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GROUPS WITH INFINITE FC-CENTER HAVE THE SCHMIDT

PROPERTY

YOSHIKATA KIDA AND ROBIN TUCKER-DROB

Abstract. We show that every countable group with infinite FC-center has the Schmidt

property, i.e., admits a free, ergodic, measure-preserving action on a standard probability

space such that the full group of the associated orbit equivalence relation contains a non-

trivial central sequence. As a consequence, every countable, inner amenable group with

property (T) has the Schmidt property.

1. Introduction

Let G be a countable group. Throughout the paper, we equip each countable group

with the discrete topology unless otherwise stated. We say that G is inner amenable

if there exists a sequence (ξn) of non-negative unit vectors in ℓ1(G) such that for each

g ∈ G, we have ‖ξgn − ξn‖1 → 0 and ξn(g) → 0, where the function ξgn on G is defined

by ξgn(h) = ξn(ghg
−1) for h ∈ G. Inner amenability was introduced by Effros [Ef] as a

necessary condition for the group von Neumann algebra of G to have property Gamma

when G satisfies the ICC condition. Inner amenability also arises in the context of p.m.p.

actions of G. For brevity, by a p.m.p. action of G we mean a measure-preserving action

of G on a standard probability space, where “p.m.p.” stands for “probability-measure-

preserving”. Let us say that a free ergodic p.m.p. action of G is Schmidt if the associated

orbit equivalence relation admits a non-trivial central sequence in its full group. We say

that G has the Schmidt property if G has a free ergodic p.m.p. action which is Schmidt.

While the Schmidt property of G implies inner amenability of G ([JS, p.113]), the converse

remains an open problem which was first posed by Schmidt [Sc, Problem 4.6]. Recent

advances have lead to the resolution of some related long-standing problems concerning

the relationship between inner amenability of groups and various kinds of central sequences

([Ki1] and [V]).

If the functions ξn witnessing the inner amenability of G are further required to be

G-conjugation invariant, i.e., they each satisfy ξgn = ξn for all g ∈ G, then an algebraic

constraint is imposed on G. In fact, the existence of such a sequence (ξn) is equivalent to

G having infinite FC-center. The FC-center of G is defined as the subgroup of elements

g ∈ G whose centralizer, denoted by CG(g), is of finite index in G. The FC-center of G is

a normal (in fact, characteristic) subgroup of G.
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In studying the structure of inner amenable groups, the second author [TD] introduced

the AC-center of G, which is defined as the subgroup of elements g ∈ G for which the

quotient group G/
⋂

h∈G hCG(g)h
−1 is amenable. The AC-center of G is also a character-

istic subgroup of G and contains the FC-center of G. If G has infinite AC-center, then

G is inner amenable; this follows from the fact that for each element g in the AC-center

of G, the conjugation action of G on the conjugacy class of g factors through an action

of the amenable group G/
⋂

h∈G hCG(g)h
−1. If G is linear, or more generally fulfills a

certain chain condition on its subgroups, then inner amenability of G is equivalent to G

having infinite AC-center; in this case, the AC-center plays a crucial role in describing

the structure of G, and this resulting structure can in turn be used to deduce that G has

the Schmidt property ([TD, Theorems 14 and 15]). However, there are many groups with

infinite AC-center or FC-center, but which do not satisfy the relevant chain condition, so

that the results of [TD] do not apply to these groups. In this paper, we solve Schmidt’s

problem for them affirmatively:

Theorem 1.1. Every countable group with infinite AC-center has the Schmidt property.

In fact, the Schmidt property for groups with infinite AC-center but finite FC-center

follows from the constructions in [TD] (see Subsection 3.1). Thus, most of the proof of

Theorem 1.1 is devoted to the case of groups with infinite FC-center.

The following corollary is an immediate consequence of Theorem 1.1 because every inner

amenable group with property (T) has infinite FC-center.

Corollary 1.2. Every countable, inner amenable group with property (T) has the Schmidt

property.

It is widely known that property (T) is useful for constructing interesting examples re-

garding the non-existence of non-trivial central sequences in various contexts (e.g., [DV],

[Ki1], [KTD], [PV] and [V]). By contrast, Corollary 1.2 says that there exist no coun-

terexamples to Schmidt’s question among groups with property (T).

As mentioned above, the proof of Theorem 1.1 is reduced to that for a countable group

G with infinite FC-center. We present two constructions of a free p.m.p. Schmidt action

of G. The first construction, given throughout Sections 2–5, stems from analysing central

sequences for translation groupoids associated with (not necessarily free) p.m.p. actions.

This analysis is of independent interest and yields by-products (Theorems 1.3 and 1.5)

which do not follow from the second construction. The second construction, given in

Section 6, is by way of ultraproducts of p.m.p. actions. While the first construction splits

into cases depending on structure of G, the second construction does not split into cases

and is more direct than the first.

A summary of the first construction. Let us describe some of the ingredients and by-

products of the first construction. The construction is divided into two cases, depending on

whether the FC-center has finite or infinite center. Let G be a countable group with infinite

FC-center R. If R has finite center C, then G admits a (not necessarily free) profinite

action G y (X,µ) such that the quotient group R/C, which is infinite by assumption,



GROUPS WITH INFINITE FC-CENTER HAVE THE SCHMIDT PROPERTY 3

acts freely. This action of R/C leads us to find a central sequence in the full group of

the groupoid G⋉ (X,µ), similar to a construction of Popa-Vaes [PV] for residually finite

groups with infinite FC-center. We need a further task to conclude that G has the Schmidt

property since the action G y (X,µ) is not necessarily free. We will return to this point

after discussing the other case.

In the other case, the FC-center of G has infinite center. The following construction is

carried out after choosing some infinite abelian normal subgroup A of G contained in the

FC-center of G. The group A is not necessarily the center of the FC-center of G. We set

Γ = G/A and fix a section of the quotient map from G onto Γ. The 2-cocycle σ : Γ×Γ → A

is then associated. The heart of the construction is to introduce the groupoid extension

1 → U → Gσ̃ → X ⋊ Γ → 1

defined as follows: For some appropriate compact abelian metrizable group L, let X be

the group of homomorphisms from A into L and let µ be the normalized Haar measure on

X. The conjugation Γ y A induces the p.m.p. action Γ y (X,µ). We set U = X ×L and

regard it as the bundle over X with fiber L. Let X ⋊ Γ be the translation groupoid and

let (X ⋊ Γ)(2) be the set of composable pairs of X ⋊ Γ. The 2-cocycle σ̃ : (X ⋊ Γ)(2) → U

is then defined by

σ̃((τ, g), (g−1τ, h)) = (τ, τ(σ(g, h)))

for τ ∈ X and g, h ∈ Γ (see [J, Theorem 1.1] for a related construction). This 2-cocycle

σ̃ associates the groupoid Gσ̃ that fits into the above exact sequence. Let G act on X via

the quotient map from G onto Γ. We then have a natural homomorphism η : X ⋊G→ Gσ̃

such that η(τ, a) = (τ, τ(a)) ∈ U for each τ ∈ X and a ∈ A. A crucial point is that if we

prepare a free p.m.p. action Gσ̃ y (Z, ζ), then we can let X ⋊G and thus G act on (Z, ζ)

via η, so that the action of A factors through the action of U , which is easily handled since

L is compact. Moreover we can describe the stabilizer of a point of Z in G in terms of

ker η, which is contained in X ⋊A.

Compact groups and their p.m.p. actions are utilized in many constructions of Schmidt

actions such as in [DV], [Ki2], [Ki3], [KTD], [PV] and [TD]. They are useful on the basis

of the following simple fact: For each p.m.p. action K y (X,µ) of a continuous (rather

than compact) group K, each sequence converging to the identity in K also converges

to the identity in the automorphism group of (X,µ) in the weak topology. This weak

convergence is necessary for a sequence in the full group to be central and is also sufficient

if the sequence asymptotically commutes with each element of the acting group G.

Turning back to the general setup, let G be an arbitrary countable group with infinite

FC-center. Independent of whether the FC-center of G has finite or infinite center, the

above construction yields a p.m.p. action G y (W,ω) and a central sequence (Tn) in the

full group of the translation groupoid G⋉ (W,ω). The sequence (Tn) is non-trivial in the

sense that the automorphism of W induced by Tn is nowhere the identity. We cannot

yet conclude that G has the Schmidt property because the action G y (W,ω) is not

necessarily free.
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Let us now simplify the setup as follows: Let G be a countable group with a normal

subgroup M and a p.m.p. action G y (X,µ) such that M acts on X trivially and the

quotient group G/M acts on X freely. Suppose that the groupoid G := G ⋉ (X,µ) is

Schmidt, i.e., admits a central sequence (Tn) in its full group such that the automorphism

of X induced by Tn is nowhere the identity. Under several additional assumptions, we then

construct a free p.m.p. Schmidt action of G as follows: After replacing (Tn) by another

central sequence appropriately, we obtain the product subgroupoid M ×R < G such that

R is the groupoid generated by all Tn and is also principal and hyperfinite. Pick a free

p.m.p. action M y (Y, ν), let M × R act on (Y, ν) via the projection from M × R onto

M , and co-induce the action G y (Z, ζ) from the action M ×R y (Y, ν). Then we have

the lift of (Tn) into the translation groupoid G ⋉ (Z, ζ). This lifted sequence is shown to

be central in the full group, by using that Tn acts on Y trivially (see Proposition 2.4 for

treatment of this fact in a more general framework). Moreover we can naturally define the

p.m.p. action G y (Z, ζ) such that the associated groupoid G ⋉ (Z, ζ) is identified with

G ⋉ (Z, ζ). The action G y (Z, ζ) is free since the action M y (Y, ν) is free. Thus we

obtain a free p.m.p. Schmidt action of G. This construction is flexible enough to apply

to the more general setup, and we are able to deduce the Schmidt property for all groups

with infinite FC-center. It also yields the following by-products:

Theorem 1.3 (Corollary 2.16). Let G be a countable group andM a finite central subgroup

of G. Let G/M y (X,µ) be a free ergodic p.m.p. action and let G act on (X,µ) through

the quotient map from G onto G/M . Suppose that the translation groupoid G⋉ (X,µ) is

Schmidt. Then G has the Schmidt property.

Remark 1.4. Let G be a countable group andM a finite central subgroup of G. It remains

unsolved whether the Schmidt property of G/M implies the Schmidt property of G ([KTD,

Question 5.16]). If G/M has infinite AC-center, then G also has the same property as well

and thus has the Schmidt property (see Proposition 3.3 (ii) and related Remark 2.18).

Theorem 1.3 might be used to answer this question affirmatively: if there exists a free

ergodic p.m.p. action G/M y (X,µ) which is Schmidt, along with a non-trivial central

sequence in the full group of (G/M) ⋉ (X,µ) which lifts to a central sequence in the full

group of G⋉ (X,µ), then we can apply Theorem 1.3 and conclude that G has the Schmidt

property. While this lifting problem of central sequences is unsolved in full generality, we

note that it is solved affirmatively for stability sequences in [Ki4].

A sequence (gn) of elements of a countable group G is called central if for each h ∈ G,

gn commutes with h for all sufficiently large n.

Theorem 1.5 (Corollary 2.17). If a countable group G admits a central sequence diverging

to infinity, then G has the Schmidt property.

Remark 1.6. Let G be a countable group which admits a central sequence diverging to

infinity. IfG has trivial center, then the Schmidt property for G can be proved immediately

as follows ([Ke2, Proposition 9.5]): Let G act on the set G \ {e} by conjugation, which

induces the p.m.p. action of G on the product space X :=
∏

G\{e}[0, 1] equipped with the
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product measure µ of the Lebesgue measure. Then a central sequence in G gives rise to a

central sequence in the full group of G⋉ (X,µ), and the action G y (X,µ) is essentially

free since G has trivial center.

Let G be a countable group with infinite FC-center. Then given a sequence (gn) in its

FC-center diverging to infinity, each centralizer CG(gn) is of finite index in G, although

the index of CG(gn) in G possibly grows to infinity. In a sense, the gn may become less

and less central in G as n increases. In this case, the above Bernoulli-like action of G

via conjugation G y G \ {e} is not suitable for establishing the Schmidt property, and

another approach must be taken.

An organization of the paper. In Section 2, we fix notation and terminology for

discrete p.m.p. groupoids and describe co-induction of p.m.p. actions of discrete p.m.p.

groupoids, extending the co-induction construction for actions of countable groups. As an

application, we deduce the Schmidt property for a countable groupG under the assumption

that G admits a (not necessarily free) p.m.p. action Gy (X,µ) such that the translation

groupoid G ⋉ (X,µ) is Schmidt, together with some additional assumptions. In Section

3, we collect elementary properties of groups with infinite AC-center and reduce the proof

of Theorem 1.1 to that for groups with infinite FC-center. Sections 4 and 5 are devoted

to the first proof that groups with infinite FC-center have the Schmidt property. The

proof in these two sections is divided into several cases, depending on the existence and

structure of an infinite abelian normal subgroup of G contained in the FC-center of G. An

outline of the proof is given in Subsection 3.2. In Subsection 3.3, we exhibit examples of

groups G corresponding to each of the cases considered in Sections 4 and 5.

In Section 6, for a countable group with infinite FC-center, we give the second construc-

tion of a free p.m.p. Schmidt action, by way of ultraproducts.

In Appendix A, given an arbitrary countable abelian group A, we present a countable

group with property (T) whose center is isomorphic to A. Our construction relies on the

construction of Cornulier [C] and property (T) of the group SL3(Z[t]) ⋉ Z[t]3, where Z[t]

is the polynomial ring over Z in one indeterminate t. This result is useful in constructing

interesting examples of groups with infinite FC-center along with Examples 3.6 and 3.7,

while not being necessary for proving Theorem 1.1.

Throughout the paper, unless otherwise mentioned, all relations among Borel sets and

maps are understood to hold up to null sets. Let N denote the set of positive integers.

Acknowledgments. We thank the anonymous referee for his/her careful reading of the

paper and helpful corrections and suggestions, especially for Remark 2.3 and Lemma 2.7.

2. Central sequences in translation groupoids

2.1. Groupoids. We fix notation and terminology. Let G be a groupoid. We denote

by G0 the unit space of G and denote by r, s : G → G0 the range and source maps of G,

respectively. For x ∈ G0, we set Gx = r−1(x) and Gx = s−1(x). For a subset A ⊂ G0, we

set GA = r−1(A)∩ s−1(A). The set GA is then a groupoid with unit space A, with respect

to the product inherited from G. A groupoid G is called Borel if G is a standard Borel
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space, G0 is a Borel subset of G, and the following maps are all Borel: the range and source

maps, the multiplication map (γ, δ) 7→ γδ defined for γ, δ ∈ G with s(γ) = r(δ), and the

inverse map γ 7→ γ−1. If the range and source maps are countable-to-one further, then G

is called discrete. We mean by a discrete p.m.p. groupoid a pair (G, µ) of a discrete Borel

groupoid G and a Borel probability measure µ on G0 such that
∫
G0 c

r
x dµ(x) =

∫
G0 c

s
x dµ(x),

where crx and csx are the counting measures on Gx and Gx, respectively. The space G is

then equipped with this common measure
∫
G0 c

r
x dµ(x) =

∫
G0 c

s
x dµ(x).

A discrete p.m.p. groupoid is called principal if the map γ 7→ (r(γ), s(γ)) is injective.

Let R be a p.m.p. countable Borel equivalence relation on a standard probability space

(X,µ). Then the pair (R, µ) is naturally a principal discrete p.m.p. groupoid with unit

space R0 = { (x, x) | x ∈ X }, which are simply identified with X itself when there is no

cause for confusion. The range and source maps are given by r(x, y) = x and s(x, y) = y,

respectively, and the multiplication and inverse operations are given by (x, y)(y, z) = (x, z)

and (x, y)−1 = (y, x), respectively. We mean by a discrete p.m.p. equivalence relation on a

standard probability space (X,µ) a p.m.p. countable Borel equivalence relation on (X,µ)

equipped with this structure of a discrete p.m.p. groupoid.

Let (G, µ) be a discrete p.m.p. groupoid. A Borel subset A ⊂ G0 is called G-invariant if

r(Gx) ⊂ A for µ-almost every x ∈ A. We say that (G, µ) is ergodic if each G-invariant Borel

subset A of G0 is µ-null or µ-conull. A local section of G is a Borel map φ : dom(φ) → G,

where dom(φ) is a Borel subset of G0, such that φ(x) ∈ Gx for each x ∈ dom(φ) and the

associated map φ◦ : dom(φ) → G0, given by φ◦ = r ◦φ, is injective. Two local sections are

identified if their domains and values agree up to a µ-null set. For two local sections φ : A→

G, ψ : B → G, the composition of them is the local section ψ ◦ φ : (φ◦)−1(φ◦(A) ∩B) → G

defined by (ψ ◦φ)(x) = ψ(φ◦(x))φ(x). The inverse of a local section φ : A→ G is the local

section φ−1 : φ◦(A) → G defined by φ−1(x) = φ((φ◦)−1(x))−1.

We denote by [G] the group of all local sections φ of G with dom(φ) = G0, and call [G]

the full group of (G, µ). If the measure µ should be specified, then we denote it by [(G, µ)].

In fact the full group is a group such that the product and inverse operations are given

by the composition and inverse, respectively. For φ ∈ [G] and a positive integer n, let φn

denote the n times composition of φ with itself, and let φ−n denote the inverse of φn. Let

φ0 denote the trivial element of [G], i.e., the identity map on G0. We draw attention to

distinction between the trivial element φ0 of [G] and the associated map φ◦ = r ◦ φ.

To each action G y X of a group G on a set X, the translation groupoid G = G ⋉X

is associated as follows: The set of groupoid elements is defined as G = G×X with unit

space {e} × X, which is identified with X if there is no cause of confusion. The range

and source maps r, s : G → G0 are given by r(g, x) = gx and s(g, x) = x, respectively. The

multiplication and inverse operations are given by (g, hx)(h, x) = (gh, x) and (g, x)−1 =

(g−1, gx), respectively. Suppose that G is a countable group and X is a standard Borel

space equipped with a Borel probability measure µ. If the action Gy X is further Borel

and preserves µ, then the pair (G⋉X,µ) is a discrete p.m.p. groupoid and is denoted by

G ⋉ (X,µ). It is also denoted by G ⋉X for brevity if µ is understood from the context.

If the action G y (X,µ) is essentially free, i.e., the stabilizer of almost every point of X
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is trivial, then the groupoid G ⋉ (X,µ) is isomorphic to the associated orbit equivalence

relation { (gx, x) | g ∈ G, x ∈ X } via the map (g, x) 7→ (gx, x).

For each action G y X, we similarly define the groupoid X ⋊ G such that the set of

groupoid elements is X ×G and the range and source of (x, g) ∈ X ×G are x and g−1x,

respectively. Then X ⋊G is isomorphic to G⋉X via the map (x, g) 7→ (g, g−1x).

Let p : G×X → G be the projection. Then each local section φ of the groupoid G⋉X

is completely determined by the composed map p ◦ φ : dom(φ) → G. Thus we will abuse

notation and identify φ with p ◦ φ if there is no cause of confusion. The group G embeds

into [G⋉X] via the map g 7→ φg, where φg : X → G is the constant map with value g.

2.2. Central sequences. Let (G, µ) be a discrete p.m.p. groupoid. A sequence (An) of

Borel subsets of the unit space G0 is called asymptotically invariant for (G, µ) if

µ(T ◦An △An) → 0

for every T ∈ [G]. A sequence (Tn) in the full group [G] is called central in [G] if Tn
asymptotically commutes with every S ∈ [G], i.e.,

µ({x ∈ G0 | (Tn ◦ S)x 6= (S ◦ Tn)x }) → 0

for every S ∈ [G].

Remark 2.1. Let G be a countable subgroup of [G] and suppose that G generates G, i.e.,

the minimal subgroupoid of G containing G in its full group is equal to G. Then a sequence

(An) of Borel subsets of G
0 is asymptotically invariant for (G, µ) if µ(gAn △An) → 0 for

every g ∈ G ([JS, p.93]). Moreover a sequence (Tn) in [G] is central if and only if Tn

asymptotically commutes with every g ∈ G and µ(T ◦
nA△ A) → 0 for every Borel subset

A ⊂ X ([JS, Remark 3.3] or [Ki4, Lemma 2.3]). While these assertions are verified only

for translation groupoids G ⋉ (X,µ) in the cited papers, the same proof is available for

the above generalization.

We say that a discrete p.m.p. groupoid (G, µ) is Schmidt if there exists a central sequence

(Tn) in [G] such that µ({x ∈ X | T ◦
nx 6= x }) → 1. We say that a p.m.p. action Gy (X,µ)

of a countable group G is Schmidt if the groupoid G ⋉ (X,µ) is Schmidt. If a countable

group G admits a free ergodic p.m.p. action which is Schmidt, then we say that G has

the Schmidt property. (N.B. A countable group, being a discrete p.m.p. groupoid on a

singleton, is never Schmidt.) The following lemma implies that the Schmidt property of

G follows once we find a free p.m.p. Schmidt action of G which may not be ergodic. We

refer to [H, Section 6] for the ergodic decomposition of discrete p.m.p. groupoids.

Lemma 2.2. Let (G, µ) be a discrete p.m.p. groupoid with the ergodic decomposition map

π : (G0, µ) → (Z, ζ) and the disintegration µ =
∫
Z µz dζ(z). Suppose that (G, µ) is Schmidt

and let (Tn) be a central sequence in [(G, µ)] such that µ({x ∈ X | T ◦
nx 6= x }) → 1. Then

there exists a subsequence (Tni
) of (Tn) such that for ζ-almost every z ∈ Z, (Tni

) is a

central sequence in [(G, µz)] such that µz({x ∈ X | T ◦
ni
x 6= x }) → 1. Thus for ζ-almost

every z ∈ Z, the ergodic component (G, µz) is Schmidt.
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Proof. Let B be the sigma field of Borel subsets of G0. Let {Ak} be a countable subfamily

of B which generates B. Then for every z ∈ Z, the family {Ak} generates a dense subfield

in G0 with respect to µz. Since (Tn) is central in [(G, µ)], we have
∫
Z µz(T

◦
nAk△Ak) dζ(z) =

µ(T ◦
nAk △ Ak) → 0 for each k. Thus after passing to a subsequence of (Tn), for ζ-almost

every z ∈ Z, we have µz(T
◦
nAk △Ak) → 0 for each k.

Applying the Lusin-Novikov uniformization theorem ([Ke1, Theorem 18.10]), we obtain

a countable collection {φl} of local sections of G such that
⋃

l φl(dom(φl)) = G. Similarly

to the above, after passing to a subsequence of (Tn), for ζ-almost every z ∈ Z, we have

µz({x ∈ X | (φl ◦ Tn)x = (Tn ◦ φl)x }) → 1 for each l and µz({x ∈ X | T ◦
nx 6= x }) → 1.

The first convergence together with the convergence obtained in the last paragraph implies

that (Tn) is a central sequence in [(G, µz)] for ζ-almost every z ∈ Z. �

2.3. Co-induced actions. Co-induction is a canonical method to obtain a p.m.p. action

of a countable group from a p.m.p. action of its subgroup. We generalize this for p.m.p.

actions of discrete p.m.p. groupoids.

Remark 2.3. Formally we mean by an action of a groupoid G an action of G on a space

Z fibered over G0 such that each g ∈ G gives rise to an isomorphism from the fiber at the

source of g onto the fiber at the range of g. Then we say that G acts on the fibered space

Z. We often obtain such an action of G from a groupoid homomorphism α : G → Aut(Y )

for some space Y , as follows: Let Z = G0 × Y and regard it to be fibered over G0 via the

projection. Then G acts on Z by g(s(g), y) = (r(g), α(g)y). For simplicity we will often

abuse terminology of actions, and call this action on the fibered space Z an action of G

on the space Y (which is not fibered over G0 though) unless there is cause of confusion.

Let (G, µ) be a discrete p.m.p. groupoid and set X = G0. Let S be a Borel subgroupoid

of G and suppose that S admits the measure-preserving action on a standard probability

space (Y, ν) arising from a Borel homomorphism α : S → Aut(Y, ν). From this action of

S, we co-induce a p.m.p. action G y (Z, ζ) as follows: For each x ∈ X, we set

Zx = { f : Gx → Y | f(gh−1) = α(h)f(g) for each g ∈ Gx and each h ∈ Ss(g) }

and define Z as the disjoint union Z =
⊔

x∈X Zx. The set Z is fibered with respect to the

projection p : Z → X sending each element of Zx to x. The groupoid G acts on Z by

(gf)(g′) = f(g−1g′)

for g ∈ Gx, g
′ ∈ Gr(g) and f ∈ Zx with x ∈ X.

A measure-space structure on Z is defined as follows: We have the decomposition of the

unit space, X =
⊔

m∈N∪{∞}Xm, into the G-invariant Borel subsets Xm such that the index

of SXm
in GXm

is the constant m. First suppose that X = Xm for some m ∈ N∪{∞}. Let

{ψi}
m
i=1 be a family of choice functions for the inclusion S < G, i.e., a family of Borel maps

ψi : X → G such that for each x ∈ X, we have ψi(x) ∈ Gx and the family {ψi(x)}
m
i=1 is a

complete set of representatives of all the equivalence classes in Gx, where the equivalence

relation on Gx is associated to the inclusion S < G as follows: two elements g, h ∈ Gx are

equivalent if and only if g−1h ∈ S. Then Z is identified with the product space X×
∏m

i=1 Y
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under the map sending each f ∈ Zx with x ∈ X to (x, (f(ψi(x)))i). The measure-space

structure on Z is induced by this identification, where the space X ×
∏m

i=1 Y is equipped

with the product measure µ ×
∏m

i=1 ν. The action of G on Z is Borel and preserves the

probability measure on Z.

If X is not necessarily equal to Xm for some m ∈ N, then as already stated, we have the

decomposition X =
⊔

m∈N∪{∞}Xm into G-invariant Borel subsets. The set Z is decom-

posed into the G-invariant subsets p−1(Xm), on which the measure-space structure is given

in the way in the previous paragraph. Then the measure-space structure is also induced

on Z, so that each p−1(Xm) is Borel and the projection p : Z → X is measure-preserving.

Let ζ be the induced probability measure on Z. We define a discrete p.m.p. groupoid

(G, µ) ⋉ (Z, ζ) = (G̃, µ̃) as follows: The set of groupoid elements is the fibered product

G̃ := G ×X Z with respect to the source map s : G → X and the projection p : Z → X.

The unit space is G̃0 := Z with measure µ̃ := ζ. The range and source maps are given

by r̃(g, z) = gz and s̃(g, z) = z, respectively, with groupoid operations given by (gh, z) =

(g, hz)(h, z) and (g, z)−1 = (g−1, gz). Each element T ∈ [G] lifts to the element T̃ ∈ [G̃]

defined by T̃ z = (Tx, z) for z ∈ Zx with x ∈ X.

Let us recall the following fact from the proof of [TD, Theorem 15] or [KTD, Example

8.8]: Let G be a countable group, C a central subgroup of G, and C y (Y, ν) a p.m.p.

action. We define Gy (Z, ζ) as the action co-induced from the action C y (Y, ν). Then

each sequence of elements of C that converges to the identity in Aut(Y, ν) is central in the

full group of the groupoid G⋉ (Z, ζ). We generalize this fact to the following:

Proposition 2.4. Let (G, µ) be a discrete p.m.p. groupoid and set X = G0. Let S be

a Borel subgroupoid of G, (Y, ν) a standard probability space, and α : S → Aut(Y, ν) a

Borel homomorphism. Let G y (Z, ζ) denote the action co-induced from the action S y

(X × Y, µ × ν) via α. Let (Tn) be a central sequence in [G] such that each Tn belongs to

[S] and for each Borel subset B ⊂ Y , we have
∫

X
ν(α(Tnx)B △B) dµ(x) → 0

as n → ∞. Then the sequence (T̃n) of the lifts of Tn is central in the full group of the

groupoid (G, µ) ⋉ (Z, ζ) defined above.

Proof. Since (Tn) is central in [G], by the definition of lifts, T̃n asymptotically commutes

with the lift of each S ∈ [G], i.e., ζ({ z ∈ Z | (S̃ ◦ T̃n)z 6= (T̃n ◦ S̃)z }) → 0 for each S ∈ [G].

Hence it suffices to show that for each Borel subset C ⊂ Z, we have ζ(T̃ ◦
nC △ C) → 0

(Remark 2.1). We may suppose that the index of S in G is the constant m ∈ N ∪ {∞}.

Let {ψi}
m
i=1 be a family of choice functions for the inclusion S < G and identify Z with

the product space X ×
∏m

i=1 Y as being before the proposition. Then it suffices to show

that ζ(T̃ ◦
nC △ C) → 0 for each cylindrical subset

C = { (x, (yi)
m
i=1) ∈ X ×

∏m
i=1Y | x ∈ A and yi ∈ Bi for each i ∈ {1, . . . , l} },

where A ⊂ X and B1, . . . , Bl ⊂ Y are Borel subsets and l is a positive integer with l ≤ m.
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Let ε > 0. We set ψ̄i = s◦ψi and set φi(x) = ψi(x)
−1 for x ∈ X. Since φi is the union of

local sections of G, the assumption on the central sequence (Tn) implies that there exists

an N ∈ N such that if n ≥ N , then

(1) µ(T ◦
nA△A) < ε,

(2)
∫
X ν(α(Tn(ψ̄i(x)))Bi △Bi) dµ(x) < ε/l for each i ∈ {1, . . . , l}, and

(3) µ(A1) > µ(A)− ε,

where A1 is defined as the set of all elements x ∈ A such that (φi ◦ Tn)x = (Tn ◦ φi)x for

each i ∈ {1, . . . , l}. Fix n ∈ N with n ≥ N . We show that T̃ ◦
nf ∈ C if f belongs to the set

C1, which is slightly smaller than C, of all elements (x, (yi)
m
i=1) ∈ X ×

∏m
i=1 Y such that

• x ∈ A1 ∩ (T ◦
n)

−1A and

• yi ∈ α(Tn(ψ̄i(x)))
−1Bi ∩Bi for each i ∈ {1, . . . , l}.

We pick f = (x, (yi)
m
i=1) ∈ C1 and set y = T ◦

nx. For each i ∈ {1, . . . , l}, regarding f as a

map from Gx to Y belonging to the set Zx, we have

(T̃ ◦
nf)(ψi(y)) = f((Tnx)

−1ψi(y)) = f(ψi(x)Tn(ψ̄i(x))
−1)

= α(Tn(ψ̄i(x)))f(ψi(x)),

where the second equation follows from x ∈ A1 and φ◦i (x) = ψ̄i(x). The right hand side

belongs to Bi because f(ψi(x)) = yi ∈ α(Tn(ψ̄i(x)))
−1Bi. Moreover T̃ ◦

nf ∈ Zy and y ∈ A

because x ∈ (T ◦
n)

−1A. Therefore T̃ ◦
nf ∈ C. As a result, we obtain the inequality

ζ(C ∩ (T̃ ◦
n)

−1C) ≥ ζ(C1) =

∫

A1∩(T ◦

n )
−1A

l∏

i=1

ν(α(Tn(ψ̄i(x)))
−1Bi ∩Bi)) dµ(x).

The left hand side of this inequality is equal to ζ(C)− ζ(T̃ ◦
nC△C)/2, and the right hand

side is equal to

∫

A1∩(T ◦

n )
−1A

l∏

i=1

(
ν(Bi)−

1

2
ν(α(Tn(ψ̄i(x)))

−1Bi △Bi)

)
dµ(x)

> ζ(C)− µ(A \ (A1 ∩ (T ◦
n)

−1A))− ε/2

≥ ζ(C)− (µ(A \ A1) + µ(A \ (T ◦
n)

−1A))− ε/2 > ζ(C)− 2ε

by (1)–(3), where to deduce the first inequality, we use the inequality |
∏l

i=1 ai−
∏l

i=1 bi| ≤∑l
i=1 |ai − bi| for ai, bi ∈ [0, 1]. Therefore ζ(T̃ ◦

nC △ C) < 4ε. �

2.4. Construction of a free action. Under the assumption that a countable group G

admits a p.m.p. Schmidt action, in Theorem 2.5, we present a sufficient condition for G to

admit a free p.m.p. Schmidt action. Another sufficient condition will be given in Theorem

2.14 in Subsection 2.6. We remark that the analogous problem for stability in place of the

Schmidt property is solved in [Ki3, Theorem 1.4] with a much simpler method.

For p ∈ N and a Borel automorphism T of a standard Borel space X, we call a point

x ∈ X a p-periodic point of T if T px = x and T ix 6= x for all i ∈ N less than p. If a point

x ∈ X is a p-periodic point of T for some p ∈ N, then x is called a periodic point of T

and the number p is called the period of x. For possible constraints on periods of T ◦
n for

a central sequence (Tn) in the full group, we refer to [KTD, Proposition 8.7].



GROUPS WITH INFINITE FC-CENTER HAVE THE SCHMIDT PROPERTY 11

Theorem 2.5. Let G be a countable group, Gy (X,µ) a p.m.p. action and π : (X,µ) →

(Ω, η) a G-equivariant measure-preserving map into a standard probability space (Ω, η).

Suppose that for µ-almost every x ∈ X, the stabilizer of x in G depends only on π(x) and

we thus have a subgroup Mω of G indexed by η-almost every ω ∈ Ω such that for µ-almost

every x ∈ X, the stabilizer of x in G is equal to Mπ(x). We set (G, µ) = G⋉ (X,µ).

Suppose that there exists a central sequence (Sn) in [G] such that

• for all n, S◦
n preserves each fiber of π, i.e., we have π(S◦

nx) = π(x) for µ-almost

every x ∈ X, and

• µ({x ∈ X | S◦
nx 6= x, Snx ∈ CG(Mπ(x)) }) → 1 as n→ ∞,

where for a subgroup M < G, we denote by CG(M) the centralizer of M in G. For p ∈ N,

let Ap
n ⊂ X be the set of p-periodic points of S◦

n. Suppose further that for each p ∈ N, we

have µ(Ap
n) → 0 as n→ ∞. Then G has the Schmidt property.

The proof of this theorem will be given after proving Lemmas 2.6 and 2.7 below. For

a discrete p.m.p. groupoid (G, µ) and an element T ∈ [G], we say that T is periodic if for

µ-almost every x ∈ G0, there exists a p ∈ N such that x is a p-periodic point of T ◦ and

T px = e. We should emphasize that T is not necessarily periodic even if every point of X

is a periodic point of the induced automorphism T ◦.

Lemma 2.6. Let G be a countable group, G y (X,µ) a p.m.p. action and π : (X,µ) →

(Ω, η) a G-equivariant measure-preserving map satisfying the assumption in the first para-

graph in Theorem 2.5. We set (G, µ) = G⋉ (X,µ).

Pick ε > 0 and S ∈ [G] such that S◦ preserves each fiber of π. Let D and E be Borel

subsets of X with D ⊂ E, and suppose that the following three conditions hold:

(1) If x ∈ D, then S◦x 6= x and Sx ∈ CG(Mπ(x)), and if x ∈ D is further a p-periodic

point of S◦ for some p ∈ N, then either p > 1/ε or Spx = e.

(2) The inequality µ(E \D) < εµ(E) holds.

(3) The inclusion S◦D ⊂ E holds.

Then there exists an element T ∈ [GE ] such that

(4) T is periodic,

(5) T ◦ preserves each fiber of π and Tx ∈ CG(Mπ(x)) for each x ∈ E, and

(6) µ({x ∈ E | Tx 6= Sx }) < 5εµ(E).

Proof. For a positive integer k, we set

Zk = {x ∈ D | S◦x, (S◦)2x, . . . , (S◦)k−1x ∈ D, (S◦)kx 6∈ D }.

The sets Zk are mutually disjoint and satisfy S◦Zk+1 ⊂ Zk and Z1 = D \ (S◦)−1D. Thus

µ(Z1) = µ(D \ (S◦)−1D) = µ(S◦D \D) ≤ µ(E \D) < εµ(E)

by conditions (2) and (3).

We define a local section T of G on Zk for k ≥ 2, on S◦Z2, and on Z1\S
◦Z2, respectively,

as follows: It is defined so that T is periodic and equal to S on a subset as large as possible.

If x ∈ Zk and k ≥ 2, then we set Tx = Sx. For almost every x ∈ S◦Z2, there is a maximal
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integer k ≥ 2 such that x ∈ (S◦)k−1Zk, and we let y ∈ Zk be the point with x = (S◦)k−1y

and set Tx = (Sk−1y)−1. On Z1 \ S
◦Z2, we set Tx = e for each point x of that set. We

defined the local section T on the union Z :=
⋃∞

k=1 Zk and have the inequality

(2.1) µ({x ∈ Z | Tx 6= Sx }) ≤ µ(Z1) < εµ(E).

We set D1 = D \ Z, which is S◦-invariant. Let B be the set of points of D1 that are

p-periodic points of S◦ for some p ∈ N. Let C be the complement of B in D1, i.e., the set

of aperiodic points of S◦ in D1. For an integer p ≥ 2, let Bp denote the set of p-periodic

points of S◦ in B. Then each Bp is S◦-invariant, and B is the disjoint union of the sets

Bp with p ≥ 2 since S◦x 6= x for each x ∈ D by condition (1).

We extend the domain of T to the set B as follows. If p ≤ 1/ε, then for each x ∈ Bp, we

have Spx = e by condition (1) and we thus set T = S on Bp, so that T is periodic on it.

Otherwise, i.e., if p > 1/ε, then pick a Borel fundamental domain B′
p ⊂ Bp of the periodic

automorphism S◦|Bp
. We set Tx = Sx for x ∈ Bp \(S

◦)−1B′
p and set Tx = (Sp−1(S◦x))−1

for x ∈ (S◦)−1B′
p. Then T

px = e for each x ∈ Bp, and we have

(2.2) µ({x ∈ B | Tx 6= Sx }) < εµ(E)

because

µ({x ∈ B | Tx 6= Sx }) ≤
∑

p>1/ε

µ((S◦)−1B′
p) =

∑

p>1/ε

p−1µ(Bp) ≤ εµ(B) ≤ εµ(E).

We next define T on C, the set of aperiodic points of S◦ in D1. Let N be a positive

integer with 1/N < εµ(E). By the Rokhlin lemma, we can find a Borel subset C0 ⊂ C such

that C0, S
◦C0, . . . , (S

◦)N−1C0 are mutually disjoint and µ(C \
⋃N−1

n=0 (S
◦)nC0) < εµ(E).

We define T on C as follows: For x ∈ C0 and n ∈ {0, 1, . . . , N − 2}, we set T ((S◦)nx) =

S((S◦)nx) and T ((S◦)N−1x) = (SN−1x)−1. If x ∈ C \
⋃N−1

n=0 (S
◦)nC0, then we set Tx = e.

Then T is periodic on C in the sense that each x ∈ C is a p-periodic point of T ◦ for some

p ∈ N and we then have T px = e. We also have

(2.3) µ({x ∈ C | Tx 6= Sx }) ≤ µ((S◦)N−1C0) + µ(C \
⋃N−1

n=0 (S
◦)nC0) < 2εµ(E).

Finally we define T on E \ D by Tx = e for each x ∈ E \ D. By construction T ◦

is an automorphism of each of Z, B, C and E \ D and hence of E. Thus we defined

T ∈ [GE ], which is periodic. This is a desired one. Indeed for each x ∈ E, the element Tx

is either e or the product of some values of S, which belongs to CG(Mπ(x)) by condition

(1). Therefore T fulfills condition (5). By inequalities (2.1)–(2.3) and condition (2), we

have

µ({x ∈ E | Tx 6= Sx }) < 4εµ(E) + µ(E \D) < 5εµ(E). �

In order to state the next lemma, we prepare the following terminology. Let (G, µ) be a

discrete p.m.p. groupoid. For T, S ∈ [G], we say that T and S commute if T ◦ S = S ◦ T .

Let T = (T1, . . . , Tn) be a finite sequence of elements of [G] such that Ti and Tj commute

for all i and j. For k = (k1, . . . , kn) ∈ N
n, we set

T k = (Tn)
kn ◦ · · · ◦ (T1)

k1 .
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For l = (l1, . . . , ln) ∈ N
n, we say that a point x ∈ G0 is (l, T )-periodic if the following two

conditions hold:

• For every k = (k1, . . . , kn) ∈ N
n, we have (T k)◦x = x if and only if ki ≡ 0 modulo

li for all i ∈ {1, . . . , n}.

• If this equivalent condition holds, then we have T kx = e further.

For a discrete p.m.p. equivalence relation Q on a standard probability space (X,µ), we

mean by a Borel transversal of Q a Borel subset of X which meets each equivalence class

of Q at exactly one point.

Lemma 2.7. With the notation and the assumption in Theorem 2.5, let R be the orbit

equivalence relation associated with the action G y (X,µ). Then there exists a central

sequence (Tn)n∈N in [G] satisfying the following four conditions:

(i) We have µ({x ∈ X | T ◦
nx 6= x }) → 1.

(ii) For each n, T ◦
n preserves each fiber of π and Tnx ∈ CG(Mπ(x)) for all x ∈ X.

(iii) For each m and n, Tm and Tn commute.

(iv) Let Qn be the subrelation of R generated by T ◦
1 , . . . , T

◦
n . Then there exists a Borel

transversal En+1 ⊂ X of Qn and its Borel partition En+1 =
⊔

l∈Nn El
n+1 such that

for each l = (l1, . . . , ln) ∈ N
n,

• every point of El
n+1 is (l, T )-periodic, where T = (T1, . . . , Tn),

• T ◦
n+1E

l
n+1 = El

n+1, and

• if n ≥ 2, then El
n+1 ⊂ E

(l1,...,ln−1)
n .

In particular, for each n, if En denotes the subgroupoid of G generated by T1, . . . , Tn

(i.e., the minimal subgroupoid of G containing T1, . . . , Tn in its full group), then

En and Qn are isomorphic under the quotient map from G onto R.

Proof. Fix a decreasing sequence (εn)n∈N of positive numbers converging to 0. We induc-

tively construct a sequence (Tn, En+1)n∈N of pairs satisfying conditions (ii)–(iv) and the

inequality µ({x ∈ X | Tnx 6= Snx }) < 7εn for all n. This inequality implies condition (i)

and also implies that the sequence (Tn)n∈N is central in [G].

In Theorem 2.5, we assume that for each p ∈ N, we have µ(Ap
n) → 0 as n → ∞, where

Ap
n is the set of p-periodic points of S◦

n. After replacing S1 with Sn for a large n, we may

assume that µ(X \ D1) < ε1, where D1 is defined as the set of points x ∈ X such that

S◦
1x 6= x, S1x ∈ CG(Mπ(x)), and if x is a p-periodic point of S◦

1 for some p ∈ N, then

p > 1/ε1. Letting D = D1 and E = X, we apply Lemma 2.6. We then obtain a periodic

T1 ∈ [G] such that T ◦
1 preserves each fiber of π; we have T1x ∈ CG(Mπ(x)) for almost every

x ∈ X; and µ({x ∈ X | T1x 6= S1x }) < 5ε1 < 7ε1. Since T1 is periodic, we can find a

Borel fundamental domain E2 ⊂ X for the automorphism T ◦
1 of X and its Borel partition

E2 =
⊔

l∈NE
l
2 such that Q1E

l
2 is equal to the set of l-periodic points of T ◦

1 , where Q1 is

the subrelation of R generated by T ◦
1 . The first step of the induction completes.

Assuming that we have constructed T1, . . . , Tn−1 and E2, . . . , En, we construct Tn and

En+1. By induction hypothesis, the equivalence relation Qn−1 generated by T ◦
1 , . . . , T

◦
n−1

admits a Borel transversal En ⊂ X and its Borel partition En =
⊔

l∈Nn−1 El
n such that

for each l ∈ (l1, . . . , ln−1) ∈ N
n−1, every point of El

n is (l, T )-periodic, where we set
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T = (T1, . . . , Tn−1). We choose a finite subset Ln ⊂ N
n−1 such that µ(El

n) > 0 for all

l ∈ Ln and

(2.4) µ(X \ Qn−1Fn) < εn,

where we set Fn =
⊔

l∈Ln
El

n. After replacing Sn with Sm for a large m, we may assume

that

(2.5) µ(El
n \Dl

n) < εnµ(E
l
n)

for each l ∈ Ln if Dl
n is defined as the set of points x ∈ El

n such that

• x ∈ El
n ∩ ((S◦

n)
−1El

n), S
◦
nx 6= x and Snx ∈ CG(Mπ(x)),

• if x is a p-periodic point of S◦
n for some p ∈ N, then p > 1/εn, and

• (Sn ◦ T k)x = (T k ◦ Sn)x for each k = (k1, . . . , kn−1) ∈ Φl,

where we set

Φl = {0, 1, . . . , l1 − 1} × {0, 1, . . . , l2 − 1} × · · · × {0, 1, . . . , ln−1 − 1}.

Letting D = Dl
n and E = El

n, we apply Lemma 2.6 for each l ∈ Ln. Then there exists a

periodic Tn ∈ [GFn
] such that T ◦

n preserves each El
n with l ∈ Ln; we have Tnx ∈ CG(Mπ(x))

for almost every x ∈ Fn; and for each l ∈ Ln, we have

(2.6) µ({x ∈ El
n | Tnx 6= Snx }) < 5εnµ(E

l
n).

We extend the local section Tn to the set Qn−1Fn so that it commutes with T1, . . . , Tn−1.

That is, if l ∈ (l1, . . . , ln−1) ∈ Ln and x ∈ El
n, then we set

Tn((T
k)◦x) = ((T k ◦ Tn)x)(T

kx)−1

for k = (k1, . . . , kn−1) ∈ Φl. We note that by condition (iv) for T1, . . . , Tn−1, which is an

induction hypothesis, each point of Qn−1Fn is uniquely written as (T k)◦x for some k ∈ Φl

and x ∈ El
n with l ∈ Ln. Finally we define Tn on X \Qn−1Fn by Tnx = e for each point x

in that set. Then the element Tn ∈ [G] satisfies conditions (ii) and (iii). By construction,

T ◦
n preserves each El

n with l ∈ Ln and also preserves the other El
n with l ∈ N

n−1 \Ln since

T ◦
n is the identity on it.

Let Qn be the subrelation of R generated by T ◦
1 , . . . , T

◦
n . We find a Borel transversal

En+1 ⊂ X of Qn satisfying condition (iv). Since T ◦
n preserves each El

n with l ∈ N
n−1 and

is periodic, we can choose a Borel fundamental domain Bl
n for the automorphism T ◦

n of

El
n and its Borel partition Bl

n =
⊔

m∈NE
l,m
n such that El,m

n consists of m-periodic points

of T ◦
n . Pick l = (l1, . . . , ln−1) ∈ N

n−1 and m ∈ N and put k = (l1, . . . , ln−1,m) ∈ N
n. If

l ∈ Ln, we set Ek
n+1 = El,m

n . Otherwise we have Bl
n = El,1

n . We then set Ek
n+1 = El

n or

Ek
n+1 = ∅, depending on m = 1 or m 6= 1, respectively, and set En+1 =

⊔
k∈Nn Ek

n+1. This

partition fulfills condition (iv), except for the equation involving Tn+1 still not defined.

Finally we estimate the measure µ({x ∈ X | Tnx 6= Snx }). If x ∈ Dl
n with l ∈ Ln and

Tnx = Snx, then for each k = (k1, . . . , kn−1) ∈ Φl, we have

Sn((T
k)◦x) = ((T k ◦ Sn)x)(T

kx)−1 = ((T k ◦ Tn)x)(T
kx)−1 = Tn((T

k)◦x),



GROUPS WITH INFINITE FC-CENTER HAVE THE SCHMIDT PROPERTY 15

where the first equation follows from x ∈ Dl
n, the second one follows from Tnx = Snx, and

the third one holds by the definition of Tn. Hence we have Tn = Sn on the equivalence

class of x in Qn−1. The set {x ∈ X | Tnx 6= Snx } is thus contained in the union

(X \ Qn−1Fn) ∪
⋃

l∈Ln

Qn−1{x ∈ El
n | x 6∈ Dl

n or Tnx 6= Snx }.

By inequalities (2.4), (2.5) and (2.6), the measure of this union is less than

εn +
∑

l=(l1,...,ln−1)∈Ln

(l1 + · · ·+ ln−1)(µ(E
l
n \Dl

n) + µ({x ∈ El
n | Tnx 6= Snx }))

< εn +
∑

l=(l1,...,ln−1)∈Ln

(l1 + · · ·+ ln−1)(εn + 5εn)µ(E
l
n) ≤ 7εn,

where the sum
∑

l(l1+ · · ·+ ln−1)µ(E
l
n) over l = (l1, . . . , ln−1) ∈ Ln is equal to µ(Qn−1Fn)

by condition (iv) and hence at most 1. We thus have µ({x ∈ X | Tnx 6= Snx }) < 7εn.

The induction completes. �

Proof of Theorem 2.5. By Lemma 2.7, we obtain a central sequence (Tn) in [G] satisfying

conditions (i)–(iv) in the lemma. Let E andQ be the unions
⋃

n En and
⋃

nQn, respectively,

where we use the symbols En, Qn in the lemma. Then Q is a subrelation of R, and by

condition (iv), E is a subgroupoid of G isomorphic to Q via the quotient map from G

onto R. Let M be the isotropy subgroupoid of G, which is the bundle
⊔

x∈X Mπ(x) over

X. Let M ×X E be the fibered product with respect to the range map of E . Then

(M×X E , µ) is a discrete p.m.p. groupoid with unit space X. Indeed the range and source

of (m, (g, x)) ∈ M×X E are defined to be gx and x, respectively. The product operation

in M ×X E is defined by (m, (g, hx))(l, (h, x)) = (ml, (gh, x)) for (g, hx), (h, x) ∈ E and

m, l ∈ Mπ(x), where we note that π(ghx) = π(hx) = π(x) since all T ◦
n preserve each fiber

of π. Let M ∨ E be the subgroupoid of G generated by M and E . By condition (ii), if

(g, x) ∈ E , then g commutes with each element of Mπ(x). Therefore the map from M×X E

to M∨E sending (m, (g, x)) to (mg, x) is a homomorphism and thus an isomorphism.

Let M̄ be the subgroupoid of G ⋉ (Ω, η) that is the bundle
⊔

ω∈ΩMω. We obtain the

homomorphism from M∨E onto M̄ as the composition of the isomorphism from M∨E

onto M×X E , with the projection from M×X E onto M̄. Pick a Borel homomorphism

α0 : M̄ → Aut(Y, ν) with some standard probability space (Y, ν) such that the associated

action of M̄ on (Y, ν) is essentially free, i.e., we have α0(m)y 6= y for almost every y ∈ Y

and almost every m ∈ M̄ \ M̄0, where M̄ is equipped with the measure
∫
Ω cω dη(ω) with

cω the counting measure on Mω. Such α0 is obtained as follows: Pick a free p.m.p. action

G y (Y, ν). Via the projection from G ⋉ (Ω, η) onto G, we obtain the homomorphism

from G ⋉ (Ω, η) into Aut(Y, ν). Let α0 be its restriction to M̄. Then the action α0 is

essentially free. Let M∨E act on (Y, ν) via the homomorphism from M∨E onto M̄, and

denote this action by α : M∨ E → Aut(Y, ν).

We now apply Proposition 2.4 by letting S = M ∨ E . Note that the central sequence

(Tn) satisfies the assumption in the proposition, that is, for each Borel subset B ⊂ Y , we

have
∫
X ν(α(Tnx)B △ B) dµ(x) → 0 as n → ∞, because E acts on Y trivially and thus

α(Tnx) is the identity for every x ∈ X. By the proposition, the sequence (T̃n) of the lift of
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Tn is central in the full group of the groupoid (G̃, µ̃), where we let G y (Z, ζ) be the action

co-induced from the action α : M∨ E → Aut(Y, ν) and let (G̃, µ̃) = (G, µ) ⋉ (Z, ζ) be the

groupoid associated with this co-induced action, introduced right before the proposition.

Recall that G̃ is the fibered product G ×X Z with respect to the source map s : G → X

and is a groupoid with unit space Z.

If we define an action of G on Z by gz = (g, x)z for g ∈ G and z ∈ Zx with x ∈ X, then

this action preserves the measure ζ and (G̃, µ̃) is identified with the translation groupoid

G ⋉ (Z, ζ) via the map ((g, x), z) 7→ (g, z) for g ∈ G and z ∈ Zx with x ∈ X. The action

G y (Z, ζ) is free because the action of M̄ on (Y, ν) is free. Therefore we obtained the

free p.m.p. action G y (Z, ζ) such that the groupoid G ⋉ (Z, ζ) is Schmidt. By Lemma

2.2, G admits a free ergodic p.m.p. action which is Schmidt. �

2.5. Central sequences and periodic points. In Theorem 2.5, we assumed the central

sequence (Sn) to satisfy the property that for each p ∈ N, the set of p-periodic points of

the automorphism S◦
n has measure approaching 0. On the other hand, in Theorem 2.14

in the next subsection, we focus on a central sequence (Sn) without this property. This

subsection deals with such a central sequence toward the proof of Theorem 2.14.

In the rest of this subsection, we fix the following notation: Let G be a countable group

andM a normal subgroup of G. Let G/M y (X,µ) be a free ergodic p.m.p. action and let

G act on (X,µ) through the quotient map from G onto G/M . We set (G, µ) = G⋉ (X,µ).

Lemma 2.8. Let (Sn)n∈N be a central sequence in [G]. For n, p ∈ N and h ∈M , we set

Ap
n = {x ∈ X | x is a p-periodic point of S◦

n } and Ap,h
n = {x ∈ Ap

n | (Sn)
px = h }.

Then

(i) the sequence (Ap
n)n is asymptotically invariant for G.

(ii) If h is central in G, then the sequence (Ap,h
n )n is asymptotically invariant for G.

Proof. Pick φ ∈ [G]. If n is large, then the set

{x ∈ X | (φ ◦ (Sn)
i)x = ((Sn)

i ◦ φ)x for each i ∈ {1, . . . , p} }

has measure close to 1. If x ∈ Ap
n belongs to this set, then (S◦

n)
i(φ◦x) = φ◦((S◦

n)
ix) for

each i ∈ {1, . . . , p}. The right hand side of this equation is not equal to φ◦x if i < p, and

is equal to φ◦x if i = p. Hence φ◦x is a p-periodic point of S◦
n and belongs to Ap

n. We thus

have µ(φ◦Ap
n △Ap

n) → 0 as n→ ∞. Assertion (i) follows.

To prove assertion (ii), we pick g ∈ G. If n is large, then the set

{x ∈ X | (φg ◦ (Sn)
p)x = ((Sn)

p ◦ φg)x }

has measure close to 1. If a point x ∈ Ap,h
n belongs to this set, then

((Sn)
p(gx))g = ((Sn)

p ◦ φg)x = (φg ◦ (Sn)
p)x = gh

and thus (Sn)
p(gx) = ghg−1 = h if h is central in G. Combining this with assertion (i),

we have µ(gAp,h
n △Ap,h

n ) → 0 as n→ ∞. Assertion (ii) follows. �



GROUPS WITH INFINITE FC-CENTER HAVE THE SCHMIDT PROPERTY 17

Lemma 2.9. Let (Sn)n∈N be a central sequence in [G] and let N be a normal subgroup

of G. Then the sequence (An) defined by An = {x ∈ X | Snx ∈ N } is asymptotically

invariant for G.

Proof. Pick g ∈ G. If n is large, then for every point x ∈ X outside a set of small measure,

we have (φg ◦Sn)x = (Sn ◦φg)x, that is, g(Snx) = (Sn(gx))g. Therefore if x ∈ An further,

then Sn(gx) belongs to gNg
−1 = N and thus gx ∈ An. �

Remark 2.10. Lemma 2.9 will be used in the proof of Lemma 2.11, by letting N be the

centralizer CG(M) of M in G.

Let (Sn)n∈N be a central sequence in [G] and set An = {x ∈ X | Snx ∈ CG(M) }. While

(An) is asymptotically invariant for G by Lemma 2.9, we further have µ(An) → 1 if M is

finitely generated. Indeed if F is a finite generating set of M and n is large enough, then

for all x ∈ X outside a set of small measure, we have (φg ◦Sn)x = (Sn ◦φg)x for all g ∈ F

and hence g(Snx) = (Snx)g since M acts on X trivially. Thus Snx commutes with every

element of M .

Lemma 2.11. Let (Sn)n∈N be a central sequence in [G] and p ≥ 2 an integer. Let h ∈M

and suppose that h is central in G. We define An ⊂ X as the set of p-periodic points x

of S◦
n such that (Sn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)
px = h. Suppose that

µ(An) is uniformly positive.

Then there exists a central sequence (Rn) in [G] such that if we define Bn ⊂ X as the

set of p-periodic points x of R◦
n such that (Rn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and

(Rn)
px = h, then µ(Bn) → 1.

Proof. We follow the proof of [KTD, Lemma 5.3], patching the restrictions Sn|An
together

to obtain a desired R ∈ [G] after passing to an appropriate subsequence of (Sn).

Note that the equation S◦
nAn = An holds. Indeed let x ∈ An and put y = S◦

nx. Then y

is a p-periodic point of S◦
n. The condition that (Sn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1}

and (Sn)
px = h ∈ CG(M) implies that the value of Sn at each point of the orbit of x under

iterations of S◦
n belongs to CG(M). Thus (Sn)

iy ∈ CG(M) for all i ∈ {1, . . . , p − 1}. We

also have ((Sn)
py)(Snx) = (Sn)

p+1x = (Snx)h = h(Snx) and thus (Sn)
py = h. Therefore

y ∈ An and S◦
nAn ⊂ An. The converse inclusion follows from this because S◦

n is measure-

preserving or we have (S◦
n)

−1 = (S◦
n)

p−1 on An.

Since An is asymptotically invariant for G by Lemmas 2.8 and 2.9, the sequence (S′
n)

in [G], defined by S′
n = Sn on An and S′

nx = e for all x ∈ X \ An, is central in [G]. After

replacing Sn with S′
n, we may assume that Snx = e for all x ∈ X \An. Then (S◦

n)
p is the

identity on X. It suffices to show that for every ε > 0 and every finite subset F ⊂ [G],

there exists an R ∈ [G] such that µ({g ◦ R 6= R ◦ g}) < ε and µ(B) > 1 − ε, where for

u, v ∈ [G], we let {u ◦ v 6= v ◦ u} be the set of points of X on which u ◦ v and v ◦ u are not

equal, and we define B ⊂ X as the set of p-periodic points of R◦ such that Rix ∈ CG(M)

for all i ∈ {1, . . . , p − 1} and Rpx = h.

Passing to a subsequence of (Sn), we may assume that the following conditions hold:

(1)
∑

n µ(g
◦An △An) < ε for all g ∈ F .
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(2)
∑

n µ({g ◦ Sn 6= Sn ◦ g}) < ε for all g ∈ F .

(3)
∑

n

∑
k<n

∑p−1
i=1 µ((S

◦
n)

iAk △Ak) < ε.

Inequality (1) holds since the sequence (An) is asymptotically invariant for G. The other

two inequalities hold since the sequence (Sn) is central in [G]. We set Cn =
⋃

k<nAk and

also set

Y1 = A1, Yn = An \

p−1⋃

i=0

(S◦
n)

iCn for n ≥ 2, and Y =
∞⋃

n=1

Yn.

Note that the last union is disjoint. For each n, we have S◦
nYn = Yn because (S◦

n)
p is the

identity on X and S◦
nAn = An. Then Yn ⊂ An \ Cn and

∑
n

∑p−1
i=1 µ((S

◦
n)

iCn △ Cn) < ε

by inequality (3). Thus
∑

n µ((An \ Cn) \ Yn) < ε and µ(
⋃

n(An \ Cn) \ Y ) < ε. By the

definition of Cn, we have
⋃

n(An \Cn) =
⋃

nAn, and this is equal to X by [KTD, Lemma

5.1], where we use the assumption that µ(An) is uniformly positive. Thus

(4) µ(X \ Y ) < ε.

We pick g ∈ F and estimate
∑

n µ(g
◦Yn △ Yn). Pick y ∈ Yn \ g◦Yn. Since (g◦)−1y 6∈ Yn,

either (g◦)−1y 6∈ An or (g◦)−1y ∈ Dn, where we set Dn =
⋃p−1

i=0 (S
◦
n)

iCn. In the former

case, we have y ∈ An \ g◦An. In the latter case, we have

y ∈ (g◦Dn \Dn) ∩ Yn ⊂

p−1⋃

i=0

⋃

k<n

(g◦(S◦
n)

iAk \ (S
◦
n)

iAk) ∩ Yn.

Let N be a positive integer. We have

N∑

n=1

µ(Yn \ g◦Yn) ≤
N∑

n=1

µ(An \ g◦An) +

p−1∑

i=0

N∑

n=1

n−1∑

k=1

µ((g◦(S◦
n)

iAk \ (S
◦
n)

iAk) ∩ Yn).

By inequality (1), in the right hand side, the first term is less than ε. In general, for all

Borel subsets A,A′, B,B′ ⊂ X, we have

µ(A \B) ≤ 2µ(A△A′) + µ(B △B′) + µ(A′ \B′)

([KTD, Lemma 5.2]). This implies that the second term is less than or equal to

p−1∑

i=0

N∑

n=1

n−1∑

k=1

(µ((g◦Ak \ Ak) ∩ Yn) + 3µ((S◦
n)

iAk △Ak))

< p

N∑

n=1

n−1∑

k=1

µ((g◦Ak \ Ak) ∩ Yn) + 3ε < (p+ 3)ε,

where the first inequality follows from inequality (3) and the last inequality follows from

inequality (1). Then
∑N

n=1 µ(Yn \ g◦Yn) < (p + 4)ε and therefore

(5)
∑

n µ(Yn \ g◦Yn) < (p+ 4)ε for all g ∈ F .

We define a map R : X → G, patching the restrictions Sn|Yn
together as follows: For

each n, we set R = Sn on Yn and set Rx = e if x ∈ X \Y . Since S◦
n preserves Yn, the map

R◦ is an automorphism of X and hence R is an element of [G]. Let B ⊂ X be the set of

p-periodic points of R◦ such that Rix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and Rpx = h.

Since S◦
n preserves Yn again and Yn is a subset of An, each point of Yn belongs to B and

therefore Y = B and µ(B) > 1− ε by inequality (4).
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We pick g ∈ F to estimate µ({g ◦R 6= R ◦ g}). We have the following three inclusions:

{g ◦R 6= R ◦ g} ⊂
⋃

n

({g ◦R 6= R ◦ g} ∩ Yn) ∪ (X \ Y ),

{g ◦R 6= R ◦ g} ∩ Yn ⊂ ({g ◦R 6= R ◦ g} ∩ (Yn ∩ (g◦)−1Yn)) ∪ (Yn \ (g◦)−1Yn), and

{g ◦R 6= R ◦ g} ∩ (Yn ∩ (g◦)−1Yn) ⊂ {g ◦ Sn 6= Sn ◦ g}.

It follows from inequalities (2), (5) and (4) that

µ({g ◦R 6= R ◦ g}) ≤
∑

n

(µ({g ◦ Sn 6= Sn ◦ g}) + µ(Yn \ (g◦)−1Yn)) + µ(X \ Y )

< ε+ (p + 4)ε+ ε = (p+ 6)ε.

The desired estimate is obtained after scaling ε. �

The following lemma is similar in appearance to the last lemma. The difference between

them is the assumption on µ(An) and the second condition in the definition of the set Bn.

The following lemma deduces a stronger conclusion from the conclusion of the last lemma.

Lemma 2.12. Let (Sn)n∈N be a central sequence in [G] and p ≥ 2 an integer. Let h ∈M

and suppose that h is central in G. We define An ⊂ X as the set of p-periodic points x

of S◦
n such that (Sn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)
px = h. Suppose that

µ(An) → 1.

Then there exists a central sequence (Rn) in [G] such that if we define Bn ⊂ X as the

set of p-periodic points x of R◦
n such that (Rn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and

(Rn)
px = e, then µ(Bn) → 1.

Proof. We show that for all large n ∈ N, if we choose a sufficiently large integer m > n

and set Rn = (Sm)−1 ◦ Sn, then the obtained sequence (Rn) works. Let ε > 0 and fix

a large n ∈ N such that µ(An) > 1 − ε. If m is large enough, then µ(Am) > 1 − ε and

µ(C) > 1− ε, where C is the set of points x ∈ X such that

• (Sn ◦ (Sm)−1)x = ((Sm)−1 ◦ Sn)x, and

• ((Sm)−i ◦ (Sn)
i)x = ((Sm)−1 ◦ Sn)

ix for all i ∈ {1, . . . , p}.

By [KTD, Lemma 5.6], for all i ∈ {1, . . . , p − 1}, we have

µ({x ∈ X | (S◦
m)ix = (S◦

n)
ix 6= x }) → 0

as m → ∞. Therefore for all i ∈ {1, . . . , p − 1}, since (S◦
n)

ix 6= x for all x ∈ An, after

replacing m with a larger integer, we may assume that there exists a Borel subset A′
n ⊂ An

such that µ(An \A′
n) < ε and (S◦

m)ix 6= (S◦
n)

ix for all x ∈ A′
n. We set

D = C ∩A′
n ∩

p−1⋂

i=0

(S◦
n)

−iAm.

Then µ(D) > 1 − (3 + p)ε. We set R = (Sm)−1 ◦ Sn and define B ⊂ X as the set of

p-periodic points of R◦ such that Rix ∈ CG(M) for all i ∈ {1, . . . , p−1} and Rpx = e. We

claim that D ⊂ B. This completes the proof of the lemma. Pick x ∈ D. We first show
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that x is a p-periodic point of R◦ and Rpx = e. For each i ∈ {1, . . . , p− 1}, it follows from

x ∈ A′
n that (S◦

m)ix 6= (S◦
n)

ix, and follows from x ∈ C that

((Sm)−i ◦ (Sn)
i)◦x = (((Sm)−1 ◦ Sn)

i)◦x = (Ri)◦x = (R◦)ix.

Hence (R◦)ix 6= x. We also have

Rpx = ((Sm)−1 ◦ Sn)
px = ((Sm)−p ◦ (Sn)

p)x = ((Sm)−px)h = e,

where the second equation follows from x ∈ C, the third equation follows from x ∈ An,

and the last equation follows from x ∈ Am = (S◦
m)pAm. Finally for each i ∈ {1, . . . , p−1},

we have

Rix = ((Sm)−1 ◦ Sn)
ix = ((Sm)−i ◦ (Sn)

i)x = (Sm)−i((S◦
n)

ix)((Sn)
ix),

which belongs to CG(M) because x ∈ An ∩ (S◦
n)

−iAm and the set Am is preserved by S◦
m,

as shown in the second paragraph of the proof of Lemma 2.11. �

Combining Lemmas 2.11 and 2.12, we obtain the following corollary, which also reminds

us of the notation fixed in the beginning of this subsection.

Corollary 2.13. Let G be a countable group and M a normal subgroup of G. Let G/M y

(X,µ) be a free ergodic p.m.p. action and let G act on (X,µ) through the quotient map

from G onto G/M . We set (G, µ) = G⋉ (X,µ). Let (Sn) be a central sequence in [G] and

p ≥ 2 an integer. Let h ∈ M and suppose that h is central in G. We define An ⊂ X as

the set of p-periodic points x of S◦
n such that (Sn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1}

and (Sn)
px = h. Suppose that µ(An) is uniformly positive.

Then there exists a central sequence (Rn) in [G] such that if we define Bn ⊂ X as the

set of p-periodic points x of R◦
n such that (Rn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and

(Rn)
px = e, then µ(Bn) → 1.

2.6. A variant construction. Continuing from Subsection 2.4, we present another suf-

ficient condition for a countable group G to admit a free p.m.p. Schmidt action, under the

assumption that G admits a p.m.p. Schmidt action. In the following theorem, we assume

the given p.m.p. action G y (X,µ) to be ergodic, as opposed to Theorem 2.5. This is

because the proof uses certain asymptotically invariant sequences of subsets, which are

better controlled if the action is ergodic.

Theorem 2.14. Let G be a countable group and M a normal subgroup of G. Let G/M y

(X,µ) be a free ergodic p.m.p. action and let G act on (X,µ) through the quotient map

from G onto G/M . We set (G, µ) = G⋉ (X,µ).

Let (Sn) be a central sequence in [G], let p ≥ 2 be an integer, and let L < M be a finite

subgroup which is central in G. We define An ⊂ X as the set of p-periodic points of S◦
n

such that (Sn)
ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)

px ∈ L. Suppose that µ(An)

is uniformly positive. Then G has the Schmidt property.

The scheme of the proof of this theorem is the same as that for Theorem 2.5. Lemma

2.6 will be used in the following lemma, which is analogous to Lemma 2.7:
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Lemma 2.15. With the notation and the assumption in Theorem 2.14, let R be the

orbit equivalence relation associated with the action G/M y (X,µ). Then there exist a

central sequence (Tn)n∈N in [G] and a sequence (En+1)n∈N of Borel subsets of X satisfying

conditions (i), (iii) and (iv) in Lemma 2.7 together with the following condition:

(ii)′ For each n and each x ∈ X, we have Tnx ∈ CG(M).

Proof. The desired sequence (Tn, En+1)n∈N is constructed by induction, similarly to the

proof of Lemma 2.7. Fix a decreasing sequence (εn)n∈N of positive numbers converging to

0. We inductively construct a sequence (Tn, En+1)n∈N satisfying conditions (ii)′, (iii) and

(iv) and satisfying the inequality µ({x ∈ X | Tnx 6= Snx }) < 7εn for all n. Let p be the

integer in Theorem 2.14. Since L is finite, by Corollary 2.13, we may assume without loss

of generality that µ(Bn) → 1, where we define Bn ⊂ X as the set of p-periodic points x of

S◦
n such that (Sn)

ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)
px = e.

To construct T1, we set D1 = B1. After replacing S1 with Sn for a large n, we may

assume that µ(X \D1) < ε1. We apply Lemma 2.6 by letting D = D1 and E = X and

letting Ω be a singleton. Then we obtain a periodic T1 ∈ [G] such that T1x ∈ CG(M) for

almost every x ∈ X and µ({x ∈ X | T1x 6= S1x }) < 5ε1 < 7ε1. Since T1 is periodic,

we can find a Borel fundamental domain E2 ⊂ X for the automorphism T ◦
1 of X and its

Borel partition E2 =
⊔

l∈NE
l
2 such that Q1E

l
2 is equal to the set of l-periodic points of

T ◦
1 , where Q1 is the subrelation of R generated by T ◦

1 . The first step of the induction

completes.

Assuming that we have constructed T1, . . . , Tn−1 and E2, . . . , En, we construct Tn and

En+1. Let Qn−1 be the subrelation of R generated by T ◦
1 , . . . , T

◦
n−1. By induction hypoth-

esis, we have a Borel transversal En ⊂ X of Qn−1 and its Borel partition En =
⊔

l∈Nn−1 El
n.

We choose a finite subset Ln ⊂ N
n−1 and set Fn =

⊔
l∈Ln

El
n as in the proof of Lemma

2.7. After replacing Sn with Sm for a sufficiently large m, for each l ∈ Ln, we define Dl
n

as the set of points x ∈ El
n ∩ ((S◦

n)
−1El

n) ∩ Bn such that (Sn ◦ T k)x = (T k ◦ Sn)x for

each k = (k1, . . . , kn−1) ∈ Φl, where we set T k = (Tn−1)
kn−1 ◦ · · · ◦ (T2)

k2 ◦ (T1)
k1 and

define Φl as before. Letting D = Dl
n and E = El

n and letting Ω be a singleton, we apply

Lemma 2.6 for each l ∈ Ln and obtain a periodic Tn ∈ [GFn
]. The rest of the construction

of Tn ∈ [G], whose domain is extended to X, and a Borel transversal En+1 of Qn is a

verbatim translation of that in the proof of Lemma 2.7. �

Proof of Theorem 2.14. The proof is a verbatim translation of that of Theorem 2.5, where

we apply Lemma 2.15 in place of Lemma 2.7 and let Ω be a singleton. We note that the

groupoid M×X E in that proof then reduces to the direct product M × E . �

We now prove Theorems 1.3 and 1.5 stated in Section 1.

Corollary 2.16. Let G be a countable group and M a finite central subgroup of G. Let

G/M y (X,µ) be a free ergodic p.m.p. action and let G act on (X,µ) through the quotient

map from G onto G/M . If the action G y (X,µ) is Schmidt, then G has the Schmidt

property.
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Proof. By assumption, we have a central sequence (Sn) in [G ⋉ (X,µ)] such that µ({x ∈

X | S◦
nx 6= x }) → 1, We will apply Theorem 2.5 or 2.14. The most remarkable difference

between the assumptions in those two theorems is the condition on the set Ap
n of p-periodic

points of S◦
n and its measure. Passing to a subsequence of (Sn), we may assume that either

µ(Ap
n) → 0 for every integer p ≥ 2, or there is some integer p ≥ 2 for which the values

µ(Ap
n) are uniformly positive. If the former holds, then we apply Theorem 2.5 by letting

Ω be a singleton. We note that CG(M) = G since M is central in G. If the latter holds,

then we apply Theorem 2.14 by letting L = M . Thus the corollary follows from the

theorems. �

Recall that a sequence (gn) in a countable group G is called central if for each h ∈ G,

gn commutes with h for all sufficiently large n. The following is an immediate application

of Corollary 2.16:

Corollary 2.17. If a countable group G admits a central sequence diverging to infinity,

then G has the Schmidt property.

Proof. Let G act on the set G \ {e} by conjugation, which induces the p.m.p. action of

G on the product space X :=
∏

G\{e}[0, 1] equipped with the product measure µ of the

Lebesgue measure. We may assume that G has finite center because otherwise the Schmidt

property of G is shown in [KTD, Example 8.8]. Let C be the center of G. Then C acts on

X trivially and the induced action G/C y (X,µ) is essentially free. By assumption, we

have a central sequence (gn) in G diverging to infinity, and we may assume that none of gn

belongs to C. Then by Remark 2.1, (gn) is a central sequence in the full group [G⋉(X,µ)]

such that µ({x ∈ X | gnx 6= x }) = 1 for all n. Thus Corollary 2.16 is applied to G and

its finite center C. �

Remark 2.18. Let G be a countable group. If M is a finite central subgroup of G and the

quotient group G/M admits a central sequence diverging to infinity, then G also admits

such a sequence and thus has the Schmidt property by Corollary 2.17.

To show this, choose a section s : G/M → G of the quotient map. Let (gn) be a central

sequence in G/M diverging to infinity. For each h ∈ G, the commutator [s(gn), h] belongs

to M if n is large enough. Since M is finite, after passing to a subsequence, we may

assume that for each h ∈ G, the element [s(gn), h] is independent of n. Then the sequence

(s(gn)s(g1)
−1) is central in G and diverges to infinity.

3. Groups with infinite AC-center

3.1. Reduction to the proof for groups with infinite FC-center. We collect basic

properties of groups with infinite AC-center. For a subset S of a group G, we denote by

CG(S) the centralizer of S in G and denote by 〈S〉G the normal closure of S in G, i.e.,

the minimal normal subgroup of G containing S. If S consists of elements g1, . . . , gn, then

CG(S) and 〈S〉G are also denoted by CG(g1, . . . , gn) and 〈g1, . . . , gn〉G, respectively.

Lemma 3.1. Let G be a countable group and denote by R the AC-center of G, i.e., the

set of elements g ∈ G such that the quotient group G/CG(〈g〉G) is amenable. Then
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(i) the set R is a normal subgroup of G.

(ii) For each finite subset S ⊂ R, the quotient group G/CG(〈S〉G) is amenable.

(iii) The group R is amenable.

(iv) The group R is generated by all normal subgroups M of G such that G/CG(M) is

amenable. Therefore R is equal to the AC-center introduced in [TD, 0.G].

Proof. Although some assertions in the lemma are proved in [TD, Theorem 13], we give

a proof for the reader’s convenience. For the ease of symbols, in this proof, let us write

C̄(g) and C̄(S) for CG(〈g〉G) and CG(〈S〉G), respectively, given g ∈ G and S ⊂ G. By its

definition the set R contains the trivial element and is closed under inverse. If r, s ∈ R,

then C̄(r) ∩ C̄(s) < C̄(rs). Thus G/(C̄(r) ∩ C̄(s)) surjects onto G/C̄(rs) and injects into

G/C̄(r)×G/C̄(s) diagonally. The last group is amenable and thus rs ∈ R. Hence R is a

subgroup of G, and by its definition R is normal in G. Assertion (i) follows.

If S consists of finitely many elements r1, . . . , rn ∈ R, then G/C̄(S) diagonally injects

into the direct product G/C̄(r1) × · · · × G/C̄(rn), which is amenable. Thus G/C̄(S) is

amenable, and assertion (ii) follows. Moreover the group 〈S〉 generated by S admits the

homomorphism into G/C̄(S) induced by the inclusion into G, whose kernel is 〈S〉 ∩ C̄(S)

and thus abelian. Hence 〈S〉 is amenable, and assertion (iii) follows.

Let M be the set of normal subgroups M of G such that G/CG(M) is amenable, and

let R1 be the group generated by all members of M. If r ∈ R, then 〈r〉G ∈ M and thus

r ∈ R1. To show the converse, we note that if M1,M2 ∈ M, then the group generated by

M1 and M2 belongs to M since its centralizer in G is equal to CG(M1) ∩ CG(M2), and

the group G/(CG(M1)∩CG(M2)) diagonally injects into G/CG(M1)×G/CG(M2), which

is amenable. Therefore R1 is the union of members of M. If r ∈ R1, then r is contained

in some M ∈ M, and since CG(M) < C̄(r), we have r ∈ R. Assertion (iv) follows. �

Let G be a countable group. Suppose that the AC-center of G, denoted by R, is infinite.

We first assume that there exists a finite subset S ⊂ R such that the normal closure M :=

〈S〉G is infinite. Setting L := CG(M), we then have two commuting, normal subgroups

L, M of G such that M is amenable and the quotient group G/(LM) is amenable. If

L ∩M is finite, then the infinite group M/(L ∩M) injects into the group (LM)/L and

hence the index of L in LM is infinite. By [TD, Theorem 18 (H1)], we conclude that G is

stable and thus has the Schmidt property. If L ∩M is infinite, then LM has the infinite

central subgroup L∩M . Since G/(LM) is amenable, the construction in the proof of [TD,

Theorem 15] yields an ergodic free p.m.p. action of G which is Schmidt.

We next assume that for each finite subset S ⊂ R, the normal closure 〈S〉G is finite.

For each r ∈ R, the normal closure 〈r〉G is then finite. The group G acts on 〈r〉G by

conjugation, and some finite index subgroup of G acts on it trivially. Hence the centralizer

CG(r) is of finite index in G, that is, r belongs to the FC-center of G. The AC-center

R is thus contained in the FC-center of G, and they coincide after all. Let us record the

following structural alternative obtained at this point.

Proposition 3.2. Let G be a countable group with infinite AC-center. Then either
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(1) there exist two commuting, normal subgroups L, M of G such that one of them is

infinite and amenable and the quotient group G/(LM) is amenable, or

(2) the AC-center and the FC-center of G coincide, and for each finite subset of the

FC-center of G, its normal closure in G is finite.

As shown above, if there exists a finite subset S ⊂ R such that the normal closure 〈S〉G
is infinite, then case (1) occurs, and if there exists no such S, then case (2) occurs. In

case (1), it has already shown that G has the Schmidt property. Therefore for the proof

of Theorem 1.1, it remains to show that G has the Schmidt property if G has infinite

FC-center and every finite subset of the FC-center has finite normal closure in G.

Finally we point out the following permanence properties, which are concerned with the

question in Remark 1.4, but are not necessary for the proof of Theorem 1.1.

Proposition 3.3. Let G be a countable group with a finite central subgroup Z. Then

(i) the group G has infinite FC-center if and only if G/Z has infinite FC-center.

(ii) The group G has infinite AC-center if and only if G/Z has infinite AC-center.

Proof. For each g ∈ G, let AG(g) denote the conjugacy class of g in G. We note that an

element g ∈ G belongs to the FC-center of G if and only if the set AG(g) is finite. We set

Γ = G/Z with π : G → Γ the quotient map. Let R0 be the FC-center of G and R0
1 the

FC-center of Γ. For each g ∈ G, the map π is a surjection from AG(g) onto AΓ(π(g)), and

is finite-to-one since Z is finite. This implies that π(R0) = R0
1, and assertion (i) follows.

We prove assertion (ii). Let R be the AC-center of G and R1 the AC-center of Γ. It

suffices to show that π(R) = R1. For each g ∈ G, we have π(CG(〈g〉G)) < CΓ(〈π(g)〉Γ).

We thus have the surjection from G/CG(〈g〉G) onto Γ/CΓ(〈π(g)〉Γ). Hence π(R) < R1.

We fix γ ∈ Γ and set M = 〈γ〉Γ and L = CΓ(M). We choose a section s : Γ → G of π.

Let Hom(M,Z) be the group of homomorphisms from M into Z such that the product

of two elements τ1, τ2 ∈ Hom(M,Z) is given by the homomorphism m 7→ τ1(m)τ2(m).

Since L and M commute, we obtain the homomorphism τ : L → Hom(M,Z) defined by

τl(m) = [s(l), s(m)] for l ∈ L and m ∈ M . We set L1 = ker τ . Then L/L1 is abelian and

hence amenable. If g ∈ G with π(g) = γ, then L1 < π(CG(〈g〉G)) because for each l ∈ L1,

we have s(l) ∈ CG(s(M)) = CG(〈g〉G) and l = π(s(l)) ∈ π(CG(〈g〉G)).

Suppose that γ ∈ R1 and pick g ∈ G with π(g) = γ. We show that g ∈ R, which

implies the inclusion R1 < π(R). We set N = CG(〈g〉G). The group G/N is isomorphic to

Γ/π(N) via π. Since L1 < π(N), we have the surjection from Γ/L1 onto Γ/π(N), which

surjects onto Γ/L because π(N) < L. It follows from γ ∈ R1 that Γ/L is amenable. Since

L/L1 is also amenable, so are Γ/L1, Γ/π(N) and G/N , and thus g ∈ R. �

3.2. An outline of Sections 4 and 5. Let G be a countable group with infinite FC-

center R. Suppose that every finite subset of R has finite normal closure in G. The proof

of the Schmidt property of G will be given throughout Sections 4 and 5. In this subsection,

we outline the proof along with a preliminary lemma on structure of R.

In Section 4, we show that G has the Schmidt property under the assumption that the

center of R is finite. If we set N =
⋂

r∈R CG(r), then N ∩R is the center of R. Since CG(r)
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is of finite index in G for all r ∈ R, the group G/N is residually finite and thus admits a

free profinite action. Moreover G/N has infinite FC-center because the FC-center of G/N

contains (RN)/N . Following Popa-Vaes [PV, Theorem 6.4] and Deprez-Vaes [DV, Section

3], we construct a free profinite Schmidt action G/N y (X,µ) (after passing to some finite

index subgroup of G). We then apply Theorems 2.5 and 2.14 to the translation groupoid

G ⋉ (X,µ) and conclude that G has the Schmidt property. We remark that the proof in

Section 4 does not use the condition that every finite subset of R has finite normal closure

in G.

In Section 5, we assume that the center of R is infinite. We then have an infinite abelian

subgroup A < R normalized by G. This subgroup A will appropriately be chosen and is

not necessarily the center of R. Since each finite subset of R has finite normal closure in

G, there exists a strictly increasing sequence A1 < A2 < · · · of finite subgroups of A such

that each An is normalized by G. Let us draw our attention to the following condition:

(⋆) For every N ∈ N, we have limn |Fn,N |/|An| = 1, where Fn,N is the set of elements

of An whose order is more than N .

For example, if An = Z/2nZ and we embed An into An+1 arbitrarily, then the sequence

A1 < A2 < · · · fulfills this condition. In Subsection 5.3, we assume condition (⋆) and show

that G has the Schmidt property. In Subsection 5.4, we deal with the case where condition

(⋆) is not fulfilled. In this case, applying Lemma 3.4 below, after replacing (An), we may

assume without loss of generality that for some prime number p, each An is isomorphic to

the direct sum of copies of Z/pZ.

Lemma 3.4. Let G be a countable group and A an infinite abelian normal subgroup of G

contained in the FC-center of G. Suppose that each finite subset of A has finite normal

closure in G and let A1 < A2 < · · · be a strictly increasing sequence of finite subgroups of A

such that each An is normalized by G. Suppose further that for this sequence, condition (⋆)

does not hold. Then there exist a prime number p and a strictly increasing sequence B1 <

B2 < · · · of finite subgroups of A such that each Bn is normalized by G and isomorphic

to the direct sum of copies of Z/pZ.

Proof. Since condition (⋆) does not hold, after passing to a subsequence of (An), we may

assume that there exists N ∈ N such that the ratio |An \ Fn|/|An| is uniformly positive,

where Fn denotes the set of elements of An whose order is more than N . Let P be the set

of prime numbers. Then An is isomorphic to the direct sum
⊕

p∈P A
p
n, where A

p
n is the

subgroup of elements of An whose order is a power of p. This direct sum decomposition

is canonical and is thus preserved under G-conjugation. We aim to show that for some

p ∈ P, the number of elements of Ap
n whose order is p diverges to infinity after passing to

a subsequence of (An).

Let Cp
n be the set of elements of Ap

n whose order is less than or equal to N . Then Cp
n is

a subgroup of Ap
n. We claim that for some p ∈ P, after passing to a subsequence of (An),

we have |Cp
n| → ∞ as n → ∞. Otherwise for each p ∈ P, the sequence (|Cp

n|)n∈N would

be bounded. Therefore |Cp
n| is uniformly bounded among all n and all p ∈ P with p ≤ N .

This is absurd with the condition that |An \Fn|/|An| is uniformly positive and |An| → ∞,
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because each element of An whose order is less than or equal to N is a sum of elements of

Cp
n with p ≤ N .

Since Cp
n is isomorphic to a direct sum of groups Z/pkZ for some positive integers k

with pk ≤ N , it follows from |Cp
n| → ∞ that the number of elements of Cp

n whose order

is p diverges to infinity. This is the claim that we aim to show. Note that elements of A

of order p are preserved under G-conjugation. Note also that each finite set of elements

of A of order p generates a group whose elements other than the trivial one have order p,

which is isomorphic to the direct sum of finitely many copies of Z/pZ. Hence we obtain a

desired sequence B1 < B2 < · · · of subgroups inductively as follows: Choose an element

of
⋃

nAn of order p and let B1 be its normal closure in G. Having defined Bn, choose an

element a of
⋃

nAn of order p which does not belong to Bn and let Bn+1 be the normal

closure of Bn ∪ {a} in G. �

3.3. Examples. We present examples of groups with infinite FC-center such that their

Schmidt property does not follow from known results in [PV] and [KTD] immediately. Let

us recall those results:

(1) If a countable group G has infinite FC-center and is residually finite, then G has

the Schmidt property ([PV, Theorem 6.4], see also [KTD, Example 8.10]).

(2) Suppose that a countable group Γ acts on a countably infinite amenable group A

by automorphisms and suppose further that each Γ-orbit in A is finite. Then the

semi-direct product Γ⋉ A is stable ([KTD, Example 8.11]) and therefore has the

Schmidt property.

Here we recall that a free ergodic p.m.p. action of a countable group is called stable if the

associated orbit equivalence relation absorbs the ergodic p.m.p. hyperfinite equivalence

relation on an atomless standard probability space, under direct product. If a countable

group G admits a free ergodic p.m.p. action which is stable, then G is called stable.

Example 3.5. Let Γ be the group of Ershov [Er]. This is a countable, residually finite group

with property (T) whose FC-center R is not virtually abelian (note that these conditions

imply R 6= Γ. Otherwise R = Γ would be amenable by Lemma 3.1 (iii) and hence finite

by property (T) of Γ, but this is absurd with R being not virtually abelian). Let H be

a countable, non-residually-finite group and define G as the amalgamated free product

G = Γ ∗R (H × R), where R is identified with the subgroup {e} × R of H × R. Then

the FC-center of G is equal to R, which is proved in the next paragraph, and G is not

residually finite. Moreover G is not stable as shown in Corollary 3.10 below.

We prove that the FC-center of G is equal to R. Pick r ∈ R. We naturally identify H

with the subgroup H×{e} of H×R. Let p : G→ Γ be the surjection onto the first factor.

Then ker p = 〈H〉G. Since R is a normal subgroup of G, it follows from H < CG(R) that

ker p < CG(R) < CG(r). On the other hand, since p is the identity on Γ, G is identified

with the semi-direct product Γ⋉ ker p. Then CG(r) is identified with CΓ(r)⋉ ker p, which

is of finite index in Γ⋉ ker p. Thus r belongs to the FC-center of G. We have shown that

R is contained in the FC-center of G. The converse inclusion holds because the quotient

group G/R is isomorphic to the free product (Γ/R) ∗H whose FC-center is trivial.
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Example 3.6. We set Γ = SLm(Z) with m ≥ 2. The group Z[1/2]/Z is identified with the

increasing union
⋃

n Z/2
n
Z, where the element 1 ∈ Z/2nZ is identified with the element

1/2n +Z ∈ Z[1/2]/Z. We set An = (Z/2nZ)m and A = (Z[1/2]/Z)m =
⋃

nAn. The group

Γ acts on each An by automorphisms, and the increasing sequence A1 < A2 < · · · fulfills

condition (⋆) in Subsection 3.2.

The semi-direct product Γ⋉A is not residually finite. In fact, the group Z[1/2]/Z has

no finite index subgroup other than itself, which is proved as follows: Let B be a finite

index subgroup of Z[1/2]/Z and pick r ∈ Z[1/2]. Find m ∈ N with 2mr ∈ Z. Since B is of

finite index, there exist k, l ∈ N such that 2−kr − 2−lr + Z ∈ B and k − l > m. Then the

element 2m+l(2−kr − 2−lr) + Z = 2m+l−kr + Z belongs to B and so does r + Z. Thus we

have B = Z[1/2]/Z.

Let E be a countable group with property (T) containing A as a central subgroup. We

define G as the amalgamated free product G = (Γ⋉A) ∗A E. Then the FC-center of G is

equal to A, and G is not stable (Corollary 3.10).

We obtain such a group E as follows, relying on the construction of Cornulier [C] (see

Appendix A for construction of analogous groups): Let H be the subgroup of SL5(Z[1/2])

consisting of matrices of the form

(3.1)



1 ∗ ∗

0 h ∗

0 0 1


 ,

where h runs through elements of SL3(Z[1/2]). Then H has property (T) ([C, Proposition

2.7]). The center C of H consists of matrices such that each diagonal entry is 1 and the

(1, 5)-entry is the only off-diagonal entry that is possibly non-zero. Let Z be the subgroup

of C consisting of matrices whose (1, 5)-entry belongs to Z. Then the group E := (H/Z)m

is a desired one. Indeed (C/Z)m is a central subgroup of E isomorphic to A, and E has

property (T) since H has property (T).

Example 3.7. Let p be a prime number and set A =
⊕

N
Z/pZ. For n ∈ N, we define An as

the group of elements (ai)i∈N ∈ A such that ai = 0 if i > n. Every non-trivial element of

A has order p. Thus the increasing sequence A1 < A2 < · · · does not fulfill condition (⋆)

in Subsection 3.2. Let N be the group of matrices (aij)i,j∈N with coefficient in Z/pZ such

that aii = 1 for all i ∈ N and aij = 0 for all i > j. The group N acts on the vector space

A by linear automorphisms, preserving the subspace An. We equip N with the topology

of pointwise convergence as automorphisms of A. Then N is a compact group.

Let Γ be a countable dense subgroup of N . In the paragraph after next, we will prove

that the FC-center of the semi-direct product Γ⋉A is equal to A. As in Example 3.6, let

E be a countable group with property (T) containing A as a central subgroup, and define

G as the amalgamated free product G = (Γ⋉A) ∗A E. Then the FC-center of G is equal

to A, and G is not stable (Corollary 3.10).

We find such a group E, relying on the construction of Cornulier [C] again: Let Fp be

the field of order p and let Fp[t] be the ring of polynomials over Fp in one indeterminate

t. We define E as the subgroup of SL5(Fp[t]) consisting of matrices of the form (3.1) with
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h running through elements of SL3(Fp[t]). Then E has property (T) by [C, Lemma 2.2].

The center of E is isomorphic to Fp[t] and to A.

Let R be the FC-center of Γ⋉A. We prove that R is equal to A. For each n, the group

of elements of Γ acting on An trivially is of finite index in Γ. Thus An < R and A < R.

For the converse inclusion, it suffices to show that if an element g ∈ Γ centralizes a finite

index subgroup of Γ, then g is trivial. Suppose otherwise toward a contradiction. Write

g = (gij)i,j∈N as a matrix and pick positive integers k < l such that gkl 6= 0 and gkj = 0

if 1 < j < l. Since Γ is dense in N and g commutes with some finite index subgroup of

Γ, there exists an open neighborhood V of the identity in N such that g commutes with

each element of V . Then there exists an m ∈ N such that if a matrix h = (hij)i,j ∈ N

satisfies hij = 0 for all 1 ≤ i < j < m, then h belongs to V . We may assume that m > l.

Let h ∈ V be the matrix such that the (l,m)-entry is 1 and the other off-diagonal entries

are 0. Then the (k,m)-entries of gh and hg are gkl + gkm and gkm, respectively. We thus

have gh 6= hg, a contradiction.

We present a sufficient condition for a countable group not to be stable, and apply it to

the groups in the above examples. We say that a mean on a countable group G is diffuse

if its value on each finite subset of G is zero.

Proposition 3.8. Let G be a countable group and A a subgroup of G. Suppose that each

diffuse, G-conjugation invariant mean on G is supported on A and that the pair (G,A)

has property (T). Then G is not stable.

Proof. Suppose that G admits a free ergodic p.m.p. action G y (X,µ) which is stable.

Then we have a central sequence (Tn) in the full group [G⋉ (X,µ)] and an asymptotically

invariant sequence (An) for G⋉ (X,µ) such that T ◦
nAn ∩An = ∅ (and hence µ(An) = 1/2)

for all n (see Remark 3.9 below). Property (T) of the pair (G,A) implies that there exists

an A-invariant Borel subset Bn ⊂ X such that µ(An △ Bn) → 0. Since the functions on

G defined by g 7→ µ({x ∈ X | Tnx = g }) are asymptotically G-conjugation invariant,

the assumption on G-conjugation invariant means on G implies that there exists a Borel

subset Dn ⊂ X such that Tnx ∈ A for all x ∈ Dn and µ(Dn) → 1. Then

T ◦
nBn \Bn ⊂ (T ◦

n(Dn ∩Bn) \Bn) ∪ T
◦
n(X \Dn) = T ◦

n(X \Dn),

where the last equation holds since Bn is A-invariant and Tnx ∈ A for all x ∈ Dn. Thus

µ(T ◦
nBn △Bn) ≤ 2µ(X \Dn) → 0 and µ(T ◦

nAn △An) → 0, a contradiction. �

Remark 3.9. Let the group
⊕

N
Z/2Z act on the compact group X0 =

∏
N
Z/2Z by transla-

tion, equip X0 with the Haar measure, and let R0 denote the associated orbit equivalence

relation. For each n ∈ N, let T̄n ∈ [R0] be the element of
⊕

N
Z/2Z such that its coordi-

nate indexed by n is 1 and the other coordinates are 0, and let Ān ⊂ X0 be the subset

consisting of points whose coordinate indexed by n is 0. Then (T̄n) is central in [R0], (Ān)

is asymptotically invariant for R0, and T̄nĀn ∩ Ān = ∅ for all n.

If a discrete p.m.p. equivalence relation R is stable, then we obtain similar sequences as

follows: By stability, we have a decomposition R = R0 ×R1, where R1 is some discrete
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p.m.p. equivalence relation on a standard probability space (X1, µ1). Define Tn ∈ [R] by

Tn(x, y) = (T̄n(x), y) for x ∈ X0 and y ∈ X1, and set An = Ān ×X1. Then (Tn) is central

in [R], (An) is asymptotically invariant for R, and TnAn ∩An = ∅ for all n.

Corollary 3.10. None of the groups G in Examples 3.5–3.7 is stable.

Proof. Let G = Γ ∗R (H ×R) be the group in Example 3.5. Then G surjects onto the free

product (Γ/R) ∗H with kernel R. Since each conjugation-invariant mean on (Γ/R) ∗H

is supported on the trivial element ([BH, Théorème 5 (c)]), each G-conjugation invariant

mean on G is supported on R. Since Γ has property (T), so does the pair (G,R). Thus

Proposition 3.8 applies.

Let G = (Γ⋉ A) ∗A E be the group in Example 3.6 or 3.7. It similarly turns out that

each G-conjugation invariant mean on G is supported on A. Since E has property (T), so

does the pair (G,A). Thus Proposition 3.8 applies. �

Remark 3.11. Let Γ be a countable group acting on a countably infinite amenable group

A by automorphisms. The semi-direct product G := Γ⋉A then acts on A by affine trans-

formations, i.e., Γ acts on A by automorphisms, and A acts on A by left multiplication.

If the action of G on A admits an invariant mean, then the pair (G,A) does not have

property (T). Indeed, the associated unitary representation of G on ℓ2(A) weakly contains

the trivial representation, but has no A-invariant unit vector.

If each Γ-orbit in A is finite, then the action of G on A admits an invariant mean (see

the proof of [TD, Theorem 13, ii]). Therefore for the stable group G = Γ⋉A reviewed in

the beginning of this subsection, the pair (G,A) does not have property (T). We refer to

[DV, Proposition 3.1], [Ki3, Theorem 1.1] and [TD, 0.H] for other relationships between

stability and relative property (T).

4. Groups with non-commutative FC-center

Let G be a countable group with infinite FC-center R. Suppose that the center of R is

finite. In this section, we aim to prove that G has the Schmidt property.

We set N =
⋂

r∈R CG(r). Then R and N commute and N ∩R is exactly the center of R.

We may assume without loss of generality that N ∩R is central in G after passing to some

finite index subgroup of G. Indeed the subgroup G0 :=
⋂

r∈N∩R CG(r) is of finite index in

G since N ∩R is finite, and G0 commutes with N ∩R. Since N ∩R is central in R, we have

R < G0 and hence the FC-center of G0 is equal to R. If we set N0 =
⋂

r∈R CG0
(r), then

N0 = N ∩ G0 and hence N0 ∩ R is finite and central in G0. In general for a finite index

inclusion Λ < Γ of countable groups, if Λ admits a free ergodic p.m.p. action which is

Schmidt, then the action of Γ induced (not co-induced) from it is also Schmidt. Therefore

after replacing G with G0, we may assume that N ∩R is central in G.

Let G = H0 > H1 > H2 > · · · be a decreasing sequence of finite index subgroups of G

such that
⋂

nHn = N . We can choose a sequence (rn)n∈N of elements of R \N such that

(i) if n 6= m, then rn and rm are distinct in the quotient group R/(N ∩R), and

(ii) for each n ∈ N, rn belongs to CG(r1, . . . , rn−1) ∩Hn−1.
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Indeed we first note that R/(N ∩R) is infinite since R is infinite and N ∩R is finite. Let r1

be an arbitrary element of R \N . If r1, . . . , rn−1 are chosen, then CG(r1, . . . , rn−1)∩Hn−1

is of finite index in G and hence its image in G/(N ∩R) is of finite index. The intersection

of that image with R/(N ∩R) is of finite index in R/(N ∩R) and hence infinite. If we let

rn be an element of R \N whose image in R/(N ∩R) belongs to that intersection and is

distinct from the images of r1, . . . , rn−1, then conditions (i) and (ii) are fulfilled. For an

integer n ≥ 2, we set

Gn = CG(r1, . . . , rn−1) ∩Hn−1 ∩ CG(rn).

Let G y (X,µ) be the ergodic p.m.p. action obtained as the inverse limit of the system

of the p.m.p. actions Gy G/Gn given by left multiplication. Then N acts on X trivially,

and the induced action G/N y (X,µ) is free because
⋂

nHn = N .

We show that the translation groupoid (G, µ) := G ⋉ (X,µ) admits a central sequence

(Tn) in its full group such that T ◦
nx 6= x and Tnx ∈ R for all n and all x ∈ X. Let

pn : X → G/Gn be the projection obtained from the inverse limit construction. We define

a map Tn : X → G by Tnx = grng
−1 for x ∈ p−1

n (gGn) and g ∈ G. This does not depend

on the choice of g because rn commutes with every element of Gn by the definition of Gn.

Since rn belongs to Gn by condition (ii), T ◦
n preserves the subset p−1

n (gGn) for each g ∈ G.

Therefore Tn belongs to [G] and we have µ(T ◦
nA△A) → 0 for every Borel subset A ⊂ X.

For each h ∈ G, Tn commutes with the element φh ∈ [G] defined as the constant map with

value h. Indeed if x ∈ p−1
n (gGn) with g ∈ G, then (Tn ◦φh)x = Tn(hx)h = hgrng

−1, which

is equal to (φh ◦ Tn)x. Therefore (Tn) is a central sequence in [G], and we have T ◦
nx 6= x

for every x ∈ X because rn does not belong to N .

We thus obtained the ergodic p.m.p. action Gy (X,µ) such that N acts on X trivially,

the induced action of G/N on X is free, and there exists a central sequence (Tn) in the

full group [G ⋉ (X,µ)] such that Tnx 6= x and Tnx ∈ R for all n and all x ∈ X. Recall

also that R is contained in the centralizer CG(N) and that N ∩ R is finite and central in

G. In order to apply Theorem 2.5 or 2.14, we check that at least one of the assumptions

in those two theorems is fulfilled. For p ∈ N, let Ap
n ⊂ X be the set of p-periodic points

of T ◦
n . If every p ∈ N satisfies µ(Ap

n) → 0 as n → ∞, then letting Ω be a singleton and

Mω = N in Theorem 2.5, we apply it and conclude the Schmidt property for G. Suppose

otherwise, i.e., suppose that for some integer p ≥ 2, the measure µ(Ap
n) does not converge

to 0 as n → ∞. After passing to a subsequence, we may assume that µ(Ap
n) is uniformly

positive. If x ∈ Ap
n, then (T ◦

n)
px = x and hence (Tn)

px ∈ N and (Tn)
px ∈ N ∩R. Letting

M = N and L = N ∩R in Theorem 2.14, we apply it and conclude the Schmidt property

of G.

5. Groups with commutative FC-center

5.1. Groupoid extensions. Let G be a countable group and let A be an abelian normal

subgroup of G. We set Γ = G/A and choose a section s : Γ → G of the quotient map, with

s(e) = e. We then have the 2-cocycle σ : Γ× Γ → A defined by σ(g, h)s(gh) = s(g)s(h) for
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g, h ∈ Γ. The map σ satisfies the 2-cocycle identity

σ(g, h)σ(gh, k) = gσ(h, k)σ(g, hk)

for all g, h, k ∈ Γ, where we set ga = s(g)as(g)−1 for g ∈ Γ and a ∈ A. Note that ga does

not depend on the choice of the section s.

Fix a compact abelian metrizable group L. We defineX as the group of homomorphisms

fromA into L, identified with the closed subgroup of the product group
∏

A L. Let µ denote

the normalized Haar measure on X. The group G acts on X by (gτ)(a) = τ(g−1ag) for

g ∈ G, a ∈ A and τ ∈ X, and this gives rise to the action of Γ on X. We set U = X × L

and regard it as the bundle over X with respect to the projection onto the first coordinate.

We also regard U as the groupoid with unit space X such that the range and source maps

are the projection onto X, and the product is given by (τ, l)(τ,m) = (τ, lm) for τ ∈ X and

l,m ∈ L. The translation groupoid X ⋊ Γ acts on U by (τ, g)(g−1τ, l) = (τ, l) for τ ∈ X,

g ∈ Γ and l ∈ L.

Let (X ⋊ Γ)(2) be the set of composable pairs of the groupoid X ⋊ Γ, i.e., the set of all

pairs of the form ((τ, g), (g−1τ, h)) for some τ ∈ X and g, h ∈ Γ. The pair of that form is

also denoted by (τ, g, h) for brevity. We define the 2-cocycle σ̃ : (X ⋊ Γ)(2) → U by

(5.1) σ̃(τ, g, h) = (τ, 〈τ, σ(g, h)〉),

where 〈τ, a〉 stands for τ(a) for τ ∈ X and a ∈ A. Indeed the map σ̃ satisfies the 2-cocycle

identity:

(5.2) σ̃(τ, g, h)σ̃(τ, gh, k) = (τ,g)σ̃(g−1τ, h, k)σ̃(τ, g, hk),

where we set (τ,g)(g−1τ, l) = (τ, l) for (τ, g) ∈ X ⋊ Γ and l ∈ L, which is the result of the

action of (τ, g) on (g−1τ, l) ∈ U . Let us check equation (5.2): For the first coordinate in

X, both sides are τ . For the second coordinate in L, the left hand side is

〈τ, σ(g, h)〉〈τ, σ(gh, k)〉 = 〈τ, σ(g, h)σ(gh, k)〉 = 〈τ, gσ(h, k)σ(g, hk)〉

= 〈τ, gσ(h, k)〉〈τ, σ(g, hk)〉 = 〈g−1τ, σ(h, k)〉〈τ, σ(g, hk)〉,

which is equal to the second coordinate of the right hand side.

We now construct the groupoid extension

(5.3) 1 → U → Gσ̃ → X ⋊ Γ → 1

associated with the 2-cocycle σ̃ (see [Se] for the extension associated with a 2-cocycle of

an equivalence relation with coefficient in a bundle of abelian Polish groups). As a set, we

define Gσ̃ as the fibered product U ×X (X ⋊ Γ) with respect to the range map of X ⋊ Γ.

The range and source of (u, g) ∈ Gσ̃ with u ∈ U and g ∈ X ⋊ Γ are defined as the range

and source of g, respectively. The product of Gσ̃ is given by

(5.4) (u, g)(v, h) = (ugvσ̃(g, h), gh)
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for (u, g), (v, h) ∈ Gσ̃ with (g, h) composable. This product is associative. Indeed for three

elements (u, g), (v, h), (w, k) ∈ Gσ̃ with (g, h) and (h, k) composable, we have

(ugvσ̃(g, h), gh)(w, k) = (ugvσ̃(g, h)ghwσ̃(gh, k), ghk)

= (ugvghwgσ̃(h, k)σ̃(g, hk), ghk) = (u, g)(vhwσ̃(h, k), hk).

The inverse of an element (u, g) ∈ Gσ̃ is given by

(5.5) ((g
−1

u)−1σ̃(g−1, g)−1, g−1) = ((g
−1

(u−1))(g
−1

(σ̃(g, g−1)−1)), g−1),

where the left hand side is a left inverse of (u, g), the right hand side is a right inverse of

(u, g), and these two coincide because it follows from s(e) = e that σ(g, e) = e = σ(e, g)

for every g ∈ Γ, and σ(g, g−1) = gσ(g−1, g) by the 2-cocycle identity. All these groupoid

operations are Borel, and we thus obtain a Borel groupoid Gσ̃. We have the projection

from Gσ̃ = U ×X (X ⋊ Γ) onto X ⋊ Γ, whose kernel is identified with U via the inclusion

of U into Gσ̃, (τ, l) 7→ ((τ, l), (τ, e)) for τ ∈ X and l ∈ L. Consequently the groupoid

extension (5.3) is obtained.

An element ((τ, l), (τ, γ)) ∈ Gσ̃ = U ×X (X ⋊ Γ) is also denoted by (τ, l, γ) for brevity.

We define a homomorphism η : X ⋊G→ Gσ̃ by

η(τ, (a, γ)) = (τ, τ(a), γ)

for τ ∈ X, a ∈ A and γ ∈ Γ, where G is identified with A× Γ via the map (a, γ) 7→ as(γ).

To check that η is indeed a homomorphism, let us recall the product of two elements of

A× Γ inherited from G:

(a, γ)(b, δ) = (aγbσ(γ, δ), γδ)

for a, b ∈ A and γ, δ ∈ Γ. If we put g = (a, γ) and h = (b, δ) and regard them as elements

of G, then for each τ ∈ X, we have

η(τ, gh) = (τ, τ(aγbσ(γ, δ)), γδ) = (τ, τ(a)(γ−1τ)(b)τ(σ(γ, δ)), γδ)

=
(
(τ, τ(a))(τ,γ)(γ−1τ, (γ−1τ)(b))σ̃(τ, γ, δ), (τ, γδ)

)

= (τ, τ(a), γ)(γ−1τ, (γ−1τ)(b), δ) = η(τ, g)η(γ−1τ, h),

where in the fourth term, the element of Gσ̃ is written as a pair of an element of U and an

element of X ⋊ Γ. Therefore η is a homomorphism. The kernel of η is given by

ker η = { (τ, a) ∈ X ⋊A | a ∈ ker τ }.

The image of X ⋊A under η is given by

η(X ⋊A) = { (τ, τ(a)) ∈ U | a ∈ A }.

5.2. A free action from co-induction. We keep the notation in the previous subsection,

where we constructed the groupoid Gσ̃. In this subsection, we construct a free p.m.p. action

of Gσ̃, which will be obtained as the action co-induced from the shift action of U onto itself.

This action was not treated in Subsection 2.3 since Gσ̃ is not necessarily discrete. We do

not aim to discuss co-induced actions for non-discrete Borel groupoids in full generality.



GROUPS WITH INFINITE FC-CENTER HAVE THE SCHMIDT PROPERTY 33

We set G = Gσ̃ and Q = X ⋊ Γ for brevity. We have the groupoid extension

1 → U → G → Q → 1.

Recall that U = X×L is the bundle of a compact abelian metrizable group L, and denote

by Ux the fiber of U at x, i.e., {x} × L. Each fiber Ux is often identified with L naturally

if there is no cause of confusion. The bundle U is a groupoid on X and acts on itself by

left multiplication. We co-induce this action to the action of G in the same manner as in

Subsection 2.3 as follows: For x ∈ X, we set

Zx = { f : Gx → L | f(gu−1) = uf(g) for all g ∈ Gx and all u ∈ Us(g) }

and define Z as the disjoint union Z =
⊔

x∈X Zx. For each f ∈ Zx, it is natural to regard

the value f(g) ∈ L at g ∈ Gx as an element of Us(g). The set Z is fibered with respect to

the projection p : Z → X sending each element of Zx to x. Then G acts on Z by

(gf)(h) = f(g−1h)

for g ∈ Gx, h ∈ Gr(g) and f ∈ Zx with x ∈ X.

We define a measure-space structure on Z. Recall that as a set, G is the fibered product

U ×X Q with respect to the range map of Q. For γ ∈ Γ, we define a map ψγ : X → G

by ψγ(x) = ((x, e), (x, γ)) for x ∈ X. Then for each x ∈ X, we have ψγ(x) ∈ Gx and

the family {ψγ(x)}γ∈Γ is a complete set of representatives of all the equivalence classes in

Gx, where the equivalence relation on Gx is defined as follows: two elements g, h ∈ Gx are

equivalent if and only if g−1h ∈ U . Then Z is identified with the product space X ×
∏

Γ L

under the map sending each f ∈ Zx with x ∈ X to (x, (f(ψγ(x)))γ). The measure-space

structure on Z is induced by this identification, where the space X ×
∏

Γ L is equipped

with the product measure of µ and the normalized Haar measure on L. The action of G

on Z is Borel and preserves the probability measure on Z in the following sense:

Proposition 5.1. With the above notation,

(i) for all γ ∈ Γ, x ∈ X and l ∈ L, we have

ψγ(x)
−1(x, l)ψγ(x) = (γ−1x, l),

where we identify U with a subset of G under the injection of U into G.

(ii) We define an action of the group L on Z by lf = (x, l)f for l ∈ L and f ∈ Zx with

x ∈ X. Then this action is Borel, p.m.p. and free.

(iii) For each γ ∈ Γ, the action of ψγ on Z is Borel and p.m.p., that is, the map from Z

into itself sending each f ∈ Zx with x ∈ X to ψγ(γx)f ∈ Zγx is Borel and p.m.p.

(iv) Suppose that either L is infinite and |Γ| ≥ 3 or L is non-trivial and Γ is infinite.

Then the action of G on Z is essentially free, i.e., for almost every f ∈ Z, letting

x ∈ X be the point with f ∈ Zx, we have gf 6= f for each g ∈ Gx except for the

unit at x.
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Proof. To prove assertion (i), we pick γ ∈ Γ, x ∈ X and l ∈ L and set g = (x, γ) ∈ Q. It

follows from formula (5.5) that ψγ(x)
−1 = (σ̃(g−1, g)−1, g−1) and therefore

ψγ(x)
−1(x, l)ψγ(x) = (σ̃(g−1, g)−1, g−1)((x, l), g)

= (σ̃(g−1, g)−1g−1

(x, l)σ̃(g−1, g), (γ−1x, e)) = ((γ−1x, l), (γ−1x, e)),

where the first and second equations are derived from formula (5.4). Assertion (i) follows.

We prove assertion (ii). Pick l ∈ L and f ∈ Zx with x ∈ X. The element f is identified

with the element of X ×
∏

Γ L given by the pair of x and the function γ 7→ f(ψγ(x)). Let

us describe the element of X ×
∏

Γ L corresponding to lf , which is the pair of x and the

function γ 7→ (lf)(ψγ(x)). For each γ ∈ Γ, we have

(lf)(ψγ(x)) = f((x, l)−1ψγ(x)) = f(ψγ(x)ψγ(x)
−1(x, l−1)ψγ(x))

= f(ψγ(x)(γ
−1x, l−1)) = l(f(ψγ(x))),

where we apply assertion (i) in the third equation. Therefore the action of l on X ×
∏

Γ L

is given by (x, (lγ)γ) 7→ (x, (llγ)γ), and the action of L on Z is Borel, p.m.p. and free.

We prove assertion (iii). Pick γ ∈ Γ and f ∈ Zx with x ∈ X. The element f is identified

with the element of X ×
∏

Γ L given by the pair of x and the function δ 7→ f(ψδ(x)). The

element ψγ(γx)f corresponds to the pair of γx and the function

δ 7→ (ψγ(γx)f)(ψδ(γx)) = f(ψγ(γx)
−1ψδ(γx)).

We set g = (γx, γ) and h = (γx, δ). By formula (5.5), ψγ(γx)
−1 = (σ̃(g−1, g)−1, g−1). For

each δ ∈ Γ, if we define k ∈ L by

(5.6) (x, k) = σ̃(g−1, g)−1σ̃(g−1, h),

then we have

ψγ(γx)
−1ψδ(γx) = (σ̃(g−1, g)−1, g−1)((γx, e), h)

= (σ̃(g−1, g)−1σ̃(g−1, h), g−1h) = (x, k)ψγ−1δ(x)

= ψγ−1δ(x)ψγ−1δ(x)
−1(x, k)ψγ−1δ(x) = ψγ−1δ(x)((γ

−1δ)−1x, k),

where the second equation follows from formula (5.4) and the fifth equation follows from

assertion (i). Therefore

f(ψγ(γx)
−1ψδ(γx)) = k−1(f(ψγ−1δ(x))),

and the action of ψγ on X ×
∏

Γ L is given by

(x, (lδ)δ) 7→ (γx, (k−1
γ,δ,xlγ−1δ)δ),

where the element k = kγ,δ,x ∈ L is determined by equation (5.6). By the definition of σ̃

in (5.1), the function x 7→ kγ,δ,x is Borel. Hence the action of ψγ is Borel and also p.m.p.

by the above description of the action. Assertion (iii) follows.

We prove assertion (iv). Recall that each g ∈ Gx with x ∈ X is written as (γx, l, γ) for

some γ ∈ Γ and l ∈ L. By assertion (ii), it suffices to show that for each non-trivial γ ∈ Γ,

there exists a conull subset Z̄ ⊂ Z such that for all f ∈ Z̄ and all l ∈ L, letting x ∈ X be
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the point with f ∈ Zx, we have (γx, l, γ)f 6= f . We fix a non-trivial γ ∈ Γ. The action of

g = (γx, l, γ) on X ×
∏

Γ L is described as

(x, (lδ)δ) 7→ (γx, (lk−1
γ,δ,xlγ−1δ)δ).

Thus if g fixes the point (x, (lδ)δ), then lk
−1
γ,δ,xlγ−1δ = lδ for all δ ∈ Γ.

Suppose that L is infinite and |Γ| ≥ 3. Pick a non-trivial element γ1 ∈ Γ with γ1 6= γ−1.

We fix x ∈ X. If a point (lδ)δ is such that for some l ∈ L, we have lk−1
γ,δ,xlγ−1δ = lδ for all

δ ∈ Γ, then lk−1
γ,e,xlγ−1 = le and lk−1

γ,γ1,xlγ−1γ1 = lγ1 . Deleting l, we thus obtain

(5.7) lγ1 = lel
−1
γ−1 lγ−1γ1kγ,e,xk

−1
γ,γ1,x,

which says that lγ1 is determined if le, lγ−1 and lγ−1γ1 are determined. The element γ1 is

distinct from all of e, γ−1 and γ−1γ1. Hence by Fubini’s theorem, the set of points (lδ)δ

satisfying equation (5.7) is null, where we use the assumption that L is infinite and thus

each singleton subset of L is null. Since x is an arbitrary point of X, by Fubini’s theorem

again, the set of points (x, (lδ)δ) ∈ X ×
∏

Γ L satisfying equation (5.7) is null. Thus it

suffices to let Z̄ be the complement of that null set.

Suppose next that L is non-trivial and Γ is infinite. Then there exists an infinite subset

S ⊂ Γ such that S and γ−1S are disjoint. We fix x ∈ X. Let (lδ)δ be a point such that

for some l ∈ L, we have lk−1
γ,δ,xlγ−1δ = lδ for all δ ∈ Γ. As in the previous paragraph, for

all distinct γ0, γ1 ∈ S, we then have

(5.8) lγ1 = lγ0 l
−1
γ−1γ0

lγ−1γ1kγ,γ0,xk
−1
γ,γ1,x.

The element γ1 is distinct from all of γ0, γ
−1γ0 and γ

−1γ1. Hence by Fubini’s theorem, for

all distinct γ0, γ1 ∈ S, the set of points (lδ)δ satisfying equation (5.8) has measure less than

1, where we use the assumption that L is non-trivial and thus each singleton subset of L

has measure less than 1. Since we have mutually disjoint, infinitely many pairs of distinct

elements of S, the set of points (lδ)δ satisfying equation (5.8) for all distinct γ0, γ1 ∈ S is

null. We thus obtain Z̄ as well as before, and assertion (iv) follows. �

5.3. The case where condition (⋆) holds. Let G be a countable group and let A be

an infinite abelian normal subgroup of G contained in the FC-center of G. Suppose that

each finite subset of A has finite normal closure in G and let A1 < A2 < · · · be a strictly

increasing sequence of finite subgroups of A such that each An is normalized by G. Suppose

further that condition (⋆) introduced in Subsection 3.2 holds, i.e., for all N ∈ N, we have

limn |Fn,N |/|An| = 1, where Fn,N is the set of elements of An whose order is more than

N . Under these assumptions, we aim to construct a free p.m.p. Schmidt action of G. We

may assume that G/A is infinite because otherwise G is amenable. This assumption will

be used in applying Proposition 5.1 (iv) later, and not used for other purposes.

We set Γ = G/A and choose a section s : Γ → G of the quotient map with s(e) = e.

We then obtain the 2-cocycle σ : Γ× Γ → A. We define X as the dual group Â of A, i.e.,

the group of homomorphisms from A into the torus T = { z ∈ C | |z| = 1 }. Let µ be the

normalized Haar measure on X. We recall the construction in Subsection 5.1. Define the

action of G on X by (gτ)(a) = τ(g−1ag) for g ∈ G, a ∈ A and τ ∈ X, which induces the
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action of Γ on X. Let U := X × T be the bundle over X, which is a groupoid with unit

space X. Then we obtain the 2-cocycle σ̃ : (X ⋊ Γ)(2) → U by formula (5.1) and obtain

the groupoid extension

1 → U → Gσ̃ → X ⋊ Γ → 1

together with the homomorphism η : X ⋊G→ Gσ̃ such that

ker η = { (τ, a) ∈ X ⋊A | a ∈ ker τ }

and η(τ, a) = (τ, τ(a)) ∈ U for all a ∈ A and τ ∈ X.

Let Gσ̃ y (Z, ζ) be the free p.m.p. action constructed in Subsection 5.2, i.e., the action

co-induced from the shift action of U on itself. The space Z is fibered over X. The fiber

at τ ∈ X is denoted by Zτ . For n ∈ N, let Γn be the group of elements of Γ acting on An

trivially. Let Γ y (Y, ν) be the profinite p.m.p. action associated with the system of the

p.m.p. action Γ y Γ/Γn given by left multiplication. Through the quotient map from Gσ̃

onto Γ factoring through X ⋊ Γ, we obtain the p.m.p. action Gσ̃ y (Y, ν). Then Gσ̃ acts

on Y ×Z diagonally, where Y ×Z is fibered over X with respect to the map sending each

element of Y × Zτ to τ for each τ ∈ X.

Through the homomorphism η : X ⋊G→ Gσ̃, we obtain the p.m.p. action of X ⋊G on

the product space (W,ω) := (Y ×Z, ν × ζ). We then obtain the p.m.p. action Gy (W,ω)

given by g(y, z) = (gτ, g)(y, z) for g ∈ G, y ∈ Y and z ∈ Zτ with τ ∈ X. The action of

A on W is given by a(y, z) = (y, (τ, τ(a))z) for each a ∈ A. Recall that we defined the

action of T on Z by tz = (τ, t)z for t ∈ T and z ∈ Zτ with τ ∈ X in Proposition 5.1 (ii).

Thus, with respect to this action, the element (y, (τ, τ(a))z) is written as (y, τ(a)z).

We now construct a central sequence (TN ) in the full group of the translation groupoid

G ⋉ (W,ω). Pick N ∈ N. By condition (⋆), for some n = nN ∈ N, we have |Fn|/|An| ≥

1 − 1/N , where Fn is the set of elements of An whose order is more than N . Since the

dual Ân of An is isomorphic to An ([F, Corollary 4.8]), if En denotes the set of elements

of Ân whose order is more than N , then |En|/|Ân| ≥ 1 − 1/N . The set En is further Γ-

invariant. The map pn : X = Â → Ân induced by the inclusion of An into A is surjective

([F, Corollary 4.42]). For each τ ∈ En, since its order is more than N , there exists aτ ∈ An

such that

(5.9) 0 < |τ(aτ )− 1| < | exp(2πi/N) − 1|.

We define a map TN : W → A as follows: Let Yn denote the inverse image of the coset eΓn

under the projection from Y onto Γ/Γn. For y ∈ gYn with g ∈ Γ and z ∈ Zτ with τ ∈ X,

if τ belongs to p−1
n (En), then we set

TN (y, z) = gag−1pn(τ),

and otherwise we set TN (y, z) = e. This is well-defined because Γn acts on An and Ân

trivially. The map from W into itself, w 7→ (TNw)w, is an automorphism of W because

A acts on Y trivially and preserves each fiber Zτ with τ ∈ X. Thus TN is an element of

the full group [G⋉ (W,ω)].

Lemma 5.2. With the above notation,
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(i) for each N ∈ N and g ∈ G, we have φg ◦ TN = TN ◦ φg, where φg : X → G is the

element of the full group [G⋉ (W,ω)] given by the constant map with value g.

(ii) For each Borel subset B ⊂W , we have ω(T ◦
NB △B) → 0 as N → ∞.

(iii) We define BN ⊂W as the set of periodic points of T ◦
N whose period is more than

N . Then ω(BN ) ≥ 1− 1/N for all N ∈ N.

Proof. To prove assertion (i), we pick N ∈ N and g ∈ G. Let n = nN ∈ N be the integer

chosen before to obtain the subset En ⊂ Ân. We also pick y ∈ hYn with h ∈ Γ and z ∈ Zτ

with τ ∈ X, and set w = (y, z). If τ ∈ p−1
n (En), then (φg ◦ TN )w = g(hah−1pn(τ)) and

(TN ◦ φg)w = TN (ḡy, gz)g = (ḡha(ḡh)−1pn(gτ))g = g(hah−1pn(τ)),

where ḡ denotes the image of g in Γ. Thus φg ◦ TN = TN ◦ φg at w. If τ 6∈ p−1
n (En), then

(φg ◦ TN )w = g, and (TN ◦ φg)w = g because gτ 6∈ p−1
n (En). Assertion (i) follows.

We prove assertion (ii). Let the group T act on W by t(y, z) = (y, tz) for t ∈ T, y ∈ Y

and z ∈ Z. Since T is compact, the action T yW is isomorphic to the action T y D×T

given by t(w, s) = (w, ts) for t, s ∈ T and w ∈ D, where D is a Borel subset of W which

is the product of Y with a Borel fundamental domain for the action T y Z.

We pick N ∈ N and let n = nN . For y ∈ gYn with g ∈ Γ and z ∈ Zτ with τ ∈ X, if τ

belongs to p−1
n (En), then

(5.10) T ◦
N (y, z) = (y, τ(gag−1pn(τ))z) = (y, 〈g−1τ, ag−1pn(τ)〉z),

and otherwise T ◦
N (y, z) = (y, z). This shows that for each y ∈ Y and τ ∈ X, the map T ◦

N

preserves the set {y} × Zτ , and on that set, the map T ◦
N is equal to the transformation

given by some single element of T. Moreover {y} × Zτ is T-invariant. Therefore if T ◦
N is

regarded as a automorphism of D×T under the isomorphism between W and D×T, then

T ◦
N preserves each orbit {w} × T with w ∈ D, and on that orbit, the map T ◦

N is equal to

the transformation given by some single element of T. By inequality (5.9), those elements

of T, i.e., the value 〈g−1τ, ag−1pn(τ)〉 in equation (5.10), are uniformly close to 1 if N is so

large that exp(2πi/N) is close to 1. Thus assertion (ii) follows.

We pick N ∈ N and let n = nN . If y ∈ gYn with g ∈ Γ and z ∈ Zτ with τ ∈ p−1
n (En),

then the value 〈g−1τ, ag−1pn(τ)〉 ∈ T has order more than N by inequality (5.9). Moreover

freeness of the action T y Z, shown in Proposition 5.1 (ii), and equation (5.10) imply

that (y, z) is a periodic point of T ◦
N whose period is more than N . Assertion (iii) follows

from this together with the inequality |En|/|Ân| ≥ 1− 1/N . �

We are going to apply Theorem 2.5. Let us check that the assumption in it is fulfilled

for the p.m.p. action Gy (W,ω), the G-equivariant measure-preserving map π : (W,ω) →

(X,µ) and the central sequence (TN ) in the full group [G ⋉ (W,ω)], where we define the

map π by π(y, z) = τ for y ∈ Y and z ∈ Zτ with τ ∈ X. We first note that (TN ) is indeed

central by Lemma 5.2 (i) and (ii). The stabilizer of a point of W in G depends only on its

image under π. Indeed the action Gσ̃ y (Z, ζ) is essentially free by Proposition 5.1 (iv)

and thus the stabilizer of almost every w ∈ W is equal to the kernel of π(w) ∈ X = Â.

As pointed out in the proof of Lemma 5.2 (ii), T ◦
N preserves the set of the form {y} × Zτ

with y ∈ Y and τ ∈ X and thus preserves each fiber of π. For each w ∈ W , since A is
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abelian and the kernel of π(w) is a subgroup of A, the element TNw ∈ A belongs to the

centralizer of the stabilizer of w in G. The inequality ω(BN ) ≥ 1− 1/N shown in Lemma

5.2 (iii) implies that ω({w ∈W | T ◦
Nw 6= w }) → 1 as N → ∞. By Lemma 5.2 (iii) again,

for each p ∈ N, if Bp
N ⊂W denotes the set of p-periodic points of T ◦

N , then ω(Bp
N ) → 0 as

N → ∞. Thus the assumption in Theorem 2.5 is fulfilled, and by the theorem, G has the

Schmidt property.

5.4. The other case. Let G be a countable group and let A be an infinite abelian normal

subgroup of G contained in the FC-center of G. Suppose that each finite subset of A has

finite normal closure in G and let A1 < A2 < · · · be a strictly increasing sequence of finite

subgroups of A such that each An is normalized by G. In this subsection, we suppose that

condition (⋆) in Subsection 3.2 does not hold for this sequence and then construct a free

p.m.p. Schmidt action of G. By Lemma 3.4, we may assume without loss of generality

that there exists a prime number p such that each An is isomorphic to the direct sum

of finitely many copies of Z/pZ. We may also assume that A =
⋃

nAn and that G/A is

infinite as in the previous subsection.

We set Γ = G/A and choose a section s : Γ → G of the quotient map with s(e) = e. We

then obtain the 2-cocycle σ : Γ × Γ → A. We define X as the group of homomorphisms

from A into the direct product L :=
∏

N
Z/pZ, while X denoted the dual group Â of A in

the previous subsection. Let µ be the normalized Haar measure on X. Note that if we fix

an embedding of Z/pZ into the torus T, then the dual Â is identified with the group of

homomorphisms from A into Z/pZ since all elements of A =
⋃

nAn except for the trivial

one have order p. Under this identification, we often identify X with the product group∏
N
Â unless there is cause of confusion.

We recall the construction in Subsection 5.1. Define the action of G on X by (gτ)(a) =

τ(g−1ag) for g ∈ G, a ∈ A and τ ∈ X, which induces the action of Γ on X. Let U = X×L

be the bundle over X, which is a groupoid with unit space X. Then we obtain the 2-cocycle

σ̃ : (X ⋊ Γ)(2) → U by formula (5.1) and obtain the groupoid extension

1 → U → Gσ̃ → X ⋊ Γ → 1

together with the homomorphism η : X ⋊G→ Gσ̃ such that

ker η = { (τ, a) ∈ X ⋊A | a ∈ ker τ }

and η(τ, a) = (τ, τ(a)) ∈ U for all a ∈ A and τ ∈ X.

Lemma 5.3. With the above notation,

(i) for each N ∈ N, the set of points τ = (τi)i∈N ∈ X such that
⋂N

i=1 ker τi = ker τ is

µ-null.

(ii) For µ-almost every τ ∈ X, we have ker τ = {e}. Therefore the groupoid X ⋊ A

embeds into U via η if it is restricted to some µ-conull subset of X.

Proof. The set in assertion (i) is written as

(5.11)
⊔

τ1,...,τN∈Â

{τ1} × · · · × {τN} ×
∞∏

i=N+1

{ ξ ∈ Â |
⋂N

j=1 ker τj < ker ξ }.
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We note that if a is a non-trivial element of A, then the subgroup { ξ ∈ Â | a ∈ ker ξ } is

of index p in Â and thus has measure 1/p, where Â is equipped with the normalized Haar

measure. Then for each τ1, . . . , τN ∈ Â, the set { ξ ∈ Â |
⋂N

i=1 ker τi < ker ξ } has measure

at most 1/p because this is contained in the set { ξ ∈ Â | a ∈ ker ξ } if a is chosen to be a

non-trivial element of
⋂N

i=1 ker τi. By Fubini’s theorem, the set in (5.11) is µ-null.

For each non-trivial a ∈ A, the set { τ ∈ X | a ∈ ker τ } is identified with the product

set
∏

N
{ ξ ∈ Â | a ∈ ker ξ } and hence µ-null. Assertion (ii) follows. �

Let Gσ̃ y (Z, ζ) be the free p.m.p. action constructed in Subsection 5.2, i.e., the action

co-induced from the shift action of U on itself. The space Z is fibered over X. The fiber

at τ ∈ X is denoted by Zτ . For n ∈ N, let Γn be the group of elements of Γ acting on An

trivially. Let Γ y (Y, ν) be the profinite p.m.p. action associated with the system of the

p.m.p. action Γ y Γ/Γn given by left multiplication. As with the previous subsection, let

Gσ̃ act on Y ×Z diagonally, where Y ×Z is fibered over X with respect to the map sending

each element of Y ×Zτ to τ for each τ ∈ X. Through the homomorphism η : X⋊G→ Gσ̃,

we obtain the p.m.p. action of G on the product space (W,ω) := (Y ×Z, ν × ζ). We note

that the action Gy (W,ω) is essentially free because the action Gσ̃ y (Z, ζ) is essentially

free by Proposition 5.1 (iv) and ker η is trivial in the sense of Lemma 5.3 (ii).

We now construct a central sequence (TN ) in the full group of the translation groupoid

G⋉ (W,ω). Pick N ∈ N. For each a ∈ A, we set

Xa = { τ = (τi)i∈N ∈ X | τ1(a) = · · · = τN (a) = 0, τ(a) 6= 0 }.

By Lemma 5.3 (i), X =
⋃

a∈AXa up to null sets. Let Yn denote the inverse image of the

coset eΓn under the projection from Y onto Γ/Γn. Then

X × Y =

∞⋃

n=1

⋃

a∈An\An−1

⋃

gΓn∈Γ/Γn

Xa × gYn,

where we set A0 = {e}. If a ∈ An \ An−1 and g, h ∈ Γ, then h(Xa × gYn) = Xh·a × hgYn

with respect to the diagonal action Γ y X × Y , where the dot stands for the action of Γ

on A. Thus the saturation Γ(Xa× gYn) is the disjoint union of the translates h(Xa× gYn)

with h running through representatives of elements of Γ/Γn. Let us call such a subset a

(Γ/Γn)-base, that is, call a Borel subset B ⊂ X × Y a (Γ/Γn)-base if B is Γn-invariant

and the saturation ΓB is the disjoint union of the translates hB with h running through

representatives of elements of Γ/Γn.

Lemma 5.4. With the above notation, there exist Borel subsets of X, B1, B2, . . ., such

that X × Y =
⊔∞

m=1 ΓBm and each Bm is a (Γ/Γn)-base contained in Xa × gYn for some

n ∈ N, a ∈ An \ An−1 and g ∈ Γ.

Proof. For each n ∈ N, let D(n, 1),D(n, 2), . . . ,D(n, kn) be an enumeration of the (Γ/Γn)-

bases Xa × gYn indexed by a ∈ An \ An−1 and a representative g of an element of Γ/Γn,

with kn = |An \ An−1| |Γ/Γn|. Let (Em)m∈N be the enumeration of the sets D(n, k) with

respect to the lexicographic order of the indices (n, k).
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We inductively define a Borel subset Bm ⊂ X × Y . We set B1 = E1. Suppose that

B1, . . . , Bm−1 are defined. We set Bm = Em \
⋃m−1

i=1 ΓBi. Then Em = D(n, k) for some n

and k and thus Bm is a (Γ/Γn)-base. By construction ΓBm and ΓBl are disjoint for all

distinct m, l. Since the sets Em cover X × Y , the sets ΓBm cover X × Y . �

We define a map TN : W → A as follows: Let q : W → X × Y be the projection that

sends a point (y, z) ∈ W with z ∈ Zτ and τ ∈ X to the point (τ, y). By Lemma 5.4, the

set X × Y is covered by the mutually disjoint sets ΓBm with m ∈ N. For each m ∈ N,

we have nm ∈ N, am ∈ Anm
\ Anm−1 and gm ∈ Γ such that the set Bm is a (Γ/Γnm

)-base

contained in Xam × gmYnm
. For w ∈ q−1(hBm) with h ∈ Γ, we set

TNw = h · am.

This is well-defined because Bm is a (Γ/Γnm
)-base and am is fixed by Γnm

. The map from

W into itself, w 7→ (TNw)w, is an automorphism of W because A preserves each fiber of

q. Thus TN is an element of the full group [G⋉ (W,ω)].

Lemma 5.5. With the above notation,

(i) for every N ∈ N and g ∈ G, we have φg ◦ TN = TN ◦ φg, where φg : X → G is the

element of the full group [G⋉ (W,ω)] given by the constant map with value g.

(ii) For every Borel subset B ⊂W , we have ω(T ◦
NB △B) → 0 as N → ∞.

(iii) For every N ∈ N and every w ∈W , we have T ◦
Nw 6= w.

Proof. We prove assertion (i). If w ∈ q−1(hBm) with h ∈ Γ, then we have (TN ◦ φg)w =

TN (gw)g = ((ḡh) · am)g with ḡ the image of g in Γ, and also have (φg ◦ TN )w = g(h · am).

These two coincide.

We prove assertion (ii). The proof is similar to that of Lemma 5.2 (ii). Using the action

of U on Z, which restricts the action of Gσ̃, we define an action of L on Z by lf = (τ, l)f

for l ∈ L and f ∈ Zτ with τ ∈ X. This is the action defined in Proposition 5.1 (ii). Let L

act on W by l(y, z) = (y, lz) for l ∈ L, y ∈ Y and z ∈ Z.

Fix N ∈ N. Recall that the group A acts on W via the homomorphism η : X⋊G→ Gσ̃,

which satisfies η(τ, a) = (τ, τ(a)) for all τ ∈ X and a ∈ A. Hence if w = (y, z) ∈ q−1(hBm)

with z ∈ Zτ , τ = (τi)i∈N ∈ X and h ∈ Γ, then

T ◦
Nw = (y, 〈τ, TNw〉z) = (y, τ(h · am)z).

Since q(w) = (τ, y) ∈ hBm, we have τ ∈ Xh·am and thus τ1(h · am) = · · · = τN (h · am) = 0

and τ(h · am) 6= 0. This says that the element τ(h · am) ∈ L =
∏

N
Z/pZ is non-trivial and

is close to the identity if N is large. The definition of TNw depends only on q(w), and the

action of L on W preserves each fiber of q. Hence on each L-orbit in W , the map T ◦
N is

equal to the transformation given by some single element of L. Assertion (ii) then follows

from the existence of a Borel fundamental domain for the action L y Z as well as in the

proof of Lemma 5.2 (ii).

Assertion (iii) follows from the condition τ(h · am) 6= 0 shown above and freeness of the

action of L on Z shown in Proposition 5.1 (ii). �
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Therefore the groupoid G⋉ (W,ω) is Schmidt, and so is its almost every ergodic com-

ponent by Lemma 2.2. We have already shown that the action G y (W,ω) is essentially

free, in the paragraph after Lemma 5.3. Thus G has the Schmidt property.

6. Another construction using ultraproducts

Let G be a countable group with infinite FC-center. We construct a free p.m.p. Schmidt

action of G by way of ultraproducts. This construction is self-contained and independent

of the construction given so far.

Step 1. Setting up the sequence of actions: Let A denote the FC-center of G.

Then A has an infinite abelian subgroup B, which is found as follows: First, pick a non-

trivial a1 ∈ A. If 〈a1〉 is infinite, let B = 〈a1〉. Otherwise pick an element a2 of the

set CA(a1) \ 〈a1〉, which is non-empty because CA(a1) is of finite index in A and hence

infinite. If 〈a1, a2〉 is infinite, let B = 〈a1, a2〉. Otherwise pick an element a3 of the set

CA(a1, a2)\〈a1, a2〉, which is non-empty by the same reason. Repeat this procedure. Then

either it stops in finite steps and the group B = 〈a1, . . . , an〉 for some n is infinite and

abelian, or it does not stop and the group B = 〈a1, a2, . . .〉 is infinite and abelian.

We may write B as an increasing union of finitely generated subgroups B =
⋃

n∈NBn.

Let Gn := CG(Bn), so that Gn is a finite index subgroup of G which contains B. Since

B is abelian, we may find a free ergodic compact action B y
β (Y, µY ) of B, where Y is

a compact abelian metrizable group and β : B → Y is an injective homomorphism with

dense image, and B is acting on Y by left translation via β. Let Gn y
βn (Y, µY )

Gn/B be

the p.m.p. action co-induced from the action β of B. Explicitly, this is defined as follows:

We pick a section tn : Gn/B → Gn of the projection map Gn → Gn/B with tn(eB) = e,

and we let wn : Gn × Gn/B → B be the associated cocycle for the action Gn y Gn/B

given by wn(g, hB) := tn(ghB)−1gtn(hB) for g, h ∈ Gn. Then the action Gn y
βn Y Gn/B

is given by

(βn(g)x)(hB) := β(wn(g, g
−1hB))x(g−1hB)

for g, h ∈ Gn. For each n, pick a section sn : G/Gn → G of the projection map G→ G/Gn

with sn(eGn) = e, and let vn : G × G/Gn → Gn be the associated cocycle for the p.m.p.

action G y (G/Gn, µG/Gn
) (where µG/Gn

is the normalized counting measure), given by

vn(g, hGn) := sn(ghGn)
−1gsn(hGn) for g, h ∈ G. Then we equip Zn := G/Gn × Y Gn/B

with the product measure ηn := µG/Gn
× µ

Gn/B
Y and we let G y

αn (Zn, ηn) be the skew

product action, which is the p.m.p. action defined by

αn(g)(kGn, x) := (gkGn, βn(vn(g, kGn))x)

for g ∈ G and (kGn, x) ∈ Zn.

Step 2. The ultraproduct and its quotients: Fix a non-principal ultrafilter V on N

and let Gy
α (ZV , ηV) be the ultraproduct of the sequence of actions (Gy

αn (Zn, ηn))n∈N

with respect to V. Thus ZV = (
∏

n Zn)/∼V , where∼V is the equivalence relation on
∏

n Zn

such that (yn) ∼V (zn) if and only if {n ∈ N | yn = zn } ∈ V; we write [(zn)]V for the
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equivalence class of the sequence (zn). For a sequence (Dn) of Borel sets Dn ⊂ Zn, let

[(Dn)]V be the associated basic measurable subset of ZV , i.e.,

[(Dn)]V = { [(zn)]V | lim
n→V

1Dn
(zn) = 1 },

where 1Dn
is the indicator function of Dn. The assignment [(Dn)]V 7→ limn→V ηn(Dn)

defines a premeasure on the algebra of all such basic measurable sets, and hence this

assignment extends uniquely to a countably additive measure ηV on the completion BV of

the sigma algebra generated by the basic measurable sets. This is how the measure ηV is

defined. The action α, of G on ZV , is given by α(g)[(zn)]V := [(gzn)]V .

Likewise, let Gy (XV , µV) denote the ultraproduct, with respect to V, of the sequence

of actions (G y (G/Gn, µG/Gn
))n∈N. Then the projection map p : (ZV , ηV) → (XV , µV),

[(knGn, xn)]V 7→ [(knGn)]V , is measure-preserving and G-equivariant.

Let Gy (P, µP ) denote the profinite action that is the inverse limit of the finite actions

Gy G/Gn. Elements of P consist of sequences (gmGm) with gmGm ⊃ gm+1Gm+1 for all

m. For each [(knGn)]V ∈ XV and each m ∈ N, let Φm[(knGn)]V be the unique left coset

gGm of Gm for which the set {n ∈ N | knGn ⊂ gGm } belongs to V. Then each Φm : XV →

G/Gm is G-equivariant and measure-preserving, and Φm[(knGn)]V ⊃ Φm+1[(knGn)]V , so

we obtain the measure-preserving G-equivariant map Φ: (XV , µV) → (P, µP ) given by

Φ[(knGn)]V = (Φm[(knGn)]V)m.

For each n, let πn : Zn → Y be the map πn(kGn, x) := x(eB) projecting to the identity-

coset coordinate of x ∈ Y Gn/B . Let π : ZV → Y be defined by

π[(knGn, xn)]V := lim
n→V

πn(knGn, xn) = lim
n→V

xn(eB)

(note that this limit exists since Y is compact). By [BTD, Proposition 8.4], this map is

measurable and measure-preserving, with ηV(π
−1(E)△ [(π−1

n (E))]V ) = 0 for every Borel

subset E of Y . Let Y denote the subalgebra of BV consisting of all sets of the form π−1(E)

with E ⊂ Y Borel, and let P denote the subalgebra of BV consisting of all sets of the form

(Φ ◦ p)−1(C) with C ⊂ P Borel.

Step 3. The central sequence: For each b ∈ B, the conjugacy class bG of b in G is

finite, and the map Tb : ZV → bG given by

Tb[(knGn, xn)]V := lim
n→V

knbk
−1
n

is well-defined, since if m(b) ∈ N is the least such that Gm(b) < CG(b) then for all n ≥ m(b)

the conjugate knbk
−1
n depends only on the coset knGn of Gn. Letting (gmGm)m∈N :=

Φ[(knGn)]V , we have {n ∈ N | knGn ⊂ gm(b)Gm(b) } ∈ V and hence Tb[(knGn, xn)]V =

gm(b)bg
−1
m(b) = limm→∞ gmbg

−1
m . In particular, the map Tb is P-measurable. We have

Tb(gz) = gTb(z)g
−1 for all g ∈ G and z ∈ ZV . The map T ◦

b : ZV → ZV given by T ◦
b (z) =

α(Tb(z))z is an automorphism of (ZV , ηV) which commutes with α(g) for all g ∈ G. Then

the map p is T ◦
b -invariant, and in particular every set in P is T ◦

b -invariant.

For each b ∈ B and [(knGn, xn)]V ∈ ZV , since the set {n ∈ N | Tb[(knGn, xn)]V =

knbk
−1
n } belongs to V, the transformation T ◦

b is given by

T ◦
b [(knGn, xn)]V = [(knGn, βn(vn(knbk

−1
n , knGn))xn)]V .
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For all large enough n, we have Gn < CG(b), and for such n, since B < Gn, we have

vn(knbk
−1
n , knGn) = vn(kn, eGn)vn(b, eGn)vn(kn, eGn)

−1 = b. Since this holds for all large

n, we obtain

T ◦
b [(knGn, xn)]V = [(knGn, βn(b)xn)]V .

Also, for all n with Gn < CG(b), for each hB ∈ Gn/B we have b−1hB = hB and

wn(b, b
−1hB) = b, so that (βn(b)xn)(hB) = β(b)xn(hB), and therefore

π
(
T ◦
b [(knGn, xn)]V

)
= lim

n→V
(βn(b)xn)(eB) = lim

n→V
β(b)xn(eB)

= β(b)π
(
[(knGn, xn)]V

)
.

(6.1)

Let (bi)i∈N be a sequence of distinct elements in B with β(bi) converging weakly to the

identity element of Y . Then for each Borel subset E of Y , we have µY (β(bi)E △ E) → 0

as i→ ∞, so it follows from (6.1) that ηV(T
◦
bi
(π−1(E))△ π−1(E)) → 0 as i→ ∞.

Thus both P and Y belong to the sigma subalgebra D of BV consisting of all D ∈ BV

such that limi→∞ ηV(T
◦
bi
D △ D) = 0. Since each Tbi commutes with α(G), the sigma

algebra D is α(G)-invariant.

Step 4. Ensuring essential freeness for the action of A on the upcoming sep-

arable quotient: We pick a ∈ A \ {e} and let Fa ⊂ XV be the fixed point set of a in

XV . Then we have XV \ Fa = [(Ca,n)n]V , where Ca,n := { kGn ∈ G/Gn | akGn 6= kGn }.

We can write the set Ca,n as a union of three pairwise disjoint sets Ca,n,0, Ca,n,1, Ca,n,2

such that aCa,n,i ∩ Ca,n,i = ∅ (indeed let Ca,n,0 be a maximal subset of Ca,n such that

aCa,n,0 ∩ Ca,n,0 = ∅ and set Ca,n,1 := aCa,n,0 ∩ Ca,n and Ca,n,2 := Ca,n \ (Ca,n,0 ∪ Ca,n,1)).

Each of the sets Da,i := (Φ ◦ p)−1([(Ca,n,i)n]V) is T ◦
b -invariant for all b ∈ B and hence

belongs to D. For c ∈ aG, we define Fa,c as the set of all [(knGn)]V ∈ Fa for which

limn→V sn(knGn)
−1asn(knGn) = c, so that Fa,c is a basic measurable subset of XV corre-

sponding to the sequence of sets { kGn ∈ G/Gn | sn(kGn)asn(kGn)
−1 = c } with n ∈ N.

The sets Fa,c with c ∈ aG partition Fa. Each of the sets p−1(Fa,c) is T ◦
b -invariant for all

b ∈ B and hence belongs to D.

Step 5. Defining the separable quotient of the ultraproduct: Since D is G-

invariant and both the algebras P and Y are countably generated and G is countable, we

can find a countably generated G-invariant sigma subalgebra D0 of D which contains both

P and Y as well as all of the sets Da,i and p
−1(Fa,c) for a ∈ A\{e}, c ∈ aG and i ∈ {0, 1, 2}.

Then we may find a point realization G y (W0, µ0) for the action of G on the measure

algebra D0, along with a G-equivariant measure-preserving map ϕ : (ZV , ηV) → (W0, µ0)

which is a point realization of the measure algebra inclusion D0 →֒ BV . For each b ∈ B,

since the map Tb is P-measurable and P ⊂ D0, Tb descends via ϕ to a map Sb : W0 → bG,

which satisfies Sb(gw) = gSb(w)g
−1 for all g ∈ G and w ∈ W0. The map S◦

b : W0 → W0

given by S◦
b (w) = Sb(w)w is an automorphism of (W0, µ0) with ϕ ◦ T ◦

b = S◦
b ◦ ϕ. Since

Y ⊂ D0 is invariant under the group {T ◦
b | b ∈ B }, the map π descends to a measure-

preserving map π0 : (W0, µ0) → (Y, µY ) with π0(S
◦
bw) = β(b)π0(w) for all b ∈ B. It follows

that the group {S◦
b | b ∈ B } acts essentially freely on W0 since β(B) acts freely on Y .
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Since D0 ⊂ D, it follows that (Sbi)i∈N is a central sequence in the full group of the action

G y (W0, µ0) with S
◦
bi
w 6= w for almost every w ∈ W0. However, it is not clear whether

this action of G is essentially free, so we take an essentially free action G/A y (W1, µ1)

and let G y (W0 × W1, µ0 × µ1) be the product action, where G acts on W1 via the

projection onto G/A. Then each Sb : W0 → bG lifts to the map S̃b : W0×W1 → bG via the

projection from W0 ×W1 onto W0, and it satisfies S̃b(gw) = gS̃b(w)g
−1 for all g ∈ G and

w ∈ W0 ×W1. The map S̃◦
b is given by S̃◦

b (w0, w1) = Sb(w0)(w0, w1) = (S◦
b (w0), w1) and

hence an automorphism of W0 ×W1, and the group { S̃◦
b | b ∈ B } acts essentially freely

on W0 ×W1. Since A acts trivially on W1, it follows that (S̃bi)i∈N is a central sequence in

the full group of the action Gy (W0 ×W1, µ0 × µ1), and it satisfies S̃◦
bi
w 6= w for almost

every w ∈W0 ×W1.

Thus we will be done once we show that the action Gy (W0×W1, µ0×µ1) is essentially

free. For this, it is enough to show that the action Ay (W0, µ0) is essentially free.

Step 6. Verifying that the action Ay (W0, µ0) is essentially free: Fix a ∈ A\{e}.

Suppose that there is some c ∈ aG for which the set Fa,c has positive measure. We first

show that for almost every z ∈ p−1(Fa,c), π(α(a)z) and π(z) are distinct. Since Fa,c is a

subset of Fa, if [(knGn)]V ∈ Fa,c then for V-almost every n ∈ N, we have vn(a, knGn) =

sn(knGn)
−1asn(knGn) = c and hence c ∈ Gn. Since the sequence (Gn) is decreasing, this

implies c ∈ Gn for all n ∈ N, and hence the element β(wn(c, c
−1B)) ∈ Y is well-defined for

all n. Let yc denote the limit along V of this sequence, yc := limn→V β(wn(c, c
−1B)) ∈ Y .

For each z = [(knGn, xn)]V ∈ p−1(Fa,c), we have α(a)z = [(knGn, βn(c)xn)]V , and hence

π(α(a)z) = lim
n→V

β(wn(c, c
−1B))xn(c

−1B) = yc lim
n→V

xn(c
−1B) and

π(z) = lim
n→V

xn(eB).
(6.2)

To see these are almost surely distinct, we consider the two possibilities of whether c ∈ B

or c 6∈ B. If c ∈ B then xn(c
−1B) = xn(eB) and yc = limn→V β(wn(c,B)) = β(c) 6= e,

and hence π(α(a)z) = β(c)π(z) 6= π(z), as was to be shown. Suppose now that c 6∈ B.

By [BTD, Proposition 8.4], the map πc : (ZV , ηV) → (Y, µY ) defined by πc[(knGn, xn)]V :=

yc limn→V xn(c
−1B) is measurable and measure-preserving, and for each Borel subset E

of Y , we have ηV(π
−1
c (E) △ [(π−1

c,n(E))n]V) = 0, where the map πc,n : (Zn, ηn) → (Y, µY )

is defined by πc,n(kGn, x) := ycx(c
−1B). Since c 6∈ B, the random variables πn, πc,n are

independent for every n. Therefore the random variables π, πc are also independent. Since

µY is atomless, it follows that π(z) 6= πc(z) for almost every z ∈ ZV . By (6.2), for almost

every z ∈ p−1(Fa,c), we thus have π(α(a)z) = πc(z) 6= π(z), as was to be shown.

It now follows that π(α(a)z) 6= π(z) for almost every z ∈ p−1(Fa). Since π = π0 ◦ϕ and

since each of the sets p−1(Fa) belongs to D0, it follows that π0(aw) 6= π0(w) and hence

aw 6= w for almost every w ∈ ϕ(p−1(Fa)). In addition, since each of the sets Da,i for

i ∈ {0, 1, 2} belongs to D0, it follows that aw 6= w for almost every w ∈W0 \ ϕ(p
−1(Fa)).

This shows that the action of A on W0 is essentially free.
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Appendix A. A Kazhdan group with prescribed center

Given a countable abelian group A, we construct a countable group G with property

(T) such that the center of G is isomorphic to A. We rely on the construction of Cornulier

[C] as well as in Examples 3.6 and 3.7. Let R := Z[t] be the ring of polynomials over Z

in one indeterminate t. In the course of the construction, we will use property (T) of the

group SL3(R) (e.g., [EJZ, Theorem 1.1] and [M, Theorem 1.8]) and property (T) of the

pair (SL3(R)⋉R3, R3) ([Ka, Theorem 1.9, a)]). Note that the statements in those papers

are given in terms of the group generated by elementary matrices in SL3(R), which is in

fact equal to SL3(R) by [Su, Corollary 6.6].

Let H be the subgroup of SL5(R) consisting of matrices of the form

(A.1) g =



1 u c

0 h v

0 0 1


 ,

where h ∈ SL3(R), c ∈ R, and u and v are row and column vectors of R3, respectively. Let

C be the center of H, which consists of matrices g such that h = I, u = 0 and v = 0. Then

H/C is isomorphic to the semi-direct product Γ := SL3(R)⋉(R3×R3), where SL3(R) acts

on R3 × R3 by h(u, v) = (uh−1, hv) for h ∈ SL3(R), a row vector u ∈ R3, and a column

vector v ∈ R3. In fact, the map sending a matrix g ∈ H of the form (A.1) to the element

(h, (u, h−1v)) of Γ induces an isomorphism.

The group Γ has property (T). To see this, recall the following fact: If G is a countable

group and N is a normal subgroup of G such that the group G/N and the pair (G,N)

have property (T), then G has property (T) ([BHV, Remark 1.7.7]). Property (T) of the

group SL3(R) and the pair (SL3(R)⋉R
3, R3) thus implies that SL3(R)⋉R

3 has property

(T). The group Γ is written as the semi-direct product (SL3(R)⋉R
3)⋉R3, and the above

fact again implies that Γ has property (T).

Hence the group H/C has property (T). The commutator subgroup [H,H] contains C,

and thus the abelianization H/[H,H] is finite. It follows from [BHV, Theorem 1.7.11] that

H has property (T).

We obtained the group H with property (T) whose center C is isomorphic to R and

to the direct sum
⊕

N
Z. Let A be an arbitrary countable abelian group. There exists a

surjection from C onto A. Let C1 be the kernel of this surjection and set H1 = H/C1.

The group H1 has property (T) and has the central subgroup C/C1 isomorphic to A. In

fact, the center of H1 is exactly C/C1 because H/C ≃ Γ has trivial center.
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