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ABSTRACT
Co-location of latency-critical services with best-effort batch jobs is

commonly adopted in production systems to increase resource uti-

lization. Althoughmemory andCPU isolation have been extensively

studied, we find Simultaneous Multi-Threading (SMT) technology

imposes non-trivial interference onmemory accesswhich jeopardizes
efficient co-location and performance assurance of latency-critical

services. However, there is not an existing metric to quantitatively

measure and lacks a deterministic approach to tackle SMT interfer-

ence on memory access.

We present Holmes, a user-space approach to SMT interference

diagnosis and adaptive CPU scheduling for efficient job co-location

in multi-tenant systems. Holmes tackles two challenges: accurately

measuring SMT interference on memory access, and efficiently

adjusting CPU allocation to achieve low latency and high resource

utilization at the same time. It leverages CPU hardware performance

events to diagnose SMT interference on memory access and form

a metric. It deploys an interference-aware scheduler to adaptively

allocate CPU cores to latency-critical services and batch jobs. Exper-

iments with four real-world key-value stores show that compared

to a representative CPU isolation approach, Holmes reduces the av-

erage (99
th

percentile) query latency by up to 49.0% (52.3%) for four

real-world latency-critical services. It also significantly improves

convergence speed, resource utilization, and system throughput.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computer systems organization→ Multicore architectures.
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1 INTRODUCTION
Traditionally, production servers provision resources according to

the peak load of latency-critical services, such as key-value store

and web search, for meeting their service level objectives (SLOs).

Since the peak and average resource consumption of latency-critical

services vary significantly over time, this strategy often presents

low resource utilization of servers [30, 32, 47, 49]. For instance,

SnowFlake system found that the average CPU and memory uti-

lizations on its servers are only ∼ 51% and ∼ 19%, respectively [49].

To improve resource utilization, it is a common practice for produc-

tion systems to co-locate best-effort batch jobs in the same servers

with transiently idle resources, where the shared resources are

monitored and isolated such that batch jobs do not interfere with

latency-critical services [19, 32, 33, 39, 50, 51, 54].

Motivation. Production systems usually enable SMT to improve

server throughput [2–4]. Instructions from different threads can

utilize execution units of one physical core in one cycle to improve

CPU utilization. However, when instructions from different threads

compete for the same execution units, the interference on memory

access incurs severe performance degradation on each thread run-

ning on a physical core. SMT interference can significantly increase

query latency, particularly the tail latency, of co-located latency-

critical services and jeopardize their SLOs. Our experiments with

real-world latency-critical services and batch jobs show that SMT

interference on memory access can cause up to 2× of the average

and 2.5× of the 99th percentile query latency compared to when

latency-critical services are running alone in a server.

Thus, efficient job co-location demands for a new resource sched-

uler that takes into account interference of memory access intro-

duced by SMT. Specifically, it should satisfy the following require-

ments for efficient job co-location in multi-tenant systems.

• Latency-critical services have the high priority under job

co-location. Their query latency should be as close to that

when the services are running alone in a server. This is the

principle of job co-location.

• When the principle is satisfied, the scheduler should seek to

improve the server utilization and batch job throughput.

• The scheduler need to be transparent and generally appli-

cable to all applications. To satisfy this, the source code of

applications should not be modified.

Limitation of state-of-art approaches. Currently, research
on job co-location [19, 32, 33, 50, 54] are either unaware of or ne-

glect the impact of SMT interference onmemory access. PerfIso [32]

is a representative approach that leverages multicore servers to ef-

ficiently share CPU resource between latency-critical services and

batch jobs. It enables SMT, but does not take its interference im-

pact into account and it can significantly degrade performance of
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latency-critical services. There are studies on improving applica-

tion performance in servers with SMT enabled [18, 26, 34, 39, 51].

Heracles [39] and Parties [18] are two representative studies that

use feedback control approaches to dynamically allocate resources

including hyper threads between latency-critical services and batch

jobs. A recent study vSMT-IO[34] is a hypervisor-level approach

that optimizes I/O-intensive workloads on SMT servers. Neverthe-

less, none of these studies can quantitatively analyze and tackle

SMT interference on memory access for job co-location.

Challenge I: SMT interference measurement. There is no existing

quantitative metric to measure SMT interference on memory ac-

cess. At a first glance, CPU usage might be an indicator to measure

the SMT interference since memory access must increase CPU us-

age. However, a high CPU usage does not necessarily incur a large

number of memory accesses and SMT interference since work-

loads can be computation-intensive. Another naive measurement

approach is using a probing process that periodically accesses mem-

ory from cores and records the latency. Although the obtained

latency could be a quantitative indicator of SMT interference, this

approach presents a hard trade-off between measurement accuracy

and overhead. Higher probing frequency leads to higher accuracy

but also severe competition for shared execution units. The process

needs to occupy a chunk of physical memory, which interferes with

latency-critical services.

Challenge II: Adaptive core allocation. Co-located batch jobs can

use transiently idle resources, but they should not impact perfor-

mance of latency-critical services. The challenge lies in how to

determine the amount of batch job workloads that can be sched-

uled on a sibling of a processor that serves latency-critical services.

Both latency-critical services and batch jobs have three phases dur-

ing their lifetime: launching, running, and exiting. The scheduler

should dynamically adjust the amount of workloads of proces-

sors based on phases and profiled memory access latency on each

processor. Meanwhile, it needs to guarantee the performance of

latency-critical services while keeping the sibling core busy.

Key insights and contributions. In this paper, we present

Holmes, a user-space non-intrusive approach for diagnosing SMT

interference on memory access and CPU scheduling that takes

SMT interference into account for efficient job co-location. Specifi-

cally, we target on Intel’s implementation of SMT namely Hyper-

Threading (HT) which has two hardware threads on a physical core.

Unlike memory or CPU usage, HT interference onmemory access is

not directly exposed by Linux OS and cannot be directly controlled.

To tackle this challenge, we leverage hardware performance events

(HPEs) provided by Intel processors to diagnose HT interference

on memory access. Terms SMT and HT are used interchangeably

in this paper. Note that AMD processors support similar hardware

performance events called Instruction-Based Sampling.

Identifying the right HPEs for the metric in measuring HT inter-

ference is non-trivial since there are hundreds of HPEs reflecting

different aspects of performance. We use a statistic approach to

select the appropriate HPE and form a metric called counter value
per instruction (VPI) for HT interference quantification. VPI is a

metric to measure load of DRAM access based on HPEs. We will

explain the details of VPI for interference diagnosis in Section 3.

To address the second challenge, we design and develop an

interference-aware CPU scheduler for efficient job co-location. The

scheduler keeps track of CPU status including HT interference and

CPU usage on a server with HT enabled. When HT interference

is detected, it adaptively adjusts CPU allocation of latency-critical

services and batch jobs to mitigate HT interference.

This paper makes the following contributions.

• We conduct in-depth characterization and analysis of SMT

interference on memory access, as well as its impact on job

co-location. We apply a statistic approach to select appropri-

ate HPEs and use them to calculate a reliable metric (namely

VPI) to diagnose HT interference.

• We design an interference-aware CPU scheduler for efficient

job co-location in servers with HT enabled, and implement

it in user space for transparency to applications and the OS.

• Evaluation shows Holmes achieves latency close to that

when services are running alone in a dedicated server, while

significantly improving utilization and speedup of conver-

gence.

Experimental methodology and artifact availability. We

implement Holmes as a user-space daemon process without modi-

fications to either applications, libraries, or Linux OS. We conduct

experiments with four real-world latency-critical services (i.e., Re-

dis, RocksDB, WiredTiger, Memcached) co-located with batch jobs.

Results shows that compared to a representative CPU isolation ap-

proach PerfIso [32], Holmes reduces the average (99
th

percentile)

query latency for the real-world latency-critical services by up to

49.0% (52.3%) under job co-location. It significantly increases re-

source utilization and system throughput compared to running

latency-critical services alone. Compared to Heracles [39] and Par-

ties [18], Holmes speeds up the convergence on resource allocation

by five orders of magnitude. The overhead of Holmes is negligible.

Holmes is open source at https://github.com/EddiePi/Holmes.

Limitation of the proposed approach. As many studies in

job co-location, Holmes assumes that latency-critical services have

bursty traffic such that batch jobs can be allocated with transiently

available resources. It is possible that latency-critical services re-

ceive consistent high volume of traffic. In this case, batch jobs may

be suspended and stop progress for a long time, or even be killed.

This situation is acceptable since batch jobs do not have strict SLOs

and even be best-effort. In production, there are several solutions if

we still want batch jobs to make progress. For example, we could

reserve a small dedicated resource pool for batch jobs such that

they can make slow progress. Another approach is that batch jobs

can be migrated to another machines with more resources in the

cluster.

In the rest of the paper, Section 2 presents SMT background and

motivational studies. Sections 3 and 4 describe SMT interference

measurement and Holmes design. Section 5 presents the imple-

mentation. Section 6 evaluates Holmes. We discuss related work in

Section 7 and conclude in Section 8.

2 INTERFERENCE VERIFICATION
2.1 Simultaneous Multi-Threading
We show the execution process of multi-threading and Simultane-

ous Multi-Threading (SMT) in Figure 1, considering there are two
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Figure 1: Example of multi-threading and simultaneous
multi-threading with 2 threads and 5 execution units.
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Figure 2: Memory access latency from different sources.

threads issuing instructions. Instructions are placed in a queue, and

the number in each instruction indicate its required execution units

(EU). For example, the first instruction from thread 1 has numbers

“0, 2”, indicating it uses execution unit EU0 and EU2. In a multi-

threading processor, only one thread can run on execution units

at a time. When the thread encounter a long waiting event or uses

up its quota, the processor switches to another thread. In contrast,

SMT allows multiple hardware threads run on the execution units

of the same physical core in the same cycle. We target Intel’s im-

plementation of SMT, known as HT technology. HT implements a

2-way SMT which makes a physical core appears as two processors

to an operating system. Two thread contexts can be simultaneously

kept on a HT core while sharing the same set of execution units.

HT expects that combining and executing instructions from two

threads increases the utilization of a physical core. However, when

there are two instructions compete for the same execution unit,

one will be delayed. In Figure 1, for example, the last instruction

from thread 2 is delayed on EU2 (shaded rectangle) since thread 1

is using EU2.

2.2 Why SMT Interference?
Previous studies [43–45] showed that memory controller and band-

width congestion are the main bottleneck for memory access la-

tency. We find that these bottleneck have been well addressed on a

modern CPU. It is HT interference that degrades memory access

latency.

Micro benchmark. We use a case study with a micro bench-

mark to illustrate the sources of memory access latency. We use the

same server configuration as that in Section 6. The benchmark has
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Figure 3: Latency of Redis under the different settings.

a configurable number of threads pinned onto individual logical

CPUs. We run two kinds of threads: 1) threads continuously send

memory requests to access a random 1MB memory block out of

600MB data (denoted as m-thread), 2) threads run a computation-

intensive workload executing floating point operations (denoted

as c-thread). To identify the sources of memory access latency, we

evaluate the latency of m-threads accessing 1MB memory block

in six cases. For the first five cases, all threads are m-threads. We

use the following five thread allocation: 1) 1 thread on 1 core, 2) 2

threads on 2 cores, 3) 2 threads on 2 logical CPUs of the same core,

4) 16 threads on 16 cores, and 5) 32 threads on 32 logical CPUs of

16 cores. In case 6), 16 m-threads are allocated on 16 logical CPUs

and another 16 c-threads are allocated on the siblings of the 16

logical CPUs. Case 1) is used as the baseline. 2), 3) and 6) are used

to inspect the impact of Hyper-Threading. 4) and 5) are used to

inspect whether memory controller or bandwidth is the bottleneck.

Figure 2 shows the CDF of the memory access latency in the

six scenarios. Cases where memory is accessed from individual

physical cores render an average latency about 1, 400µs regard-

less of the number of accessing threads. In these cases, memory

controller congestion or memory bandwidth congestion has little

impact on memory access latency since cases 1), 2) and 4) have

almost the same performance. Case 3) case 5) both use HT while

case 5) has much more requests sending from 32 threads. If case 5)

is bottlenecked by memory bandwidth, it should render an even

higher latency than that of case 3), which is however not the case.

In these two cases, threads are scheduled on siblings using HT

render a higher average latency, about 2, 300µs , compared to those

without Hyper-Threading. By comparing results of case 5) and case

6), we reveal that computational-intensive workload can degrade

the performance of memory access on its sibling thread, while its

impact is much less than that of memory accessing workloads.

CPU scheduling gets evenmore complicatedwhen latency-critical

services are co-located with batch jobs. Since latency-critical ser-

vices have bursts of incoming queries [32], statically allocating

fixed amount of resource usually results in either sub-optimal per-

formance or resource wastage.

Job co-location with a real-world service. We use Redis, a

real-world latency-critical service, to illustrate the significant im-

pact of HT interference on query latency. Redis is running under

three settings. 1) Alone: Redis runs alone with HT enabled. 2) Co-

separate: Redis runs with batch jobs and they use separate physical

cores. 3) Co-hyper: Redis runs with batch jobs and the batch jobs

are allowed to use siblings of Redis cores. Redis runs with the same
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Table 1: The Candidate HPEs.

Name Description Event # Corr
CYCLES_

L3_MISS

Cycles while L3 cache miss demand

load is outstanding.

0x02A3 -0.1748

STALLS_

L3_MISS

Execution stalls while L3 cache miss

demand load is outstanding.

0x06A3 0.9992

CYCLES_

MEM_ANY

Cycles when memory subsystem has

an outstanding load.

0x10A3 0.9997

STALLS_

MEM_ANY

Execution stalls when memory subsys-

tem has outstanding load.

0x14A3 0.9999

number of threads in the three cases. We use the Spark Kmeans

workload from HiBench [31] as the batch job. In the two co-location

settings, threads of Redis and threads of the batch job are pinned

on different logical CPUs. We use workload-a from cloud serving

benchmark YCSB [23] to generate queries to Redis.

Figure 3 shows the CDF of the latency of Redis queries under

different settings. Settings Alone and Co-separate render similar

latency for Redis queries. However, the latency is significantly pro-

longed with Co-hyper setting where queries are affected by HT

interference. In Co-hyper, the average (99
th

percentile) query la-

tency of Redis with HT is 2.0× (1.3×) as high as that of Co-separate.

[Summary] We have identified that HT interference degrades

memory access latency for both a micro benchmark and a real-

world service, while memory controller/bandwidth congestion has

little impact on their latency. Since latency-critical services and

batch jobs both frequently access memory, the co-location could sig-

nificantly degrade performance of latency-critical services. Though,

HT interference can be qualitatively identified, there is no efficient

approach that can quantitatively and accurately measure it.

3 INTERFERENCE DIAGNOSIS
3.1 Finding the Metric
We identify a set of hardware performance events (HPEs) provided

by Intel processors and apply a statistic approach to select the

appropriate HPE to form a metric. We then leverage upon the

metric to accurately diagnose HT interference on memory access.

We choose four candidate HPEs as they are related to LLC miss

and the memory subsystem. Table 1 gives their names, description,

event numbers, and correlation. To evaluate the correlation between

the counter value of each candidate HPE and the memory access

latency, we deploy a measurement program that runs on either

one or both threads to continuously send fixed-sized (e.g. 1MB)

memory requests from the same cores to DRAM for a unit time (e.g.

one second). When one thread is running, we change the request

sending rate (i.e. requests per second, RPS) ranging from 5,000 RPS

to its maximum rate around 74,000 RPS with 5,000 as the step size.

When two threads are running, we pin the two threads on the

siblings of one physical core. We fix one thread to its maximum

possible RPS (Figure 4(b)) and change the RPS of the other thread

from 5,000 to its maximum rate around 45,000 RPS with 5,000 as

the step size Figure 4(c)). We make sure that the requested data do

not reside in any layer of CPU caches.

Counter value per second. We record the counter value of

each candidate HPE from the logical CPU that hosts the measure-

ment program at run time. Initially, we intend to use counter value

per second as the metric to measure HT interference on memory

access. However, this method is not effective if a logical CPU is

not fully loaded. For example, when a thread on a processor sends

requests with 5,000 RPS and its sibling processor is fully loaded,

the thread experiences a long memory access latency while the

recorded per-second counter value is relatively small since only

5,000 requests are sent. Such a small counter value does not really

reflect the high memory access latency. The scenario happens even

with a more fine-grained time unit.

Counter value per instruction (VPI). In order to accurately

model DRAM access latency, the actual load of DRAM access on a

processor needs to be obtained. We achieve this by recording the

sum of the number of instructions LOAD and STORE and divide the

counter values by the sum, as shown in Equation 1. In this way, we

calculate the average counter values per DRAM access instruction

VPIevent . We normalize the average memory access latency and

VPIevent of each HPE to their own maximum values.

VPIevent =
CounterValueevent

NumLOAD + NumSTORE
(1)

Figure 4(a) shows the memory access latency and VPIs of the

four HPE events when we increase RPS from 5,000 to 74,000 in the

one-thread configuration. It clearly shows that the memory access

latency remains almost unchanged with one thread regardless of

RPS. Figures 4(b) and 4(c) show the memory access latency and

VPIs under the two-thread configuration. In specific, Figure 4(b)

shows the thread always using the maximum RPS and Figure 4(c)

shows the thread using various RPS. For the thread with various

RPS, its memory request latency remain unchanged regardless

of its RPS. For the thread with the maximum RPS, its maximum

RPS decreases from ∼ 70, 000 to ∼ 45, 000 with the increasing

RPS on its sibling thread. Its memory access latency also increases.

Among the four HPEs, the VPI of CYCLES_MEM_ANY (0x10A3)

and STALLS_MEM_ANY (0x14A3) presents almost the identical

trend as the memory access latency does.

We use Pearson’s correlation coefficient to statistically quantify

the correlation between the memory access latency and the value of

each HPE, as shown in Corr column of Table 1. A correlation score

that is close to 1 or -1 means the strongest correlation between

the two metrics. In Table 1, event STALLS_MEM_ANY (0x14A3)

has the highest correlation score (0.9999) among the four HPEs,

suggesting a strong positive correlation with the memory access la-

tency. HPE CYCLE_L3_MISS (0x02A3) has relatively low correlation

score. We notice that HPEs STALLS_L3_MISS (0x06A3) and CY-

CLES_MEM_ANY (0x10A3) also present high positive correlation

scores, but they are slightly lower than that of HPE STALLS_MEM_ANY

(0x14A3). Therefore, we use the counter value of HPE STALLS_MEM_ANY

(0x14A3) according to Equation 1, that is VPI0x14A3, as the metric

to diagnose HT interference between siblings of a physical cores.

3.2 Effectiveness of the Metric
We conduct experimentation to examine that VPI0x14A3 is an ef-

fective metric in measuring HT interference on latency-critical

services. We test four real-world latency-critical services Redis [9],

RocksDB [10], WiredTiger [11], and Memcached [8]. Workload-a

from YCSB [23] is used to generate requests to the latency-critical
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Figure 4: The normalized memory access latency and value of HPEs under different thread configurations.
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Figure 5: The correlation between VPI and the normalized average and 99
th percentile latency of latency-critical services.

services.We develop a program that can access memorywith config-

urable request rate (i.e. request per second, RPS). For each latency-

critical service, we pin their threads on four logical CPUs and pin

the threads of the memory access program on the siblings of the

four logical CPUs. In the experiment, we use three RPS settings

20,000 (Low), 40,000 (Medium), and 60,000 (High). For each setting,

we start the memory access program and YCSB concurrently. We

also run YCSB workload alone without the memory access program

as the baseline (Alone) for normalization. We sum VPI0x14A3 on
the four logical CPUs during the execution.

We normalize both VPI and latency of the services to those in

Alone setting by using
V−VAlone
VAlone

(V stands for either VPI or latency

of the services.). For example, an avg bar with value 0.3 indicates

that the average latency of the service is 30% higher than that under

Alone setting. Figure 5 shows the normalized average latency, 99
th

percentile latency, and VPI0x14A3 for the four services under each
setting. As the load increases, the growth patterns of latency and

VPI are very similar, which indicates that VPI0x14A3 is an effective

metric that can quantitatively reflect the latency of the services.

4 HOLMES DESIGN
4.1 Overview
Figure 6 presents the closed-loop design of Holmes. The metric

monitor keeps track of the status of both latency-critical services

and best-effort batch jobs, as well as the resource usage of the server.

Holmes diagnoses HT interference on memory access based on the

quantification approach with the selected HPE. It then adaptively

adjusts CPU core allocation for latency-critical services and batch

jobs in a shared server based on process and system status. The

CPU scheduler communicates with Linux kernel and adjusts core

allocation at runtime using an interference-aware scheduler, which

aims to achieve low latency for latency-critical services and improve

server resource utilization and throughput. In return, the adjusted

core allocation affects the performance metrics in the system.

Metric monitor

HPE values

core CPU usage

process CPU usage

Interference detection

VPI calculation

CPU usage calculation

CPU scheduling

Adjustment for 
workloads

process 
status

system 
status

Figure 6: An overview of Holmes architecture.

4.2 Metric Monitor
The metric monitor thread is periodically invoked to collect the

information of CPU usage and CPU/thread status of running work-

loads.

CPU resource usage. The monitor thread collects both CPU

usage andVPI0x14A3 of each virtual processor. It stores the metrics

in an array for all cores in a server. Holmes maintains logical-

processor-to-core mappings. The collected processor metrics are

aggregated per core by accumulating both processor metrics on

that core. As a result, Holmes presents the overall CPU usage and

the overall VPI0x14A3 of each core in the server.

Process status. For processes of latency-critical services and
those of batch jobs, the monitor thread collects their CPU/ thread

usages and thread-to-processor mappings. Since latency-critical

services usually are long running, their PIDs are provided to Holmes

by the system administrator upon service initialization. In contrast,

batch jobs are usually launched by a resource scheduler, such as

Apache Yarn [48], and finish at arbitrary time. To detect batch jobs

when they start, we configure Yarn to launch batch job processes

in Linux containers. Each container uses its own files in the cgroup
file system to achieve resource allocation and isolation. Holmes

monitors directories in the cgroup file system to detect batch jobs.
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Table 2: Terminologies in Holmes.

Terminologies Description
Reserved CPU A logical CPU reserved for latency-critical services. Batch

jobs are not allowed to run on it.

Non-reserved CPU A logical CPU other than the reserved CPUs. All processes

can run on them.

LC CPU A logical CPU hosting latency-critical services.

LC-sibling CPU The sibling CPU of a LC CPU.

Non-sibling CPU The CPUs that their siblings are not hosting latency-critical

services.

Holmes determines whether a latency-critical service is serv-

ing query traffic by monitoring its CPU usage. Most queries of a

latency-critical service are related to memory access. Some services

have background management threads that are responsible for data

merge or compaction operations which are also memory intensive.

When these operations are on the fly, they incur CPU usage.

4.3 CPU Scheduler
The CPU scheduler periodically reads the information collected by

the metric monitor and adaptively adjusts core allocations using

an interference-aware scheduling algorithm for co-located latency-

critical services and batch jobs. The algorithm prioritizes latency-

critical services by reserving a small number of logical CPUs for

bursts of query traffic. When latency-critical services do not have

traffic, it allows batch jobs to utilize the other non-reserved logical

CPUs. Though this may incur HT interference on batch jobs, it

is not considered as an issue since batch jobs do not have a hard

deadline for completion. Further, by leveraging HT, batch jobs can

achieve higher throughput. When latency-critical services are serv-

ing traffic, the scheduler adjusts core allocations for both types

of workloads. We describe the CPU scheduling algorithm corre-

sponding to the three phases of the lifetime of a process, launching,

running and exiting. Table 2 describes the terminologies used in

Holmes.

Algorithm 1 Process launching.

1: pid_setl ss : A set of process IDs of latency sensitive services;

2: pid_setbatch : A set of process IDs of batch jobs;

3: pid = launched process id;

4: if pid_setl ss contains pid then
5: allocate(r sv_CPU s , pid );
6: else
7: allocate(non_r sv_CPU s , pid );
8: end if

Process launching. The process launching procedure is shown
in Algorithm 1. Upon launch of a latency-critical service, Holmes al-

locates reserved CPUs to the service. Upon launch of containers for

a batch job, Holmes allocates non-reserved CPUs to them. Among

these non-reserved CPUs, Holmes first chooses the ones from non-

sibling CPUs. The number of CPUs is specified by configuration

files of the batch job. When non-sibling CPUs are busy, Holmes

chooses CPUs from all the non-reserved CPUs for the containers

as long as the overall VPI_0x14A3 of their sibling CPUs is less

than a threshold E. By this design, performance of latency-critical

services is not affected by batch jobs at launching time. Meanwhile,

LC-sibling CPUs could be utilized by batch jobs when necessary.

Process running. The procedure during process running is

shown in Algorithm 2. Holmes checks whether a latency-critical

Algorithm 2 Process running.

1: for each LC_CPU do
2: for pid in pid_setbatch do
3: whileV PI

0x14A3
(LC_CPU ) ≥ E do

4: if siblinд_CPU of LC_CPU has pid then
5: deallocate(siblinд_CPU , pid );
6: if non_siblinд_CPU s .available then
7: allocate(non_siblinд_CPU s , pid );
8: end if
9: end if
10: end while
11: end for
12: if V PI

0x14A3
(LC_CPU ) ≤ E for S seconds then

13: pid ← choose_one(pid_setbatch )
14: allocate(siblinд_CPU , pid )
15: end if
16: end for
17: while r eserved_CPU s .usaдe > T% do
18: new_CPU ← get_or_deprive(all_CPU s );
19: r eserved_CPU s .add(new_CPU );
20: end while

service is serving query traffic by monitoring its CPU usage. When

it is serving traffic, the usage of the reserved CPUs andVPI0x14A3 of
the CPUs hosting the service must increase. If there are co-located

batch jobs on siblings of these CPUs, Holmes adjusts core allocation

based on these two metrics accordingly.

When VPI0x14A3 is greater than or equal to threshold E, HT

interference is detected. In this case, Holmes deallocates the sibling

CPUs from the containers of the batch jobs. WhenVPI0x14A3 of the
LC CPU drops below threshold E for S seconds, Holmes re-allocates

the sibling CPUs to the containers of the batch jobs. Meanwhile,

Holmes seeks to allocate non-sibling CPUs to the containers of the

batch jobs. This could happen when the containers of the batch jobs

on a non-sibling CPU finish. By deallocating the CPUs from the

containers of the batch jobs, VPI0x14A3 is reduced accordingly. Al-

though processing of the batch jobs is slowed down, their execution

progress are preserved.

When the average usage of the reserved CPUs reachesT (0<T<1)
of their capacity but VPI0x14A3 is less than E, the capacity of the

reserved CPUs is not enough to serve the latency-critical service.

For example, we initially assign four reserved CPUs to the latency-

critical service and set T to 80%. When the CPU usage of the four

cores increases beyond 320% (4 ∗ 80%), Holmes starts an expansion

procedure. It could happen when the latency-critical service creates

more active threads than the number of the initial reserved CPUs.

Holmes adds one CPU at a time until the capacity is enough to serve

the latency-critical service. The chosen CPU is not the sibling of

the current LC CPUs. At the same time, if any batch job is running

on the sibling of the chosen CPU, Holmes deallocates the CPU from

batch jobs to ensure the performance of latency-critical service.

Algorithm 3 Process exiting.

1: if lss exits then
2: for pid in pid_setbatch do
3: allocate(siblinд_CPU s , pid );
4: end for
5: end if
6: if batch on non_siblinд_CPU s exits then
7: for pid in pid_setbatch do
8: reallocate(non_siblinд_CPU s , pid );
9: end for
10: end if

Process exiting. The procedure is shown in Algorithm 3. There

are two situations of process exiting that need to be managed: 1)
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exiting of containers of the batch jobs on non-sibling CPUs, and 2)

traffic of the latency-critical service is over. Upon exiting of contain-

ers of a batch job on non-sibling CPUs, Holmes examines whether

any sibling CPU is hosting containers of the batch jobs. If so, Holmes

migrates some of them onto non-sibling CPUs. When the latency-

critical service finishes traffic serving, Holmes allocates sibling

CPUs to containers of the batch jobs whose CPUs are previously

deprived. By this design, it improves the CPU resource utilization of

a server while guaranteeing resources for latency-critical services.

5 IMPLEMENTATION
We implement Holmes in ∼ 3, 000 lines of C++ code. Holmes runs

as a daemon process with root privilege. We empirically set the

invocation interval at 50 µs for both the metric monitor thread

and CPU scheduling thread. The interval is set based on the fact

that latency-critical services usually have a per-query respond time

at several hundreds of microseconds. The 50 µs invocation inter-

val is short enough for fast HT interference detection and CPU

scheduling while maintaining low overhead. We set the number of

reserved cores to four in our 32-core servers. We set the dealloca-

tion threshold E for batch jobs at 40. This is a rather strict value

since we expect that the processors of batch jobs can be deallo-

cated at an early stage, resolving HT interference. We empirically

set the CPU usage threshold T of latency-critical services for core

expansion at 80%. In this case, it allows 20% CPU quota for a burst

of queries before Holmes allocates more cores to latency-critical

services. When a latency-critical service is launched, the system

administrator specifies its PID to Holmes.

LinuxAPIs.Holmes communicates with Linux OS for two tasks:

1) collecting HPE counter values, and 2) allocating cores to pro-

cesses. Holmes uses system call perf_event_open to collect HPE

values provided by Intel processors at runtime. Holmes allocates

cores for threads by invoking system call sched_setaffinity. Note
that AMD processors provide similar technology called Instruction-

Based Sampling [1].

Batch jobs management.We use Apache Yarn [48] to manage

batch jobs. A batch job can be divided and launched in multiple

Linux containers [7]. We modify the source code of Yarn NodeMan-

ager to launch batch jobs with a set of specified cores, which makes

sure that batch jobs are not allocated with the cores reserved for

latency-critical services. The modification takes less than 10 lines

of code in Yarn. We create a parent cgroup directory to manage

all Linux containers for batch jobs. Each batch job container is

associated with an individual directory. Holmes keeps track of the

liveliness and resource consumption for batch jobs by scanning all

the cgroup directories.

6 EVALUATION
6.1 Evaluation Setup
We use two servers in the experimentation. Each server has two

Intel Xeon Gold 6143 CPUs (32 cores per CPU), 256 GB DRAM,

and 512 GB SSD. We use four real-world latency-critical services to

evaluate the performance of Holmes: Redis-5.0.5 [9], Memcached-

1.5.22 [8], RocksDB-6.0.0 [10], and WiredTiger-3.2.1 [11]. Redis and

Memcached are two in-memory key-value (KV) stores. RocksDB

is a state-of-the-art disk-based persistent KV store based on Long-

Structured Merge Tree (LSM Tree). WiredTiger is the latest disk-

based persistent KV storage engine for MongoDB. Both disk-based

KV stores keep an in-memory cache. When they access data stored

in files, Linux OS also keeps page cache for the recently accessed

files. Therefore, Holmes is applicable to disk-based KV stores.

We use Yarn in Hadoop-2.9.2 [5] as the job scheduler and Spark-

2.4.5 [53] as the data analytics engine for batch jobs. One server

hosts latency-critical services and batch jobs. The other serves as

the client of the latency-critical services and Yarn’s master node.

Performance of Holmes is evaluated in five metrics: 1) query

latency and SLO violation of latency-critical services, 2) server

throughput in terms of CPU utilization and the number of com-

pleted batch jobs, 3) parameter sensitivity of Holmes, 4) conver-

gence speed on resource allocation, and 4) overhead of Holmes.

We use the following configurations to generate job co-location

on the server, and use it for latency (§ 6.2) and throughput (§ 6.3)

evaluation. We submit workloads in YCSB [23] to generate bursty

query traffic for latency-critical services. Each bundle of bursty

traffic lasts for 60s∼90s with an interval ranging from 5s∼10s. Both

traffic time periods and interval periods agree to Poisson distri-

bution. Similar to other studies [19, 42], we continuously submit

multiple concurrent workloads in HiBench-6.0 [31] as batch jobs.

Each batch job lasts for around three minutes. After batch jobs are

submitted, all processors on the server are allocated to batch jobs

except for the reserved processors for latency-critical services. We

make sure there is no memory pressure on the server by constrain-

ing the memory limit of containers of batch jobs.

We conduct experiments in three settings.

• Alone. Latency-critical services run in a dedicated server

without job co-location. It is an ideal scenario for the services,

but the server suffers from low resource utilization.

• PerfIso. Latency-critical services are co-located with batch

jobs. Naive CPU isolation by representative PerfIso [32] is

enabled to dynamically adjust processor allocation.

• Holmes. Latency-critical services are co-located with batch

jobs. Holmes is enabled to dynamically adjust core alloca-

tion to mitigate the impact of SMT interference and CPU

interference on the latency-critical services.

6.2 Query Latency Reduction
We examine query latency when latency-critical services serve

three representative workloads in YCSB under the settings of Alone,

Holmes, and PerfIso. Workload-a is a write-heavy workload consist-

ing of 50% read and 50% update queries. Workload-b is a read-heavy

workload consisting of 95% read and 5% update queries. Workload-

e is a scan-heavy workload consisting of 95% scan and 5% insert

queries. Note that there is no workload-e for Memcached service

since it does not support scan operations. We show the CDF of

query latency of the workloads for the four latency-critical services

running under the three settings in Figures 7 to 10.

Redis and Memcached. They are two popular in-memory KV

stores. As shown from Figure 7 to Figure 10, naive isolation due to

PerfIso significantly prolongs the query latency for all workloads at

each percentile. For Redis service, Holmes reduces the average (99
th

percentile) query latency by 49.0% (35.2%), 40.7% (11.7%), and 28.1%
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Figure 7: The CDF of query latency of Redis service under three workload settings.
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Figure 8: The CDF of query latency of RocksDB service under three workload settings.
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Figure 9: The CDF of query latency of WiredTiger service under three workload settings.
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Figure 10: The CDF of query latency of Memcached service under two workload settings.

(49.3%) for the three workloads, respectively.We observe a very long

tail (99
th

percentile) of query latency in workload-b of Redis due

to PerfIso. It suggests that HT interference has significant impact

on the read-heavy workload for Redis. For Memcached service,

compared to PerfIso, Holmes reduces the average (99
th

percentile)

latency by 16.9% (52.3%) and 9.5% (39.2%) for the two workloads,

respectively. It achieves almost identical query latency as Alone

setting does for both workload-a and workload-b.

RocksDB andWiredTiger. They are two disk-based KV stores.

As shown in Figure 8 and Figure 9, Holmes achieves almost identical

query latency as Alone setting does for both services. For RocksDB

service, queries have a long tail of latency even if the service is

running under Alone setting. The long tail further deteriorates

when HT interference presents. Compared to PerfIso, Holmes re-

duces the average (99
th

percentile) query latency by 44.2% (28.9%),

18.9% (28.7%), and 25.0% (18.8%) for the three workloads, respec-

tively. ForWiredTiger service, compared to PerfIso, Holmes reduces

the average (99
th

percentile) query latency by 21.6% (30.1%) and

19.4% (21.7%) for workload-a and workload-b, respectively. As for

workload-e, the query latency under the three settings is almost

identical, which implies that the workload is insensitive to HT

interference.
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(d) Memcached SLO violation

Figure 11: The SLO violation of four latency-critical services under three workload settings.

We notice that for both disk-based KV stores, the CDF curve is a

stair-like shape. For example, about 50% of the queries in workload-

a of RocksDB have latency around 200µs while the other 50% of the

queries have latency raging from 500µs to several milliseconds.

There are two reasons that cause the stair-like CDF curve. 1)

For workload-a, half of the queries are of update and the other half

are of read. Since both services use an asynchronous technique

for update queries, one half of the queries (update) return quickly.

For the other half of the queries (read), the services need to access

memory or disks before returning data. Thus, the read queries

have much slower response than the update queries. 2) Workload-

b and workload-e are both read intensive. The services have low

latency when the queries hit in-memory cache for the queried data,

and have high latency when the queries need to access disks. For

disk-based KV stores, the results show that all three settings cause

similar query latency in low percentiles. HT interference has more

significant impact on query latency in high percentiles.

SLO violation. Figure 11 shows the ratios of SLO violation

due to Alone, Holmes and PerfIso for the four latency-critical

services, respectively. Latency-critical services like web search

commonly distribute requests across many servers, and the end-

to-end response time is determined by the slowest individual la-

tency [13, 24, 27, 55]. There is not a magic value that defines the

SLO of each service. We adopt the 90
th

percentile latency under

Alone as the SLO. In Redis, the SLOs are set to 136µs , 149µs and
12, 468µs for workload-a, -b and -e, respectively. These are rather

strict values as only 10% SLO violations are allowed under Alone.

Compared to Alone, Holmes achieves a similar SLO violation ratio

in most cases, especially for disk-based services (i.e., RocksDB and

WiredTiger). One exception is workload-b with Redis. Holmes in-

curs a violation ratio of 50.8% because workload-b is very sensitive

to HT interference and parameter setting. PerfIso causes signif-

icantly worse SLO violation ratios in all cases. Its SLO violation

ratios are usually above 25%, and around 90% in the worst case.

[Summary] Experiments show that Holmes reduces the average

(99
th

percentile) latency by up to 49.3% (52.3%) for the four in-

memory KV stores. Since disk-based KV stores have memory cache,

Holmes can reduce their average (99
th

percentile) latency by up to

44.2% (30.1%). In most cases, Holmes achieves very similar query

latency and SLO violation ratio for the latency-critical services as

Alone does. We notice that the latency of Redis due to Holmes still

has some degradation compared to the Alone case. The possible

reason is that Redis uses a single thread to serve all user requests.

When requests are delayed on the thread, there is no other thread

to dispatch the requests, resulting in longer latency.

6.3 Server Throughput Improvement
We examine the server throughput when running the four latency-

critical services with three workloads in one hour, under Alone,

Holmes, and PerfIso. The metrics are 1) CPU utilization, and 2) the

number of completed batch jobs.

CPU utilization. Figure 12 shows the average CPU utilization

with the four latency-critical services under the three settings Alone,

Holmes, and PerfIso. There is no significant difference in the uti-

lization due to different workloads. Overall, Holmes achieves the

average CPU utilization 72.4% ∼ 85.8% while PerfIso achieves the

average CPU utilization 83.4% ∼ 88.5%, both under job co-location.

Compared to Alone, both Holmes and PerfIso significantly improve

CPU utilization of the server. PerfIso slightly outperforms Holmes

in CPU utilization, it however significantly violates the SLO of

latency-critical services, the principle of job co-location. Note that

it is the interference-aware CPU scheduling of Holmes that assures

query latency of latency-critical services under job co-location close

to that when the services are running alone in a server.

VPI value. Figure 13 offers a microscopic view of the average

VPI value on the LC CPUs at runtime when Rocksdb is serving

workload-a under PerfIso, Holmes and Alone. Other latency-critical

services and workloads have similar results. Alone has the most

stable VPI value. PerfIso renders the highest VPI value and fluctua-

tion. Holmes leads to lower and more stable VPI value compared

to that due to PerfIso. The reason is that Holmes deallocates CPUs

of batch jobs when Rocksdb is serving traffic, and restores CPUs

when the traffic is over. Thus, the VPI value on the LC CPUs is less

affected by batch jobs compared to PerfIso.

Memory utilization. The server memory utilization under the

three settings does not change much. For Alone, the memory utiliza-

tion stabilizes around 2GB for Redis and Memcached, and around

1GB for RocksDB and WiredTiger. For PerfIso and Holmes, the

memory utilization stabilizes around 144 GB for all four latency-

critical services co-located with batch jobs. There are two reasons

for the stable memory utilization. 1) Latency-critical services use

memory as data storage or data cache. Their memory consumption

does not change much unless there are more data inserted into the

services. 2) Each container of a batch job is configured with a fixed

size of memory. Its memory consumption does not change unless

the memory size of the containers is changed.

Number of completed jobs. Table 3 gives the number of com-

pleted batch jobs in one hour when Redis serves workload-a in

the three settings. With PerfIso, 78 batch jobs are completed. With

Holmes, 73 batch jobs are completed. Holmes adaptively adjust

LC-sibling CPU allocation for batch jobs which slows down batch
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Figure 12: CPU utilization with four latency-critical services under three settings (Alone, Holmes, PerfIso).
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Figure 13: VPI under three settings for Rocksdb.

Table 3: Throughput Comparison of Three Settings.

settings avg. CPU usage # finished batch jobs
Co-location with PerfIso 84.6% 78

Co-location with Holmes 75.0% 73

Alone 1.1% 0

job processing in exchange for latency assurance of latency-critical

services, the principle of job co-location.

[Summary] Holmes significantly improves CPU utilization and

system throughput in a multi-tenant system, compared to a dedi-

cated system where latency-critical services are running alone. It

significantly outperforms PerfIso in query latency assurance for

latency-critical services.

6.4 Parameter Sensitivity
We examine the impact of threshold E of VPI0x14A3 on query la-

tency of latency-critical services. In Holmes, threshold E determines

when sibling cores of containers of each batch job is disabled. It is

a trade-off between CPU utilization and meeting SLO of a latency-

critical service. A lower value yields more disabled processors and

thus lower query latency for meeting the SLOs, but also fewer pro-

cessors for batch jobs that reduces the job throughput and CPU uti-

lization of the server. For efficient job co-location, the primary goal

of parameter tuning is to achieve low latency for latency-critical

services while the secondary goal is to improve server utilization.

We use workload-a in YCSB and change E from 40 to 80 with

step size 10. We normalize the query latency due to Holmes to that

due to Alone for the four real-workload services. Figure 14 shows

the normalized latency on the average latency and at four specific

percentiles. It shows that E with value of 40 renders almost similar

results as Alone does in most cases. This value yields the latency

similar to those in Alone for Redis, WiredTiger and Memcached at

each percentile. For RocksDB, it yields slightly worse results than

Table 4: Convergence speed of four approaches.

Approach Convergence speed
Heracles 30s

Parties 10-20s

Caladan 20µs
Holmes 50 − 100µs

those Alone does. For RocksDB, Holmes can tune for a lower value

for E (e.g. 10) to deallocate cores of batch jobs more promptly.

[Parameter Tuning] When users tune parameter E, there are

multiple factors to take into account, such as SLO of a latency-

critical service, the type of batch jobs, hardware configuration, etc.

It may result in a higher value of E if a latency-critical service has

a loose SLO and server utilization is more important, or a lower

value if SLO of the service is not allowed to be compromised.

6.5 Convergence Speed on Resource Allocation
Three approaches [18, 27, 39] consider HT in tackling interference

caused by job co-location. Table 4 summarizes the typical conver-

gence speed of the three approaches and Holmes. Heracles [39]

and Parties [18] reach convergence after tens of seconds. Given

that the typical query latency of latency-critical services is usually

hundreds of microseconds to tens of milliseconds, this second-level

convergence speed can be too slow to reduce SLO violation for

latency-critical services. Holmes speeds up the convergence on

the resource allocation by five orders of magnitude. We note that

Caladan [27] achieves even faster convergence at around 20µs . Cal-
adan scheduler requires modification to the Linux Kernel source,

while Holmes is a user-space approach without modification to li-

braries or Linux kernel. These are two complementary approaches

for mitigating HT interference for latency-critical services.

6.6 Overhead
We analyze the overhead of Holmes. Holmes introduces about

1.3% ∼ 3%CPU usage depending onwhether the scheduling threads

are active in management operations. It occupies about 2MB mem-

ory at runtime, which is negligible compared to the memory capac-

ity of a DRAM node. We suggest launching Holmes on a separate

core to minimize its interference with latency-critical services.

6.7 Discussions
HPE dependency. The HPEs selected in Holmes can be observed

from all processors using Intel 64 and IA-32 architectures. Job co-

location with Holmes on servers with AMD processors can adopt
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Figure 14: The normalized latency of four latency-critical services with different CPU suppression ratios S in Holmes.

a new set of HPEs via Instruction-Based Sampling [1] to diagnose

memory controller congestion.

Thread invocation interval. The invocation interval of the mon-

itoring and scheduling threads is a trade-off between overhead

and query latency of latency-critical services. A longer interval

incurs lower overhead while CPU adjustment may not be timely

performed to achieve low latency, and vise versa. We suggest set-

ting the invocation interval similar to the order of the query time

of a latency-critical service. Thus, CPU adjustment can be timely

performed for almost all queries. For example, the order of the

query time in workload-a of Redis is around 50 to several hundreds

of microseconds. The interval is set to 100µs . In fact, we set this

interval for all four latency-critical services in the experiments.

Note that users may want to examine this value to better fit for

their production environments.

Where is Holmes in a system stack? Our prototype of Holmes

runs as an individual daemon process in Linux user space. It can

be integrated in cluster resource managers Yarn [48] and Kuber-

netes [6]. For example, Yarn’s NodeManager is responsible for mon-

itoring resource usage and adjusting core allocations and quotas.

7 RELATED WORK
Optimization for SMT. There are many efforts on optimizing ap-

plication performance running on SMT servers [16, 18, 25–27, 34,

39, 40, 46, 51]. For example, three studies [18, 27, 39] dynamically

adjust multiple resources, including memory bandwidth, CPUs

and SMT in a job co-location environment. Heracles and Parties

use feedback-based mechanism to conduct allocation for multiple

resources. However, Bianchini et al. [14] and our study indicate

that feedback-based mechanisms may render slow convergence to

resource congestion. Caladan [27], a kernel-space approach, dynam-

ically pauses/resumes threads of batch jobs running on siblings of a

SMT core based on timeout from latency-critical services. Holmes

differs from the three studies mainly in two aspects. It leverages

CPU HPEs to quantify SMT interference on memory access, and

it is a user-space approach that does not require modification to

applications, libraries, or Linux OS. Holmes also finds that memory

bandwidth is no longer a bottleneck in modern servers.

Latency reduction. Extensive efforts focus on reducing query la-

tency for latency-critical services [13, 17, 22, 28–30, 32, 36, 38, 41,

50, 55]. For example, EvenDB [28] is a recent LSM Tree KV store

that is optimized for data with spatial locality. FlatStore [22] is a

recent KV store that uses logs in persistent memory for efficient

data requests. There are also efforts on resource sharing and work-

load prioritization for latency-critical services. PerfIso [32] is an

approach that uses native CPU isolation to achieve CPU sharing

between latency-critical services and batch jobs. However, those

studies do not consider job co-location in servers.

Resource sharing. Resource sharing and job co-location in multi-

tenant systems have been extensively studied [12, 14, 15, 19–21,

35, 37, 42, 52]. For example, Mercury [35] is a hybrid resource

scheduler that launches jobs with transient resources and kills

jobs when the available resources drop below a threshold. BIG-

C [19] is a preemption-based cluster scheduler that allows short

jobs to preempt long jobs to achieve low latency and high utilization.

However, those studies do not address SMT interference and its

severe impact on performance of job co-location.

8 CONCLUSION
Holmes is a non-intrusive interference-aware CPU scheduler at user

space for efficient job co-location in a SMT system. It tackles two

challenges, 1) accurately diagnosing SMT interference on memory

access by identifying hardware performance events and developing

an quantitative method for interference measurement, and 2) adap-

tive CPU scheduling via interference-aware core allocation and

CPU migration. Experiments show that Holmes achieves query la-

tency of the latency-critical services close to that when the services

are running alone in a server, while significantly improving server

utilization and throughput of co-located batch jobs. Compared to

PerfIso [32], Holmes reduces the average (99
th

percentile) query

latency by up to 49.0% (52.3%) for latency-critical services. It also

significantly speeds up the convergence on resource allocation.

In the future, we plan to integrate Holmes with cluster manage-

ment frameworks Yarn and Kubernetes.
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