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Abstract 
Studies of cognition in the wild are crucial for understanding cognition in natural contexts, 

but studies of animal cognition in captive populations, living in conditions resembling those of 
their natural environment, complement this approach—and provide new insights into the evolution 
of cognition. To show how these approaches can work in tandem, we use data from recent 
comparisons on cognition across primate species in similar settings. We discuss how this work can 
disentangle stable species-specific differences from local environmental effects, distinguish 
specific cognitive mechanisms supporting behavior, and reveal hidden variables that shape 
cognition in captivity and the wild. Integration of research in both captive and wild settings will 
therefore provide holistic understanding into the origins and function of different cognitive 
processes.  
 
Highlights  
 

● Studies of cognition in appropriate, similar captive settings complement wild studies  
● Captive work can match environments, use novel stimuli, and control for motivation 
● Integrating both approaches allows for stronger inferences about cognitive evolution 
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Introduction  
Why do some species use tools, have better memory, or engage in complex coalitions 

whereas others do not? Animals show variation in their behavior in part because of variation in the 
underlying cognitive mechanisms that produce these behaviors. As cognitive traits are shaped by 
natural selection, there is an increasing focus on understanding real-world social and ecological 
problems shaping the structure of animal minds. Here we argue that comparisons of animal 
populations living in captive contexts that are well matched but ecologically-relevant, in that they 
share some core features of the natural social and ecological environments of each species, can 
provide crucial insights into core questions about the evolution of cognition that complement 
studies of natural populations in the wild.  

Studies of cognition in the wild have recently emerged an important shift from approaches 
in comparative cognition that traditionally focused on animals in captivity. Field experiments are 
essential to understand how animals respond to and use information from their natural 
environment, to test the consequences of cognitive abilities on animals’ survival and reproductive 
success, and to expand the study of cognition to more diverse species that are underrepresented or 
absent in captive settings [1-2]. This work has also spurred important discussions about how we 
should interpret and generalize experimental findings from captive populations. [3]. However, it’s 
also increasingly clear that hybrid approaches that bridge both captive and field studies are crucial 
[3-5]. Our goal here is to detail how captive studies can inform our knowledge of cognition in the 
wild by addressing key questions about the mechanisms supporting behavior that are difficult or 
impossible to assess in wild contexts. 

Understanding the evolution of cognition requires two main components. First, this work 
necessitates experimental studies to infer underlying cognitive mechanisms. As cognitive abilities 
are mechanisms that underpin behavior, they cannot be directly observed: behavior and cognition 
do not have a ‘one-to-one’ mapping, as many possible cognitive mechanisms could produce a 
particular behavior at a particular point in time. Rather, cognitive mechanisms must be inferred by 
examining patterns of behavior across contexts, and carefully ruling out alternative explanations 
with systematic controls [5]. Thus, experiments are a primary way to establish causality and not 
mere correlation [5], including in field contexts [1,3,6]. Second, a key to understanding the 
evolution of cognition in the wild is pinpointing the distribution of cognitive traits across different 
species. In particular, the comparative method examines the traits of different species in relation 
to the ecological or social context of that species, an important technique for evolutionary 
inferences [7]. In the case of cognition, studies testing multiple species can then link species 
differences in cognitive abilities to specific socio-ecological characteristics such as feeding 
ecology or social structure [7-8].   

Given this, studies of animal cognition in captive populations such as in zoos or sanctuaries 
can also provide insights into the distribution of cognitive abilities across species that complement 
studies in the wild. In particular, matched experimental comparisons can (1) disentangle 
differences in cognition that are confounded by different environments in wild populations; (2) 
pinpoint specific cognitive mechanisms by presenting animals with novel situations they would 
not typically experience in the wild, and (3) directly account for motivational effects on cognition. 
By ensuring that different species are on an ‘equal playing field’ when assessing their cognitive 
abilities, studies of captive populations can help understand whether and how species differ in their 
cognition. This is not to say that patterns of cognition in captive environments are necessarily 
identical to those in the wild, as captive environments do not need to be identical to be informative. 
Rather, comparisons of captive animals living in species-appropriate—but matched—
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environments can provide insights that studies in the wild alone cannot. Here, we use data from 
recent work on foraging and social cognition across primate species in captive or semi-free-ranging 
settings to highlight how such studies complement field studies and provide a holistic 
understanding of cognitive processes (see Figure 1). 

 

 
Figure 1. Integrating studies of captive and wild populations to understand the evolution of 
cognition. Studies of captive animals can complement research in the wild by answering questions 
that are difficult (or impossible) to address in the wild alone.  
 

Example 1: Disentangling environmental effects from biological dispositions 
Theories of cognitive evolution point to how social or ecological context may drive the 

evolution of more sophisticated cognitive abilities [9-11]. Species living in more complex social 
groups in their wild environments are hypothesized to have richer social cognitive abilities, 
whereas species facing more complex ecologies might have more complex spatial abilities [8-11]. 
While these proposals often focus on the evolution of cognition as a species-typical trait, an 
alternative hypothesis is that individuals who experience different habitats in the wild simply 
develop different skills. That is, wild animals likely acquire different cognitive skills in direct 
response to their individual experiences in different habitats, so apparent species differences may 
just reflect that these individuals live in different places rather than that they have different 
cognitive skills per se. Studies of cognition in well-equated captive contexts can explicitly test this 
experience-based alternative, and assess whether species differences reflect more stable biological 
characters that arise more independently of local contexts.  

A relevant example comes from comparative studies of primate spatial memory. 
Observational and experimental studies of spatial memory in wild primates have provided crucial 
information on how primates recall and navigate resources [12-16]. Yet different wild primate 
populations obviously eat different food and experience different habitats, so any differences 
between populations may just reflect their individual experiences. Captive studies can address this 
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possibility. For instance, in a study of four lemur species living at the Duke Lemur Center, the 
most frugivorous ruffed lemurs outperformed the others on several indices of spatial memory, 
especially compared to the folivorous sifakas [17]. While these species live in different habitats 
and are adapted to eat distinct foods in the wild, individuals in this study experienced similar 
physical environments and were all provisioned. Along the same lines, wild chimpanzees and 
bonobos show important differences in habitat and diet [18], so wild apes might show differences 
in spatial memory due to these local experiences. Yet semi-free-ranging, provisioned chimpanzees 
living in an African sanctuary exhibited more accurate memory than bonobos in a similar context 
[19-20**], indicating that memory differences arise even when individuals from these species 
develop in comparable environments. The degree of wild frugivory also predicts how captive-born 
populations of macaques and capuchins living in the same research center navigate in a naturalistic 
foraging task [21*], showing that systematic differences in memory can be detected in species who 
semi-free-range in equivalent environments. 

Similar patterns emerge for species differences in decision-making, including choices 
between options that differ in reward variance (risky choices) and timing (intertemporal choices). 
In the wild, the same differences in ecology and habitat that may shape spatial memory also can 
impact other foraging patterns. For example, wild chimpanzees engage in more temporally-costly 
extractive foraging, face longer search times, experience more seasonal variation, and engage in 
more frequent risky hunting behaviors than do bonobos [18]. These different experiences could 
plausibly shape individual decision preferences. Yet matched comparisons between chimpanzees 
and bonobos living in comparable zoo and sanctuary environments—where they do not hunt and 
have similar access to tools—reveal that chimpanzees are more patient and more risk-seeking than 
bonobos [22-26]. Other work shows that species that feed on variable, risky, or costly food 
resources in the wild show this same pattern in captive studies: capuchin monkeys are also more 
patient and risk-seeking, similar to chimpanzees but distinct from more closely-related monkeys 
[27-28]. This shows how matched comparisons can also shed new light on convergent evolution 
[29]. Together, this indicates that primate species experiencing similar environments can 
nonetheless exhibit significant variation in cognition that mirror their species-typical wild ecology. 
 
Example 2: Distinguishing specific cognitive mechanisms 
         A foundational idea within comparative cognition is that species have evolved different 
social cognitive abilities to respond to the social challenges that they experience in the wild [9-
10]. Field experiments have provided key insights into the evolution of social cognition, including 
communication, social learning, and aspects of theory of mind [30-33]. Yet, by only observing 
individuals’ behavior in the wild, it is challenging to differentiate between different possible 
cognitive processes versus ‘lower-level’ processes. This is particularly the case in the social 
domain, as there are many examples of lower-level processes (such as simple learned behavioral 
rules) producing superficially-similar social behaviors [34-35]. Captive studies are therefore a 
critical complement to wild studies, enabling researchers to make inferences about the cognitive 
underpinnings of social differences across species.  

First, captive studies complement field experiments by examining how animals respond to 
novel situations [36-41*]. While an important strength of field studies is their grounding in 
ecologically-relevant interactions, this can also limit inferences that require novel control 
conditions to rule out lower-level explanations. For example, studies in captivity have shown that 
both capuchins and chimpanzees follow others’ gaze (chimpanzees; 36; capuchins; 42), so 
observations of their behavior in the wild may suggest similar social cognitive abilities. Yet 
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matched comparisons in captivity reveal that while chimpanzees have a rich understanding of 
other’s visual perspective, capuchins seem to use simpler behavioral rules to accomplish the same 
ends [37-38]. Similarly, work from captive and semi-free-ranging contexts shows that rhesus 
macaques [39] and chimpanzees [40], but not ring-tailed lemurs [43], are sensitive to what other 
individuals can hear. In these experiments, the key measure is whether animals preferentially steal 
food from a novel silent container versus a noisy one—situations that do not naturally occur in the 
wild but can provide important context for interpreting wild behaviors. For example, wild 
observations have suggested that females of some species will suppress copulation calls when they 
are ‘secretly’ mating with a subdominant male, such that a nearby dominant remains unaware [9]. 
Females might be sensitive to what the dominant male can hear, or they might simply learn through 
prior trial-and-error that producing copulation calls in this situation results in aggression. Captive 
comparisons on auditory perspective-taking can differentiate between these possibilities. 

Studies of social cognition in matched captive contexts can also match the identity and 
behavior of social partners across different species by using human actors [36,41*,44]. Wild 
studies necessarily involve conspecific social partners, and while understanding how animals 
respond to conspecifics is clearly crucial for inferring how animals behave in real-world situations, 
human partners can allow for new inferences by exactly equating the partner’s behavior to see how 
different species respond. While responses to human actors do not necessarily generalize to 
conspecifics, in some species such as chimpanzees and macaques there is evidence that primates 
respond to humans and conspecifics partners similarly [37, 45-47]. More importantly, effective 
use of human demonstrators can eliminate important confounds due to the presence of an existing 
relationship between individuals or differences in the partner behaviors across species. For 
example, studies of conspecific gaze following in macaques show that interpersonal factors such 
as rank and friendship [48] can influence gaze following rates. The use of a human demonstrator 
can eliminate these confounds. In comparisons involving identical social stimuli in populations 
living in similar semi-free ranging contexts, tolerant species may show different patterns than 
despotic species in gaze following [44] and comparisons of cooperative communication [49], but 
show similar knowledge attribution abilities [41*]. Along similar lines, sanctuary-living bonobos 
are more able to share food than are chimpanzees in a similar context when faced with a situation 
where they could compete with conspecifics [50-51], yet both species respond similarly when 
facing a human competitor with a matched behavioral repertoire [25]. Together these show that 
wild behavioral patterns may result from the interplay of both cognitive dispositions and responses 
to particular partner’s social behaviors. 

 
Example 3: Assessing motivational effects on cognition 

Studies in captivity can also examine the impact of internal factors like motivation on 
cognition. It is clear that motivational state can impact individual’s engagement with novel 
problems, and consequently apparent variation in cognitive skills can sometimes reflect 
motivational differences. For example, sanctuary-living chimpanzees and orangutans that were 
bolder and approached novel situations more quickly also performed better in cognitive 
assessments of physical knowledge, suggesting that responses to novelty can impact cognitive 
performance [52]. While this is a well-recognized problem [3, 53], it is extremely challenging to 
address in wild contexts. For example, individuals in the wild could be less motivated to participate 
in cognitive studies for a variety of reasons, such as the presence of other conspecifics or the 
availability of competing activities at the moment of testing. Captive studies can therefore 
complement wild studies to address this challenge. 
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First, comparative studies in captivity can directly account for species’ motivational 
differences by measuring how individuals respond to novel situations and how these responses 
vary across species. For example, when sanctuary-living great apes were presented with different 
novel foods, objects, and people, chimpanzees were bolder to approach than bonobos [54]—a 
difference that could be accounted for in subsequent cognitive comparisons [55]. In fact, in a field 
experiment measuring apes’ response to novel camera traps, bonobos exhibited more neophobic 
behaviors than chimpanzees [56*], suggesting this temperamental difference may also influence 
their wild responses. Captive studies can further test exactly how ontogenetic experiences shape 
neophobia. For instance, orangutans that have contact with humans early in life show greater 
curiosity than wild-born individuals [57*]. Likewise, captive vervet monkeys approached novel 
stimuli more than wild conspecifics [58]. One possible explanation for these patterns is that in 
captive environments animals have more free time and energy to explore novel situations without 
risk [57*,59], so captive studies can reveal hidden aspects of species’ psychological phenotypes 
that shape wild behavior.  

Studies of tool use provide an illustrative example. On the one hand, studies of tool use in 
captivity have provided many results consistent with wild studies, such as showing that 
chimpanzees, orangutans, and capuchin monkeys are consummate tool users [59-60]. On the other 
hand, patterns of tool use can also differ between captive and wild populations. For example, 
bonobos—who do not engage in extractive foraging tool use in the wild—can be quite skillful tool 
users in captivity [59]. Other primate species that are considered essentially non-tool-users in the 
wild, such as baboons, tamarins, and vervet monkeys, also demonstrate understanding of tool 
properties in captive conditions [59,61], highlighting how experience and opportunity can spur the 
emergence of hidden cognitive abilities. That is, captive individuals can often outperform wild 
ones in tests of tool knowledge and skillfulness [59]. This may be because captive animals have 
more time to devote to tool use, or it may be because of differences in motivation, interest, and 
exposure to tools [59,62**]. This suggests that factors like motivation and experience, rather than 
cognition or knowledge alone, may shape differences in the tool use of wild animals, and provide 
new data on inferring the mechanisms underpinning these wild patterns.  
 
Conclusion 

Research in species-appropriate but matched captive settings can provide a complementary 
and powerful tool for understanding animals’ cognition in the wild. First, matched comparisons of 
species living in captive contexts have revealed that species’ differences in some cognitive 
abilities, like spatial memory and decision-making, persist even under similar environmental 
conditions—suggesting these reflect more stable biological dispositions. Secondly, comparative 
work presenting animals with situations never experienced in the wild, including matched human 
social partners, have revealed that some species exhibit a more sophisticated understanding of 
other individuals’ mental states than others, despite showing similar behavioral patterns. Finally, 
captive environments where individuals have more free time and energy to explore can boost 
individuals’ motivation to engage with novel situations and, therefore, reveal latent cognitive skills 
and behaviors that are not necessarily apparent in their wild behavior. Thus, integration of research 
in captive and wild settings is crucial to understand species’ cognitive flexibility across contexts 
and how cognition has evolved more generally. 
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