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Abstract

A Shimura variety of Hodge type is a moduli space for abelian varieties equipped
with a certain collection of Hodge cycles. We show that the Newton strata on such
varieties are nonempty provided that the corresponding group G is quasisplit at
p, confirming a conjecture of Fargues and Rapoport in this case. Under the same
condition, we conjecture that every mod p isogeny class on such a variety contains
the reduction of a special point. This is a refinement of Honda—Tate theory. We prove
a large part of this conjecture for Shimura varieties of PEL type. Our results make no
assumption on the availability of a good integral model for the Shimura variety. In
particular, the group G may be ramified at p.
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Introduction

A Shimura variety Sh(G, X) of Hodge type may be thought of as a moduli space
for abelian varieties equipped with a particular family of Hodge cycles. This inter-
pretation gives rise to a natural integral model . = (G, X). For a mod p point,
xe. s ), one has the attached abelian variety 4 and its p-divisible group §x =
Ax[p°°]. In this article, we study the two related questions of classifying the isogeny
classes of G, and +A,. We are able to do this for quite general groups G, as our
methods do not require any particular information about .#; for example, we do not
assume that .¥ has good reduction.

The isogeny class of & is determined by its rational Dieudonné module D,
which is an (L = W(F,)[1/p])-vector space equipped with a Frobenius semilin-
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ear operator byo, where b, € G(L) is an element which is well defined up to o-
conjugacy, by — g~ b0 (g), and o denotes the Frobenius automorphism of L. The
element by is subject to a group-theoretic analogue of Mazur’s inequality (see [36,
Theorem 4.2]), and the set consisting of o-conjugacy classes which satisfy this con-
dition is denoted B(G, i), where i : G,, — G is the inverse of the cocharacter uy
(up to conjugacy) attached to X. (See Sections 1.1.5 and 1.2.3 below for precise
definitions.) Let ID denote the protorus whose character group is Q. Each b € G(L)
gives rise to the so-called Newton cocharacter vy, : D — G, defined over L, whose
conjugacy class is defined over @, and depends only on the o-conjugacy class [b].
The slope decomposition of Dy is given by vy . For [b] € B(G, 1), the correspond-
ing subset S} C (Fp) is called the Newton stratum corresponding to [b] so that a
point x € .7(F ) belongs to Sip] if and only if [bx] = [b]. Our first result is on the
nonemptiness of Newton strata. (The converse is known; i.e., if S[p] is nonempty, then
b € B(G,u). See Lemma 1.3.9.)

THEOREM 1

Suppose that b € B(G, ) and that the G(L)-conjugacy class of vy has a represen-
tative which is defined over Q. Then Syp) is nonempty. In particular, Sy is always
nonempty either when Gq,, is quasisplit or when [b] is basic.

Fargues [11, Conjecture 3.1.1] and Rapoport [35, Conjecture 7.1] have conjec-
tured that Sy is nonempty for every b € B(G, 1) (see also He and Rapoport [14]).
Previous results on the nonemptiness of S5 have been obtained by a number of
authors (see, e.g., Wedhorn [41] and Wortmann [44] for the p-ordinary case (of
hyperspecial level), Viehmann and Wedhorn [40] for the PEL case of type A or C
(of hyperspecial level), and the recent work of Zhou [46] for many cases of parahoric
level). These all rely on an understanding of the fine structure of a suitable integral
model of Sh(G, X).

Our method involves constructing a special point whose reduction lies in Spp;.
This is essentially a group-theoretic problem, as the Newton stratum of a special point
can be computed in terms of the torus and cocharacter attached to that point. When
Gq,, is unramified, this problem was already solved by Langlands and Rapoport [28,
Lemma 5.2]. This was independently observed by Lee [29], who also used it to show
the nonemptiness of Newton strata in this case. If Sp;] contains the reduction of a
special point, then it is easy to see that the G(L)-conjugacy class of v has a repre-
sentative which is defined over Q. Thus, the result of Theorem 1 is the best possible
using this method.
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Along the way, we confirm an expectation of Rapoport and Viehmann [37,
Remark 8.3] on cocharacters and isocrystals. (See Remark 1.1.14 below.) We also
show that the Newton stratification has some of the expected properties.

THEOREM 2

For every b € B(G, ), Spp) C 7 (F p) is locally closed for the Zariski topology. One
has the following closure relations, where < is the partial order on the set of conju-
gacy classes of Newton cocharacters (see Section 1.1.1):

E[b]C U S

Vyr XVp

This theorem is proved by showing the existence of isocrystals with G-structure
on .. This may be of independent interest, but the proof is rather technical, so we
leave it to the appendix. (Recently, Hamacher and Kim [12] proved similar results for
the case of Kisin—Pappas models by a different argument.) We remark that inclusion
in the theorem is expected to be an equality for hyperspecial level, but not in general.
As a corollary, we obtain generalizations of the theorems of Wedhorn and Wortmann
on the density of the w-ordinary locus.

THEOREM 3
If the special fiber of .7 is locally integral, then the j-ordinary locus is dense in the
special fiber.

We now discuss the problem of classifying 4, up to isogeny. For the mod-
uli space of polarized abelian varieties, this is closely related to Honda-Tate the-
ory, which asserts that the isogeny class of an abelian variety A over I, is deter-
mined by the characteristic polynomial of the ¢g-Frobenius on the £-adic cohomology
H'(A,Qy), with £1 g, and that the isogeny class of A contains the reduction of a
special point. Using this fact, one can describe precisely which characteristic poly-
nomials can occur. For x € #(G, X)(IF,), one expects that the g-Frobenius arises
from a y € G(Q) whose G(Q)-conjugacy class is independent of £, although it is in
general not a complete invariant for the isogeny class of A. We make the following
conjecture.

CONJECTURE 1
If Go,, is quasisplit, then the isogeny class of any x € ./ (F ) contains the reduction
of a special point.



1562 KISIN, MADAPUSI PERA, and SHIN

Here if x, x’ € .7 (F p), then A, s, are defined to be in the same isogeny class
if there is an isogeny i : 4y — A, such that for each of the Hodge cycles sq , carried
by Ay, i takes sq,x t0 Sq 5. More precisely, the Hodge cycles sy, can be viewed via
either £-adic cohomology for £ # p, or crystalline cohomology. We require that i
takes Sq,x tO Sq,x in €ach of these cohomology theories.

When G is unramified, this conjecture was proved by the first author [17] (see
also [46] for some cases of parahoric Shimura varieties). The methods of [46] require
rather fine information about the special fiber of ., and are rather different from
the ones employed in this paper which require almost no information about integral
models.

Even for the moduli space of polarized abelian varieties, the conjecture is a
more refined statement than Honda—Tate theory, since the definition of isogeny class
involves isogenies which respect polarizations. As we shall explain, it can neverthe-
less be deduced from Honda—Tate theory with some extra arguments, but remarkably
these do not seem to be in the literature; the closest is perhaps [22, Section 17]. (See
Section 2.3.6 below.)

To state our main result in the direction of the conjecture, we recall that the
group of automorphisms of «#, in the isogeny category is naturally the Q-points of
an algebraic group I, = Auty sy over Q. Similarly, one can define the subgroup
I = I, C I}, consisting of isogenies which respect Hodge cycles in £-adic and crys-
talline cohomology. The set of isogenies (respecting Hodge cycles) between #4, and
Ay is likewise the Q-points of a scheme £ (x,x") which is either empty or a tor-
sor under 7. We say that 4, and A, are Q-isogenous if & (x,x’) is nonempty.
This is equivalent to asking that there be a finite extension F/QQ and an isomorphism
Ay @ F — Ay @ F (e.g., as fppf sheaves) respecting Hodge cycles. We say that 4
and A, are Q-isogenous if £ (x, x’) is a trivial torsor.

THEOREM 4

Suppose that G is quasisplit at p and that (G, X) is a PEL Shimura datum of type A
or C. Then for any x € Y(IF‘I,), the abelian variety Ay is Q-isogenous to s, with
x' the reduction of a special point.

Our main result is actually more precise, as we show that one can construct spe-
cial points associated to any maximal torus 7' C I. There is also a slightly weaker
version of the theorem in the case of PEL type D (see Remark 2.3.16). In fact, we
prove an analogous theorem for (G, X)) of Hodge type conditional on a version of
Tate’s theorem for abelian varieties equipped with Hodge cycles (see below).

When G is unramified, a result closely related to the above theorem was proved
by Zink [47]. Note that in [47], Zink’s theorem says that +4 is isogenous (not just (@—
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isogenous) to the reduction of a special point; however, his definition does not require
that isogenies respect polarizations, and it is not hard to see that one can then produce
a Q-isogeny from a Q-isogeny (the corresponding torsor turns out to be trivial).

When G® satisfies the Hasse principle, one can replace Q-isogenies by Q-
isogenies in Theorem 4. For example, one has the following.

THEOREM 5

Suppose that G is quasisplit at p and that (G, X) is a PEL Shimura datum of type C
or of type A, with n odd. Then for any x € y(lﬁ‘p), Ay is Q-isogenous to Ay, with
x' the reduction of a special point, so that Conjecture 1 holds in this case.

One of the key ingredients in Honda—Tate theory is Tate’s theorem on the Tate
conjecture for morphisms between abelian varieties over finite fields (see [39]). We
prove an analogue of this result for (G, X) of Hodge type, and for automorphisms
of abelian varieties equipped with the corresponding collection of Hodge cycles. To
explain this, for each £ # p, let I; C Aut(H !(,,Qg)) be the subgroup which fixes
the Hodge cycles sq,, and commutes with the g-Frobenius for ¢ = p” and r suffi-
ciently divisible. We define a similar group /, using crystalline cohomology.

THEOREM 6
For every £ (including £ = p), the natural map

I®QQ@->]€

is an isomorphism. In particular, the (absolute) rank of 1 is equal to the rank of G.

The proof uses the finiteness of . (IF;) (when level is fixed) as in [17], as well as
a result of Noot on the independence of £ of the conjugacy class of Frobenius as an
element of G(Qy). Note that a similar finiteness condition plays a crucial role in [39].

Using this result, one knows that any maximal torus 7" C I has the same rank as
G. We show that, when Gg,, is quasisplit, any such 7' can be viewed as (transferred
to) a subgroup of G. Our results on nonemptiness of Newton strata then imply that
there is a special point X’ € Sh(G, X) with associated torus 7. If x’ is the reduction
of ¥/, then 4, and +,- should be @-isogenous. Indeed, this follows from a version
of Tate’s theorem with Hodge cycles. When x = x’, this is Theorem 6 above, but we
do not know how to prove such a theorem when x # x’, except in the PEL case, when
one can use Tate’s original result to deduce the first part of Theorem 4. Finally, the
second part is proved via an analysis of the local behavior of the torsor & (x, x').
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Notational conventions
Given a connected reductive group G over a field F, we write G%" C G for its derived
subgroup and G — G for the simply connected cover of its derived group.

Fix an algebraic closure F for F. For any torus T over F, we set

X«(T) =Hom(G,, 5,TF), X*(T) =Hom(T,G,, 7)

for the cocharacter and character groups of 7', respectively. Write D for the multiplica-
tive progroup scheme over Q, with character group Q. A homomorphism Dz — T
gives an element of X«(7T)g = X«(T) ®z Q, and vice versa. We often refer to a
homomorphism D — G (defined over an extension of F) as a cocharacter of G by
standard abuse of terminology.

For a maximal torus 7 in the reductive group G, we write W(G, T') for the abso-
lute Weyl group of G relative to 7', and we denote by 71 (G) the algebraic fundamen-
tal group of G (see [3]). It is a Gal(F / F)-module, functorial in G, and canonically
isomorphic to X«(7T)/ X«(T*¢), where T*¢ is the preimage of T in G*.

For v a place of Q, we fix an algebraic closure Q, for Q, (here, Qso = R and
Qoo = C). We also fix an algebraic closure Q, along with embeddings ¢, : Q= Qy,
for every place v. Set T', = Gal(Q,/Q,) and T = I'g = Gal(Q/Q). We will use our
chosen embeddings to view I, as a subgroup of T".

When E is a number field, the ring of integers of E is denoted by 0.

1. Nonemptiness of Newton strata

1.1. Local results

Fix a rational prime p. Let G be a connected reductive group over QQ,. Fix a maxi-
mal torus 7 C G defined over Q, and a Borel subgroup B C G@p containing Ty,
Positive roots and coroots of 7" in G will be determined by B.

1.1.1
Set

N(G) = (Xu(T)g/ W(G.T))"".

This space has a more canonical description that N (G) is the space of G(@p)-
conjugacy classes of homomorphisms ]D)@p — G@p which are defined over Q.

Let € C X.(T)g be the closed dominant Weyl chamber determined by B. Each
class v € N (G) has a unique representative v € X«(T)g N €. There is a natural
partial order <G on X«(T)r and N (G), also denoted by < if there is no danger of
confusion, determined as follows (cf. [36, Lemma 2.2, Section 2.3]). Given vy, v, €
N (G) with representatives vy, v € X4(T)g N €, we have ¥; < ¥, if and only if
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v, — V7 is a nonnegative linear combination of positive coroots. Similarly, < is defined
on X, (T)g using dominant representatives.

There is a unique map N (G) — 7;(G)'» ® Q which is functorial in G and
induces the identity map when G is a torus (see [36, Theorem 1.15]).

1.1.2

Let W = W(F,) be the ring of Witt vectors for an algebraic closure F, of F,, and
write L for its fraction field. We fix an algebraic closure L for L along with an embed-
ding @p < L.Let 0 : W — W be the unique automorphism lifting the p-power
Frobenius on F p- As in [20], we will denote by B(G) the set of o-conjugacy classes
in G(L), so that two elements by,b, € G(L) are in the same class in B(G) if and
only if there exists ¢ € G(L) with by = chyo(c)™ L.

Recall the following maps from [36, Theorem 1.15], which are functorial in G:

kG : B(G) — m1(G)r,,. Vg : B(G) - N(G).

A class [b] € B(G) is basic if vg([b]) is the class of a central cocharacter of G. We
write B(G)p C B(G) for the subset of basic classes.

The maps kg, Vg have the following properties:
(D) The diagram

KG

B(G) —— m(G)r,

0

N(G) — (m(G) @Y

commutes. Here, the vertical map on the right-hand side is induced by the
usual isomorphism averaging over each I',-orbit (cf. [36, p. 162]):

(M(G)®Q);, = (1(6)® Q).

The bottom horizontal map is uniquely characterized as a functorial map in G
that is the natural identification when G is a torus. (See [36, Theorem 1.15]
for details.)

(2)  Given b € G(L) representing a class [b] € B(G), the conjugacy class vg ([b])
is represented by a cocharacter vy, : Dy — G, that is characterized uniquely
by the following property. There exist ¢ € G(L) and an integer r € Z~¢ such
that vy, factors through a cocharacter G, 1, — Gr., c(rvp)c ™! is defined over
the fixed field of 6" on L, and

cho(b)a?(b)---o" (b)o" (c) ' = c(rvy)(p)c L.
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This implies that v () = 0'(vp) and that, for every g € G(L),

Veba(g)~! = &VbE -
(See [20, Sections 4.3, 4.4].)
3) The map
(kG.VG) : B(G) = m1(G)r, X N(G)
is injective. Furthermore, the restriction of kg to B(G); induces a bijection:
B(G)y = m(G)r,.

(See [23, Section 4.13].)

(@) When G =T is a torus, k7 is an isomorphism which can be described explic-
itly. Let E/L be a finite extension over which T is split, and let Ng,r :
T(E) — T(L) be the associated norm map. Fix a uniformizer & € E. Then
we have a commutative diagram:

v>[Ng /. (v(m))]
X«(T) B(T)

X.(T)r,

(See [20, Section 2.5].)

1.1.3

Later we will often make the following hypothesis on G and [b]:

(1)  The class [b] contains a representative b € G (L) such that the cocharacter vy
is defined over Q.

Given [b] satisfying the above condition, we fix such a representative and denote the

corresponding cocharacter by vg ([b]). Let M) C G be the centralizer of v ([b]).

This is a Q,-rational Levi subgroup of G.

Note that hypothesis 1.1.3(1) is always satisfied if G is quasisplit over Q, as
one can see from 1.1.2(2) (cf. [20, p. 219]). If [b] is basic (but G is possibly not
quasisplit), then hypothesis 1.1.3(1) is still satisfied as 1.1.2(2) shows that v is a
o-invariant central cocharacter of G for any representative b.

1.1.4
Suppose that b € G(L). Consider the group scheme J;, over Q,, that attaches to every
Qp-algebra R the group
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Jp(R)={g € G(R®q, L): gb=bo(g)}.

By construction, there is a natural map of group schemes over L: J, 1 — GL.
If ' = gho(g)~! is another representative of [b] € B(G), then conjugation by g
induces an isomorphism of Q,-groups:

int(g) : Jp — Jy.

As shown in [36, Section 1.11], J} is a reductive group over Q. A more precise
statement holds. Let M,, C G, be the centralizer of v,. By replacing b by a o-
conjugate if necessary, we can arrange that property 1.1.2(2) holds:

ba(b)a?(b)---a""L(b) = (rvp)(p), (1.1.4.1)

with v, defined over Q,r and r € Zx;. Then M,, is also defined over Q,r, and b
belongs to G(Q,). Moreover, the natural map Jp ;, — G is defined over Q,» and
identifies Jp g ,» with M,,.

Under hypothesis 1.1.3(1), the discussion in 1.1.2(2) and 1.1.3 tells us that M,,,
is a pure inner twist of M) by the Mp)-torsor (trivial by Steinberg’s theorem) of
elements of Gg,,, conjugating v, to vg ([b]).

Combining the previous two paragraphs, we find that J, is equipped with an
inner twisting Jp = Mip) over Q, (cf. also [20, Section 5.2]).

1.1.5

We return to the general setup, disregarding hypothesis 1.1.3(1) until Proposi-
tion 1.1.13 below. Let G* be the quasisplit inner form of G over Q, and let
£:G = G* be an inner twisting. Let B* C G* be a Borel subgroup over Q,, and let
T* C B* be a maximal torus over Q,. Write €* C X, (T*)g for the B*-dominant
chamber.

If the G(Q p)—conju%acy class of a cocharacter v : ]D)@p — G@p is defined over
Qjp, then so is the G*(Qp)-conjugacy class of £ o v. Thus, & induces a map N :
N (G) — N (G*) depending only on the G*(Q,)-conjugacy class of £.

Let {u} be a conjugacy class of cocharacters Gm,@,, — G@p, and let u* €
X.(T*) N €* be the dominant representative for & o {u}. Let Ty« C T, be the
stabilizer of ©*, and set

Ni* =g D oneXalT
Pl el /T,

We will write i* for the image of Nu* in N (G*).
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Let 1% be the image of {u} in 7, (G)r, - (Note that the image of u* in 71 (G™*)r,,
is equal to u* via the canonical isomorphism 7, (G)r, = m1(G™)r,.) Given [b] €
B(G), we will say that the pair ([b],{u}) is G-admissible, or simply admissible, if
two conditions hold:

(1) «e([b]) = p*, and
()  Ne(Wg([p)) = ™.

If G is quasisplit, then we may and will take G = G* and £ to be the identity

map so that N is also the identity map.

LEMMA 1.1.6
Given a conjugacy class {j1} as above, let [byas(i1)] € B(G)p denote the unique basic
class such that kG ([buas(11)]) = . Then ([boas(1)], {i1}) is admissible.

Proof
Condition 1.1.5(1) is tautological, and 1.1.5(2) follows from [36, Proposition 2.4(ii)]
and the commutativity of 1.1.2(1). O

Definition 1.1.7

Let T/ C G be a maximal torus over Q,. We will call an admissible pair ([b], {i})
T’-special if there exists a representative b’ € T'(L) (resp., u' € X«(T")) of [b] (resp.,
{u'}) such that the pair ([b]7/, ") is an admissible pair for 7’. Here we write [b']7/
for the o-conjugacy class of b’ in T'(L). We say that ([b],{u}) is special if it is
T’-special for some maximal torus T’ C G.

LEMMA 1.1.8

Suppose that ([b],{u}) is an admissible pair for G with [b] basic. Then ([b],{u})
is T’-special for any elliptic maximal torus T' C G. More precisely, for any |1’ €
Xo(T") in {p}, [boas(n')] € B(T") maps to [b] € B(G).

Proof

Let T/ C G be an elliptic maximal torus, and let u’' € X«(T’) be a representative
for {u}. As T’ is elliptic, [bpas(it’)] € B(T’) maps to a basic class [b'] € B(G)
(see [20, Proposition 5.3]). Moreover, kg ([b']) is the image in 71(G)r, of wt =

k77 ([bras(1t')]), and so must be equal to *. Hence, [b'] = [bpas(11)] = [b]. O
1.1.9
From here until Proposition 1.1.13, we are concerned with quasisplit groups. Let Hy

be an absolutely simple quasisplit adjoint group over a finite extension F/Q,. Fix a
Borel subgroup By C Hyp and a maximal torus Ty C By over F.
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Set H = Resp/q, Ho, B =Resg/q, Bo, T =Resp/q, To, and X = X« (T). The
last is a free Z-module with an action of I',, and the choice of By equips it with a
I"p-invariant positive chamber € C Xg. As above, we have a Galois averaging map
N : € — € with image in €17,

LEMMA 1.1.10

Let F'/Qp be the unramified extension with [F': Qp] = [F : Qp). Then there is an

absolutely simple quasisplit adjoint group Hy over F’' equipped with a Borel sub-

group B and a maximal torus Ty C By with the following properties.

(1) Let (H',B'.T'") = Resgrq, (Hy. By, Tg). Then there is an isomorphism of
triples:

(H,B,T)®q, Qy — (H',B',T") ®g, Q.

(2)  Let© C X, be the positive chamber of X" = X«(T") determined by B', and
let N' : €' — €' be the Galois averaging map. Then the isomorphism in (1)
can be chosen such that the induced isomorphism €' = € carries the endo-
morphism N’ to N.

Proof
We begin by explicating the averaging map N. Let D be the Dynkin diagram of H.
It is a disjoint union

where Dy is the Dynkin diagram of Hy. The action of I';, permutes the connected
components of this diagram in the usual way, and for each o : F — Q, the stabilizer
I'c CI'p of o (i.e., the pointwise stabilizer of o (F')) acts on D¢ via a homomorphism

pg - T'g = Aut(Dy).

Fix an embedding g : F — Q,, and let € T',, be such that 7 0 69 = &. Then p, is
equal to the composition
ytlyt Pog
Iy ———— I'g, — Aut(Dy).

The simple coroots in X are in canonical bijection with pairs (o, dy), where o :
F—->Q » and do € Dy is a vertex. Write oV (0, do) for the simple coroot associated
with such a pair.

The I ,-orbit of a¥ (0, dp) consists of simple coroots «¥ (0, d(;), where dj € Do
is in the ['y-orbit of v, and 0’ : F — @p is arbitrary. Therefore, if dy 1,...,do, €
Dy comprise the [';-orbit of dy, then we have
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1

NC(V(O', d()) = W
CNp

> Yo' doy).
o/ F—Qp
1<i<r
Fix an embedding oy : F' — @p- We now claim that we can find a quasisplit
group H{ over F’ with a Borel subgroup By C H| and a maximal torus 75 C B
with the following properties.
. There is an isomorphism

(Hg, By, T) ® .65 Qp — (Ho, Bo, To) ®F .0 Qp-

. If Dy is the Dynkin diagram of Hj, identified with Dy via the above isomor-
phism, then the induced action of FG(/) on Dy has the same orbits as those of
the action of I'g,.

The claim implies the lemma by choosing a bijection between Hom(F,Q p) and

Hom(F’,Q,) carrying oy to o). Indeed, (1) follows from the first part of the claim,

and (2) from the second; since N’ and N are linear, it suffices to compare them on

the set of simple coroots.

Let us prove the claim. Suppose first that the image of I'y, in Aut(Dy) is cyclic.
Consider amap I'gy — Aut(Dg) which has the same image as I'y, and factors through
the Galois group of an unramified extension of F’. Then we can take H to be the
quasisplit outer form of Hy over F’ associated to this map.

The only remaining case is when Dg is of type Dy, and I'y, surjects onto
Aut(Dy). In this case, the subgroup of index 2 still acts transitively on each orbit of
Aut(Dyg) in Dy, and we choose FU(/) — Aut(Dy) with image this index-2 subgroup,
which factors through the Galois group of an unramified extension of F’, and H| the
corresponding quasisplit outer form of Hy. The proof of the claim is complete.  [J

1.1.11

Assume that G is quasisplit over Q,. Let B be a Borel subgroup of G over Q,, and
let T C B be a maximal torus over Q,. Let M C G be a standard Levi subgroup.
Recall that this means that M is the centralizer of a split torus 77 C 7. Note that we
may regard X (ZM)g” as a subset of N (M).

LEMMA 1.1.12
Let 1, upr € X«(T') be cocharacters having the same image in w1(G), and let [bpr] €
B(M)y be the unique basic class with ky ([bpy]) = /L?M. Then

(1) v ([bar]) is equal to the image of/,La,I in

(11 (M) ® Q)" ~ (Xu(Zy) ® Q)"
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2) (s, {}) is G-admissible if and only if v ([bum]) <G QA

Proof

The first claim follows from the commutativity of 1.1.2(1). By definition, the G-
admissibility of ([bar],{u}) is equivalent to asking that vys([bps]) <G ft, and that
iy, maps to ut in 7 (G)r,. However, since wup and p have the same image in
71(G), the second condition is automatic. O

PROPOSITION 1.1.13

Suppose that G is quasisplit over Qp. Let 1 € X«(T') be minuscule, and let [bp] €
B(M)p be such that ([bpy],{}) is G-admissible. Then there exists w € W(G,T)
such that ([bpr], {w - u}) is M -admissible.

Proof

First, suppose that G is unramified. We fix a reductive model of G over Z,, again
denoted by G, such that 7' extends to a maximal torus 7 C G over W. Then M
extends to a Levi subgroup M C G over W.

By a theorem of Wintenberger [43], the admissibility of ([bas], {¢}) implies that
there exists g € G(L) such that g='hyr0(g) belongs to G(W)u(p)G(W). By the
Iwasawa decomposition, after modifying g by an element of G(W), we can assume
that g = nm, where m € M(L) and n € N(L), where N C G is the unipotent radical
of the (positive) parabolic subgroup of G with Levi subgroup M. Then an argument
with the Satake transform (see [28, Lemma 5.2]) shows that m~'hs0(m) belongs
to M(W)u' (p)M(W), where ' € X, (T) is a cocharacter of M which is G(L)-
conjugate to . More precisely, the Satake transform is used to show that ' <g u
(in the notation of Section 1.1.1), and the minuscule nature of u allows us to con-
clude that u is conjugate to . (See the proofs of [24, Theorems 1.1, 4.1] and the
proof of [17, Proposition 2.2.2] for alternative arguments to show the conjugacy.)
Write i’ = w - u with w € W(G, T'). By a result of Rapoport and Richartz [36, The-
orem 4.2], ([bpr], {w - n}) is M -admissible.

Now, let G be an arbitrary quasisplit group. We can assume that G is adjoint.
Indeed, let M C G denote the image of M, and let [b‘}&] € B(M);, denote the image
of [by]. If w € W(G, T) is such that ([b';‘fl], {w-p*Y) is M -admissible, then we claim
that ([bps], {w - u}) is M -admissible. To see this, note that the difference xps ([bpr]) —
(w - u)* is contained in the intersection of the kernels of the maps

i (M)r, — 71 (M)r, and 71 (M)r, — 11(G)r,,.

The kernel of the first map is the image of X«(Zg)r, — 71(M)r,. The composite
X«(Zg)r, = m1(G)r, — X« (Gab)rp has torsion kernel, so the intersection must be
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a torsion group. However, by [4, Corollary 2.5.12(2)], the kernel of the second map is
torsion-free. Hence the intersection is trivial.

Next, by considering the simple factors of G separately, we can assume that G is
also simple. Therefore, G = Resr/q,Go, where F/Q, is a finite extension, and Go
is an absolutely simple quasisplit adjoint group over F'. We may also assume that

T=ReSF/QpT0, B=RCSF/QPBO,

where Ty C Gy (resp., By C Gy) is a maximal torus (resp., Borel subgroup).
By Lemma 1.1.10, we can find an unramified group G’, a Borel subgroup B’ C
G’, and a maximal torus 7/ C B’, as well as an isomorphism

£:(G.B.T)®Q, > (G.B.T)®Q,

such that the induced isomorphism of positive chambers 7 : € = €’ commutes with
Galois averaging maps.

Recall that M is the centralizer of T7, which is a split torus in 7. Set u' = ()
and 7| = &(Ty). Since n commutes with Galois averaging maps, the elements in
X« (Ty) are equal to their own Galois averages, and hence are I',-invariant. Hence
the subtorus 7] C G’ is defined over Q, and is again split. Let M’ C G’ be the
centralizer of T7. Then £ carries M onto M’.

Let upr € X«(T) be a cocharacter such that /L?M =k ([bar]), and such that s
and . have the same image in 771 (G), and set i, = n(iar). Let [b},] € B(M') be
the unique basic class with ,u,;ﬁ[ = km/([b),]). Then, using Lemma 1.1.12, one sees
that ([b},].{u'}) is G’-admissible. Hence, by what we saw in the unramified case,
there exists w € W(G', T") = W(G, T) such that ([b},].{w - u'}) is M’-admissible.
By Lemma 1.1.6, this is equivalent to M;@ = (w-u)*in m; (M")r,,. This implies that
pc?u — (w- )t in m1(M)r, is torsion, since its image under the averaging map in
1.1.2(1) is zero. Since this difference maps to zero in 71 (G)r P it follows, as above,
that /L?W = (w - u)*, and hence, applying Lemma 1.1.6 again, that ([bps], {w - u}) is
M -admissible. O

Remark 1.1.14

The previous proposition confirms that [37, Lemma 8.2(ii)] holds generally for qua-
sisplit groups as expected. (See their Remark 8.3. In fact they do not assume that [bps]
is basic in B(M ), but one can reduce to the basic case by [20, Proposition 6.2].) We
further extend the proposition to non-quasisplit groups below.

COROLLARY 1.1.15
Let G be an arbitrary connected reductive group over Qp, with a Qp-rational Levi
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subgroup M. Let i : G,, — M be a minuscule cocharacter, and let [by] € B(M),
be such that ([bar],{u}) is G-admissible. Then there exists w € W(G,M) :=
Ng(M)/M such that ([bpr],{w - u}) is M -admissible.

The assumptions of the corollary imply hypothesis 1.1.3(1) for [bas] (as an ele-
ment of B(M) or B(G)). In other words, the corollary is vacuous unless hypothesis
1.1.3(1) is satisfied.

Proof

We reduce the proof to the quasisplit case. We will freely use the notation from
1.1.5.Solet&: G = G* denote an inner twisting. Let P be a Q-rational parabolic
subgroup with M as a Levi factor. Then the G*(Q p)-conjugacy class of £(P) is
defined over Q,. Since G* is quasisplit, there exists g € G*(Q,) such that P* :=
g&(P)g™1 is Q,-rational. We replace & by gég™! so that £(P) = P*. Put M* :=
E(M)sothat &|py - M = M* is an inner twisting. We use £ to identify W (G, M) ~
W(G*,M*):= Ngx(M*)/M*. We may assume that B* C P* and T* C M *.

We have a chain of isomorphisms

P

K *
B(M)y & 1y (M)r, =m(M*)r, = B(M*),

where the second map is a canonical isomorphism (cf. [36, Section 1.13]). Write
[bar+] € B(M™), for the image of [bys]. Let u* be the (B* N M *)-dominant rep-
resentative in X (T*) of the M*(Q,)-conjugacy class of £|p o ;. We claim that
([bar=], {u*}) is G*-admissible. Once this is shown, Proposition 1.1.13 implies that
there exists w* € W(G*, M*) such that ([bpr=], {w* - u*}) is M *-admissible. Writ-
ing w € W(G, M) for the image of w*, the M -admissibility of ([bar], {w-u}) follows
from this.

It remains to prove the claim, that is, to verify that k= ([bar+]) = (1*)* and that
v ([bm+]) <g* iu*. We will deduce this from the assumption that ([bas], {it}) is
G-admissible via compatibility of various maps. The former condition follows from
the construction of [hpr+] and w*, using the functoriality of the Kottwitz map and the
fact that the canonical isomorphisms 71(M) = 7y (M™*) and 71(G) = 71(G*) are
compatible with the Levi embeddings M C G and M * C G*. For the latter condition,
since we know that Ng (Vg ([bar])) <G+ i1*, it suffices to check that

N (\_)G ([bM])) = Vg* ([bM*])

By [23, Section 4.4], the Newton maps Ng|,, o Var : B(M)p — N (M™) and p+ :
B(M™*)p — N(M?™) factor through the natural inclusion Xy (Apr+)g C N (M*),
where Apr+ is the maximal split torus in the center of M*. Also, the images
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Nely Om ([bar])) and Vag«([bar=]) in X« (Apr+)q are determined by «ar([bar]) and
kpr+([bar+]) as elements of 7wy (M)r, = w1 (M *)r,, (via the canonical isomorphism
Xu(Apm+)g = m(M*)r, ® Q). Since kp([bm]) = kar+([bar+]) by construction,
we obtain that Ng|,, (Var ([bm])) = Vm+ ([bar+]). This implies that N (Vg ([bm])) =
vg*([bar+]) since the maps N (M) — N(G) and N(M*) — N(G*) induced
by Levi embeddings are compatible with M|,,, Mg, and likewise for the maps
B(M)— B(G) and B(M*) — B(G™). The proof is complete. O

1.1.16
Let b € G(L). We continue to allow G to be non-quasisplit but assume hypothesis
1.1.3(1) on G and [b]. Recall that the group J, defined in 1.1.4 is equipped with
an inner twisting Jp = Mp). In particular, v ([b]) induces a central cocharacter
vp,j : D — Jp defined over Q.

If 7' C Jp is a maximal torus over Qp, then a transfer of T” to M[p) is an embed-
ding T’ < Mp) over Q, which is My (®) p)-conjugate to the composite

T <> Jp = Mp.

A transfer of 7’ to M[p) always exists either if G is quasisplit (see [27, Lemma 2.1])
or if T’ is elliptic (see [21, Section 10]).

COROLLARY 1.1.17
Assume hypothesis 1.1.3(1). Let ([b],{u}) be an admissible pair for G with {1}
minuscule. Let T' C Jp, be a maximal torus. Assume that its transfer j : T' — M
exists. Then ([b],{u}) is j(T')-special.

In particular, there exists pip: € X« (T") such that j oy lies in the G -conjugacy
class {j1}, and such that we have

r
Vp. g = N/’LT’ (S] X*(T/)Qp

Proof
Note that J, and M) are both subgroups of G over L. After replacing b by a o-
conjugate satisfying (1.1.4.1), we may assume that Jp ; is identified with M,, and
that the inner twisting Jp =M (5] is given by composing this identification with con-
jugation by an element 2 € G(L) that carries vy to vg([b]). Then in particular we
have vg ([b]) = int(h)(vp,s) as G-valued cocharacters.

Now, view T" as a subtorus of G, via j, let T} C T’ be the maximal split subtorus,
and let M C G be the centralizer of T}, so that 7’ is an elliptic maximal torus of M.
Let 7, D T be a maximal split torus in G containing 7. After conjugating our fixed
torus 7 C G, we may assume that 7' contains 75, so that M D T is a standard Levi
subgroup.
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The scheme of elements of M) ; which conjugate the inclusion jo : 7" —

Jp = M) into j is a T'-torsor over L. By Steinberg’s theorem, this torsor is triv-
ial. Hence, there exists m € Mp)(L) such that m jom™! = j. Now a simple com-
putation, using the definition of Jj, shows that by = mh - b - o(mh)~! commutes
with j(T'(Qp)). Since T1(Q)) is Zariski-dense in 77, this shows that bss belongs to
M(L). Moreover, since vg ([b]) is defined over Q,, by definition, it factors through
T1, so vp,, = vg([b]) is central in M, and by is in fact basic in M.

By Lemma 1.1.13, there exists w € W(G,T) such that ([bps],{w - u}) is M-
admissible. (Here we may take u € X«(7T') to be the dominant representative of {{}.)
It follows by Lemma 1.1.8 that ([bas], {w - u}) is T’-special. In particular, there exists
wr € X«(T’) in {u} such that vp,, = Nu7. Hence, if we think of Nurs as a Jp-
valued cocharacter via the natural inclusion 7’ C Jp, then vy y = Njug/. ]

1.2. Global results

LEMMA 1.2.1
Let T be a torus over Q. For any prime p, the restriction map

ker(H'(Q,T) > H'(Q,.T)) > H' (R, T)

is surjective.

Proof
For each place v of Q, there is a canonical isomorphism (see [21, (1.1.1)])

Ju: HY(Qy, T) = Xo (T2,

Write j, for the composition of this map with the natural projection X *(T)tli’lr)s —
X«(T)P"™. We then have an exact sequence (see [21, Proposition 2.6])
HYQ.T) — @ H (@0, T) =2 Xo(T)E"

So, given a class as € H(R,T), it suffices to find £ # p and a class oy €
H'(Qg, T) such that jy(ctg) = — joo (eo). Indeed, once we have done this, we can
take the element () € @y H ' (Qy, T), with o, = 0 for v # oo, £. This will be the
image of an element @« € H'(Q, T) mapping to oo, € H'(R,T) and to the trivial
elementin H'(Q,, T).

The remainder of the proof now proceeds as in [26, Lemme 7.16]. We choose a
finite Galois extension E C Q over which T splits. Then complex conjugation on C
induces an automorphism oo, of E. We now choose £ # p such that £ is unramified
over £ and such that, for some place v|{ of E, the Frobenius o, at v is conjugate
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to 0. We can further assume that v is induced from the embedding £ — Q. It
g € I' conjugates 0, into 0, then the automorphism of X, (7'), given by g, induces
an isomorphism X«(7)r, = x «(T)r,, which is compatible with projections onto
Xx(T)r. We use this isomorphism to identify X, (T)f with X*(T)tli’zs. Now we
may take otg = _jg_l(joo (¢00))- U

LEMMA 1.2.2

Let G be a connected reductive group over Q. Suppose that we are given a finite
set of places S of Q and, for each v € S, a maximal torus T, C Gg,. Then there
exists a maximal torus T C G such that, for all v € S, the inclusion Ty, C Ggq, is
G(Qy)-conjugate to T, C G, .

Proof
This is [13, Lemma 5.5.3] (cf. [3, Lemma 5.6.3]). O

1.2.3
Let (G, X) be a Shimura datum. Given x € X, we have the associated homomorphism
of R-groups:

hx S= RCS(C/]R Gm,R — GR.

We also have the associated (minuscule) cocharacter

z>(z,1) ~ hx
Ux G — Gyc X Gy — S¢ — Ge.

The G(R)-conjugacy class of &y, and hence the G(C)-conjugacy class {{tx }oo
of uy, is independent of the choice of x. Let £ C C be the reflex field for (G, X).
This is the field of definition of {u x } o0, and is a finite extension of Q.

The embedding i : Q < C allows us to view E C C as a subfield of Q, so that
we may regard {ix }oo as a conjugacy class {ix } of cocharacters of G.

1.24
We will use the embedding ¢, to view {@x} as a conjugacy class {ux}, of cochar-
acters of G@p.

PROPOSITION 1.2.5

Let [b] € B(Gq,) be a class such that ([b],{,u}l}p) is admissible. Assume that
hypothesis 1.1.3(1) holds for [b]. Then there exist a maximal torus T C G and an
element x € X with hy factoring through Ty (in which case /,L;I € X«(T)) such that
[Bras (1) € B(To,,) maps 10 [b] € B(Ga,).
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Proof
This proof is directly inspired by that of [28, Lemma 5.12].

By Corollary 1.1.17, there exist a maximal torus 7, C Gg,, (chosen to be elliptic
if Gg,, is not quasisplit so that the transfer to M[] exists) and a representative i, €
X« (Tp) of {ix}p such that [bbas(ul_,l)] € B(Tp) maps to [b] € B(Gg,,).

Choose y € X, and let T, C Gr be a maximal torus such that /1, factors through
Too. By Lemma 1.2.2, we can find a maximal torus 7 C G such that T, (resp., Tkr)
is G(Qp)-conjugate to T, (resp., G(R)-conjugate to Too).

Choose g, € G(Q,) such that g,T,g,' =Tg,.and let ur : G, 5 — T be the
unique cocharacter, which, after base change along ¢ ,, is identified with int(g,) (i ).
Then [byas(n7")] maps to [b].

Choose goo € G(R) such that gooToogod = Tr. After base change along (oo, the
cocharacter jr is G(C)-conjugate to (Lo = int(geo)(ity). Therefore, there exists an
element w € W(G, T)(C) such that (o) = UT.

We can identify W(G, T') with Ngsc(T5¢)/ T*. Let n € Ngs(T*¢)(C) be any ele-
ment mapping to w. Since T°¢ is anisotropic over R, the element w acts on T5¢ by
an R-automorphism. Hence nii—! € T°¢(C). The cocycle carrying complex conju-
gation to nii~! determines a class aoo € H!' (R, T%¢) depending only on @ (not on
the choice of 7). By Lemma 1.2.1, we can find a class « € H!(Q, T*°) mapping to
too € HY(R, T*°), as well as to the trivial class in H'(Q,, T*).

By construction, the image of oo in H!(R, G¥) is trivial. Therefore, by the
Hasse principle and Kneser’s vanishing theorem for simply connected groups, the
image of o in H'(Q, G%) is trivial. This means that we can find g € G**(Q) such
that, for any o € Gal(Q/Q), go(g)~" € T%(Q), and such that « is represented by the
T5¢(Q)-valued cocycle o > go(g)~".

In particular, if we view g as an element of G*(C) via (, then there exists
t € T¢(C) such that gg~! = tnin~ 17 1.

Now, /teo and int(g~!)(ur) are conjugate under 4 = g~ 'tn € G(R), and the
maximal torus int(g_l)(T@) C Gg is defined over Q. Replacing 7" with this torus,
and pur with int(g 1) (7)), we see that 7 is of the form ., for x € X, and that the
pair (T, ity ) satisfies the conclusions of the proposition. ([

1.3. Shimura varieties of Hodge type

One may view Proposition 1.2.5 as showing the nonemptiness of Newton strata in the
special fiber of the Shimura variety associated with (G, X). We will now make this
assertion precise in the case where (G, X)) is of Hodge type, where the moduli spaces
of abelian varieties give us a natural way to construct integral models.
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1.3.1

Recall that, given a symplectic space (V,¥) over Q, we can attach to it the Siegel
Shimura datum (§y, #y ), where §y = GSp(V, ¥) is the group of symplectic simili-
tudes and #y is the union of the Siegel half-spaces associated with (V, ).

Let (G, X) be a Shimura datum of Hodge type. This means that there exists a
faithful symplectic representation (V, ¥) of G over Q such that the associated map of
Q-groups G — §y extends to an embedding of Shimura data (G, X) — (§y, Hy).
We denote by E = E(G, X) the reflex field of (G, X).

1.3.2
Fix a Zp)-lattice V() C V on which v is Zp)-valued. Set V, = Z, ® V(,), and let
Kp CE(Qp) (resp., K C G(Q))) be the stabilizer of V), C Vg, .

Given a sufficiently small compact open subgroup K? C G(AI}), we can find a
neat compact open subgroup K? C ﬁV(Alf’) such that, with K = K,K” and K =
K p K P, the map of Shimura varieties

Shg := Shg (G, X) — Shyx :=Shx (§y, Hy) Q E

is a closed immersion (see [16, Lemma 2.1.2]).

The variety Shy admits an integral model §x over Z,), which is an open and
closed subscheme of the moduli scheme parameterizing polarized abelian schemes
(A, L) up to prime-to- p isogeny, and equipped with additional level structures away
from p. Let + denote the universal abelian scheme over & up to prime-to- p isogeny.

The set of compact open subgroups K, C G(Q,) for which one can choose V
and V(,) so that this construction applies, includes the stabilizers of points x in the
building B(G,Q,), and is closed under finite intersections. For the first point, note
that a result of Landvogt [25] implies that for any faithful representation V' of G,
there is an injective map of buildings i : B(G,Qp) — B(GL(V),Q,). If (V. ¥) isa
symplectic representation of G, and L,..., L, C V are the lattices corresponding
to the vertices in the facet which is the closure of i (x), then K, is the stabilizer of
Li1®---® Ly, in (V™,¢"™). The closure under intersections follows in the same way,
by taking direct sums of lattices.

1.3.3
We will now use the notation from 1.1.2. Given a point so € 8 (F p), we obtain the
associated Dieudonné F-crystal D(sAy,) over W. Set Dy, = D(sy,)q. This is an
F-isocrystal over L = W [p~!], so that it is equipped with a o-semilinear bijection
¢ Dgy — Dy,. )

Given a finite extension L’ C L of L and a point s € 8 (L’) specializing to so,
we obtain two canonical comparison isomorphisms:
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(1) The Berthelot—Ogus isomorphism:
Hip(As/L') = L' @1 Dy,.
2) The p-adic comparison isomorphism:
Beiis ®q, Hélt ('A’s,Z’ Qp) = Beis ®1 Dy, .

The two isomorphisms are compatible with the de Rham comparison isomor-
phism:

Ber ®q, Hy(A, 1.Qp) = Bar @1 Hyp (As/L"). (1.3.3.3)

1.34

Let V 4r be the (cohomological) de Rham realization of +. It is a vector bundle over
Shy with integrable connection, and its fiber at each point s € Shx () (k a field of
characteristic 0) is the de Rham cohomology H j (As/k).

Let V7 (+A) be the prime-to- p Tate module of +4. This is a smooth A?—sheaf over
Shg. Write V? for its dual; then the fiber of V' # at any point s € Shy (k), with «
algebraically closed, is identified with the étale cohomology group H élt (As, A’]’,).

Finally, write 7, (+A) for the p-adic Tate module of +, and set V,(+4) = Q, ®
Tp(A). Write V , for the dual (V,(+4))". We will set

V(A)=VP(A) X Vy(A) and  Vg=VPxV,.

Fix tensors {sy} C V® such that G is their pointwise stabilizer in GL(V). Here
and below, the superscript ® means the direct sum of V& @ V*®" for all m,n > 0.
Then there exist global sections

(Swar} C H2(Shg, V),  {sae) C H(Shg,VE)

with the following properties:
(1)  Given an algebraically closed field « of characteristic O and a point s €
Shg (k), there exists an isomorphism

VAf — Hélt('AAWAf) =Ves,

determined up to translation by G(A ¢), carrying {sq} t0 {Saé;s}-

2) For each «, let sq4,, be the projection of s4 ¢ onto V. Then, given a finite
extension L’/L and a point s € Shg (L), the isomorphism (1.3.3.3) carries
{1 ® Sa,p,s} to {] ® sot,dR,s}-

The construction of these tensors is described in [16, Section 2.2]. The key point
is a theorem of Deligne showing that all Hodge cycles on abelian varieties over C are
absolutely Hodge. Property (1) now holds by construction. Property (2) is a theorem
of Blasius and Wintenberger [2].
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1.3.5
Fix a place v|p of E and an embedding k(v) < F . We denote by

<yK’ = <y]((Ga‘Xv) — ﬁE,(v) ®Z(p) /SJC

the normalization of the Zariski closure of Shg in Og ) ® 8x.
We shall use that .k has the following extension property.

LEMMA 1.3.6

Let S be the spectrum of a discrete valuation ring R of mixed characteristic (0, p),
with generic point 1, and a map s : n — k. Then the following are equivalent:

6) s extends to S — k.

(i) Ay has good reduction.

(iii) Ay has potentially good reduction.

Proof

By construction, (i) is equivalent to s extending to a map S — 8. Thus (i) and (ii)
are equivalent and imply (iii). If 4, has potentially good reduction, then there is a
finite flat R’/ R such that s induces a map Spec R’ — 8, and this necessarily factors
through S as this is true on the generic fiber. O

PROPOSITION 1.3.7

For every point s¢ € YK,k(v)(IF‘p), there exists a canonical collection of -invariant
1ensors {Sa.cris,so ) C Dgg characterized by the following property: for any lift s €
k(L) of so, the isomorphism 1.3.3(2) carries {Sq,p,s} 10 {Sacris,s0 }-

Proof

The proof of this can essentially be found in [16, Proposition 2.3.5]; however, since
it is not given there in the generality we require, we review the key steps here. Write
L' = E,L C L;here, we are embedding E, < L via the fixed embedding Q, < L.
Let U be the formal scheme over W prorepresenting the deformation functor for the
p-divisible group s, [p°°]: this is formally smooth over W. Let U be the formal
scheme obtained by completing Yk ®¢ . (,, O’ along so.

We have a finite map of normal formal schemes over 07/, U—-U L. Taking
their rigid analytic fibers (in the sense of Berthelot; cf. [5, Section 7.3]), we obtain a
map U — ﬂ“{‘, of smooth, irreducible rigid analytic spaces over L’. This map is a
closed immersion, since the map Shxg — Shx is.

Since ﬁL/ is formally smooth, ‘ljdL“, is a rigid analytic open ball over L', and,
for any two points s,s’ € ﬁan(l:), p-adic parallel transport using the Gauss—Manin
connection on ¥ gr gives us a canonical isomorphism
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Hi (s /L) = HL (Ag/L). (1.3.7.1)

Suppose now that s, s’ lie in gen (L). Since the sections Sq,dr Over Shg are horizontal
for the connection, and since U is smooth and irreducible over L’ , for each «, this
isomorphism carries Sq r,s tO Sq,dR,s’ -

Any s € U™(L) is defined over a finite extension L”/L’. Since the tensors
{Sq.p.s} are Gal(L/L")-invariant, by construction, the isomorphism 1.3.3(2) car-
ries {Sq,p,s} tO @-invariant tensors {Sq,cris,s} C D;e(;. To prove the proposition, it is
now enough to show that if s’ is a different lift, giving rise to @-invariant tensors
{Sa,cris,s’} C Dg, then, for each o, we have Sy cris,s’ = Sa,cris,s -

By the compatibility of the isomorphisms 1.3.3(2) and 1.3.3(1), and by 1.3.4(2),
the preimage of 1 ® Sq cris,s (1€SP., | ® Sqcris,s7) in H i (A5 /L)® (resp.,in H (Ay/L)®)
under isomorphism 1.3.3(1) is exactly Sq,dr,s (T€SP., Sa,dr,s”)- Therefore, we only need
to show that the composition

Hig (As/L) = L@ Dygy = Hig (A;/L)
is the parallel transport isomorphism (1.3.7.1). This follows from [, Section 2.9]. [

1.3.8
It follows from Proposition 1.3.7 and propertyl.3.4(1) that there exists an isomor-
phism L ®q V 5 Dy, carrying {1 ® Sq} t0 {Sa,cris,so }- Indeed, the scheme of such
isomorphisms is a G-torsor by 1.3.4(1), and a G-torsor over L is trivial by Stein-
berg’s theorem. Under this isomorphism, the map ¢ : Dy, — Dy, pulls back to an
automorphism of L ® V' of the form o ® by, with by, € G(L) well-determined up to
o-conjugacy. Therefore, so determines a canonical class [bs,] € B(Gg,).

Assume that ¢, : Q <> Q,, has been chosen such that the associated embedding
E < Q, induces the place v.

LEMMA 1.3.9
The pair ([bsy). {n%"}p) is admissible.

Proof
This is a consequence of a result of Wintenberger (cf. corollary to [42, Proposi-
tion 4.5.3]). O

PROPOSITION 1.3.10
Assume hypothesis 1.1.3(1) for Gg,, and [b]. Then the pair ([b], {u}l }p) is admissible
if and only if there exists sg € Sk (]1_71,) such that [b] = [bs,].
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Proof
The “if” part is Lemma 1.3.9

Suppose that [b] € B(Gq,) with ([b], {,u}l} p) admissible. Then Proposi-
tion 1.2.5 gives us a maximal torus 7 C G and an x € X such that A, factors
through T, and such that [bp,s ()] € B(Ty,) maps to [b] € B(Ggq,)-

Now, consider the O-dimensional Shimura variety Shg = Shxn7(a f)(T, hy).
This is a finite étale scheme over the reflex field E7 = E(T, hy). Fix a place v'|p of
Er lying above v. The normalization of Spec O, () in Shg gives us a canonical
normal integral model #y for Shy over g, (). Since all CM abelian varieties
over number fields have everywhere potentially good reduction, the map Shy —
ET ®E Shg extends to a map of Og,. (v)-schemes S0 — Og, vy ®oy () Lk bY
Lemma 1.3.6.

Therefore, to prove the theorem, we may replace (G, [b]. {i¥"'}) with the triple
(T, [boas (13 H)], 13 1), and reduce to the case where G = T is a torus. Choose any
point 5o € YO(IF‘I,). By Lemma 1.3.9, the pair ([b,], u;") is admissible for Ty, . But
then we must have [by,] = [b]. O

1.3.11
Given a scheme S in characteristic p, let F — Isoc(S) be the category of F-isocrystals
over S (cf. [36, Section 3]). This is the isogeny category obtained by localizing the
category of F-crystals over S. It is a Q,-linear (nonneutral) Tannakian category,
whose identity object 1 corresponds to the structure sheaf on the crystalline site of S
over Zp.

Recall that for G a reductive group over Q,, an F-isocrystal with G-structure
over S (see [36, Definition 3.3]) is an exact faithful tensor functor

Repgy, G — F —Isoc(S).

Here Repg, G denotes the category of finite-dimensional QQ ,-representations of G .

The crystalline realization of the universal abelian scheme 4 over .k gives us
a canonical object O in F —Isoc(Fk Qo I_Fp). For each point 59 € .k (IF‘I,), the
restriction of D over sy is realized by the F-isocrystal Dy, .

The proof of the following proposition is rather technical. Since it is used only
in Theorem 1.3.14 and Corollary 1.3.16 below, and the rest of the paper does not
depend on it, we relegate it to an appendix, where we prove a stronger statement (see
Corollary A.7 below).

PROPOSITION 1.3.12
For each o, there exists a morphism

Sq:1—> D®
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whose restriction to any point so € Lk (Fp) is Sq,cris,s0-

COROLLARY 1.3.13
The association V +— D extends to an F -isocrystal with G-structure over Sk @ F .

Proof

Let S be a connected component of .. We shall again write D for D|s. Let Cp
be the smallest full Tannakian subcategory of F — Isoc(S) containing . It suffices
to construct, for each S, an exact faithful tensor functor w : Repr G — Cgp which
sends V to D.

First consider the associated L-linear category Cgp 1 = Cp ® L, which is
obtained from Cgp by tensoring the Hom sets by L, and adjoining the direct sum-
mands corresponding to idempotents in the endomorphism algebra of each object
(see [7, Section 2.1]). Choose sg9 € S (I_Fp). Pulling isocrystals back to s¢ induces
an L-fiber functor wy, : Cp,; — F—1Isoc(sg) which takes O to Dy,, and Cop 1 is
equivalent to the category Repy, Gy,, where Gy, = Autyy, iy Dy, the group of
automorphisms of Dy, respecting the tensors Sq cris, s -

Let P(so) = Isom; (VL, Ds,), the scheme of L-linear maps from Vg to Dy,
taking Sy tO Sg.cris,0- Then P(sp) is a G-torsor. (It is necessarily a trivial G-torsor
by Steinberg’s theorem.) If W' is in Repg G, then WP = G\(W x P(s0)) is an
L-representation of G,. We consider the composite functor

Wew P
wy, :Rep@p G — Rep;Gs,~Cop,L.

It remains to show that the above functor factors through Cg. For this, note that
any object of Repg G is the kernel of a map e : W — W, where W is a direct
sum of objects of the form Vy, , := V& @ V*®" Now wr(Vin.n) = D" @ D*®"
lies in Cg. Since e can be considered as a morphism 1 — W* ® W, we see that by
Proposition 1.3.12, wy,(e) lies in Cg, and so does its kernel. Similarly, if e : W; — W,
is any map in Repg , G, then e may be regarded as a map 1 — W ® Wa, so wp (e)
is in Cp by Proposition 1.3.12. O

THEOREM 1.3.14
(1)  Ifso € Sk (F,), then

{56 € yK(I_Fp) 1 VG ([bs()]) = DG([bSO])} - yK(I—Fp)

is a Zariski-closed subset.
(2)  Let B(Gq,, {M}l}p) C B(Gq,) be the subset consisting of those classes [b]
such that ([b], {M}l}p) is admissible. Then, for every [b] € B(GQP,{M}l}p)
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satisfying hypothesis (1), the subset
Sty = {50 € Zk (Fp) : [bso] = b1}

is nonempty and locally closed in .k (F p) for the Zariski topology.
(3)  Let Sy be the closure of Sy in Sk (Fp); then we have an inclusion of
Zariski-closed subsets:

E[b] C |_| NTAE
vG (['D=vg ([b])

Proof

Assertions (1) and (3) follow from Corollary 1.3.13 and the argument of [36, Theo-
rem 3.6]. One reduces to the case G = GL,, using [36, Lemma 2.2(iv)], and applies
Grothendieck’s semicontinuity theorem for Newton polygons of F-isocrystals (see
[15, Theorem 2.3.1]). Assertion (2) follows from (1) and Proposition 1.3.10. O

As we noted in 1.1.3, the second part of the theorem implies that the stratum Sy
is nonempty if either [b] is basic or Gq,, is quasisplit.

1.3.15

As in 1.1.5, we fix an inner twisting § : Gg, — G™ over @p, a Borel B* C G*,
and a maximal torus 7% C B* over Q,. Let u be the B*-dominant representative
of & o {ix}p. There is a unique [b,] € B(Gg,.{n"'}) with Ne(Vg([bu]) = !
(which, of course, does not depend on the choice of B* or T*). The corresponding
subset Spp, ] C Sk (Fp) is the p-ordinary stratum. By Proposition 1.3.10 and Theo-
rem 1.3.14, this stratum is a nonempty Zariski-open subspace.

COROLLARY 1.3.16
Suppose that the special fiber Sk k() is locally integral. Then Sip, is dense in

K k(v)-

Proof
If the special fiber is locally integral, it follows from [30, Corollary 4.1.11] that every
connected component of .k has irreducible special fiber. This implies that Sp,,
is dense in any connected component of .k k(v it intersects, and since Spp,,] is
nonempty, it is dense in some connected component.

To see that it is dense in all connected components, suppose that 5,5’ € %% (Q)
with reductions g, s € yK(F p). If there is an isogeny #A; — Ay taking sq¢,s to
Sa,é,s'» then there is an induced isogeny sz, — ‘A’Sé taking Sq cris,so O Socris,sy» SO
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that if so € S[p,,], then 53 € Sp,,1. Since the group G(A y) acts transitively on the set
of connected components of .“k i (v), this implies that Spp ] is dense in Sk k). U

Remark 1.3.17

In the situation where p > 2 and K, is hyperspecial, so that it is of the form G () (Zp)

for a reductive model G,y of G over Zp), the main theorem of [16] shows that

K k@) is smooth. So the corollary applies to give the density of the p-ordinary

locus in this situation. This special case is already known due to Wortmann [44].
Using the results of the first author and Pappas, we can prove the following.

COROLLARY 1.3.18

Suppose that p > 2, that G splits over a tamely ramified extension, and that K is
a special parahoric. Then the embedding G < §y can be chosen such that Syp,,] is
dense in Lk k(v)-

Proof
This follows from Corollary 1.3.16 and [18, Corollary 0.3]. U

2. CM lifts and independence of ¢

2.1. Tate’s theorem with additional structures

2.1.1
We keep the notation introduced in Section 1.3, so that (G, X)) is a Shimura datum of
Hodge type, equipped with an embedding of Shimura data ¢ : (G, X) — (§y, Ky ),
and we have a finite map . — OE (yy ® 8, which is an embedding on generic
fibers.

We set

8](,, = l(ln &Kpgcp, pr = 1(21 prKp.

KrC8y (A‘;.) K»r cG(A’})

The transition maps in the inverse systems are finite étale, and so the limits are
schemes over Z(p) (resp., OF (v)). By construction, we have a map

lp: Ik, > OE @) ®8x,.

Since G(A;) acts naturally on the right on 8%, and the generic fiber Shg, =
E Q6L 1) Zk ,» compatibly with the map ¢, this action extends to . .

The scheme 8y, is open and closed in the moduli space of triples (4,4,¢),
where (A, A) is a polarized abelian scheme up to prime-to- p isogeny, and
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e AL @V =>VP(4)

is an isomorphism of smooth A;—sheaves carrying the symplectic form i to an A?’x -

multiple of the Weil pairing TP (A) on the prime-to- p Tate module

VP(A) = (lim A[n]) ® Q
pin

2.1.2
For each «, let s, 4» be the projection of s, onto HO(Shg,,, (V?(4))®). Since
Kk, is normal, Sa,h? extends to a section over .k .

Over .Yk . the map ¢, induces an isomorphism

n:A?@ViI?P(A) 2.1.2.1)

carrying Sq to s, A for each «. In particular, for any so € “k, (F ), the stabilizer of

the collection {s,, A7 s o) in GL(VP(,A)SO)) is canonically identified with G(A ).

2.1.3
Let Autg(ss,) be the algebraic group over Q attached to the group of units in
the endomorphism algebra Endg(+s,) := Q ® End(sg,). We have the subgroup
Gm C Autg(As,) which acts on Ay, by scalar multiplication. Let Autg ,, (s,) C
Autg(ss,) denote the subgroup which preserves the polarization on Ay, up to a
scalar. There is a map ¢ : Autg , (s,) = G which takes an automorphism to its
action on the polarization. The kernel of ¢ and Autg , (As,) /G, are compact over
R. In particular, any closed subgroup of Autg, ., (s, ) is a reductive group over Q.
Now, Autg,(s,) acts naturally on yr (sy) and Ds0 Let I, P c Autg(As,) be
the closed subgroup that fixes the tensors {s,, AZs ot C 24 (:A;SO)® and let Iy, C 1%

be the largest closed subgroup that also fixes the tensors {Sq cris,so ) C DS0 Since
I, C 1) C G(A ), we have Iy, C I{ C Auty, , (4s,). In particular, I5, and Ig)
are reductlve groups, and their quotients by the subgroup of scalars G, are compact
over R.

Recall that Ay, is an abelian variety up to prime-to-p isogeny (so the notion of
automorphism is understood accordingly). Set

Lo (Zp)) = 150 (Qp) N Aut(As).

We can view this as a subgroup of G(A ) via the embeddings

ISO(Z(I,))CISO(A )CIP(A )cG(A ).
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LEMMA 2.1.4
Suppose that g1, g» € G(A ) are such that

S0-81=150"82 Epr(E_?p)-

Then g1 and g, have the same image in I, (Z(p))\G(A ).

Proof
The proof is essentially contained in [17, Proposition 2.1.3].

The image of so in 8x, (F p) corresponds to the triple (s, As,. €s,) OVer ]P_‘
under the moduli interpretation of 8x,. For g € G(A ), the image of so - g in
$x, (F p) corresponds to the triple (Ay,, As,, €5, © &). Therefore, if 5o - g1 = 5o - g2,
then in particular, we have an isomorphism of triples

(AS()’ ASO, Esp © gl) — (AS()a AS()ygs() ng).

This corresponds to an automorphism ¢ € Aut(sg,) (necessarily unique) such
that

VP($) 05y 081 =855 082

and ¢ carries {S.cris.so-g1} C DS ¢, 10 {Sa.cris.soga} C DE ., Note that here we are
using Proposition 1.3.7.

The first condition implies that 14 (¢) fixes {sg, AP o) Since under the natural
identifications Dy, = Dy,.¢; induced by the 1dent1ﬁcat10ns Asy = hgyg;» fOr i =
1,2, the tensors {Sqcris,so ) are carried to {Sq,cris,sq-g; J» and ¢ preserves the {Sq,cris, SO}.
Hence, ¢ must belong to

L5y (Zpy) = 15, (Q) N Aut(Ay,). (]

2.1.5
Choose a neat compact open K? C G(A ). Set K = K, K?, and suppose that the

image of so in . (F p) is defined over IF,.

Then, for any m € Z>1, let y,, 5, denote the geometric, g™ -power Frobenius of
s, Then yp s, fixes the absolute Hodge cycle components {s,, ADs o> and it fixes
the crystalline components {sq cris,s, } as these are g-invariant. Hence Ym.so € 15, (Q).
In particular, ¥y, s, induces a semisimple automorphism y;, 5, of VI’(ASO) which
preserves {s,, ADs »J» and thus lies in G(A ). Set

_ D
IA;/:‘jijO = CentGA,/,‘ ()/m,so).

7 . .
If m | m’, then yﬁ,’sO = (y,ﬁ’sO)m /m_and so we have a natural inclusion
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Set

Then, for m sufficiently divisible, the Zariski closure of the subgroup of I, generated
by Vim,s, 15 a torus, and we have IA?,
of q.

For each € # p, write I, g, for the projection of / AP s, ONto Gq,. For m suffi-

so =1 AP 500 which is independent of the choice

ciently divisible, this is the centralizer in Gg, of the projection y,, ¢ 5, of Vi 50+

For m sufficiently divisible, the Zariski closure in G AP of the subgroup generated
by y,ﬁ,m is a torus. Therefore, Iy, is a Levi subgroup of Gg, (over Qy) and, in
particular, connected reductive.

The action of Iy, on V7 (+y,) gives us a canonical map of A? -groups

AI; [039] 150 — ]A?,S()'

For each £ # p, this gives us a map iy : Q¢ ® Iy, — Iy ,, Which is injective.

PROPOSITION 2.1.6
Let £ # p be a prime such that G, is split and such that the characteristic polyno-
mial of Ym .5, is split over Qq. Then iy is an isomorphism.

Proof
By Lemma 2.1.4, we have surjective maps

G(AD) = 50~ G(AD) — Ly (Zp)\G(AD).

where the first map is the orbit map g + s¢ - g, and the composite is the natural
projection.

For any neat compact open K? C G(A’}) with £-primary factor Ky C G(Qy),
this implies that the image in .k (F p) of so - Iy 5,(Qg) surjects onto the quotient

Lso (Qe)\ 11,50 (Qe) /(K¢ N 11,50(Qg)). Since Iy5,(Q¢) commutes with yy, g5, for
m sufficiently divisible, this image is in fact contained in .#x (F;»). In particular,

Lso (Qe)\ 11,50 (Qe) /(K¢ N 14,50 (Qy)) is finite.
The proposition is now deduced just as in [17, Corollary 2.1.7]. O

2.1.7
We will prove that iy is an isomorphism for every ¢, including £ = p. This will be
done using a result of Noot. We first explain the definition of the I, 5, and iy when

{=p.
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For any m € Zs, the crystalline realization of sy, is defined over Qum =
W (F4m)[p~1]; therefore, the isocrystal Dy, has a natural descent to an F-isocrystal
Dy, over Qgm, and the g-invariant tensors {Sqcris,so) belong to D;,e;’so. Write
q = p", and let Y cris.so = @' : Dinsg — Dm,s, be the crystalline realization of
Ym.so- 1t is a p-equivariant isomorphism fixing the tensors {Sq,cris,so } -

As in Section 1.3.8, for m sufficiently divisible (which we now assume), we can

find an isomorphism
qu RV i Dm,so (2.1.7.1)

carrying, for each o, 1 ® Sq t0 Sq cris,s0 - Let 85, € G(Qgm) be such that ¢ : Dy, 50 —
D, pulls back to the automorphism 8,,(0 ® 1) of Qg ® V' under this isomor-
phism. Then, by construction, the class [bs,] € B(Gg,) associated with sq is exactly
the o-conjugacy class of dy,.

Similarly, the automorphism y; cris,so Of Dm,s, pulls back to an element
Ym,p,so € G(Qgm), whose conjugacy class under l_iI})lm G(Qgm) is independent of
all choices.

We have the relation

Ym,p,s0 = 8s00(5so) g2 (8s0)0rm_1 (850) € G(@q’")- (2.1.7.2)

Define an algebraic group /, m, s, OVer Qp as follows. For any Q,-algebra R, we
have

I s, (R) = {g € G(Qgm ®q, R): g8s) = 85,0(8)}

Then Qgm ®q,, Im.s,, is naturally identified with the centralizer in Gg, of
Vm,p,so- SINCE V. p 5o 1S semisimple (which follows from semisimplicity of yy, s,),
I s, is a reductive group over Q,, and is connected for m sufficiently divisible. Set

Ipso =M Ly g5,

m

which is equal to 1, s, for m sufficiently divisible. We have a canonical inclusion
ip:lsy ® Qp = Ip,s;

and an inclusion 1, 5, < G defined over Q m for m sufficiently divisible.
Let Js,, be the Qp-group defined in 1.1.4. For any m, we have the obvious inclu-
sion Iy 5, C Js, , and in particular [ 5, C Js,, .

2.1.8
Given a connected reductive group H over a field F of characteristic 0, write
Conj(H ) for the scheme over F parameterizing semisimple conjugacy classes in H.
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More precisely, the conjugation action of H on itself induces an action on the Hopf
algebra O'pr, and Conj(H ) = Spec(0g)H .

Following Noot [32, Section 1.5], we will also define a certain quotient Conj’ (H )
of Conj(H) as follows. Let F be an algebraic closure of F. Then Hgfr is an almost
direct product of simple reductive factors H; with i in some indexing set /.

Write Ip C I for the subset of indices i such that H; >~ SO(2n;) for some n; > 4.
For each i € Ip, set H/ = O(2n;). Since Ip C I is Gal(F / F)-stable, the finite F-
group scheme

out(H)z = [ Hi/H:

ielp

descends to a finite group scheme Out'(H) over F, which acts canonically on
Conj(H ). We will write Conj’(H ) for the quotient of Conj(H ) for this action.

We call an element y € H(F) neat if y is semisimple and the Zariski closure of
(x), the group of points generated by x, is connected (i.e., a torus).

COROLLARY 2.1.9
For every £, the map

i0:Qp® Iy — Iy g,

is an isomorphism.

Proof

Choose £o # p a prime satisfying the conditions of Proposition 2.1.6 so that iy, is
an isomorphism. Let m be sufficiently divisible such that y, s, € Autg (s, ) is neat,
Iy s, is the centralizer of yp, ¢ g, in Gg, if £ # p (resp., in G m if £ = p),and Iy, 4,
is the centralizer of y, ¢4, in Gg, -

By [32, Théoremes 1.8, 4.2], the images of the elements y,, ¢ 5, and Vi, ¢, .50
in Conj’(G) lie in Conj'(G)(Q), and are equal. In particular, I, 5, and Iy, s, have
the same dimension. Thus Q¢ ® I, and [, 5, have the same dimension by Proposi-
tion 2.1.6, and since Iy g, is connected iy is an isomorphism. Ul

2.2. Independence of { and conjugacy classes

2.2.1
Let / be a prime (possibly equal to p). An element o € Q is called an -Weil number
of weight w € Z if « is an /-unit and all its complex embeddings have absolute value
I%/2_(This [ should not be conflated with the prime £ as in independence of £.)

Let H be an algebraic group over Q. We call an element y € H(Q) an [-Weil
point if for some faithful representation W of H (defined over any field of charac-
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teristic 0), the eigenvalues of y on W are [-Weil numbers. If W’ is any other repre-
sentation of H, then W’ is isomorphic to a representation in the Tannakian category
generated by W. Hence the eigenvalues of y acting on W' are also /-Weil numbers,
and the definition does not depend on W.

We call y € H(Q) a Weil point if it is an /-Weil point for some /.

Keeping the notation introduced in Section 2.1, our first goal in this subsection is
to prove the following analogue of the result of Noot on independence of Frobenius
elements, used above.

PROPOSITION 2.2.2
Let y € I5,(Q) be a neat Weil point. For each {, the image of i¢(y) in Conj' (G) lies
in Conj’ (G)(Q) and does not depend on .

2.2.3

To prepare for the proof of Proposition 2.2.2, we first show two lemmas. Recall that
a Q-torus T satisfies the Serre condition if its maximal R-split subtorus 77 C T is
Q-split. For an algebraic Q-group H, and F a number field, an element y € H(F)
is called an [-unit if for every place vt/ of F the group y generated is bounded in
H(Fy).

LEMMA 2.2.4

Let T be a Q-torus which satisfies the Serre condition. An element y € T(Q) is an
[-Weil point if and only if it is an [-unit. In particular, an element y € I, (Q) is an
[-Weil point if and only if it is an | -unit.

Proof

An element y € T(Q) is an /-Weil point if and only if y(y) is an /-Weil number for
any y € X*(T), as the direct sum of a basis of X*(7) is a faithful representation of
T. In particular, if y is an [-Weil point, then, for every y € X*(T'), the subgroup of
Qx(y))* generated by x(y) is v-adically bounded for every place v { I of Q(x(y)).
Hence the subgroup generated by y is bounded in T(Q,) for every place v 1! of Q,
and y is an /-unit in 7(Q).

Conversely, if y is an [-unit, let 7, C T be the maximal subtorus such that 75 (R)
is compact. Then 7> is defined over Q. If we think of y as defined over C, then yy
is trivial on T3, and factors through 7'/ T». Hence, y j(y) € Q* is an /-unit and equal
to /™ for some integer w. This shows that y(y) has absolute value /*/2 under all
complex embeddings.

The final statement follows from the fact that every y € I, (Q) is semisimple,
and so is contained in some maximal torus 7" C I,. Any such maximal torus satisfies
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the Serre condition. In fact, the maximal R-split torus of T is either trivial, or the
subtorus G,, C Iy, consisting of scalars, as in Section 2.1.3. O

LEMMA 2.2.5

Let y € I5,(Q) be an [-Weil point. Then for £ # p the set of eigenvalues of iz(y)
acting on Vg, does not depend on £, and for some w € Z, these eigenvalues are all
[-Weil numbers of weight w.

Proof
The independence of £ is standard and follows from the Lefschetz trace formula. Now,
recall from Section 2.1.3 that we have the homomorphism ¢ : /5, — G,,, whose kernel
Il Slo is compact over R. For the second claim, it suffices to replace y by some power,
when we can write y = I - y!, where y! € I3 (Q) is an /-Weil point, and I’ denotes
scalar multiplication by /* on s, . It suffices to show that for any iy, the eigenvalues
of ig(y') acting on Vi, have all their complex absolute values equal to 1.

LetT C1I SIO be a maximal torus containing y . Fix an isomorphism C ~ Q. For
each eigenspace of T acting on V¢, the corresponding y € X *(T) satisfies yy =1,
as T is compact over R. Thus y(y)ji(y!) =1,as y! € T(Q). O

2.2.6
The proof of Proposition 2.2.2 will follow Noot’s arguments with a modification at
one point where we will need to use Corollary 2.1.9. We begin by recalling some
definitions from [32, 2.3].

Let H be an absolutely almost simple group of classical type over a field of
characteristic 0, and let W be a finite-dimensional H -representation. We say that W
is admissible if it is a multiple of one of the following:

. The direct sum of the standard representation and its dual if H is of type A.
. The spin representation if H is of type B.

. The standard representation if H is of type C.

. The standard representation if H is of type D.

. The direct sum of the two half-spin representations if H is of type D.

In the case of type D, in the fourth (resp., fifth) case we say that (H, W) is of
type D™ (resp., D).
Now recall our embedding of Shimura data ¢ : (G, X) — (§y, #y ). We say that
L is strictly accommodating if:
. For some totally real field K, GYr = Res k/0 G* with G® absolutely almost
simple, and the G%"-representation V' has the form Resg /o V* for an admis-
sible G*-representation V'*.
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. If (G, V%) is of type DR, then for any character y : Zg — Gy, over Q, the
x-part of V' is an admissible representation of a factor of G(%e‘.

. For any proper, nonzero, G-stable subspace V' C V, if G’ denotes the image
of G in Aut V', then we require that (G’, V') not satisfy the first two conditions
above.

Finally, we say that ¢ is accommodating if there is a finite collection of accommo-
dating embeddings of Shimura data ¢; : (G, X;) <= (§v,, H#v;), j =1,...,s, and
an isomorphism of symplectic spaces l_I_S,-=1 V; >~V which induces a commutative
diagram

(G.X) (Gv. Hy)

| |

1_[;=1(ij Xj) — (Hi':] ng ’ Hj‘:l %V,-)

such that the map on the left induces an isomorphism G 9" ~ Hj’:l G}j-er.

Note that Noot’s definitions are formulated for the Mumford—Tate group of an
abelian variety, rather than for Shimura data. The embedding ¢ is accommodating in
our sense if and only if for some (or equivalently any) y € Shg (G, X)(C) such that
the corresponding abelian variety +, has Mumford-Tate group G, +,, is accommo-
dating in the sense of Noot.

2.2.7. Proof of Proposition 2.2.2
Suppose first that ¢ : (G, X) < (§y, Hy) is accommodating. In this case, the proof
is the same as [32, Théoreme 2.4]. For the reader’s convenience, we indicate the
argument.

Let V® Q = @!_, W be a decomposition of the G-representation V' into its
isotypic components over Q. The subalgebra Q" C Endg V5, which acts by scalars

on each factor W;, descends to a product of fields L = ]_[f-;l L; C Endg V', which
corresponds to a decomposition V = ]_[f-;l Vi.

Let P; ¢ denote the characteristic polynomial of y acting on V; 5,. One first
shows that P; ,, ; does not depend on £ (see the proof of [31, Lemma 6.13]). Note that
since y is an /-Weil point for some /, the eigenvalues of P; , ¢ are /-Weil numbers.
Since y is neat, no two of these roots differ by a non-trivial root of 1; this is the
condition Noot calls faiblement net. Then applying [32, Lemmes 2.5, 2.6], one finds
that since P;, ¢ does not depend on £, the element iy(y) € Conj' (G)(Qy) is also
independent of £, and lies in Conj'(G)(Q).

To reduce to the accommodating case, we again follow Noot’s argument in [32,
Section 3], though we formulate it in terms of Shimura data rather than Mumford—
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Tate groups. Lift 5o to a point s € Shg (G, X)(Q p)- The statement of the proposition
depends only on the abelian variety 4, equipped with the Hodge cycles correspond-
ing to {s}, and not on level structures. Thus, fixing an isomorphism Qp ~ C, we
may assume that s is the image of a point of the form (%o, 1) € X x G(A ).

The results of Deligne [8, Proposition 2.3.10] (see also [31, Theorem 2.12]) imply
that there exists an accommodating embedding (" : (G', X') < (§y~, Hy+) together
with a map G'®" — G which induces an isomorphism (G'?, X'2) ~ (G, x3d)
of adjoint Shimura data. Here V' denotes a Q-vector space equipped with a symplec-
tic form v/, By the real approximation theorem applied to G, after conjugating the
map G'%" — G by an element of G*(Q), we may assume that the image of X’ in
X2 contains hg. Identifying G’ 2 and G, let G” be the connected component of the
identity of G’ Xga G, and let X” be a G”(R)-orbit of (hg,1¢) € X Xy« X'. Finally,
weset V' =V @& V', where V" is equipped with the symplectic form ¢ = ¥ @ v/,
and consider the embedding

L// : (G”,X”) — (gV”7 J€V”)

induced by ¢ and ¢’.
Applying our previous constructions to each of ¢" and (", we obtain maps between
integral models

Ik(G, X))« Fxn(G",X") > Sk (G, X'),

where K" and K’ are suitable level structures. Since hg € X", s lifts to a point s” €
Fxn(G", X")(Qp). As in [32, p. 68], using the Néron-Ogg—Shafarevich criterion
one sees that Ay has good reduction. So by Lemma 1.3.6, s” specializes to s; €
Sk (G", X")(F ) lifting so. Let sy € k/(G', X')(F ;) be the image of s{. By the
construction of ¢" and ¢”, there are maps of abelian varieties

g, < ‘A’s(’)’ — As(/)

corresponding to the projections of V" onto V and V'.

Note that the action of G” on V" respects the decomposition V' & V’. Thus, the
projections V" — V and V" — V' are G”-invariant elements of End(V"), and we
may include them in the set of Hodge cycles used to define / sy This shows that the
surjections of G” onto G and G’ induce the maps

Iy < Isg — Isé.
By Corollary 2.1.9, these maps are surjective and induce the isomorphisms

Iso/ZG :Is/o’/ZG” ~ 156/ZG/'
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Let T C Iy, be a maximal torus containing y, and let 7" C I sy be the preimage
of T. For some positive integer n, there exists a map 7 — T” whose composite with
the projection T” — T is multiplication by n. Let y” be the image of y in T”(Q) via
the map T — T”. This is an [-unit in 7”(Q), and hence a neat Weil point in I sy (@Q
by Lemma 2.2.4. Tt suffices to show Proposition 2.2.2 for y”, as the result then follows
for y”, and y by [32, Proposition 3.2].

By Lemma 2.2.8 below, there is a map over Q-groups /7 — G” ® which agrees
with the map induced by iy for any £. Replacing y” by a power as above, we may
assume that the image of y”, y” % € G"*®(Q), lifts to z € Zg»(Q). Write y” =y z.
Note that y”® is an /-Weil point as is z, for example, using Lemma 2.2.4. Since z
and y commute, y; is again an /-Weil point. It suffices to show that the image of
i¢(yy) in Conj'(G"%") C Conj'(G") is a Q-point which is independent of £. Since
G4 ~ G’ this is a consequence of the corresponding statement for the image of

yy in [ e which is the accommodating case considered above. O
LEMMA 2.2.8

There is a map of Q-groups I, — G which agrees with the map induced by iy for
every L.

Proof

Recall that for £ # p, we have the composite
Iso ® Qp ~ Il,so — GQZ — G(a@bZ

Similarly, we have a map Is,,q,m — Géqu defined for m sufficiently divisible. We
have to show that all these maps are induced by a map of Q-groups I, — G™.

Consider a special point on Shg (G, X), corresponding to a pair (7, h1), where
T C G is amaximal torus and /i1 : Resc/g G, — T is acocharacter. Let G' = G x T,
equipped with the symplectic representation V' =V @ V. Let X’ = X x {hr}. Then
we have (G', X') < (8y-, #Hy). Applying our constructions, we obtain a map of
integral models k' (G', X') = .Yk (G, X). As in the proof of Proposition 2.2.2, after
possibly conjugating the map 7 — G by a point of G*(Q), we may assume that s
lifts to 5§, € Sk (G', X")(F ).

By construction, ‘A’Sé is isogenous to g, X A7, where 7 is the reduction of
a CM abelian variety with T -action. The action of s, on g, X s preserves this
decomposition. This follows, for example, from the fact that the action of G(Qy)
preserves the corresponding decomposition on £-adic Tate modules for any £ # p.
Restricting the action of [ s to A7 induces a map of Q-groups [ s = T, and we
consider the composite / s T — G®. By Corollary 2.1.9, I s I, s surjective,
so the map [ s = G™ factors through I so» as this is true over Q for every £ # p.
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This gives us the map I, — G™. One checks easily, using the construction, that it
has the required property. O

2.2.9

In the remainder of this subsection, we will apply Proposition 2.2.2 to show a kind
of prerequisite for the existence of special points which reduce into a given isogeny
class. This asserts that maximal tori in /g, transfer to G when G is quasisplit at p.
We begin with two lemmas.

LEMMA 2.2.10

Let T be a torus over Q satisfying the Serre condition. If | is a prime such that Ty, is
a split torus, then the set of |-Weil points in T (Q) forms a Zariski-dense subgroup of
T. Moreover, the set of neat [-Weil points contains a Zariski-dense subgroup of T .

Proof

It is clear that the /-Weil points form a subgroup, and we denote by 7’ C T its Zariski
closure. Then T/ T is again a torus which is split at /. Suppose that 7/ T’ is nontriv-
ial. Then there is a nontrivial y € X*(T/T’) C X*(T).

Let y; € T(Qy) be a point such that x(y;) € Q) has positive valuation, and let
y € T(Ay) be the point with component y; at / and trivial components away from
[. For any compact open subgroup K7 C T'(A r) the quotient T(Q)\T'(As)/Kr is
finite. Hence there exist x € T(Q) and a positive integer m with x = y™ mod Kr.
Then x is an /-Weil point by Lemma 2.2.4, and x(x) € Q/ has positive valuation,
so x ¢ T'(Q), which is a contradiction. It follows that 7’ = T, and the subgroup of
[-Weil points is dense in 7.

For the second claim, let k be a number field which splits 7', and let n denote the
number of roots of unity in k. Suppose that x € T'(Q) is an [-Weil point, let $ ¢ T
be the Zariski closure of (x), and let S C S be the connected component of 1. Then
n-S/S = {0}, so x" is a neat [-Weil point. As multiplication by n induces an isogeny
on T, this implies that the set of neat /-Weil points contains a Zariski-dense subgroup
of T. O

LEMMA 2.2.11

Let S be an irreducible scheme of finite type over a field k, and let T' C S(k) be
a Zariski-dense subset. Let W C Autg S be a finite subgroup, and let o € Auty S.
Suppose that for every y € T, there exists w € W such that w(y) = o(y). Theno = w
for some w e W.
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Proof

We are grateful to the referee for supplying the following proof, which is simpler and
more general than our original one. For w € W, let 'y, = {y € T : w(y) = o(y)}.
Then I' = ([, e w and Uwew Dy = = S, where T, and T denote the closures
of I'y, and T" in §, respectively. Since S is irreducible, this implies that I',, is dense
in S for some wg € W, and it follows that 0 = wy. O

2.2.12

Suppose that C and H are reductive algebraic groups over a field F' of characteris-
tic 0. We denote by Aut’(H) the preimage of Out’(H) in the group scheme of auto-
morphisms Aut H. (Recall Out’'(H) from 2.1.8.) Consider two maps i1,i : C — H
defined over some extensions Fj, F, respectively, of F. We say that i; and i, are
conjugate (resp., conjugate by an element of Aut'(H)) if there exists an extension
F3/F containing F; and F, as well as g € H(F3) (resp., g € Aut'(H)(F3)) such
that i, = gi; g~ ! (resp., i = g(i1) := g oiy).

PROPOSITION 2.2.13

The maps iy : Iy, — G, defined over Qq if £ # p and over Qgm for m sufficiently
divisible if { = p, are all conjugate by elements of Aut'(G). In particular, if G* has
no factors of type D, then the iy are all conjugate.

Proof
We consider all maps of groups over an algebraically closed field k containing all Q,
for £ # p and Qg m for all m. Let us write I = I, for simplicity.

Suppose that 71,7, C G are maximal tori over k, and suppose that y € T7(k) N
T, (k). Then there exists g € G (k) conjugating 7; into 75 and fixing y. Indeed, let M
be the connected component of the identity in the centralizer of y in G. Then M is
a Levi subgroup of G, and Ty, T, C M are maximal tori, so conjugate in M. Now if
y1 € Ti(k), yo € To(k), and if o (y1) = y, for some o € Aut’(G)(k), then there exists
o’ € Aut’'(G)(k) taking y; to y, and T} to T5. To see this, apply the previous remark
to 0 (y1) = y2 € 6(T1) N T,. We will use this observation below.

Choose m sufficiently divisible such that y,, g, is neat. By the Weil conjecture for
abelian varieties, y,, 5, € (Q) is a Weil point. Hence, by Proposition 2.2.2 (or Noot’s
original result), there is a Yo € G (k) such that for each £, iy (Y s,) difters from yo by
an element of Aut’(G)(k). Let Iy C G denote the centralizer of yg. After modifying
ig by an element of Aut’(G), we obtain maps j; : I — I taking yp, s, to yo. Choose
T C I and Ty C Iy maximal tori. By the observation above, applied with [ in place
of G, after conjugating each j, by an element of /o(k) we may also assume that j
maps T to Tp.
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Now fix primes £, £, and set 0 = jy o j[l. Let y € T(Q) be a Weil point. By
Proposition 2.2.2, there exists an element g € Aut’(G)(k) which conjugates j;(y) to
Jer(y). By the observation above (applied with 71 = T, = Tj), we may assume that g
induces an automorphism of 7j. Note that the group of automorphisms of 7 induced
by an element of Aut’(G) is finite. By Lemma 2.2.10, the set of neat Weil points in
T(Q) is Zariski-dense. It follows by Lemma 2.2.11 that o |7 is induced by a point
g € Aut'(G) (k).

By construction, o fixes Yy, so g does also, and thus g induces an automorphism
of Iy. As o and g are automorphisms of /o which agree on 7', they differ by conju-
gation by an element of ¢ € T'(k). Replacing g by g¢, we may assume that g induces
o on Iy. This implies that iy and iy are conjugate by an element of Aut’(G)(k). O

COROLLARY 2.2.14

Let T C Iy, be a maximal torus, and suppose that G is quasisplit at p and has no
factors of type D. Then there is an embedding of Q-groups i’ : T < G which is
conjugate to each of the embeddings iy|r. In particular, for each m > 0, there is an
element Y 0.5, € G(Q) conjugate to Yy, ¢ s, in G(Qy) for each ¢.

Proof
Let G* be the quasisplit inner form of G, and choose an inner twisting G = G* over
Q. Leti KT *: T < G* be the embedding over Q; induced by i¢|7 and the chosen inner
twisting. By Proposition 2.2.13, there exists an embedding i 7 : T < G* defined over
Q and conjugate to each of the i [ *.For £ # p, iy is defined over Qy so the conjugacy
class of i (T * is invariant by Gal(Qg/Qy). Hence, Iriy Chebotarev’s density theorem,
the stabilizer of the conjugacy class of i 7 in Gal(Q/Q) is an open subgroup which
meets every conjugacy class in Gal(Q/Q). This implies that the conjugacy class of
iT is invariant by Gal(Q/Q). It follows by [19, Corollary 2.2] that i T is conjugate to
an embedding i T* : T <> G* defined over Q. We view T as a subgroup of G* via
it

Now T transfers to G at every prime £ # p, oo as iy is defined over Q. It trans-
fers to G at p, since G is quasisplit at p, and it transfers to G at infinity as the image
of T in G is anisotropic at infinity. Hence T transfers to G by [28, Lemma 5.6].

For the final statement, writing i T . T < G for the transfer, we take Ym,0,50 =
i T(Vm,so)- g

2.3. CM lifts and the conjugacy class of Frobenius

2.3.1
We again return to the notation and assumptions of Section 2.1. Let 59, 5 € Zk,, (F ).
Then sg, s6 are defined over F,; for some ¢, and we use the notation of Section 2.1.7.
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Write Homg, (A, As(/)) for the scheme over Q that assigns to any (Q-algebra
R the group R ® Hom(sAy,, Asé). (Here the Hom-spaces are taken in the prime-to-
p isogeny categories.) For any QQ-algebra R, an R-isogeny from sy, to <A>s6 is an
element

f € Homg (s Ay )(R)
such that there exists
f/ € MQ(AS(/)’ ‘Aso)(R)

with f'o f € M@(Aso)(R)'

Let Isog (s, A s(’)) be the functor on Q-algebras that assigns to any (Q-algebra
R the set of R-isogenies from sy, to Ay . Note that this functor is either empty or
representable by a torsor over Q under Autg (Ay,).

232

For any prime £ # p, denote by Vy(+s,) be the £-adic Tate module of Ay, and let
Isogz (s, AS{)) be the Qg-scheme that assigns to any (Qg-algebra R the set of R-
linear isomorphisms

R ®q, Vi(s,) = R ®q, Vil(hg)

thatcarry 1 ® Y ¢,50 01 ® Ym,t.s, for all m sufficiently divisible.
For any £ # p, cohomological realization gives us a natural map of Qg-schemes:

i¢(50.50) : Q¢ ® Isog(s,, Ay ) — Isog, (A, g ).

Similarly, let Isog(Dy,. Dsg)) be the Q,-scheme that assigns to every (Q,-algebra R

the set of 1 ® p-equivariant, R ® L-linear isomorphisms R ®q, D s =R ®q, Ds
that carry Dm,s(/) to Dy, s, for m sufficiently large. We have a natural map of Q-
schemes:

ip(SOJ(/)) : Qp ® IS&(AS()v As(’J) g IS&(DSO, Ds(’))-

By Tate’s theorem on endomorphisms of abelian varieties and its crystalline analogue,
i¢(S0,Sg) is an isomorphism for all £.

2.3.3

For £ # p, let Py(so,s,) C Isog, (s, ;) (resp., Pp(s0,54) C Isog(Dy,, Dy;)) be
the closed subscheme parameterizing isomorphisms that carry, for each o, 1 ® 5¢,¢,,
0 1 ® Sq,¢,s5 (resp., 1 @ S cris,s), 10 1 @ Sacris,so)- Let P(s0,5;) C Isog(shs,, Ay ) be
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the largest closed subscheme (defined over Q) that maps into Py(so. sg) for every £,
including £ = p. Note that P(so, sy) is either empty or an I, -torsor.
We make the following conjecture.

CONJECTURE 2.3.4
For every £, the map

P(s0.50) ® Q¢ — Py(s0,55)

induced by iy is an isomorphism.
When s;, = 50 this is simply Corollary 2.1.9.

LEMMA 2.3.5
The schemes P (sq,s,) and Py(so.Sy) depend only on so and s;, and not on the choice
of the collection of Hodge cycles {sq}. In particular, the truth of Conjecture 2.3.4
depends only on so, sy and not on {s}.

If (G, X) is of PEL type A or C, then Conjecture 2.3.4 holds.

Proof

From the definitions, it suffices to prove the first statement for Py (so, s;) for each £.
If {zg} is another collection of Hodge cycles defining G, then it suffices to consider
the case {sq} C {tg}. If Py 1(s0,5;) is the analogue of Py(so,s;) defined using {tg},
then Py 1(s0, ) C Pg(so,s,) and it suffices to show that if one scheme is nonempty,
then so is the other, as then each is an /;-torsor. However, each scheme is nonempty
if and only if y,,, ,,¢ and Vim,s},t are conjugate in G(Qy) (even for £ = p).

Now suppose that (G, X) is of PEL type A or C. In this case, G is the group
preserving a collection of endomorphisms {fg} together with the polarization ¥ up
to a scalar. (Note that { does not have weight 0, and so does not quite fit into our
formalism involving {sq }.) Then i induces a pairing

Vi(Asy) X Vi(Asy) = Qe(1),

well defined up to a nonzero scalar, and similarly for Dy, ,. We refer to these pairings
as polarizations.

Define Pj(so,sy) to be the subscheme of Isog(As,. Asé) which preserves the
{tg} and polarizations up to a scalar. For £ # p, let Pg 1(so,5y) C Is&e (s, ,AS(/))
(resp., Pp,1(s0,50) C Isog(Dy,, Ds(/))) be the closed subscheme parameterizing iso-
morphisms that carry, for each 8, 1 @ tg 05, to 1 ® 18,0, (resp., 1 ® 18 cris,s, 1O
1 ® 18, cris,s0) and which preserve polarizations up to a scalar.

By Tate’s theorem, for each £ the map
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P1(s0.50) @ Q¢ -t Py 1 (50, 59)

is an isomorphism. An argument as in the proof of the first part of the lemma shows
that this map can be identified with the map of Conjecture 2.3.4. O

2.3.6
In the PEL case, when G is unramified at p, the above result is due to Kottwitz (see
[22, Lemmas 17.1, 17.2] and their proofs).

The restriction that (G, X) be of type 4 or C in the lemma above is in some sense
a question of definitions. When (G, X)) is of PEL type D, one cannot actually define
G C GSp(V) using endomorphisms and polarizations. Instead, there is a collection
{tg} C V® of a polarization and endomorphisms which define a group G’ C GSp(V)
whose connected component is G (see [22, p. 393]). An analogue of the last statement
of the lemma then holds for G’.

We will say that so and s{ are Q-isogenous if the space P(so,s})) of 2.3.3 is
nonempty. We will say that they are isogenous if P(so.s()(Q) is nonempty. If 59, s, €
7K, (F ), then we will say that 53 and s are Q-isogenous (resp., isogenous) if this
condition holds when so, s, are viewed as [F; points for some ¢ = p”.

2.3.7

Let so € Yk, (I_Fp). Suppose that T C I, is a maximal torus. Let /& : Resc/r G, —

Gr be an R-morphism. Let Shg,.  (h) be the pro-Shimura variety associated with

(T,{h}) and K1,, = K, N T(Q,). An isogeny CM lift (resp., a Q-isogeny CM lift)

of so with respect to T will consist of a triple (/, x, s;), where

. j : T — G is an embedding defined over QQ such that for each £, j is conjugate
over Qy to the embedding

i( . T@Z — Ig,sO —> GQE’

. x € X is a point with %, factoring through j(7x), and
. 56 € 7k, (Fp) is a point admitting a lift to Shg; , (hx)
such that s;, is isogenous (resp., Q-isogenous) to so.
Of course isogeny CM lifts can exist only when the i, are conjugate for all £. We
make the following conjecture.

CONJECTURE 2.3.8
If G is quasisplit at p, then for any so € Sk ,(Fp) and any maximal torus T C I,
so admits an isogeny CM lift with respectto T .

When K, is hyperspecial this conjecture is proved in [16]. The main point of this
section is to show that Conjecture 2.3.4 implies a version of Conjecture 2.3.8 with



1602 KISIN, MADAPUSI PERA, and SHIN

Q-isogenies, when G has no factors of type D. In particular, we will show that a
Q-version of this conjecture holds for (G, X) of PEL type A4 or C.

2.3.9
Let T C G be a maximal torus, and let x € X with &, factoring through 7. Let
so0 € 7k, (F p) be defined over I, for some ¢ = p”. Suppose that s is a reduction of
a Qp-valued point s of Shg,. , (hy).

For any m € Z- ¢, the g"*-Frobenius acts on sy, , and the corresponding automor-
phism ypm,s, € Auty, (shs,) lies in Iy, (_Q). Since T contains the Mumford-Tate group
of 4 (defined via some embedding Q, < C), there are natural embeddings:

T — MQ(*AS) — M@(e}“’so)-

It follows from the definitions that this embedding exhibits 7" as a subtorus of I,.
Recall from Section 2.2.3 that an element y € T(Q) is called a p-unit if the
subgroup it generates is contained in a compact subset of 7'(Qy) for all £ # p.

LEMMA 2.3.10

The element y,, s, lies in T(Q) C I5,(Q). It has the following properties:
(D) Vm,so 1S @ p-unit.

(2)  Set u = ;' € X«(T). Under the composition

T(@Q — T(@p) = B(T) = X«(T)r,,

Vm,so 1S mapped to m logp q- /’Lﬁ-
Given any other element y € T (Q) satisfying the two conditions above, there exists

r € Lso such that y,, . = y".

Proof
It was already remarked in the proof of Proposition 2.2.13 that y,, 5, € I5,(Q) is a
Weil point, and hence a p-unit by Lemma 2.2.4.

Let us show (2). First, we note that for m sufficiently large, the embedding

T@p — Qp &® Iso HM(Dm,so)

arises from an isomorphism Qgm ® V = Dy s, We can choose this isomorphism
so that the semilinear map ¢ : Dy, 5, — Dy 5, 18 identified with the automorphism
850(0 ® 1) of Qym @ V' for some element 8y, € T (Qgm). By Lemma 1.3.9, the image
of 85, in X«(T)r,, is u*. The assertion now follows from (2.1.7.2).

For the final assertion, note that since (7'/G,,)r is compact, T(Q) is a discrete
subgroup of T'(A 7). Given y satisfying (1) and (2), set B = ¥~ ym.5,- We have to
show that 8" =1 for some r € Z~y.
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For £ # p, the eigenvalues of f acting on V;(+y,) all belong to Z; therefore, 8
lies in a compact subgroup of T(A?). Moreover, f is in the kernel of 7(Qp,) — B(T),
and so it lies in the compact subgroup in 7'(Q,) consisting of elements o-conjugate
to 1 over L. In sum, we find that B lies in both the discrete subgroup 7(Q) and a
compact subgroup of T'(A r), and must therefore be of finite order. O

PROPOSITION 2.3.11

Suppose that G is quasisplit at p, that G* has no factors of type D, and that Con-
Jjecture 2.3.4 holds for (G, X). Then for any maximal torus T C I, so admits a
Q-isogeny CM lift with respect to T.

Proof
We can view T, as a maximal torus in 7 s,. By Corollary 1.1.17, there exists a
cocharacter 7 € X4(T) defined over Q whose image in G lies in the conjugacy
class {{x}p, and such that vs, = Nur € X*(T)(g".

By Corollary 2.2.14, there is an embedding i : T < G such that for all £, i is
G (Qy)-conjugate to the embeddings

ig:Tg, = Ips = Go,.
The cocharacter

MT,00 - Gm,C —Tc

obtained from ju7 via the embedding (oo : Q < C is G(C)-conjugate to 11, for y €
X . By modifying i within its G(Q)-conjugacy class, as in Proposition 1.2.5, we can
assume that ;7o is G(R)-conjugate to u,, and so arises from a homomorphism
hy:S— Tr,forx e X.

Let s, € “k, (F,) be the reduction of a point of Sh k7., (hx). Recall from the
preceding lemma that the ¢ -Frobenius yp s, € Is,(Q) is contained in T(Q). We
claim that for m sufficiently divisible,

Ym,so = Vm,s() € T(Q)

Here we view so,s) € Sk, (Fgm). Assuming this, we see that since i and iy are
conjugate for any £, yp, ¢, and VYm,L,s} are conjugate in G(Qy). This implies that
Py¢(s0,5;) is nonempty, and hence P (sg, s;) is nonempty by Conjecture 2.3.4, which
implies that s; is a Q-isogeny CM lift of s with respect to 7.

To see the claim, note that the eigenvalues of y,, s, acting on Vi (s, ) for £ # p
are ¢ -Weil numbers. So yp, 5, € T(Q) is a p-unit as in Lemma 2.3.10. We have

Ym,p,so = 5500(&0) g2 (aso)orm_l (5so)
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so using 1.1.2(4) we see that the image of y,, p 5, under the composite
T(Qp) = XTI, = Xu(D)r, ® Q— Xu(T)y".

is equal to the image of rmvs, (p) = rmNur(p), which is just the image of
rmur =mlog,q - pur in X«(T)r, ® Q by 1.1.2(4). Hence for m divisible enough,
the image of ym,s, in X«(T)r, is mlog,q - wh. 1t follows by Lemma 2.3.10 that
Ym.so = Ym,s), for m sufficiently divisible. O

2.3.12
We will show that in some cases, the result of Proposition 2.3.11 can be improved to
produce Q-isogeny lifts of s¢. To do that, we need the following.

LEMMA 2.3.13

Suppose that sg € Sk, (I_Fp), that T C I, is a maximal torus, and that so admits a Q-
isogeny CM lift (j,x,sq) with respect to T. Let PT = PT(so,s(’)) be the subscheme
of P(s0.5y) consisting of isomorphisms which respect the action of T. Then PTisa
T -torsor whose class in H'(Qy, G) is trivial for every place v of G.

Proof

By construction, g, and As(/) are equipped with an action of 7', so the subscheme
PT is well defined. For each £, we denote by PZT (50, 5¢) the subscheme of Py (so, s;)
consisting of isomorphisms which respect the action of 7'. Since j is conjugate to iy
by an element of G(Qy), PKT (0, 5¢) is nonempty. Hence, by Tate’s theorem, PT =
PT (s0, 8¢) is nonempty, and thus is a T'-torsor, which is a reduction of the /,,-torsor
P(s0,5;)-

Let S/o denote the group of automorphisms of g, respecting polarizations up
to a Q*-scalar. Consider the subscheme P C Is&(,A)SO,Asé) parameterizing iso-
genies respecting polarizations up to a Q*-scalar. Then P is an [ S’O—torsor. By [22,
Lemma 17.1], the class of P in H'(R, I} ) is trivial, so the class of P” in H'(R,T)
is trivial by [17, Lemma 4.4.5]. In particular, the class of P Tin H! (R, G) is trivial.

Next, for £ # p a finite prime, consider Ison (Vi(As,), Ve (:Asé)), the scheme
of isomorphisms which take sq ¢ 5, tO Sa b5} (Note that we do not require that the
isomorphisms respect Frobenius.) This scheme is a G-torsor over Qy, obtained from
PT via the natural map T — G over Q. If o, 5o € Sk, are lifts of S, 5, then this
G -torsor may also be identified with Isomy, (Vi (As,), Ve (04)5(’))). However, from the
definition of the universal abelian scheme over YKP, one sees that this last torsor is
trivial.

It remains to check that the image of PT in H'! (Qp, G) is trivial. Fix ¢ such that
50, 36 are defined over [F;. As above, by Steinberg’s theorem, for m sufficiently large,
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we may fix isomorphisms
Do ~Qgm @V ~ Dy s,

which take s¢ t0 So,cris,so AN Sg cris, sh? respectively, and respect the action of 7. Then
¢ on Dp s, and D,, 5 are given by 8500 ® 1), SS(/](O ® 1), respectively, for 8y,
856 € T(Qgm).

Recall that for any reductive group H over QQ,, we have isomorphisms (see [20])

H'(Qp.H) ~ H'(Gal(Q%/Qp). H) = (m1(H)r,) -

Here the first isomorphism is given by Steinberg’s theorem, and the second isomor-
phism takes a cocycle ¢ to kg (cs), 0 the Frobenius.

The class of PT in H'(Q p. T') corresponds to the cocycle sending o to 5S68s_01.
By Lemma 1.3.9, §;, and 856 have the same image in m(G)pp, so that the class of
this torsor in H'(Q,, G) is trivial, as required. O

COROLLARY 2.3.14
With the assumptions of Proposition 2.3.11, suppose that G is simply connected
and that G satisfies the Hasse principle

ker! (Q, G) := ker(Hl(Q, 6™ —[]H' @ Ga")) —0.

Then for any maximal torus T C Iy, so admits a Q-isogeny CM lift with respect to
T.

Proof

By Corollary 2.3.11, so admits a Q-isogeny CM lift with respect to T, say, (j, x, 50)-
Let PT be as in Lemma 2.3.13. For every place v of Q, the class of PT is trivial in
H'(Qy,G) and hence in H'(Q,,G™). Since G* satisfies the Hasse principle, the
class of PT in H'(Q, G®) is trivial.

As PT has trivial image in H'(R, G) and H(Q, G*), and G%" is simply con-
nected, PT has trivial image in H'(Q, G) by [3, Theorem 5.12], so PT arises from
a point w € (G/T)(Q). Now let j' = w™!jw. Then j': T — G is defined over Q.
Since the image of @ in H'(R,T) is trivial, ' Ay corresponds to a point x’ € X
and factors through j'(Tg) (cf. [17, Section 4.2.2]). If s € Yk, (Fp) is a point
admitting a lift to Shg,. ,(hy), then P(so,sq) is a trivial I5,-torsor by [17, Propo-
sition 4.2.6], so (j',x’, s¢) is an isogeny CM lift with respect to 7. O

COROLLARY 2.3.15
Suppose that G is quasisplit at p, and that (G, X) is of PEL type A or C. Then for any
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maximal torus T C I, so admits a Q-isogeny CM lift with respect to T. Moreover,
so admits a Q-isogeny CM lift with respect to T unless G is of type A, with n even.

Proof

The first statement follows from Proposition 2.3.11 and Lemma 2.3.5. For the second
statement, note that if (G, X) is of PEL type A or C, then G is simply connected,
and G® satisfies the Hasse principle unless G is of type A4, with n even (see [22,
Section 7]). Hence the second statement follows from Corollary 2.3.14. O

Remarks 2.3.16

(1) In fact, the corollary can be shown for certain groups G of type A, with n even.
Namely, if it is a unitary similitude group (in n + 1 variables) arising from a CM
quadratic extension F of a totally real field F* with [F* : Q] odd, then the Hasse
principle holds for G by the proof of Lemma 3.1.1 of [38], so the above proof goes
through.

(2) As in Section 2.3.6, one can extend the proof of the first statement of the
last corollary to the case of type D if one works with the disconnected group G’.
For an algebraically closed field k, two points of G (k) give rise to the same point
of Conj’(G) if and only if they are conjugate in G’ (k). Using this, one can deduce a
version of Corollary 2.2.14 from Proposition 2.2.13 and use it to deduce an analogue
of the first part of Corollary 2.3.15, but where Q-isogeny is defined using the tensors
{tg}. We leave this as an exercise for the reader.

(3) In [47], Zink proves that for PEL Shimura varieties, and primes of good reduc-
tion, every point has an isogeny CM lift with respect to T. However, his definition of
isogeny is required to respect only endomorphisms and not polarizations. In that case,
the analogue of P (s9, s;) is a torsor under the group of units in a product of (possibly
skew) fields. Any such torsor is trivial, for example, because a QQ-vector space has a
Zariski-dense set of rational points, or alternatively because in this case the group is
a product of inner forms of GL,,.

Thus, the first part of Corollary 2.3.15 recovers Zink’s result in this case. How-
ever, the second part is really stronger. Even for the moduli space of principally polar-
ized abelian varieties the deduction of this statement using Honda—Tate theory does
not quite seem to be in the literature. Although it is a special case of a result of [17],
the techniques used there are quite different.

(4) The condition on G® in Corollary 2.3.14 and the second part of Corol-
lary 2.3.15 is used to show that the class of PT in H'(Q,G®) is trivial. In fact,
this should follow from the fact that sg, s6 lie on the same Shimura variety, since the
motive obtained from sy, and any representation of G which factors through G*
should be constant; for example, this holds in characteristic O at the level of variations
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of Hodge structure. Even when G is not simply connected, there is a corresponding
cohomology group H'(Q, G/G) in which the image of PT should be trivial (here G
is the simply connected cover of G9), which would be enough for the argument of
Corollary 2.3.14. Unfortunately, we do not know how to make these motivic heuristics
rigorous.

(5) We have not thought seriously about which of these results can be generalized
to the case of abelian-type Shimura varieties. Integral models for these are usually
defined using those for an auxiliary Shimura variety of Hodge type. Thus, it is quite
plausible that one can directly deduce analogues of our results on nonemptiness of
Newton strata and special point liftings. Of course, in this case the construction of
the Newton strata would usually also involve the auxiliary Shimura variety. A more
interesting problem is the definition and nonemptiness of the torsors P(so, s;), given
the lack of a good general definition of an isogeny of motives (see the recent paper of
Yang [45] for the case of K3 surfaces).

Appendix. Construction of isocrystals with G -structure

The purpose of this appendix is to prove Proposition 1.3.12. The main tool is Falt-
ings’s comparison theorem (see [10, p. 62]), as well as de Jong’s theorem on alter-
ations in [6] and a result of Ogus on proper descent for convergent isocrystals in [33].

Al
Let k be a perfect field of characteristic p, and let W = W (k). We equip k and W
with the trivial log structure.

Let X be a scheme over W equipped with a fine saturated log structure. A p-adic
formal log scheme T over W is a p-adic formal scheme T/ W together with the data
of a compatible system of log structures on 7,, = T ®z Z/ p"7Z for n > 1 such that
the inclusions 7, < T, are exact.

An enlargement of X is a triple (T, 1,ir) consisting of a p-adic formal log
scheme T over W, an ideal of definition / of 7, and a map of log schemes it :
To — X, where Ty is the subscheme of T defined by I. We say that (7, 1,ir) is
reduced if Ty is reduced. We say that (T, 1,i7) is a PD-enlargement if / is equipped
with divided powers extending the divided powers on pW.

As in [33, Section 2.7], we can use the definition of an enlargement to define the
category of convergent log isocrystals (cf. [34, Section 3]). This category does not
change if we allow I to be any p-adically closed ideal as in [10, p. 258]. Indeed,
the value of a convergent log isocrystal on such an enlargement can be defined as the
inverse limit of its values on (7, (I, p"),it,) for n > 1, where It is the composite

T, < To - X and T}, is defined by (I, p").
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The category of convergent log isocrystals also does not change if we define it
using only reduced enlargements. In particular, it depends only on X ®yz Z/ pZ, and
not on X, and is equipped with a Frobenius pullback functor F*. Thus, we have
the notion of a convergent log F'-isocrystal (again cf. [34, Section 3]). When the log
structure on X is trivial, this agrees with the definitions of convergent isocrystal and
F-isocrystal in [33].

The log crystalline site of X is the site whose objects consist of PD-enlargements.
As in [30, Section 1.3.3], a log Dieudonné crystal over X is a crystal M in the
log crystalline site of X together with maps F*M — M and M — F*M whose
composite in either order is multiplication by p. As in [33, Proposition 2.18] or [34,
Remark 16], a log Dieudonné crystal over X gives rise to a convergent F-isocrystal
on X.

A2

Let S be a flat, normal, finite-type W -scheme, let D C S be a relative Cartier divisor,
andlet j : U = D — § < S, the inclusion. We consider S as a log scheme equipped
with the log structure j.Oy, and for n > 1, we give S ®z Z/ p"7Z the induced log
structure.

Let 7 : A — U be an abelian scheme which extends to a semi-abelian scheme
over S. We denote by L the étale local system R'7,Q, on Uk «. We denote by &
the convergent F-isocrystal on U attached to the p-divisible group A[p°°].

By [30, Proposition 1.3.5], there is a log Dieudonné crystal on S attached to -4,
and hence a convergent log F-isocrystal &'°¢ on S, whose restriction to U is &, and
whose formation is compatible with Cartier duality.

A3
Let Ko = W([1/p], and let K/Kj be a finite extension. Fix an algebraic closure K D
K, and let Gx = Gal(K/K). We keep the above notation, but we now assume that
S is semistable over Ok and that So U D C S is a normal crossing divisor. Here
So=3S Rok k.

Above we considered S with the log structure given by D. We denote by SV1°2
the scheme S considered with the log structure given by So U D. There is a map of log
schemes i : $V1°¢ — S. We set £V1°¢ = j*(&°¢), a convergent F-isocrystal on S"I°¢,

LEMMA A 4
With the above notation, L and §"°¢ are associated in the sense of [10, p. 258].

Proof
As already remarked in [10], £¥'°¢ gives rise to a convergent isocrystal in the sense of
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[10, p. 258]. The proof of the lemma is entirely analogous to the argument given in
[9, Section 6] (cf. also [30, Proposition A.22]) for the case of log schemes. O

A5

We now return to the assumptions of A.2, so we no longer assume that S is semistable.
Let s : 1 — L® be a map of étale local systems over U. That is, s is a global

section of L®. For any finite K’/K in K, with residue field k’, and any & € U(0x),

£*(s) corresponds to a section

S0, = Dcris(g*(s)) 11— E*(8)®

PROPOSITION A.6
If S is proper and semistable over Ok, and Sy U D C S is a normal crossing divisor,
then there is a morphism of convergent log F -isocrystals s : 1 — &'°¢® over S such

that £*(so)(W (k")) = so.¢ for all K'/K, k', and & as above

Proof
Let 7 € Ok be a uniformizer, and let E(T) be an Eisenstein polynomial for 7. Let
R = W[T1], and for n > 1, let R, be the p-adic completion of W [T, E(T)" /i!]. We
view Ok as an R,-algebra, and so an R-algebra via T +— . It suffices to construct
so étale locally on S.

Let Spec A be an étale neighborhood of S which admits an étale map

w:Spec A — Oklt1,...,ta]/(t1-+-te — )

for some e < d, and such that the log structure on Spec 4 is given by the preimage
of the Cartier divisor defined by #;---#, for some e <r <d. Let A be the p-adic
completion of A. Thus, Spf Aisa p-adic formal log scheme over Ok, which is for-
mally smooth when Ok is equipped with the log structure &' — {0}. Lift Spf A to
a formally smooth (p, T')-adic formal log scheme Yr = Spf AR over R (defined as
in the p-adic case). Thus, A R is formally étale over the (p, T')-adic completion of
R[tq,...,t3]/(t1---t, —T), with the log structure given by the preimage of the Cartier
divisor defined by 1 ---¢,.

We consider the Frobenius lift F on A R induced by #; — tip ,and T — TP, Let
Y, be the base change of Yg to R,. Then F induces a lift of Frobenius on Y. Note
that Y}, is an enlargement of S Viog and so we may evaluate & viog o it

By Lemma A.4 and [10, Section 5, Corollary 4, Remark 1)], s gives rise to
a Frobenius-invariant, parallel section so of €¥°¢(Y;)®. Note that the result there
applies because &'°¢ arises from a log Dieudonné crystal on SY°¢. Hence for any m,
n we can apply that result to the log F'-crystal obtained by multiplying the Frobenius
on §V10e®n ) gVlog*®m by 3 high enough power of p, and replacing L®" @ L*®™
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by a suitable Tate twist. Since s¢ is Frobenius-invariant, it gives rise to a section of
&"1°¢(Y,)® for any n > 1.

Now let Ynh be the p-adic formal log scheme with the same underlying formal
scheme as Y, but with the log structure defined by f,4; ---#,. Then Ynh is an enlarge-
ment of S, and from the definitions we have §'°¢(Y,}) = £"°¢(Y,). Since Yy is for-
mally smooth over W (as in [33, Theorem 2.11]), the sections s € &'°¢(Y,})® give
rise to a morphism of convergent F-isocrystals so : 1 — &1°¢® over Spec A. The rela-
tion §*(so)(W(k')) = s0,¢ follows from the functoriality of the map constructed in
[10]. O

COROLLARY A.7
For any S (not assumed proper or semistable), and s : 1 — L% as above, there exists
a unique morphism of convergent F -isocrystals over U,

s0:1—> &%

such that for every K'/ K finite, and & as above, £*(so)(W(k')) = so.¢.

Proof
By [6, Theorem 6.5], after replacing K by a finite extension, there exists a proper
truncated hypercovering

Uy=Uy—>U

such that for i = 0, 1 there is a dense open immersion U; <— S;, with S; proper and
semistable, and (S;\U;) U S; ® ¢ k is a normal crossing divisor in S;. By proper
descent for convergent isocrystals (see [33, Theorem 4.6]), it suffices to prove the
proposition with U; in place of U. Thus we may replace U by U;, and S by S;,
and assume that S is proper and semistable, and So U D C § is a normal crossing
divisor. Then the required map is obtained by restricting the map so : 1 — £'°2® of
Proposition A.6 to U. The uniqueness is easily deduced from [33, Theorem 4.1]. [
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