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Abstract
A Shimura variety of Hodge type is a moduli space for abelian varieties equipped
with a certain collection of Hodge cycles. We show that the Newton strata on such
varieties are nonempty provided that the corresponding group G is quasisplit at
p, confirming a conjecture of Fargues and Rapoport in this case. Under the same
condition, we conjecture that every mod p isogeny class on such a variety contains
the reduction of a special point. This is a refinement of Honda–Tate theory. We prove
a large part of this conjecture for Shimura varieties of PEL type. Our results make no
assumption on the availability of a good integral model for the Shimura variety. In
particular, the group G may be ramified at p.
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Introduction
A Shimura variety Sh.G;X/ of Hodge type may be thought of as a moduli space
for abelian varieties equipped with a particular family of Hodge cycles. This inter-
pretation gives rise to a natural integral model S DS .G;X/. For a mod p point,
x 2S . NFp/, one has the attached abelian variety Ax and its p-divisible group Gx D

AxŒp
1�. In this article, we study the two related questions of classifying the isogeny

classes of Gx and Ax . We are able to do this for quite general groups G, as our
methods do not require any particular information about S ; for example, we do not
assume that S has good reduction.

The isogeny class of Gx is determined by its rational Dieudonné module Dx ,
which is an .L D W. NFp/Œ1=p�/-vector space equipped with a Frobenius semilin-
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ear operator bx� , where bx 2 G.L/ is an element which is well defined up to � -
conjugacy, bx 7! g�1bx�.g/, and � denotes the Frobenius automorphism of L. The
element bx is subject to a group-theoretic analogue of Mazur’s inequality (see [36,
Theorem 4.2]), and the set consisting of � -conjugacy classes which satisfy this con-
dition is denoted B.G;�/, where � W Gm! G is the inverse of the cocharacter �X
(up to conjugacy) attached to X . (See Sections 1.1.5 and 1.2.3 below for precise
definitions.) Let D denote the protorus whose character group is Q. Each b 2 G.L/
gives rise to the so-called Newton cocharacter �b W D! G, defined over L, whose
conjugacy class is defined over Qp and depends only on the � -conjugacy class Œb�.
The slope decomposition of Dx is given by �bx . For Œb� 2 B.G;�/, the correspond-
ing subset SŒb� �S . NFp/ is called the Newton stratum corresponding to Œb� so that a
point x 2S . NFp/ belongs to SŒb� if and only if Œbx�D Œb�. Our first result is on the
nonemptiness of Newton strata. (The converse is known; i.e., if SŒb� is nonempty, then
b 2B.G;�/. See Lemma 1.3.9.)

THEOREM 1
Suppose that b 2 B.G;�/ and that the G.L/-conjugacy class of �b has a represen-
tative which is defined over Qp . Then SŒb� is nonempty. In particular, SŒb� is always
nonempty either when GQp is quasisplit or when Œb� is basic.

Fargues [11, Conjecture 3.1.1] and Rapoport [35, Conjecture 7.1] have conjec-
tured that SŒb� is nonempty for every b 2 B.G;�/ (see also He and Rapoport [14]).
Previous results on the nonemptiness of SŒb� have been obtained by a number of
authors (see, e.g., Wedhorn [41] and Wortmann [44] for the �-ordinary case (of
hyperspecial level), Viehmann and Wedhorn [40] for the PEL case of type A or C
(of hyperspecial level), and the recent work of Zhou [46] for many cases of parahoric
level). These all rely on an understanding of the fine structure of a suitable integral
model of Sh.G;X/.

Our method involves constructing a special point whose reduction lies in SŒb�.
This is essentially a group-theoretic problem, as the Newton stratum of a special point
can be computed in terms of the torus and cocharacter attached to that point. When
GQp is unramified, this problem was already solved by Langlands and Rapoport [28,
Lemma 5.2]. This was independently observed by Lee [29], who also used it to show
the nonemptiness of Newton strata in this case. If SŒb� contains the reduction of a
special point, then it is easy to see that the G.L/-conjugacy class of �b has a repre-
sentative which is defined over Qp . Thus, the result of Theorem 1 is the best possible
using this method.
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Along the way, we confirm an expectation of Rapoport and Viehmann [37,
Remark 8.3] on cocharacters and isocrystals. (See Remark 1.1.14 below.) We also
show that the Newton stratification has some of the expected properties.

THEOREM 2
For every b 2 B.G;�/, SŒb� �S . NFp/ is locally closed for the Zariski topology. One
has the following closure relations, where � is the partial order on the set of conju-
gacy classes of Newton cocharacters (see Section 1.1.1):

S Œb� �
[

�b0��b

SŒb0�:

This theorem is proved by showing the existence of isocrystals with G-structure
on S . This may be of independent interest, but the proof is rather technical, so we
leave it to the appendix. (Recently, Hamacher and Kim [12] proved similar results for
the case of Kisin–Pappas models by a different argument.) We remark that inclusion
in the theorem is expected to be an equality for hyperspecial level, but not in general.
As a corollary, we obtain generalizations of the theorems of Wedhorn and Wortmann
on the density of the �-ordinary locus.

THEOREM 3
If the special fiber of S is locally integral, then the �-ordinary locus is dense in the
special fiber.

We now discuss the problem of classifying Ax up to isogeny. For the mod-
uli space of polarized abelian varieties, this is closely related to Honda–Tate the-
ory, which asserts that the isogeny class of an abelian variety A over Fq is deter-
mined by the characteristic polynomial of the q-Frobenius on the `-adic cohomology
H 1.A;Q`/, with ` � q, and that the isogeny class of A contains the reduction of a
special point. Using this fact, one can describe precisely which characteristic poly-
nomials can occur. For x 2 S .G;X/.Fq/, one expects that the q-Frobenius arises
from a � 2G.Q/ whose G. NQ/-conjugacy class is independent of `, although it is in
general not a complete invariant for the isogeny class of A. We make the following
conjecture.

CONJECTURE 1
If GQp is quasisplit, then the isogeny class of any x 2S . NFp/ contains the reduction
of a special point.
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Here if x;x0 2S . NFp/, then Ax , Ax0 are defined to be in the same isogeny class
if there is an isogeny i WAx!Ax0 such that for each of the Hodge cycles s˛;x carried
by Ax , i takes s˛;x to s˛;x0 . More precisely, the Hodge cycles s˛;x can be viewed via
either `-adic cohomology for ` ¤ p, or crystalline cohomology. We require that i
takes s˛;x to s˛;x0 in each of these cohomology theories.

When G is unramified, this conjecture was proved by the first author [17] (see
also [46] for some cases of parahoric Shimura varieties). The methods of [46] require
rather fine information about the special fiber of S , and are rather different from
the ones employed in this paper which require almost no information about integral
models.

Even for the moduli space of polarized abelian varieties, the conjecture is a
more refined statement than Honda–Tate theory, since the definition of isogeny class
involves isogenies which respect polarizations. As we shall explain, it can neverthe-
less be deduced from Honda–Tate theory with some extra arguments, but remarkably
these do not seem to be in the literature; the closest is perhaps [22, Section 17]. (See
Section 2.3.6 below.)

To state our main result in the direction of the conjecture, we recall that the
group of automorphisms of Ax in the isogeny category is naturally the Q-points of
an algebraic group I 0x D AutQAx over Q. Similarly, one can define the subgroup
I D Ix � I

0
x consisting of isogenies which respect Hodge cycles in `-adic and crys-

talline cohomology. The set of isogenies (respecting Hodge cycles) between Ax and
Ax0 is likewise the Q-points of a scheme P .x; x0/ which is either empty or a tor-
sor under Ix . We say that Ax and Ax0 are NQ-isogenous if P .x; x0/ is nonempty.
This is equivalent to asking that there be a finite extension F=Q and an isomorphism
Ax˝F !Ax0 ˝F (e.g., as fppf sheaves) respecting Hodge cycles. We say that Ax

and Ax0 are Q-isogenous if P .x; x0/ is a trivial torsor.

THEOREM 4
Suppose that G is quasisplit at p and that .G;X/ is a PEL Shimura datum of type A
or C. Then for any x 2S . NFp/, the abelian variety Ax is NQ-isogenous to Ax0 , with
x0 the reduction of a special point.

Our main result is actually more precise, as we show that one can construct spe-
cial points associated to any maximal torus T � I . There is also a slightly weaker
version of the theorem in the case of PEL type D (see Remark 2.3.16). In fact, we
prove an analogous theorem for .G;X/ of Hodge type conditional on a version of
Tate’s theorem for abelian varieties equipped with Hodge cycles (see below).

When G is unramified, a result closely related to the above theorem was proved
by Zink [47]. Note that in [47], Zink’s theorem says that Ax is isogenous (not just NQ-
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isogenous) to the reduction of a special point; however, his definition does not require
that isogenies respect polarizations, and it is not hard to see that one can then produce
a Q-isogeny from a NQ-isogeny (the corresponding torsor turns out to be trivial).

When Gab satisfies the Hasse principle, one can replace NQ-isogenies by Q-
isogenies in Theorem 4. For example, one has the following.

THEOREM 5
Suppose that G is quasisplit at p and that .G;X/ is a PEL Shimura datum of type C
or of type An with n odd. Then for any x 2S . NFp/, Ax is Q-isogenous to Ax0 , with
x0 the reduction of a special point, so that Conjecture 1 holds in this case.

One of the key ingredients in Honda–Tate theory is Tate’s theorem on the Tate
conjecture for morphisms between abelian varieties over finite fields (see [39]). We
prove an analogue of this result for .G;X/ of Hodge type, and for automorphisms
of abelian varieties equipped with the corresponding collection of Hodge cycles. To
explain this, for each `¤ p, let I` � Aut.H 1.Ax;Q`// be the subgroup which fixes
the Hodge cycles s˛;x and commutes with the q-Frobenius for q D pr and r suffi-
ciently divisible. We define a similar group Ip using crystalline cohomology.

THEOREM 6
For every ` (including `D p), the natural map

I ˝Q Q`! I`

is an isomorphism. In particular, the (absolute) rank of I is equal to the rank of G.

The proof uses the finiteness of S .Fq/ (when level is fixed) as in [17], as well as
a result of Noot on the independence of ` of the conjugacy class of Frobenius as an
element of G.Q`/. Note that a similar finiteness condition plays a crucial role in [39].

Using this result, one knows that any maximal torus T � I has the same rank as
G. We show that, when GQp is quasisplit, any such T can be viewed as (transferred
to) a subgroup of G. Our results on nonemptiness of Newton strata then imply that
there is a special point Qx0 2 Sh.G;X/ with associated torus T . If x0 is the reduction
of Qx0, then Ax and Ax0 should be NQ-isogenous. Indeed, this follows from a version
of Tate’s theorem with Hodge cycles. When x D x0, this is Theorem 6 above, but we
do not know how to prove such a theorem when x ¤ x0, except in the PEL case, when
one can use Tate’s original result to deduce the first part of Theorem 4. Finally, the
second part is proved via an analysis of the local behavior of the torsor P .x; x0/.
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Notational conventions
Given a connected reductive groupG over a field F , we writeGder �G for its derived
subgroup and Gsc!Gder for the simply connected cover of its derived group.

Fix an algebraic closure NF for F . For any torus T over F , we set

X�.T /DHom.Gm; NF ; T NF /; X�.T /DHom.T NF ;Gm; NF /

for the cocharacter and character groups of T , respectively. Write D for the multiplica-
tive progroup scheme over Qp with character group Q. A homomorphism D NF ! T NF
gives an element of X�.T /Q D X�.T / ˝Z Q, and vice versa. We often refer to a
homomorphism D! G (defined over an extension of F ) as a cocharacter of G by
standard abuse of terminology.

For a maximal torus T in the reductive group G, we write W.G;T / for the abso-
lute Weyl group of G relative to T , and we denote by �1.G/ the algebraic fundamen-
tal group of G (see [3]). It is a Gal. NF=F /-module, functorial in G, and canonically
isomorphic to X�.T /=X�.T sc/, where T sc is the preimage of T in Gsc.

For v a place of Q, we fix an algebraic closure NQv for Qv (here, Q1 D R and
NQ1 D C). We also fix an algebraic closure NQ, along with embeddings �v W NQ ,! NQv ,
for every place v. Set 	v DGal. NQv=Qv/ and 	 D 	Q DGal. NQ=Q/. We will use our
chosen embeddings to view 	v as a subgroup of 	 .

When E is a number field, the ring of integers of E is denoted by OE .

1. Nonemptiness of Newton strata

1.1. Local results
Fix a rational prime p. Let G be a connected reductive group over Qp . Fix a maxi-
mal torus T � G defined over Qp and a Borel subgroup B � G NQp containing T NQp .
Positive roots and coroots of T in G will be determined by B .

1.1.1
Set

N .G/D
�
X�.T /Q=W.G;T /

��p
:

This space has a more canonical description that N .G/ is the space of G. NQp/-
conjugacy classes of homomorphisms D NQp !G NQp which are defined over Qp .

Let C �X�.T /R be the closed dominant Weyl chamber determined by B . Each
class N� 2 N .G/ has a unique representative � 2 X�.T /Q \ C . There is a natural
partial order �G on X�.T /R and N .G/, also denoted by � if there is no danger of
confusion, determined as follows (cf. [36, Lemma 2.2, Section 2.3]). Given N�1; N�2 2
N .G/ with representatives �1; �2 2 X�.T /Q \ C , we have N�1 � N�2 if and only if
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�2��1 is a nonnegative linear combination of positive coroots. Similarly,� is defined
on X�.T /R using dominant representatives.

There is a unique map N .G/! �1.G/
�p ˝ Q which is functorial in G and

induces the identity map when G is a torus (see [36, Theorem 1.15]).

1.1.2
Let W DW. NFp/ be the ring of Witt vectors for an algebraic closure NFp of Fp , and
writeL for its fraction field. We fix an algebraic closure NL forL along with an embed-
ding NQp ,! NL. Let � W W ! W be the unique automorphism lifting the p-power
Frobenius on NFp . As in [20], we will denote by B.G/ the set of � -conjugacy classes
in G.L/, so that two elements b1; b2 2 G.L/ are in the same class in B.G/ if and
only if there exists c 2G.L/ with b1 D cb2�.c/�1.

Recall the following maps from [36, Theorem 1.15], which are functorial in G:


G WB.G/! �1.G/�p ; N�G WB.G/!N .G/:

A class Œb� 2 B.G/ is basic if N�G.Œb�/ is the class of a central cocharacter of G. We
write B.G/b �B.G/ for the subset of basic classes.

The maps 
G , N�G have the following properties:
(1) The diagram

B.G/

N�G

�G

�1.G/�p

N .G/ .�1.G/˝Q/�p

commutes. Here, the vertical map on the right-hand side is induced by the
usual isomorphism averaging over each 	p-orbit (cf. [36, p. 162]):

�
�1.G/˝Q

�
�p

'
�!

�
�1.G/˝Q

��p
:

The bottom horizontal map is uniquely characterized as a functorial map in G
that is the natural identification when G is a torus. (See [36, Theorem 1.15]
for details.)

(2) Given b 2G.L/ representing a class Œb� 2B.G/, the conjugacy class N�G.Œb�/
is represented by a cocharacter �b W DL! GL that is characterized uniquely
by the following property. There exist c 2G.L/ and an integer r 2 Z>0 such
that r�b factors through a cocharacter Gm;L!GL, c.r�b/c�1 is defined over
the fixed field of � r on L, and

cb�.b/�2.b/ � � �� r.b/� r.c/�1 D c.r�b/.p/c
�1:
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This implies that ��.b/ D �.�b/ and that, for every g 2G.L/,

�gb�.g/�1 D g�bg
�1:

(See [20, Sections 4.3, 4.4].)
(3) The map

.
G ; N�G/ WB.G/! �1.G/�p �N .G/

is injective. Furthermore, the restriction of 
G to B.G/b induces a bijection:

B.G/b
'
�! �1.G/�p :

(See [23, Section 4.13].)
(4) When G D T is a torus, 
T is an isomorphism which can be described explic-

itly. Let E=L be a finite extension over which T is split, and let NE=L W
T .E/! T .L/ be the associated norm map. Fix a uniformizer � 2 E . Then
we have a commutative diagram:

X�.T /
� 7!ŒNE=L.�.�//�

B.T /

'

�T

X�.T /�p

(See [20, Section 2.5].)

1.1.3
Later we will often make the following hypothesis on G and Œb�:
(1) The class Œb� contains a representative b 2G.L/ such that the cocharacter �b

is defined over Qp .
Given Œb� satisfying the above condition, we fix such a representative and denote the
corresponding cocharacter by �G.Œb�/. Let MŒb� � G be the centralizer of �G.Œb�/.
This is a Qp-rational Levi subgroup of G.

Note that hypothesis 1.1.3(1) is always satisfied if G is quasisplit over Qp as
one can see from 1.1.2(2) (cf. [20, p. 219]). If Œb� is basic (but G is possibly not
quasisplit), then hypothesis 1.1.3(1) is still satisfied as 1.1.2(2) shows that �b is a
� -invariant central cocharacter of G for any representative b.

1.1.4
Suppose that b 2G.L/. Consider the group scheme Jb over Qp that attaches to every
Qp-algebra R the group
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Jb.R/D
®
g 2G.R˝Qp L/ W gb D b�.g/

¯
:

By construction, there is a natural map of group schemes over L: Jb;L!GL.
If b0 D gb�.g/�1 is another representative of Œb� 2B.G/, then conjugation by g

induces an isomorphism of Qp-groups:

int.g/ W Jb
'
�! Jb0 :

As shown in [36, Section 1.11], Jb is a reductive group over Qp . A more precise
statement holds. Let M�b � GL be the centralizer of �b . By replacing b by a � -
conjugate if necessary, we can arrange that property 1.1.2(2) holds:

b�.b/�2.b/ � � �� r�1.b/D .r�b/.p/; (1.1.4.1)

with �b defined over Qpr and r 2 Z�1. Then M�b is also defined over Qpr , and b
belongs to G.Qpr /. Moreover, the natural map Jb;L!GL is defined over Qpr and
identifies Jb;Qpr with M�b .

Under hypothesis 1.1.3(1), the discussion in 1.1.2(2) and 1.1.3 tells us that M�b

is a pure inner twist of MŒb� by the MŒb�-torsor (trivial by Steinberg’s theorem) of
elements of GQpr conjugating �b to �G.Œb�/.

Combining the previous two paragraphs, we find that Jb is equipped with an

inner twisting Jb
'
�!MŒb� over Qp (cf. also [20, Section 5.2]).

1.1.5
We return to the general setup, disregarding hypothesis 1.1.3(1) until Proposi-
tion 1.1.13 below. Let G� be the quasisplit inner form of G over Qp , and let

� WG
'
�!G� be an inner twisting. Let B� �G� be a Borel subgroup over Qp , and let

T � � B� be a maximal torus over Qp . Write C� � X�.T
�/R for the B�-dominant

chamber.
If the G. NQp/-conjugacy class of a cocharacter � W D NQp ! G NQp is defined over

Qp , then so is the G�. NQp/-conjugacy class of � ı �. Thus, � induces a map N� W

N .G/!N .G�/ depending only on the G�. NQp/-conjugacy class of � .
Let ¹�º be a conjugacy class of cocharacters Gm; NQp ! G NQp , and let �� 2

X�.T
�/ \ C� be the dominant representative for � ı ¹�º. Let 		� � 	p be the

stabilizer of ��, and set

N�� D
1

Œ	p W 		� �

X
�2�p=���

��� 2X�.T
�/
�p
Q :

We will write N�� for the image of N�� in N .G�/.
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Let �] be the image of ¹�º in �1.G/�p . (Note that the image of �� in �1.G�/�p
is equal to �] via the canonical isomorphism �1.G/�p D �1.G

�/�p .) Given Œb� 2
B.G/, we will say that the pair .Œb�; ¹�º/ is G-admissible, or simply admissible, if
two conditions hold:
(1) 
G.Œb�/D �

], and
(2) N�. N�G.Œb�//� N�

�.
If G is quasisplit, then we may and will take G D G� and � to be the identity

map so that N� is also the identity map.

LEMMA 1.1.6
Given a conjugacy class ¹�º as above, let Œbbas.�/� 2B.G/b denote the unique basic
class such that 
G.Œbbas.�/�/D �

]. Then .Œbbas.�/�; ¹�º/ is admissible.

Proof
Condition 1.1.5(1) is tautological, and 1.1.5(2) follows from [36, Proposition 2.4(ii)]
and the commutativity of 1.1.2(1).

Definition 1.1.7
Let T 0 � G be a maximal torus over Qp . We will call an admissible pair .Œb�; ¹�º/
T 0-special if there exists a representative b0 2 T 0.L/ (resp., �0 2X�.T 0/) of Œb� (resp.,
¹�0º) such that the pair .Œb0�T 0 ;�0/ is an admissible pair for T 0. Here we write Œb0�T 0
for the � -conjugacy class of b0 in T 0.L/. We say that .Œb�; ¹�º/ is special if it is
T 0-special for some maximal torus T 0 �G.

LEMMA 1.1.8
Suppose that .Œb�; ¹�º/ is an admissible pair for G with Œb� basic. Then .Œb�; ¹�º/
is T 0-special for any elliptic maximal torus T 0 � G. More precisely, for any �0 2
X�.T

0/ in ¹�º, Œbbas.�
0/� 2B.T 0/ maps to Œb� 2B.G/.

Proof
Let T 0 � G be an elliptic maximal torus, and let �0 2 X�.T 0/ be a representative
for ¹�º. As T 0 is elliptic, Œbbas.�

0/� 2 B.T 0/ maps to a basic class Œb0� 2 B.G/
(see [20, Proposition 5.3]). Moreover, 
G.Œb0�/ is the image in �1.G/�p of �0;] D

T 0.Œbbas.�

0/�/, and so must be equal to �]. Hence, Œb0�D Œbbas.�/�D Œb�.

1.1.9
From here until Proposition 1.1.13, we are concerned with quasisplit groups. Let H0
be an absolutely simple quasisplit adjoint group over a finite extension F=Qp . Fix a
Borel subgroup B0 �H0 and a maximal torus T0 �B0 over F .
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Set H D ResF=QpH0, B D ResF=QpB0, T D ResF=QpT0, and X DX�.T /. The
last is a free Z-module with an action of 	p , and the choice of B0 equips it with a
	p-invariant positive chamber C � XQ. As above, we have a Galois averaging map
N W C! C with image in C�p .

LEMMA 1.1.10
Let F 0=Qp be the unramified extension with ŒF 0 W Qp�D ŒF W Qp�. Then there is an
absolutely simple quasisplit adjoint group H 00 over F 0 equipped with a Borel sub-
group B 00 and a maximal torus T 00 �B

0
0 with the following properties.

(1) Let .H 0;B 0; T 0/ D ResF 0=Qp .H
0
0;B

0
0; T

0
0/. Then there is an isomorphism of

triples:

.H;B;T /˝Qp
NQp
'
�! .H 0;B 0; T 0/˝Qp

NQp:

(2) Let C 0 �X 0Q be the positive chamber of X 0 DX�.T 0/ determined by B 0, and
let N 0 W C 0! C 0 be the Galois averaging map. Then the isomorphism in (1)

can be chosen such that the induced isomorphism C 0
'
�! C carries the endo-

morphism N 0 to N .

Proof
We begin by explicating the averaging map N . Let D be the Dynkin diagram of H .
It is a disjoint union G

� WF!NQp

D0;

where D0 is the Dynkin diagram of H0. The action of 	p permutes the connected
components of this diagram in the usual way, and for each � W F ! NQp , the stabilizer
	� � 	p of � (i.e., the pointwise stabilizer of �.F /) acts onD0 via a homomorphism

�� W 	� !Aut.D0/:

Fix an embedding �0 W F ! NQp , and let 
 2 	p be such that 
 ı �0 D � . Then �� is
equal to the composition

	�

 7!��1
�
�������! 	�0

��0
��!Aut.D0/:

The simple coroots in X are in canonical bijection with pairs .�; d0/, where � W
F ! NQp and d0 2D0 is a vertex. Write ˛_.�; d0/ for the simple coroot associated
with such a pair.

The 	p-orbit of ˛_.�; d0/ consists of simple coroots ˛_.� 0; d 00/, where d 00 2D0
is in the 	� -orbit of ˛_, and � 0 W F ! NQp is arbitrary. Therefore, if d0;1; : : : ; d0;r 2
D0 comprise the 	� -orbit of d0, then we have
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N˛_.�; d0/D
1

rŒF WQp�

X
�0WF!NQp

1�i�r

˛_.� 0; d0;i /:

Fix an embedding � 00 W F
0 ! NQp . We now claim that we can find a quasisplit

group H 00 over F 0 with a Borel subgroup B 00 � H
0
0 and a maximal torus T 00 � B

0
0

with the following properties.
� There is an isomorphism

.H 00;B
0
0; T

0
0/˝F 0;� 00

NQp
'
�! .H0;B0; T0/˝F;�0

NQp:

� If D00 is the Dynkin diagram of H 00, identified with D0 via the above isomor-
phism, then the induced action of 	� 0

0
on D0 has the same orbits as those of

the action of 	�0 .
The claim implies the lemma by choosing a bijection between Hom.F; NQp/ and
Hom.F 0; NQp/ carrying �0 to � 00. Indeed, (1) follows from the first part of the claim,
and (2) from the second; since N 0 and N are linear, it suffices to compare them on
the set of simple coroots.

Let us prove the claim. Suppose first that the image of 	�0 in Aut.D0/ is cyclic.
Consider a map 	� 0

0
!Aut.D0/which has the same image as 	�0 and factors through

the Galois group of an unramified extension of F 0. Then we can take H 00 to be the
quasisplit outer form of H0 over F 0 associated to this map.

The only remaining case is when D0 is of type D4, and 	�0 surjects onto
Aut.D0/. In this case, the subgroup of index 2 still acts transitively on each orbit of
Aut.D0/ in D0, and we choose 	� 0

0
! Aut.D0/ with image this index-2 subgroup,

which factors through the Galois group of an unramified extension of F 0, and H 00 the
corresponding quasisplit outer form of H0. The proof of the claim is complete.

1.1.11
Assume that G is quasisplit over Qp . Let B be a Borel subgroup of G over Qp , and
let T � B be a maximal torus over Qp . Let M � G be a standard Levi subgroup.
Recall that this means that M is the centralizer of a split torus T1 � T . Note that we
may regard X�.ZM /

�p
Q as a subset of N .M/.

LEMMA 1.1.12
Let �;�M 2X�.T / be cocharacters having the same image in �1.G/, and let ŒbM � 2
B.M/b be the unique basic class with 
M .ŒbM �/D �

]
M . Then

(1) N�M .ŒbM �/ is equal to the image of �]M in

�
�1.M/˝Q

��p
'
�
X�.ZM /˝Q

��p
;
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(2) .ŒbM �; ¹�º/ is G-admissible if and only if N�M .ŒbM �/�G N�.

Proof
The first claim follows from the commutativity of 1.1.2(1). By definition, the G-
admissibility of .ŒbM �; ¹�º/ is equivalent to asking that N�M .ŒbM �/ �G N�, and that
�
]
M maps to �] in �1.G/�p . However, since �M and � have the same image in
�1.G/, the second condition is automatic.

PROPOSITION 1.1.13
Suppose that G is quasisplit over Qp . Let � 2 X�.T / be minuscule, and let ŒbM � 2
B.M/b be such that .ŒbM �; ¹�º/ is G-admissible. Then there exists w 2 W.G;T /
such that .ŒbM �; ¹w ��º/ is M -admissible.

Proof
First, suppose that G is unramified. We fix a reductive model of G over Zp , again
denoted by G, such that T extends to a maximal torus T � G over W . Then M
extends to a Levi subgroup M �G over W .

By a theorem of Wintenberger [43], the admissibility of .ŒbM �; ¹�º/ implies that
there exists g 2 G.L/ such that g�1bM�.g/ belongs to G.W /�.p/G.W /. By the
Iwasawa decomposition, after modifying g by an element of G.W /, we can assume
that gD nm, where m 2M.L/ and n 2N.L/, where N �G is the unipotent radical
of the (positive) parabolic subgroup of G with Levi subgroup M . Then an argument
with the Satake transform (see [28, Lemma 5.2]) shows that m�1bM�.m/ belongs
to M.W /�0.p/M.W /, where �0 2 X�.T / is a cocharacter of M which is G.L/-
conjugate to �. More precisely, the Satake transform is used to show that �0 �G �
(in the notation of Section 1.1.1), and the minuscule nature of � allows us to con-
clude that �0 is conjugate to �. (See the proofs of [24, Theorems 1.1, 4.1] and the
proof of [17, Proposition 2.2.2] for alternative arguments to show the conjugacy.)
Write �0 Dw �� with w 2W.G;T /. By a result of Rapoport and Richartz [36, The-
orem 4.2], .ŒbM �; ¹w ��º/ is M -admissible.

Now, let G be an arbitrary quasisplit group. We can assume that G is adjoint.
Indeed, let QM �Gad denote the image ofM , and let Œbad

M � 2B.
QM/b denote the image

of ŒbM �. Ifw 2W.G;T / is such that .Œbad
M �; ¹w ��

adº/ is QM -admissible, then we claim
that .ŒbM �; ¹w ��º/ isM -admissible. To see this, note that the difference 
M .ŒbM �/�
.w ��/] is contained in the intersection of the kernels of the maps

�1.M/�p ! �1. QM/�p and �1.M/�p ! �1.G/�p :

The kernel of the first map is the image of X�.ZG/�p ! �1.M/�p . The composite
X�.ZG/�p ! �1.G/�p !X�.G

ab/�p has torsion kernel, so the intersection must be
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a torsion group. However, by [4, Corollary 2.5.12(2)], the kernel of the second map is
torsion-free. Hence the intersection is trivial.

Next, by considering the simple factors of G separately, we can assume that G is
also simple. Therefore, G D ResF=QpG0, where F=Qp is a finite extension, and G0
is an absolutely simple quasisplit adjoint group over F . We may also assume that

T D ResF=QpT0; B D ResF=QpB0;

where T0 �G0 (resp., B0 �G0) is a maximal torus (resp., Borel subgroup).
By Lemma 1.1.10, we can find an unramified group G0, a Borel subgroup B 0 �

G0, and a maximal torus T 0 �B 0, as well as an isomorphism

� W .G;B;T /˝ NQp
'
�! .G0;B 0; T 0/˝ NQp

such that the induced isomorphism of positive chambers � W C
'
�! C 0 commutes with

Galois averaging maps.
Recall that M is the centralizer of T1, which is a split torus in T . Set �0 D �.�/

and T 01 D �.T1/. Since � commutes with Galois averaging maps, the elements in
X�.T

0
1/ are equal to their own Galois averages, and hence are 	p-invariant. Hence

the subtorus T 01 � G
0 is defined over Qp and is again split. Let M 0 � G0 be the

centralizer of T 01. Then � carries M onto M 0.

Let �M 2X�.T / be a cocharacter such that �]M D 
M .ŒbM �/, and such that �M
and � have the same image in �1.G/, and set �0M D �.�M /. Let Œb0M � 2B.M

0/b be

the unique basic class with �0]M D 
M 0.Œb
0
M �/. Then, using Lemma 1.1.12, one sees

that .Œb0M �; ¹�
0º/ is G0-admissible. Hence, by what we saw in the unramified case,

there exists w 2W.G0; T 0/DW.G;T / such that .Œb0M �; ¹w � �
0º/ is M 0-admissible.

By Lemma 1.1.6, this is equivalent to �0]M D .w ��
0/] in �1.M 0/�p . This implies that

�
]
M � .w � �/

] in �1.M/�p is torsion, since its image under the averaging map in
1.1.2(1) is zero. Since this difference maps to zero in �1.G/�p , it follows, as above,

that �]M D .w � �/
], and hence, applying Lemma 1.1.6 again, that .ŒbM �; ¹w � �º/ is

M -admissible.

Remark 1.1.14
The previous proposition confirms that [37, Lemma 8.2(ii)] holds generally for qua-
sisplit groups as expected. (See their Remark 8.3. In fact they do not assume that ŒbM �
is basic in B.M/, but one can reduce to the basic case by [20, Proposition 6.2].) We
further extend the proposition to non-quasisplit groups below.

COROLLARY 1.1.15
Let G be an arbitrary connected reductive group over Qp with a Qp-rational Levi
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subgroup M . Let � W Gm!M be a minuscule cocharacter, and let ŒbM � 2 B.M/b
be such that .ŒbM �; ¹�º/ is G-admissible. Then there exists w 2 W.G;M/ WD

NG.M/=M such that .ŒbM �; ¹w ��º/ is M -admissible.

The assumptions of the corollary imply hypothesis 1.1.3(1) for ŒbM � (as an ele-
ment of B.M/ or B.G/). In other words, the corollary is vacuous unless hypothesis
1.1.3(1) is satisfied.

Proof
We reduce the proof to the quasisplit case. We will freely use the notation from

1.1.5. So let � WG
'
�!G� denote an inner twisting. Let P be a Qp-rational parabolic

subgroup with M as a Levi factor. Then the G�. NQp/-conjugacy class of �.P / is
defined over Qp . Since G� is quasisplit, there exists g 2 G�. NQp/ such that P � WD
g�.P /g�1 is Qp-rational. We replace � by g�g�1 so that �.P /D P �. Put M � WD

�.M/ so that �jM WM
'
�!M � is an inner twisting. We use � to identify W.G;M/'

W.G�;M �/ WDNG�.M
�/=M �. We may assume that B� � P � and T � �M �.

We have a chain of isomorphisms

B.M/b
�M
' �1.M/�p D �1.M

�/�p

��1
M�

' B.M �/b;

where the second map is a canonical isomorphism (cf. [36, Section 1.13]). Write
ŒbM� � 2 B.M

�/b for the image of ŒbM �. Let �� be the .B� \M �/-dominant rep-
resentative in X�.T �/ of the M �. NQp/-conjugacy class of �jM ı �. We claim that
.ŒbM� �; ¹�

�º/ is G�-admissible. Once this is shown, Proposition 1.1.13 implies that
there exists w� 2W.G�;M �/ such that .ŒbM� �; ¹w� � ��º/ is M �-admissible. Writ-
ingw 2W.G;M/ for the image ofw�, theM -admissibility of .ŒbM �; ¹w ��º/ follows
from this.

It remains to prove the claim, that is, to verify that 
G�.ŒbM� �/D .��/# and that
N�G�.ŒbM� �/ �G� N�

�. We will deduce this from the assumption that .ŒbM �; ¹�º/ is
G-admissible via compatibility of various maps. The former condition follows from
the construction of ŒbM� � and ��, using the functoriality of the Kottwitz map and the
fact that the canonical isomorphisms �1.M/ D �1.M

�/ and �1.G/ D �1.G�/ are
compatible with the Levi embeddingsM �G andM � �G�. For the latter condition,
since we know that N�. N�G.ŒbM �//�G� N�

�, it suffices to check that

N�

�
N�G
�
ŒbM �

��
D N�G�

�
ŒbM� �

�
:

By [23, Section 4.4], the Newton maps N�jM ı N�M W B.M/b ! N .M �/ and N�M� W
B.M �/b ! N .M �/ factor through the natural inclusion X�.AM�/Q � N .M �/,
where AM� is the maximal split torus in the center of M �. Also, the images
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N�jM . N�M .ŒbM �// and N�M�.ŒbM� �/ in X�.AM�/Q are determined by 
M .ŒbM �/ and

M�.ŒbM� �/ as elements of �1.M/�p D �1.M

�/�p (via the canonical isomorphism
X�.AM�/Q ' �1.M

�/�p ˝ Q). Since 
M .ŒbM �/ D 
M�.ŒbM� �/ by construction,
we obtain that N�jM . N�M .ŒbM �//D N�M�.ŒbM� �/. This implies that N�. N�G.ŒbM �//D

N�G�.ŒbM� �/ since the maps N .M/ ! N .G/ and N .M �/ ! N .G�/ induced
by Levi embeddings are compatible with N�jM , N� , and likewise for the maps
B.M/!B.G/ and B.M �/!B.G�/. The proof is complete.

1.1.16
Let b 2 G.L/. We continue to allow G to be non-quasisplit but assume hypothesis
1.1.3(1) on G and Œb�. Recall that the group Jb defined in 1.1.4 is equipped with

an inner twisting Jb
'
�! MŒb�. In particular, �G.Œb�/ induces a central cocharacter

�b;J WD! Jb defined over Qp .
If T 0 � Jb is a maximal torus over Qp , then a transfer of T 0 toMŒb� is an embed-

ding T 0 ,!MŒb� over Qp which is MŒb�. NQp/-conjugate to the composite

T 0 ,! Jb
'
�!MŒb�:

A transfer of T 0 to MŒb� always exists either if G is quasisplit (see [27, Lemma 2.1])
or if T 0 is elliptic (see [21, Section 10]).

COROLLARY 1.1.17
Assume hypothesis 1.1.3(1). Let .Œb�; ¹�º/ be an admissible pair for G with ¹�º
minuscule. Let T 0 � Jb be a maximal torus. Assume that its transfer j W T 0 ,!MŒb�

exists. Then .Œb�; ¹�º/ is j.T 0/-special.
In particular, there exists �T 0 2X�.T 0/ such that j ı�T 0 lies in theG-conjugacy

class ¹�º, and such that we have

�b;J DN�T 0 2X�.T
0/
�p
Q :

Proof
Note that Jb and MŒb� are both subgroups of G over L. After replacing b by a � -
conjugate satisfying (1.1.4.1), we may assume that Jb;L is identified with M�b and

that the inner twisting Jb
'
�!MŒb� is given by composing this identification with con-

jugation by an element h 2 G.L/ that carries �b to �G.Œb�/. Then in particular we
have �G.Œb�/D int.h/.�b;J / as G-valued cocharacters.

Now, view T 0 as a subtorus ofG, via j , let T1 � T 0 be the maximal split subtorus,
and let M �G be the centralizer of T1, so that T 0 is an elliptic maximal torus of M .
Let T2 � T1 be a maximal split torus in G containing T1. After conjugating our fixed
torus T � G, we may assume that T contains T2, so that M � T is a standard Levi
subgroup.
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The scheme of elements of MŒb�;L which conjugate the inclusion j0 W T 0 ,!

Jb
'
�!MŒb� into j is a T 0-torsor over L. By Steinberg’s theorem, this torsor is triv-

ial. Hence, there exists m 2MŒb�.L/ such that mj0m�1 D j . Now a simple com-
putation, using the definition of Jb , shows that bM D mh � b � �.mh/�1 commutes
with j.T 0.Qp//. Since T1.Qp/ is Zariski-dense in T1, this shows that bM belongs to
M.L/. Moreover, since �G.Œb�/ is defined over Qp , by definition, it factors through
T1, so �bM D �G.Œb�/ is central in M , and bM is in fact basic in M .

By Lemma 1.1.13, there exists w 2 W.G;T / such that .ŒbM �; ¹w � �º/ is M -
admissible. (Here we may take � 2X�.T / to be the dominant representative of ¹�º.)
It follows by Lemma 1.1.8 that .ŒbM �; ¹w ��º/ is T 0-special. In particular, there exists
�T 0 2 X�.T

0/ in ¹�º such that �bM D N�T 0 . Hence, if we think of N�T 0 as a Jb-
valued cocharacter via the natural inclusion T 0 � Jb , then �b;J DN�T 0 .

1.2. Global results

LEMMA 1.2.1
Let T be a torus over Q. For any prime p, the restriction map

ker
�
H 1.Q; T /!H 1.Qp; T /

�
!H 1.R; T /

is surjective.

Proof
For each place v of Q, there is a canonical isomorphism (see [21, (1.1.1)])

jv WH
1.Qv; T /

'
�!X�.T /

tors
�v
:

Write Njv for the composition of this map with the natural projection X�.T /tors
�v
!

X�.T /
tors
� . We then have an exact sequence (see [21, Proposition 2.6])

H 1.Q; T /!˚vH
1.Qv; T /

˚ Njv
��!X�.T /

tors
� :

So, given a class ˛1 2 H 1.R; T /, it suffices to find ` ¤ p and a class ˛` 2
H 1.Q`; T / such that Nj`.˛`/D � Nj1.˛1/. Indeed, once we have done this, we can
take the element .˛v/ 2 ˚vH 1.Qv; T /, with ˛v D 0 for v ¤1; `. This will be the
image of an element ˛ 2 H 1.Q; T / mapping to ˛1 2 H 1.R; T / and to the trivial
element in H 1.Qp; T /.

The remainder of the proof now proceeds as in [26, Lemme 7.16]. We choose a
finite Galois extension E � NQ over which T splits. Then complex conjugation on C

induces an automorphism �1 of E . We now choose `¤ p such that E is unramified
over ` and such that, for some place vj` of E , the Frobenius �v at v is conjugate
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to �1. We can further assume that v is induced from the embedding E ,! NQ`. If
g 2 	 conjugates �v into �1, then the automorphism of X�.T /, given by g, induces

an isomorphism X�.T /�1
'
�! X�.T /�` , which is compatible with projections onto

X�.T /� . We use this isomorphism to identify X�.T /tors
�1

with X�.T /tors
�`

. Now we
may take ˛` D�j�1` .j1.˛1//.

LEMMA 1.2.2
Let G be a connected reductive group over Q. Suppose that we are given a finite
set of places S of Q and, for each v 2 S , a maximal torus Tv � GQv . Then there
exists a maximal torus T � G such that, for all v 2 S , the inclusion TQv � GQv is
G.Qv/-conjugate to Tv �GQv .

Proof
This is [13, Lemma 5.5.3] (cf. [3, Lemma 5.6.3]).

1.2.3
Let .G;X/ be a Shimura datum. Given x 2X , we have the associated homomorphism
of R-groups:

hx W SD ResC=RGm;R!GR:

We also have the associated (minuscule) cocharacter

�x WGm;C
z 7!.z;1/
�����!Gm;C �Gm;C

'
�! SC

hx
�!GC:

The G.R/-conjugacy class of hx , and hence the G.C/-conjugacy class ¹�Xº1
of �x , is independent of the choice of x. Let E � C be the reflex field for .G;X/.
This is the field of definition of ¹�Xº1, and is a finite extension of Q.

The embedding �1 W NQ ,!C allows us to view E �C as a subfield of NQ, so that
we may regard ¹�Xº1 as a conjugacy class ¹�Xº of cocharacters of G NQ.

1.2.4
We will use the embedding �p to view ¹�Xº as a conjugacy class ¹�Xºp of cochar-
acters of G NQp .

PROPOSITION 1.2.5
Let Œb� 2 B.GQp / be a class such that .Œb�; ¹��1X ºp/ is admissible. Assume that
hypothesis 1.1.3(1) holds for Œb�. Then there exist a maximal torus T � G and an
element x 2X with hx factoring through TR (in which case ��1x 2X�.T /) such that
Œbbas.�x/� 2B.TQp / maps to Œb� 2B.GQp /.
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Proof
This proof is directly inspired by that of [28, Lemma 5.12].

By Corollary 1.1.17, there exist a maximal torus Tp �GQp (chosen to be elliptic
if GQp is not quasisplit so that the transfer to MŒb� exists) and a representative �p 2
X�.Tp/ of ¹�Xºp such that Œbbas.�

�1
p /� 2B.Tp/ maps to Œb� 2B.GQp /.

Choose y 2X , and let T1 �GR be a maximal torus such that hy factors through
T1. By Lemma 1.2.2, we can find a maximal torus T �G such that TQp (resp., TR)
is G.Qp/-conjugate to Tp (resp., G.R/-conjugate to T1).

Choose gp 2G.Qp/ such that gpTpg�1p D TQp , and let �T WGm; NQ! T NQ be the
unique cocharacter, which, after base change along �p , is identified with int.gp/.�p/.
Then Œbbas.�

�1
T /� maps to Œb�.

Choose g1 2G.R/ such that g1T1g�11 D TR. After base change along �1, the
cocharacter �T is G.C/-conjugate to �1 D int.g1/.�y/. Therefore, there exists an
element ! 2W.G;T /.C/ such that !.�1/D �T .

We can identifyW.G;T / with NGsc.T sc/=T sc. Let n 2NGsc.T sc/.C/ be any ele-
ment mapping to !. Since T sc is anisotropic over R, the element ! acts on T sc by
an R-automorphism. Hence n Nn�1 2 T sc.C/. The cocycle carrying complex conju-
gation to n Nn�1 determines a class ˛1 2 H 1.R; T sc/ depending only on ! (not on
the choice of n). By Lemma 1.2.1, we can find a class ˛ 2H 1.Q; T sc/ mapping to
˛1 2H

1.R; T sc/, as well as to the trivial class in H 1.Qp; T
sc/.

By construction, the image of ˛1 in H 1.R;Gsc/ is trivial. Therefore, by the
Hasse principle and Kneser’s vanishing theorem for simply connected groups, the
image of ˛ in H 1.Q;Gsc/ is trivial. This means that we can find g 2 Gsc. NQ/ such
that, for any � 2Gal. NQ=Q/, g�.g/�1 2 T sc. NQ/, and such that ˛ is represented by the
T sc. NQ/-valued cocycle � 7! g�.g/�1.

In particular, if we view g as an element of Gsc.C/ via �1, then there exists
t 2 T sc.C/ such that g Ng�1 D tn Nn�1 Nt�1.

Now, �1 and int.g�1/.�T / are conjugate under h D g�1tn 2 G.R/, and the
maximal torus int.g�1/.T NQ/ � G NQ is defined over Q. Replacing T with this torus,
and �T with int.g�1/.�T /, we see that �T is of the form �x for x 2X , and that the
pair .T;�x/ satisfies the conclusions of the proposition.

1.3. Shimura varieties of Hodge type
One may view Proposition 1.2.5 as showing the nonemptiness of Newton strata in the
special fiber of the Shimura variety associated with .G;X/. We will now make this
assertion precise in the case where .G;X/ is of Hodge type, where the moduli spaces
of abelian varieties give us a natural way to construct integral models.
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1.3.1
Recall that, given a symplectic space .V; / over Q, we can attach to it the Siegel
Shimura datum .GV ;HV /, where GV DGSp.V; / is the group of symplectic simili-
tudes and HV is the union of the Siegel half-spaces associated with .V; /.

Let .G;X/ be a Shimura datum of Hodge type. This means that there exists a
faithful symplectic representation .V; / of G over Q such that the associated map of
Q-groups G ,! GV extends to an embedding of Shimura data .G;X/ ,! .GV ;HV /.
We denote by E DE.G;X/ the reflex field of .G;X/.

1.3.2
Fix a Z.p/-lattice V.p/ � V on which  is Z.p/-valued. Set Vp D Zp ˝ V.p/, and let
Kp � GV .Qp/ (resp., Kp �G.Qp/) be the stabilizer of Vp � VQp .

Given a sufficiently small compact open subgroup Kp � G.Ap
f
/, we can find a

neat compact open subgroup Kp � GV .A
p

f
/ such that, with K DKpKp and K D

KpKp , the map of Shimura varieties

ShK WD ShK.G;X/! ShK WD ShK.GV ;HV /˝E

is a closed immersion (see [16, Lemma 2.1.2]).
The variety ShK admits an integral model SK over Z.p/, which is an open and

closed subscheme of the moduli scheme parameterizing polarized abelian schemes
.A;�/ up to prime-to-p isogeny, and equipped with additional level structures away
from p. Let A denote the universal abelian scheme over SK up to prime-to-p isogeny.

The set of compact open subgroups Kp � G.Qp/ for which one can choose V
and V.p/ so that this construction applies, includes the stabilizers of points x in the
building B.G;Qp/, and is closed under finite intersections. For the first point, note
that a result of Landvogt [25] implies that for any faithful representation V of G,
there is an injective map of buildings i W B.G;Qp/! B.GL.V /;Qp/. If .V; / is a
symplectic representation of G, and L1; : : : ;Lm � V are the lattices corresponding
to the vertices in the facet which is the closure of i.x/, then Kp is the stabilizer of
L1˚� � �˚Lm in .V m; m/. The closure under intersections follows in the same way,
by taking direct sums of lattices.

1.3.3
We will now use the notation from 1.1.2. Given a point s0 2 SK. NFp/, we obtain the
associated Dieudonné F -crystal D.As0/ over W . Set Ds0 D D.As0/Q. This is an
F -isocrystal over LDW Œp�1�, so that it is equipped with a � -semilinear bijection
' WDs0!Ds0 .

Given a finite extension L0 � NL of L and a point s 2 SK.L
0/ specializing to s0,

we obtain two canonical comparison isomorphisms:
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(1) The Berthelot–Ogus isomorphism:

H 1
dR.As=L

0/
'
�!L0˝LDs0 :

(2) The p-adic comparison isomorphism:

Bcris˝Qp H
1
ét.As; NL;Qp/

'
�!Bcris˝LDs0 :

The two isomorphisms are compatible with the de Rham comparison isomor-
phism:

BdR˝Qp H
1
ét.As; NL;Qp/

'
�!BdR˝L0 H

1
dR.As=L

0/: (1.3.3.3)

1.3.4
Let V dR be the (cohomological) de Rham realization of A. It is a vector bundle over
ShK with integrable connection, and its fiber at each point s 2 ShK.
/ (
 a field of
characteristic 0) is the de Rham cohomology H 1

dR.As=
/.
Let bV p.A/ be the prime-to-p Tate module of A. This is a smooth Ap

f
-sheaf over

ShK . Write V p for its dual; then the fiber of V p at any point s 2 ShK.
/, with 

algebraically closed, is identified with the étale cohomology group H 1

ét.As;A
p

f
/.

Finally, write Tp.A/ for the p-adic Tate module of A, and set Vp.A/D Qp ˝

Tp.A/. Write V p for the dual .Vp.A//_. We will set

bV .A/D bV p.A/� Vp.A/ and V ét D V
p � V p:

Fix tensors ¹s˛º � V ˝ such that G is their pointwise stabilizer in GL.V /. Here
and below, the superscript ˝ means the direct sum of V ˝n˝ V �˝m for all m;n� 0.
Then there exist global sections

¹s˛;dRº �H
0.ShK ;V

˝
dR/; ¹s˛;étº �H

0.ShK ;V
˝
ét /

with the following properties:
(1) Given an algebraically closed field 
 of characteristic 0 and a point s 2

ShK.
/, there exists an isomorphism

VAf
'
�!H 1

ét.As;Af /D V ét;s;

determined up to translation by G.Af /, carrying ¹s˛º to ¹s˛;ét;sº.
(2) For each ˛, let s˛;p be the projection of s˛;ét onto V p . Then, given a finite

extension L0=L and a point s 2 ShK.L0/, the isomorphism (1.3.3.3) carries
¹1˝ s˛;p;sº to ¹1˝ s˛;dR;sº.

The construction of these tensors is described in [16, Section 2.2]. The key point
is a theorem of Deligne showing that all Hodge cycles on abelian varieties over C are
absolutely Hodge. Property (1) now holds by construction. Property (2) is a theorem
of Blasius and Wintenberger [2].
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1.3.5
Fix a place vjp of E and an embedding k.v/ ,! NFp . We denote by

SK DSK.G;X/ ,!OE;.v/˝Z.p/ SK

the normalization of the Zariski closure of ShK in OE;.v/˝ SK .
We shall use that SK has the following extension property.

LEMMA 1.3.6
Let S be the spectrum of a discrete valuation ring R of mixed characteristic .0;p/,
with generic point �, and a map s W �!SK . Then the following are equivalent:
(i) s extends to S!SK .
(ii) A
 has good reduction.
(iii) A
 has potentially good reduction.

Proof
By construction, (i) is equivalent to s extending to a map S ! SK . Thus (i) and (ii)
are equivalent and imply (iii). If A
 has potentially good reduction, then there is a
finite flat R0=R such that s induces a map SpecR0! SK , and this necessarily factors
through S as this is true on the generic fiber.

PROPOSITION 1.3.7
For every point s0 2SK;k.v/. NFp/, there exists a canonical collection of '-invariant
tensors ¹s˛;cris;s0º � D

˝
s0

characterized by the following property: for any lift s 2
SK. NL/ of s0, the isomorphism 1.3.3(2) carries ¹s˛;p;sº to ¹s˛;cris;s0º.

Proof
The proof of this can essentially be found in [16, Proposition 2.3.5]; however, since
it is not given there in the generality we require, we review the key steps here. Write
L0 DEvL� NL; here, we are embedding Ev ,! NL via the fixed embedding NQp ,! NL.
Let bU be the formal scheme over W prorepresenting the deformation functor for the
p-divisible group As0 Œp

1�: this is formally smooth over W . Let bU be the formal
scheme obtained by completing SK ˝OE;.v/ OL0 along s0.

We have a finite map of normal formal schemes over OL0 , bU ! bUL0 . Taking
their rigid analytic fibers (in the sense of Berthelot; cf. [5, Section 7.3]), we obtain a
map bU an! bUan

L0 of smooth, irreducible rigid analytic spaces over L0. This map is a
closed immersion, since the map ShK! ShK is.

Since bUL0 is formally smooth, bUan
L0 is a rigid analytic open ball over L0, and,

for any two points s; s0 2 bUan. NL/, p-adic parallel transport using the Gauss–Manin
connection on V dR gives us a canonical isomorphism
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H 1
dR.As= NL/

'
�!H 1

dR.As0= NL/: (1.3.7.1)

Suppose now that s, s0 lie in bU an. NL/. Since the sections s˛;dR over ShK are horizontal
for the connection, and since bU an is smooth and irreducible over L0, for each ˛, this
isomorphism carries s˛;dR;s to s˛;dR;s0 .

Any s 2 bU an. NL/ is defined over a finite extension L00=L0. Since the tensors
¹s˛;p;sº are Gal. NL=L00/-invariant, by construction, the isomorphism 1.3.3(2) car-
ries ¹s˛;p;sº to '-invariant tensors ¹s˛;cris;sº � D

˝
s0

. To prove the proposition, it is
now enough to show that if s0 is a different lift, giving rise to '-invariant tensors
¹s˛;cris;s0º �D

˝
s0

, then, for each ˛, we have s˛;cris;s0 D s˛;cris;s .
By the compatibility of the isomorphisms 1.3.3(2) and 1.3.3(1), and by 1.3.4(2),

the preimage of 1˝s˛;cris;s (resp., 1˝s˛;cris;s0 ) inH 1
dR.As= NL/

˝ (resp., inH 1
dR.As0= NL/

˝)
under isomorphism 1.3.3(1) is exactly s˛;dR;s (resp., s˛;dR;s0 ). Therefore, we only need
to show that the composition

H 1
dR.As= NL/

'
�! NL˝Ds0

'
�!H 1

dR.A
0
s=
NL/

is the parallel transport isomorphism (1.3.7.1). This follows from [1, Section 2.9].

1.3.8
It follows from Proposition 1.3.7 and property1.3.4(1) that there exists an isomor-

phism L˝Q V
'
�!Ds0 carrying ¹1˝ s˛º to ¹s˛;cris;s0º. Indeed, the scheme of such

isomorphisms is a G-torsor by 1.3.4(1), and a G-torsor over L is trivial by Stein-
berg’s theorem. Under this isomorphism, the map ' W Ds0 ! Ds0 pulls back to an
automorphism of L˝V of the form � ˝ bs0 , with bs0 2G.L/ well-determined up to
� -conjugacy. Therefore, s0 determines a canonical class Œbs0 � 2B.GQp /.

Assume that �p W NQ ,! NQp has been chosen such that the associated embedding
E ,! NQp induces the place v.

LEMMA 1.3.9
The pair .Œbs0 �; ¹�

�1
X ºp/ is admissible.

Proof
This is a consequence of a result of Wintenberger (cf. corollary to [42, Proposi-
tion 4.5.3]).

PROPOSITION 1.3.10
Assume hypothesis 1.1.3(1) forGQp and Œb�. Then the pair .Œb�; ¹��1X ºp/ is admissible
if and only if there exists s0 2SK. NFp/ such that Œb�D Œbs0 �.
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Proof
The “if” part is Lemma 1.3.9

Suppose that Œb� 2 B.GQp / with .Œb�; ¹��1X ºp/ admissible. Then Proposi-
tion 1.2.5 gives us a maximal torus T � G and an x 2 X such that hx factors
through TR, and such that Œbbas.�

�1
x /� 2B.TQp / maps to Œb� 2B.GQp /.

Now, consider the 0-dimensional Shimura variety Sh0 D ShK\T.Af /.T;hx/.
This is a finite étale scheme over the reflex field ET DE.T;hx/. Fix a place v0jp of
ET lying above v. The normalization of SpecOET ;.v0/ in Sh0 gives us a canonical
normal integral model S0 for Sh0 over OET ;.v0/. Since all CM abelian varieties
over number fields have everywhere potentially good reduction, the map Sh0 !
ET ˝E ShK extends to a map of OET ;.v0/-schemes S0! OET ;.v0/ ˝OE;.v/ SK , by
Lemma 1.3.6.

Therefore, to prove the theorem, we may replace .G; Œb�; ¹��1X º/ with the triple
.T; Œbbas.�

�1
x /�;�

�1
x /, and reduce to the case where G D T is a torus. Choose any

point s0 2S0. NFp/. By Lemma 1.3.9, the pair .Œbs0 �;�
�1
x / is admissible for TQp . But

then we must have Œbs0 �D Œb�.

1.3.11
Given a scheme S in characteristic p, let F� Isoc.S/ be the category of F -isocrystals
over S (cf. [36, Section 3]). This is the isogeny category obtained by localizing the
category of F -crystals over S . It is a Qp-linear (nonneutral) Tannakian category,
whose identity object 1 corresponds to the structure sheaf on the crystalline site of S
over Zp .

Recall that for G a reductive group over Qp , an F -isocrystal with G-structure
over S (see [36, Definition 3.3]) is an exact faithful tensor functor

RepQp G! F� Isoc.S/:

Here RepQp
G denotes the category of finite-dimensional Qp-representations of G.

The crystalline realization of the universal abelian scheme A over SK gives us
a canonical object D in F� Isoc.SK ˝OE;.v/

NFp/. For each point s0 2SK. NFp/, the
restriction of D over s0 is realized by the F -isocrystal Ds0 .

The proof of the following proposition is rather technical. Since it is used only
in Theorem 1.3.14 and Corollary 1.3.16 below, and the rest of the paper does not
depend on it, we relegate it to an appendix, where we prove a stronger statement (see
Corollary A.7 below).

PROPOSITION 1.3.12
For each ˛, there exists a morphism

s˛ W 1!D˝
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whose restriction to any point s0 2SK. NFp/ is s˛;cris;s0 .

COROLLARY 1.3.13
The association V 7!D extends to an F -isocrystal with G-structure over SK ˝ NFp .

Proof
Let S be a connected component of SK . We shall again write D for DjS . Let CD

be the smallest full Tannakian subcategory of F� Isoc.S/ containing D . It suffices
to construct, for each S , an exact faithful tensor functor ! W RepQp

G! CD which
sends V to D .

First consider the associated L-linear category CD;L D CD ˝ L, which is
obtained from CD by tensoring the Hom sets by L, and adjoining the direct sum-
mands corresponding to idempotents in the endomorphism algebra of each object
(see [7, Section 2.1]). Choose s0 2 S. NFp/. Pulling isocrystals back to s0 induces
an L-fiber functor !s0 W CD;L! F� Isoc.s0/ which takes D to Ds0 , and CD;L is
equivalent to the category RepLGs0 , where Gs0 D Aut¹s˛;cris;s0 º

Ds0 , the group of
automorphisms of Ds0 respecting the tensors s˛;cris;s0 .

Let P.s0/ D Isoms˛ .VL;Ds0/, the scheme of L-linear maps from VL to Ds0
taking s˛ to s˛;cris;0. Then P.s0/ is a G-torsor. (It is necessarily a trivial G-torsor
by Steinberg’s theorem.) If W is in RepQp G, then W D D Gn.W � P.s0// is an
L-representation of Gs0 . We consider the composite functor

!L W RepQp
G
W 7!WD

! RepLGs0 ' CD;L:

It remains to show that the above functor factors through CD . For this, note that
any object of RepQp

G is the kernel of a map e W W ! W , where W is a direct
sum of objects of the form Vm;n WD V

˝n˝ V �˝m. Now !L.Vm;n/DD˝m˝D�˝n

lies in CD . Since e can be considered as a morphism 1!W � ˝W , we see that by
Proposition 1.3.12, !L.e/ lies in CD , and so does its kernel. Similarly, if e WW1!W2

is any map in RepQp
G, then e may be regarded as a map 1!W �1 ˝W2, so !L.e/

is in CD by Proposition 1.3.12.

THEOREM 1.3.14

(1) If s0 2SK. NFp/, then
®
s00 2SK. NFp/ W N�G

�
Œbs0

0
�
�
� N�G

�
Œbs0 �

�¯
�SK. NFp/

is a Zariski-closed subset.
(2) Let B.GQp ; ¹�

�1
X ºp/ � B.GQp / be the subset consisting of those classes Œb�

such that .Œb�; ¹��1X ºp/ is admissible. Then, for every Œb� 2 B.GQp ; ¹�
�1
X ºp/
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satisfying hypothesis (1), the subset

SŒb� D
®
s0 2SK. NFp/ W Œbs0 �D Œb�

¯
is nonempty and locally closed in SK. NFp/ for the Zariski topology.

(3) Let S Œb� be the closure of SŒb� in SK. NFp/; then we have an inclusion of
Zariski-closed subsets:

S Œb� �
G

N�G.Œb0�/�N�G.Œb�/

SŒb0�:

Proof
Assertions (1) and (3) follow from Corollary 1.3.13 and the argument of [36, Theo-
rem 3.6]. One reduces to the case G D GLn using [36, Lemma 2.2(iv)], and applies
Grothendieck’s semicontinuity theorem for Newton polygons of F -isocrystals (see
[15, Theorem 2.3.1]). Assertion (2) follows from (1) and Proposition 1.3.10.

As we noted in 1.1.3, the second part of the theorem implies that the stratum SŒb�
is nonempty if either Œb� is basic or GQp is quasisplit.

1.3.15
As in 1.1.5, we fix an inner twisting � W GQp ! G� over NQp , a Borel B� � G�,
and a maximal torus T � � B� over Qp . Let � be the B�-dominant representative
of � ı ¹�Xºp . There is a unique Œb	� 2 B.GQp ; ¹�

�1º/ with N�. N�G.Œb	�// D N�
�1

(which, of course, does not depend on the choice of B� or T �). The corresponding
subset SŒb�� �SK. NFp/ is the �-ordinary stratum. By Proposition 1.3.10 and Theo-
rem 1.3.14, this stratum is a nonempty Zariski-open subspace.

COROLLARY 1.3.16
Suppose that the special fiber SK;k.v/ is locally integral. Then SŒb�� is dense in
SK;k.v/.

Proof
If the special fiber is locally integral, it follows from [30, Corollary 4.1.11] that every
connected component of SK has irreducible special fiber. This implies that SŒb��
is dense in any connected component of SK;k.v/ it intersects, and since SŒb�� is
nonempty, it is dense in some connected component.

To see that it is dense in all connected components, suppose that s; s0 2SK. NQ/

with reductions s0; s00 2 SK. NFp/. If there is an isogeny As ! As0 taking s˛;ét;s to
s˛;ét;s0 , then there is an induced isogeny As0 ! As0

0
taking s˛;cris;s0 to s˛;cris;s0

0
, so
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that if s0 2 SŒb��, then s00 2 SŒb��. Since the group G.Af / acts transitively on the set
of connected components of SK;k.v/, this implies that SŒb�� is dense in SK;k.v/.

Remark 1.3.17
In the situation where p > 2 andKp is hyperspecial, so that it is of the formG.p/.Zp/

for a reductive model G.p/ of G over Z.p/, the main theorem of [16] shows that
SK;k.v/ is smooth. So the corollary applies to give the density of the �-ordinary
locus in this situation. This special case is already known due to Wortmann [44].

Using the results of the first author and Pappas, we can prove the following.

COROLLARY 1.3.18
Suppose that p > 2, that G splits over a tamely ramified extension, and that Kp is
a special parahoric. Then the embedding G ,! GV can be chosen such that SŒb�� is
dense in SK;k.v/.

Proof
This follows from Corollary 1.3.16 and [18, Corollary 0.3].

2. CM lifts and independence of `

2.1. Tate’s theorem with additional structures

2.1.1
We keep the notation introduced in Section 1.3, so that .G;X/ is a Shimura datum of
Hodge type, equipped with an embedding of Shimura data � W .G;X/ ,! .GV ;HV /,
and we have a finite map SK ! OE;.v/ ˝ SK , which is an embedding on generic
fibers.

We set

SKp D lim
 �

Kp�GV .A
p

f
/

SKpKp ; SKp D lim
 �

Kp�G.A
p

f
/

SKpKp :

The transition maps in the inverse systems are finite étale, and so the limits are
schemes over Z.p/ (resp., OE;.v/). By construction, we have a map

�p WSKp !OE;.v/˝ SKp :

Since G.Ap
f
/ acts naturally on the right on SKp and the generic fiber ShKp D

E ˝OE;.v/ SKp , compatibly with the map �p , this action extends to SKp .
The scheme SKp is open and closed in the moduli space of triples .A;�; "/,

where .A;�/ is a polarized abelian scheme up to prime-to-p isogeny, and
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" WAp
f
˝ V

'
�! bV p.A/

is an isomorphism of smooth Ap
f

-sheaves carrying the symplectic form  to an Ap;	
f

-

multiple of the Weil pairing bT p.�/ on the prime-to-p Tate module

bV p.A/D �lim
 �
p�n

AŒn�
�
˝Q:

2.1.2
For each ˛, let s˛;Ap

f
be the projection of s˛;ét onto H 0.ShKp ; .bV p.A//˝/. Since

SKp is normal, s˛;Ap
f

extends to a section over SKp .
Over SKp , the map �p induces an isomorphism

� WAp
f
˝ V

'
�! bV p.A/ (2.1.2.1)

carrying s˛ to s˛;Ap
f

for each ˛. In particular, for any s0 2SKp .
NFp/, the stabilizer of

the collection ¹s˛;Ap
f
;s0
º in GL.bV p.As0// is canonically identified with G.Ap

f
/.

2.1.3
Let AutQ.As0/ be the algebraic group over Q attached to the group of units in
the endomorphism algebra EndQ.As0/ WD Q ˝ End.As0/. We have the subgroup
Gm � AutQ.As0/ which acts on As0 by scalar multiplication. Let AutQ; .As0/ �

AutQ.As0/ denote the subgroup which preserves the polarization on As0 , up to a
scalar. There is a map c W AutQ; .As0/! Gm which takes an automorphism to its
action on the polarization. The kernel of c and AutQ; .As0/=Gm are compact over
R. In particular, any closed subgroup of AutQ; .As0/ is a reductive group over Q.

Now, AutQ.As0/ acts naturally on bV p.As0/ and Ds0 . Let Ips0 � AutQ.As0/ be

the closed subgroup that fixes the tensors ¹s˛;Ap
f
;s0
º � bV p.As0/

˝, and let Is0 � I
p
s0

be the largest closed subgroup that also fixes the tensors ¹s˛;cris;s0º � D
˝
s0

. Since
Is0 � I

p
s0 � G.A

p

f
/, we have Is0 � I

p
s0 � AutQ; .As0/. In particular, Is0 and Ips0

are reductive groups, and their quotients by the subgroup of scalars Gm are compact
over R.

Recall that As0 is an abelian variety up to prime-to-p isogeny (so the notion of
automorphism is understood accordingly). Set

Is0.Z.p//D Is0.Qp/\Aut.As0/:

We can view this as a subgroup of G.Ap
f
/ via the embeddings

Is0.Z.p//� Is0.A
p

f
/� Ips0.A

p

f
/�G.Ap

f
/:
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LEMMA 2.1.4
Suppose that g1; g2 2G.A

p

f
/ are such that

s0 � g1 D s0 � g2 2SKp .
NFp/:

Then g1 and g2 have the same image in Is0.Z.p//nG.A
p

f
/.

Proof
The proof is essentially contained in [17, Proposition 2.1.3].

The image of s0 in SKp .
NFp/ corresponds to the triple .As0 ; �s0 ; "s0/ over NFp

under the moduli interpretation of SKp . For g 2 G.Ap
f
/, the image of s0 � g in

SKp .
NFp/ corresponds to the triple .As0 ; �s0 ; "s0 ı g/. Therefore, if s0 � g1 D s0 � g2,

then in particular, we have an isomorphism of triples

.As0 ; �s0 ; "s0 ı g1/
'
�! .As0 ; �s0 ; "s0 ı g2/:

This corresponds to an automorphism � 2 Aut.As0/ (necessarily unique) such
that

bV p.�/ ı "s0 ı g1 D "s0 ı g2
and � carries ¹s˛;cris;s0
g1º �D

˝
s0
g1

to ¹s˛;cris;s0
g2º �D
˝
s0
g2

. Note that here we are
using Proposition 1.3.7.

The first condition implies that bV p.�/ fixes ¹s˛;Ap
f
;s0
º. Since under the natural

identifications Ds0 D Ds0
gi induced by the identifications As0 D As0
gi , for i D
1; 2, the tensors ¹s˛;cris;s0º are carried to ¹s˛;cris;s0
gi º, and � preserves the ¹s˛;cris;s0º.
Hence, � must belong to

Is0.Z.p//D Is0.Q/\Aut.As0/:

2.1.5
Choose a neat compact open Kp � G.Ap

f
/. Set K D KpKp , and suppose that the

image of s0 in SK. NFp/ is defined over Fq .
Then, for any m 2 Z�1, let �m;s0 denote the geometric, qm-power Frobenius of

As0 . Then �m;s0 fixes the absolute Hodge cycle components ¹s˛;Ap
f
;s0
º, and it fixes

the crystalline components ¹s˛;cris;s0º as these are '-invariant. Hence, �m;s0 2 Is0.Q/.
In particular, �m;s0 induces a semisimple automorphism �

p
m;s0 of bV p.As0/ which

preserves ¹s˛;Ap
f
;s0
º, and thus lies in G.Ap

f
/. Set

IAp
f
;m;s0
D CentG

A
p
f

.�pm;s0/:

If m jm0, then �pm0;s0 D .�
p
m;s0/

m0=m, and so we have a natural inclusion
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IAp
f
;m;s0
� IAp

f
;m0;s0

:

Set

IAp
f
;s0
D lim
�!
m

IAp
f
;m;s0

:

Then, form sufficiently divisible, the Zariski closure of the subgroup of Is0 generated
by �m;s0 is a torus, and we have IAp

f
;s0
D IAp

f
;m;s0

, which is independent of the choice
of q.

For each `¤ p, write I`;s0 for the projection of IAp
f
;s0

onto GQ` . For m suffi-

ciently divisible, this is the centralizer in GQ` of the projection �m;`;s0 of �pm;s0 .
Form sufficiently divisible, the Zariski closure inGA

p

f
of the subgroup generated

by �pm;s0 is a torus. Therefore, I`;s0 is a Levi subgroup of GQ` (over NQ`) and, in
particular, connected reductive.

The action of Is0 on bV p.As0/ gives us a canonical map of Ap
f

-groups

Ap
f
˝ Is0! IAp

f
;s0
:

For each `¤ p, this gives us a map i` WQ`˝ Is0! I`;s0 , which is injective.

PROPOSITION 2.1.6
Let `¤ p be a prime such that GQ` is split and such that the characteristic polyno-
mial of �m;`;s0 is split over Q`. Then i` is an isomorphism.

Proof
By Lemma 2.1.4, we have surjective maps

G.Ap
f
/! s0 �G.A

p

f
/! Is0.Z.p//nG.A

p

f
/;

where the first map is the orbit map g 7! s0 � g, and the composite is the natural
projection.

For any neat compact open Kp � G.Ap
f
/ with `-primary factor K` � G.Q`/,

this implies that the image in SK. NFp/ of s0 � I`;s0.Q`/ surjects onto the quotient
Is0.Q`/nI`;s0.Q`/=.K` \ I`;s0.Q`//. Since I`;s0.Q`/ commutes with �m;`;s0 for
m sufficiently divisible, this image is in fact contained in SK.Fqm/. In particular,
Is0.Q`/nI`;s0.Q`/=.K` \ I`;s0.Q`// is finite.

The proposition is now deduced just as in [17, Corollary 2.1.7].

2.1.7
We will prove that i` is an isomorphism for every `, including ` D p. This will be
done using a result of Noot. We first explain the definition of the I`;s0 and i` when
`D p.
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For any m 2 Z>0, the crystalline realization of As0 is defined over Qqm D

W.Fqm/Œp
�1�; therefore, the isocrystal Ds0 has a natural descent to an F -isocrystal

Dm;s0 over Qqm , and the '-invariant tensors ¹s˛;cris;s0º belong to D˝m;s0 . Write
q D pr , and let �m;cris;s0 D '

rm W Dm;s0 ! Dm;s0 be the crystalline realization of
�m;s0 . It is a '-equivariant isomorphism fixing the tensors ¹s˛;cris;s0º.

As in Section 1.3.8, for m sufficiently divisible (which we now assume), we can
find an isomorphism

Qqm ˝ V
'
�!Dm;s0 (2.1.7.1)

carrying, for each ˛, 1˝ s˛ to s˛;cris;s0 . Let ıs0 2G.Qqm/ be such that ' WDm;s0 !
Dm;s0 pulls back to the automorphism ıs0.� ˝ 1/ of Qqm ˝ V under this isomor-
phism. Then, by construction, the class Œbs0 � 2 B.GQp / associated with s0 is exactly
the � -conjugacy class of ıs0 .

Similarly, the automorphism �m;cris;s0 of Dm;s0 pulls back to an element
�m;p;s0 2 G.Qqm/, whose conjugacy class under lim

�!m
G.Qqm/ is independent of

all choices.
We have the relation

�m;p;s0 D ıs0�.ıs0/ � � ��
rm�2.ıs0/�

rm�1.ıs0/ 2G.Qqm/: (2.1.7.2)

Define an algebraic group Im;ıs0 over Qp as follows. For any Qp-algebra R, we
have

Im;ıs0 .R/D
®
g 2G.Qqm ˝Qp R/ W gıs0 D ıs0�.g/

¯
:

Then Qqm ˝Qp Im;ıs0 is naturally identified with the centralizer in GQqm of
�m;p;s0 . Since �m;p;s0 is semisimple (which follows from semisimplicity of �m;s0 ),
Im;ıs0 is a reductive group over Qp , and is connected for m sufficiently divisible. Set

Ip;s0 D lim
�!
m

Im;ıs0 ;

which is equal to Im;ıs0 for m sufficiently divisible. We have a canonical inclusion

ip W Is0 ˝Q Qp ,! Ip;s0 ;

and an inclusion Ip;s0 ,!G defined over Qqm for m sufficiently divisible.
Let Jıs0 be the Qp-group defined in 1.1.4. For anym, we have the obvious inclu-

sion Im;ıs0 � Jıs0 , and in particular Ip;s0 � Jıs0 .

2.1.8
Given a connected reductive group H over a field F of characteristic 0, write
Conj.H/ for the scheme over F parameterizing semisimple conjugacy classes in H .
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More precisely, the conjugation action of H on itself induces an action on the Hopf
algebra OH , and Conj.H/D Spec.OH /H .

Following Noot [32, Section 1.5], we will also define a certain quotient Conj0.H/
of Conj.H/ as follows. Let NF be an algebraic closure of F . Then H der

NF
is an almost

direct product of simple reductive factors Hi with i in some indexing set I .
Write ID � I for the subset of indices i such thatHi ' SO.2ni / for some ni � 4.

For each i 2 ID , set H 0i D O.2ni /. Since ID � I is Gal. NF=F /-stable, the finite NF -
group scheme

Out0.H/ NF D
Y
i2ID

H 0i =Hi

descends to a finite group scheme Out0.H/ over F , which acts canonically on
Conj.H/. We will write Conj0.H/ for the quotient of Conj.H/ for this action.

We call an element � 2H.F / neat if � is semisimple and the Zariski closure of
hxi, the group of points generated by x, is connected (i.e., a torus).

COROLLARY 2.1.9
For every `, the map

i` WQ`˝ Is0! I`;s0

is an isomorphism.

Proof
Choose `0 ¤ p a prime satisfying the conditions of Proposition 2.1.6 so that i`0 is
an isomorphism. Let m be sufficiently divisible such that �m;s0 2 AutQ.As0/ is neat,
I`;s0 is the centralizer of �m;`;s0 in GQ` if `¤ p (resp., in GQqm if `D p), and I`0;s0
is the centralizer of �m;`0;s0 in GQ`0

.
By [32, Théorèmes 1.8, 4.2], the images of the elements �m;`;s0 and �m;`0;s0

in Conj0.G/ lie in Conj0.G/.Q/, and are equal. In particular, I`;s0 and I`0;s0 have
the same dimension. Thus Q` ˝ Is0 and I`;s0 have the same dimension by Proposi-
tion 2.1.6, and since I`;s0 is connected i` is an isomorphism.

2.2. Independence of ` and conjugacy classes

2.2.1
Let l be a prime (possibly equal to p). An element ˛ 2 NQ is called an l-Weil number
of weight w 2 Z if ˛ is an l -unit and all its complex embeddings have absolute value
lw=2. (This l should not be conflated with the prime ` as in independence of `.)

Let H be an algebraic group over Q. We call an element � 2 H.Q/ an l-Weil
point if for some faithful representation W of H (defined over any field of charac-
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teristic 0), the eigenvalues of � on W are l -Weil numbers. If W 0 is any other repre-
sentation of H , then W 0 is isomorphic to a representation in the Tannakian category
generated by W . Hence the eigenvalues of � acting on W 0 are also l-Weil numbers,
and the definition does not depend on W .

We call � 2H.Q/ a Weil point if it is an l-Weil point for some l .
Keeping the notation introduced in Section 2.1, our first goal in this subsection is

to prove the following analogue of the result of Noot on independence of Frobenius
elements, used above.

PROPOSITION 2.2.2
Let � 2 Is0.Q/ be a neat Weil point. For each `, the image of i`.�/ in Conj0.G/ lies
in Conj0.G/.Q/ and does not depend on `.

2.2.3
To prepare for the proof of Proposition 2.2.2, we first show two lemmas. Recall that
a Q-torus T satisfies the Serre condition if its maximal R-split subtorus T1 � T is
Q-split. For an algebraic Q-group H , and F a number field, an element � 2H.F /
is called an l-unit if for every place v � l of F the group � generated is bounded in
H.Fv/.

LEMMA 2.2.4
Let T be a Q-torus which satisfies the Serre condition. An element � 2 T .Q/ is an
l-Weil point if and only if it is an l -unit. In particular, an element � 2 Is0.Q/ is an
l-Weil point if and only if it is an l-unit.

Proof
An element � 2 T .Q/ is an l-Weil point if and only if �.�/ is an l-Weil number for
any � 2X�.T /, as the direct sum of a basis of X�.T / is a faithful representation of
T . In particular, if � is an l -Weil point, then, for every � 2 X�.T /, the subgroup of
Q.�.�//	 generated by �.�/ is v-adically bounded for every place v � l of Q.�.�//.
Hence the subgroup generated by � is bounded in T .Qv/ for every place v � l of Q,
and � is an l-unit in T .Q/.

Conversely, if � is an l-unit, let T2 � T be the maximal subtorus such that T2.R/
is compact. Then T2 is defined over Q. If we think of � as defined over C, then � N�
is trivial on T2, and factors through T=T2. Hence, � N�.�/ 2Q	 is an l-unit and equal
to lw for some integer w. This shows that �.�/ has absolute value lw=2 under all
complex embeddings.

The final statement follows from the fact that every � 2 Is0.Q/ is semisimple,
and so is contained in some maximal torus T � Is0 . Any such maximal torus satisfies
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the Serre condition. In fact, the maximal R-split torus of T is either trivial, or the
subtorus Gm � Is0 , consisting of scalars, as in Section 2.1.3.

LEMMA 2.2.5
Let � 2 Is0.Q/ be an l -Weil point. Then for ` ¤ p the set of eigenvalues of i`.�/
acting on V NQ` does not depend on `, and for some w 2 Z, these eigenvalues are all
l-Weil numbers of weight w.

Proof
The independence of ` is standard and follows from the Lefschetz trace formula. Now,
recall from Section 2.1.3 that we have the homomorphism c W Is0!Gm whose kernel
I 1s0 is compact over R. For the second claim, it suffices to replace � by some power,
when we can write � D l i � �1, where �1 2 I 1s0.Q/ is an l-Weil point, and l i denotes
scalar multiplication by l i on As0 . It suffices to show that for any i`, the eigenvalues
of i`.�1/ acting on V NQ` have all their complex absolute values equal to 1.

Let T � I 1s0 be a maximal torus containing �1. Fix an isomorphism C' NQ`. For
each eigenspace of T acting on VC, the corresponding � 2 X�.T / satisfies � N�D 1,
as T is compact over R. Thus �.�1/ N�.�1/D 1, as �1 2 T .Q/.

2.2.6
The proof of Proposition 2.2.2 will follow Noot’s arguments with a modification at
one point where we will need to use Corollary 2.1.9. We begin by recalling some
definitions from [32, 2.3].

Let H be an absolutely almost simple group of classical type over a field of
characteristic 0, and let W be a finite-dimensional H -representation. We say that W
is admissible if it is a multiple of one of the following:
� The direct sum of the standard representation and its dual if H is of type A.
� The spin representation if H is of type B .
� The standard representation if H is of type C .
� The standard representation if H is of type D.
� The direct sum of the two half-spin representations if H is of type D.

In the case of type D, in the fourth (resp., fifth) case we say that .H;W / is of
type DH (resp., DR).

Now recall our embedding of Shimura data � W .G;X/ ,! .GV ;HV /. We say that
� is strictly accommodating if:
� For some totally real field K , Gder D ResK=QGs with Gs absolutely almost

simple, and the Gder-representation V has the form ResK=Q V s for an admis-
sible Gs-representation V s .
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� If .Gs; V s/ is of type DR, then for any character � W ZG !Gm, over NQ, the
�-part of V is an admissible representation of a factor of Gder

NQ
.

� For any proper, nonzero, G-stable subspace V 0 � V , if G0 denotes the image
ofG in AutV 0, then we require that .G0; V 0/ not satisfy the first two conditions
above.

Finally, we say that � is accommodating if there is a finite collection of accommo-
dating embeddings of Shimura data �j W .Gj ;Xj / ,! .GVj ;HVj /, j D 1; : : : ; s, and
an isomorphism of symplectic spaces

Qs
jD1 Vj ' V which induces a commutative

diagram

.G;X/ .GV ;HV /

Qs
jD1.Gj ;Xj / .

Qs
jD1 GVj ;

Qs
jD1HVj /

such that the map on the left induces an isomorphism Gder '
Qs
jD1G

der
j .

Note that Noot’s definitions are formulated for the Mumford–Tate group of an
abelian variety, rather than for Shimura data. The embedding � is accommodating in
our sense if and only if for some (or equivalently any) y 2 ShK.G;X/.C/ such that
the corresponding abelian variety Ay has Mumford–Tate group G, Ay is accommo-
dating in the sense of Noot.

2.2.7. Proof of Proposition 2.2.2
Suppose first that � W .G;X/ ,! .GV ;HV / is accommodating. In this case, the proof
is the same as [32, Théorème 2.4]. For the reader’s convenience, we indicate the
argument.

Let V ˝ NQ D
Ln
iD1Wi be a decomposition of the G-representation V into its

isotypic components over NQ. The subalgebra NQn � End NQ V NQ, which acts by scalars

on each factor Wi , descends to a product of fields L D
Qk
iD1Li � EndQ V , which

corresponds to a decomposition V D
Qk
iD1 Vi .

Let Pi;
;` denote the characteristic polynomial of � acting on Vi; NQ` . One first
shows that Pi;
;` does not depend on ` (see the proof of [31, Lemma 6.13]). Note that
since � is an l-Weil point for some l , the eigenvalues of Pi;
;` are l-Weil numbers.
Since � is neat, no two of these roots differ by a non-trivial root of 1; this is the
condition Noot calls faiblement net. Then applying [32, Lemmes 2.5, 2.6], one finds
that since Pi;
;` does not depend on `, the element i`.�/ 2 Conj0.G/. NQ`/ is also
independent of `, and lies in Conj0.G/. NQ/.

To reduce to the accommodating case, we again follow Noot’s argument in [32,
Section 3], though we formulate it in terms of Shimura data rather than Mumford–
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Tate groups. Lift s0 to a point s 2 ShK.G;X/. NQp/. The statement of the proposition
depends only on the abelian variety As equipped with the Hodge cycles correspond-
ing to ¹s˛º, and not on level structures. Thus, fixing an isomorphism NQp ' C, we
may assume that s is the image of a point of the form .h0; 1/ 2X �G.Af /.

The results of Deligne [8, Proposition 2.3.10] (see also [31, Theorem 2.12]) imply
that there exists an accommodating embedding �0 W .G0;X 0/ ,! .GV 0 ;HV 0/ together
with a map G0der! Gder which induces an isomorphism .G0 ad;X 0 ad/' .Gad;X ad/

of adjoint Shimura data. Here V 0 denotes a Q-vector space equipped with a symplec-
tic form  0. By the real approximation theorem applied to Gad, after conjugating the
map G0der!Gder by an element of Gad.Q/, we may assume that the image of X 0 in
X ad contains h0. IdentifyingG0 ad and Gad, let G00 be the connected component of the
identity of G0 �Gad G, and let X 00 be a G00.R/-orbit of .h0; h0/ 2X �Xad X 0. Finally,
we set V 00 D V ˚ V 0, where V 00 is equipped with the symplectic form  00 D ˚ 0,
and consider the embedding

�00 W .G00;X 00/! .GV 00 ;HV 00/

induced by � and �0.
Applying our previous constructions to each of �0 and �00, we obtain maps between

integral models

SK.G;X/ SK00.G
00;X 00/!SK0.G

0;X 0/;

where K 00 and K 0 are suitable level structures. Since h0 2X 00, s lifts to a point s00 2
SK00.G

00;X 00/. NQp/. As in [32, p. 68], using the Néron–Ogg–Shafarevich criterion
one sees that As00 has good reduction. So by Lemma 1.3.6, s00 specializes to s000 2
SK00.G

00;X 00/. NFp/ lifting s0. Let s00 2SK0.G
0;X 0/. NFp/ be the image of s000 . By the

construction of �0 and �00, there are maps of abelian varieties

As0 As00
0
!As0

0

corresponding to the projections of V 00 onto V and V 0.
Note that the action of G00 on V 00 respects the decomposition V ˚ V 0. Thus, the

projections V 00! V and V 00! V 0 are G00-invariant elements of End.V 00/, and we
may include them in the set of Hodge cycles used to define Is00

0
. This shows that the

surjections of G00 onto G and G0 induce the maps

Is0 Is00
0
! Is0

0
:

By Corollary 2.1.9, these maps are surjective and induce the isomorphisms

Is0=ZG ' Is000 =ZG
00 ' Is0

0
=ZG0 :
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Let T � Is0 be a maximal torus containing � , and let T 00 � Is00
0

be the preimage
of T . For some positive integer n, there exists a map T ! T 00 whose composite with
the projection T 00! T is multiplication by n. Let � 00 be the image of � in T 00.Q/ via
the map T ! T 00. This is an l -unit in T 00.Q/, and hence a neat Weil point in Is00

0
.Q/

by Lemma 2.2.4. It suffices to show Proposition 2.2.2 for � 00, as the result then follows
for �n, and � by [32, Proposition 3.2].

By Lemma 2.2.8 below, there is a map over Q-groups Is00
0
!G00 ab which agrees

with the map induced by i` for any `. Replacing � 00 by a power as above, we may
assume that the image of � 00, � 00 ab 2G00 ab.Q/, lifts to z 2ZG00.Q/. Write � 00 D � 001 z.
Note that � 00 ab is an l-Weil point as is z, for example, using Lemma 2.2.4. Since z
and � commute, � 001 is again an l-Weil point. It suffices to show that the image of
i`.�

00
1 / in Conj0.G00der/ � Conj0.G00/ is a Q-point which is independent of `. Since

G00der 'G0der, this is a consequence of the corresponding statement for the image of
� 001 in Is0

0
, which is the accommodating case considered above.

LEMMA 2.2.8
There is a map of Q-groups Is0 !Gab which agrees with the map induced by i` for
every `.

Proof
Recall that for `¤ p, we have the composite

Is0 ˝Q` ' I`;s0!GQ`!Gab
Q`
:

Similarly, we have a map Is0;Qqm ! Gab
Qqm

defined for m sufficiently divisible. We

have to show that all these maps are induced by a map of Q-groups Is0!Gab.
Consider a special point on ShK.G;X/, corresponding to a pair .T;hT /, where

T �G is a maximal torus and hT W ResC=RGm! T is a cocharacter. LetG0 DG�T ,
equipped with the symplectic representation V 0 D V ˚ V . Let X 0 DX � ¹hT º. Then
we have .G0;X 0/ ,! .GV 0 ;HV 0/. Applying our constructions, we obtain a map of
integral models SK0.G

0;X 0/!SK.G;X/. As in the proof of Proposition 2.2.2, after
possibly conjugating the map T !G by a point of Gad.Q/, we may assume that s0
lifts to s00 2SK0.G

0;X 0/. NFp/.
By construction, As0

0
is isogenous to As0 �AT , where AT is the reduction of

a CM abelian variety with T -action. The action of Is0
0

on As0 �AT preserves this
decomposition. This follows, for example, from the fact that the action of G.Q`/
preserves the corresponding decomposition on `-adic Tate modules for any ` ¤ p.
Restricting the action of Is0

0
to AT induces a map of Q-groups Is0

0
! T , and we

consider the composite Is0
0
! T !Gab. By Corollary 2.1.9, Is0

0
! Is0 , is surjective,

so the map Is0
0
! Gab factors through Is0 , as this is true over Q` for every `¤ p.
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This gives us the map Is0 ! Gab. One checks easily, using the construction, that it
has the required property.

2.2.9
In the remainder of this subsection, we will apply Proposition 2.2.2 to show a kind
of prerequisite for the existence of special points which reduce into a given isogeny
class. This asserts that maximal tori in Is0 transfer to G when G is quasisplit at p.
We begin with two lemmas.

LEMMA 2.2.10
Let T be a torus over Q satisfying the Serre condition. If l is a prime such that TQl is
a split torus, then the set of l-Weil points in T .Q/ forms a Zariski-dense subgroup of
T . Moreover, the set of neat l-Weil points contains a Zariski-dense subgroup of T .

Proof
It is clear that the l-Weil points form a subgroup, and we denote by T 0 � T its Zariski
closure. Then T=T 0 is again a torus which is split at l . Suppose that T=T 0 is nontriv-
ial. Then there is a nontrivial � 2X�.T=T 0/�X�.T /.

Let yl 2 T .Ql/ be a point such that �.yl/ 2 Q	l has positive valuation, and let
y 2 T .Af / be the point with component yl at l and trivial components away from
l . For any compact open subgroup KT � T .Af / the quotient T .Q/nT .Af /=KT is
finite. Hence there exist x 2 T .Q/ and a positive integer m with x D ym mod KT .
Then x is an l -Weil point by Lemma 2.2.4, and �.x/ 2 Q	

l
has positive valuation,

so x … T 0.Q/, which is a contradiction. It follows that T 0 D T , and the subgroup of
l-Weil points is dense in T .

For the second claim, let k be a number field which splits T , and let n denote the
number of roots of unity in k. Suppose that x 2 T .Q/ is an l-Weil point, let QS � T
be the Zariski closure of hxi, and let S � QS be the connected component of 1. Then
n � QS=S D ¹0º, so xn is a neat l -Weil point. As multiplication by n induces an isogeny
on T , this implies that the set of neat l-Weil points contains a Zariski-dense subgroup
of T .

LEMMA 2.2.11
Let S be an irreducible scheme of finite type over a field k, and let 	 � S.k/ be
a Zariski-dense subset. Let W � Autk S be a finite subgroup, and let � 2 Autk S .
Suppose that for every � 2 	 , there existsw 2W such thatw.�/D �.�/. Then � Dw
for some w 2W .
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Proof
We are grateful to the referee for supplying the following proof, which is simpler and
more general than our original one. For w 2 W , let 	w D ¹� 2 	 W w.�/ D �.�/º.
Then 	 D

S
w2W 	w and [w2W 	w D 	 D S , where 	w and 	 denote the closures

of 	w and 	 in S , respectively. Since S is irreducible, this implies that 	w0 is dense
in S for some w0 2W , and it follows that � Dw0.

2.2.12
Suppose that C and H are reductive algebraic groups over a field F of characteris-
tic 0. We denote by Aut0.H/ the preimage of Out0.H/ in the group scheme of auto-
morphisms AutH . (Recall Out0.H/ from 2.1.8.) Consider two maps i1; i2 W C !H

defined over some extensions F1, F2 respectively, of F . We say that i1 and i2 are
conjugate (resp., conjugate by an element of Aut0.H/) if there exists an extension
F3=F containing F1 and F2 as well as g 2 H.F3/ (resp., g 2 Aut0.H/.F3/) such
that i2 D gi1g�1 (resp., i2 D g.i1/ WD g ı i1).

PROPOSITION 2.2.13
The maps i` W Is0 ! G, defined over Q` if ` ¤ p and over Qqm for m sufficiently
divisible if `D p, are all conjugate by elements of Aut0.G/. In particular, if Gad has
no factors of type D, then the i` are all conjugate.

Proof
We consider all maps of groups over an algebraically closed field k containing all Q`
for `¤ p and Qqm for all m. Let us write I D Is0 for simplicity.

Suppose that T1; T2 �G are maximal tori over k, and suppose that � 2 T1.k/\
T2.k/. Then there exists g 2G.k/ conjugating T1 into T2 and fixing � . Indeed, letM
be the connected component of the identity in the centralizer of � in G. Then M is
a Levi subgroup of G, and T1; T2 �M are maximal tori, so conjugate in M . Now if
�1 2 T1.k/, �2 2 T2.k/, and if �.�1/D �2 for some � 2Aut0.G/.k/, then there exists
� 0 2Aut0.G/.k/ taking �1 to �2 and T1 to T2. To see this, apply the previous remark
to �.�1/D �2 2 �.T1/\ T2. We will use this observation below.

Choosem sufficiently divisible such that �m;s0 is neat. By the Weil conjecture for
abelian varieties, �m;s0 2 I.Q/ is a Weil point. Hence, by Proposition 2.2.2 (or Noot’s
original result), there is a �0 2G.k/ such that for each `, i`.�m;s0/ differs from �0 by
an element of Aut0.G/.k/. Let I0 �G denote the centralizer of �0. After modifying
i` by an element of Aut0.G/, we obtain maps j` W I ! I0 taking �m;s0 to �0. Choose
T � I and T0 � I0 maximal tori. By the observation above, applied with I in place
of G, after conjugating each j` by an element of I0.k/ we may also assume that j`
maps T to T0.
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Now fix primes `, `0, and set � D j`0 ı j�1` . Let � 2 T .Q/ be a Weil point. By
Proposition 2.2.2, there exists an element g 2Aut0.G/.k/ which conjugates j`.�/ to
j`0.�/. By the observation above (applied with T1 D T2 D T0), we may assume that g
induces an automorphism of T0. Note that the group of automorphisms of T0 induced
by an element of Aut0.G/ is finite. By Lemma 2.2.10, the set of neat Weil points in
T .Q/ is Zariski-dense. It follows by Lemma 2.2.11 that � jT is induced by a point
g 2Aut0.G/.k/.

By construction, � fixes �0, so g does also, and thus g induces an automorphism
of I0. As � and g are automorphisms of I0 which agree on T , they differ by conju-
gation by an element of t 2 T .k/. Replacing g by gt , we may assume that g induces
� on I0. This implies that i` and i`0 are conjugate by an element of Aut0.G/.k/.

COROLLARY 2.2.14
Let T � Is0 be a maximal torus, and suppose that G is quasisplit at p and has no
factors of type D. Then there is an embedding of Q-groups iT W T ,! G which is
conjugate to each of the embeddings i`jT . In particular, for each m> 0, there is an
element �m;0;s0 2G.Q/ conjugate to �m;`;s0 in G. NQ`/ for each `.

Proof

Let G� be the quasisplit inner form of G, and choose an inner twisting G
'
�!G� over

NQ. Let iT�
`
W T ,!G� be the embedding over NQ` induced by i`jT and the chosen inner

twisting. By Proposition 2.2.13, there exists an embedding NiT W T ,!G� defined over
NQ and conjugate to each of the iT�

`
. For `¤ p, i` is defined over Q` so the conjugacy

class of iT�
`

is invariant by Gal. NQ`=Q`/. Hence, by Chebotarev’s density theorem,
the stabilizer of the conjugacy class of NiT in Gal. NQ=Q/ is an open subgroup which
meets every conjugacy class in Gal. NQ=Q/. This implies that the conjugacy class of
NiT is invariant by Gal. NQ=Q/. It follows by [19, Corollary 2.2] that NiT is conjugate to
an embedding iT� W T ,! G� defined over Q. We view T as a subgroup of G� via
iT�.

Now T transfers to G at every prime `¤ p;1 as i` is defined over Q`. It trans-
fers to G at p, since G is quasisplit at p, and it transfers to G at infinity as the image
of T in Gad is anisotropic at infinity. Hence T transfers to G by [28, Lemma 5.6].

For the final statement, writing iT W T ,! G for the transfer, we take �m;0;s0 D
iT .�m;s0/.

2.3. CM lifts and the conjugacy class of Frobenius

2.3.1
We again return to the notation and assumptions of Section 2.1. Let s0; s00 2SKp .

NFp/.
Then s0, s00 are defined over Fq for some q, and we use the notation of Section 2.1.7.
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Write HomQ.As0 ;As0
0
/ for the scheme over Q that assigns to any Q-algebra

R the group R˝ Hom.As0 ;As0
0
/. (Here the Hom-spaces are taken in the prime-to-

p isogeny categories.) For any Q-algebra R, an R-isogeny from As0 to As0
0

is an
element

f 2HomQ.As0 ;As0
0
/.R/

such that there exists

f 0 2HomQ.As0
0
;As0/.R/

with f 0 ı f 2AutQ.As0/.R/.
Let Isog.As0 ;As0

0
/ be the functor on Q-algebras that assigns to any Q-algebra

R the set of R-isogenies from As0 to As0
0
. Note that this functor is either empty or

representable by a torsor over Q under AutQ.As0/.

2.3.2
For any prime `¤ p, denote by V`.As0/ be the `-adic Tate module of As0 , and let
Isog

`
.As0 ;As0

0
/ be the Q`-scheme that assigns to any Q`-algebra R the set of R-

linear isomorphisms

R˝Q` V`.As0/
'
�!R˝Q` V`.As0

0
/

that carry 1˝ �m;`;s0 to 1˝ �m;`;s0
0

for all m sufficiently divisible.
For any `¤ p, cohomological realization gives us a natural map of Q`-schemes:

i`.s0; s
0
0/ WQ`˝ Isog.As0 ;As0

0
/! Isog

`
.As0 ;As0

0
/:

Similarly, let Isog.Ds0 ;Ds00/ be the Qp-scheme that assigns to every Qp-algebra R

the set of 1˝ '-equivariant, R˝L-linear isomorphisms R˝Qp Ds00
'
�!R˝Qp Ds0

that carry Dm;s0
0

to Dm;s0 for m sufficiently large. We have a natural map of Qp-
schemes:

ip.s0; s
0
0/ WQp ˝ Isog.As0 ;As0

0
/! Isog.Ds0 ;Ds00/:

By Tate’s theorem on endomorphisms of abelian varieties and its crystalline analogue,
i`.s0; s

0
0/ is an isomorphism for all `.

2.3.3
For `¤ p, let P`.s0; s00/� Isog

`
.As0 ;As0

0
/ (resp., Pp.s0; s00/� Isog.Ds0 ;Ds00/) be

the closed subscheme parameterizing isomorphisms that carry, for each ˛, 1˝ s˛;`;s0
to 1˝ s˛;`;s0

0
(resp., 1˝ s˛;cris;s0

0
to 1˝ s˛;cris;s0 ). Let P.s0; s00/� Isog.As0 ;As0

0
/ be
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the largest closed subscheme (defined over Q) that maps into P`.s0; s00/ for every `,
including `D p. Note that P.s0; s00/ is either empty or an Is0 -torsor.

We make the following conjecture.

CONJECTURE 2.3.4
For every `, the map

P.s0; s
0
0/˝Q`! P`.s0; s

0
0/

induced by i` is an isomorphism.

When s00 D s0 this is simply Corollary 2.1.9.

LEMMA 2.3.5
The schemes P.s0; s00/ and P`.s0; s00/ depend only on s0 and s00 and not on the choice
of the collection of Hodge cycles ¹s˛º. In particular, the truth of Conjecture 2.3.4
depends only on s0, s00 and not on ¹s˛º.

If .G;X/ is of PEL type A or C , then Conjecture 2.3.4 holds.

Proof
From the definitions, it suffices to prove the first statement for P`.s0; s00/ for each `.
If ¹tˇ º is another collection of Hodge cycles defining G, then it suffices to consider
the case ¹s˛º � ¹tˇ º. If P`;1.s0; s00/ is the analogue of P`.s0; s00/ defined using ¹tˇ º,
then P`;1.s0; s00/� P`.s0; s

0
0/ and it suffices to show that if one scheme is nonempty,

then so is the other, as then each is an I`-torsor. However, each scheme is nonempty
if and only if �m;s0;` and �m;s0

0
;` are conjugate in G. NQ`/ (even for `D p).

Now suppose that .G;X/ is of PEL type A or C . In this case, G is the group
preserving a collection of endomorphisms ¹tˇ º together with the polarization  up
to a scalar. (Note that  does not have weight 0, and so does not quite fit into our
formalism involving ¹s˛º.) Then  induces a pairing

V`.As0/� V`.As0/!Q`.1/;

well defined up to a nonzero scalar, and similarly forDm;s0 . We refer to these pairings
as polarizations.

Define P1.s0; s00/ to be the subscheme of Isog.As0 ;As0
0
/ which preserves the

¹tˇ º and polarizations up to a scalar. For ` ¤ p, let P`;1.s0; s00/ � Isog
`
.As0 ;As0

0
/

(resp., Pp;1.s0; s00/ � Isog.Ds0 ;Ds00/) be the closed subscheme parameterizing iso-
morphisms that carry, for each ˇ, 1 ˝ tˇ;`;s0 to 1 ˝ tˇ;`;s0

0
(resp., 1 ˝ tˇ;cris;s0

0
to

1˝ tˇ;cris;s0 ) and which preserve polarizations up to a scalar.
By Tate’s theorem, for each ` the map
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P1.s0; s
0
0/˝Q`

�
�! P`;1.s0; s

0
0/

is an isomorphism. An argument as in the proof of the first part of the lemma shows
that this map can be identified with the map of Conjecture 2.3.4.

2.3.6
In the PEL case, when G is unramified at p, the above result is due to Kottwitz (see
[22, Lemmas 17.1, 17.2] and their proofs).

The restriction that .G;X/ be of typeA or C in the lemma above is in some sense
a question of definitions. When .G;X/ is of PEL type D, one cannot actually define
G � GSp.V / using endomorphisms and polarizations. Instead, there is a collection
¹tˇ º � V

˝ of a polarization and endomorphisms which define a group G0 �GSp.V /
whose connected component isG (see [22, p. 393]). An analogue of the last statement
of the lemma then holds for G0.

We will say that s0 and s00 are NQ-isogenous if the space P.s0; s00/ of 2.3.3 is
nonempty. We will say that they are isogenous if P.s0; s00/.Q/ is nonempty. If s0; s00 2
SKp .

NFp/, then we will say that s00 and s0 are NQ-isogenous (resp., isogenous) if this
condition holds when s0, s00 are viewed as Fq points for some q D pr .

2.3.7
Let s0 2SKp .

NFp/. Suppose that T � Is0 is a maximal torus. Let h W ResC=RGm!
GR be an R-morphism. Let ShKT;p .h/ be the pro-Shimura variety associated with
.T; ¹hº/ and KT;p DKp \ T .Qp/. An isogeny CM lift (resp., a NQ-isogeny CM lift)
of s0 with respect to T will consist of a triple .j; x; s00/, where
� j W T ,!G is an embedding defined over Q such that for each `, j is conjugate

over NQ` to the embedding

i` W TQ` ,! I`;s0 ,!GQ` ;

� x 2X is a point with hx factoring through j.TR/, and
� s00 2SKp .

NFp/ is a point admitting a lift to ShKT;p .hx/
such that s00 is isogenous (resp., NQ-isogenous) to s0.

Of course isogeny CM lifts can exist only when the i` are conjugate for all `. We
make the following conjecture.

CONJECTURE 2.3.8
If G is quasisplit at p, then for any s0 2SKp .

NFp/ and any maximal torus T � Is0 ,
s0 admits an isogeny CM lift with respect to T .

WhenKp is hyperspecial this conjecture is proved in [16]. The main point of this
section is to show that Conjecture 2.3.4 implies a version of Conjecture 2.3.8 with
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NQ-isogenies, when Gad has no factors of type D. In particular, we will show that a
NQ-version of this conjecture holds for .G;X/ of PEL type A or C .

2.3.9
Let T � G be a maximal torus, and let x 2 X with hx factoring through T . Let
s0 2SKp .

NFp/ be defined over Fq for some q D pr . Suppose that s0 is a reduction of
a NQp-valued point s of ShKT;p .hx/.

For anym 2 Z>0, the qm-Frobenius acts on As0 , and the corresponding automor-
phism �m;s0 2 AutQ.As0/ lies in Is0.Q/. Since T contains the Mumford–Tate group
of As (defined via some embedding NQp ,!C), there are natural embeddings:

T ,!AutQ.As/ ,!AutQ.As0/:

It follows from the definitions that this embedding exhibits T as a subtorus of Is0 .
Recall from Section 2.2.3 that an element � 2 T .Q/ is called a p-unit if the

subgroup it generates is contained in a compact subset of T .Q`/ for all `¤ p.

LEMMA 2.3.10
The element �m;s0 lies in T .Q/� Is0.Q/. It has the following properties:
(1) �m;s0 is a p-unit.
(2) Set �D ��1x 2X�.T /. Under the composition

T .Q/! T .Qp/!B.T /
�T
��!
'
X�.T /�p ;

�m;s0 is mapped to m logp q ��
].

Given any other element � 2 T .Q/ satisfying the two conditions above, there exists
r 2 Z>0 such that � rm;s0 D �

r .

Proof
It was already remarked in the proof of Proposition 2.2.13 that �m;s0 2 Is0.Q/ is a
Weil point, and hence a p-unit by Lemma 2.2.4.

Let us show (2). First, we note that for m sufficiently large, the embedding

TQp ,!Qp ˝ Is0 ,!Aut.Dm;s0/

arises from an isomorphism Qqm ˝ V
'
�!Dm;s0 . We can choose this isomorphism

so that the semilinear map ' WDm;s0 !Dm;s0 is identified with the automorphism
ıs0.� ˝ 1/ of Qqm ˝V for some element ıs0 2 T .Qqm/. By Lemma 1.3.9, the image
of ıs0 in X�.T /�p is �]. The assertion now follows from (2.1.7.2).

For the final assertion, note that since .T=Gm/R is compact, T .Q/ is a discrete
subgroup of T .Af /. Given � satisfying (1) and (2), set ˇ D ��1�m;s0 . We have to
show that ˇr D 1 for some r 2 Z>0.
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For `¤ p, the eigenvalues of ˇ acting on V`.As0/ all belong to Z	
`

; therefore, ˇ
lies in a compact subgroup of T .Ap

f
/. Moreover, ˇ is in the kernel of T .Qp/!B.T /,

and so it lies in the compact subgroup in T .Qp/ consisting of elements � -conjugate
to 1 over L. In sum, we find that ˇ lies in both the discrete subgroup T .Q/ and a
compact subgroup of T .Af /, and must therefore be of finite order.

PROPOSITION 2.3.11
Suppose that G is quasisplit at p, that Gad has no factors of type D, and that Con-
jecture 2.3.4 holds for .G;X/. Then for any maximal torus T � Is0 , s0 admits a
NQ-isogeny CM lift with respect to T .

Proof
We can view TQp as a maximal torus in Ip;s0 . By Corollary 1.1.17, there exists a
cocharacter �T 2 X�.T / defined over NQ whose image in G NQ lies in the conjugacy

class ¹�Xºp , and such that �ıs0 DN�T 2X�.T /
�p
Q .

By Corollary 2.2.14, there is an embedding i W T ,! G such that for all `, i is
G. NQl/-conjugate to the embeddings

i` W TQ` ,! I`;s0 ,!GQ` :

The cocharacter

�T;1 WGm;C! TC

obtained from �T via the embedding �1 W NQ ,! C is G.C/-conjugate to �y , for y 2
X . By modifying i within its G. NQ/-conjugacy class, as in Proposition 1.2.5, we can
assume that �T;1 is G.R/-conjugate to �y , and so arises from a homomorphism
hx W S! TR, for x 2X .

Let s00 2 SKp .
NFp/ be the reduction of a point of ShKT;p .hx/. Recall from the

preceding lemma that the qm-Frobenius �m;s0 2 Is0.Q/ is contained in T .Q/. We
claim that for m sufficiently divisible,

�m;s0 D �m;s00
2 T .Q/:

Here we view s0; s
0
0 2 SKp .Fqm/. Assuming this, we see that since i and i` are

conjugate for any `, �m;`;s0 and �m;`;s0
0

are conjugate in G. NQ`/. This implies that
P`.s0; s

0
0/ is nonempty, and hence P.s0; s00/ is nonempty by Conjecture 2.3.4, which

implies that s00 is a NQ-isogeny CM lift of s0 with respect to T .
To see the claim, note that the eigenvalues of �m;s0 acting on V`.As0/ for `¤ p

are qm-Weil numbers. So �m;s0 2 T .Q/ is a p-unit as in Lemma 2.3.10. We have

�m;p;s0 D ıs0�.ıs0/ � � ��
rm�2.ıs0/�

rm�1.ıs0/
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so using 1.1.2(4) we see that the image of �m;p;s0 under the composite

T .Qp/
�
�!X�.T /�p !X�.T /�p ˝Q

'
�!
N
X�.T /

�p
Q :

is equal to the image of rm�ıs0 .p/ D rmN�T .p/, which is just the image of
rm�T Dm logp q ��T in X�.T /�p ˝Q by 1.1.2(4). Hence for m divisible enough,
the image of �m;s0 in X�.T /�p is m logp q � �

]. It follows by Lemma 2.3.10 that
�m;s0 D �m;s00

for m sufficiently divisible.

2.3.12
We will show that in some cases, the result of Proposition 2.3.11 can be improved to
produce Q-isogeny lifts of s0. To do that, we need the following.

LEMMA 2.3.13
Suppose that s0 2SKp .

NFp/, that T � Is0 is a maximal torus, and that s0 admits a NQ-
isogeny CM lift .j; x; s00/ with respect to T . Let P T D P T .s0; s00/ be the subscheme
of P.s0; s00/ consisting of isomorphisms which respect the action of T . Then P T is a
T -torsor whose class in H 1.Qv;G/ is trivial for every place v of G.

Proof
By construction, As0 and As0

0
are equipped with an action of T , so the subscheme

P T is well defined. For each `, we denote by P T
`
.s0; s

0
0/ the subscheme of P`.s0; s00/

consisting of isomorphisms which respect the action of T . Since j is conjugate to i`
by an element of G. NQ`/, P T` .s0; s

0
0/ is nonempty. Hence, by Tate’s theorem, P T WD

P T .s0; s
0
0/ is nonempty, and thus is a T -torsor, which is a reduction of the Is0 -torsor

P.s0; s
0
0/.

Let I 0s0 denote the group of automorphisms of As0 respecting polarizations up
to a Q	-scalar. Consider the subscheme P � Isog.As0 ;As0

0
/ parameterizing iso-

genies respecting polarizations up to a Q	-scalar. Then P is an I 0s0 -torsor. By [22,
Lemma 17.1], the class of P in H 1.R; I 0s0/ is trivial, so the class of P T in H 1.R; T /

is trivial by [17, Lemma 4.4.5]. In particular, the class of P T in H 1.R;G/ is trivial.
Next, for `¤ p a finite prime, consider Isom¹s˛º.V`.As0/; V`.As0

0
//, the scheme

of isomorphisms which take s˛;`;s0 to s˛;`;s0
0
. (Note that we do not require that the

isomorphisms respect Frobenius.) This scheme is a G-torsor over Q`, obtained from
P T via the natural map T !G over Q`. If Qs0; Qs00 2SKp are lifts of Qs0, Qs00, then this
G-torsor may also be identified with Isom¹s˛º.V`.AQs0/; V`.AQs00//. However, from the
definition of the universal abelian scheme over SKp , one sees that this last torsor is
trivial.

It remains to check that the image of P T in H 1.Qp;G/ is trivial. Fix q such that
s0, s00 are defined over Fq . As above, by Steinberg’s theorem, for m sufficiently large,
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we may fix isomorphisms

Dm;s0 'Qqm ˝ V 'Dm;s0
0

which take s˛ to s˛;cris;s0 and s˛;cris;s0
0
, respectively, and respect the action of T . Then

' on Dm;s0 and Dm;s0
0

are given by ıs0.� ˝ 1/, ıs00.� ˝ 1/, respectively, for ıs0 ,
ıs0
0
2 T .Qqm/.
Recall that for any reductive groupH over Qp , we have isomorphisms (see [20])

H 1.Qp;H/'H
1
�
Gal.Qur

p=Qp/;H
�
'
�
�1.H/�p

�
tors:

Here the first isomorphism is given by Steinberg’s theorem, and the second isomor-
phism takes a cocycle c to 
H .c� /, � the Frobenius.

The class of P T in H 1.Qp; T / corresponds to the cocycle sending � to ıs0
0
ı�1s0 .

By Lemma 1.3.9, ıs0 and ıs0
0

have the same image in �1.G/�p , so that the class of
this torsor in H 1.Qp;G/ is trivial, as required.

COROLLARY 2.3.14
With the assumptions of Proposition 2.3.11, suppose that Gder is simply connected
and that Gab satisfies the Hasse principle

ker1.Q;Gab/ WD ker
�
H 1.Q;Gab/!

Y
v

H 1.Qv;G
ab/
�
D 0:

Then for any maximal torus T � Is0 , s0 admits a Q-isogeny CM lift with respect to
T .

Proof
By Corollary 2.3.11, s0 admits a NQ-isogeny CM lift with respect to T , say, .j; x; s00/.
Let P T be as in Lemma 2.3.13. For every place v of Q, the class of P T is trivial in
H 1.Qv;G/ and hence in H 1.Qv;G

ab/. Since Gab satisfies the Hasse principle, the
class of P T in H 1.Q;Gab/ is trivial.

As P T has trivial image in H 1.R;G/ and H 1.Q;Gab/, and Gder is simply con-
nected, P T has trivial image in H 1.Q;G/ by [3, Theorem 5.12], so P T arises from
a point ! 2 .G=T /.Q/. Now let j 0 D !�1j!. Then j 0 W T ! G is defined over Q.
Since the image of ! in H 1.R; T / is trivial, !�1hx! corresponds to a point x0 2X
and factors through j 0.TR/ (cf. [17, Section 4.2.2]). If s000 2 SKp .

NFp/ is a point
admitting a lift to ShKT;p .hx/, then P.s0; s000/ is a trivial Is0 -torsor by [17, Propo-
sition 4.2.6], so .j 0; x0; s000/ is an isogeny CM lift with respect to T .

COROLLARY 2.3.15
Suppose thatG is quasisplit at p, and that .G;X/ is of PEL typeA or C . Then for any
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maximal torus T � Is0 , s0 admits a NQ-isogeny CM lift with respect to T . Moreover,
s0 admits a Q-isogeny CM lift with respect to T unless G is of type An with n even.

Proof
The first statement follows from Proposition 2.3.11 and Lemma 2.3.5. For the second
statement, note that if .G;X/ is of PEL type A or C , then Gder is simply connected,
and Gab satisfies the Hasse principle unless G is of type An with n even (see [22,
Section 7]). Hence the second statement follows from Corollary 2.3.14.

Remarks 2.3.16
(1) In fact, the corollary can be shown for certain groups G of type An with n even.
Namely, if it is a unitary similitude group (in n C 1 variables) arising from a CM
quadratic extension F of a totally real field FC with ŒFC W Q� odd, then the Hasse
principle holds for G by the proof of Lemma 3.1.1 of [38], so the above proof goes
through.

(2) As in Section 2.3.6, one can extend the proof of the first statement of the
last corollary to the case of type D if one works with the disconnected group G0.
For an algebraically closed field k, two points of G.k/ give rise to the same point
of Conj0.G/ if and only if they are conjugate in G0.k/. Using this, one can deduce a
version of Corollary 2.2.14 from Proposition 2.2.13 and use it to deduce an analogue
of the first part of Corollary 2.3.15, but where NQ-isogeny is defined using the tensors
¹tˇ º. We leave this as an exercise for the reader.

(3) In [47], Zink proves that for PEL Shimura varieties, and primes of good reduc-
tion, every point has an isogeny CM lift with respect to T . However, his definition of
isogeny is required to respect only endomorphisms and not polarizations. In that case,
the analogue of P.s0; s00/ is a torsor under the group of units in a product of (possibly
skew) fields. Any such torsor is trivial, for example, because a Q-vector space has a
Zariski-dense set of rational points, or alternatively because in this case the group is
a product of inner forms of GLn.

Thus, the first part of Corollary 2.3.15 recovers Zink’s result in this case. How-
ever, the second part is really stronger. Even for the moduli space of principally polar-
ized abelian varieties the deduction of this statement using Honda–Tate theory does
not quite seem to be in the literature. Although it is a special case of a result of [17],
the techniques used there are quite different.

(4) The condition on Gab in Corollary 2.3.14 and the second part of Corol-
lary 2.3.15 is used to show that the class of P T in H 1.Q;Gab/ is trivial. In fact,
this should follow from the fact that s0, s00 lie on the same Shimura variety, since the
motive obtained from As0 and any representation of G which factors through Gab

should be constant; for example, this holds in characteristic 0 at the level of variations
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of Hodge structure. Even when Gder is not simply connected, there is a corresponding
cohomology group H 1.Q;G= QG/ in which the image of P T should be trivial (here QG
is the simply connected cover of Gder), which would be enough for the argument of
Corollary 2.3.14. Unfortunately, we do not know how to make these motivic heuristics
rigorous.

(5) We have not thought seriously about which of these results can be generalized
to the case of abelian-type Shimura varieties. Integral models for these are usually
defined using those for an auxiliary Shimura variety of Hodge type. Thus, it is quite
plausible that one can directly deduce analogues of our results on nonemptiness of
Newton strata and special point liftings. Of course, in this case the construction of
the Newton strata would usually also involve the auxiliary Shimura variety. A more
interesting problem is the definition and nonemptiness of the torsors P.s0; s00/, given
the lack of a good general definition of an isogeny of motives (see the recent paper of
Yang [45] for the case of K3 surfaces).

Appendix. Construction of isocrystals with G-structure
The purpose of this appendix is to prove Proposition 1.3.12. The main tool is Falt-
ings’s comparison theorem (see [10, p. 62]), as well as de Jong’s theorem on alter-
ations in [6] and a result of Ogus on proper descent for convergent isocrystals in [33].

A.1
Let k be a perfect field of characteristic p, and let W DW.k/. We equip k and W
with the trivial log structure.

Let X be a scheme overW equipped with a fine saturated log structure. A p-adic
formal log scheme T over W is a p-adic formal scheme T=W together with the data
of a compatible system of log structures on Tn D T ˝Z Z=pnZ for n � 1 such that
the inclusions Tn ,! TnC1 are exact.

An enlargement of X is a triple .T; I; iT / consisting of a p-adic formal log
scheme T over W , an ideal of definition I of T , and a map of log schemes iT W
T0 ! X , where T0 is the subscheme of T defined by I . We say that .T; I; iT / is
reduced if T0 is reduced. We say that .T; I; iT / is a PD-enlargement if I is equipped
with divided powers extending the divided powers on pW .

As in [33, Section 2.7], we can use the definition of an enlargement to define the
category of convergent log isocrystals (cf. [34, Section 3]). This category does not
change if we allow I to be any p-adically closed ideal as in [10, p. 258]. Indeed,
the value of a convergent log isocrystal on such an enlargement can be defined as the
inverse limit of its values on .T; .I;pn/; iT;n/ for n� 1, where IT;n is the composite

Tn ,! T0
iT
!X and Tn is defined by .I;pn/.
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The category of convergent log isocrystals also does not change if we define it
using only reduced enlargements. In particular, it depends only on X ˝Z Z=pZ, and
not on X , and is equipped with a Frobenius pullback functor F �. Thus, we have
the notion of a convergent log F -isocrystal (again cf. [34, Section 3]). When the log
structure on X is trivial, this agrees with the definitions of convergent isocrystal and
F -isocrystal in [33].

The log crystalline site ofX is the site whose objects consist of PD-enlargements.
As in [30, Section 1.3.3], a log Dieudonné crystal over X is a crystal M in the
log crystalline site of X together with maps F �M !M and M ! F �M whose
composite in either order is multiplication by p. As in [33, Proposition 2.18] or [34,
Remark 16], a log Dieudonné crystal over X gives rise to a convergent F -isocrystal
on X .

A.2
Let S be a flat, normal, finite-type W -scheme, let D � S be a relative Cartier divisor,
and let j W U DD � S ,! S , the inclusion. We consider S as a log scheme equipped
with the log structure j�OU , and for n � 1, we give S ˝Z Z=pnZ the induced log
structure.

Let � WA! U be an abelian scheme which extends to a semi-abelian scheme
over S . We denote by L the étale local system R1��Qp on UK;ét. We denote by E

the convergent F -isocrystal on U attached to the p-divisible group AŒp1�.
By [30, Proposition 1.3.5], there is a log Dieudonné crystal on S attached to A,

and hence a convergent log F -isocrystal E log on S , whose restriction to U is E , and
whose formation is compatible with Cartier duality.

A.3
Let K0 DW Œ1=p�, and let K=K0 be a finite extension. Fix an algebraic closure NK �
K , and let GK D Gal. NK=K/. We keep the above notation, but we now assume that
S is semistable over OK and that S0 [ D � S is a normal crossing divisor. Here
S0 D S ˝OK k.

Above we considered S with the log structure given by D. We denote by Svlog

the scheme S considered with the log structure given by S0[D. There is a map of log
schemes i W Svlog! S . We set Evlog D i�.E log/, a convergent F -isocrystal on Svlog.

LEMMA A.4
With the above notation, L and Evlog are associated in the sense of [10, p. 258].

Proof
As already remarked in [10], Evlog gives rise to a convergent isocrystal in the sense of
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[10, p. 258]. The proof of the lemma is entirely analogous to the argument given in
[9, Section 6] (cf. also [30, Proposition A.22]) for the case of log schemes.

A.5
We now return to the assumptions of A.2, so we no longer assume that S is semistable.

Let s W 1! L˝ be a map of étale local systems over U . That is, s is a global
section of L˝. For any finite K 0=K in NK , with residue field k0, and any � 2 U.OK0/,
��.s/ corresponds to a section

s0;� DDcris
�
��.s/

�
W 1! ��.E/˝:

PROPOSITION A.6
If S is proper and semistable over OK , and S0 [D � S is a normal crossing divisor,
then there is a morphism of convergent log F -isocrystals s0 W 1! E log˝ over S such
that ��.s0/.W.k0//D s0;� for all K 0=K , k0, and � as above

Proof
Let � 2 OK be a uniformizer, and let E.T / be an Eisenstein polynomial for � . Let
RDW ŒŒT ��, and for n� 1, let Rn be the p-adic completion of W ŒT;E.T /ni=iŠ�. We
view OK as an Rn-algebra, and so an R-algebra via T 7! � . It suffices to construct
s0 étale locally on S .

Let SpecA be an étale neighborhood of S which admits an étale map

$ W SpecA!OK Œt1; : : : ; td �=.t1 � � � te � �/

for some e 	 d , and such that the log structure on SpecA is given by the preimage
of the Cartier divisor defined by t1 � � � tr for some e 	 r 	 d . Let OA be the p-adic
completion of A. Thus, Spf OA is a p-adic formal log scheme over OK , which is for-
mally smooth when OK is equipped with the log structure OK � ¹0º. Lift Spf OA to
a formally smooth .p;T /-adic formal log scheme YR D Spf OAR over R (defined as
in the p-adic case). Thus, OAR is formally étale over the .p;T /-adic completion of
RŒt1; : : : ; td �=.t1 � � � te�T /, with the log structure given by the preimage of the Cartier
divisor defined by t1 � � � tr .

We consider the Frobenius lift F on OAR induced by ti 7! t
p
i , and T 7! T p . Let

Yn be the base change of YR to Rn. Then F induces a lift of Frobenius on Yn. Note
that Yn is an enlargement of Svlog, and so we may evaluate Evlog on it.

By Lemma A.4 and [10, Section 5, Corollary 4, Remark 1)], s gives rise to
a Frobenius-invariant, parallel section s0 of Evlog.Y1/

˝. Note that the result there
applies because Evlog arises from a log Dieudonné crystal on Svlog. Hence for any m,
n we can apply that result to the log F -crystal obtained by multiplying the Frobenius
on Evlog˝n ˝ Evlog�˝m by a high enough power of p, and replacing L˝n ˝ L�˝m
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by a suitable Tate twist. Since s0 is Frobenius-invariant, it gives rise to a section of
Evlog.Yn/

˝ for any n� 1.
Now let Y hn be the p-adic formal log scheme with the same underlying formal

scheme as Yn, but with the log structure defined by teC1 � � � tr . Then Y hn is an enlarge-
ment of S , and from the definitions we have E log.Y hn /D Evlog.Yn/. Since YR is for-
mally smooth over W (as in [33, Theorem 2.11]), the sections s0 2 E log.Y hn /

˝ give
rise to a morphism of convergent F -isocrystals s0 W 1! E log˝ over SpecA. The rela-
tion ��.s0/.W.k0// D s0;� follows from the functoriality of the map constructed in
[10].

COROLLARY A.7
For any S (not assumed proper or semistable), and s W 1! L˝ as above, there exists
a unique morphism of convergent F -isocrystals over U ,

s0 W 1! E˝

such that for every K 0=K finite, and � as above, ��.s0/.W.k0//D s0;� .

Proof
By [6, Theorem 6.5], after replacing K by a finite extension, there exists a proper
truncated hypercovering

U1⇒ U0! U

such that for i D 0; 1 there is a dense open immersion Ui ,! Si , with Si proper and
semistable, and .SinUi / [ Si ˝OK k is a normal crossing divisor in Si . By proper
descent for convergent isocrystals (see [33, Theorem 4.6]), it suffices to prove the
proposition with Ui in place of U . Thus we may replace U by Ui , and S by Si ,
and assume that S is proper and semistable, and S0 [D � S is a normal crossing
divisor. Then the required map is obtained by restricting the map s0 W 1! E log˝ of
Proposition A.6 to U . The uniqueness is easily deduced from [33, Theorem 4.1].
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