrix
A ∈ F n×n.

Definition 1.3. A σ-Picard-Vessiot ring1 for δ(y) = Ay is an F -δσ-algebra R such that

(i) there exists a matrix Y ∈ GLn(R) with δ(Y ) = AY and R = F{Y, 1/ det(Y )},
(ii) R is δ-simple and
(iii) Rδ = k.

The definition of a (classical) Picard-Vessiot ring for δ(y) = Ay is identical to the above
definition other than R = F{Y, 1/ det(Y )} replaced with R = F [Y, 1/ det(Y )]. In practice,
σ-Picard-Vessiot rings often arise as in the following lemma:

Lemma 1.4. Let E/F be an extension of δσ-fields such that Eδ = F δ. If A ∈ F n×n and
Y ∈ GLn(E) are such that δ(Y ) = AY , then R = F{Y, 1/ det(Y )} is a σ-Picard-Vessiot ring
for δ(y) = Ay.

Proof. The field of fractions of R is a σ-Picard-Vessiot extension for δ(y) = Ay in the sense of
[DVHW14, Def. 1.2]. It thus follows from [DVHW14, Prop. 1.5] that R is a σ-Picard-Vessiot
ring for δ(y) = Ay. �

A σ-Picard-Vessiot ring is an integral domain and σ and δ extend uniquely to the field
of fractions of R. The field of fractions E of a σ-Picard-Vessiot ring is a σ-Picard-Vessiot
extension. The σ-Galois group G of a σ-Picard-Vessiot ring R/F is the functor from the
category of k-σ-algebras to the category of groups given by

G(S) = Autδσ(R⊗k S/F ⊗k S)

for every k-σ-algebra S. Here R ⊗k S is considered as a δσ-ring with δ being the trivial
derivation on S, i.e., δ(s) = 0 for s ∈ S. The choice of a fundamental solution matrix
Y ∈ GLn(R) for δ(y) = Ay determines a σ-closed embedding of G into GLn. Indeed,
for every k-σ-algebra S and g ∈ G(S) there exists a matrix φS(g) ∈ GLn(S) such that
g(Y ) = Y φS(g). Then φ : G → GLn is a σ-closed embedding. We let GalδσY (R/F ) denote

1This definition differs from Definition [DVHW14, Def. 1.2] where the condition Rδ = k is dropped.

Definition 1.3 is more convenient for us and [DVHW14, Prop. 1.5] shows that with our definition, σ-Picard-

Vessiot rings correspond to σ-Picard-Vessiot extensions.
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the image φ(G) of G in GLn and call it the σ-Galois group of R/F with respect to Y . The
coordinate ring of G is k{G} = (R⊗F R)δ and the canonical map

(1) R⊗k k{G} → R ⊗F R

is an isomorphism.

Example 1.5. Consider the differential equation δ(y) = y over C(x) equipped with δ = d/dx
and the shift operator σ, i.e., σ(f(x)) = f(x + 1). Then R = C(x){ex, e−x} is a σ-Picard-
Vessiot ring for this equation by Lemma 1.4 applied to the field E of meromorphic functions.
We compute σ(ex) = ex+1 = e · ex and conclude R = C(x)[ex, e−x]. Let S be a k-σ-algebra
and let γ be an automorphism on R ⊗C S of (F ⊗C S)-δσ-algebras. Then γ is uniquely
determined by γ(ex) and as γ commutes with δ, there exists an α ∈ S× with γ(ex) = exα.
Moreover, γ commutes with σ and hence σ(α) = α. Conversely, every α ∈ S with σ(α) = α
gives rise to such an automorphism (here we use that ex is transcendental over C(x)). We
conclude that the σ-Galois group of R is the constant subgroup of the multiplicative group:
G(S) = {α ∈ S× | σ(α) = α} for all k-σ-algebras S.

Let S be a k-σ-algebra and g ∈ G(S). Then g : R⊗k S → R⊗k S extends to an automor-
phism g̃ : Frac(R⊗kS) → Frac(R⊗kS) on the total ring of fractions of R⊗kS, which includes
E = Frac(R). An element a ∈ E is invariant under g if g̃(a) = a. For a σ-closed subgroup
H of G, the set of all elements in E that are invariant under H(S) for every k-σ-algebra S
is denoted by EH .

Theorem 1.6 (σ-Galois correspondence, [DVHW14, Theorem 3.2]). The map H 7→ EH is
an inclusion reversing bijection between the σ-closed subgroups of G and the intermediate
δσ-field of E/F . In particular, EH = F if and only if H = G.

The following proposition will be helpful for constructing explicit examples.

Proposition 1.7 ([DVHW14, Prop. 2.15]). Let R = F{Y, 1/ detY } be a σ-Picard-Vessiot
ring for δ(y) = Ay, where A ∈ F n×n. Then, F [Y, σ(Y ), . . . , σi(Y ), 1/ det(Y . . . σi(Y ))] is
a (classical) Picard-Vessiot ring with (classical) Galois group isomorphic to the i-th order
Zariski closure of GalδσY (R/F ) in GLn for every i ≥ 1.

Corollary 1.8. Let R = F{Y, 1/ detY } be a σ-Picard-Vessiot ring for δ(y) = Ay and
define Ri = F [Y, σ(Y ), . . . , σi(Y ), 1/ det(Y . . . σi(Y ))] for i ≥ 1. Let further H ≤ GLn be a
connected algebraic group with GalδσY (R/F ) ≤ [σ]kH. Then GalδσY (R/F ) = [σ]kH if and only
if dim(Ri) = (i+ 1) dim(H) for all i ≥ 1.

Proof. Set G = GalδσY (R/F ). By Proposition 1.7, Ri/F is a (classical) Picard-Vessiot ring
with (classical) Galois group G[i]. Hence dim(Ri) = dim(G[i]) for all i ≥ 1. If G = [σ]kH,

then G[i] = H× σH× . . .× σiH ≃ Hi+1 and thus dim(Ri) = dim(G[i]) = (i+ 1) dim(H) for
all i ≥ 1. Conversely, assume that G is properly contained in [σ]kH. Then the defining ideal
a ⊆ [σ]kk[H] of G as a σ-closed subgroup of [σ]kH is non-zero and so a ∩ k[H][i] is non-zero

for some i ≥ 1. Hence G[i] is properly contained in H× σH× . . .× σiH ≃ Hi+1 and as Hi+1

is connected, we conclude dim(Ri) = dim(G[i]) < dim(Hi+1) = (i+ 1) dim(H). �

For later use we record a lemma about the σ-Galois group with respect to a fundamental
solution matrix.
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Lemma 1.9. Let R = F{Y, 1/ det(Y )} be a σ-Picard-Vessiot ring for δ(y) = Ay. Then the
following holds.

(i) For every B ∈ GLn(F ), R is a σ-Picard-Vessiot ring for δ(y) = (BAB−1+δ(B)B−1)y
with fundamental solution matrix BY and we have GalδσBY (R/F ) = GalδσY (R/F ) as
σ-closed subgroups of GLn.

(ii) Let F0 ⊇ F1 ⊇ F be δσ-field extensions with F δ
0 = F and suppose that R ⊆ F0 as an

F -δσ-subalgebra. Then R1 = F1{Y, 1/ det(Y )} ⊆ F0 is a σ-Picard-Vessiot ring over
F1 and GalδσY (R1/F1) ≤ GalδσY (R/F ) as σ-closed subgroups of GLn.

Proof. For (i), define Ỹ = BY . Then δ(Ỹ )Ỹ −1 = δ(BY )Y −1B−1 = BAB−1+δ(B)B−1, since

δ(Y ) = AY . Also R = F{Y, 1/ det(Y )} = F{Ỹ , 1/ det(Ỹ )}. Hence R is a σ-Picard-Vessiot
ring for δ(y) = (BAB−1+δ(B)B−1)y with fundamental solution matrix BY . Let S be a k-σ-
algebra and let g ∈ Autδσ(R⊗kS/F ⊗kS). Then Ỹ −1g(Ỹ ) = Y −1B−1Bg(Y ) = Y −1g(Y ) and
thus the S-rational points of GalδσBY (R/F ) and GalδσY (R/F ) coincide as subsets of GLn(S)
and (i) follows.

For (ii), first note that R1 is a σ-Picard-Vessiot ring over F1 by Lemma 1.4, since F δ
0 = F δ

1 .
Let S be a k-σ-algebra and let g1 ∈ Autδσ(R1 ⊗k S/F1 ⊗k S). Then g1(Y ) = Y φS(g1) with
φS(g1) ∈ GLn(S). Hence g1(Y ) has entries in R ⊗k S and thus g1 restricts to an injective
homorphism g on R ⊗k S. As R ⊗k S is generated by the entries of Y = g(Y φS(g1)

−1) and
1/ det(Y ) = g(1/ det(Y φS(g

−1
1 ))), g is surjective and thus an element of Autδσ(R⊗k S/F ⊗k

S). As g1 is uniquely determined by g1(Y ) = g(Y ), we obtain an inclusion Autδσ(R1 ⊗k

S/F1⊗k S) →֒ Autδσ(R⊗k S/F ⊗k S) that corresponds to a containment GalδσY (R1/F1)(S) ⊆
GalδσY (R/F )(S) as subsets of GLn(S), since Y −1g1(Y ) = Y −1g(Y ). �

2. Multiplicative, additive, and finite cyclic groups as σ-Galois groups

The patching method will allow to break down the task of realizing a given group G as a
σ-Galois group to the task of realizing generating subgroups as σ-Galois groups over certain
overfields (see Theorem 3.12). As our task is to realize all algebraic groups as σ-Galois groups,
we need to find generating subgroups that we can explicitly realize as σ-Galois groups. In
this section, we first prove that every algebraic group can be generated (as a σ-algebraic
group) by finitely many subgroups that are each either isomorphic to the multiplicative, or
the additive, or a finite cyclic group. Then we show how these three types of groups can be
realized as σ-Galois groups.

2.1. Generating algebraic groups as σ-algebraic groups. It is known (see e.g., [BHH16,
Prop. 3.1 ]) that every linear algebraic group over an algebraically closed field of charac-
teristic zero can be generated by finitely many closed subgroups isomorphic to the additive
group Ga, the multiplicative group Gm or a finite cyclic group. We will need a slightly refined
version of this result.

Lemma 2.1. Let G be a linear algebraic group over an algebraically closed field of charac-
teristic zero. Then there exist closed subgroups H1, . . . ,Hr of G such that

(i) each Hi is isomorphic to either Ga, Gm or a finite cyclic group and
(ii) for some n ≥ 1 and (i1, . . . , in) ∈ {1, . . . , r}n the multiplication map

φ : X = Hi1 × . . .×Hin → G is surjective.
9



Proof. It is shown in the proof of [BHH16, Prop. 3.1] that the identity component Go of G
can be generated by finitely many copies of Ga’s and Gm’s. According to [Spr09, Cor. 2.2.7],
Condition (ii) above is automatically satisfied for generating subgroups that are connected.
So we can find finitely many closed subgroups H1, . . . ,Hs of Go isomorphic to either Ga or
Gm such that the multiplication map from H1 × . . . × Hs to G0 is surjective. According
to a result of Borel and Serre ([BS64, Lemma 5.11]), there exists a finite subgroup W of
G that meets every connected component of G. Clearly W, is generated by finite cyclic
groups Hs+1, . . . ,Hr, even in the strong sense of (ii). Thus the subgroups H1, . . . ,Hr satisfy
condition (ii). �

We now transfer the above result to σ-algebraic groups.

Proposition 2.2. Let k be an algebraically closed σ-field of characteristic zero and let G be
a linear algebraic group over k. Then the σ-algebraic group G = [σ]kG can be generated by
finitely many σ-closed subgroups isomorphic to [σ]kH, where H is Gm, Ga or a finite cyclic
group.

Proof. Let H1, . . . ,Hr and φ : X → G be as in Lemma 2.1 and consider the morphism
[σ]kφ : X → G of σ-varieties, where X = [σ]kX = [σ]kHi1 × . . . × [σ]kHir . Then [σ]kφ
is the multiplication map, hence ([σ]kφ)(X) ⊆ 〈[σ]kHi| i = 1, . . . , r〉 ⊆ G. On the other
hand, ([σ]kφ)(X) is the σ-closed σ-subvariety of G defined by the kernel of ([σ]kφ)

∗ =
[σ]kφ

∗ : k{G} → k{X}. Since φ∗ : k[G] → k[X ] is injective, also [σ]kφ
∗ : k{G} → k{X}

is injective (Lemma 1.1) and so ([σ]kφ)(X) = G. Thus G = 〈[σ]kHi| i = 1, . . . , r〉 as
desired. �

2.2. Realization of Gm, Ga and finite cyclic groups as σ-Galois groups. In this sub-
section, we present criteria for when a σ-Picard-Vessiot ring has a σ-Galois group isomorphic
to the additive group Ga, the multiplicative group Gm, or a finite cyclic group (all interpreted
as σ-algebraic groups). We let F denote a δσ-field of characteristic zero and we let k = F δ

be its σ-field of δ-constants.
We begin with the multiplicative case.

Proposition 2.3. Let L/F be a δσ-field extension with Lδ = F δ. Let y ∈ L be an element
such that δ(y)y−1 ∈ F . Then F{y, y−1} ⊆ L is a σ-Picard-Vessiot ring with σ-Galois group
G isomorphic to a σ-closed subgroup of the multiplicative group Gm. We have G ≃ [σ]kGm

if and only if y, σ(y), σ2(y), . . . are algebraically independent over F .

Proof. Define a = δ(y)y−1 ∈ F . By Lemma 1.4, R = F{y, y−1} is a σ-Picard Vessiot ring for
the differential equation δ(y) = ay. Thus Galδσy (R/F ) is a σ-closed subgroup of GL1 = Gm.

Set G = Galδσy (R/F ).

For every i ≥ 1, define Ri = F [y, σ(y), . . . , σi(y), 1/(y . . . σi(y))]. By Corollary 1.8, G =
[σ]kGm if and only if dim(Ri) = i+1 for all i ≥ 1. Clearly, dim(Ri) = i+1 holds if and only
if y, σ(y), σ2(y), . . . σi(y) are algebraically independent and the claim follows. �

We next treat the additive case.

Proposition 2.4. Let L/F be a δσ-field extension with Lδ = F δ. Let y ∈ L be an element
such that δ(y) ∈ F . Then F{y} ⊆ L is a σ-Picard-Vessiot ring with σ-Galois group G
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isomorphic to a σ-closed subgroup of the additive group Ga. We have G ≃ [σ]kGa if and only
if y, σ(y), σ2(y), . . . are algebraically independent over F .

Proof. Define a = δ(y) ∈ F and define matrices

A =

(
0 a
0 0

)
∈ F 2×2, Y =

(
1 y
0 1

)
∈ GL2(R).

Then R = F{Y, 1/ det(Y )} = F{y} is a σ-Picard-Vessiot ring for the differential equation
δ(y) = Ay by Lemma 1.4. The σ-Galois group of R is isomorphic to a σ-closed subgroup
of Ga. Indeed, if S is a k-σ-algebra, g ∈ Autδσ(R ⊗k S/F ⊗k S) and φ : G → GL2 is the
σ-closed embedding associated with the choice of Y , then

(
1 g(y)
0 1

)
= g(Y ) = Y φS(g) =

(
g11 + yg21 g12 + yg22

g21 g22

)
,

where

φS(g) =

(
g11 g12
g21 g22

)
∈ GL2(S).

Thus, g21 = 0 and g11 = g22 = 1. This shows that φ(G) = GalδσY (R/F ) is contained in the
σ-closed subgroup H ≃ [σ]kGa of GL2 defined by

H(S) =

{(
1 s
0 1

) ∣∣∣ s ∈ S

}

for any k-σ-algebra S.
For every i ≥ 1, consider the F -δ-algebra

Ri = F [y, σ(y), . . . , σi(y)] = F [Y, σ(Y ), . . . , σi(Y ), 1/ det(Y . . . σi(Y ))].

By Corollary 1.8, GalδσY (R/F ) = H holds if and and only if dim(Ri) = i + 1 for all i ≥
1. Clearly, dim(Ri) = i + 1 holds if and only if y, σ(y), σ2(y), . . . , σi(y) are algebraically
independent and the claim follows. �

Finally, we treat the case of a finite cyclic group.

Proposition 2.5. Let L/F be a δσ-field extension with Lδ = F δ algebraically closed. Let
y ∈ L be such that yd ∈ F for some d ∈ N. Then F{y, y−1} ⊆ L is a σ-Picard-Vessiot ring
with σ-Galois group G isomorphic to a σ-closed subgroup of H, where H is the finite cyclic
group of order d (considered as an algebraic group over k). We have G ≃ [σ]kH if and only
if for every i ∈ N, σi(y) has degree d over F (y, σ(y), . . . , σi−1(y)).

Proof. Let b = yd ∈ F . Then δ(y) = δ(b)
bd

y and it follows from Lemma 1.4 that R =
F{y, y−1} = F (y, σ(y), . . .) is a σ-Picard-Vessiot ring. For every k-σ-algebra S and g ∈
Galδσy (R/F )(S) ≤ GL1(S) we have b = g(b) = g(yd) = ydgd = bgd and it follows that gd = 1.

Thus Galδσy (R/F ) is a σ-closed subgroup of µd, the algebraic group of d-th roots of unity over
k. Since k is algebraically closed, µd is isomorphic to H. So G is isomorphic to a σ-closed
subgroup of H.

Assume that Galδσy (R/F ) = [σ]kµd. As (σi(y))d = σi(b), σi(y) has degree at most d over

F (y, σ(y), . . . , σi−1(y)). For i ≥ 0, Ri = F [y, . . . , σi(y)] = F (y, . . . , σi(y)) is a (classical)
Picard-Vessiot ring with (classical) Galois group isomorphic to µi+1

d by Proposition 1.7. By
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the (classical) torsor theorem, Ri ⊗F Ri
∼= Ri ⊗k k[µ

i+1
d ]. Hence the dimension of Ri as an

F -vector space agrees with the dimension of k[µi+1
d ] as a k-vector space, and the latter is

di+1. Thus [R1 : R0][R2 : R1] · · · [Ri : Ri−1] = di+1 and clearly, the field extension Rj/Rj−1

has degree at most d for every j ≥ 0, since (σj(y))d = σj(b). Therefore [Ri : Ri−1] = d and
σi(y) has degree d over F (y, σ(y), . . . , σi−1(y)).

Conversely, if F [y, . . . , σi(y)] has F -dimension di+1 for every i ≥ 1, then the i-th order

Zariski closure of Galδσy (R/F ) in GL1 must equal µd × . . . × σi

µd and so Galδσy (R/F ) must
equal [σ]kµd. �

3. Patching and σ-Picard-Vessiot theory

In this section, we prove a patching result for σ-Picard-Vessiot rings that allows us to
glue together two σ-Picard-Vessiot rings under certain assumptions. The proof relies on
factorization of the fundamental solution matrices, so it is crucial that the σ-Galois groups
of the given σ-Picard-Vessiot rings are embedded in GLn for the same n. Therefore, we start
the section by showing that the represenation of a σ-Galois group can be changed without
changing the σ-Picard-Vessiot ring.

3.1. Changing the representation of a σ-Galois group. Let F be a δσ-field of char-
acteristic zero and R a σ-Picard-Vessiot ring over F with σ-Galois group G. The choice of
matrices A ∈ F n×n and Y ∈ GLn(R) such that R is a σ-Picard-Vessiot ring for δ(y) = Ay
with fundamental solution matrix Y , determines a σ-closed embedding of G into GLn via
G → GalδσY (R/F ). The following proposition shows that, conversely, if we start with a
σ-closed embedding of G into GLn, then we can find appropriate matrices A and Y .

Proposition 3.1. Let R/F be a σ-Picard Vessiot ring with σ-Galois group G and let G′ be
a σ-closed subgroup of GLn isomorphic to G. Then there exist A ∈ F n×n and Y ∈ GLn(R)
with δ(Y ) = AY such that R is a σ-Picard-Vessiot ring for δ(y) = Ay and GalδσY (R/F ) = G′.

Proof. Let X denote the σ-variety over the σ-field F represented by the F -σ-algebra R. Then
X is naturally equipped with a right action φ : X × GF → X of the σ-algebraic group GF

over F : For x ∈ X(S), i.e., x : R → S is a morphism of F -σ-algebras, and g ∈ GF (S) = G(S)
the element φ(x, g) ∈ X(S) is the composition

R → R⊗k S
g−→ R⊗k S → S,

where the first map is the inclusion into the first factor and the last map sends r⊗s to x(r)s.
The morphism X ×GF → X ×X , given by (x, g) 7→ (x, φ(x, g)) for x ∈ X(S), g ∈ GF (S)
for any F -σ-algebra S, is an isomorphism, since the dual map R ⊗F R ≃ R ⊗F F{GF} =
R ⊗k k{G} is the isomorphism (1). Thus X is a right GF -torsor. In [BW, Lemma 4.4] it is
shown that every left torsor for a σ-closed subgroup of GLn is isomorphic to a σ-closed σ-
subvariety of GLn, with action given by matrix multiplication. If X̃ is a right G̃-torsor with

action φ̃ : X̃ × G̃ → X̃ , then X̃ is a left torsor with action G̃× X̃ → X̃, (g, x) 7→ φ(x, g−1).
Therefore, it follows that there exists a σ-closed embedding ϕ : X → GLn such that the
right action of GF on X is given by matrix multiplication, where G is identified with the
σ-closed subgroup G′ of GLn. The σ-closed embedding ϕ : X → GLn corresponds to a
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surjective morphism ϕ∗ : F{Z, 1/ detZ} → R of F -σ-algebras, where Z is an n × n matrix
of σ-indeterminates over F . Let Y ∈ GLn(R) denote the image of Z.

For a k-σ-algebra S, the action of an element g ∈ G(S) on Y is given by g(Y ) = Y g,
where g is considered as an element of GLn(S) via the isomorphism G → G′. Therefore,

g(δ(Y )Y −1) = δ(g(Y ))g(Y )−1 = δ(Y g)(Y g)−1 = δ(Y )gg−1Y = δ(Y )Y.

By Theorem 1.6 we have A = δ(Y )Y −1 ∈ F n×n and we see that R is a σ-Picard-Vessiot ring
for δ(y) = Ay with fundamental solution matrix Y and GalδσY (R/F ) = G′. �

3.2. A δσ-setup for applying patching methods. The method of patching over fields
was introduced by Harbater and Hartmann in [HH10]. In the most basic setup, they consider
fields F ⊆ F1, F2 with a common overfield F0 and show that finite dimensional vector spaces
V1 over F1 and V2 over F2 together with an isomorphism ψ : V1⊗F1

F0 → V2⊗F2
F0 can be glued

together to an F -vector space V with isomorphisms φ1 : V ⊗F F1 ≃ V1 and φ2 : V ⊗F F2 ≃ V2

such that (φ2 ⊗F2
F0) ◦ (φ1 ⊗F1

F0)
−1 = ψ if (F, F1, F2, F0) satisfies two properties called

intersection and factorization. We call such quadruples diamonds with the factorization
property. In [BHHW18], we considered differential diamonds with the factorization property.

Definition 3.2. A diamond with the factorization property is a quadruple (F, F1, F2, F0) of
fields with inclusions F ⊆ F1, F2 and F1, F2 ⊆ F0 such that F1 ∩ F2 = F (intersection) and
such that for every n ∈ N and every matrix A ∈ GLn(F0), there exist matrices B ∈ GLn(F1)
and C ∈ GLn(F2) with A = B · C (factorization). If in addition char(F ) = 0 and all of the
fields are equipped with a derivation that is compatible with the inclusions, then (F, F1, F2, F0)
is called a differential diamond with the factorization property. Similarly, if all four fields
are δσ-fields of characteristic zero such that both δ and σ are compatible with the inclusions,
then we call (F, F1, F2, F0) a δσ-diamond with the factorization property.

Over F = C(x), diamonds with the factorization property arise as fields of meromorphic
functions on suitabel open subsets of X = P1

C, as the following lemma states.

Lemma 3.3 ([BHHW18], Lemma 3.4). Let F be a one-variable function field over C, or
equivalently the field of meromorphic functions on a compact Riemann surface X . Let O1, O2

be connected metric open subsets of X such that Oi 6= X , O1 ∪ O2 = X , and O0 := O1 ∩ O2

is connected. Let Fi be the field of meromorphic functions on Oi. Then (F, F1, F2, F0) is a
diamond with the factorization property.

Example 3.4. Let X = P1
C be the Riemann sphere and F = C(x). Consider the open

subsets O1 = {x ∈ P1
C | |x| < 1} and O2 = {x ∈ P1

C | |x| > 1
2
}. Then O1 ∪ O2 = X and

the annulus O0 = O1 ∩ O2 = {x ∈ P1
C | 1

2
< |x| < 1} is connected. Let Fi be the field

of meromorphic functions on Oi. Then (F, F1, F2, F0) is a diamond with the factorization
property by Lemma 3.3.

Corollary 3.5. Let U1 ⊇ U2 ⊇ U3 ⊇ · · · and V1 ⊇ V2 ⊇ V3 ⊇ · · · be chains of proper
connected metric open subsets of the Riemann sphere X = P1

C such that Ur ∩Vr is connected
and Ur ∪ Vr = X for all r ∈ N. Let FUr

, FVr
and FUr∩Vr

denote the fields of meromorphic
functions on Ur, Vr and Ur ∩ Vr, respectively, and let F = C(x) (the field of meromorphic
functions on X ). Define F1 = lim−→FUr

(with respect to the natural inclusions FUr
→ FUs

for
13



r ≤ s) and similarly F2 = lim−→FVr
and F0 = lim−→FUr∩Vr

. Then there are natural inclusions
F1, F2 ⊆ F0 and (F, F1, F2, F0) is a diamond with the factorization property.

Proof. By Lemma 3.3, (F, FUr
, FVr

, FUr∩Vr
) is a diamond with the factorization property for

every r ∈ N. Let f ∈ F0 be contained in the intersection F1∩F2. Then there exists an r ∈ N

with f ∈ FUr
∩ FVr

= F . Thus F1 ∩ F2 = F . Similarly, for n ∈ N and A ∈ GLn(F0) there
exists an r ∈ N with A ∈ GLn(FUr∩Vr

). Hence there exist matrices B ∈ GLn(FUr
) ⊆ GLn(F1)

and C ∈ GLn(FVr
) ⊆ GLn(F2) with A = B · C. �

Example 3.6. Let X = P1
C be the Riemann sphere and F = C(x). Consider the open

subsets Ur = {x ∈ P1
C | |x| < 1} and Vr = {x ∈ P1

C | |x| > 1 − 1
r
}. Then for all r ∈ N,

Ur ∪ Vr = X and the annulus Ur ∩ Vr = {x ∈ P1
C | 1 − 1

r
< |x| < 1} is connected. Define

F1 = lim−→FUr
, F2 = lim−→FVr

and F0 = lim−→FUr∩Vr
. Then F1 = FU1

is the field of meromorphic

functions on the open set {x ∈ P1
C | |x| < 1}, F2 is the field of meromorphic functions on the

open set {x ∈ P1
C | |x| > 1} that are meromorphic in x = 1 and F0 is the field of functions

that are meromorphic in x = 1.

We proceed with a lemma that equips fields ocurring as direct limits as in Corollary 3.5
with a structure of δσ-fields.

Lemma 3.7. Let U1 ⊇ U2 ⊇ U3 ⊇ · · · be a chain of connected metric open subsets of the
Riemann sphere X = P1

C and define F1 = lim−→FUr
. Then the natural derivations δ on FUr

induce a derivation δ on F1. If in addition there are homomorphisms σr : FUr
→ FUr+1

for
all r ∈ N such that

FUr

σr //

δ

��

FUr+1

δ

��
FUr

σr // FUr+1

and FUr+1

σr+1 // FUr+2

FUr

σr //

OO

FUr+1

OO

commute, then F1 is a δσ-field with F δ
1 = C.

Proof. It is immediate that the derivations on FUr
induce a well-defined derivation on

the direct limit and also that the morphisms {σr}r≥1 induce a well-defined endomorphism
σ : F1 → F1 that commutes with δ. Finally, F δ

Ur
= C for all r and thus F δ

1 = C. �

In the proof of our main theorem, we will work with the following kind of fields.

Example 3.8. Fix a natural number m ∈ N.

(i) For r ∈ N, let Vr,m = {x ∈ P1
C | x /∈ [−r, 0] + mi} be the connected metric open

subset of the Riemann sphere P1
C obtained by deleting the translate [−r, 0] +mi of

the real interval [−r, 0]. Note that V1,m ⊇ V2,m ⊇ V3,m ⊇ . . . . We let FVr,m
denote

the field of meromorphic functions on Vr,m. Then x 7→ x+ 1 defines a holomorphic
function Vr+1,m → Vr,m that induces a homomorphism σr : FVr,m

→ FVr+1,m
for all

r ∈ N. Moreover, σr is compatible with the natural derivations δ on FVr,m
and

FVr+1,m
and σr+1 : FVr+1,m

→ FVr+2,m
restricts to σr : FVr,m

→ FVr+1,m
. Hence the

direct limit
L(m) = lim−→

r∈N

FVr,m
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is a δσ-field with F (m)δ = C by Lemma 3.7.
(ii) For r ∈ N, consider the subset

Ur,m = {x ∈ P1
C | x /∈

m⋃

l=1

([−r, 0] + li)}

of the Riemann sphere X = P1
C, where we delete the translates [−r, 0] + i, [−r, 0] +

2i,. . . , [−r, 0] +mi of the real interval [−r, 0]. Note that Ur,m is a connected metric
open subset of X and U1,m ⊇ U2,m ⊇ U3,m ⊇ . . . . Let FUr,m

denote the field of
meromorophic functions on Ur,m. Then x 7→ x + 1 defines a holomorphic function
Ur+1,m → Ur,m that induces a homomorphism σr : FUr,m

→ FUr+1,m
for all r ∈ N.

Moreover, σr is compatible with the natural derivations δ on FUr,m
and FUr+1,m

and
σr+1 : FUr+1,m

→ FUr+2,m
restricts to σr : FUr,m

→ FUr+1,m
. Hence the direct limit

F (m) = lim−→
r∈N

FUr,m

is a δσ-field with F (m)δ = C by Lemma 3.7.

Remark 3.9. Note that the σ-fields L(m) and F (m) are not inversive, i.e., σ is not sur-
jective. For example, the image of σ contains no functions with a singularity at the point
(−1/2 + mi). Assume to the contrary that there exists an f ∈ L(m) or f ∈ F (m) such
that f(x + 1) has a singularity at (−1/2 + mi). Then f has a singularity at 1/2 + mi, a
contradiction.

Using Lemma 3.7, we can now equip diamonds with the factorization property as in
Corollary 3.5 with a δσ-structure.

Corollary 3.10. Let U1 ⊇ U2 ⊇ U3 ⊇ · · · and V1 ⊇ V2 ⊇ V3 ⊇ · · · be chains of proper
connected metric open subsets of the Riemann sphere X = P1

C such that Ur ∩Vr is connected
and Ur ∪ Vr = X for all r ∈ N. Let FUr

, FVr
and FUr∩Vr

denote the fields of meromor-
phic functions on Ur, Vr and Ur ∩ Vr, respectively, and let F = C(x) denote the field of
meromorphic functions on X . Define F1 = lim−→FUr

(with respect to the natural inclusions
FUr

→ FUs
for r ≤ s) and similarly F2 = lim−→FVr

and F0 = lim−→FUr∩Vr
. For every r ≥ 1 let

σr : FUr∩Vr
→ FUr+1∩Vr+1

be a morphism such that σr(FUr
) ⊆ FUr+1

, σr(FVr
) ⊆ FVr+1

and

FUr∩Vr

σr //

δ

��

FUr+1∩Vr+1

δ

��
FUr∩Vr

σr // FUr+1∩Vr+1

and FUr+1∩Vr+1

σr+1 // FUr+2∩Vr+2

FUr∩Vr

σr //

OO

FUr+1∩Vr+1

OO

commute. Then (F, F1, F2, F0) is a δσ-diamond with the factorization property.

Proof. By Corollary 3.5, (F, F1, F2, F0) is a diamond with the factorization property. For
all r ∈ N, the fields FUr

are differential fields and the derivation is compatible with the
inclusions FUr

⊆ FUs
for r ≤ s, hence we can equip F1 with a derivation and similarly for

F2 and F0. These derivations are compatible with the natural inclusions F ⊆ F1, F2 and
F1, F2 ⊆ F0 and thus (F, F1, F2, F0) is a differential diamond with the factorization property.
The morphisms {σr}r≥1 induce a well-defined endomorphism σ : F0 → F0 that restricts to
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endomorphisms on F1 and F2. Moreover, δ(σ(f)) = σ(δ(f)) for all f ∈ F0 and σ restricts to
an endomorphism of F because FUr

∩ FVr
= F . Hence (F, F1, F2, F0) is a δσ-diamond with

the factorization property. �

Using Corollary 3.10, we can now use the fields from Example 3.8 to obtain δσ-diamonds
(F, F (m− 1), L(m), F (m)) for all m ∈ N:

Example 3.11. Consider F = C(x), X = P1
C and fix a natural number m ∈ N. For r ∈ N,

let Ur,m, Vr,m be as defined in Example 3.8. Hence Ur,m−1 ∩ Vr,m = Ur,m is connected and
Ur,m−1 ∪ Vr,m = X for all r ∈ N.

Define

F1 = lim−→
r∈N

FUr,m−1
= F (m− 1)

F2 = lim−→
r∈N

FVr,m
= L(m)

F0 = lim−→
r∈N

FUr,m−1∩Vr,m
= F (m).

By Example 3.8 together with Corollary 3.10, (F, F1, F2, F0) is a δσ-diamond with the fac-
torization property with F δ

0 = C = F δ.

3.3. A patching result for σ-Picard-Vessiot rings. The next theorem allows us to glue
together two σ-Picard-Vessiot rings under certain assumptions. The proof is similar to related
statements for Picard-Vessiot rings ([BHH16, Thm. 2.4]) and parameterized Picard-Vessiot
rings ([Mai15, Thm. 2.2]).

Theorem 3.12. Let (F, F1, F2, F0) be a δσ-diamond with the factorization property such that
k := F δ = F δ

0 . Let G be a σ-algebraic group over k generated by two σ-closed subgroups H1

and H2. For i = 1, 2, let Ri/Fi be a σ-Picard-Vessiot ring with σ-Galois group isomorphic
to Hi such that Ri ⊆ F0 as an Fi-δσ-subalgebra. Then there exists a σ-Picard-Vessiot ring
R/F with σ-Galois group isomorphic to G and R ⊆ F0 as an F -δσ-subalgebra.

Proof. According to Lemma 1.2, we can identify G with a σ-closed subgroup of GLn for a
suitable n ∈ N and thus also view H1 and H2 as σ-closed subgroups of GLn. By Propo-
sition 3.1, for i = 1, 2, there exists a differential equation δ(y) = Aiy with Ai ∈ F n×n

i

together with a fundamental solution matrix Yi ∈ GLn(Ri) such that GalδσYi
(Ri/Fi) = Hi.

Since Ri ⊆ F0, we can consider the matrix Y1Y
−1
2 ∈ GLn(F0). The factorization property

implies that there exist matrices B1 ∈ GLn(F1), B2 ∈ GLn(F2) with Y1Y
−1
2 = B−1

1 B2. Define
Y = B1Y1 = B2Y2 ∈ GLn(F0) and A = δ(Y )Y −1 ∈ F n×n

0 . Then for both i = 1, 2,

A = δ(BiYi)Y
−1
i B−1

i

= δ(Bi)B
−1
i +BiAiB

−1
i ∈ F n×n

i .

As F1 ∩ F2 = F0, we conclude that A has entries in F . Consider the differential equation
δ(y) = Ay over F and define R = F{Y, 1/ det(Y )} ⊆ F0. Since F δ

0 = F δ, R is a σ-
Picard-Vessiot ring over F for δ(y) = Ay by Lemma 1.4. Define H = GalδσY (R/F ). We
claim that H = G as σ-closed subgroups of GLn. For i = 1, 2, Ri = Fi{Yi, 1/ det(Yi)} =
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Fi{Y, 1/ det(Y )} and

Hi = GalδσYi
(Ri/Fi) = GalδσBiYi

(Ri/Fi) = GalδσY (Ri/Fi)

by Lemma 1.9.(i). Furthermore, GalδσY (Ri/Fi) ≤ GalδσY (R/F ) by Lemma 1.9.(ii) as σ-closed
subgroups of GLn. Hence H1, H2 ≤ H inside GLn and thus G ≤ H .

For both i = 1, 2,

Frac(R)G ⊆ Frac(R)Hi ⊆ Frac(Ri)
Hi = Fi,

where the last equality follows from Theorem 1.6. Hence Frac(R)G ⊆ F1 ∩ F2 = F and
therefore G = H by Theorem 1.6. �

4. Building blocks

Theorem 3.12 breaks down the problem of realizing a given group as σ-Galois group over
F = C(x) to the task of realizing suitable building blocks, i.e., realizing suitable, generating
subgroups as σ-Galois groups over certain overfields of F . In this section, we explicitly
construct these building blocks.

4.1. Independence of translates. In this subsection, we provide results on the algebraic
or linear independence of translates of certain exponential, logarithmic and root functions
as a preparation for constructing σ-Picard-Vessiot rings with σ-Galois groups isomorphic to
[σ]CH for H = Gm,Ga, or a finite cyclic group.

The following lemma corresponds to the case H = Gm.

Lemma 4.1. For γ ∈ C, the (infinite) set of functions

exp

(
1

x− γ

)
, exp

(
1

x+ 1− γ

)
, exp

(
1

x+ 2− γ

)
, . . .

is algebraically independent over C(x).

Proof. Assume to the contrary that the set is algebraically dependent. Then there exists

an m ∈ N such that exp
(

1
x−γ

)
, exp

(
1

x+1−γ

)
, . . . , exp

(
1

x+m−γ

)
are algebraically dependent.

By the theorem of Kolchin-Ostrowski (see e.g. Section 2 in [Kol68]), this can only happen if
there exist a non-zero vector (e0, . . . , em) ∈ Zm+1 with

f :=

m∏

j=0

(
exp

(
1

x+ j − γ

))ej

∈ C(x).

We compute

δf

f
=

m∑

j=0

−ej
(x+ j − γ)2

.

On the other hand, we can factor f = α
∏r

j=1(x−αj)
nj for suitable α ∈ C, pairwise distinct

elements αj ∈ C and nj ∈ Z. Thus

δf

f
= α

r∑

j=1

nj

(x− αj)
,

a contradiction. �
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We next treat the case H = Ga.

Lemma 4.2. For γ ∈ C, the (infinite) set of functions

log

(
1

x− γ
+ 1

)
, log

(
1

x+ 1− γ
+ 1

)
, log

(
1

x+ 2− γ
+ 1

)
, . . .

is algebraically independent over C(x).

Proof. Assume to the contrary that the set is algebraically dependent. Then there exists

an m ∈ N such that log
(

1
x−γ

+ 1
)
, log

(
1

x+1−γ
+ 1

)
, . . . , log

(
1

x+m−γ
+ 1

)
are algebraically

dependent. By the theorem of Kolchin-Ostrowski (see e.g. Section 2 in [Kol68]), this can
only happen if there exist a non-zero vector (c0, . . . , cm) ∈ Cm+1 with

f :=

m∑

j=0

cj log

(
1

x+ j − γ
+ 1

)
∈ C(x).

We compute

δ(f) =

m∑

j=0

−cj
(x+ j − γ)(x+ j + 1− γ)

=

m∑

j=0

( −cj
(x+ j − γ)

+
cj

(x+ j + 1− γ)

)
.

As f is contained in C(x), all terms need to cancel. As the terms with denominator (x− γ)
and (x+m+1−γ) cannot cancel with any other term, we conclude c0 = cm = 0. Inductively,
we obtain that cj = 0 for all j, a contradiction. �

Finally, we treat the cyclic case.

Lemma 4.3. For γ ∈ C and d ≥ 1 a natural number, consider the (infinite) set of functions

f0 =
d

√
1

x− γ
+ 1, f1 =

d

√
1

x+ 1− γ
+ 1, f2 =

d

√
1

x+ 2− γ
+ 1, . . .

Then for every j ∈ N, fj has degree d over C(x)(f0, f1, . . . , fj−1).

Proof. Define E = C(x)(f0 . . . , fj−1) and L = C(x)(fj). We claim that E and L are linearly
disjoint over C(x). Recall that L/C(x) is cyclic and in particular Galois of degree d. Hence
it suffices to prove E ∩ L = C(x).

Since f d
j = (x + j + 1 − γ)/(x + j − γ), L/C(x) is totally ramified at (x + j + 1 − γ) as

fj has valuation 1/d at this place. Therefore, the subfield E ∩ L is also totally ramified at
(x+ j + 1− γ) of ramification index

e = [E ∩ L : C(x)].

On the other hand, E/C(x) is unramified at (x+ j+1−γ). To see this, consider the chain
of fields E0 = C(x)(f0), E1 = E0(f1), . . . , Ej−1 = Ej−2(fj−1) = E. Then it suffices to show
that Em/Em−1 is unramified at all places p lying over (x + j + 1 − γ) for m = 1, . . . , j − 1.
The minimal polynomial of Em/Em−1 divides T d − (x+m+ 1− γ)/(x+m− γ) which has
coefficients in Op and reduces to a separable polynomial modulo p. Hence p splits completely
in Em/Em−1 ([Sti09, Thm. 3.3.7]) and the claim follows.

Therefore, the subfield E ∩ L of E is also unramified at (x+ j + 1 − γ), so e = 1 and we
conclude E ∩ L = C(x). �
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4.2. Constructing explicit σ-Picard-Vessiot rings. In this section, we work over the
base field F = C(x) considered as a δσ-field via δ = d

dx
and σ(f(x)) = f(x+ 1). For m ∈ N,

let L(m) be as defined in Example 3.8.(i).

Proposition 4.4. Let m ∈ N and let H be either Gm, Ga or a finite cyclic group. Then
there exists a σ-Picard-Vessiot ring R over F = C(x) with σ-Galois group isomorphic to
[σ]CH such that R ⊆ L(m) as an F -δσ-subalgebra.

Proof. We begin with H = Gm. Define a = −(x − mi)2 ∈ F . Then y = exp( 1
x−mi

)

solves the differential equation δ(y) = ay and y is holomorphic on P1
C\{mi} ⊇ V1,m. Hence

y ∈ FV1,m
⊆ L(m). Define R = F{y, y−1} ⊆ L(m). Then R/F is a σ-Picard-Vessiot ring

for δ(y) = ay by Lemma 1.4, since L(m)δ = C = F δ. Using Proposition 2.3 together with
Lemma 4.1, we conclude that its σ-Galois group is isomorphic to [σ]CGm.

We next treat the case H = Ga. Recall that the complex logarithm is a holomorphic
function on C\R−, where R− denotes the interval (−∞, 0]. As x 7→ 1

x−mi
+ 1 defines a

holomorphic function V1,m → C\R−, we conclude that y = log
(

1
x−mi

+ 1
)
is holomorphic on

V1,m and in particular, y ∈ FV1,m
⊆ L(m). Also note that δ(y) is contained in C(x) = F .

Hence R = F{y} ⊆ L(m) is a σ-Picard-Vessiot ring over F with σ-Galois group isomorphic
to [σ]CGa by Proposition 2.4 together with Lemma 4.2.

Finally we treat the case that H is a finite cyclic group. Let d ∈ N be the order of H.
Recall that the complex d-th root d

√
x = exp(log(x)/d) is a holomorphic function on C\R−,

where R− denotes the interval (−∞, 0]. As x 7→ 1
x−mi

+ 1 defines a holomorphic function

V1,m → C\R−, we conclude that y = d

√
1

x−mi
+ 1 is holomorphic on V1,m and in particular,

y ∈ FV1,m
⊆ L(m). Hence R = F{y, y−1} ⊆ L(m) is a σ-Picard-Vessiot ring over F with

σ-Galois group [σ]CH by Proposition 2.5 together with Lemma 4.3. �

5. Main result

The following lemma allows to base change a σ-Picard-Vessiot R/F from F to a δσ-
overfield F2 ⊇ F without shrinking the σ-Galois group under certain assumptions. An
analogous statement for Picard-Vessiot rings has been proved in [BHHW18, Lemma 2.9].

Lemma 5.1. Let (F, F1, F2, F0) be a quadruple of δσ-fields with F ⊆ F1, F2 ⊆ F0 such that
F1 ∩ F2 = F and F δ

0 = F δ. Let R/F be a σ-Picard-Vessiot ring such that R ⊆ F1 as an
F -δσ-subalgebra. Then the compositum F2R ⊆ F0 is a σ-Picard-Vessiot ring over F2 with
the same σ-Galois group as R/F .

Proof. Let G be the σ-Galois group of R/F . By Lemma 1.9 (ii), F2R/F2 is a σ-Picard-Vessiot
ring with σ-Galois group H a σ-closed subgroup of G. We consider the functorial invariants
Frac(R)H ⊆ Frac(R) ⊆ F1. As Frac(R)H ⊆ Frac(F2R)H = F2 by Theorem 1.6, we conclude
Frac(R)H ⊆ F1 ∩ F2 = F and thus H = G by Theorem 1.6. �

We are now in a position to prove our main theorem:

Theorem 5.2. Consider F = C(x) as δσ-field with δ = d
dx

and σ(f(x)) = f(x+ 1). Then,
for every linear algebraic group G over C, there exists a σ-Picard-Vessiot ring over F with
σ-Galois group isomorphic to [σ]CG.
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Proof. Set G = [σ]CG. By Proposition 2.2, there exist σ-closed subgroups H1, . . . , Hm of G
with G = 〈H1, . . . , Hm〉 and such that for each i, Hi ≃ [σ]CHi, where Hi is Gm, Ga, or a
finite cyclig group (depending on i).

For r ∈ N, let

Ur,m = {x ∈ P1
C | x /∈

m⋃

l=1

([−r, 0] + li)}

as in Example 3.8.(ii) and let FUr,m
denote the field of meromorophic functions on Ur,m. As

explained in Example 3.8, the direct limit F (m) = lim−→
r∈N

FUr,m
is a δσ-field extension of F with

F (m)δ = C. We claim that there exists a σ-Picard-Vessiot ring R(m) over F with σ-Galois
group G and R(m) ⊆ F (m) as a F -δσ-subalgebra. We prove the claim by induction on m.

If m = 1, then F (m) = F (1) = L(1) with L(1) as defined in Example 3.8.(ii) and the
claim follows from Proposition 4.4 applied to m = 1.

Now assume that we constructed a σ-Picard-Vessiot ring R(m − 1) ⊆ F (m − 1) with
σ-Galois group 〈H1, . . . , Hm−1〉. We define connected metric open subsets

Vr,m = {x ∈ P1
C | x /∈ [−r, 0] +mi}

as in Example 3.8.(i). Hence Ur,m−1 ∩ Vr,m = Ur,m is connected and Ur,m−1 ∪ Vr,m = X for
all r ∈ N. We define

F1 = lim−→
r∈N

FUr,m−1
= F (m− 1)

F2 = lim−→
r∈N

FVr,m
= L(m)

F0 = lim−→
r∈N

FUr,m−1∩Vr,m
= F (m).

As explained in Example 3.11, (F, F1, F2, F0) is a δσ-diamond with the factorization property
and moreover, F δ

0 = C = F δ holds. By Lemma 5.1, we can thus lift R(m − 1) ⊆ F1 to a
σ-Picard-Vessiot ring R2 = F2R(m − 1) over F2 with σ-Galois group 〈H1, . . . , Hm−1〉 and
R2 ⊆ F0.

On the other hand, Proposition 4.4 provides us with a σ-Picard-Vessiot ring R̃/F with
σ-Galois group Hm and R̃ ⊆ L(m) = F2 as a F -δσ-subalgebra. Again by Lemma 5.1, we may

lift R̃ to a σ-Picard-Vessiot ring R1 = F1R̃ over F1 with σ-Galois group Hm and R1 ⊆ F0.
Using the patching result Theorem 3.12, we obtain a σ-Picard-Vessiot ring R(m) over F

with σ-Galois group 〈H1, . . . , Hm〉 and with R(m) ⊆ F0 = F (m) as claimed. �

6. Difference algebraic groups that are not σ-Galois groups

Since, as shown above, all linear algebraic groups over C, considered as σ-algebraic groups,
occur as σ-Galois groups over C(x), one may feel tempted to conjecture that in fact all σ-
algebraic groups over C occur as σ-Galois groups over C(x). However, this is not true.
For example, as we will see below, the σ-closed subgroup G of GL1 defined by G(S) =
{g ∈ GL1(S) | g2 = 1, σ(g) = g} for any C-σ-algebra S is not a σ-Galois group over C(x).
Moreover, we show that no proper non-trivial subgroup of the additive group Ga is a σ-Galois
group over C(x).
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6.1. A necessary criterion. In this section, we will isolate two properties that any σ-Galois
group over C(x) must have. The main result of this section is the following.

Theorem 6.1. If G is a σ-Galois group over the δσ-field C(x) with derivation δ = d
dx

and
endomorphism σ given by σ(f(x)) = f(x+ 1), then G is σ-reduced and σ-connected.

The definition of σ-reduced and σ-connected is given below. Theorem 6.1 is proved at the
end of this section. The fact that every σ-Galois group over C(x) is σ-reduced follows rather
directly from [DVHW14] and the fact that σ : C(x) → C(x) is surjective. On the other hand,
the fact that every σ-Galois group over C(x) is σ-connected, essentially goes back to the fact
that C(x) does not have any non-trivial finite difference field extensions.

We first discuss σ-connected σ-algebraic groups and the related notion of the group πσ
0 (G)

of σ-connected components of a σ-algebraic group G. We do not strive for a comprehensive
study of these notions. The interested reader is referred to Section 4.2 of [Wib15]. We will
only introduce the definitions and results necessary for proving Theorem 6.1. Most of the
required difference algebraic results appeared in [TW18].

Let k be a σ-field. To motivate the definition of the group of σ-connected components of
a σ-algebraic group, let us first recall the definition of the group of connected components
of an algebraic group. See e.g., [Wat79, Chapter 6] or [Mil17, Section 2, g].

Recall that a group scheme G of finite type over k is étale if k[G] is an étale k-algebra,
i.e., k[G] ⊗k k is a a finite direct product of copies of k. The group π0(G) of connected
components of G can be defined through the following universal property: There exists a
morphism G → π0(G) of affine group schemes over k such that π0(G) is étale and for every
étale group scheme H with a morphism G → H, there exists a unique morphism π0(G) → H
such that

G //

��❃
❃
❃
❃
❃
❃
❃

π0(G)

||
H

commutes. The identity component Go of G can be defined as the kernel of G → π0(G).
The existence of π0(G) can be established as follows: Let π0(k[G]) denote the union of the
étale k-subalgebras of k[G]. Then one can show that π0(k[G]) is an étale algebra and a Hopf
subalgebra of k[G]. So π0(G) = Spec(π0(k[G])) is an étale algebraic group and the morphism
G → π0(G) corresponding to the inclusion π0(k[G]) → k[G] has the desired universal property.

To follow a similar path for difference algebraic groups we first need to define an appropri-
ate difference analog of étale algebras. Following [TW18] we make the following definition.

Definition 6.2. A k-σ-algebra R is σ-separable if σ : R ⊗k k′ → R ⊗k k′ is injective for
every σ-field extension k′ of k. A σ-separable k-σ-algebra is strongly σ-étale if it is an étale
k-algebra.

For a k-σ-algebra R, we denote the union of all strongly σ-étale k-σ-subalgebras of R with
πσ
0 (R/k). If the base σ-field k is clear form the context we will usually write πσ

0 (R) instead
of πσ

0 (R/k). We know from [TW18, Rem. 1.18] that πσ
0 (R) is a k-σ-subalgebra of R.
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Definition 6.3. A σ-algebraic group G is strongly σ-étale if k{G} is a strongly σ-étale
k-σ-algebra.

Example 6.4. Let G be the σ-closed subgroup of GL1 defined by G(S) = {g ∈ GL1(S) | g2 =
1, σ(g) = g} for any k-σ-algebra S. Then k{G} = k × k, with σ given by σ(a, b) =
(σ(a), σ(b)). Thus G is strongly σ-étale.

On the other hand, the group G defined by G(S) = {g ∈ GL1(S) | g2 = 1, σ(g) = 1} for
any k-σ-algebra S is not strongly σ-étale.

The following proposition was essentially proved in [TW18], but there the results were
formulated in an algebraic manner. Here we give a more geometric interpretation.

Proposition 6.5. Let G be a σ-algebraic group. Then there exists a strongly σ-étale σ-
algebraic group πσ

0 (G) together with a morphism G → πσ
0 (G) of σ-algebraic groups satisfying

the following universal property: If H is a strongly σ-étale σ-algebraic group with a morphism
G → H, then there exists a unique morphism πσ

0 (G) → H such that

G //

��❄
❄❄

❄❄
❄❄

❄
πσ
0 (G)

||
H

commutes.

Proof. A k-σ-Hopf algebra ([Wib, Def. 2.2]) is a Hopf algebra over k that has the structure
of a k-σ-algebra such that the Hopf algebra structure maps are morphisms of k-σ-algebras.
It follows directly from the definitions that the category of σ-algebraic groups is equivalent
to the category of k-σ-Hopf algebras that are finitely σ-generated as k-σ-algebra ([Wib,
Rem. 2.3]).

By Theorem 3.2 of [TW18] the k-σ-subalgebra πσ
0 (k{G}) of k{G} is a k-σ-Hopf-subalgebra

and by Theorem 4.5 of [Wib] every k-σ-Hopf-subalgebra of a finitely σ-generated k-σ-Hopf
algebra is finitely σ-generated. It follows that the σ-algebraic group πσ

0 (G) represented by
πσ
0 (k{G}) is strongly σ-étale. Moreover, since a quotient of a strongly σ-étale k-σ-algebra

is strongly σ-étale ([TW18, Lemma 1.15]) the inclusion πσ
0 (k{G}) ⊆ k{G} has the following

property: If k{H} is a strongly σ-étale k-σ-Hopfalgebra with a morphism ψ : k{H} →
k{G} then ψ(k{H}) ⊆ πσ

0 (k{G}). Geometrically, this translates to the required universal
property. �

Definition 6.6. Let G be a σ-algebraic group. The strongly σ-étale σ-algebraic group πσ
0 (G)

from Proposition 6.5 is called the group of σ-connected components of G. If πσ
0 (G) is the

trivial group, then G is σ-connected.

Remark 6.7. The terminology “σ-connected” is justified by the following fact ([Wib15,
Lemma 4.2.35]): A σ-algebraic group G is σ-connected if and only if Spec(k{G}) is connected
with respect to the σ-topology. The closed sets of the σ-topology on Spec(k{G}) are the
invariant (Zariski) closed sets.

Example 6.4 gives an example of σ-algebraic group that is not σ-connected. Any σ-
algebraic group G such that k{G} is an integral domain is σ-connected because in that case
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Spec(k{G}) is connected and so a fortiori σ-connected (Remark 6.7). One can also show that
any (even non-connected) algebraic group is σ-connected when considered as a σ-algebraic
group ([Wib15, Prop. 4.2.43]).

Example 6.8. Let G be the σ-closed subgroup of GL2 such that for a k-σ-algebra S and

g =

(
a b
c d

)
∈ GL2(S) we have g ∈ G(S) if and only if

cσ(a) + dσ(b) = 0,

aσ(c) + bσ(d) = 0,

aσ(a) + bσ(b) = cσ(c) + dσ(d),

(aσ(a) + bσ(b))2 = 1,

σ(a)σ2(a) + σ(b)σ2(b) = aσ(a) + bσ(b).

To see that these equations indeed define a subgroup, note the following alternative descrip-
tion of G. Let D be the σ-closed subgroup of GL2 defined by

D(S) =

{(
a 0
0 a

)
∈ GL2(S)

∣∣∣ a2 = 1, σ(a) = a

}

for any k-σ-algebra S. Then G(S) = {g ∈ GL2(S) | σ(g)gT ∈ D(S)}. This is a subgroup of
GL2(S) because D(S) lies in the center of GL2(S).

We claim that φ : G → D, g 7→ σ(g)gT satisfies the universal property of Proposition 6.5.
In particular, πσ

0 (G) is isomorphic to the σ-algebraic group defined in Example 6.4. The
easiest way to see this is to use some results from [Wib15]. In [Wib15, Prop. 4.2.41] it
is shown that if φ : G → D is a morphism of σ-algebraic groups such that the dual map
φ∗ : k{D} → k{G} is injective, D is strongly σ-étale and ker(φ) is σ-connected, then φ
satisfies the universal property.

We first note that φ is a morphism of σ-algebraic groups because D lies in the center of
GL2 and that D is strongly σ-étale because it is isomorphic to the group in Example 6.4. To
see that φ∗ is is injective, note that φ∗ sends the image of x in k[x]/(x2−1) = k×k = k{D}
to the image of aσ(a) + bσ(b) in k{G}. Thus if φ∗ was not injective, the latter image would
need to equal 1 or −1. However, neither is the case. For example, for the identity matrix

aσ(a)+bσ(b) evaluates to 1, but for the matrix

(
(1,−1) 0

0 (1,−1)

)
∈ G(S), where S = k×k

with σ(λ, µ) = (σ(µ), σ(λ)), the expression aσ(a)+bσ(b) evaluates to −1. Finally, the kernel
N of φ is the σ-closed subgroup of GL2 defined by the equation σ(g)gT = I2. Since this
equation can be rewritten as σ(g) = (gT )−1, we see that k{N} is isomorphic to k[GL2]. In
particular, k{N} is an integral domain. Thus N is σ-connected.

We will need two lemmas from [TW18].

Lemma 6.9 ([TW18, Lemma 1.25]). Let R and S be k-σ-algebras. Then πσ
0 (R ⊗k S) =

πσ
0 (R)⊗k π

σ
0 (S).

Lemma 6.10 ([TW18, Lemma 1.24]). Let R be a k-σ-algebra and k′/k an extension of
σ-fields. Then πσ

0 (R⊗k k
′/k′) = πσ

0 (R/k)⊗k k
′.
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We now return to the σ-Picard-Vessiot theory. As before, F is a δσ-field of characteristic
zero and k is the σ-field of δ-constants of F .

Proposition 6.11. Let R/F be a σ-Picard-Vessiot ring with σ-Galois group G. Then
πσ
0 (R/F ) is a σ-Picard-Vessiot ring over F with σ-Galois group isomorphic to πσ

0 (G).

Proof. We will first show that πσ
0 (R/F ) is a finite field extension of F . Note that if an étale

algebra (over a field) is an integral domain, then it is a field. Since R is an integral domain
and πσ

0 (R/F ) is a union of étale algebras contained in R it follows that πσ
0 (R/F ) is a field.

So πσ
0 (R/F ) is an algebraic field extension of F and a σ-subfield of the field of fractions E of

R. Since E is finitely σ-generated as a σ-field extension of F and any intermediate σ-field of
a finitely σ-generated σ-field extension is itself finitely σ-generated ([Lev08, Theorem 4.4.1]),
it follows that πσ

0 (R/F ) is finitely σ-generated over F . Since πσ
0 (R/F ) is a union of finite

σ-field extensions of F , we see that indeed πσ
0 (R/F ) is a finite σ-field extension of F .

To see that πσ
0 (R/F ) is stable under the derivation δ : R → R, let a ∈ πσ

0 (R/F ) have
minimal polynomial f over F . Then 0 = δ(f(a)) = f δ(a) + f ′(a)δ(a), where f δ is the
polynomial obtained from f by applying δ to the coefficients of f . Since f ′(a) 6= 0, it follows
that δ(a) ∈ πσ

0 (R/F ). So πσ
0 (R/F ) is an F -δσ-algebra.

We next apply πσ
0 (−/F ) to the identity R⊗F R = R⊗k k{G} = R⊗F (F ⊗k k{G}) from

equation (1). Using Lemmas 6.9 and 6.10 we find

πσ
0 (R/F )⊗F πσ

0 (R/F ) = πσ
0 (R⊗F R/F ) = πσ

0 (R/F )⊗F πσ
0 (F ⊗k k{G}/F ) =

= πσ
0 (R/F )⊗F (F ⊗k (π

σ
0 (k{G}/k)) = πσ

0 (R/F )⊗k π
σ
0 (k{G}/k) =

= πσ
0 (R/F )⊗k k{πσ

0 (G)}.

Since πσ
0 (k{G}/k) ⊆ k{G} = (R⊗F R)δ, we see that πσ

0 (R/F )⊗F πσ
0 (R/F ) is generated by

(πσ
0 (R/F )⊗F π

σ
0 (R/F ))δ as a left πσ

0 (R/F )-module. Moreover, πσ
0 (R/F )δ = F δ. Thus the ex-

tension πσ
0 (R/F )/F of differential fields is a Picard-Vessiot extension in the sense of [AMT09,

Def. 1.8]. Since this definition is equivalent to the standard one ([AMT09, Theorem 3.11])
it follows that πσ

0 (R/F ) is a Picard-Vessiot extension for some linear differential equation
δ(y) = Ay, with A ∈ F n×n. Since πσ

0 (R/F ) is an algebraic extension, the Picard-Vessiot ring
and the Picard-Vessiot extension coincide. So the F -δ-algebra πσ

0 (R/F ) is a Picard-Vessiot
ring for δ(y) = Ay. It is then clear that the F -δσ-algebra πσ

0 (R/F ) is a σ-Picard-Vessiot
ring for δ(y) = Ay.

Since (πσ
0 (R/F ) ⊗F πσ

0 (R/F ))δ = πσ
0 (k{G}/k), we see that the σ-Galois group πσ

0 (R/F )
is isomorphic to πσ

0 (G). �

Corollary 6.12. Let F be a δσ-field such that F does not have any non-trivial finite differ-
ence field extensions. Then every σ-Galois group over F is σ-connected.

Proof. Let R be a σ-Picard-Vessiot ring over F with σ-Galois group G. As shown in the
first paragraph of the proof of Proposition 6.11, the F -σ-algebra πσ

0 (R/F ) is a finite σ-field
extension of F . Thus, by assumption, it is trivial and consequently also its σ-Galois group
πσ
0 (G) is trivial. �
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Following [DVHW14], a σ-algebraic group G is σ-reduced if σ : k{G} → k{G} is injective.
The group in Example 6.4 is σ-reduced. An example of a σ-algebraic group G that is not
σ-reduced would be G = {g ∈ GLn | σ(g) = In}.

Proof of Theorem 6.1. Let R be a σ-Picard-Vessiot ring over C(x) with σ-Galois group G.
In [DVHW14, Cor. 4.4] it is shown that a σ-Galois group over a δσ-field F such that
σ : F → F is an automorphism is σ-reduced. Since σ : C(x) → C(x), f(x) 7→ f(x+ 1) is an
automorphism, it follows that G is σ-reduced.

The difference field C(x) (with σ(f(x)) = f(x + 1)) does not have any non-trivial finite
difference field extensions (see the proof of Theorem XIX in Chapter 9 of [Coh65]). It thus
follows from Corollary 6.12 that G is σ-connected. �

6.2. Unipotent groups. In this section, we show that being σ-reduced and σ-connected is
far from sufficient for being a σ-Galois group over C(x). In fact, we show that no proper
non-trivial σ-closed subgroup of Ga is a σ-Galois group over C(x). As a consequence of this
result we also deduce that the constant subgroups of unipotent linear algebraic groups do
not occur as σ-Galois groups over C(x).

Lemma 6.13. Let F be a δσ-field of characteristic zero with field of constants k = F δ.
Let G be a σ-closed subgroup of the additive group Ga over k and let R/F be a σ-Picard-
Vessiot ring with σ-Galois group G. Then there exists an element y ∈ R with R = F{y} and
δ(y) ∈ F .

Proof. Let X be the σ-variety over the σ-field F represented by the F -σ-algebra R. As
explained in the first paragraph of the proof of Prop 3.1, there is a canonical structure on X
as a right GF -torsor and we may thus also consider X as a left GF -torsor and use the results
on left GF -torsors in [BW]. Either G = Ga and thus X is the trivial G-torsor ([BW, Cor.
3.6]) or there exists an expression L(y) = σn(y) + λn−1σ

n−1(y) + · · · + λ1σ(y) + λ0y with
λi ∈ k such that G(S) = {g ∈ S | L(g) = 0} for all k-σ-algebras S ([DVHW17, Cor. A.3]). In
the latter case, it was shown in Example 5.4 of [BW] that there exists an a ∈ F such that X
is isomorphic as GF -torsor to the torsor Xa defined as the σ-closed σ-subvariety of A1

k given
by the equation L(y) = a with G-action given by addition. We conclude that in both cases,
X is a σ-closed σ-subvariety of A1

k, thus there exists an y ∈ R with R = F{X} = F{y}.
Moreover, the GF -action is given by addition, so

g(δ(y)) = δ(g(y)) = δ(y + g) = δ(y) + δ(g) = δ(y)

for every g ∈ G(S). It thus follows from the Galois correspondence that δ(y) ∈ F . �

Recall that every element of C(x) has a unique partial fraction decomposition

g(x) +
r∑

j=1

αj

x+ βj

+
r2∑

j=1

α2j

(x+ β2j)2
+ · · ·+

rm∑

j=1

αmj

(x+ βmj)m

with g ∈ C[x], m, r, r2, . . . , rm ∈ N and αj, αij , βj, βij ∈ C. The term
∑r

j=1
αj

x+βj
is called

the logarithmic part. An element in C(x) has an antiderivative inside C(x) if and only if its
logarithmic part vanishes.
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Proposition 6.14. Let G be a non-trivial proper σ-closed subgroup of the additive group Ga

over C. Then G is not a σ-Galois group over the δσ-field C(x) with derivation δ = d
dx

and
endomorphism σ given by σ(f(x)) = f(x+ 1).

Proof. Suppose, for a contradiction, that R/C(x) is a σ-Picard-Vessiot ring with σ-Galois
group G. By Lemma 6.13, there exists an element y ∈ R with R = C(x){y} and δ(y) ∈ C(x).
Set a = δ(y) ∈ C(x). As δ and σ commute, δ(σl(y)) = σl(a) for all l ∈ N. By Proposition 2.4,
there exists an n ∈ N such that y, σ(y), σ2(y), . . . , σn(y) are algebraically dependent over
C(x). By the theorem of Kolchin-Ostrowski (see e.g. Section 2 in [Kol68]), this can only
happen if there exists a non-zero vector (c0, . . . , cn) ∈ Cn+1 with

∑n

l=0 clσ
l(y) ∈ C(x). We

may assume that cn 6= 0. We differentiate and obtain that
∑n

l=0 clσ
l(a) has no logarithmic

part. Let
∑r

j=1
αj

x+βj
be the logarithmic part of a with pairwise distinct β1, . . . , βr and non-

zero elements αj. Then the logarithmic part of
∑n

l=0 clσ
l(a) equals

0 =

n∑

l=0

r∑

j=1

clαj

x+ l + βj

.

We claim that the logarithmic part of a is zero, i.e.,
∑r

j=1
αj

x+βj
is an empty sum. Otherwise,

we can choose j0 with 1 ≤ j0 ≤ r such that Re(βj0) is maximal among all elements Re(βj).
Then the term with denominator x+n+βj0 cannot cancel with any other term (here we use
that β1, . . . , βr are pairwise distinct) and hence cnαj0 = 0, a contradiction. Therefore, the
logarithmic part of a vanishes and hence y ∈ C(x), R = C(x) and G = {1}, contradicting
that G is non-trivial. �

We consider expressions of the form L(y) = σn(y)+λn−1σ
n−1(y)+ · · ·+λ1σ(y)+λ0y with

λi ∈ C and the corresponding σ-closed subgroups GL of Ga with GL(S) = {g ∈ S | L(g) = 0}
for all C-σ-algebras S. Every proper σ-closed subgroup of the additive groupGa is isomorphic
to such a GL ([DVHW17, Cor. A.3]).

Remark 6.15. Note that GL is σ-reduced if and only if λ0 6= 0 and it is always σ-connected.
Indeed, σ : C{GL} → C{GL} is injective if and only if λ0 6= 0 and C{GL} is an integral
domain, thus GL is connected and in particular σ-connected. Hence most of the groups in
Proposition 6.14 satisfy the necessary conditions given in Theorem 6.1 but yet do not occur
as σ-Galois groups.

We remark that the multiplicative case differs from the additive case. Indeed, the constant
points of the multiplicative groupGm do occur as σ-Galois group over C(x) (see Example 1.5),
whereas Proposition 6.14 implies that the constant subgroup of the additive group does not
occur as σ-Galois group over C(x).

To generalize this result from Ga to all unipotent groups, we need some basics about
quotients of σ-algebraic groups ([DVHW14, A.9] or [Wib15, Chapter 3]): Let G be a σ-
algebraic group and N a normal σ-closed subgroup. The quotient G/N can be defined
through the usual universal property. A morphism φ : G → H of σ-algebraic groups is a
quotient map (i.e., can be identified with the canonical map G → G/N for some normal
σ-closed subgroup N of G) if and only if the dual map φ∗ : k{H} → k{G} is injective.
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Corollary 6.16. Let G ≤ GLn be a non-trivial unipotent linear algebraic group over C and
let G be the constant subgroup of G, i.e., G(S) = {g ∈ G(S) | σ(g) = g} for all C-σ-algebras
S. Then G is not a σ-Galois group over the δσ-field C(x) with derivation δ = d

dx
and

endomorphism σ given by σ(f(x)) = f(x+ 1).

Proof. Over a field of characteristic zero, every non-trivial unipotent linear algebraic group
has a quotient isomorphic to Ga ([Mil17, Prop. 14.21 and Rem. 14.24 (a)]). Let π : G → Ga

be such a quotient map. We claim that π induces a quotient map φ : G → H , where H is
the constant subgroup of Ga, i.e., H(S) = {g ∈ S| σ(g) = g} for all C-σ-algebras S.

The morphism π : G → Ga is given by a polynomial p ∈ C[Xij , 1/ det(X)] = C[GLn]. So
π(g) = p(g) for g ∈ G(T ) ≤ GLn(T ) and T a C-algebra. The induced morphism G → [σ]kGa

of σ-algebraic groups is also given by g 7→ p(g) for g ∈ G(S) and S a C-σ-algebra and
therefore maps into H . To see that the dual of φ : G → H is injective, note that the dual
π∗ : C[t] = C[Ga] → C[G], t 7→ p of π is injective because π is dominant. The coordinate
ring of G is C{G} = C[G] with σ the identity and similarly for H . Moreover, φ∗ agrees with
π∗ as a morphism of C-algebras. In particular, φ∗ is injective and so φ is a quotient map.

Now suppose, for a contradiction, that G is a σ-Galois group over C(x). Then, by the
second fundamental theorem of σ-Galois theory ([DVHW14, Thm. 3.3]), also H would be a
σ-Galois group C(x). This contradicts Proposition 6.14. �
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[DHR18] Thomas Dreyfus, Charlotte Hardouin, and Julien Roques. Hypertranscendence of solutions of

Mahler equations. J. Eur. Math. Soc. (JEMS), 20(9):2209–2238, 2018.

[Dre14] Thomas Dreyfus. A density theorem in parametrized differential Galois theory. Pacific J. Math.,

271(1):87–141, 2014.

[DV12] Lucia Di Vizio. Approche galoisienne de la transcendance différentielle. In Transendance et irra-
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[Sti09] Henning Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate Texts in Math-

ematics. Springer-Verlag, Berlin, second edition, 2009.

[Sza09] Tamás Szamuely. Galois groups and fundamental groups, volume 117 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 2009.

[TT79] Carol Tretkoff and Marvin Tretkoff. Solution of the inverse problem of differential Galois theory

in the classical case. Amer. J. Math., 101(6):1327–1332, 1979.
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