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ABSTRACT

Co-location of latency-critical services with best-effort batch jobs is
commonly adopted in production systems to increase resource uti-
lization. Although memory and CPU isolation have been extensively
studied, we find Simultaneous Multi-Threading (SMT) technology
imposes non-trivial interference on memory access which jeopardizes
efficient co-location and performance assurance of latency-critical
services. However, there is not an existing metric to quantitatively
measure and lacks a deterministic approach to tackle SMT interfer-
ence on memory access.

We present Holmes, a user-space approach to SMT interference
diagnosis and adaptive CPU scheduling for efficient job co-location
in multi-tenant systems. Holmes tackles two challenges: accurately
measuring SMT interference on memory access, and efficiently
adjusting CPU allocation to achieve low latency and high resource
utilization at the same time. It leverages CPU hardware performance
events to diagnose SMT interference on memory access and form
a metric. It deploys an interference-aware scheduler to adaptively
allocate CPU cores to latency-critical services and batch jobs. Exper-
iments with four real-world key-value stores show that compared
to a representative CPU isolation approach, Holmes reduces the av-
erage (99'" percentile) query latency by up to 49.0% (52.3%) for four
real-world latency-critical services. It also significantly improves
convergence speed, resource utilization, and system throughput.
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1 INTRODUCTION

Traditionally, production servers provision resources according to
the peak load of latency-critical services, such as key-value store
and web search, for meeting their service level objectives (SLOs).
Since the peak and average resource consumption of latency-critical
services vary significantly over time, this strategy often presents
low resource utilization of servers [30, 32, 47, 49]. For instance,
SnowFlake system found that the average CPU and memory uti-
lizations on its servers are only ~ 51% and ~ 19%, respectively [49].
To improve resource utilization, it is a common practice for produc-
tion systems to co-locate best-effort batch jobs in the same servers
with transiently idle resources, where the shared resources are
monitored and isolated such that batch jobs do not interfere with
latency-critical services [19, 32, 33, 39, 50, 51, 54].

Motivation. Production systems usually enable SMT to improve
server throughput [2-4]. Instructions from different threads can
utilize execution units of one physical core in one cycle to improve
CPU utilization. However, when instructions from different threads
compete for the same execution units, the interference on memory
access incurs severe performance degradation on each thread run-
ning on a physical core. SMT interference can significantly increase
query latency, particularly the tail latency, of co-located latency-
critical services and jeopardize their SLOs. Our experiments with
real-world latency-critical services and batch jobs show that SMT
interference on memory access can cause up to 2x of the average
and 2.5x of the 99" percentile query latency compared to when
latency-critical services are running alone in a server.

Thus, efficient job co-location demands for a new resource sched-
uler that takes into account interference of memory access intro-
duced by SMT. Specifically, it should satisfy the following require-
ments for efficient job co-location in multi-tenant systems.

e Latency-critical services have the high priority under job
co-location. Their query latency should be as close to that
when the services are running alone in a server. This is the
principle of job co-location.

e When the principle is satisfied, the scheduler should seek to
improve the server utilization and batch job throughput.

o The scheduler need to be transparent and generally appli-
cable to all applications. To satisfy this, the source code of
applications should not be modified.

Limitation of state-of-art approaches. Currently, research
on job co-location [19, 32, 33, 50, 54] are either unaware of or ne-
glect the impact of SMT interference on memory access. Perflso [32]
is a representative approach that leverages multicore servers to ef-
ficiently share CPU resource between latency-critical services and
batch jobs. It enables SMT, but does not take its interference im-
pact into account and it can significantly degrade performance of
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latency-critical services. There are studies on improving applica-
tion performance in servers with SMT enabled [18, 26, 34, 39, 51].
Heracles [39] and Parties [18] are two representative studies that
use feedback control approaches to dynamically allocate resources
including hyper threads between latency-critical services and batch
jobs. A recent study vSMT-IO[34] is a hypervisor-level approach
that optimizes I/O-intensive workloads on SMT servers. Neverthe-
less, none of these studies can quantitatively analyze and tackle
SMT interference on memory access for job co-location.

Challenge I: SMT interference measurement. There is no existing
quantitative metric to measure SMT interference on memory ac-
cess. At a first glance, CPU usage might be an indicator to measure
the SMT interference since memory access must increase CPU us-
age. However, a high CPU usage does not necessarily incur a large
number of memory accesses and SMT interference since work-
loads can be computation-intensive. Another naive measurement
approach is using a probing process that periodically accesses mem-
ory from cores and records the latency. Although the obtained
latency could be a quantitative indicator of SMT interference, this
approach presents a hard trade-off between measurement accuracy
and overhead. Higher probing frequency leads to higher accuracy
but also severe competition for shared execution units. The process
needs to occupy a chunk of physical memory, which interferes with
latency-critical services.

Challenge II: Adaptive core allocation. Co-located batch jobs can
use transiently idle resources, but they should not impact perfor-
mance of latency-critical services. The challenge lies in how to
determine the amount of batch job workloads that can be sched-
uled on a sibling of a processor that serves latency-critical services.
Both latency-critical services and batch jobs have three phases dur-
ing their lifetime: launching, running, and exiting. The scheduler
should dynamically adjust the amount of workloads of proces-
sors based on phases and profiled memory access latency on each
processor. Meanwhile, it needs to guarantee the performance of
latency-critical services while keeping the sibling core busy.

Key insights and contributions. In this paper, we present
Holmes, a user-space non-intrusive approach for diagnosing SMT
interference on memory access and CPU scheduling that takes
SMT interference into account for efficient job co-location. Specifi-
cally, we target on Intel’s implementation of SMT namely Hyper-
Threading (HT) which has two hardware threads on a physical core.
Unlike memory or CPU usage, HT interference on memory access is
not directly exposed by Linux OS and cannot be directly controlled.
To tackle this challenge, we leverage hardware performance events
(HPEs) provided by Intel processors to diagnose HT interference
on memory access. Terms SMT and HT are used interchangeably
in this paper. Note that AMD processors support similar hardware
performance events called Instruction-Based Sampling.

Identifying the right HPEs for the metric in measuring HT inter-
ference is non-trivial since there are hundreds of HPEs reflecting
different aspects of performance. We use a statistic approach to
select the appropriate HPE and form a metric called counter value
per instruction (VPI) for HT interference quantification. VPI is a
metric to measure load of DRAM access based on HPEs. We will
explain the details of VPI for interference diagnosis in Section 3.
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To address the second challenge, we design and develop an
interference-aware CPU scheduler for efficient job co-location. The
scheduler keeps track of CPU status including HT interference and
CPU usage on a server with HT enabled. When HT interference
is detected, it adaptively adjusts CPU allocation of latency-critical
services and batch jobs to mitigate HT interference.

This paper makes the following contributions.

e We conduct in-depth characterization and analysis of SMT
interference on memory access, as well as its impact on job
co-location. We apply a statistic approach to select appropri-
ate HPEs and use them to calculate a reliable metric (namely
VPI) to diagnose HT interference.

e We design an interference-aware CPU scheduler for efficient
job co-location in servers with HT enabled, and implement
it in user space for transparency to applications and the OS.

e Evaluation shows Holmes achieves latency close to that
when services are running alone in a dedicated server, while
significantly improving utilization and speedup of conver-
gence.

Experimental methodology and artifact availability. We
implement Holmes as a user-space daemon process without modi-
fications to either applications, libraries, or Linux OS. We conduct
experiments with four real-world latency-critical services (i.e., Re-
dis, RocksDB, WiredTiger, Memcached) co-located with batch jobs.
Results shows that compared to a representative CPU isolation ap-
proach Perflso [32], Holmes reduces the average (99° h percentile)
query latency for the real-world latency-critical services by up to
49.0% (52.3%) under job co-location. It significantly increases re-
source utilization and system throughput compared to running
latency-critical services alone. Compared to Heracles [39] and Par-
ties [18], Holmes speeds up the convergence on resource allocation
by five orders of magnitude. The overhead of Holmes is negligible.
Holmes is open source at https://github.com/EddiePi/Holmes.

Limitation of the proposed approach. As many studies in
job co-location, Holmes assumes that latency-critical services have
bursty traffic such that batch jobs can be allocated with transiently
available resources. It is possible that latency-critical services re-
ceive consistent high volume of traffic. In this case, batch jobs may
be suspended and stop progress for a long time, or even be killed.
This situation is acceptable since batch jobs do not have strict SLOs
and even be best-effort. In production, there are several solutions if
we still want batch jobs to make progress. For example, we could
reserve a small dedicated resource pool for batch jobs such that
they can make slow progress. Another approach is that batch jobs
can be migrated to another machines with more resources in the
cluster.

In the rest of the paper, Section 2 presents SMT background and
motivational studies. Sections 3 and 4 describe SMT interference
measurement and Holmes design. Section 5 presents the imple-
mentation. Section 6 evaluates Holmes. We discuss related work in
Section 7 and conclude in Section 8.

2 INTERFERENCE VERIFICATION
2.1 Simultaneous Multi-Threading

We show the execution process of multi-threading and Simultane-
ous Multi-Threading (SMT) in Figure 1, considering there are two
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Figure 1: Example of multi-threading and simultaneous

multi-threading with 2 threads and 5 execution units.
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Figure 2: Memory access latency from different sources.

threads issuing instructions. Instructions are placed in a queue, and
the number in each instruction indicate its required execution units
(EU). For example, the first instruction from thread 1 has numbers
“0, 27, indicating it uses execution unit EU0 and EU2. In a multi-
threading processor, only one thread can run on execution units
at a time. When the thread encounter a long waiting event or uses
up its quota, the processor switches to another thread. In contrast,
SMT allows multiple hardware threads run on the execution units
of the same physical core in the same cycle. We target Intel’s im-
plementation of SMT, known as HT technology. HT implements a
2-way SMT which makes a physical core appears as two processors
to an operating system. Two thread contexts can be simultaneously
kept on a HT core while sharing the same set of execution units.
HT expects that combining and executing instructions from two
threads increases the utilization of a physical core. However, when
there are two instructions compete for the same execution unit,
one will be delayed. In Figure 1, for example, the last instruction
from thread 2 is delayed on EU2 (shaded rectangle) since thread 1
is using EU2.

2.2 Why SMT Interference?

Previous studies [43-45] showed that memory controller and band-
width congestion are the main bottleneck for memory access la-
tency. We find that these bottleneck have been well addressed on a
modern CPU. It is HT interference that degrades memory access
latency.

Micro benchmark. We use a case study with a micro bench-
mark to illustrate the sources of memory access latency. We use the
same server configuration as that in Section 6. The benchmark has
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Figure 3: Latency of Redis under the different settings.

a configurable number of threads pinned onto individual logical
CPUs. We run two kinds of threads: 1) threads continuously send
memory requests to access a random 1MB memory block out of
600MB data (denoted as m-thread), 2) threads run a computation-
intensive workload executing floating point operations (denoted
as c-thread). To identify the sources of memory access latency, we
evaluate the latency of m-threads accessing 1MB memory block
in six cases. For the first five cases, all threads are m-threads. We
use the following five thread allocation: 1) 1 thread on 1 core, 2) 2
threads on 2 cores, 3) 2 threads on 2 logical CPUs of the same core,
4) 16 threads on 16 cores, and 5) 32 threads on 32 logical CPUs of
16 cores. In case 6), 16 m-threads are allocated on 16 logical CPUs
and another 16 c-threads are allocated on the siblings of the 16
logical CPUs. Case 1) is used as the baseline. 2), 3) and 6) are used
to inspect the impact of Hyper-Threading. 4) and 5) are used to
inspect whether memory controller or bandwidth is the bottleneck.

Figure 2 shows the CDF of the memory access latency in the
six scenarios. Cases where memory is accessed from individual
physical cores render an average latency about 1,400us regard-
less of the number of accessing threads. In these cases, memory
controller congestion or memory bandwidth congestion has little
impact on memory access latency since cases 1), 2) and 4) have
almost the same performance. Case 3) case 5) both use HT while
case 5) has much more requests sending from 32 threads. If case 5)
is bottlenecked by memory bandwidth, it should render an even
higher latency than that of case 3), which is however not the case.
In these two cases, threads are scheduled on siblings using HT
render a higher average latency, about 2, 300us, compared to those
without Hyper-Threading. By comparing results of case 5) and case
6), we reveal that computational-intensive workload can degrade
the performance of memory access on its sibling thread, while its
impact is much less than that of memory accessing workloads.

CPU scheduling gets even more complicated when latency-critical
services are co-located with batch jobs. Since latency-critical ser-
vices have bursts of incoming queries [32], statically allocating
fixed amount of resource usually results in either sub-optimal per-
formance or resource wastage.

Job co-location with a real-world service. We use Redis, a
real-world latency-critical service, to illustrate the significant im-
pact of HT interference on query latency. Redis is running under
three settings. 1) Alone: Redis runs alone with HT enabled. 2) Co-
separate: Redis runs with batch jobs and they use separate physical
cores. 3) Co-hyper: Redis runs with batch jobs and the batch jobs
are allowed to use siblings of Redis cores. Redis runs with the same
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Table 1: The Candidate HPEs.

Name Description Event # Corr

CYCLES_ Cycles while L3 cache miss demand 0x02A3 -0.1748
L3_MISS load is outstanding.

STALLS_ Execution stalls while L3 cache miss 0x06A3 0.9992
L3_MISS demand load is outstanding.

CYCLES_ Cycles when memory subsystem has 0x10A3 0.9997
MEM_ANY an outstanding load.

STALLS_ Execution stalls when memory subsys- 0x14A3 0.9999
MEM_ANY tem has outstanding load.

number of threads in the three cases. We use the Spark Kmeans
workload from HiBench [31] as the batch job. In the two co-location
settings, threads of Redis and threads of the batch job are pinned
on different logical CPUs. We use workload-a from cloud serving
benchmark YCSB [23] to generate queries to Redis.

Figure 3 shows the CDF of the latency of Redis queries under
different settings. Settings Alone and Co-separate render similar
latency for Redis queries. However, the latency is significantly pro-
longed with Co-hyper setting where queries are affected by HT
interference. In Co-hyper, the average (99° h percentile) query la-
tency of Redis with HT is 2.0% (1.3X) as high as that of Co-separate.
[Summary] We have identified that HT interference degrades
memory access latency for both a micro benchmark and a real-
world service, while memory controller/bandwidth congestion has
little impact on their latency. Since latency-critical services and
batch jobs both frequently access memory, the co-location could sig-
nificantly degrade performance of latency-critical services. Though,
HT interference can be qualitatively identified, there is no efficient
approach that can quantitatively and accurately measure it.

3 INTERFERENCE DIAGNOSIS

3.1 Finding the Metric

We identify a set of hardware performance events (HPEs) provided
by Intel processors and apply a statistic approach to select the
appropriate HPE to form a metric. We then leverage upon the
metric to accurately diagnose HT interference on memory access.

We choose four candidate HPEs as they are related to LLC miss
and the memory subsystem. Table 1 gives their names, description,
event numbers, and correlation. To evaluate the correlation between
the counter value of each candidate HPE and the memory access
latency, we deploy a measurement program that runs on either
one or both threads to continuously send fixed-sized (e.g. 1MB)
memory requests from the same cores to DRAM for a unit time (e.g.
one second). When one thread is running, we change the request
sending rate (i.e. requests per second, RPS) ranging from 5,000 RPS
to its maximum rate around 74,000 RPS with 5,000 as the step size.
When two threads are running, we pin the two threads on the
siblings of one physical core. We fix one thread to its maximum
possible RPS (Figure 4(b)) and change the RPS of the other thread
from 5,000 to its maximum rate around 45,000 RPS with 5,000 as
the step size Figure 4(c)). We make sure that the requested data do
not reside in any layer of CPU caches.

Counter value per second. We record the counter value of
each candidate HPE from the logical CPU that hosts the measure-
ment program at run time. Initially, we intend to use counter value
per second as the metric to measure HT interference on memory
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access. However, this method is not effective if a logical CPU is
not fully loaded. For example, when a thread on a processor sends
requests with 5,000 RPS and its sibling processor is fully loaded,
the thread experiences a long memory access latency while the
recorded per-second counter value is relatively small since only
5,000 requests are sent. Such a small counter value does not really
reflect the high memory access latency. The scenario happens even
with a more fine-grained time unit.

Counter value per instruction (VPI). In order to accurately
model DRAM access latency, the actual load of DRAM access on a
processor needs to be obtained. We achieve this by recording the
sum of the number of instructions LOAD and STORE and divide the
counter values by the sum, as shown in Equation 1. In this way, we
calculate the average counter values per DRAM access instruction
VPIepent- We normalize the average memory access latency and
VPIeyent of each HPE to their own maximum values.

CounterValueeyent

VPlevent = (1)

Numpoap + NumsTORE

Figure 4(a) shows the memory access latency and VPIs of the
four HPE events when we increase RPS from 5,000 to 74,000 in the
one-thread configuration. It clearly shows that the memory access
latency remains almost unchanged with one thread regardless of
RPS. Figures 4(b) and 4(c) show the memory access latency and
VPIs under the two-thread configuration. In specific, Figure 4(b)
shows the thread always using the maximum RPS and Figure 4(c)
shows the thread using various RPS. For the thread with various
RPS, its memory request latency remain unchanged regardless
of its RPS. For the thread with the maximum RPS, its maximum
RPS decreases from ~ 70,000 to ~ 45,000 with the increasing
RPS on its sibling thread. Its memory access latency also increases.
Among the four HPEs, the VPI of CYCLES_MEM_ANY (0x10A3)
and STALLS_MEM_ANY (0x14A3) presents almost the identical
trend as the memory access latency does.

We use Pearson’s correlation coefficient to statistically quantify
the correlation between the memory access latency and the value of
each HPE, as shown in Corr column of Table 1. A correlation score
that is close to 1 or -1 means the strongest correlation between
the two metrics. In Table 1, event STALLS_ MEM_ANY (0x14A3)
has the highest correlation score (0.9999) among the four HPEs,
suggesting a strong positive correlation with the memory access la-
tency. HPE CYCLE_L3_MISS (0x02A3) has relatively low correlation
score. We notice that HPEs STALLS_L3_MISS (0x06A3) and CY-
CLES_MEM_ANY (0x10A3) also present high positive correlation

scores, but they are slightly lower than that of HPE STALLS_ MEM_ANY
(0x14A3). Therefore, we use the counter value of HPE STALLS. MEM_ANY

(0x14A3) according to Equation 1, that is VPIy,1443, as the metric
to diagnose HT interference between siblings of a physical cores.

3.2 Effectiveness of the Metric

We conduct experimentation to examine that VPly,1443 is an ef-
fective metric in measuring HT interference on latency-critical
services. We test four real-world latency-critical services Redis [9],
RocksDB [10], WiredTiger [11], and Memcached [8]. Workload-a
from YCSB [23] is used to generate requests to the latency-critical
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Figure 5: The correlation between VPI and the normalized average and 99'” percentile latency of latency-critical services.

services. We develop a program that can access memory with config-
urable request rate (i.e. request per second, RPS). For each latency-
critical service, we pin their threads on four logical CPUs and pin
the threads of the memory access program on the siblings of the
four logical CPUs. In the experiment, we use three RPS settings
20,000 (Low), 40,000 (Medium), and 60,000 (High). For each setting,
we start the memory access program and YCSB concurrently. We
also run YCSB workload alone without the memory access program
as the baseline (Alone) for normalization. We sum V Ply,1443 On
the four logical CPUs during the execution.

We normalize both VPI and latency of the services to those in
Alone setting by using % (V stands for either VPI or latency
of the services.). For example, an avg bar with value 0.3 indicates
that the average latency of the service is 30% higher than that under
Alone setting. Figure 5 shows the normalized average latency, 9%
percentile latency, and VPIy,1443 for the four services under each
setting. As the load increases, the growth patterns of latency and
VPI are very similar, which indicates that VPIy,1443 is an effective
metric that can quantitatively reflect the latency of the services.

4 HOLMES DESIGN

4.1 Overview

Figure 6 presents the closed-loop design of Holmes. The metric
monitor keeps track of the status of both latency-critical services
and best-effort batch jobs, as well as the resource usage of the server.
Holmes diagnoses HT interference on memory access based on the
quantification approach with the selected HPE. It then adaptively
adjusts CPU core allocation for latency-critical services and batch
jobs in a shared server based on process and system status. The
CPU scheduler communicates with Linux kernel and adjusts core
allocation at runtime using an interference-aware scheduler, which
aims to achieve low latency for latency-critical services and improve
server resource utilization and throughput. In return, the adjusted
core allocation affects the performance metrics in the system.
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4.2 Metric Monitor

The metric monitor thread is periodically invoked to collect the
information of CPU usage and CPU/thread status of running work-
loads.

CPU resource usage. The monitor thread collects both CPU
usage and V PIyx1443 of each virtual processor. It stores the metrics
in an array for all cores in a server. Holmes maintains logical-
processor-to-core mappings. The collected processor metrics are
aggregated per core by accumulating both processor metrics on
that core. As a result, Holmes presents the overall CPU usage and
the overall VPIy,1443 of each core in the server.

Process status. For processes of latency-critical services and
those of batch jobs, the monitor thread collects their CPU/ thread
usages and thread-to-processor mappings. Since latency-critical
services usually are long running, their PIDs are provided to Holmes
by the system administrator upon service initialization. In contrast,
batch jobs are usually launched by a resource scheduler, such as
Apache Yarn [48], and finish at arbitrary time. To detect batch jobs
when they start, we configure Yarn to launch batch job processes
in Linux containers. Each container uses its own files in the cgroup
file system to achieve resource allocation and isolation. Holmes
monitors directories in the cgroup file system to detect batch jobs.
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Table 2: Terminologies in Holmes.

Terminologies
Reserved CPU

Description

A logical CPU reserved for latency-critical services. Batch
jobs are not allowed to run on it.

A logical CPU other than the reserved CPUs. All processes
can run on them.

A logical CPU hosting latency-critical services.

The sibling CPU of a LC CPU.

The CPUs that their siblings are not hosting latency-critical
services.

Non-reserved CPU

LC CPU
LC-sibling CPU
Non-sibling CPU

Holmes determines whether a latency-critical service is serv-
ing query traffic by monitoring its CPU usage. Most queries of a
latency-critical service are related to memory access. Some services
have background management threads that are responsible for data
merge or compaction operations which are also memory intensive.
When these operations are on the fly, they incur CPU usage.

4.3 CPU Scheduler

The CPU scheduler periodically reads the information collected by
the metric monitor and adaptively adjusts core allocations using
an interference-aware scheduling algorithm for co-located latency-
critical services and batch jobs. The algorithm prioritizes latency-
critical services by reserving a small number of logical CPUs for
bursts of query traffic. When latency-critical services do not have
traffic, it allows batch jobs to utilize the other non-reserved logical
CPUs. Though this may incur HT interference on batch jobs, it
is not considered as an issue since batch jobs do not have a hard
deadline for completion. Further, by leveraging HT, batch jobs can
achieve higher throughput. When latency-critical services are serv-
ing traffic, the scheduler adjusts core allocations for both types
of workloads. We describe the CPU scheduling algorithm corre-
sponding to the three phases of the lifetime of a process, launching,
running and exiting. Table 2 describes the terminologies used in
Holmes.

Algorithm 1 Process launching.

: pid_set]sg: A set of process IDs of latency sensitive services;
: pid_setygycp: A set of process IDs of batch jobs;
pid = launched process id;
if pid_sets contains pid then
arLocate(rsv_CPUs, pid);
else
arrocate(non_rsv_CPUs, pid);
: end if

A R e

Process launching. The process launching procedure is shown
in Algorithm 1. Upon launch of a latency-critical service, Holmes al-
locates reserved CPUs to the service. Upon launch of containers for
a batch job, Holmes allocates non-reserved CPUs to them. Among
these non-reserved CPUs, Holmes first chooses the ones from non-
sibling CPUs. The number of CPUs is specified by configuration
files of the batch job. When non-sibling CPUs are busy, Holmes
chooses CPUs from all the non-reserved CPUs for the containers
as long as the overall VPI_0x14A3 of their sibling CPUs is less
than a threshold E. By this design, performance of latency-critical
services is not affected by batch jobs at launching time. Meanwhile,
LC-sibling CPUs could be utilized by batch jobs when necessary.

Process running. The procedure during process running is
shown in Algorithm 2. Holmes checks whether a latency-critical
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Algorithm 2 Process running.

1: for each LC_CPU do

2 for pidin pid_setpgzcp do

3 while VPIjx1443(LC_CPU) > E do

4: if sibling_CPU of LC_CPU has pid then
5: DEALLOCATE(sibling_CPU, pid);

6: if non_sibling_CPUs.available then
7 arrocate(non_sibling_CPUs, pid);
8

: end if
9: end if
10: end while
11: end for
12: if VPIyx1443(LC_CPU) < E for S seconds then

13: pid < cHOOSE_ONE(pid_setpqrch)

14: aLLocati(sibling_CPU, pid)

15: end if

16: end for

17: while reserved_CPUs.usage > T% do

18: new_CPU « Ger_or_peprivi(all_CPUjs);
19: reserved_CPUs.add(new_CPU);

20: end while

service is serving query traffic by monitoring its CPU usage. When
it is serving traffic, the usage of the reserved CPUs and V Py, 1443 of
the CPUs hosting the service must increase. If there are co-located
batch jobs on siblings of these CPUs, Holmes adjusts core allocation
based on these two metrics accordingly.

When VPIy,1443 is greater than or equal to threshold E, HT
interference is detected. In this case, Holmes deallocates the sibling
CPUs from the containers of the batch jobs. When VPIj,1443 of the
LC CPU drops below threshold E for S seconds, Holmes re-allocates
the sibling CPUs to the containers of the batch jobs. Meanwhile,
Holmes seeks to allocate non-sibling CPUs to the containers of the
batch jobs. This could happen when the containers of the batch jobs
on a non-sibling CPU finish. By deallocating the CPUs from the
containers of the batch jobs, VPIjy1443 is reduced accordingly. Al-
though processing of the batch jobs is slowed down, their execution
progress are preserved.

When the average usage of the reserved CPUs reaches T (0<T<1)
of their capacity but VPIyx1443 is less than E, the capacity of the
reserved CPUs is not enough to serve the latency-critical service.
For example, we initially assign four reserved CPUs to the latency-
critical service and set T to 80%. When the CPU usage of the four
cores increases beyond 320% (4 * 80%), Holmes starts an expansion
procedure. It could happen when the latency-critical service creates
more active threads than the number of the initial reserved CPUs.
Holmes adds one CPU at a time until the capacity is enough to serve
the latency-critical service. The chosen CPU is not the sibling of
the current LC CPUs. At the same time, if any batch job is running
on the sibling of the chosen CPU, Holmes deallocates the CPU from
batch jobs to ensure the performance of latency-critical service.

Algorithm 3 Process exiting.

1: if Iss exits then

2 for pid in pid_setp,4cp do

3 Arrocate(sibling_CPUs, pid);

4 end for

5: end if

6: if batch on non_sibling_CPU s exits then

7 for pid in pid_setpgcp do

8 REALLOCATE(non_sibling_CPUs, pid);
9. end for

10: end if

Process exiting. The procedure is shown in Algorithm 3. There
are two situations of process exiting that need to be managed: 1)
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exiting of containers of the batch jobs on non-sibling CPUs, and 2)
traffic of the latency-critical service is over. Upon exiting of contain-
ers of a batch job on non-sibling CPUs, Holmes examines whether
any sibling CPU is hosting containers of the batch jobs. If so, Holmes
migrates some of them onto non-sibling CPUs. When the latency-
critical service finishes traffic serving, Holmes allocates sibling
CPUs to containers of the batch jobs whose CPUs are previously
deprived. By this design, it improves the CPU resource utilization of
a server while guaranteeing resources for latency-critical services.

5 IMPLEMENTATION

We implement Holmes in ~ 3, 000 lines of C++ code. Holmes runs
as a daemon process with root privilege. We empirically set the
invocation interval at 50 us for both the metric monitor thread
and CPU scheduling thread. The interval is set based on the fact
that latency-critical services usually have a per-query respond time
at several hundreds of microseconds. The 50 ys invocation inter-
val is short enough for fast HT interference detection and CPU
scheduling while maintaining low overhead. We set the number of
reserved cores to four in our 32-core servers. We set the dealloca-
tion threshold E for batch jobs at 40. This is a rather strict value
since we expect that the processors of batch jobs can be deallo-
cated at an early stage, resolving HT interference. We empirically
set the CPU usage threshold T of latency-critical services for core
expansion at 80%. In this case, it allows 20% CPU quota for a burst
of queries before Holmes allocates more cores to latency-critical
services. When a latency-critical service is launched, the system
administrator specifies its PID to Holmes.

Linux APIs. Holmes communicates with Linux OS for two tasks:
1) collecting HPE counter values, and 2) allocating cores to pro-
cesses. Holmes uses system call perf event_open to collect HPE
values provided by Intel processors at runtime. Holmes allocates
cores for threads by invoking system call sched_setaffinity. Note
that AMD processors provide similar technology called Instruction-
Based Sampling [1].

Batch jobs management. We use Apache Yarn [48] to manage
batch jobs. A batch job can be divided and launched in multiple
Linux containers [7]. We modify the source code of Yarn NodeMan-
ager to launch batch jobs with a set of specified cores, which makes
sure that batch jobs are not allocated with the cores reserved for
latency-critical services. The modification takes less than 10 lines
of code in Yarn. We create a parent cgroup directory to manage
all Linux containers for batch jobs. Each batch job container is
associated with an individual directory. Holmes keeps track of the
liveliness and resource consumption for batch jobs by scanning all
the cgroup directories.

6 EVALUATION
6.1 Evaluation Setup

We use two servers in the experimentation. Each server has two
Intel Xeon Gold 6143 CPUs (32 cores per CPU), 256 GB DRAM,
and 512 GB SSD. We use four real-world latency-critical services to
evaluate the performance of Holmes: Redis-5.0.5 [9], Memcached-
1.5.22 [8], RocksDB-6.0.0 [10], and WiredTiger-3.2.1 [11]. Redis and
Memcached are two in-memory key-value (KV) stores. RocksDB
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is a state-of-the-art disk-based persistent KV store based on Long-
Structured Merge Tree (LSM Tree). WiredTiger is the latest disk-
based persistent KV storage engine for MongoDB. Both disk-based
KV stores keep an in-memory cache. When they access data stored
in files, Linux OS also keeps page cache for the recently accessed
files. Therefore, Holmes is applicable to disk-based KV stores.

We use Yarn in Hadoop-2.9.2 [5] as the job scheduler and Spark-
2.4.5 [53] as the data analytics engine for batch jobs. One server
hosts latency-critical services and batch jobs. The other serves as
the client of the latency-critical services and Yarn’s master node.

Performance of Holmes is evaluated in five metrics: 1) query
latency and SLO violation of latency-critical services, 2) server
throughput in terms of CPU utilization and the number of com-
pleted batch jobs, 3) parameter sensitivity of Holmes, 4) conver-
gence speed on resource allocation, and 4) overhead of Holmes.

We use the following configurations to generate job co-location
on the server, and use it for latency (§ 6.2) and throughput (§ 6.3)
evaluation. We submit workloads in YCSB [23] to generate bursty
query traffic for latency-critical services. Each bundle of bursty
traffic lasts for 60s~90s with an interval ranging from 5s~10s. Both
traffic time periods and interval periods agree to Poisson distri-
bution. Similar to other studies [19, 42], we continuously submit
multiple concurrent workloads in HiBench-6.0 [31] as batch jobs.
Each batch job lasts for around three minutes. After batch jobs are
submitted, all processors on the server are allocated to batch jobs
except for the reserved processors for latency-critical services. We
make sure there is no memory pressure on the server by constrain-
ing the memory limit of containers of batch jobs.

We conduct experiments in three settings.

e Alone. Latency-critical services run in a dedicated server
without job co-location. It is an ideal scenario for the services,
but the server suffers from low resource utilization.

o PerfIso. Latency-critical services are co-located with batch
jobs. Naive CPU isolation by representative Perflso [32] is
enabled to dynamically adjust processor allocation.

e Holmes. Latency-critical services are co-located with batch
jobs. Holmes is enabled to dynamically adjust core alloca-
tion to mitigate the impact of SMT interference and CPU
interference on the latency-critical services.

6.2 Query Latency Reduction

We examine query latency when latency-critical services serve
three representative workloads in YCSB under the settings of Alone,
Holmes, and PerfIso. Workload-a is a write-heavy workload consist-
ing of 50% read and 50% update queries. Workload-b is a read-heavy
workload consisting of 95% read and 5% update queries. Workload-
e is a scan-heavy workload consisting of 95% scan and 5% insert
queries. Note that there is no workload-e for Memcached service
since it does not support scan operations. We show the CDF of
query latency of the workloads for the four latency-critical services
running under the three settings in Figures 7 to 10.

Redis and Memcached. They are two popular in-memory KV
stores. As shown from Figure 7 to Figure 10, naive isolation due to
Perflso significantly prolongs the query latency for all workloads at
each percentile. For Redis service, Holmes reduces the average (99”’
percentile) query latency by 49.0% (35.2%), 40.7% (11.7%), and 28.1%
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Figure 7: The CDF of query latency of Redis service under three workload settings.
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Figure 9: The CDF of query latency of WiredTiger service under three workload settings.
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Figure 10: The CDF of query latency of Memcached service under two workload settings.

(49.3%) for the three workloads, respectively. We observe a very long service, queries have a long tail of latency even if the service is
running under Alone setting. The long tail further deteriorates
when HT interference presents. Compared to Perflso, Holmes re-
duces the average (99° h percentile) query latency by 44.2% (28.9%),
18.9% (28.7%), and 25.0% (18.8%) for the three workloads, respec-

tively. For WiredTiger service, compared to Perflso, Holmes reduces
gth

tail (99!" percentile) of query latency in workload-b of Redis due
to Perflso. It suggests that HT interference has significant impact
on the read-heavy workload for Redis. For Memcached service,
compared to Perflso, Holmes reduces the average (99" percentile)
latency by 16.9% (52.3%) and 9.5% (39.2%) for the two workloads,
respectively. It achieves almost identical query latency as Alone
setting does for both workload-a and workload-b.

RocksDB and WiredTiger. They are two disk-based KV stores.
As shown in Figure 8 and Figure 9, Holmes achieves almost identical
query latency as Alone setting does for both services. For RocksDB

the average (99°" percentile) query latency by 21.6% (30.1%) and
19.4% (21.7%) for workload-a and workload-b, respectively. As for
workload-e, the query latency under the three settings is almost
identical, which implies that the workload is insensitive to HT
interference.
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Figure 11: The SLO violation of four latency-critical services under three workload settings.

We notice that for both disk-based KV stores, the CDF curve is a 6.3 Server Throughput Improvement
stair-like shape. For example, about 50% of the queries in workload- We examine the server throughput when running the four latency-
a of RocksDB have latency around 200us while the other 50% of the critical services with three workloads in one hour, under Alone,

queries have latency raging from 500ys to several milliseconds. Holmes, and Perflso. The metrics are 1) CPU utilization, and 2) the
There are two reasons that cause the stair-like CDF curve. 1)

For workload-a, half of the queries are of update and the other half
are of read. Since both services use an asynchronous technique
for update queries, one half of the queries (update) return quickly.
For the other half of the queries (read), the services need to access

number of completed batch jobs.

CPU utilization. Figure 12 shows the average CPU utilization
with the four latency-critical services under the three settings Alone,
Holmes, and Perflso. There is no significant difference in the uti-
lization due to different workloads. Overall, Holmes achieves the
memory or disks before returning data. Thus, the read queries average CPU utilization 72.4% ~ 85.8% while Perflso achieves the

have much slower response than the update queries. 2) Workload- average CPU utilization 83.4% ~ 88.5%, both under job co-location.
b and workload-e are both read intensive. The services have low

latency when the queries hit in-memory cache for the queried data,
and have high latency when the queries need to access disks. For
disk-based KV stores, the results show that all three settings cause
similar query latency in low percentiles. HT interference has more
significant impact on query latency in high percentiles.

SLO violation. Figure 11 shows the ratios of SLO violation
due to Alone, Holmes and PerfIso for the four latency-critical
services, respectively. Latency-critical services like web search
commonly distribute requests across many servers, and the end-
to-end response time is determined by the slowest individual la-

Compared to Alone, both Holmes and Perflso significantly improve
CPU utilization of the server. Perflso slightly outperforms Holmes
in CPU utilization, it however significantly violates the SLO of
latency-critical services, the principle of job co-location. Note that
it is the interference-aware CPU scheduling of Holmes that assures
query latency of latency-critical services under job co-location close
to that when the services are running alone in a server.

VPI value. Figure 13 offers a microscopic view of the average
VPI value on the LC CPUs at runtime when Rocksdb is serving
workload-a under PerflIso, Holmes and Alone. Other latency-critical
services and workloads have similar results. Alone has the most

tency [13, 24, 27, 55]. There is not a magic value that defines the stable VPI value. PerfIso renders the highest VPI value and fluctua-
SLO of each service. We adopt the 90!h percentile latency under tion. Holmes leads to lower and more stable VPI value compared
Alone as the SLO. In Redis, the SLOs are set to 1364s, 149us and to that due to PerflIso. The reason is that Holmes deallocates CPUs
12, 468us for workload-a, -b and -e, respectively. These are rather of batch jobs when Rocksdb is serving traffic, and restores CPUs
strict values as only 10% SLO violations are allowed under Alone. when the traffic is over. Thus, the VPI value on the LC CPUs is less
Compared to Alone, Holmes achieves a similar SLO violation ratio affected by batch jobs compared to Perflso.

in most cases, especially for disk-based services (i.e., RocksDB and Memory utilization. The server memory utilization under the
WiredTiger). One exception is workload-b with Redis. Holmes in- three settings does not change much. For Alone, the memory utiliza-
curs a violation ratio of 50.8% because workload-b is very sensitive tion stabilizes around 2GB for Redis and Memcached, and around
to HT interference and parameter setting. Perflso causes signif- 1GB for RocksDB and WiredTiger. For Perflso and Holmes, the
icantly worse SLO violation ratios in all cases. Its SLO violation memory utilization stabilizes around 144 GB for all four latency-
ratios are usually above 25%, and around 90% in the worst case. critical services co-located with batch jobs. There are two reasons
[Summary] Experiments show that Holmes reduces the average for the stable memory utilization. 1) Latency-critical services use
(99 percentile) latency by up to 49.3% (52.3%) for the four in- memory as data storage or data cache. Their memory consumption
memory KV stores. Since disk-based KV stores have memory cache, does not change much unless there are more data inserted into the
Holmes can reduce their average (99°" percentile) latency by up to services. 2) Each container of a batch job is configured with a fixed
44.2% (30.1%). In most cases, Holmes achieves very similar query size of memory. Its memory consumption does not change unless
latency and SLO violation ratio for the latency-critical services as the memory size of the containers is changed.

Alone does. We notice that the latency of Redis due to Holmes still Number of completed jobs. Table 3 gives the number of com-
has some degradation compared to the Alone case. The possible pleted batch jobs in one hour when Redis serves workload-a in
reason is that Redis uses a single thread to serve all user requests. the three settings. With Perflso, 78 batch jobs are completed. With
When requests are delayed on the thread, there is no other thread Holmes, 73 batch jobs are completed. Holmes adaptively adjust
to dispatch the requests, resulting in longer latency. LC-sibling CPU allocation for batch jobs which slows down batch
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Table 3: Throughput Comparison of Three Settings.

settings

avg. CPU usage

# finished batch jobs

Co-location with Perflso

84.6%

78

Co-location with Holmes

75.0%

73

Alone

1.1%

0

job processing in exchange for latency assurance of latency-critical
services, the principle of job co-location.

[Summary] Holmes significantly improves CPU utilization and
system throughput in a multi-tenant system, compared to a dedi-
cated system where latency-critical services are running alone. It
significantly outperforms PerfIso in query latency assurance for
latency-critical services.

6.4 Parameter Sensitivity

We examine the impact of threshold E of VPIy,1443 on query la-
tency of latency-critical services. In Holmes, threshold E determines
when sibling cores of containers of each batch job is disabled. It is
a trade-off between CPU utilization and meeting SLO of a latency-
critical service. A lower value yields more disabled processors and
thus lower query latency for meeting the SLOs, but also fewer pro-
cessors for batch jobs that reduces the job throughput and CPU uti-
lization of the server. For efficient job co-location, the primary goal
of parameter tuning is to achieve low latency for latency-critical
services while the secondary goal is to improve server utilization.

We use workload-a in YCSB and change E from 40 to 80 with
step size 10. We normalize the query latency due to Holmes to that
due to Alone for the four real-workload services. Figure 14 shows
the normalized latency on the average latency and at four specific
percentiles. It shows that E with value of 40 renders almost similar
results as Alone does in most cases. This value yields the latency
similar to those in Alone for Redis, WiredTiger and Memcached at
each percentile. For RocksDB, it yields slightly worse results than
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Table 4: Convergence speed of four approaches.

Approach | Convergence speed
Heracles 30s
Parties 10-20s
Caladan 20ps
Holmes 50 — 100us

those Alone does. For RocksDB, Holmes can tune for a lower value
for E (e.g. 10) to deallocate cores of batch jobs more promptly.

[Parameter Tuning] When users tune parameter E, there are
multiple factors to take into account, such as SLO of a latency-
critical service, the type of batch jobs, hardware configuration, etc.
It may result in a higher value of E if a latency-critical service has
a loose SLO and server utilization is more important, or a lower
value if SLO of the service is not allowed to be compromised.

6.5 Convergence Speed on Resource Allocation

Three approaches [18, 27, 39] consider HT in tackling interference
caused by job co-location. Table 4 summarizes the typical conver-
gence speed of the three approaches and Holmes. Heracles [39]
and Parties [18] reach convergence after tens of seconds. Given
that the typical query latency of latency-critical services is usually
hundreds of microseconds to tens of milliseconds, this second-level
convergence speed can be too slow to reduce SLO violation for
latency-critical services. Holmes speeds up the convergence on
the resource allocation by five orders of magnitude. We note that
Caladan [27] achieves even faster convergence at around 20us. Cal-
adan scheduler requires modification to the Linux Kernel source,
while Holmes is a user-space approach without modification to li-
braries or Linux kernel. These are two complementary approaches
for mitigating HT interference for latency-critical services.

6.6 Overhead

We analyze the overhead of Holmes. Holmes introduces about
1.3% ~ 3% CPU usage depending on whether the scheduling threads
are active in management operations. It occupies about 2MB mem-
ory at runtime, which is negligible compared to the memory capac-
ity of a DRAM node. We suggest launching Holmes on a separate
core to minimize its interference with latency-critical services.

6.7 Discussions

HPE dependency. The HPEs selected in Holmes can be observed
from all processors using Intel 64 and IA-32 architectures. Job co-
location with Holmes on servers with AMD processors can adopt
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Figure 14: The normalized latency of four latency-critical services with different CPU suppression ratios S in Holmes.

a new set of HPEs via Instruction-Based Sampling [1] to diagnose
memory controller congestion.

Thread invocation interval. The invocation interval of the mon-
itoring and scheduling threads is a trade-off between overhead
and query latency of latency-critical services. A longer interval
incurs lower overhead while CPU adjustment may not be timely
performed to achieve low latency, and vise versa. We suggest set-
ting the invocation interval similar to the order of the query time
of a latency-critical service. Thus, CPU adjustment can be timely
performed for almost all queries. For example, the order of the
query time in workload-a of Redis is around 50 to several hundreds
of microseconds. The interval is set to 100us. In fact, we set this
interval for all four latency-critical services in the experiments.
Note that users may want to examine this value to better fit for
their production environments.

Where is Holmes in a system stack? Our prototype of Holmes
runs as an individual daemon process in Linux user space. It can
be integrated in cluster resource managers Yarn [48] and Kuber-
netes [6]. For example, Yarn’s NodeManager is responsible for mon-
itoring resource usage and adjusting core allocations and quotas.

7 RELATED WORK

Optimization for SMT. There are many efforts on optimizing ap-
plication performance running on SMT servers [16, 18, 25-27, 34,
39, 40, 46, 51]. For example, three studies [18, 27, 39] dynamically
adjust multiple resources, including memory bandwidth, CPUs
and SMT in a job co-location environment. Heracles and Parties
use feedback-based mechanism to conduct allocation for multiple
resources. However, Bianchini et al. [14] and our study indicate
that feedback-based mechanisms may render slow convergence to
resource congestion. Caladan [27], a kernel-space approach, dynam-
ically pauses/resumes threads of batch jobs running on siblings of a
SMT core based on timeout from latency-critical services. Holmes
differs from the three studies mainly in two aspects. It leverages
CPU HPEs to quantify SMT interference on memory access, and
it is a user-space approach that does not require modification to
applications, libraries, or Linux OS. Holmes also finds that memory
bandwidth is no longer a bottleneck in modern servers.

120

Latency reduction. Extensive efforts focus on reducing query la-
tency for latency-critical services [13, 17, 22, 28-30, 32, 36, 38, 41,
50, 55]. For example, EvenDB [28] is a recent LSM Tree KV store
that is optimized for data with spatial locality. FlatStore [22] is a
recent KV store that uses logs in persistent memory for efficient
data requests. There are also efforts on resource sharing and work-
load prioritization for latency-critical services. PerfIso [32] is an
approach that uses native CPU isolation to achieve CPU sharing
between latency-critical services and batch jobs. However, those
studies do not consider job co-location in servers.

Resource sharing. Resource sharing and job co-location in multi-
tenant systems have been extensively studied [12, 14, 15, 19-21,
35, 37, 42, 52]. For example, Mercury [35] is a hybrid resource
scheduler that launches jobs with transient resources and kills
jobs when the available resources drop below a threshold. BIG-
C [19] is a preemption-based cluster scheduler that allows short
jobs to preempt long jobs to achieve low latency and high utilization.
However, those studies do not address SMT interference and its
severe impact on performance of job co-location.

8 CONCLUSION

Holmes is a non-intrusive interference-aware CPU scheduler at user
space for efficient job co-location in a SMT system. It tackles two
challenges, 1) accurately diagnosing SMT interference on memory
access by identifying hardware performance events and developing
an quantitative method for interference measurement, and 2) adap-
tive CPU scheduling via interference-aware core allocation and
CPU migration. Experiments show that Holmes achieves query la-
tency of the latency-critical services close to that when the services
are running alone in a server, while significantly improving server
utilization and throughput of co-located batch jobs. Compared to
Perflso [32], Holmes reduces the average (99" percentile) query
latency by up to 49.0% (52.3%) for latency-critical services. It also
significantly speeds up the convergence on resource allocation.

In the future, we plan to integrate Holmes with cluster manage-
ment frameworks Yarn and Kubernetes.
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