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GROUPS WITH INFINITE FC-CENTER HAVE THE SCHMIDT
PROPERTY

YOSHIKATA KIDA AND ROBIN TUCKER-DROB

ABSTRACT. We show that every countable group with infinite FC-center has the Schmidt
property, i.e., admits a free, ergodic, measure-preserving action on a standard probability
space such that the full group of the associated orbit equivalence relation contains a non-
trivial central sequence. As a consequence, every countable, inner amenable group with

property (T) has the Schmidt property.

1. INTRODUCTION

Let G be a countable group. Throughout the paper, we equip each countable group
with the discrete topology unless otherwise stated. We say that G is inner amenable
if there exists a sequence (&,) of non-negative unit vectors in ¢!(G) such that for each
g € G, we have ||&) — &,]l1 — 0 and &,(g) — 0, where the function &) on G is defined
by &(h) = &.(ghg™!) for h € G. Inner amenability was introduced by Effros [Ef] as a
necessary condition for the group von Neumann algebra of G to have property Gamma
when G satisfies the ICC condition. Inner amenability also arises in the context of p.m.p.
actions of G. For brevity, by a p.m.p. action of G we mean a measure-preserving action
of G on a standard probability space, where “p.m.p.” stands for “probability-measure-
preserving”. Let us say that a free ergodic p.m.p. action of G is Schmidt if the associated
orbit equivalence relation admits a non-trivial central sequence in its full group. We say
that G has the Schmidt property if G has a free ergodic p.m.p. action which is Schmidt.
While the Schmidt property of G implies inner amenability of G ([JS, p.113]), the converse
remains an open problem which was first posed by Schmidt [Sc, Problem 4.6]. Recent
advances have lead to the resolution of some related long-standing problems concerning
the relationship between inner amenability of groups and various kinds of central sequences
([Kil] and [V]).

If the functions &, witnessing the inner amenability of G are further required to be
G-conjugation invariant, i.e., they each satisfy &) = &, for all ¢ € G, then an algebraic
constraint is imposed on G. In fact, the existence of such a sequence (&) is equivalent to
G having infinite FC-center. The FC-center of G is defined as the subgroup of elements
g € G whose centralizer, denoted by Cg(g), is of finite index in G. The FC-center of G is

a normal (in fact, characteristic) subgroup of G.
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In studying the structure of inner amenable groups, the second author [TD] introduced
the AC-center of GG, which is defined as the subgroup of elements g € GG for which the
quotient group G/ (e hCa(g)h ™" is amenable. The AC-center of G is also a character-
istic subgroup of G and contains the FC-center of G. If G has infinite AC-center, then
G is inner amenable; this follows from the fact that for each element g in the AC-center
of GG, the conjugation action of G on the conjugacy class of g factors through an action
of the amenable group G/(\,cq hCq(g)h~t. If G is linear, or more generally fulfills a
certain chain condition on its subgroups, then inner amenability of G is equivalent to G
having infinite AC-center; in this case, the AC-center plays a crucial role in describing
the structure of G, and this resulting structure can in turn be used to deduce that G has
the Schmidt property ([TD, Theorems 14 and 15]). However, there are many groups with
infinite AC-center or FC-center, but which do not satisfy the relevant chain condition, so
that the results of [TD] do not apply to these groups. In this paper, we solve Schmidt’s

problem for them affirmatively:
Theorem 1.1. Every countable group with infinite AC-center has the Schmidt property.

In fact, the Schmidt property for groups with infinite AC-center but finite FC-center
follows from the constructions in [TD] (see Subsection 3.1). Thus, most of the proof of
Theorem 1.1 is devoted to the case of groups with infinite FC-center.

The following corollary is an immediate consequence of Theorem 1.1 because every inner
amenable group with property (T) has infinite FC-center.

Corollary 1.2. Every countable, inner amenable group with property (T) has the Schmidt
property.

It is widely known that property (T) is useful for constructing interesting examples re-
garding the non-existence of non-trivial central sequences in various contexts (e.g., [DV],
[Kil], [KTD], [PV] and [V]). By contrast, Corollary 1.2 says that there exist no coun-
terexamples to Schmidt’s question among groups with property (T).

As mentioned above, the proof of Theorem 1.1 is reduced to that for a countable group
G with infinite FC-center. We present two constructions of a free p.m.p. Schmidt action
of G. The first construction, given throughout Sections 2-5, stems from analysing central
sequences for translation groupoids associated with (not necessarily free) p.m.p. actions.
This analysis is of independent interest and yields by-products (Theorems 1.3 and 1.5)
which do not follow from the second construction. The second construction, given in
Section 6, is by way of ultraproducts of p.m.p. actions. While the first construction splits
into cases depending on structure of GG, the second construction does not split into cases

and is more direct than the first.

A summary of the first construction. Let us describe some of the ingredients and by-
products of the first construction. The construction is divided into two cases, depending on
whether the FC-center has finite or infinite center. Let G be a countable group with infinite
FC-center R. If R has finite center C, then G admits a (not necessarily free) profinite
action G ~ (X, p) such that the quotient group R/C, which is infinite by assumption,
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acts freely. This action of R/C leads us to find a central sequence in the full group of
the groupoid G x (X, u), similar to a construction of Popa-Vaes [PV] for residually finite
groups with infinite FC-center. We need a further task to conclude that G has the Schmidt
property since the action G ~ (X, u) is not necessarily free. We will return to this point
after discussing the other case.

In the other case, the FC-center of G has infinite center. The following construction is
carried out after choosing some infinite abelian normal subgroup A of G contained in the
FC-center of G. The group A is not necessarily the center of the FC-center of G. We set
I' = G/A and fix a section of the quotient map from G onto I'. The 2-cocycle o: I'xT" — A

is then associated. The heart of the construction is to introduce the groupoid extension
1->U—->G; > X xD —1

defined as follows: For some appropriate compact abelian metrizable group L, let X be
the group of homomorphisms from A into L and let x4 be the normalized Haar measure on
X. The conjugation I' ~ A induces the p.m.p. action I' ~ (X, ). We set Y = X x L and
regard it as the bundle over X with fiber L. Let X x I' be the translation groupoid and
let (X x I')?) be the set of composable pairs of X x I'. The 2-cocycle 5: (X x T — U
is then defined by

((r,9), (97 . h)) = (1,7(0 (g, h)))

for 7 € X and g,h € T (see [J, Theorem 1.1] for a related construction). This 2-cocycle
& associates the groupoid Gz that fits into the above exact sequence. Let G act on X via
the quotient map from G onto I'. We then have a natural homomorphism 7: X x G — G5
such that n(r,a) = (7,7(a)) € U for each 7 € X and a € A. A crucial point is that if we
prepare a free p.m.p. action G5 ~ (Z, (), then we can let X x G and thus G act on (Z,()
via 7, so that the action of A factors through the action of I/, which is easily handled since
L is compact. Moreover we can describe the stabilizer of a point of Z in G in terms of
ker i, which is contained in X x A.

Compact groups and their p.m.p. actions are utilized in many constructions of Schmidt
actions such as in [DV], [Ki2|, [Ki3|, [KTD], [PV] and [TD]. They are useful on the basis
of the following simple fact: For each p.m.p. action K ~ (X, u) of a continuous (rather
than compact) group K, each sequence converging to the identity in K also converges
to the identity in the automorphism group of (X, u) in the weak topology. This weak
convergence is necessary for a sequence in the full group to be central and is also sufficient
if the sequence asymptotically commutes with each element of the acting group G.

Turning back to the general setup, let G be an arbitrary countable group with infinite
FC-center. Independent of whether the FC-center of G has finite or infinite center, the
above construction yields a p.m.p. action G ~ (W,w) and a central sequence (T,) in the
full group of the translation groupoid G x (W, w). The sequence (T},) is non-trivial in the
sense that the automorphism of W induced by 7,, is nowhere the identity. We cannot
yet conclude that G has the Schmidt property because the action G ~ (W,w) is not
necessarily free.
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Let us now simplify the setup as follows: Let G be a countable group with a normal
subgroup M and a p.m.p. action G ~ (X, u) such that M acts on X trivially and the
quotient group G/M acts on X freely. Suppose that the groupoid G = G x (X, u) is
Schmidt, i.e., admits a central sequence (T5,) in its full group such that the automorphism
of X induced by T,, is nowhere the identity. Under several additional assumptions, we then
construct a free p.m.p. Schmidt action of G as follows: After replacing (7},) by another
central sequence appropriately, we obtain the product subgroupoid M x R < G such that
R is the groupoid generated by all T}, and is also principal and hyperfinite. Pick a free
p.m.p. action M ~ (Y,v), let M x R act on (Y,v) via the projection from M x R onto
M, and co-induce the action G ~ (Z, () from the action M x R ~ (Y,v). Then we have
the lift of (7},) into the translation groupoid G x (Z,(). This lifted sequence is shown to
be central in the full group, by using that 7;, acts on Y trivially (see Proposition 2.4 for
treatment of this fact in a more general framework). Moreover we can naturally define the
p.m.p. action G ~ (Z, () such that the associated groupoid G x (Z,() is identified with
G x (Z,¢). The action G ~ (Z,() is free since the action M ~ (Y,v) is free. Thus we
obtain a free p.m.p. Schmidt action of G. This construction is flexible enough to apply
to the more general setup, and we are able to deduce the Schmidt property for all groups
with infinite FC-center. It also yields the following by-products:

Theorem 1.3 (Corollary 2.16). Let G be a countable group and M a finite central subgroup
of G. Let G/M ~ (X, u) be a free ergodic p.m.p. action and let G act on (X, ) through
the quotient map from G onto G/M. Suppose that the translation groupoid G x (X, u) is
Schmidt. Then G has the Schmidt property.

Remark 1.4. Let G be a countable group and M a finite central subgroup of G. It remains
unsolved whether the Schmidt property of G/M implies the Schmidt property of G ([KTD,
Question 5.16]). If G/M has infinite AC-center, then G also has the same property as well
and thus has the Schmidt property (see Proposition 3.3 (ii) and related Remark 2.18).
Theorem 1.3 might be used to answer this question affirmatively: if there exists a free
ergodic p.m.p. action G/M ~ (X, u) which is Schmidt, along with a non-trivial central
sequence in the full group of (G/M) x (X, u) which lifts to a central sequence in the full
group of G x (X, i), then we can apply Theorem 1.3 and conclude that G has the Schmidt
property. While this lifting problem of central sequences is unsolved in full generality, we

note that it is solved affirmatively for stability sequences in [Ki4].

A sequence (gy,) of elements of a countable group G is called central if for each h € G,

gn commutes with h for all sufficiently large n.

Theorem 1.5 (Corollary 2.17). If a countable group G admits a central sequence diverging
to infinity, then G has the Schmidt property.

Remark 1.6. Let G be a countable group which admits a central sequence diverging to
infinity. If G has trivial center, then the Schmidt property for G can be proved immediately
as follows ([Ke2, Proposition 9.5]): Let G act on the set G \ {e} by conjugation, which
induces the p.m.p. action of G on the product space X = HG\{e} [0, 1] equipped with the
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product measure p of the Lebesgue measure. Then a central sequence in G gives rise to a
central sequence in the full group of G x (X, u), and the action G ~ (X, u) is essentially
free since G has trivial center.

Let G be a countable group with infinite FC-center. Then given a sequence (g,,) in its
FC-center diverging to infinity, each centralizer C(gy,) is of finite index in G, although
the index of Cg(gy) in G possibly grows to infinity. In a sense, the g, may become less
and less central in G as n increases. In this case, the above Bernoulli-like action of G
via conjugation G ~ G \ {e} is not suitable for establishing the Schmidt property, and
another approach must be taken.

An organization of the paper. In Section 2, we fix notation and terminology for
discrete p.m.p. groupoids and describe co-induction of p.m.p. actions of discrete p.m.p.
groupoids, extending the co-induction construction for actions of countable groups. As an
application, we deduce the Schmidt property for a countable group G under the assumption
that G admits a (not necessarily free) p.m.p. action G ~ (X, ) such that the translation
groupoid G X (X, p) is Schmidt, together with some additional assumptions. In Section
3, we collect elementary properties of groups with infinite AC-center and reduce the proof
of Theorem 1.1 to that for groups with infinite FC-center. Sections 4 and 5 are devoted
to the first proof that groups with infinite FC-center have the Schmidt property. The
proof in these two sections is divided into several cases, depending on the existence and
structure of an infinite abelian normal subgroup of G contained in the FC-center of G. An
outline of the proof is given in Subsection 3.2. In Subsection 3.3, we exhibit examples of
groups G corresponding to each of the cases considered in Sections 4 and 5.

In Section 6, for a countable group with infinite FC-center, we give the second construc-
tion of a free p.m.p. Schmidt action, by way of ultraproducts.

In Appendix A, given an arbitrary countable abelian group A, we present a countable
group with property (T) whose center is isomorphic to A. Our construction relies on the
construction of Cornulier [C] and property (T) of the group SL3(Z[t]) x Z[t]?, where Z]t]
is the polynomial ring over Z in one indeterminate ¢t. This result is useful in constructing
interesting examples of groups with infinite FC-center along with Examples 3.6 and 3.7,
while not being necessary for proving Theorem 1.1.

Throughout the paper, unless otherwise mentioned, all relations among Borel sets and
maps are understood to hold up to null sets. Let N denote the set of positive integers.

Acknowledgments. We thank the anonymous referee for his/her careful reading of the

paper and helpful corrections and suggestions, especially for Remark 2.3 and Lemma 2.7.

2. CENTRAL SEQUENCES IN TRANSLATION GROUPOIDS

2.1. Groupoids. We fix notation and terminology. Let G be a groupoid. We denote
by G° the unit space of G and denote by 7,s: G — G° the range and source maps of G,
respectively. For z € G°, we set G* = 7’_1(:6) and G, = 8_1(3:). For a subset A C GY, we
set G4 = r~H(A)Ns 1(A). The set G4 is then a groupoid with unit space A, with respect
to the product inherited from G. A groupoid G is called Borel if G is a standard Borel
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space, G is a Borel subset of G, and the following maps are all Borel: the range and source
maps, the multiplication map (v, d) — ¢ defined for v, € G with s(v) = r(9), and the
inverse map v — v~ !. If the range and source maps are countable-to-one further, then G
is called discrete. We mean by a discrete p.m.p. groupoid a pair (G, u) of a discrete Borel
groupoid G and a Borel probability measure p on G° such that |, go Crp dp(z) = I. go Ca dp(z),
where ¢}, and ¢ are the counting measures on G* and G, respectively. The space G is
then equipped with this common measure fgo chdu(z) = fgo e du(z).

A discrete p.m.p. groupoid is called principal if the map v — (r(v),s(7)) is injective.
Let R be a p.m.p. countable Borel equivalence relation on a standard probability space
(X, ). Then the pair (R, p) is naturally a principal discrete p.m.p. groupoid with unit
space R = {(z,7) | € X }, which are simply identified with X itself when there is no
cause for confusion. The range and source maps are given by r(z,y) = x and s(z,y) = v,
respectively, and the multiplication and inverse operations are given by (z,y)(y, z) = (z, 2)
and (x,y)"! = (y,z), respectively. We mean by a discrete p.m.p. equivalence relation on a
standard probability space (X, ) a p.m.p. countable Borel equivalence relation on (X, )
equipped with this structure of a discrete p.m.p. groupoid.

Let (G, 1) be a discrete p.m.p. groupoid. A Borel subset A C G° is called G-invariant if
r(Gz) C A for p-almost every = € A. We say that (G, u) is ergodic if each G-invariant Borel
subset A of GV is p-null or p-conull. A local section of G is a Borel map ¢: dom(¢) — G,
where dom(¢) is a Borel subset of G°, such that ¢(x) € G, for each x € dom(¢) and the
associated map ¢°: dom(¢) — G, given by ¢° = r 0 ¢, is injective. Two local sections are
identified if their domains and values agree up to a p-null set. For two local sections ¢: A —
G, ¢: B — G, the composition of them is the local section 9 o ¢: (¢°) 1 (¢°(A)N B) = G
defined by (¢ o ¢)(x) = (¢°(z))p(x). The inverse of a local section ¢: A — G is the local
section ¢~1: ¢°(A) — G defined by ¢~ 1(x) = ¢((¢°) " L(x))~ .

We denote by [G] the group of all local sections ¢ of G with dom(¢) = G°, and call [G]
the full group of (G, p). If the measure u should be specified, then we denote it by [(G, u)].
In fact the full group is a group such that the product and inverse operations are given
by the composition and inverse, respectively. For ¢ € [G] and a positive integer n, let ¢™
denote the n times composition of ¢ with itself, and let ¢~ denote the inverse of ¢". Let
#° denote the trivial element of [G], i.e., the identity map on G°. We draw attention to
distinction between the trivial element ¢° of [G] and the associated map ¢° = r o ¢.

To each action G ~ X of a group G on a set X, the translation groupoid G = G x X
is associated as follows: The set of groupoid elements is defined as G = G x X with unit
space {e} x X, which is identified with X if there is no cause of confusion. The range
and source maps 7,s5: G — GY are given by r(g, ) = gx and s(g,z) = x, respectively. The
multiplication and inverse operations are given by (g, hz)(h,z) = (gh,r) and (g,7)"! =
(971, gx), respectively. Suppose that G is a countable group and X is a standard Borel
space equipped with a Borel probability measure u. If the action G ~ X is further Borel
and preserves p, then the pair (G x X, u) is a discrete p.m.p. groupoid and is denoted by
G x (X, u). It is also denoted by G x X for brevity if p is understood from the context.
If the action G ~ (X, p) is essentially free, i.e., the stabilizer of almost every point of X
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is trivial, then the groupoid G x (X, ) is isomorphic to the associated orbit equivalence
relation { (gz,x) | g € G, x € X } via the map (g,z) — (g, ).

For each action G ~ X, we similarly define the groupoid X x G such that the set of
groupoid elements is X x G and the range and source of (z,g) € X x G are x and g~ 'z,
respectively. Then X x G is isomorphic to G' x X via the map (z,g) — (9,9 ).

Let p: G x X — G be the projection. Then each local section ¢ of the groupoid G x X
is completely determined by the composed map p o ¢: dom(¢) — G. Thus we will abuse
notation and identify ¢ with p o ¢ if there is no cause of confusion. The group G embeds

into [G x X] via the map g — ¢4, where ¢4: X — G is the constant map with value g.

2.2. Central sequences. Let (G, ) be a discrete p.m.p. groupoid. A sequence (A,) of
Borel subsets of the unit space G° is called asymptotically invariant for (G, p) if

W(T° A, A Ay) — 0

for every T € [G]. A sequence (T},) in the full group [G] is called central in [G] if T),
asymptotically commutes with every S € [G], i.e.,

p({z € G [ (ThoS)z# (SoTh)z}) =0
for every S € [g].

Remark 2.1. Let G be a countable subgroup of [G] and suppose that G generates G, i.e.,
the minimal subgroupoid of G containing G in its full group is equal to G. Then a sequence
(A,) of Borel subsets of G is asymptotically invariant for (G, u) if u(gA, A A,) — 0 for
every g € G ([JS, p.93]). Moreover a sequence (7},) in [G] is central if and only if T,
asymptotically commutes with every g € G and p(T;A A A) — 0 for every Borel subset
A C X ([JS, Remark 3.3] or [Ki4, Lemma 2.3]). While these assertions are verified only
for translation groupoids G x (X, u) in the cited papers, the same proof is available for

the above generalization.

We say that a discrete p.m.p. groupoid (G, ) is Schmidt if there exists a central sequence
(T},) in [G] such that u({z € X | T3z # = }) — 1. We say that a p.m.p. action G ~ (X, u)
of a countable group G is Schmidt if the groupoid G x (X, ) is Schmidt. If a countable
group G admits a free ergodic p.m.p. action which is Schmidt, then we say that G has
the Schmidt property. (N.B. A countable group, being a discrete p.m.p. groupoid on a
singleton, is never Schmidt.) The following lemma implies that the Schmidt property of
G follows once we find a free p.m.p. Schmidt action of G which may not be ergodic. We

refer to [H, Section 6] for the ergodic decomposition of discrete p.m.p. groupoids.

Lemma 2.2. Let (G, 1) be a discrete p.m.p. groupoid with the ergodic decomposition map
m: (G% 1) = (Z,¢) and the disintegration = [, pu. d¢(z). Suppose that (G, p) is Schmidt
and let (T,,) be a central sequence in [(G, )| such that p({x € X | Tox # x}) — 1. Then
there exists a subsequence (T,,,) of (Ty) such that for C-almost every z € Z, (Ty,) is a
central sequence in (G, p2)] such that p.({x € X | Ty x # x}) — 1. Thus for (-almost
every z € Z, the ergodic component (G, u.) is Schmidt.
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Proof. Let B be the sigma field of Borel subsets of GV. Let {A;} be a countable subfamily
of B which generates B. Then for every z € Z, the family { Ay} generates a dense subfield
in G° with respect to .. Since (T},) is central in [(G, 11)], we have [, pu. (T ArAAg) d¢(z) =
w(T2 A A Ay) — 0 for each k. Thus after passing to a subsequence of (T},), for {-almost
every z € Z, we have u,(T;Ar A Ag) — 0 for each k.

Applying the Lusin-Novikov uniformization theorem ([Kel, Theorem 18.10]), we obtain
a countable collection {¢;} of local sections of G such that J; ¢;(dom(¢;)) = G. Similarly
to the above, after passing to a subsequence of (T},), for (-almost every z € Z, we have
p({zx e X | (droTp)r = (Thog)r}) — 1foreach l and p,({x € X |Tox #£z}) — 1.
The first convergence together with the convergence obtained in the last paragraph implies

that (7},) is a central sequence in [(G, p.)] for ¢-almost every z € Z. O

2.3. Co-induced actions. Co-induction is a canonical method to obtain a p.m.p. action
of a countable group from a p.m.p. action of its subgroup. We generalize this for p.m.p.

actions of discrete p.m.p. groupoids.

Remark 2.3. Formally we mean by an action of a groupoid G an action of G on a space
Z fibered over G° such that each g € G gives rise to an isomorphism from the fiber at the
source of g onto the fiber at the range of g. Then we say that G acts on the fibered space
Z. We often obtain such an action of G from a groupoid homomorphism a: G — Aut(Y)
for some space Y, as follows: Let Z = GY x Y and regard it to be fibered over GY via the
projection. Then G acts on Z by ¢(s(g9),y) = (r(g9),a(g)y). For simplicity we will often
abuse terminology of actions, and call this action on the fibered space Z an action of G

on the space Y (which is not fibered over G though) unless there is cause of confusion.

Let (G, 1) be a discrete p.m.p. groupoid and set X = G°. Let S be a Borel subgroupoid
of G and suppose that S admits the measure-preserving action on a standard probability
space (Y,v) arising from a Borel homomorphism «: & — Aut(Y,r). From this action of

S, we co-induce a p.m.p. action G ~ (Z,() as follows: For each x € X, we set
Zy={f:G" =Y | f(gh™') = a(h)f(g) for each g € G® and each h € Ss(g)
and define Z as the disjoint union Z = | |, .y Z;. The set Z is fibered with respect to the
projection p: Z — X sending each element of Z, to z. The groupoid G acts on Z by
9)d) = flg'9)
for g € Gy, ¢ € G"9 and f € Z, with z € X.

A measure-space structure on Z is defined as follows: We have the decomposition of the
meNU{oo} X, into the G-invariant Borel subsets X,,, such that the index
of Sx,, in Gx,, is the constant m. First suppose that X = X,,, for some m € NU{co}. Let

unit space, X = | |

{w;} be a family of choice functions for the inclusion S < G, i.e., a family of Borel maps
1+ X — G such that for each z € X, we have ¢;(x) € G* and the family {¢;(z)}7, is a
complete set of representatives of all the equivalence classes in G*, where the equivalence
relation on G is associated to the inclusion & < G as follows: two elements g, h € G* are
equivalent if and only if g~'h € S. Then Z is identified with the product space X x e,y
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under the map sending each f € Z, with x € X to (z, (f(¢4(x)));). The measure-space
structure on Z is induced by this identification, where the space X x [[;*, Y is equipped
with the product measure p x [, v. The action of G on Z is Borel and preserves the
probability measure on Z.

If X is not necessarily equal to X,,, for some m € N, then as already stated, we have the
decomposition X = |_|meNU {0} X,,, into G-invariant Borel subsets. The set Z is decom-
posed into the G-invariant subsets p~!(X,,), on which the measure-space structure is given
in the way in the previous paragraph. Then the measure-space structure is also induced
on Z, so that each p~!(X,,) is Borel and the projection p: Z — X is measure-preserving.

Let ¢ be the induced probability measure on Z. We define a discrete p.m.p. groupoid
(G, 1) % (Z,¢) = (G, 1) as follows: The set of groupoid elements is the fibered product
G = G xx Z with respect to the source map s: G — X and the projection p: Z — X.
The unit space is G° := Z with measure i = (. The range and source maps are given
by 7(g,z) = gz and 5(g, z) = z, respectively, with groupoid operations given by (gh, z) =
(g,hz)(h,z) and (g,2)"! = (g7, g2). Each element T € [G] lifts to the element T € [G]
defined by Tz = (Tz, 2) for z € Z, with z € X,

Let us recall the following fact from the proof of [TD, Theorem 15] or [KTD, Example
8.8]: Let G be a countable group, C a central subgroup of G, and C ~ (Y,v) a p.m.p.
action. We define G ~ (Z, () as the action co-induced from the action C' ~ (Y, v). Then
each sequence of elements of C' that converges to the identity in Aut(Y,v) is central in the
full group of the groupoid G x (Z,(). We generalize this fact to the following:

Proposition 2.4. Let (G,u) be a discrete p.m.p. groupoid and set X = G°. Let S be
a Borel subgroupoid of G, (Y,v) a standard probability space, and a: S — Aut(Y,v) a
Borel homomorphism. Let G ~ (Z,() denote the action co-induced from the action S
(X xY,uxv) via a. Let (T),) be a central sequence in [G] such that each T,, belongs to
[S] and for each Borel subset B C'Y, we have

/X U(Tpa)B A B) du() — 0

as n — oo. Then the sequence (Tn) of the lifts of T}, is central in the full group of the
groupoid (G, p) x (Z,¢) defined above.

Proof. Since (T},) is central in [G], by the definition of lifts, T}, asymptotically commutes
with the lift of each S € [G], i.e., (({z € Z | (SoT})z # (T,,085)z}) — 0 for each S € [G].
Hence it suffices to show that for each Borel subset C' C Z, we have ( (Tf:C’ AC)—0
(Remark 2.1). We may suppose that the index of S in G is the constant m € N U {oo}.
Let {¢;}", be a family of choice functions for the inclusion & < G and identify Z with
the product space X x [[;", Y as being before the proposition. Then it suffices to show
that ¢(T°C A C) — 0 for each cylindrical subset

C={(z,(yi)ix1) e X x[[X,Y |z € Aand y; € B; for each i € {1,...,1} },

where A C X and By,...,B; C Y are Borel subsets and [ is a positive integer with [ < m.
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Let € > 0. We set ¢; = so1); and set ¢;(x) = ¢;(z) ! for z € X. Since ¢; is the union of
local sections of G, the assumption on the central sequence (7},) implies that there exists
an N € N such that if n > N, then

(1) W(TZAD A) < e,
(2) [y v(a(T,(¥i(2))B; A B;)du(z) < e/l for each i € {1,...,1}, and
(3) p(A1) > p(A) — .
where A; is defined as the set of all elements x € A such that (¢; o T},)x = (T}, o ¢;)x for
each i € {1,...,l}. Fix n € N with n > N. We show that Tfl’f € C if f belongs to the set
C1, which is slightly smaller than C, of all elements (z, (y;)/";) € X x [[;", Y such that
ez c A N(T2) LA and
e y; € a(T,,(i(x))) "1 B; N B; for each i € {1,...,1}.
We pick f = (z,(y;)[*,) € C1 and set y = T;xz. For each i € {1,...,1}, regarding f as a
map from G” to Y belonging to the set Z,, we have

(Tr N@Wi(y) = F(Tux) " ily)) = i) Tn (i) ™)
= o T (¥i(2))) f (i (@),
where the second equation follows from = € A; and ¢$(x) = ;(z). The right hand side
belongs to B; because f(1;(x)) = y; € (T (1i(x))) "' B;. Moreover TSf € Z, and y € A
because x € (T)~'A. Therefore T,‘; f € C. As a result, we obtain the inequality
l

cen@yioyzeen = [ Tlval @) Bin B duo)
Alﬁ(Tﬁ)flA i=1

The left hand side of this inequality is equal to ¢(C) — ¢((T2C A C)/2, and the right hand

side is equal to

/A ﬁ <V<Bi) - %v(a(Tn(iz?i(x)))‘lBi A Bi)> du(x)

1N(T)~TA
> C(C) = (AN (Ag N (T5) 2 4)) — /2
> ¢(0) — (u(A\ Ar) + (AN (T3) 1 4)) — 2/2 > ((C) — 2

by (1)—(3), where to deduce the first inequality, we use the inequality | Hé:l a; _Hi‘:l bi| <
Zizl la; — b;| for a;, b; € [0,1]. Therefore ((T°C A C) < 4e. O

2.4. Construction of a free action. Under the assumption that a countable group G
admits a p.m.p. Schmidt action, in Theorem 2.5, we present a sufficient condition for G to
admit a free p.m.p. Schmidt action. Another sufficient condition will be given in Theorem
2.14 in Subsection 2.6. We remark that the analogous problem for stability in place of the
Schmidt property is solved in [Ki3, Theorem 1.4] with a much simpler method.

For p € N and a Borel automorphism T of a standard Borel space X, we call a point
x € X a p-periodic point of T if TPx = x and T'x # x for all i € N less than p. If a point
x € X is a p-periodic point of T" for some p € N, then x is called a periodic point of T
and the number p is called the period of x. For possible constraints on periods of T for
a central sequence (7},) in the full group, we refer to [KTD, Proposition 8.7].
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Theorem 2.5. Let G be a countable group, G ~ (X, p) a p.m.p. action and w: (X, p) —
(Q,n) a G-equivariant measure-preserving map into a standard probability space (2,1).
Suppose that for p-almost every x € X, the stabilizer of © in G depends only on 7w(x) and
we thus have a subgroup M, of G indexed by n-almost every w € Q such that for p-almost
every x € X, the stabilizer of x in G is equal to My(,). We set (G, ) = G x (X, ).
Suppose that there ezists a central sequence (Sy) in [G] such that
e for all n, Sy preserves each fiber of 7, i.e., we have w(Snx) = 7w(x) for u-almost
every x € X, and

o u({z e X | Spr#x, Spxr € Ca(Mpy) }) = 1 asn — oo,
where for a subgroup M < G, we denote by C(M) the centralizer of M in G. For p € N,
let AL, C X be the set of p-periodic points of S5. Suppose further that for each p € N, we
have p(A%) — 0 as n — oo. Then G has the Schmidt property.

The proof of this theorem will be given after proving Lemmas 2.6 and 2.7 below. For
a discrete p.m.p. groupoid (G, u) and an element T' € [G], we say that T is periodic if for
p-almost every x € GO, there exists a p € N such that z is a p-periodic point of 7° and
TPx = e. We should emphasize that T' is not necessarily periodic even if every point of X

is a periodic point of the induced automorphism 7°°.

Lemma 2.6. Let G be a countable group, G ~ (X, u) a p.m.p. action and mw: (X, u) —
(2, 1) a G-equivariant measure-preserving map satisfying the assumption in the first para-
graph in Theorem 2.5. We set (G,u) = G x (X, ).
Pick e > 0 and S € [G] such that S° preserves each fiber of w. Let D and E be Borel

subsets of X with D C E, and suppose that the following three conditions hold:

(1) If x € D, then S°z # x and Sx € Cg(My(y)), and if x € D is further a p-periodic

point of S° for some p € N, then either p > 1/e or SPx = e.

(2) The inequality uw(E \ D) < ep(E) holds.

(3) The inclusion S°D C E holds.
Then there exists an element T € [Gg] such that

(4) T is periodic,

(5) T preserves each fiber of m and Tx € Cg(My () for each x € E, and

(6) p{z e B |Tx # Sz }) < beu(E).

Proof. For a positive integer k, we set
Z ={xeD|S%, (S°)z,..., (S lzeD, (S°z ¢ D}.

The sets Z, are mutually disjoint and satisfy S°Z;,1 C Z;, and Z; = D\ (S°)~'D. Thus
w(Z1) = p(D\ (8°)71D) = u(S°D\ D) < u(E\ D) < ep(E)

by conditions (2) and (3).

We define a local section T" of G on Zj, for k > 2, on S°Z5, and on Z7\ S°Z,, respectively,
as follows: It is defined so that T is periodic and equal to S on a subset as large as possible.
If x € Z;, and k > 2, then we set Tx = Sz. For almost every x € S°Zs, there is a maximal
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integer k& > 2 such that x € (S°)*~1Z;, and we let y € Z, be the point with = (S°)¥~1y
and set Tz = (S¥~1y)~1. On Z; \ S°Zs, we set Tx = e for each point x of that set. We
defined the local section T on the union Z := (J;~; Zi and have the inequality

(2.1) w({z € Z | T # S }) < p(21) < u(E).

We set D1 = D\ Z, which is S°-invariant. Let B be the set of points of D; that are
p-periodic points of S° for some p € N. Let C be the complement of B in Dy, i.e., the set
of aperiodic points of S° in D;. For an integer p > 2, let B, denote the set of p-periodic
points of S° in B. Then each B, is S°-invariant, and B is the disjoint union of the sets
B, with p > 2 since S°x # x for each € D by condition (1).

We extend the domain of 7" to the set B as follows. If p < 1/e, then for each x € B, we
have SPz = e by condition (1) and we thus set 7' = S on B,, so that T is periodic on it.
Otherwise, i.e., if p > 1/e, then pick a Borel fundamental domain B; C B, of the periodic
automorphism S°|,. We set Tz = Sz for z € B\ (S°) "' Bj, and set Tz = (SP~1(S°z))~*
for z € (S°)"'Bj. Then TPz = e for each = € By, and we have

(2.2) w{z e B| T # Sz }) <eu(E)
because
p{zeB|Toz S < Y w8 By = 3 p ' u(By) < =p(B) < eu(E).
p>1/e p>1/e

We next define T' on C, the set of aperiodic points of S° in D;. Let N be a positive
integer with 1/N < eu(F). By the Rokhlin lemma, we can find a Borel subset Cy C C' such
that Co, S°Cy, ..., (S°)N 710y are mutually disjoint and ,u(C’ \ UNZ (S0 Ch) < en(E).
We define T on C as follows: For x € Cy and n € {0,1,.. ., — 2}, we set T((S°)"x) =
S((8°)"z) and T((S°)N"1z) = (SN—1z)~ L Itz e O\ U (SO)"CO, then we set Tz = e.
Then T is periodic on C' in the sense that each x € C' is a p-periodic point of T for some

p € N and we then have TPx = e. We also have
(23)  p({zeC|Te#Sz}) < pu((S7)V'Co) + w(C\ UpZy (5°)"Co) < 2¢pu(E).

Finally we define T"on E \ D by Tx = e for each x € E\ D. By construction 7°
is an automorphism of each of Z, B, C' and E \ D and hence of E. Thus we defined
T € [Ggl, which is periodic. This is a desired one. Indeed for each = € E, the element Tz
is either e or the product of some values of S, which belongs to Cg(M,T(x)) by condition
(1). Therefore T fulfills condition (5). By inequalities (2.1)—(2.3) and condition (2), we
have

p{z e E|Te # Sz}) <4ep(E) + pu(E\ D) < 5eu(E). O

In order to state the next lemma, we prepare the following terminology. Let (G, i) be a
discrete p.m.p. groupoid. For T, S € [G], we say that T" and S commute if T oS = SoT.
Let T'= (T1,...,T,) be a finite sequence of elements of [G] such that T; and Tj commute
for all s and j. For k = (k1,...,k,) € N™, we set

TF = (T,)fm o -0 (T7)1
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For [ = (I, ...,l,) € N*, we say that a point 2 € G° is (I, T)-periodic if the following two
conditions hold:
e For every k = (ky,...,k,) € N?, we have (T%)°x = z if and only if k; = 0 modulo
l; for all i € {1,...,n}.
e If this equivalent condition holds, then we have Tz = e further.
For a discrete p.m.p. equivalence relation Q on a standard probability space (X, u), we
mean by a Borel transversal of Q a Borel subset of X which meets each equivalence class

of Q at exactly one point.

Lemma 2.7. With the notation and the assumption in Theorem 2.5, let R be the orbit
equivalence relation associated with the action G ~ (X, ). Then there exists a central
sequence (Ty,)nen in [G] satisfying the following four conditions:
(i) We have u({z € X | Tz #x}) — 1.
(ii) For each n, Ty preserves each fiber of m and Tpx € Ca(My(yy) for all z € X.
(iii) For each m and n, T,, and T,, commute.
(iv) Let Q,, be the subrelation of R generated by Ty, ..., T,. Then there exists a Borel
transversal E, 11 C X of Qy and its Borel partition Eyy1 = | |jcyn thLl such that
for each 1 = (ly,...,l,) € N,
e cvery point of E£L+1 is (I, T)-periodic, where T = (T1,...,Ty,),
e I°  E. =F | and
o ifn>2, then B, C BVt
In particular, for each n, if €, denotes the subgroupoid of G generated by 11, ...,T,
(i.e., the minimal subgroupoid of G containing Ti,...,T, in its full group), then
En and Qp are isomorphic under the quotient map from G onto R.

Proof. Fix a decreasing sequence (&,,)nen of positive numbers converging to 0. We induc-
tively construct a sequence (1), Fn11)nen of pairs satisfying conditions (ii)—(iv) and the
inequality u({z € X | T,x # Spx }) < Te,, for all n. This inequality implies condition (i)
and also implies that the sequence (T},)nen is central in [G].

In Theorem 2.5, we assume that for each p € N, we have u(A}) — 0 as n — oo, where
AL is the set of p-periodic points of S2. After replacing S; with S, for a large n, we may
assume that u(X \ D) < €1, where D; is defined as the set of points z € X such that
Six # x, S1v € Cg(My (), and if x is a p-periodic point of S} for some p € N, then
p > 1/ey. Letting D = Dy and E = X, we apply Lemma 2.6. We then obtain a periodic
Ty € [G] such that T} preserves each fiber of 7; we have Thz € Cg(Mpy(y)) for almost every
z € X;and p({z € X | Thx # Sixz}) < bey < Tep. Since T is periodic, we can find a
Borel fundamental domain Ey C X for the automorphism 77 of X and its Borel partition
Ey = | jen Eé such that QlEé is equal to the set of l-periodic points of T}, where Q; is
the subrelation of R generated by 77. The first step of the induction completes.

Assuming that we have constructed T1,...,T,_1 and Es,..., E,, we construct T}, and
E,+1. By induction hypothesis, the equivalence relation Q,,_; generated by 17,...,T,_;
admits a Borel transversal E, C X and its Borel partition E, = | |,cyn-1 B such that
for each I € (I1,...,l,_1) € N*"7! every point of E! is (I,T)-periodic, where we set
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T = (T1,...,T,_1). We choose a finite subset L, € N*~! such that u(E!) > 0 for all
l € L, and

(2.4) X\ Qn1Fy) < ep,

where we set I}, = | |;c Lo EL After replacing S,, with S, for a large m, we may assume
that

(2.5) W(Ey,\ Dy) < enp(By)

for each [ € L,, if D!, is defined as the set of points 2 € E!, such that
ez c ELN((SS)"IEL), S22 # x and S, € Ca(My(z)),
e if x is a p-periodic point of Sy, for some p € N, then p > 1/¢,,, and
o (S, oTF)x = (TF0S,)x for each k = (k1,...,kn_1) € ¥y,

where we set
tI)l:{O,l,...,ll—l}><{O,1,...,12—1}><---><{O,1,...,ln_1—1}.

Letting D = D! and E = E!,, we apply Lemma 2.6 for each | € L,. Then there exists a
periodic T;, € [Gr,] such that T}, preserves each El, with [ € Ly; we have Tz € Ca(My ()
for almost every x € F,; and for each | € L,, we have

(2.6) p({z € EL | Thx # Spx}) < Seau(EL).

We extend the local section T;, to the set Q,,_1F;, so that it commutes with 17, ...,T,_1.
That is, if I € (I1,...,ln_1) € L, and z € E!, then we set

To((T%)°2) = ((T* o T;,)a) (TF) ™!

for k = (k1,...,kn—1) € ®;. We note that by condition (iv) for 71,...,7T,_1, which is an
induction hypothesis, each point of Q,,_1F}, is uniquely written as (T%)°z for some k € @,
and x € Eﬁl with [ € L,,. Finally we define T}, on X \ Q,,_1F,, by T,,x = e for each point x
in that set. Then the element T,, € [G] satisfies conditions (ii) and (iii). By construction,
T¢ preserves each E! with [ € L,, and also preserves the other E!, with [ € N"~!\ L,, since
T2 is the identity on it.

Let Q,, be the subrelation of R generated by 17,...,T,;. We find a Borel transversal
Eni1 C X of Q, satisfying condition (iv). Since T preserves each E! with [ € N*~! and
is periodic, we can choose a Borel fundamental domain B!, for the automorphism 72 of
E! and its Borel partition B! = L nen E5™ such that E5™ consists of m-periodic points
of TS. Pick | = (I1,...,ln,—1) € N*"L and m € N and put k = (I1,...,l,_1,m) € N*. If
l € Ly, we set EF | = E5™. Otherwise we have Bl = E5'. We then set EF = El or
Eﬁ_ﬂ = (), depending on m = 1 or m # 1, respectively, and set E, ;1 = | J;,cyn Eﬁﬂ. This
partition fulfills condition (iv), except for the equation involving T,,41 still not defined.

Finally we estimate the measure u({z € X | Tpx # Spz }). If x € D! with [ € L,, and

T,x = Spx, then for each k = (ky,...,ky,—1) € ®;, we have

Sa((T*)°z) = (T* 0 Sp)a) (T ) ™" = (T* 0 T)a)(TF2) ™! = Tu(T)w),
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where the first equation follows from € D!, the second one follows from T}z = S,,z, and
the third one holds by the definition of 7;,. Hence we have T,, = S, on the equivalence
class of z in Q,,—1. The set {z € X | T,,x # Spx } is thus contained in the union

(X\ Qn_1Fn)U U Qn_1{zeFE |z¢ D or Thx# Syx}.
l€Ln

By inequalities (2.4), (2.5) and (2.6), the measure of this union is less than

en + > (4 -+ la1) ((EL \ Dy) + p({x € B}, | Tyx # Sz }))
I=(l1,....ln—1)ELn
<ént Z (L + -+ 1) (en + Den)p(EL) < Tep,
I=(l1,sln—1)ELn
where the sum ), (1 +- - +ln,1),u(Efl) over | = (l1,...,lp—1) € Ly, is equal to u(Qy,—1Fy)
by condition (iv) and hence at most 1. We thus have u({z € X | Thx # Spx }) < Tep.
The induction completes. O

Proof of Theorem 2.5. By Lemma 2.7, we obtain a central sequence (7},) in [G] satisfying
conditions (i)—(iv) in the lemma. Let £ and Q be the unions | J,, &, and | J,, Qn, respectively,
where we use the symbols &,, Q, in the lemma. Then Q is a subrelation of R, and by
condition (iv), &£ is a subgroupoid of G isomorphic to Q via the quotient map from G
onto R. Let M be the isotropy subgroupoid of G, which is the bundle | | .y My, over
X. Let M xx &£ be the fibered product with respect to the range map of £. Then
(M xx &, ) is a discrete p.m.p. groupoid with unit space X. Indeed the range and source
of (m,(g,x)) € M xx & are defined to be gz and x, respectively. The product operation
in M xx & is defined by (m, (g, hz))(l, (h,z)) = (ml, (gh,x)) for (g,hz),(h,z) € £ and
m,l € My (g, where we note that 7(ghz) = m(hx) = 7(z) since all T, preserve each fiber
of m. Let M V & be the subgroupoid of G generated by M and £. By condition (ii), if
(9,7) € &, then g commutes with each element of M. Therefore the map from M x x €
to M V & sending (m, (g, 7)) to (mg,z) is a homomorphism and thus an isomorphism.

Let M be the subgroupoid of G x (£, 7) that is the bundle | | . M,,. We obtain the
homomorphism from M V € onto M as the composition of the isomorphism from M V &
onto M x x &, with the projection from M x x € onto M. Pick a Borel homomorphism
ag: M — Aut(Y,v) with some standard probability space (Y,v) such that the associated
action of M on (Y, v) is essentially free, i.e., we have ag(m)y # y for almost every y € Y’
and almost every m € M\ MY, where M is equipped with the measure fQ Cw dn(w) with
¢, the counting measure on M,,. Such «q is obtained as follows: Pick a free p.m.p. action
G ~ (Y,v). Via the projection from G x (£2,7) onto G, we obtain the homomorphism
from G x (Q,n) into Aut(Y,v). Let ag be its restriction to M. Then the action g is
essentially free. Let MV & act on (Y,v) via the homomorphism from MV & onto M, and
denote this action by a: MV E — Aut(Y,v).

We now apply Proposition 2.4 by letting S = M V €. Note that the central sequence
(T},) satisfies the assumption in the proposition, that is, for each Borel subset B C Y, we
have [y v(a(T,x)B A B)du(x) — 0 as n — oo, because £ acts on Y trivially and thus

a(T,x) is the identity for every x € X. By the proposition, the sequence (7},) of the lift of
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T,, is central in the full group of the groupoid (G, ji), where we let G ~ (Z, () be the action
co-induced from the action a: MV & — Aut(Y,v) and let (G, i) = (G, 1) x (Z,¢) be the
groupoid associated with this co-induced action, introduced right before the proposition.
Recall that é is the fibered product G x x Z with respect to the source map s: G — X
and is a groupoid with unit space Z.

If we define an action of G on Z by gz = (g, )z for g € G and z € Z, with x € X, then
this action preserves the measure ¢ and (é , i) is identified with the translation groupoid
G % (Z,¢) via the map ((g,z),2) — (g,2) for g € G and z € Z, with x € X. The action
G ~ (Z,¢) is free because the action of M on (Y,v) is free. Therefore we obtained the
free p.m.p. action G ~ (Z,() such that the groupoid G x (Z,() is Schmidt. By Lemma
2.2, G admits a free ergodic p.m.p. action which is Schmidt. U

2.5. Central sequences and periodic points. In Theorem 2.5, we assumed the central
sequence (S,) to satisfy the property that for each p € N, the set of p-periodic points of
the automorphism S, has measure approaching 0. On the other hand, in Theorem 2.14
in the next subsection, we focus on a central sequence (S,,) without this property. This
subsection deals with such a central sequence toward the proof of Theorem 2.14.

In the rest of this subsection, we fix the following notation: Let G be a countable group
and M a normal subgroup of G. Let G/M ~ (X, ) be a free ergodic p.m.p. action and let
G act on (X, p) through the quotient map from G onto G/M. We set (G, 1) = G % (X, p).

Lemma 2.8. Let (Sy)nen be a central sequence in [G]. For n,p € N and h € M, we set
AP = {z € X |z is a p-periodic point of S°} and AP" ={x € AP | (S,)Pz=h}.

Then

(i) the sequence (AL),, is asymptotically invariant for G.
(i1) If h is central in G, then the sequence (A%h)n s asymptotically invariant for G.

Proof. Pick ¢ € [G]. If n is large, then the set
{zeX|(d0(S))z = ((Sy)! o @)x for each i € {1,...,p}}

has measure close to 1. If z € A}, belongs to this set, then (S2)!(¢°z) = ¢°((S2)'x) for
each i € {1,...,p}. The right hand side of this equation is not equal to ¢°z if i < p, and
is equal to ¢°z if i = p. Hence ¢°z is a p-periodic point of S2 and belongs to AL. We thus
have p(¢° Al A AL) — 0 as n — oo. Assertion (i) follows.

To prove assertion (ii), we pick g € G. If n is large, then the set

{z € X | (¢g0(Sn)P)x = ((Sn)’ o dg)z}
has measure close to 1. If a point z € A%h belongs to this set, then
((Sn)P(g92))g = ((Sn)” © dg)x = (g © (Sn)")z = gh

and thus (S,)P(gx) = ghg~! = h if h is central in G. Combining this with assertion (i),
we have u(gA%h A A%h) — 0 as n — 0o. Assertion (ii) follows. O
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Lemma 2.9. Let (Sp)nen be a central sequence in [G] and let N be a normal subgroup
of G. Then the sequence (A;) defined by A, = {z € X | Spx € N} is asymptotically

tmwvariant for G.

Proof. Pick g € G. If n is large, then for every point x € X outside a set of small measure,
we have (¢40S5,)r = (S, 0¢y)z, that is, g(Spx) = (Sn(9x))g. Therefore if x € A, further,
then S, (gz) belongs to gNg~! = N and thus gz € A,. O

Remark 2.10. Lemma 2.9 will be used in the proof of Lemma 2.11, by letting N be the
centralizer C(M) of M in G.

Let (Sy)nen be a central sequence in [G] and set A, = {z € X | S,z € Ce(M) }. While
(A,) is asymptotically invariant for G by Lemma 2.9, we further have u(A4,) — 1 if M is
finitely generated. Indeed if F' is a finite generating set of M and n is large enough, then
for all z € X outside a set of small measure, we have (¢4 0 Sp)x = (Sp 0 ¢g)z for all g € F
and hence g(Spz) = (Spx)g since M acts on X trivially. Thus S, commutes with every
element of M.

Lemma 2.11. Let (Sy)nen be a central sequence in [G] and p > 2 an integer. Let h € M
and suppose that h is central in G. We define A, C X as the set of p-periodic points x
of S2 such that (S,)'z € Ca(M) for alli € {1,...,p— 1} and (S,)Px = h. Suppose that
w(Ay) is uniformly positive.

Then there exists a central sequence (Ry,) in [G] such that if we define B, C X as the
set of p-periodic points x of RS, such that (R,)'z € Cq(M) for alli € {1,...,p— 1} and
(Rp)Px = h, then u(By) — 1.

Proof. We follow the proof of [KTD, Lemma 5.3|, patching the restrictions S|4, together
to obtain a desired R € [G] after passing to an appropriate subsequence of (.Sy,).

Note that the equation Sy A,, = A,, holds. Indeed let x € A,, and put y = S, z. Then y
is a p-periodic point of S2. The condition that (S,)'x € Cg(M) for all i € {1,...,p—1}
and (S, )Pz = h € Cg(M) implies that the value of S, at each point of the orbit of z under
iterations of S2 belongs to Cg(M). Thus (S,)'y € Ca(M) for all i € {1,...,p—1}. We
also have ((S,,)Py)(Snz) = (Sp)PHx = (S,2)h = h(S,z) and thus (S,)Py = h. Therefore
y € A, and S; A, C A,,. The converse inclusion follows from this because S; is measure-
preserving or we have (S2)~! = (S2)P~! on A,.

Since A,, is asymptotically invariant for G by Lemmas 2.8 and 2.9, the sequence (S],)
in [G], defined by S/, = S,, on A,, and S/, x = e for all x € X \ A,, is central in [G]. After
replacing S,, with S}, we may assume that S,z = e for all x € X \ A,,. Then (S;)? is the
identity on X. It suffices to show that for every ¢ > 0 and every finite subset F' C [G],
there exists an R € [G] such that u({go R # Rog}) < € and u(B) > 1 — &, where for
u,v € [G], we let {uov # vou} be the set of points of X on which uov and vou are not
equal, and we define B C X as the set of p-periodic points of R° such that Rz € Cg(M)
forall i € {1,...,p— 1} and RPz = h.

Passing to a subsequence of (S,,), we may assume that the following conditions hold:

(1) >, m(g°Ap A Ay) <eforall geF.
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(2) >, 1n{go Sy %S og}')<€forallg€F.
(3) 3o ke iy #((S5) A A Ay) <ce.

Inequality (1) holds since the sequence (A,,) is asymptotically invariant for G. The other
two inequalities hold since the sequence (S,,) is central in [G]. We set C,, = J,,.,, Ax and

also set
p—1

Y1 =A1, Y, =A,\ U(S,OL)ZCn forn>2 and Y = U Y.
i=0

Note that the last union is disjoint. For each n, we have S;Y,, = Y because (S;)P is the
identity on X and SpA, = A,. Then Y, C 4, \ Cy, and Y, > P, L((S2)iC, A Cy) < e
by inequality (3). Thus > p((An \ Cn) \ Yn) < € and pu(lJ,,(An \ Cr) \Y) < e. By the
definition of C,,, we have (J,,(A, \ Cr) = UU,, An, and this is equal to X by [KTD, Lemma

5.1], where we use the assumption that p(A,,) is uniformly positive. Thus

() w(X\ V) <e.

We pick g € F and estimate Y, u(9°Y, AY,,). Pick y € Y, \ ¢°Y,,. Since (¢°) "ty € YV,
either (¢°)~'y € A, or (¢°)"'y € D,, where we set D,, = Uf;ol(SfL)iCn. In the former

case, we have y € A, \ g°A,. In the latter case, we have

€ (¢°Dn \ Dn) mYcUU “(S2) AR\ (87)"Ak) N

=0 k<n
Let N be a positive integer. We have
p—1 N n—1
ZMY\QOY <Zu A\ AR) Y Y T ul(9°(Sn) Ak \ (SR) Ak) N Y.
i=0 n=1k=1

By inequality (1), in the right hand side, the first term is less than . In general, for all
Borel subsets A, A", B, B’ C X, we have

A\ B) <2u(ANA") + u(BAB') + p(A'\ B

([KTD, Lemma 5.2]). This implies that the second term is less than or equal to

p—1 N n-1
DD (g% Ak \ Ap) N Yn) + 3u((Sp) A A Ay))
i=0 n=1 k=
N kn—ll
<pY D nl(0°Ax \ Ap) N Y,) + 3 < (p+ 3)e,

1

B
Il

1

n
where the first inequality follows from inequality (3) and the last inequality follows from
inequality (1). Then ZnN:1 p(Yy \ g°Yy) < (p+ 4)e and therefore

(5) >, 1Yo\ g°Y,) < (p+4)e for all g € F.

We define a map R: X — @, patching the restrictions S, |y, together as follows: For
each n, weset R =5, onY, and set Rz = e if x € X \ Y. Since Sy, preserves Y,,, the map
R° is an automorphism of X and hence R is an element of [G]. Let B C X be the set of
p-periodic points of R° such that R'z € Cq(M) for all i € {1,...,p — 1} and RPz = h.
Since S; preserves Y, again and Y,, is a subset of A,,, each point of Y;, belongs to B and
therefore Y = B and p(B) > 1 — € by inequality (4).
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We pick g € F to estimate p({go R # Rog}). We have the following three inclusions:

{goR#Rogtc|J{goR# RognY,) U(X\Y),

n

{goR#Rog}nNY, C({goR# Rog}n (YN (go)_lyn)) U (Yn\ (90)_1Yn)7 and

{goR#Rogyn (Yo (g°)"'Ya) C {goSn # Snog).
It follows from inequalities (2), (5) and (4) that

p({goR#Rog}) <> (u({goSn# Snogh) +u(Ya\ (°)7Y0)) + (X \Y)

<e+(pt+4)e+e=(p+6)e.
The desired estimate is obtained after scaling e. U

The following lemma is similar in appearance to the last lemma. The difference between
them is the assumption on p(A,,) and the second condition in the definition of the set B,,.

The following lemma deduces a stronger conclusion from the conclusion of the last lemma.

Lemma 2.12. Let (S,)nen be a central sequence in [G] and p > 2 an integer. Let h € M
and suppose that h is central in G. We define A, C X as the set of p-periodic points x
of S° such that (S,)'x € Cg(M) for alli € {1,...,p— 1} and (S,)Pz = h. Suppose that
w(A,) — 1.

Then there exists a central sequence (Ry,) in [G] such that if we define B, C X as the
set of p-periodic points x of RS, such that (R,)'z € Cq(M) for alli € {1,...,p— 1} and
(Ry)Pz = e, then u(By) — 1.

Proof. We show that for all large n € N, if we choose a sufficiently large integer m > n
and set R, = (S;,)"! 05, then the obtained sequence (R,) works. Let ¢ > 0 and fix
a large n € N such that p(A,) > 1 —e. If m is large enough, then p(A,,) > 1 —¢ and
w(C) >1—¢, where C' is the set of points x € X such that

o (S 0(Sn) D= ((Sn)~toS,)z, and

o ((Sm) "o (Sp))z = ((Sm)~toS,)x for all i € {1,...,p}.
By [KTD, Lemma 5.6], for all ¢ € {1,...,p — 1}, we have

p({z e X | (Sh)'e=(Sp)z#x}) >0

as m — co. Therefore for all i € {1,...,p — 1}, since (S3)'z # x for all z € A,, after
replacing m with a larger integer, we may assume that there exists a Borel subset A, C A,
such that p(A, \ A)) < e and (S%,)'x # (S2)'x for all € Al,. We set

p—1

D=CnA,n()(S)  An.

i=0
Then p(D) > 1 — (3 +p)e. We set R = (S,,)" 1 05, and define B C X as the set of
p-periodic points of R° such that Rix € Cg(M) for alli € {1,...,p—1} and RPx = e. We
claim that D C B. This completes the proof of the lemma. Pick z € D. We first show
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that z is a p-periodic point of R® and RPx = e. For each ¢ € {1,...,p— 1}, it follows from
x € A, that (S2,)'r # (S°)'x, and follows from x € C that

((Sm) ™" 0 (Sn)")x = (((Sm) ™" 0 Sn))°x = (R')°x = (R°)'x.
Hence (R°)'z # x. We also have
RP2z = ((Sm) L 0.8,)Pz = ((Sm) P 0 (Sp)P)z = ((Sp) Px)h = e,

where the second equation follows from x € C, the third equation follows from = € A,
and the last equation follows from = € A,, = (S5,)PA,,. Finally for each i € {1,...,p—1},

we have
Rz = ((Sm) " o Sp)'w = ((Sm) "0 (Sn))z = (Sm) " ((Sp) ) ((Sn)'x),

which belongs to Cq(M) because x € A, N (SS)*A,, and the set A,, is preserved by S2,,
as shown in the second paragraph of the proof of Lemma 2.11. O

Combining Lemmas 2.11 and 2.12, we obtain the following corollary, which also reminds

us of the notation fixed in the beginning of this subsection.

Corollary 2.13. Let G be a countable group and M a normal subgroup of G. Let G/M
(X, p) be a free ergodic p.m.p. action and let G act on (X, pu) through the quotient map
from G onto G/M. We set (G,u) = G x (X, u). Let (Sy) be a central sequence in [G] and
p > 2 an integer. Let h € M and suppose that h is central in G. We define A, C X as
the set of p-periodic points x of SS such that (Sy,)'z € Cq(M) for alli € {1,...,p — 1}
and (Sp)Px = h. Suppose that u(A,) is uniformly positive.

Then there exists a central sequence (Ry,) in [G] such that if we define B, C X as the
set of p-periodic points x of RS, such that (R,)'z € Cq(M) for alli € {1,...,p— 1} and
(Ry)Pz = e, then u(By) — 1.

2.6. A variant construction. Continuing from Subsection 2.4, we present another suf-
ficient condition for a countable group G to admit a free p.m.p. Schmidt action, under the
assumption that G admits a p.m.p. Schmidt action. In the following theorem, we assume
the given p.m.p. action G ~ (X, u) to be ergodic, as opposed to Theorem 2.5. This is
because the proof uses certain asymptotically invariant sequences of subsets, which are
better controlled if the action is ergodic.

Theorem 2.14. Let G be a countable group and M a normal subgroup of G. Let G/M
(X, 1) be a free ergodic p.m.p. action and let G act on (X, pu) through the quotient map
from G onto G/M. We set (G,u) = G x (X, ).

Let (Sy,) be a central sequence in [G], let p > 2 be an integer, and let L < M be a finite
subgroup which is central in G. We define A, C X as the set of p-periodic points of S,
such that (Sy)'x € Cg(M) for alli € {1,...,p— 1} and (S,)Px € L. Suppose that ju(Ay)
is uniformly positive. Then G has the Schmidt property.

The scheme of the proof of this theorem is the same as that for Theorem 2.5. Lemma
2.6 will be used in the following lemma, which is analogous to Lemma 2.7:
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Lemma 2.15. With the notation and the assumption in Theorem 2.14, let R be the
orbit equivalence relation associated with the action G/M ~ (X, p). Then there exist a
central sequence (T, )nen in [G] and a sequence (E,11)nen of Borel subsets of X satisfying
conditions (i), (iii) and (iv) in Lemma 2.7 together with the following condition:

(i) For each n and each x € X, we have Tpx € Cg(M).

Proof. The desired sequence (T}, Ey+1)nen is constructed by induction, similarly to the
proof of Lemma 2.7. Fix a decreasing sequence (e, )nen of positive numbers converging to
0. We inductively construct a sequence (T, Byt 1)nen satisfying conditions (ii)’, (iii) and
(iv) and satisfying the inequality u({z € X | Tz # Spx }) < Tey, for all n. Let p be the
integer in Theorem 2.14. Since L is finite, by Corollary 2.13, we may assume without loss
of generality that u(B,) — 1, where we define B,, C X as the set of p-periodic points z of
S¢ such that (S,)'z € Cg(M) for all i € {1,...,p— 1} and (S,)Pz = e.

To construct 17, we set D; = Bj. After replacing S with S, for a large n, we may
assume that p(X \ D1) < ;. We apply Lemma 2.6 by letting D = Dy and F = X and
letting € be a singleton. Then we obtain a periodic 77 € [G] such that Tyx € Cq(M) for
almost every z € X and p({x € X | Thz # Siz}) < bey < Tey. Since T is periodic,
we can find a Borel fundamental domain Fy C X for the automorphism 77 of X and its
Borel partition Ey = | oy Eé such that QlEé is equal to the set of [-periodic points of
T7, where Q; is the subrelation of R generated by T7. The first step of the induction
completes.

Assuming that we have constructed T1,...,T,_1 and Es,..., E,, we construct T}, and
E,+1. Let Q,_1 be the subrelation of R generated by 17, ...,T,_;. By induction hypoth-
esis, we have a Borel transversal E,, C X of Q,,_; and its Borel partition E,, = | |;cyn—1 EY,.
We choose a finite subset L,, ¢ N*~! and set F,, = |—|le Lo Efl as in the proof of Lemma
2.7. After replacing S,, with S, for a sufficiently large m, for each | € L,,, we define Dfl
as the set of points z € E! N ((S2)~'EL) N B, such that (S, o T¥)z = (T* o S,)x for
each k = (k1,...,kn_1) € ®;, where we set TF = (T,,_1)F~1 o ... o (T3)*2 o (T})¥* and
define ®; as before. Letting D = D! and E = E!, and letting Q2 be a singleton, we apply
Lemma 2.6 for each | € L,, and obtain a periodic T}, € [Gp,]. The rest of the construction
of T,, € [G], whose domain is extended to X, and a Borel transversal F, 1 of Q, is a
verbatim translation of that in the proof of Lemma 2.7. ]

Proof of Theorem 2.14. The proof is a verbatim translation of that of Theorem 2.5, where
we apply Lemma 2.15 in place of Lemma 2.7 and let € be a singleton. We note that the
groupoid M X x € in that proof then reduces to the direct product M x £. U

We now prove Theorems 1.3 and 1.5 stated in Section 1.

Corollary 2.16. Let G be a countable group and M a finite central subgroup of G. Let
G/M ~ (X, ) be a free ergodic p.m.p. action and let G act on (X, p) through the quotient
map from G onto G/M. If the action G ~ (X, ) is Schmidt, then G has the Schmidt
property.
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Proof. By assumption, we have a central sequence (S,,) in [G x (X, u)] such that u({z €
X | Spx #x}) — 1, We will apply Theorem 2.5 or 2.14. The most remarkable difference
between the assumptions in those two theorems is the condition on the set A% of p-periodic
points of S¢ and its measure. Passing to a subsequence of (.S;,), we may assume that either
u(A%) — 0 for every integer p > 2, or there is some integer p > 2 for which the values
wu(AL) are uniformly positive. If the former holds, then we apply Theorem 2.5 by letting
2 be a singleton. We note that Cq(M) = G since M is central in G. If the latter holds,
then we apply Theorem 2.14 by letting L = M. Thus the corollary follows from the
theorems. 0

Recall that a sequence (g,) in a countable group G is called central if for each h € G,
gn commutes with h for all sufficiently large n. The following is an immediate application
of Corollary 2.16:

Corollary 2.17. If a countable group G admits a central sequence diverging to infinity,
then G has the Schmidt property.

Proof. Let G act on the set G\ {e} by conjugation, which induces the p.m.p. action of
G on the product space X = HG\{e} [0,1] equipped with the product measure p of the
Lebesgue measure. We may assume that G has finite center because otherwise the Schmidt
property of G is shown in [KTD, Example 8.8]. Let C be the center of G. Then C' acts on
X trivially and the induced action G/C' ~ (X, u) is essentially free. By assumption, we
have a central sequence (g,,) in G diverging to infinity, and we may assume that none of g,
belongs to C. Then by Remark 2.1, (g,,) is a central sequence in the full group [G x (X, u)]
such that p({z € X | ghx # x}) = 1 for all n. Thus Corollary 2.16 is applied to G and
its finite center C. U

Remark 2.18. Let G be a countable group. If M is a finite central subgroup of G and the
quotient group G/M admits a central sequence diverging to infinity, then G also admits
such a sequence and thus has the Schmidt property by Corollary 2.17.

To show this, choose a section s: G/M — G of the quotient map. Let (g,,) be a central
sequence in G/M diverging to infinity. For each h € G, the commutator [s(gy), h] belongs
to M if n is large enough. Since M is finite, after passing to a subsequence, we may
assume that for each h € G, the element [s(g,,), h] is independent of n. Then the sequence
(s(gn)s(g1)™!) is central in G and diverges to infinity.

3. GROUPS WITH INFINITE AC-CENTER

3.1. Reduction to the proof for groups with infinite FC-center. We collect basic
properties of groups with infinite AC-center. For a subset S of a group G, we denote by
Cc(S) the centralizer of S in G and denote by (S)g the normal closure of S in G, i.e.,
the minimal normal subgroup of G containing S. If S consists of elements g1, ..., gn, then

Cc(S) and (S)¢ are also denoted by Ca(g1,...,9n) and (g1, ..., gn)q, respectively.

Lemma 3.1. Let G be a countable group and denote by R the AC-center of G, i.e., the
set of elements g € G such that the quotient group G/Cq({g)c) is amenable. Then
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(i) the set R is a normal subgroup of G.
(ii) For each finite subset S C R, the quotient group G/Cqc({S)c) is amenable.
(iii) The group R is amenable.
) The group R is generated by all normal subgroups M of G such that G/Cq(M) is
amenable. Therefore R is equal to the AC-center introduced in [TD, 0.G].

(iv

Proof. Although some assertions in the lemma are proved in [TD, Theorem 13], we give
a proof for the reader’s convenience. For the ease of symbols, in this proof, let us write
C(g) and C(S) for Cg({(g)g) and Cg((S)q), respectively, given g € G and S C G. By its
definition the set R contains the trivial element and is closed under inverse. If ;s € R,
then C(r)N C(s) < C(rs). Thus G/(C(r) N C(s)) surjects onto G/C(rs) and injects into
G/C(r) x G/C(s) diagonally. The last group is amenable and thus rs € R. Hence R is a
subgroup of G, and by its definition R is normal in G. Assertion (i) follows.

If S consists of finitely many elements 71,...,7, € R, then G/C(S) diagonally injects
into the direct product G/C(r1) x --- x G/C(ry,), which is amenable. Thus G/C(S) is
amenable, and assertion (ii) follows. Moreover the group (S) generated by S admits the
homomorphism into G/C(S) induced by the inclusion into G, whose kernel is (S) N C(S)
and thus abelian. Hence (S) is amenable, and assertion (iii) follows.

Let M be the set of normal subgroups M of G such that G/Cg(M) is amenable, and
let R; be the group generated by all members of M. If r € R, then (r)¢ € M and thus
r € Ry. To show the converse, we note that if M7, My € M, then the group generated by
M; and My belongs to M since its centralizer in G is equal to Cg(My) N Cq(Ms), and
the group G/(Cq(M1) N Cq(Msz)) diagonally injects into G/Cq (M) x G/Cq(Msz), which
is amenable. Therefore R is the union of members of M. If r € Ry, then r is contained
in some M € M, and since Cg(M) < C(r), we have r € R. Assertion (iv) follows. O

Let G be a countable group. Suppose that the AC-center of GG, denoted by R, is infinite.
We first assume that there exists a finite subset S C R such that the normal closure M =
(S)q is infinite. Setting L := Cg(M), we then have two commuting, normal subgroups
L, M of G such that M is amenable and the quotient group G/(LM) is amenable. If
L N M is finite, then the infinite group M/(L N M) injects into the group (LM)/L and
hence the index of L in LM is infinite. By [TD, Theorem 18 (H1)], we conclude that G is
stable and thus has the Schmidt property. If L N M is infinite, then LM has the infinite
central subgroup LN M. Since G/(LM) is amenable, the construction in the proof of [TD,
Theorem 15] yields an ergodic free p.m.p. action of G which is Schmidt.

We next assume that for each finite subset S C R, the normal closure (S)¢ is finite.
For each r € R, the normal closure (r)g is then finite. The group G acts on (r)¢ by
conjugation, and some finite index subgroup of GG acts on it trivially. Hence the centralizer
Cg(r) is of finite index in G, that is, r belongs to the FC-center of G. The AC-center
R is thus contained in the FC-center of GG, and they coincide after all. Let us record the

following structural alternative obtained at this point.

Proposition 3.2. Let G be a countable group with infinite AC-center. Then either
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(1) there exist two commuting, normal subgroups L, M of G such that one of them is
infinite and amenable and the quotient group G/(LM) is amenable, or

(2) the AC-center and the FC-center of G coincide, and for each finite subset of the
FC-center of G, its normal closure in G is finite.

As shown above, if there exists a finite subset S C R such that the normal closure (S)¢g
is infinite, then case (1) occurs, and if there exists no such S, then case (2) occurs. In
case (1), it has already shown that G has the Schmidt property. Therefore for the proof
of Theorem 1.1, it remains to show that G has the Schmidt property if G has infinite
FC-center and every finite subset of the FC-center has finite normal closure in G.

Finally we point out the following permanence properties, which are concerned with the

question in Remark 1.4, but are not necessary for the proof of Theorem 1.1.

Proposition 3.3. Let G be a countable group with a finite central subgroup Z. Then

(i) the group G has infinite FC-center if and only if G/Z has infinite FC-center.
(ii) The group G has infinite AC-center if and only if G/Z has infinite AC-center.

Proof. For each g € G, let Ag(g) denote the conjugacy class of g in G. We note that an
element g € G belongs to the FC-center of G if and only if the set Ag(g) is finite. We set
I' = G/Z with m: G — T the quotient map. Let R? be the FC-center of G and R{ the
FC-center of I'. For each g € G, the map = is a surjection from Ag(g) onto Ar(m(g)), and
is finite-to-one since Z is finite. This implies that 7(R") = RY, and assertion (i) follows.

We prove assertion (ii). Let R be the AC-center of G and R; the AC-center of I'. It
suffices to show that 7(R) = R;. For each g € G, we have 7(Ca((9)c)) < Cr({w(9))r).
We thus have the surjection from G/Cq((g)c) onto I'/Cr({n(g))r). Hence 7(R) < R;.

We fix v € T and set M = (y)r and L = Cp(M). We choose a section s: I' = G of 7.
Let Hom (M, Z) be the group of homomorphisms from M into Z such that the product
of two elements 71,72 € Hom(M, Z) is given by the homomorphism m — 71(m)r2(m).
Since L and M commute, we obtain the homomorphism 7: L — Hom (M, Z) defined by
7i(m) = [s(l),s(m)] for l € L and m € M. We set L1 = ker7. Then L/L; is abelian and
hence amenable. If g € G with w(g) =, then L; < 7(Cs({g)c)) because for each [ € Ly,
we have s(I) € Ca(s(M)) = Ca((g)c) and | = n(s(l)) € 7(Ca((9)a))-

Suppose that v € Ry and pick ¢ € G with w(g) = 7. We show that ¢ € R, which
implies the inclusion Ry < w(R). We set N = C;({g)c). The group G/N is isomorphic to
I'/w(N) via w. Since Ly < m(N), we have the surjection from I'/L; onto I'/7(N), which
surjects onto I'/L because w(N) < L. It follows from « € R; that I'/L is amenable. Since
L/Ly is also amenable, so are I'/L1, I'/w(N) and G/N, and thus g € R. O

3.2. An outline of Sections 4 and 5. Let G be a countable group with infinite FC-
center R. Suppose that every finite subset of R has finite normal closure in GG. The proof
of the Schmidt property of G will be given throughout Sections 4 and 5. In this subsection,
we outline the proof along with a preliminary lemma on structure of R.

In Section 4, we show that G has the Schmidt property under the assumption that the
center of R is finite. If we set N = (,.p Ca(r), then NN R is the center of R. Since Cq(r)
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is of finite index in G for all r € R, the group G/N is residually finite and thus admits a
free profinite action. Moreover G/N has infinite FC-center because the FC-center of G/N
contains (RN)/N. Following Popa-Vaes [PV, Theorem 6.4] and Deprez-Vaes [DV, Section
3], we construct a free profinite Schmidt action G/N ~ (X, u) (after passing to some finite
index subgroup of GG). We then apply Theorems 2.5 and 2.14 to the translation groupoid
G x (X, u) and conclude that G has the Schmidt property. We remark that the proof in
Section 4 does not use the condition that every finite subset of R has finite normal closure
in G.

In Section 5, we assume that the center of R is infinite. We then have an infinite abelian
subgroup A < R normalized by G. This subgroup A will appropriately be chosen and is
not necessarily the center of R. Since each finite subset of R has finite normal closure in
G, there exists a strictly increasing sequence A; < Ay < --- of finite subgroups of A such
that each A, is normalized by G. Let us draw our attention to the following condition:

(x) For every N € N, we have lim,, |F}, n|/|An| = 1, where F),  is the set of elements
of A,, whose order is more than V.

For example, if A,, = Z/2"Z and we embed A,, into A, arbitrarily, then the sequence
Ay < Ag < --- fulfills this condition. In Subsection 5.3, we assume condition (x) and show
that G has the Schmidt property. In Subsection 5.4, we deal with the case where condition
(%) is not fulfilled. In this case, applying Lemma 3.4 below, after replacing (4,,), we may
assume without loss of generality that for some prime number p, each A, is isomorphic to

the direct sum of copies of Z/pZ.

Lemma 3.4. Let G be a countable group and A an infinite abelian normal subgroup of G
contained in the FC-center of G. Suppose that each finite subset of A has finite normal
closure in G and let A1 < Ay < -+ be a strictly increasing sequence of finite subgroups of A
such that each Ay, is normalized by G. Suppose further that for this sequence, condition ()
does not hold. Then there exist a prime number p and a strictly increasing sequence By <
By < -+ of finite subgroups of A such that each B, is normalized by G and isomorphic
to the direct sum of copies of Z/pZ.

Proof. Since condition () does not hold, after passing to a subsequence of (A,,), we may
assume that there exists N € N such that the ratio |4, \ F,|/|A4n| is uniformly positive,
where I, denotes the set of elements of A,, whose order is more than N. Let P be the set
vep An, where A7 is the

subgroup of elements of A, whose order is a power of p. This direct sum decomposition

of prime numbers. Then A, is isomorphic to the direct sum

is canonical and is thus preserved under G-conjugation. We aim to show that for some
p € P, the number of elements of A}, whose order is p diverges to infinity after passing to
a subsequence of (A4,).

Let C% be the set of elements of A, whose order is less than or equal to N. Then C% is
a subgroup of A},. We claim that for some p € P, after passing to a subsequence of (4,),
we have |Ch| — oo as n — oo. Otherwise for each p € P, the sequence (|Ch|),en would
be bounded. Therefore |C%| is uniformly bounded among all n and all p € P with p < N.
This is absurd with the condition that |A,, \ F},|/|Ay| is uniformly positive and |4, | — oo,
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because each element of A, whose order is less than or equal to N is a sum of elements of
Ch with p < N.

Since C% is isomorphic to a direct sum of groups Z/p*Z for some positive integers k
with p*¥ < N, it follows from |Ch| — oo that the number of elements of Ch whose order
is p diverges to infinity. This is the claim that we aim to show. Note that elements of A
of order p are preserved under G-conjugation. Note also that each finite set of elements
of A of order p generates a group whose elements other than the trivial one have order p,
which is isomorphic to the direct sum of finitely many copies of Z/pZ. Hence we obtain a
desired sequence By < By < --- of subgroups inductively as follows: Choose an element
of {J,, An of order p and let B; be its normal closure in G. Having defined B, choose an
element a of |J,, Ay of order p which does not belong to B,, and let B, 1 be the normal
closure of B, U{a} in G. O

3.3. Examples. We present examples of groups with infinite FC-center such that their
Schmidt property does not follow from known results in [PV] and [KTD] immediately. Let
us recall those results:

(1) If a countable group G has infinite FC-center and is residually finite, then G has
the Schmidt property ([PV, Theorem 6.4], see also [KTD, Example 8.10]).

(2) Suppose that a countable group I' acts on a countably infinite amenable group A
by automorphisms and suppose further that each I'-orbit in A is finite. Then the
semi-direct product I' x A is stable ([KTD, Example 8.11]) and therefore has the
Schmidt property.

Here we recall that a free ergodic p.m.p. action of a countable group is called stable if the
associated orbit equivalence relation absorbs the ergodic p.m.p. hyperfinite equivalence
relation on an atomless standard probability space, under direct product. If a countable

group G admits a free ergodic p.m.p. action which is stable, then G is called stable.

Ezample 3.5. Let T" be the group of Ershov [Er|. This is a countable, residually finite group
with property (T) whose FC-center R is not virtually abelian (note that these conditions
imply R # I'. Otherwise R = T" would be amenable by Lemma 3.1 (iii) and hence finite
by property (T) of I', but this is absurd with R being not virtually abelian). Let H be
a countable, non-residually-finite group and define G as the amalgamated free product
G =T % (H x R), where R is identified with the subgroup {e} x R of H x R. Then
the FC-center of G is equal to R, which is proved in the next paragraph, and G is not
residually finite. Moreover G is not stable as shown in Corollary 3.10 below.

We prove that the FC-center of G is equal to R. Pick r € R. We naturally identify H
with the subgroup H x {e} of H x R. Let p: G — T" be the surjection onto the first factor.
Then ker p = (H)¢. Since R is a normal subgroup of G, it follows from H < Cg(R) that
kerp < Cg(R) < Cg(r). On the other hand, since p is the identity on I', G is identified
with the semi-direct product I' x ker p. Then Cg(r) is identified with Cr(r) x ker p, which
is of finite index in I' X ker p. Thus r belongs to the FC-center of G. We have shown that
R is contained in the FC-center of G. The converse inclusion holds because the quotient
group G/R is isomorphic to the free product (I'/R) * H whose FC-center is trivial.
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Ezample 3.6. We set I' = SL,,(Z) with m > 2. The group Z[1/2]/Z is identified with the
increasing union |J,, Z/2"7Z, where the element 1 € Z/2"Z is identified with the element
1/2" +7Z € Z[1/2]/Z. We set A, = (Z/2"Z)™ and A = (Z[1/2]/Z)™ = |J,, An- The group
I" acts on each A, by automorphisms, and the increasing sequence A; < As < --- fulfills
condition (x) in Subsection 3.2.

The semi-direct product I" x A is not residually finite. In fact, the group Z[1/2]/Z has
no finite index subgroup other than itself, which is proved as follows: Let B be a finite
index subgroup of Z[1/2]/Z and pick r € Z[1/2]. Find m € N with 2™r € Z. Since B is of
finite index, there exist k,! € N such that 27%r — 27! +7Z € B and k — [ > m. Then the
element 2™+ (27Fr — 27lp) 4 Z = 2™+ =k 1 7 belongs to B and so does r + Z. Thus we
have B = Z[1/2]/Z.

Let E be a countable group with property (T) containing A as a central subgroup. We
define G as the amalgamated free product G = (I' x A) x4 E. Then the FC-center of G is
equal to A, and G is not stable (Corollary 3.10).

We obtain such a group F as follows, relying on the construction of Cornulier [C] (see
Appendix A for construction of analogous groups): Let H be the subgroup of SL5(Z[1/2])
consisting of matrices of the form

1 x x
(3.1) 0 h *|,
0 0 1

where h runs through elements of SL3(Z[1/2]). Then H has property (T) ([C, Proposition
2.7]). The center C' of H consists of matrices such that each diagonal entry is 1 and the
(1,5)-entry is the only off-diagonal entry that is possibly non-zero. Let Z be the subgroup
of C consisting of matrices whose (1, 5)-entry belongs to Z. Then the group E = (H/Z)™
is a desired one. Indeed (C/Z)™ is a central subgroup of E isomorphic to A, and E has
property (T) since H has property (T).

Ezample 3.7. Let p be a prime number and set A = @y Z/pZ. For n € N, we define A,, as
the group of elements (a;);eny € A such that a; = 0 if ¢ > n. Every non-trivial element of
A has order p. Thus the increasing sequence A1 < Ay < --- does not fulfill condition (*)
in Subsection 3.2. Let N be the group of matrices (a;;); jen with coefficient in Z/pZ such
that a;; =1 for all ¢ € N and a;; = 0 for all i > j. The group A acts on the vector space
A by linear automorphisms, preserving the subspace 4,,. We equip N with the topology
of pointwise convergence as automorphisms of A. Then N is a compact group.

Let T be a countable dense subgroup of N. In the paragraph after next, we will prove
that the FC-center of the semi-direct product I' x A is equal to A. As in Example 3.6, let
E be a countable group with property (T) containing A as a central subgroup, and define
G as the amalgamated free product G = (I' X A) x4 E. Then the FC-center of G is equal
to A, and G is not stable (Corollary 3.10).

We find such a group FE, relying on the construction of Cornulier [C] again: Let F), be
the field of order p and let [F,[t] be the ring of polynomials over [, in one indeterminate
t. We define E as the subgroup of SLs(F,[t]) consisting of matrices of the form (3.1) with
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h running through elements of SL3(F,[t]). Then E has property (T) by [C, Lemma 2.2].
The center of E is isomorphic to Fp[t] and to A.

Let R be the FC-center of I' x A. We prove that R is equal to A. For each n, the group
of elements of I' acting on A, trivially is of finite index in I'. Thus A, < R and A < R.
For the converse inclusion, it suffices to show that if an element g € I" centralizes a finite
index subgroup of I', then g is trivial. Suppose otherwise toward a contradiction. Write
g = (9ij)ijen as a matrix and pick positive integers k < [ such that gy # 0 and gy; = 0
if 1 < j <. Since I is dense in A/ and g commutes with some finite index subgroup of
I', there exists an open neighborhood V of the identity in N such that g commutes with
each element of V. Then there exists an m € N such that if a matrix h = (hi;)i; € N
satisfies h;; = 0 for all 1 <14 < j < m, then h belongs to V. We may assume that m > [.
Let h € V be the matrix such that the (I, m)-entry is 1 and the other off-diagonal entries
are 0. Then the (k, m)-entries of gh and hg are gx; + grm and ggm,, respectively. We thus
have gh # hg, a contradiction.

We present a sufficient condition for a countable group not to be stable, and apply it to
the groups in the above examples. We say that a mean on a countable group G is diffuse

if its value on each finite subset of G is zero.

Proposition 3.8. Let G be a countable group and A a subgroup of G. Suppose that each
diffuse, G-conjugation invariant mean on G is supported on A and that the pair (G, A)
has property (T). Then G is not stable.

Proof. Suppose that G admits a free ergodic p.m.p. action G ~ (X, ) which is stable.
Then we have a central sequence (7},) in the full group [G x (X, )] and an asymptotically
invariant sequence (A,) for G x (X, ) such that Ty A,, N A,, = 0 (and hence p(A,) = 1/2)
for all n (see Remark 3.9 below). Property (T) of the pair (G, A) implies that there exists
an A-invariant Borel subset B, C X such that p(A4, A B,) — 0. Since the functions on
G defined by g — pu({x € X | Th,x = g}) are asymptotically G-conjugation invariant,
the assumption on G-conjugation invariant means on G implies that there exists a Borel
subset D, C X such that T,,x € A for all z € D,, and pu(D,,) — 1. Then

T;;Bn \ B, C (Tri(Dn N Bn) \ Bn) UT;;(X\DH) - T;;(X\Dn)a

where the last equation holds since B,, is A-invariant and T,x € A for all x € D,,. Thus
w(Ty By A By) <2u(X \ D) — 0 and u(T5 A, A A,) — 0, a contradiction. O

Remark 3.9. Let the group @y Z/2Z act on the compact group Xo = [ [ Z/2Z by transla-
tion, equip X with the Haar measure, and let R denote the associated orbit equivalence
relation. For each n € N, let T, € [Rq] be the element of @y Z/2Z such that its coordi-
nate indexed by n is 1 and the other coordinates are 0, and let 4,, C Xy be the subset
consisting of points whose coordinate indexed by n is 0. Then (T},) is central in [Ry], (4)
is asymptotically invariant for R, and T}, A, N A, = 0 for all n.

If a discrete p.m.p. equivalence relation R is stable, then we obtain similar sequences as

follows: By stability, we have a decomposition R = Ry x R1, where R is some discrete
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p.m.p. equivalence relation on a standard probability space (X1, u1). Define T;, € [R] by
To(z,y) = (T (z),y) for z € Xo and y € X1, and set A, = A, x X1. Then (T},) is central
in [R], (Ay) is asymptotically invariant for R, and T,,A, N 4,, = 0 for all n.

Corollary 3.10. None of the groups G in Examples 3.5-3.7 is stable.

Proof. Let G =T xg (H x R) be the group in Example 3.5. Then G surjects onto the free
product (I'/R) *« H with kernel R. Since each conjugation-invariant mean on (I'/R) « H
is supported on the trivial element ([BH, Théoreme 5 (c)]), each G-conjugation invariant
mean on G is supported on R. Since I' has property (T), so does the pair (G, R). Thus
Proposition 3.8 applies.

Let G = (I' x A) x4 E be the group in Example 3.6 or 3.7. It similarly turns out that
each G-conjugation invariant mean on G is supported on A. Since E has property (T), so
does the pair (G, A). Thus Proposition 3.8 applies. O

Remark 3.11. Let I' be a countable group acting on a countably infinite amenable group
A by automorphisms. The semi-direct product G :=I" x A then acts on A by affine trans-
formations, i.e., I' acts on A by automorphisms, and A acts on A by left multiplication.
If the action of G on A admits an invariant mean, then the pair (G, A) does not have
property (T). Indeed, the associated unitary representation of G on £?(A) weakly contains
the trivial representation, but has no A-invariant unit vector.

If each I'-orbit in A is finite, then the action of G on A admits an invariant mean (see
the proof of [TD, Theorem 13, ii]). Therefore for the stable group G =T" x A reviewed in
the beginning of this subsection, the pair (G, A) does not have property (T). We refer to
[DV, Proposition 3.1], [Ki3, Theorem 1.1] and [TD, 0.H] for other relationships between
stability and relative property (T).

4. GROUPS WITH NON-COMMUTATIVE FC-CENTER

Let G be a countable group with infinite FC-center R. Suppose that the center of R is
finite. In this section, we aim to prove that G has the Schmidt property.

Weset N =(),crCq(r). Then R and N commute and NN R is exactly the center of R.
We may assume without loss of generality that VN R is central in G after passing to some
finite index subgroup of G. Indeed the subgroup Gg = (,cyng Ca(r) is of finite index in
G since NN R is finite, and Gy commutes with NN R. Since NN R is central in R, we have
R < Go and hence the FC-center of Gy is equal to R. If we set No = (),cr Ca,(7), then
Ny = N N Gy and hence Ng N R is finite and central in Gg. In general for a finite index
inclusion A < I' of countable groups, if A admits a free ergodic p.m.p. action which is
Schmidt, then the action of I' induced (not co-induced) from it is also Schmidt. Therefore
after replacing G with Gy, we may assume that N N R is central in G.

Let G = Hy > Hy > Hy > --- be a decreasing sequence of finite index subgroups of G
such that ), H,, = N. We can choose a sequence (7, )nen of elements of R\ N such that

(i) if n # m, then r,, and r,, are distinct in the quotient group R/(N N R), and
(ii) for each n € N, r,, belongs to Cg(r1,...,rn—1) N Hy—1.
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Indeed we first note that R/(N N R) is infinite since R is infinite and N N R is finite. Let
be an arbitrary element of R\ N. If r1,...,r,_1 are chosen, then Cg(r1,...,rp—1) N Hy—1
is of finite index in G and hence its image in G/(N N R) is of finite index. The intersection
of that image with R/(N N R) is of finite index in R/(IN N R) and hence infinite. If we let
rn, be an element of R\ N whose image in R/(N N R) belongs to that intersection and is
distinct from the images of r1,...,7,_1, then conditions (i) and (ii) are fulfilled. For an

integer n > 2, we set
G, = Cg(’l“l, ce ,’I“nfl) NH,_1N Cg(’l“n).

Let G ~ (X, ) be the ergodic p.m.p. action obtained as the inverse limit of the system
of the p.m.p. actions G ~ G/G,, given by left multiplication. Then N acts on X trivially,
and the induced action G/N ~ (X, p) is free because (), H, = N.

We show that the translation groupoid (G, u) == G x (X, u) admits a central sequence
(T},) in its full group such that 7oz # x and T,z € R for all n and all z € X. Let
pn: X — G/G, be the projection obtained from the inverse limit construction. We define
amap T),: X — G by Tpx = grog~! for x € p;'(9G,) and g € G. This does not depend
on the choice of g because r,, commutes with every element of G,, by the definition of G,,.
Since 7, belongs to G,, by condition (ii), T preserves the subset p, ! (gG,,) for each g € G.
Therefore T}, belongs to [G] and we have u(T'A A A) — 0 for every Borel subset A C X.
For each h € G, T,, commutes with the element ¢}, € [G] defined as the constant map with
value h. Indeed if z € p;, }(9G,) with g € G, then (T}, 0 ¢p,)x = Ty,(hz)h = hgr,g~!, which
is equal to (¢p o Tp,)x. Therefore (T},) is a central sequence in [G], and we have T x # x
for every © € X because r, does not belong to V.

We thus obtained the ergodic p.m.p. action G ~ (X, 1) such that N acts on X trivially,
the induced action of G/N on X is free, and there exists a central sequence (T,) in the
full group [G x (X, u)] such that T,z # z and T,z € R for all n and all x € X. Recall
also that R is contained in the centralizer Cg(N) and that N N R is finite and central in
G. In order to apply Theorem 2.5 or 2.14, we check that at least one of the assumptions
in those two theorems is fulfilled. For p € N, let A, C X be the set of p-periodic points
of T?. If every p € N satisfies u(A%) — 0 as n — oo, then letting Q be a singleton and
M, = N in Theorem 2.5, we apply it and conclude the Schmidt property for G. Suppose
otherwise, i.e., suppose that for some integer p > 2, the measure pu(A%) does not converge
to 0 as n — oco. After passing to a subsequence, we may assume that p(AD) is uniformly
positive. If z € A}, then (T?)Pz = x and hence (T},)Px € N and (T},)Px € N N R. Letting
M = N and L = NN R in Theorem 2.14, we apply it and conclude the Schmidt property
of G.

5. GROUPS WITH COMMUTATIVE FC-CENTER

5.1. Groupoid extensions. Let G be a countable group and let A be an abelian normal
subgroup of G. We set I' = G/A and choose a section s: I' — G of the quotient map, with
s(e) = e. We then have the 2-cocycle o: I' x I' — A defined by o(g, h)s(gh) = s(g)s(h) for
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g,h € I'. The map o satisfies the 2-cocycle identity
o(g,h)o(gh, k) =9o(h, k)o(g, hk)

for all g, h,k € T, where we set Y9a = s(g)as(g)~! for g € I and a € A. Note that 9a does
not depend on the choice of the section s.

Fix a compact abelian metrizable group L. We define X as the group of homomorphisms
from A into L, identified with the closed subgroup of the product group [[ 4 L. Let x denote
the normalized Haar measure on X. The group G acts on X by (¢97)(a) = (g tag) for
g€ G, a€ Aand 7€ X, and this gives rise to the action of I' on X. We set Y = X x L
and regard it as the bundle over X with respect to the projection onto the first coordinate.
We also regard U as the groupoid with unit space X such that the range and source maps
are the projection onto X, and the product is given by (7,1)(r,m) = (7,lm) for 7 € X and
l,m € L. The translation groupoid X x I' acts on U by (7,9)(g '7,1) = (1,1) for T € X,
gelandl e L.

Let (X x F)(z) be the set of composable pairs of the groupoid X x I, i.e., the set of all
pairs of the form ((7,g), (¢~ 17, h)) for some 7 € X and g,h € T'. The pair of that form is
also denoted by (7, g, h) for brevity. We define the 2-cocycle 5: (X x I')?) — i{ by

(5.1) a(7,9,h) = (1.(1,0(g,h))),

where (7, a) stands for 7(a) for 7 € X and a € A. Indeed the map & satisfies the 2-cocycle
identity:

(5.2) &5(1,9,h)& (7, gh,k) = "96(g7 7, h, k)& (7, g, hk),

where we set (79 (g=17,1) = (1,1) for (1,9) € X x ' and | € L, which is the result of the
action of (7,9) on (g7 '7,1) € U. Let us check equation (5.2): For the first coordinate in
X, both sides are 7. For the second coordinate in L, the left hand side is

(1,0(g,h))(T,0(gh, k)) = (1,0(g,h)a(gh, k)) = (r,90(h, k)o(g, hk))
= (1,90 (h, k))(7,0(g, hk)) = (g'7,0(h, k))(T,0(g, hk)),

which is equal to the second coordinate of the right hand side.

We now construct the groupoid extension
(5.3) 1-U—-Gs > XxI'—1

associated with the 2-cocycle & (see [Se| for the extension associated with a 2-cocycle of
an equivalence relation with coefficient in a bundle of abelian Polish groups). As a set, we
define G5 as the fibered product U x x (X x I') with respect to the range map of X x I'.
The range and source of (u,g) € Gs with u € U and g € X x I' are defined as the range
and source of g, respectively. The product of G5 is given by

(5.4) (u, 9)(v, h) = (uv5(g, h), gh)
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for (u, g), (v,h) € G5 with (g, h) composable. This product is associative. Indeed for three
elements (u, g), (v, h), (w, k) € G5 with (g, h) and (h, k) composable, we have

(wIvé (g, h), gh)(w, k) = (u9vé (g, h)? ws (gh, k), ghk)
= (W95 (h, k)& (g, hk), ghk) = (u, g)(v"wé (h, k), hk).
The inverse of an element (u, g) € G5 is given by
(5.5) (“w) o) ) = (W )E @) g,

where the left hand side is a left inverse of (u, g), the right hand side is a right inverse of

-1

(u, g), and these two coincide because it follows from s(e) = e that o(g,e) = e = o(e, g)
for every g € T', and o(g,97 %) = 90(g™ ', g) by the 2-cocycle identity. All these groupoid
operations are Borel, and we thus obtain a Borel groupoid G;. We have the projection
from G5 =U xx (X xT') onto X x I', whose kernel is identified with U/ via the inclusion
of U into Gs, (7,1) — ((7,1),(,e)) for 7 € X and [ € L. Consequently the groupoid
extension (5.3) is obtained.

An element ((7,1),(7,7)) € G5 = U xx (X xT') is also denoted by (7,1,7) for brevity.
We define a homomorphism n: X x G — G5 by

n(r, (a,v)) = (7,7(a),7)

for 7€ X, a € A and v € T', where G is identified with A x I" via the map (a, ) — as(v).
To check that 7 is indeed a homomorphism, let us recall the product of two elements of
A x T inherited from G:

(a,7)(b, ) = (a”bo(y,6),79)
for a,b € A and 7,6 € I'. If we put g = (a,7) and h = (b,0) and regard them as elements
of GG, then for each 7 € X, we have

n(r,gh) = (7,7(a"bo(v,6)),76) = (r,7(a) (v ') (b)7(0(7,6)),79)
= (7, 7)™ (y L7, (v 1) (0))5 (7,7, ), (1,79))
= (1,7(a),7) (v ', (' 1)(1),6) = n(r, g)n(y ", h),

where in the fourth term, the element of G5 is written as a pair of an element of ¢ and an

element of X x I'. Therefore n is a homomorphism. The kernel of 7 is given by
kern={(r,a) e X x A|a€kerr}.
The image of X x A under 7 is given by

X xA)={(r,7(a)) eU |a € A}.

5.2. A free action from co-induction. We keep the notation in the previous subsection,
where we constructed the groupoid Gs. In this subsection, we construct a free p.m.p. action
of G5, which will be obtained as the action co-induced from the shift action of I/ onto itself.
This action was not treated in Subsection 2.3 since G5 is not necessarily discrete. We do

not aim to discuss co-induced actions for non-discrete Borel groupoids in full generality.
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We set G = G5 and Q = X x I for brevity. We have the groupoid extension
1-U—-G— 90— 1

Recall that &/ = X x L is the bundle of a compact abelian metrizable group L, and denote
by U, the fiber of U at z, i.e., {x} x L. Each fiber U, is often identified with L naturally
if there is no cause of confusion. The bundle U is a groupoid on X and acts on itself by
left multiplication. We co-induce this action to the action of G in the same manner as in

Subsection 2.3 as follows: For x € X, we set
Zy={f:G"=L| f(gu ') =uf(g) for all g € G® and all u € Usg) }

and define Z as the disjoint union Z = | | .y Z,. For each f € Z,, it is natural to regard
the value f(g) € L at g € G* as an element of Uyg)- The set Z is fibered with respect to
the projection p: Z — X sending each element of Z, to x. Then G acts on Z by

(9f)(h) = f(g™"h)

for g € G;, h € G and f € Z, withz € X.

We define a measure-space structure on Z. Recall that as a set, G is the fibered product
U xx Q with respect to the range map of Q. For v € I', we define a map ¢,: X — G
by ¥, (x) = ((x,e),(x,7)) for x € X. Then for each € X, we have ¥, (z) € G* and
the family {t¢ (z)} er is a complete set of representatives of all the equivalence classes in
G*, where the equivalence relation on G% is defined as follows: two elements g, h € G* are
equivalent if and only if g~ 'h € U. Then Z is identified with the product space X x [Ir L
under the map sending each f € Z, with z € X to (z, (f(¥y(x)))y). The measure-space
structure on Z is induced by this identification, where the space X x [[ L is equipped
with the product measure of y and the normalized Haar measure on L. The action of G

on Z is Borel and preserves the probability measure on Z in the following sense:

Proposition 5.1. With the above notation,
(i) for ally €T, x € X andl € L, we have

by (@) " (@, Dy (2) = (v, D),

where we identify U with a subset of G under the injection of U into G.

(ii) We define an action of the group L on Z by lf = (x,1)f forl € L and f € Z, with
x € X. Then this action is Borel, p.m.p. and free.

(ili) For eachy € I', the action of 1, on Z is Borel and p.m.p., that is, the map from Z
into itself sending each f € Z, with x € X to ¥ (yx)f € Z,y is Borel and p.m.p.

(iv) Suppose that either L is infinite and |I'| > 3 or L is non-trivial and I" is infinite.
Then the action of G on Z is essentially free, i.e., for almost every f € Z, letting
x € X be the point with f € Z,, we have gf # f for each g € G, except for the
unit at x.
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Proof. To prove assertion (i), we pick v € ', z € X and [l € L and set g = (z,7) € Q. It
follows from formula (5.5) that ¢, (z) ™! = (6(97,9)7!, g7 !) and therefore

Uy (@)@, Dby (z) = (6(9 " 9) " 97 D ((x,0), 9)
= (G(g 1 9) 7Y (@, 0)a(gt 9), (Y wse)) = (v 1), (v L e)),

where the first and second equations are derived from formula (5.4). Assertion (i) follows.

We prove assertion (ii). Pick l € L and f € Z, with z € X. The element f is identified
with the element of X x [[ L given by the pair of  and the function v — f(1,(z)). Let
us describe the element of X x [ L corresponding to [f, which is the pair of # and the
function v — (If)(¢y(x)). For each v € I', we have

U)W (@) = [ (2, )"y (@) = F(@r ()05 () (a1 )y ()

= fWy (@) (v 2, 17Y) = 1(f (94 (@),
where we apply assertion (i) in the third equation. Therefore the action of I on X x [[ L
is given by (z, (I)y) — (z, (Il)~), and the action of L on Z is Borel, p.m.p. and free.

We prove assertion (iii). Pick v € T" and f € Z, with x € X. The element f is identified
with the element of X x [[ L given by the pair of z and the function 6 — f(¢5(z)). The
element 1 (yz)f corresponds to the pair of vz and the function
8 = (Y (ya) ) W5 (v)) = f (1 (y2) " eps(v2)).

We set g = (yx,7) and h = (yz,§). By formula (5.5), ¢, (yz)™1 = (6(¢7t,g)7t,g71). For
each § € I, if we define k € L by
(5.6) (x, k) =3d(g",9)"'a(g~" h),

then we have

Uy (v2) Ms(va) = (G(g7 " 9) g ) (v, e), h)
= (69" 9) (g h), g7 h) = (2, k), -14(2)
= ¢7_15($)¢7_15($)71($, k)?[),y—l(g(.l?) = ¢7_15($)((771(5)71$, k)?

where the second equation follows from formula (5.4) and the fifth equation follows from

assertion (i). Therefore

F@y(ya) Ms(ye)) = k71 (F($y-15(2))),
and the action of ¥, on X x [[ L is given by

(@, (I5)s) = (v, (k5 4ly-16)5);

where the element k =k, 5, € L is determined by equation (5.6). By the definition of &
in (5.1), the function = — k, s, is Borel. Hence the action of v, is Borel and also p.m.p.
by the above description of the action. Assertion (iii) follows.

We prove assertion (iv). Recall that each g € G, with = € X is written as (yz,l,~) for
some vy € I'and [ € L. By assertion (ii), it suffices to show that for each non-trivial v € I,
there exists a conull subset Z C Z such that for all f € Z and all | € L, letting x € X be
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the point with f € Z,, we have (yz,l,v)f # f. We fix a non-trivial v € I'. The action of
g = (vx,l,y) on X x [[ L is described as

(z, (Is)s) = (yx (lkwsggl»y 15)6)-

Thus if g fixes the point (, (5)s), then Ik 6xlv—16 =lsforall§ el.

Suppose that L is infinite and || > 3. Pick a non-trivial element v; € I with v; # L.
We fix z € X. If a point (l5)s is such that for some [ € L, we have lk,y s.uly-16 = ls for all

0 € I', then lk‘7 exly-1 =l and lk‘7 saly=1y = by, Deleting [, we thus obtain

(5.7) by = Ll h 1y, by e a5 o

e» ly-1 and [,—1,, are determined. The element ~; is

and 7~ !v;. Hence by Fubini’s theorem, the set of points (I5)s

which says that [,, is determined if /
distinct from all of e, y~!
satisfying equation (5.7) is null, where we use the assumption that L is infinite and thus
each singleton subset of L is null. Since x is an arbitrary point of X, by Fubini’s theorem
again, the set of points (z, (ls)s) € X x [[ L satisfying equation (5.7) is null. Thus it
suffices to let Z be the complement of that null set.

Suppose next that L is non-trivial and I' is infinite. Then there exists an infinite subset
S C I' such that S and 7_15 are disjoint. We fix z € X. Let (I5)5 be a point such that

for some [ € L, we have lk_ s I ,—15 =I5 for all § € T. As in the previous paragraph, for

v, 6 el
all distinct vg,v1 € S, we then have

(5.8) Ly = Lol t Lan Koy g ki

Y0y fyO’y “/1 VY0,V y,y1

The element 1 is distinct from all of 49, v~ 'y9 and 4~ ';. Hence by Fubini’s theorem, for
all distinct 79, v1 € S, the set of points (I5)s satisfying equation (5.8) has measure less than
1, where we use the assumption that L is non-trivial and thus each singleton subset of L
has measure less than 1. Since we have mutually disjoint, infinitely many pairs of distinct
elements of S, the set of points (Is)s satisfying equation (5.8) for all distinct g,y € S is

null. We thus obtain Z as well as before, and assertion (iv) follows. 0

5.3. The case where condition (x) holds. Let G be a countable group and let A be
an infinite abelian normal subgroup of G contained in the FC-center of G. Suppose that
each finite subset of A has finite normal closure in G and let A1 < Ay < --- be a strictly
increasing sequence of finite subgroups of A such that each A,, is normalized by G. Suppose
further that condition (%) introduced in Subsection 3.2 holds, i.e., for all N € N, we have
lim, |F;, N|/|An| = 1, where F), n is the set of elements of A,, whose order is more than
N. Under these assumptions, we aim to construct a free p.m.p. Schmidt action of G. We
may assume that G/A is infinite because otherwise G is amenable. This assumption will
be used in applying Proposition 5.1 (iv) later, and not used for other purposes.

We set I' = G/A and choose a section s: I' — G of the quotient map with s(e) = e.
We then obtain the 2-cocycle o: I' x I' = A. We define X as the dual group A of A, ie.,
the group of homomorphisms from A into the torus T={z € C | |z| = 1}. Let pu be the
normalized Haar measure on X. We recall the construction in Subsection 5.1. Define the
action of G on X by (g7)(a) = 7(g tag) for g € G, a € A and 7 € X, which induces the
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action of I' on X. Let U := X x T be the bundle over X, which is a groupoid with unit
space X. Then we obtain the 2-cocycle : (X x I')?) — U/ by formula (5.1) and obtain
the groupoid extension

1-U—->G; > X xD—1

together with the homomorphism n: X x G — G5 such that
kern={(r,a) e X xA|a €ker7}

and n(7,a) = (1,7(a)) €U for alla € A and 7 € X.

Let G5 ~ (Z,() be the free p.m.p. action constructed in Subsection 5.2, i.e., the action
co-induced from the shift action of U on itself. The space Z is fibered over X. The fiber
at 7 € X is denoted by Z,. For n € N, let I';, be the group of elements of I' acting on A,
trivially. Let I' ~ (Y, v) be the profinite p.m.p. action associated with the system of the
p.m.p. action I' ~ I'/T,, given by left multiplication. Through the quotient map from G5
onto I' factoring through X x I', we obtain the p.m.p. action Gz ~ (Y,v). Then G acts
on Y x Z diagonally, where Y x Z is fibered over X with respect to the map sending each
element of Y x Z. to 7 for each 7 € X.

Through the homomorphism 7: X x G — Gz, we obtain the p.m.p. action of X x G on
the product space (W,w) := (Y x Z,v x (). We then obtain the p.m.p. action G ~ (W,w)
given by g(y,z) = (97,9)(y,2) for g € G, y € Y and z € Z,; with 7 € X. The action of
A on W is given by a(y, z) = (y,(7,7(a))z) for each a € A. Recall that we defined the
action of T on Z by tz = (7,t)z for t € T and z € Z; with 7 € X in Proposition 5.1 (ii).
Thus, with respect to this action, the element (y, (7,7(a))z) is written as (y,7(a)z).

We now construct a central sequence (T) in the full group of the translation groupoid
G x (W,w). Pick N € N. By condition (%), for some n = ny € N, we have |F,|/|4,| >
1 —1/N, where F,, is the set of elements of A,, whose order is more than N. Since the
dual A, of A, is isomorphic to A,, ([F, Corollary 4.8]), if E,, denotes the set of elements
of A,, whose order is more than N, then |E,|/|A,| > 1 —1/N. The set E, is further I'-
invariant. The map p,: X = A— A\n induced by the inclusion of A, into A is surjective
([F, Corollary 4.42]). For each 7 € E,, since its order is more than N, there exists a, € A,
such that

(5.9) 0 <|r(ar) — 1| < |exp(2mi/N) — 1.

We define a map T : W — A as follows: Let Y,, denote the inverse image of the coset el’,,
under the projection from Y onto I'/T',. For y € ¢gY,, with g € T and z € Z; with 7 € X,
if 7 belongs to p, }(E,), then we set

TN(y7 Z) = gagflpn(T)a

and otherwise we set Tn(y,z) = e. This is well-defined because T',, acts on A, and A\n
trivially. The map from W into itself, w — (Tnw)w, is an automorphism of W because
A acts on Y trivially and preserves each fiber Z, with 7 € X. Thus Ty is an element of
the full group [G x (W,w)].

Lemma 5.2. With the above notation,
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(i) for each N € N and g € G, we have ¢pg0Tn = Ty o ¢g4, where ¢pg: X — G is the
element of the full group [G x (W,w)] given by the constant map with value g.
(ii) For each Borel subset B C W, we have w(T{B A B) — 0 as N — oo.
(ili) We define By C W as the set of periodic points of Ty, whose period is more than
N. Then w(By)>1—1/N for all N € N.

Proof. To prove assertion (i), we pick N € N and g € G. Let n = ny € N be the integer
chosen before to obtain the subset E,, C ﬁn We also pick y € hY,, with h € I" and z € Z;
with 7 € X, and set w = (y,2). If 7 € p,}(E,), then (¢; 0 Tn)w = g(hah_1pn(T)) and

(T 0 dg)w = Tn(Gy, 92)9 = ("agny-1pn(gr)9 = 9("an-1p, (),
where g denotes the image of g in I'. Thus ¢, 0 Ty = Ty 0 ¢, at w. If 7 & p, }(E,,), then
(pg o Tn)w = g, and (T o ¢pg)w = g because g7 & p,,1(E,). Assertion (i) follows.

We prove assertion (ii). Let the group T act on W by t(y,z) = (y,tz) fort € T, y € Y
and z € Z. Since T is compact, the action T ~ W is isomorphic to the action T ~ D x T
given by t(w,s) = (w,ts) for t,s € T and w € D, where D is a Borel subset of W which
is the product of Y with a Borel fundamental domain for the action T ~ Z.

We pick N € N and let n = ny. For y € gY,, with g € I' and z € Z, with 7 € X, if 7
belongs to p;!(E,), then

(5.10) TR (y,2) = (U, 7(9ag-1p,()2) = (W, (g7 T, ag-1p, (1)) 2)

and otherwise T (y,z) = (y,z). This shows that for each y € Y and 7 € X, the map Ty
preserves the set {y} x Z;, and on that set, the map T is equal to the transformation
given by some single element of T. Moreover {y} x Z, is T-invariant. Therefore if T is
regarded as a automorphism of D x T under the isomorphism between W and D x T, then
TR preserves each orbit {w} x T with w € D, and on that orbit, the map T is equal to
the transformation given by some single element of T. By inequality (5.9), those elements

of T, i.e., the value (g7 '7,a in equation (5.10), are uniformly close to 1 if N is so

97 1pn(7))
large that exp(27i/N) is close to( 1) Thus assertion (ii) follows.

We pick N € N and let n = ny. If y € gY,, with g € T and 2 € Z, with 7 € p, }(E,),
then the value (g~ '7, ag-1p,(r)) € T has order more than N by inequality (5.9). Moreover
freeness of the action T ~ Z, shown in Proposition 5.1 (ii), and equation (5.10) imply
that (y, z) is a periodic point of T} whose period is more than N. Assertion (iii) follows

from this together with the inequality |E,|/|A,| > 1 —1/N. O

We are going to apply Theorem 2.5. Let us check that the assumption in it is fulfilled
for the p.m.p. action G ~ (W, w), the G-equivariant measure-preserving map 7: (W,w) —
(X, ) and the central sequence (T) in the full group [G x (W, w)], where we define the
map m by m(y,z) =7 for y € Y and z € Z, with 7 € X. We first note that (T) is indeed
central by Lemma 5.2 (i) and (ii). The stabilizer of a point of W in G depends only on its
image under 7. Indeed the action Gz ~ (Z,() is essentially free by Proposition 5.1 (iv)
and thus the stabilizer of almost every w € W is equal to the kernel of 7(w) € X = A.
As pointed out in the proof of Lemma 5.2 (ii), Ty preserves the set of the form {y} x Z;
with y € Y and 7 € X and thus preserves each fiber of m. For each w € W, since A is
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abelian and the kernel of 7(w) is a subgroup of A, the element Tyw € A belongs to the
centralizer of the stabilizer of w in G. The inequality w(Bx) > 1 —1/N shown in Lemma
5.2 (iii) implies that w({w € W | TRw # w }) — 1 as N — oco. By Lemma 5.2 (iii) again,
for each p € N, if B% C W denotes the set of p-periodic points of T3, then w(Bﬁ,) — 0 as
N — oo. Thus the assumption in Theorem 2.5 is fulfilled, and by the theorem, G has the
Schmidt property.

5.4. The other case. Let G be a countable group and let A be an infinite abelian normal
subgroup of G contained in the FC-center of G. Suppose that each finite subset of A has
finite normal closure in G and let A; < As < --- be a strictly increasing sequence of finite
subgroups of A such that each A, is normalized by G. In this subsection, we suppose that
condition (%) in Subsection 3.2 does not hold for this sequence and then construct a free
p-m.p. Schmidt action of G. By Lemma 3.4, we may assume without loss of generality
that there exists a prime number p such that each A,, is isomorphic to the direct sum
of finitely many copies of Z/pZ. We may also assume that A = |J,, A, and that G/A is
infinite as in the previous subsection.

We set I' = G/A and choose a section s: I' — G of the quotient map with s(e) = e. We
then obtain the 2-cocycle o: I' x I' = A. We define X as the group of homomorphisms
from A into the direct product L := [[yZ/pZ, while X denoted the dual group Aof Ain
the previous subsection. Let y be the normalized Haar measure on X. Note that if we fix
an embedding of Z/pZ into the torus T, then the dual A is identified with the group of
homomorphisms from A into Z/pZ since all elements of A = {J,, A;, except for the trivial
one have order p. Under this identification, we often identify X with the product group
Iy A unless there is cause of confusion.

We recall the construction in Subsection 5.1. Define the action of G on X by (g7)(a) =
7(97tag) for g € G, a € A and 7 € X, which induces the action of I'on X. Let i = X x L
be the bundle over X, which is a groupoid with unit space X. Then we obtain the 2-cocycle
5: (X xT)? = U by formula (5.1) and obtain the groupoid extension

1-U—->G; > X xT'—1
together with the homomorphism 7: X x G — G5 such that
kern={(r,a) e X xA|a€ker7}
and 7(7,a) = (1,7(a)) €U for all a € A and 7 € X.

Lemma 5.3. With the above notation,
(i) for each N € N, the set of points T = (7;)ien € X such that (X, ker7; = ker 7 is
p-null.
(ii) For p-almost every T € X, we have ker v = {e}. Therefore the groupoid X x A
embeds into U via n if it is restricted to some p-conull subset of X.

Proof. The set in assertion (i) is written as
oo

(5.11) L] {mrxx{mdx J] {6€ AN kerr; <keré}.

Tl,...,TNEA\ 1=N+1
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We note that if a is a non-trivial element of A, then the subgroup {¢ € A | a € keré}is
of index p in A and thus has measure 1 /D, where Alis equipped with the normalized Haar
measure. Then for each 71,..., 7y € A, the set {¢€¢€ A | ﬂf\; L ker7; < ker £ } has measure
at most 1/p because this is contained in the set { £ € A | a € ker{ } if a is chosen to be a
non-trivial element of ﬂfil ker 7;. By Fubini’s theorem, the set in (5.11) is p-null.

For each non-trivial a € A, the set {7 € X | a € ker 7} is identified with the product
set [[{€ € A|a €keré} and hence p-null. Assertion (ii) follows. O

Let G5 ~ (Z,() be the free p.m.p. action constructed in Subsection 5.2, i.e., the action
co-induced from the shift action of U on itself. The space Z is fibered over X. The fiber
at 7 € X is denoted by Z,. For n € N, let I';, be the group of elements of I' acting on A,
trivially. Let T' ~ (Y, v) be the profinite p.m.p. action associated with the system of the
p.m.p. action I' ~ I'/T';, given by left multiplication. As with the previous subsection, let
G5 act on Y x Z diagonally, where Y x Z is fibered over X with respect to the map sending
each element of Y x Z; to 7 for each 7 € X. Through the homomorphism n: X x G — G5,
we obtain the p.m.p. action of G on the product space (W,w) = (Y x Z,v x (). We note
that the action G ~ (W, w) is essentially free because the action Gz ~ (Z, () is essentially
free by Proposition 5.1 (iv) and kern is trivial in the sense of Lemma 5.3 (ii).

We now construct a central sequence (T) in the full group of the translation groupoid
G x (W,w). Pick N € N. For each a € A, we set

Xa:{TZ(TZ‘)Z‘eNEX‘Tl(a):---ZTN(a):O, T(G)%O}.

By Lemma 5.3 (i), X = [J,c4 Xo up to null sets. Let Y;, denote the inverse image of the
coset el',, under the projection from Y onto I'/T',. Then

00
XXY:U U U X, % gy,
n=1a€A,\Ap_1 gTn€l/Ty
where we set Ag = {e}. If a € A, \ Ap—1 and g,h € T, then h(X, x gY,,) = Xp.o X hg¥y
with respect to the diagonal action I' ~ X X Y, where the dot stands for the action of I'
on A. Thus the saturation I'(X, x gY¥},) is the disjoint union of the translates h(X, x g¥;,)
with h running through representatives of elements of I'/T',,. Let us call such a subset a
(T'/T),)-base, that is, call a Borel subset B C X x Y a (I'/I'y,)-base if B is I'y,-invariant
and the saturation I'B is the disjoint union of the translates hB with h running through

representatives of elements of I'/T,,.

Lemma 5.4. With the above notation, there exist Borel subsets of X, By, Bo,..., such
that X xY = | |°_ By, and each B, is a (I'/T',)-base contained in X, x gY, for some
neN,a€ A, \ A1 and g € T.

Proof. For each n € N, let D(n,1),D(n,2),...,D(n,ky,) be an enumeration of the (I'/T",)-
bases X, x gY,, indexed by a € A,, \ A,—1 and a representative g of an element of I'/T",,,
with &k, = |4, \ Ap—1| [T'/Ty|. Let (Epn)men be the enumeration of the sets D(n, k) with
respect to the lexicographic order of the indices (n, k).
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We inductively define a Borel subset B,, C X x Y. We set By = Fy. Suppose that
Bi,...,B,,—1 are defined. We set B,,, = Ep, \ U:i;l I'B;. Then E,, = D(n, k) for some n
and k and thus B,, is a (I'/T',)-base. By construction I'B,,, and I'B; are disjoint for all
distinct m, [. Since the sets E,, cover X x Y, the sets I'B,,, cover X x Y. ]

We define a map Tn: W — A as follows: Let g: W — X X Y be the projection that
sends a point (y,z) € W with z € Z, and 7 € X to the point (7,y). By Lemma 5.4, the
set X x Y is covered by the mutually disjoint sets I'B,, with m € N. For each m € N,
we have n,, € N, a, € Ay, \ Ap,,—1 and g, € I’ such that the set B, is a (I'/T',,,, )-base
contained in X, X gmYn,,. For w € ¢~ (hB,,) with h € T, we set

Thw = h-apn.

This is well-defined because B,, is a (I'/T,,, )-base and a,, is fixed by I',,,. The map from
W into itself, w — (Tyw)w, is an automorphism of W because A preserves each fiber of
g. Thus Ty is an element of the full group [G x (W, w)].

Lemma 5.5. With the above notation,

(i) for every N € N and g € G, we have ¢pg0 Ty =Ty o ¢pg, where ¢g: X — G is the
element of the full group [G x (W,w)] given by the constant map with value g.
(ii) For every Borel subset B C W, we have w(T{B A B) = 0 as N — oo.
(iii) For every N € N and every w € W, we have TRw # w.

Proof. We prove assertion (i). If w € ¢~!(hB,,) with h € T, then we have (T o ¢g)w =
Tn(gw)g = ((gh) - am)g with g the image of g in T, and also have (¢4 0 Ty )w = g(h - ay,).
These two coincide.

We prove assertion (ii). The proof is similar to that of Lemma 5.2 (ii). Using the action
of U on Z, which restricts the action of G5, we define an action of L on Z by If = (1,1)f
forl € L and f € Z; with 7 € X. This is the action defined in Proposition 5.1 (ii). Let L
act on W by l(y,z) = (y,lz) forle L,y €Y and z € Z.

Fix N € N. Recall that the group A acts on W via the homomorphism 7: X x G — G5,
which satisfies 1(7,a) = (7,7(a)) for all 7 € X and a € A. Hence if w = (y,2) € ¢~ *(hBy,)
with z € Z;, 7 = (7;)ien € X and h € T, then

Tyw = (y, (1, Tnw)z) = (y, 7(h - am)z).

Since q(w) = (1,y) € hBy,, we have 7 € X}, and thus 71(h-ay) =+ =7n5(h-ay) =0
and 7(h - ap) # 0. This says that the element 7(h - a,,) € L = [[yZ/pZ is non-trivial and
is close to the identity if N is large. The definition of Tyw depends only on ¢(w), and the
action of L on W preserves each fiber of q. Hence on each L-orbit in W, the map Ty is
equal to the transformation given by some single element of L. Assertion (ii) then follows
from the existence of a Borel fundamental domain for the action L. ~ Z as well as in the
proof of Lemma 5.2 (ii).

Assertion (iii) follows from the condition 7(h - a,,) # 0 shown above and freeness of the
action of L on Z shown in Proposition 5.1 (ii). O
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Therefore the groupoid G' x (W, w) is Schmidt, and so is its almost every ergodic com-
ponent by Lemma 2.2. We have already shown that the action G ~ (W, w) is essentially
free, in the paragraph after Lemma 5.3. Thus G has the Schmidt property.

6. ANOTHER CONSTRUCTION USING ULTRAPRODUCTS

Let G be a countable group with infinite FC-center. We construct a free p.m.p. Schmidt
action of G by way of ultraproducts. This construction is self-contained and independent

of the construction given so far.

Step 1. Setting up the sequence of actions: Let A denote the FC-center of G.
Then A has an infinite abelian subgroup B, which is found as follows: First, pick a non-
trivial a; € A. If (a;) is infinite, let B = (a1). Otherwise pick an element ay of the
set Cy(aq) \ {a1), which is non-empty because C4(aq) is of finite index in A and hence
infinite. If (a1,as) is infinite, let B = (a1, as). Otherwise pick an element ags of the set
Ca(ay,a2)\{ay,asz), which is non-empty by the same reason. Repeat this procedure. Then
either it stops in finite steps and the group B = (aq,...,a,) for some n is infinite and
abelian, or it does not stop and the group B = (a1, aq,...) is infinite and abelian.

We may write B as an increasing union of finitely generated subgroups B = |J,,cy Bn-
Let G, = Cg(B,), so that G, is a finite index subgroup of G which contains B. Since
B is abelian, we may find a free ergodic compact action B ~? (Y, uy) of B, where Y is
a compact abelian metrizable group and 8: B — Y is an injective homomorphism with
dense image, and B is acting on Y by left translation via 3. Let G, ~%» (Y, ,uy)G"/ B be
the p.m.p. action co-induced from the action 5 of B. Explicitly, this is defined as follows:
We pick a section t,: G,,/B — G, of the projection map G,, — G,,/B with t,(eB) = e,
and we let wy,: G, x G,,/B — B be the associated cocycle for the action G,, ~ G, /B
given by wy, (g, hB) = t,(ghB) *gt,(hB) for g,h € G,. Then the action G,, ~» YCGn/B
is given by

(Ba(9)2)(hB) = B(wn(g,9~ 'hB))z(g~ ' hB)

for g, h € Gy,. For each n, pick a section s, : G/G, — G of the projection map G — G/G),
with s,(eG,) = e, and let v,: G x G/G,, = G,, be the associated cocycle for the p.m.p.
action G ~ (G/Gn, paja,) (where g/, is the normalized counting measure), given by
vn (9, hGp) = 5,(ghGr) tgsn(hG,) for g,h € G. Then we equip Z, = G/G, x Y&n/B
with the product measure n, = ug/q, X ,u?"/B and we let G " (Z,,n,) be the skew
product action, which is the p.m.p. action defined by

Oén(g)(kGrux) = (ngmﬂn(Un(.% an))x)
for g € G and (kG,,,x) € Z,.

Step 2. The ultraproduct and its quotients: Fix a non-principal ultrafilter ¥ on N
and let G % (Zy,ny) be the ultraproduct of the sequence of actions (G ~*" (Z,,, ) )nen
with respect to V. Thus Zy = ([],, Z,)/ ~v, where ~y is the equivalence relation on [ [, Z,
such that (y,) ~y (2z) if and only if {n € N | y, = 2z, } € V; we write [(z,)]y for the
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equivalence class of the sequence (z,). For a sequence (D,,) of Borel sets D,, C Z,, let
[(Dy,)]y be the associated basic measurable subset of Zy, i.e.,

[(Dn)ly = {{(zn)lv | lim 1p, (2n) = 1},

where 1p, is the indicator function of D,,. The assignment [(Dy)]y — limy,_y n,(Dy)
defines a premeasure on the algebra of all such basic measurable sets, and hence this
assignment extends uniquely to a countably additive measure 7y on the completion By of
the sigma algebra generated by the basic measurable sets. This is how the measure 7y is
defined. The action «, of G on Zy, is given by a(g)[(zn)]y = [(92n)]v-

Likewise, let G ~ (Xy, py) denote the ultraproduct, with respect to V, of the sequence
of actions (G ~ (G/Gn, ig)a,))nen- Then the projection map p: (Zy,ny) — (Xy, py),
[(knGn,xn)]ly = [(knGr)]y, is measure-preserving and G-equivariant.

Let G ~ (P, pp) denote the profinite action that is the inverse limit of the finite actions
G ~ G/G,,. Elements of P consist of sequences (¢,,Gr,) with ¢,Gr D gm41Gmy1 for all
m. For each [(k,G.)]y € Xy and each m € N, let ®,,[(k,G, )]y be the unique left coset
9Gp, of G, for which the set {n € N | k,G,, C gG,, } belongs to V. Then each ®,,: Xy —
G/G,, is G-equivariant and measure-preserving, and ®,,[(k,Gpn)ly D ®Pmi1[(knGr)ly, so
we obtain the measure-preserving G-equivariant map ®: (Xy,uy) — (P,up) given by
O[(knGn)ly = (Pm[(knGn)ly)m-

For each n, let 7, : Z, — Y be the map 7, (kG,, x) = xz(eB) projecting to the identity-
coset coordinate of x € YE&/B . Let m: Zyy — Y be defined by

7[(knGn, n)]y = lim 7, (k,Gp, x,) = lim x,(eB)
n—y n—y

(note that this limit exists since Y is compact). By [BTD, Proposition 8.4], this map is
measurable and measure-preserving, with ny (71 (E) A [(7,1(E))]y) = 0 for every Borel
subset F of Y. Let ) denote the subalgebra of By consisting of all sets of the form 7~ !(E)
with £ C Y Borel, and let P denote the subalgebra of By, consisting of all sets of the form

(® o p)~1(C) with C C P Borel.

Step 3. The central sequence: For each b € B, the conjugacy class b of b in G is
finite, and the map Tp: Zy — b given by

Ty[(knGo, )]y = lim k,bk, "
n—Y

is well-defined, since if m(b) € N is the least such that G,y < Cg(b) then for all n > m(b)
the conjugate k:nbkgl depends only on the coset k,G, of G,. Letting (gmGm)men =
®[(knGn)]y, we have {n € N | kG C gp@p)Gmp) } € V and hence Ty[(knGn, zn)]y =
gm(b)bg;ib) = limyy 00 gmbg,,!. In particular, the map T} is P-measurable. We have
Ty(gz) = gTp(2)g~" for all g € G and z € Zy. The map Ty : Zy — Zy given by Ty (z) =
a(Ty(z))z is an automorphism of (Zy,ny) which commutes with «(g) for all g € G. Then
the map p is T, -invariant, and in particular every set in P is T} -invariant.

For each b € B and [(k,Gpn,xn)]y € Zy, since the set {n € N | Tp[(k,Gn,zn)]y =
knbk, '} belongs to V, the transformation Ty is given by

T2 [(kn G, o)y = [(kn G, B (vn (knbky b knGo))zn)]y.
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For all large enough n, we have G,, < Cg(b), and for such n, since B < G,,, we have
O (knbky b knGr) = vy (K, €Gr)vn (b, €Gp)vp (kn, eGy ) ~1 = b. Since this holds for all large

n, we obtain
T;[(kjnGnaxn)]V = [(knGna/Bn(b)xn)]V
Also, for all n with G,, < Cg(b), for each hB € G, /B we have b-'hB = hB and
wy (b, b~ hB) = b, so that (3,(b)xy,)(hB) = B(b)x,(hB), and therefore
7 (T [(knGr, n)ly) = lim (8, (b)z,)(eB) = lim B(b)x,(eB)
n—V n—V
= BO)7 ([(knGr,zn)lv).

Let (b;)ien be a sequence of distinct elements in B with (b;) converging weakly to the
identity element of Y. Then for each Borel subset E of Y, we have uy (5(b;)E A E) — 0
as i — 00, so it follows from (6.1) that ny (T}, (7Y E) A YE)) = 0 as i — oco.

Thus both P and )Y belong to the sigma subalgebra D of By consisting of all D € By
such that lim;_ oo m;(TI;’i D A D) = 0. Since each Tj, commutes with a(G), the sigma

(6.1)

algebra D is a(G)-invariant.

Step 4. Ensuring essential freeness for the action of A on the upcoming sep-
arable quotient: We pick a € A\ {e} and let F, C Xy be the fixed point set of a in
Xy. Then we have Xy \ F, = [(Cqn)nlv, where C, ,, = { kG, € G/G,, | akG,, # kG, }.
We can write the set C,, as a union of three pairwise disjoint sets Cy 1.0, Can,1, Can,2
such that aCp i N Copi = 0 (indeed let C, 0 be a maximal subset of Cg,, such that
aCon,0 N Cano =0 and set Cyp1 = aCypnoN Cop and Cypn2 = Con \ (CanoUCani)).
Each of the sets D,; = (® o p) 1 ([(Cam,i)n]v) is Tp-invariant for all b € B and hence
belongs to D. For ¢ € a%, we define Fo . as the set of all [(k,Gp)ly € F, for which
lim,, sy 85 (knGrn) " tas, (k,Gp) = ¢, so that F, . is a basic measurable subset of Xy, corre-
sponding to the sequence of sets { kG,, € G/G,, | $,(kGp)as,(kG,)™" = ¢} with n € N.
The sets F, . with c € a® partition Fy,. Each of the sets p_l(Fa,c) is T, -invariant for all
b € B and hence belongs to D.

Step 5. Defining the separable quotient of the ultraproduct: Since D is G-
invariant and both the algebras P and ) are countably generated and G is countable, we
can find a countably generated G-invariant sigma subalgebra Dy of D which contains both
P and Y as well as all of the sets D, ; and p~1(F, ) for a € A\{e}, ¢ € a® and i € {0,1,2}.
Then we may find a point realization G ~ (Wy, o) for the action of G on the measure
algebra Dy, along with a G-equivariant measure-preserving map ¢: (Zy,ny) — (Wo, o)
which is a point realization of the measure algebra inclusion Dy — By. For each b € B,
since the map T} is P-measurable and P C Dy, T3, descends via ¢ to a map S,: Wy — e,
which satisfies Sj(gw) = gSp(w)g~! for all g € G and w € Wy. The map Sp: Wy — Wy
given by Sy (w) = Sp(w)w is an automorphism of (W, po) with ¢ o Ty = S; o . Since
Y C Dy is invariant under the group {7, | b € B}, the map 7 descends to a measure-
preserving map mo: (Wo, o) — (Y, py) with mo(Spw) = B(b)mo(w) for all b € B. It follows
that the group { Sy | b € B} acts essentially freely on W, since §(B) acts freely on Y.



44 YOSHIKATA KIDA AND ROBIN TUCKER-DROB

Since Dy C D, it follows that (S, )ien is a central sequence in the full group of the action
G ~ (Wpy, po) with Spw # w for almost every w € Wy. However, it is not clear whether
this action of G is essentially free, so we take an essentially free action G/A ~ (W1, 1)
and let G ~ (Wy x Wi, po X p1) be the product action, where G acts on Wj via the
projection onto G/A. Then each Sy: Wy — bC lifts to the map Sp: Wy x Wy — b% via the
projection from Wy x W, onto Wy, and it satisfies Sy(gw) = gSy(w)g~" for all g € G and
w € Wy x Wy. The map S§ is given by S¢(wo,w1) = Sp(wo)(wo,w1) = (S¢(wp),wr) and
hence an automorphism of Wy x W7, and the group {5‘1‘; | b € B} acts essentially freely
on Wy x Wy. Since A acts trivially on Wy, it follows that (Sbi)ieN is a central sequence in
the full group of the action G ~ (Wy x W1, g X p1), and it satisfies Sgiw = w for almost
every w € Wy x Wi.

Thus we will be done once we show that the action G ~ (Wy x W1, g X p1) is essentially
free. For this, it is enough to show that the action A ~ (W, po) is essentially free.

Step 6. Verifying that the action A ~ (Wy, po) is essentially free: Fix a € A\ {e}.
Suppose that there is some ¢ € a© for which the set F, . has positive measure. We first
show that for almost every z € p~1(F,.), m(a(a)z) and 7(z) are distinct. Since F, . is a
subset of Fy, if [(k,Gp)ly € Fyc then for V-almost every n € N, we have v, (a, k,Gp) =
5n(knGr)tas,(k,G,) = ¢ and hence ¢ € G,,. Since the sequence (G),) is decreasing, this
implies ¢ € Gy, for all n € N, and hence the element 3(w,(c,c ' B)) € Y is well-defined for
all n. Let y. denote the limit along V of this sequence, y. = lim,, .y B(w,(c,c 1 B)) € Y.
For each 2z = [(knGh,zn)ly € p~1(Fu), we have a(a)z = [(kn,Gn, Bn(c)zn)]y, and hence

m(a(a)z) = ii_rgr]l;ﬂ(wn(c, ¢ IB))z,(¢7IB) = ycgi_{r]l}xn(c_lB) and
(6.2) .
(z) = igr]l)xn(eB).

To see these are almost surely distinct, we consider the two possibilities of whether ¢ € B
or ¢ € B. If ¢ € B then x,(c"!B) = z,(eB) and y. = lim, .y B(w,(c, B)) = B(c) # e,
and hence 7(a(a)z) = B(c)n(z) # m(z), as was to be shown. Suppose now that ¢ ¢ B.
By [BTD, Proposition 8.4], the map n.: (Zy,ny) — (Y, py) defined by m.[(knGp, zn)]y =
yelim, sy 2, (c"'B) is measurable and measure-preserving, and for each Borel subset F
of Y, we have ny(m. 1 (E) A (71 (E))nly) = 0, where the map mep: (Zn, 1) — (Y, py)
is defined by ¢, (kGp,x) = yex(c 1B). Since ¢ € B, the random variables 7, Ten are
independent for every n. Therefore the random variables 7, 7. are also independent. Since
wy is atomless, it follows that 7(z) # 7.(2) for almost every z € Zy. By (6.2), for almost
every z € p~}(Fy,c), we thus have m(a(a)z) = m.(2) # 7(2), as was to be shown.

It now follows that 7(a(a)z) # m(2) for almost every z € p~1(F,). Since 7 = my o and
since each of the sets p~!(F,) belongs to Dy, it follows that my(aw) # mo(w) and hence
aw # w for almost every w € ¢(p~(F,)). In addition, since each of the sets D, ; for
i € {0,1,2} belongs to Dy, it follows that aw # w for almost every w € Wy \ ¢(p~1(Fy)).
This shows that the action of A on Wy is essentially free.
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APPENDIX A. A KAZHDAN GROUP WITH PRESCRIBED CENTER

Given a countable abelian group A, we construct a countable group G with property
(T) such that the center of G is isomorphic to A. We rely on the construction of Cornulier
[C] as well as in Examples 3.6 and 3.7. Let R := Z[t] be the ring of polynomials over Z
in one indeterminate ¢. In the course of the construction, we will use property (T) of the
group SL3(R) (e.g., [EJZ, Theorem 1.1] and [M, Theorem 1.8]) and property (T) of the
pair (SL3(R) x R3, R?) ([Ka, Theorem 1.9, a)]). Note that the statements in those papers
are given in terms of the group generated by elementary matrices in SL3(R), which is in
fact equal to SL3(R) by [Su, Corollary 6.6].

Let H be the subgroup of SLs(R) consisting of matrices of the form

(A1) 9=

o O =
o = <
S

where h € SL3(R), c € R, and u and v are row and column vectors of R?, respectively. Let
C be the center of H, which consists of matrices g such that h = I, u = 0 and v = 0. Then
H/C is isomorphic to the semi-direct product I' := SL3(R) x (R x R3), where SL3(R) acts
on R3 x R3 by h(u,v) = (uh™!, hv) for h € SL3(R), a row vector v € R3, and a column
vector v € R3. In fact, the map sending a matrix g € H of the form (A.1) to the element
(h, (u,h~tv)) of T induces an isomorphism.

The group T" has property (T). To see this, recall the following fact: If G is a countable
group and N is a normal subgroup of G such that the group G/N and the pair (G, N)
have property (T), then G has property (T) ([BHV, Remark 1.7.7]). Property (T) of the
group SL3(R) and the pair (SL3(R) x R3, R?) thus implies that SL3(R) x R3 has property
(T). The group I is written as the semi-direct product (SL3(R) x R?) x R3, and the above
fact again implies that I has property (T).

Hence the group H/C has property (T). The commutator subgroup [H, H] contains C,
and thus the abelianization H/[H, H] is finite. It follows from [BHV, Theorem 1.7.11] that
H has property (T).

We obtained the group H with property (T) whose center C' is isomorphic to R and
to the direct sum @y Z. Let A be an arbitrary countable abelian group. There exists a
surjection from C' onto A. Let C; be the kernel of this surjection and set H; = H/C.
The group H; has property (T) and has the central subgroup C/C; isomorphic to A. In
fact, the center of H; is exactly C/C} because H/C ~ T has trivial center.
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