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The cohomology of semi-infinite
Deligne—Lusztig varieties

By Charlotte Chan at Princeton

Abstract. We prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite
Deligne—Lusztig varieties attached to division algebras over local fields. We also prove the
two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-
infinite Deligne—Lusztig varieties are ind-schemes comprised of limits of certain finite-type
schemes X},. Boyarchenko’s two conjectures are on the maximality of X} and on the behavior
of the torus-eigenspaces of their cohomology. Both of these conjectures were known in full
generality only for division algebras with Hasse invariant 1/n in the case & = 2 (the “lowest
level”) by the work of Boyarchenko—Weinstein on the cohomology of a special affinoid in the
Lubin-Tate tower. We prove that the number of rational points of X}, attains its Weil-Deligne
bound, so that the cohomology of X}, is pure in a very strong sense. We prove that the torus-
eigenspaces of the cohomology group Hg (Xp) are irreducible representations and are sup-
ported in exactly one cohomological degree. Finally, we give a complete description of the
homology groups of the semi-infinite Deligne—Lusztig varieties attached to any division
algebra, thus giving a geometric realization of a large class of supercuspidal representations
of these groups. Moreover, the correspondence 6 > HE(X})[0] agrees with local Langlands
and Jacquet-Langlands correspondences. The techniques developed in this paper should be
useful in studying these constructions for p-adic groups in general.
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1. Introduction

The seminal work of Deligne and Lusztig on the representations of finite reductive groups
[9] has influenced an industry studying parallel constructions in the same theme. Classically,
one begins with a reductive group G over [, together with a maximal torus T C G, and writ-
ing G := G(Fq) T := 'IF(]Fq) one con51ders the G-representations arising from the torus-
eigenspaces H/ (X 7cG.Qy)[6] of the cohomology of the Deligne—Lusztig variety X, 7. The
Deligne—Lusztig variety is a T-torsor over a subvariety of the flag variety, and can be defined
to be

Xrcg=(UNF'O)\igeG: F(g)g' €U},

where T =T (IF q) G = G(F, q) U C G isthe unipotent radical of a Borel BcG containing T,
and F: G — G is the group automorphism induced by the Frobenius element in Gal(]Fq /Fq).

Following this philosophy, it is natural to ask whether a similar construction can be
used to study representations of reductive groups over finite rings or over local fields. Both
of these set-ups have been studied by Lusztig — for reductive groups over finite rings, see
for example [20], and for reductive groups over local fields, see [19]. In the present paper, we
study the latter situation using the construction proposed by Lusztig in [19]. We recall Lusztig’s
construction now. The analogy with the classical Deligne—Lusztig varieties X; Tcg Will be ap-
parent.

For a reductive group G over a non-Archimedean local field K with residue field [, le
T c G be an elhptlc unramified maximal torus over K, and write T := T (K ) G =GK )
and T = T(K y, G = (G(Knr) Assume that there exists a Borel subgroup B C G defined
over K™ and containing T,andlet U beits unipotent radlcal Let F: G — G denote the group
automorphism induced by the Frobenius element in Gal(K "/ K). Lusztig’s construction, which
we call the semi-infinite Deligne—Lusztig set, is the quotient

=UNF'U)\geG:F(9)g' €U}

n [19], Lusztig suggests that X should have the structure of an infinite-dimensional variety
over Fq and that for a fixed character 0: T — @Z’ the subspace H; (f ,Q)[0] wherein T acts
by 6 should be zero for large i and be concentrated in a single cohomological degree if 6
is in general position. The long-term goal is to give a uniform construction of supercuspidal
representations of p-adic groups by realizing them in the cohomology of X.

We make this precise and realize this goal in the case when G = D* for an n2-dimen-
sional division algebra D = Dy, over K and T' = L*, where L is the degree-n @ramiﬁed
extension of K. Following Boyarchenko [2], we define an ind-scheme structure on X together
with homology groups H; ()7 ,Qy) that yield smooth representations of 7 x G. We now state
the main theorem, which gives a complete description of the subspaces H; (f . Q)I[6].

Main Theorem 1. Let 6: L* — @Z be any smooth character.

(a) There exists an rg € Z>q such that
Hi(X, Q0] £0 < i =rq.

Furthermore, rg can be determined in terms of the Howe factorization of 6, which
measures the extent to which 0 arises from characters that factor through norm maps.
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(b) For any very regular element x € Of C D™,

Tr(x: Hy(X.QIO) = (=D - > 67(x).
y€Gal(L/K)
(¢) If 0 has trivial Gal(L/K)-stabilizer, then the D -representation Hy, ()? Qy)0] is irre-
ducible.

When 6 has trivial Gal(L/K)-stabilizer, there is a canonical way of assigning a corre-
sponding irreducible representation of the Weil group Wx. In this setting, by work of Henniart
[13, 14] (see [7] for a discussion), Main Theorem 1 is enough to characterize the correspon-
dence 0 — H,, (X, Qy)[6] in terms of the local Langlands and Jacquet-Langlands correspon-
dences:

Corollary. Let € be any character of K™ with ker(e) = Nmy /g (L>). Let X denote the
set of smooth characters L™ — @z with trivial Gal(L/ K)-stabilizer and let Ag (D) denote
the set of isomorphism classes of irreducible D* -representations p such that p == p ® (€ o Nrd),
where Nrd is the reduced norm of D*. The correspondence 6 — H,, (f , @5) [0] induces a bi-
Jection

X/Gal(L/K) = Ag(D™)
which agrees with the local Langlands and Jacquet—Langlands correspondences. In particular,
the representations in A (D™) are exactly the irreducible representations of D™ appearing in
the cohomology of X.

The proof of Main Theorem 1 splits into two parts:

(1) Prove that if9|U1;‘, = 1, where UIi’ =14 7O, then
Hi (X, Qu)[0] = Indg o (“HZ"™ (X, Qo)["),

where X}, is a finite-type variety of pure dimension d and y := 6|, 1. Here, K* is the
center of D*, the ring Op is the unique maximal order of D, and the cohomology group
chd—i (Xn.Qg)[x] — which a priori is a representation of a subquotient of Op —is
extended to a representation of K - @ in a way uniquely determined by the character 6.

(2) For any y:U Ll /U z’ — @;, characterize H! (X}, Qy)[x] as a representation of a certain
finite unipotent group Uy x (Fgn).

Part (1) was proved by Boyarchenko in [2], where he made two conjectures about Part (2) (see
[2, Conjectures 5.16 and 5.18]). In light of this, the obstruction to understanding H; (X, Qp)1[6]
reduces to the study of H!(Xp, Qy)[x]. For the reader’s convenience, we recall the two con-
jectures on these cohomology groups here.

Conjecture A (Boyarchenko). The finite-type [Fyn-scheme X}, is a maximal variety in
the sense of Boyarchenko—Weinstein [4]. Equivalently, we have H/ (X}, Q) = O unless i or
n is even, and the geometric Frobenius Fry» acts on H cl (Xp.Qy) by the scalar (—1)" q%.

Conjecture B (Boyarchenko). Given a character y: U Ll/ Uz’ — @?, there exists an
ry > 0 such that H.(Xp, Qg)[x] = 0 for all i # r,. Moreover, H." (Xp,, Qp)[x] is an irre-
ducible representation of Uy x (IF4n).
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Remark 1.0.1. A finite-type Fp-scheme S is a maximal variety if S(Fg) attains its
Weil-Deligne bound. More explicitly, by the Grothendieck—Lefschetz trace formula and
Deligne’s work on the Weil conjectures [8, Theorem 3.3.1],

#S(Fg) = Y (—1) Tr(Fro. HL(S.Qy))
i€Z
<> 0% dim HI(S. Qo).
i€Z

Observe that this bound is realized exactly when Frg acts by the scalar (-1'o 5,

We describe the progress on these two conjectures prior to the present work. Under the
assumption k = 1, Conjectures A and B were proved in the &7 = 2 case by Boyarchenko and
Weinstein in [4], where they show that the perfection of X5 is the special fiber of a particular
open affinoid V in the Lubin—Tate tower, and then prove that the cohomology of V realizes
certain cases of the local Langlands and Jacquet-Langlands correspondences by calculating
Hl(Xa, Qy)[x]. For h > 2, the results are more sparse. Nearly nothing was known about Con-
jecture A, and the only work on Conjecture B required the assumption that y is a primitive
character (i.e., the restriction of y to U If’_l /U Lh = F4n has trivial Gal(IF4» /I, )-stabilizer). For
primitive y, Conjecture B was proved: in [2] fork = 1, h = 3, n = 2, and char K > 0; in [5]
for k, h arbitrary, n = 2, and char K > 0; and in [6] for k, h, n arbitrary, and char K > 0. In
these works, it was also shown that Fry» acts on H, é (X5, Qp)[x] in the predicted way for x
primitive, and this is the extent to which Conjecture A was known for & > 2.

We remark that the restriction to the class of primitive characters also appears in various
other works, for example [20,21], where they are called regular characters. The present paper
is the first paper to study in detail cohomology groups of this type for the class of all characters.

The approach of this paper is of a somewhat different nature to the earlier work towards
Boyarchenko’s conjectures. Before this paper, the idea was to define a unipotent group scheme
U;:”,g over [Fgn such that U, :lg (IFgn) is a subquotient of @y and stabilizes an [Fyn-subscheme
X, CcU ;: ”,f via the natural multiplication action. This approach has the disadvantage that U };l]f
does not arise naturally from the set-up and also does not have a mixed characteristic analogue.
(Only when & = 2 does the unipotent group scheme work in mixed characteristic, and [4]
makes use of this.) In this paper we work with a unipotent group scheme Uy, ;. over [, that
arises naturally from the set-up and has the feature that U, i (Fy) is a subquotient of @5 and
stabilizes an IFyn-subscheme X}, C Uy, x via the natural multiplication action. There is a subtle
issue that X}, is not defined over Iy, but this can be dealt with by relating the cohomology of
X}, to the cohomology of the union of g-Frobenius translates of X in Uy, .

Main Theorem 2. The two conjectures of Boyarchenko are true.

The proof of the two conjectures of Boyarchenko comprises most of the present paper. We
expect that the techniques we develop and use to prove these conjectures should be applicable
to studying semi-infinite Deligne—Lusztig varieties for more general reductive groups. Indeed,
since Uy x (Fq) is a subquotient of the standard Iwahori subgroup of GL, (I?“r), we expect
that these ideas should apply to Deligne—Lusztig varieties associated to more general parahoric
subgroups of p-adic groups. In forthcoming work with A. Ivanov, we investigate this program
for any inner form G of GL, (K).
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Remark 1.0.2. The term “semi-infinite Deligne—Lusztig variety” is intended to be rem-
iniscent of the following analogies:

Deligne-Lusztig variety : flag variety,
affine Deligne—Lusztig variety : affine flag variety,

semi-infinite Deligne—Lusztig variety : semi-infinite flag variety.

Here, we use the term “semi-infinite” in the sense of Feigin—Frenkel [12]. We also remark that
by recent work joint with A. Ivanov [7], there is a close relationship between semi-infinite
Deligne-Lusztig varieties and affine Deligne—Lusztig varieties of higher level in the sense
of [16].

1.1. Outline of the paper. Fix coprime integers k,n > 1. In Section 2, we define semi-
infinite Deligne—Lusztig sets and recall the (ind-pro-)scheme structure on the set X attached to
a division algebra. This naturally leads us to study a family of finite type [F;»-schemes X}, that
arise as subschemes of a unipotent group scheme Uy, ;. over Fy. There is a natural subgroup
scheme Ty,  C Uy,  analogous to T C G as in the introduction, and the natural left- and right-
multiplication actions of Ty, x (Fy) and Uy i (Fy) on Uy i stabilize Xj. In Remark 2.2.5, we
discuss how Uy, i differs from the unipotent group schemes U ;:kq appearing in [2,4-6].

We also define the notion of the Howe factorization of a character of Ty,  (IF;) in the
sense of [15]. The Howe factorization gives rise to a pair of sequences ({m; }, {h; }) from which
one can define a stratification of an indexing set 4™ (see Section 3). One of the most important
features of # T is that it is normed and satisfies Lemma 3.2.6. As a quick application, we prove
in Section 3.3 that X}, is smooth, affine, and has dimension (n — 1)(h — 1).

In Section 4, we prove several general results on the cohomology of constructible
Q-sheaves coming from pullbacks of local systems. Proposition 4.1.1 is a generalization of
[2, Proposition 2.3] that allows one to calculate spaces of homomorphisms between represen-
tations of G(IF;) and cohomology groups of X C G even if X is not defined over I,. Proposi-
tion 4.2.1 relates the cohomology of a scheme S to the cohomology of a subscheme of smaller
dimension, and Proposition 4.2.2 is a particular specialization of this proposition which will be
one of the main structural techniques used in the proof of Theorem 5.1.1. We remark that one
can view [2, Proposition 2.10], [6, Propositions 3.4, 3.5], and Proposition 4.2.2 as variations of
the same theme under the umbrella of Proposition 4.2.1.

The content of Section 5 is Theorem 5.1.1, and this is really the heart of the proof of
Conjectures A and B. In this theorem, we prove

Homy, , 5,0 (Indp G ) (), HI (X5, @) £ 0 = i =7y,
where r, can be given explicitly in terms of the Howe factorization of y. The driving idea of
the proof is to calculate certain cohomology groups by inducting along linear fibrations (using
Proposition 4.2.2) determined by the stratification of AT associated to the Howe factorization
of y.
We begin Section 6 by proving (Theorem 6.1.1) that the alternating sum

D (=) H (X, Qp)l1]

is an irreducible representation of Uy, x (IF4). This is very close to results of Lusztig [19,20] and
Stasinski [21]. This result together with Theorem 5.1.1 immediately implies Main Theorem 2,
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and in particular Conjecture B. There is a subtlety that occurs here: while it follows from Theo-
rem 5.1.1 and Theorem 6.1.1 that the cohomology groups H, é (X3, Qy)[x] are concentrated in
a single degree, it requires a nontrivial argument to show that this nonvanishing cohomological
degree is the r, from Theorem 5.1.1. This is the content of Theorem 6.2.4. In Section 6.4, we
show that r, indeed specializes to the formulas obtained in [4] and [6].

We also prove related results in the same theme. We prove a multiplicity-one statement
(Theorem 6.2.2): the association y > HX(X}, Qg)[x] defines an injection into the set of irre-
ducible representations of Uy, x (IF;). In addition, we compute the character of H (X, Qplxl
on the set of very regular elements of L (Theorem 6.2.3), which we utilize in the proof of
Theorem 6.2.4. Finally, we give an explicit formula for the zeta function of X} (Theorem 6.3.1).

In the concluding section, Section 7, we use the discussion of semi-infinite Deligne—
Lusztig varieties in Section 2.1 and the theorems of Sections 5 and 6 to prove Main Theorem 1.
We then finish the paper with a discussion of the local Langlands and Jacquet—Langlands cor-
respondences and prove the above stated Corollary to Main Theorem 1 (see Theorem 7.2.1).

The techniques of this paper should be directly applicable to studying the homology
groups of semi-infinite Deligne-Lusztig varieties attached to an arbitrary pair 7 C G, where
T is a maximal unramified torus of a reductive group G over a non-Archimedean local field.
For example, this can be done when G is any pure inner form of GL,,, and this is part of ongoing
work with A. Ivanov. See Remark 5.1.4 for a more technical discussion.

Acknowledgement. [ would like to thank Bhargav Bhatt for several helpful conversa-
tions and Alex Ivanov for helpful comments on an earlier draft. I would also like to thank the
anonymous referee for numerous observations and suggestions that have improved this paper.

2. Definitions

We fix, once and for all, an integer n > 1, a non-Archimedean local field K with finite
residue field I, of characteristic p, and a uniformizer 7 of K. Let L be the unique degree-n
unramified extension of K and let O, be its ring of integers with unique maximal ideal Py .
Write Ui’ =1+ Pf. For a division algebra D over K, we denote by Op its ring of in-
tegers (i.e., its unique maximal order) and denote by Pp the unique maximal ideal of Op.
Write Ug =1+ Pg. If D has Hasse invariant k /n € Q/Z, where (k,n) = 1, we sometimes
write D = Di/n.-

If K has characteristic p, we let W (A) = A[x] for any [F,-algebra A and if a; € A for
i >0, we write [a;];>0 to denote the element ) ,_ a;w" € W(A). If K has characteristic 0,
we let W = Wo, Xspec 0x SpecFy, where W, is the Ok -ring scheme of O g-Witt vectors
[11, Section 1.2]. Following the notation of op. cit., for an [F;-algebra A, we write the elements
of W(A) as [a;];>0 where each a; € A. As usual, we have the Frobenius and Verschiebung
morphisms

oW —> W, [ai]izo — [allizo.
V:W — W, [ai]izo = [0,a0,a1, .. ]

One also has a morphism

r-A—> W(4), a+>[a,0,..]
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for any I, -algebra A. Note that

[0,a9,a1,...] ifcharK > 0,
- lailizo = q q .
[0,a4.a7....] ifcharK = 0.

For any 7 € N, let Wy, := W/ VAW be the corresponding truncated ring scheme. For any
r € N, consider the group schemes

W =1+ V"W W,
W =14+ VI Wy, C W
These are all defined over F,.

For any integer m, define [m] to be the unique integer with 1 < [m] <n such thatm = [m]
modulo 7.

2.1. Semi-infinite Deligne-Lusztig varieties for division algebras Let G be a con-
nected reductive group over K and write G = G(K) and G = G(K "M sothat G = GF, where
F:G — G is the Frobenius map induced by the arithmetic Frobenius in Gal(K "/K). Let
T C G be an elliptic maximal torus over K and assume that there exists a Borel subgroup B
of Q defined over K™ such that T (f“r) C B(I? ) =: B. Let U denote the unipotent radical
of B.

Definition 2.1.1. The semi-infinite Deligne—Lusztig set associated to G := G(K) = GF
and T := T(K) = TF is the quotient
=UNF'O)\igeG: Fg)g™' €U},

It is clear that X is endowed with a left-multiplication action of 7" and a right-multiplication
action of G.

Remark 2.1.2. Definition 2.1.1 is due to Lusztig [19], where he defined X to be
lgeG:g ' F(g) e Uy/UNF (D)),

which has a right-multiplication action of 7" and a left-multiplication action of G. In this paper,
we follow the convention set in [2], where the quotient is taken on the other side.

The Brauer group of the local field K is isomorphic to Q/Z. Hence for any integer
1 <k < n with (k,n) = 1, there is a corresponding division algebra Dy, of dimension n?
over K. The group L* is an unramified anisotropic torus in D’ I and we can realize

L™ — D;;/n

in this framework in two ways. Set G :=GL, (I? ") and consider the automorphisms

~ o~ _ 0 I
2.1) Fi:G—G, g mle@m, mi = (nk no )

SO 0 ln
(2.2) F:G—> G, g o *og)wk, w:= ( ”0 1) ,
T
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where 1,_1 denotes the identity matrix of size (n — 1) x (n — 1) and ¢(g) is the matrix obtained
by applying the arithmetic Frobenius ¢ € Gal([? ™/ K) to each entry of g. Then fori = 1,2, the
morphism F; is a Frobenius relative to a K-rational structure and we denote the corresponding
algebraic group by G;. Consider the diagonal torus T C G and let B C G be the standard
Borel. Since F; stabilizes T it defines a K-rational structures on T and we can denote the
corresponding algebraic group by T;. Note that neither F; nor F; stabilizes B and we have

G1(K) => Ga(K), Ti(K) => Ta(K),

where the isomorphism is givenby f: g > y~!- g -y, where y = yo - diag(zw*!, ..., 7*) for

a permutation matrix yo and for some A1, ..., A, € Z. Since the image of @ in the Weyl group
has order n, we may assume that e; - Yo = e, where e is the first elementary row vector. For
i =1,2,setG; := G;(K) D T;(K) =: T;. We have G =~ G, = D;;/n and 71 = T, =~ L*.

Let X denote the semi-infinite Deligne—Lusztig set associated to G; and 77. We now
recollect how to realize X as the Fq -points of an infinite-dimensional scheme using a method
suggested by Lusztig in [19] and formalized by Boyarchenko in [2]. By [2, Corollary 4.3],
X can be identified with the set

(2.3) X:={geG: Fi(g)g ' eUnNFU),

where U~ is the unipotent radical of the opposite Borel to B. By [2, Lemma 4.4], a matrix
A € G belongs to X if and only if it has the form

2.4) A=x(ay,...,an)

al an as [257)
m*p(an) o(ay) p@) o lan-1)
= |t an—1)  7*¢*(an) @) - ¢*an-2) |,
ﬂk(pn_l(az) ﬂk(pn_l(a3) ]Tkgon—l(cu) . (pn—l(al)

where a; € K™ and det(A4) € K*. (Note the indexing difference between equation (2.4) and
[2, equation (4.5)].) We may therefore write

T=|]xm,
meZ

where X ™ consists of all 4 € X with det(A) € 7™ Ok . Note that the action of =y takes each
X m) isomorphically onto X X 1K) and the action of 7 takes each X ™) isomorphically onto
Xm+m) Since (k,n) = 1 by assumption, the X X M) are all isomorphic. It is therefore sufficient
to show that X (© can be realized as the Fq -points of a scheme. To do this, we use Lemma 2.1.3,
whose proof (see [6, Lemma 7.1]) is nearly exactly the same as that of [2, Lemma 4.5].

Lemma 2.1.3 (Boyarchenko, [2, Lemma 4.5]). Assume (k,n) = 1. If a matrix A | of the
form (2.4) satisfies det(A) € OF, thena; € LU~ 1)]‘/”J(D"’forl <j<nanda; € ((9”’)X

We have now shown that X (@ consists of matrices of the form

Aay,az, ..., ay) = x(day,dj, ... a))
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for some a; € ((9 ) and a; € (9‘“ for 2 < j < n, where we write
a} = n_L(j_l)k/”Jaj forl <j <n.

Note that the (L* x D*)-action on X induces an (Of x Op)-action on X X (©)_ (The stabilizer
of X© in LX x D*is actually slightly bigger, but we save this discussion for Section 7.)
For each integer /1 > 1, define X, X {0 be the set of matrices

X0 = LA(ar, a2, ... .an) 1 a1 € (OF /7" OF)",
aj € O% /7" 1O% for2 < j <n,
det(A(ar, ..., an)) € (Ox/7"0g)*}.

This can be naturally viewed as the set of Fq -points of a scheme of finite type over I, (see
[2, Section 4.5] for k = 1 and [6, Section 7.1] for the completely analogous general case).

Note that )7 © has a left- -multiplication action of O/ U}’ " and a right-multiplication
action of O /Up "(h D+1and these actions are defined over Fqn Because of this, from
now on, we Wlll regard Xy X' as an Fgn-scheme. By Lemma 2.1.3, we have

XO = 1im X,
W

so that X © is the set of Fq-points of a (pro-)scheme over [F;». Similarly, set

where a,b € 7 are (any!) such that ak + bn = m. Note that X, X does not depend on the
choice of a, b and that like X ,5 ) it has a left- multiplication actlon of O/ U} h and a right-
multiplication action of O /U n(h—1)+1 . Having this, we now define £-adic homology groups
of X

Lemma 2.1.4 (Boyarchenko, [2, Lemma 4.7]). The left-multiplication action of the
group Wy, = Uh I/Uh on X( m) preserves every fiber of the natural map X(m — Xh(m)l,
the induced morphlsm Wh\X (m) — X, (m) is smooth, and each of its fibers is isomorphic to

the affine space A"~ over IF

For a scheme S of pure dimension d, set H; (S, Q) := HCZd_i (S,Q). By Lemma2.1.4,
H; (X", Q) => Hy (X", Q)"

and in particular, we have a natural embedding H; (X }(Zm)l, Q) — H; (Y }(lm) ,Qy). We set

Hi(X™ Q) := lim H; (Y,E’”),@e),
3

H;(X, Q) := P Hi (X", Q).

For each i > 0, the vector space H; ()7 ,Q,) inherits commuting smooth actions of L*

and Dk/n
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We will need a slightly different incarnation of X }EO). The morphism
f:G1—>Gy gy logey

induces an (O} /U, h) x(05/Up n(h- 1)'H) equivariant isomorphism of Fyn-schemes

(0) X/ (0)
where if we write A'(ag, ... ,ap—1) = y_ - A(ag,...,an—1) -y, then
5(7’(0) = {A(ao.....an—1) 1 ao € (A%/nh@%)x

a; € A%/nh_l@\r}g forl <j<n-—1,
det(4'(ao, - .., an—1)) € (Og /7" Ok)*}.

Observe that the determinant condition holds by multiplicativity. This proves:

Lemma 2.1.5. Foralli > 0, as representations 0f(9 /Uh X (QE/U”(" 1)"'1
 ~0) — o .
HIX\". Q) = HL(X,©. Q)

In the next subsections, we will define a subvariety X, C X, X/ (0) satisfying the following:
the stabilizer of X3 in O /U b 05/Up nh=D+1 4 equal to the subgroup

— h—
Ty = {7\ %) s x € OF /UMY - (UL UL x U jupt=Dt),
and 5(7” ) j5 equal to the 97/ Uz‘ xOp/ Ug(h_l)ﬂ)—translates of X}, This implies that

OZ/ULx(DD/U”“’—”“ (

HI(X;© Q) = Indp HI(Xy.Qp)).

The bulk of this paper is devoted to studying the cohomology of X, and we only return to
the setting of the semi-infinite Deligne—Lusztig variety X in Section 7, the final section of
this paper.

2.2. The unipotent group scheme Uy, ; and the subscheme Xj;. Forr € N, let I,
denote the rth subgroup in the standard Iwahori filtration for GL, (W) over Fq. Explicitly, for
any Fq—algebra A, let bo(A) be the preimage of the standard upper-triangular Borel subalgebra
of M,,(A) under the reduction M, (W (A)) — M, (A). Consider the morphism

V:Mp(W(A)) = Mp(W(A)), g+ (3 1"0_1) g

its image has (i, j)th coordinate

aij+1,; ifi=1,...,n—1,
Vo) —
(Vedi {Val,,- ifi =n.

where if ¢ = (aij)7 ;.

For integers r > 1, define b,./, := V"bg. Then the Iwahori subgroup /o := by has a filtration
given by I, := 1+ b,, and for any 0 < r < s, we may consider the quotient /, 5 := I, /1.
We write [+ := -, Is.

Let F = F, from equation (2.2). Note that [, is stable under F since w bow C by.
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Definition 2.2.1.  The quotient /;, (,_1)+ admits an [Fg-rational structure with associated
Frobenius F'. We denote by G, . the resulting group scheme defined over IF; with associated
Frobenius Fry. Define T}’l « C Gp i to be the subgroup consisting of diagonal matrices and

define
Unk = Io+ (h—1)+ C Gk,

Th x := {diagonal matrices in Up, x },
so that we have group schemes
T;l’ < Gh k

T 7

Thrx — Upk

all defined over ;. We view the determinant as a morphism

det: Gh,k — th.

Remark 2.2.2. Over Fq, the above groups have the following explicit description:

(i) Gk can be identified with the group of n x n matrices (M;;) with M;; € W, and
M;j € Wy_y fori < j, Mj; € VWy_q fori > j,

(ii) T;l « 18 the subgroup consisting of matrices (M;;) € Gy with M;j = 0ifi # j,
(iii) Up x is the subgroup consisting of matrices (M;;) € Gy, x with M;; € W,fl),
(iv) Tp k is the subgroup consisting of matrices (M;;) € Uy x with M;; = 0if i # j.
In addition,
h—1)+1
Ga(Fg) = O3 /U DTy (Fy) = 0 /UL,
h— 1
Upi(Fy) = UL U= D%y (Ry) = UL UL
Observe also that G, ¢ (Fg) = F i x Up g (Fg).
By construction, X! ;l(o) (Fq) CGpi (Fq). Moreover, it is stabilized by Fry (but not

by Fr,!) and the resulting IF;» -rational structure agrees with the standard [F» -rational structure
on X ;l (). Hence X ;1(0) is a subscheme of Gy, x defined over Fyn.

Definition 2.2.3. For any [F,»-algebra A, define
Xn(4) := X, ©(4) N Upx(A).
The finite group Tp, x (IF4) X Gy, x (Fy) acts on Uy, by
Gr.g)xx:=C1-x-g-07" 1 €Tpp(Fy). (6.8) € Fri x Up i (Fy) = Gp 1 (Fy).

This action stabilizes the [F;n-subscheme X}, C Uy, x.

Lemma 2.2.4. Let (7;, C Upi (Fq) denote the subgroup of upper-triangular unipotent
matrices. Then

Xp(Fg) = {x € Uy x(Fy) : Frg(x)x~" € Ty N Frg ().
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Proof. We use (2.3). If g € G is such that F'(g)g~! € U N F'(U™), then

FoyTley)y ety =y 'F(@)g ly ey U NF' (U )y =UnFU),

where the last equality holds since e; - Yo = e; by construction and UNnF (l7 ~) exactly con-
sists of upper-triangular unipotent matrices with nonzero nondiagonal entries only in the first
row. The conclusion follows. O

Remark 2.2.5. Note that the unipotent group scheme Uy, i is a rather different object
to the unipotent group schemes appearing in previous work.

(i) In [4, Section 4.4.1], the unipotent group U™ over Fyn is defined to be the group con-
sisting of formal expressions 1 + ay - ey + -+ + ap - e, which are multiplied according
totherule ¢j -a = a9 -e; forall1 <i <n and

ei+j ifi+j <n,
ej-ej = ]
0 otherwise.

This can be viewed as the unipotent group associated to the parameters: h = 2, k = 1,
arbitrary n, and char(K) arbitrary.

(ii) In[2, Definition 5.5], for any [Fj,-algebra A, the unipotent group U “4(A) is defined to be
the elements of A(t)/(z"»~D+1) with constant term 1. Here, A( ) is the twisted poly-
nomial ring with the commutation relation 7 -a = a? - t for a € A. This can be viewed
as the unipotent group associated to the parameters: arbitrary s, k = 1, arbitrary n, and
char(K) = p. Note that U;’q = U™9 and h = 2 is the only 4 such that U;’q can be
used when char(K) = 0.

(iii)) The unipotent groups in [6] and [5] are specializations of those in (i1). In [6], we define
a unipotent group ll] "4 together with a subscheme Xj C U," hk ?_The unipotent group is

isomorphic to U, v descnbed in (ii) where / is an integer with /k = 1 modulo n, but the
variety Xp, depends on k (and hence /).

When char(K) = p, one can prove the theorems of this paper using U }:’]f instead of Uy, x, and
the proofs are very similar However, it does not seem possible to formulate a characteristic
zero analogue of U," h . The upshot of the unipotent group scheme Uy, x over [, defined in
Definition 2.2.1 is that it removes all hypotheses on the parameters, and in particular, we are
able to work with arbitrary & over K of arbitrary characteristic. Furthermore, the definition of
Up x seems to lend itself to generalizations to other reductive groups over local fields.

2.3. An explicit description of X,.

Definition 2.3.1. We define three bijections associated to F := F, and F' := F; (see
equations (2.1) and (2.2)).

(1) Leto:{1,...,n} — {1,...,n} be the permutation such that
F(diag(y1, . ... yn)) = diag(@(yo(1): - - - 9 (Vo (m)))-
(2) Leto’:{1,...,n} — {1,...,n} be the permutation such that

F'(diag(y1. ..., yn)) = diag(@(or(1)): - - - » @ (Vo' (n)))-
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(3) Letz:{1,...,n} = {0,...,n — 1} be the bijection such that

vo - diag(yi,. .. yn) - ¥o | = diag(e()+1s - -5 ety +1)-

By the assumption that e; - y9 = e, we have (1) = 0.
The following lemma is an easy calculation.

Lemma 2.3.2. Foreach1 <i <n,

1(0(@)+1=0'(z(@)+ 1) =[r(i)+ 1 —1] = [t()].

Proof. By construction,

Yo ! - F'(diag(y1,...,yn)) - vo = F(yg ' - diag(y1,- - ., yn) - o)

Thus we have

Yo - F'(diag(yi,-...yn)) - v0 = ¥o ' - diag(@(Vor1ys -+ Yorm)) - Yo
= diag(@(Ve—1(0/(1)=1): - - -+ Ve (0’ (m)—1)))
Fyg ' - diag(y1.....yn) - y0) = F(diag(yz=1(g). -+ Ye=1 (a—1)))
= diag(¢(Vo(:-1(0)): - - - » Vo (z—1(n—1))))-
Hence foreach 1 <i < n, we have
o' () —1) =0(x (i = 1))
and therefore o/(t(j) + 1) = 7(0(j)) + 1. The remaining equalities follow from the explicit
computation that F’(diag(y1.....yn)) = diag(¢(yn),¢(y1). ..., @(ya-1))- =

Definition 2.3.3. A useful description of X}, is the following. Let M = (M, ;)i j=1,...n
be an element of Uy, . Then we may write

(2.5) M = M| + Myw* + MwP + ... + M kD],
where

M = diag(M\ [G—1)k-+11s M2, [G—1)k+2] - - - » M [~ 1)k+n])

= diag(M gi-1(1) M3 gi-1(2)s -+ s My gi=1(s)) forl <i <n,
M MG e € Wi =
H {[M(i,j,l)»---»M(i,j,h—l)] € Wpy  ifi #/,

We know that M € X}, if and only if y "' My € 5(7([0). Therefore if M € Xp,, then y_lMi/y is
of the form diag(A4, ¢(A), 92 (A), ..., " 1(A)). We have

forl <i,j <n.

y My = diag(M,-1(g) 5i-1(c-1(0)): Me=1(1).0i-1 (=1 1)) - - - » M1 (=1 01 (n—1))
and therefore

(2.6) M, gimi(y = " (M, gim1(y) forl <i.j<n.

In particular, M; ; = (pt(i)(Ml,l) for 1 <i < n.Forany [F;n-algebra A, we have M € X}, (A)
if and only if M satisfies (2.6) and p(det(M)) = det(M), where det(M) € W (A). We call
M the standard form of an A-point of Xj,.
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2.4. The Howe factorization. Let .7, ; denote the set of all Qy-valued characters
of W (Fgn). Recall that we have natural surjections pr: W) — W1 and injections
Gq — Wh(l) given by x + [1,0,...,0, x]. Furthermore, for any subfield F C L, the norm
map L>* — F* induces a map Nm: W}fl)(kL) — W}fl)(kp). These maps induce

pr*: T — Iy forh’ <h,
Nm*: Ty 5 — Ty form | n.
By pulling back along the map G, — W,fl), x +—[1,0,...,0, x], we may restrict characters
of W’fl)(]Fqn) to characters of Fyn. We say that y € .7, ; has conductor m if the stabilizer
of x|r,, in Gal(Fyn/Fy) is Gal(Fgn/Fgm). If x € 7, 5 has conductor n, we say that y is
primitive. We write 7 Oh C I, 1 to denote the subset of primitive characters.

We can decompose y € .7, j, into primitive components in the sense of Howe [15, Corol-

lary after Lemma 11]. (Howe’s formulation involves a non-degeneracy condition on the partial

products y1 y2--- xi of the factorization below, but this condition is equivalent to the primitiv-
ity condition on the individual factors x;.)

Definition 2.4.1. A Howe factorization of a character y € .7, j is a decomposition

,
X = 1_[)(1" where Xi =pI'* Nm* X? and X? € yn(l)[,hi’
i=1
such that m; < mjy1, m; | mi41, and h; > h;41. It is automatic that m; < n and h > h;. For
any integer 0 <t < r, set yo to be the trivial character and define

.
xze =11 € Zn,
i=t

Observe that the choice of y; in a Howe factorization y = [[/_; x; is not unique, but
the m; and h; only depend on y. Hence the Howe factorization attaches to each character
X € Iy n apair of well-defined sequences

l=imog<my <mp<-+-<mp <Mp41:=n,
h=:ho>h >h2>--'>hr2hr+1 =1
satisfying the divisibility m; | mj4q for0 <i <r.
Example 2.4.2. We give some examples of the sequences associated to characters
X € Tnp

(a) If y is the trivial character, the associated sequences are
{mo,mi,ma} ={1,1.n}, {ho,h1,ha} ={h 1,1}

(b) We say that y is a primitive character of level i’ if xlur = 1and y|yy'—1/uh has trivial
Gal(IFy4n /IF4)-stabilizer. In this setting, y € .7, 5 if we have i > h’, and then the associ-
ated sequences are

{mo,ml,m2}={1,n,n}, {ho,hl,h2}={h,h/,1}.
The case h = I’ is studied in [5, 6].
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(o) If X|U£ = 1 and X|UL‘ /u? has conductor m, then the associated sequences are
{mo,ml,mz}z{l,m,n}, {ho,hl,hz} ={h,2,1}.
The case & = 2 is studied in [2,4].

3. Indexing sets

We first recall some basic facts about the ramified Witt vectors, which we will need to
work with to handle the char K = 0 setting. In Section 3.2, we define indexing sets and prove
some fundamental properties of these indexing sets that will be heavily used in Section 5. As
a quick application of Section 3.2, we calculate the dimension of X} in Section 3.3.

3.1. Ramified Witt vectors. In this subsection, we assume K has characteristic 0. We
first define a “simplified version” of the ramified Witt ring W.

Definition 3.1.1. For any [F,-algebra A, let W(A) be the set AN endowed with the
following coordinatewise addition and multiplication rule:

[aili>o +w [bili=o = [ai + bili>0,

P
laili=o *w [bilizo = [Zajq- jb,q_ji|
j=0

It is a straightforward check that W is a commutative ring scheme over F,. It comes with
Frobenius and Verschiebung morphisms ¢ and V.

i>0

Lemma 3.1.2. Let A be an F4-algebra.
(a) Forany [a] = [a;]izo, [b] = [biliz0 € AV,
[a] *w [b] = [a] *w [b] +w [c].
where [c] = [cili>o for some ¢c; € Alaj!bi? 1i1 + iz <1i, e, ez € Zxo).
(b) For any [a] = [ailio, [b] = [bi]i=0 € A,
[a]l +w [b] = [a] +w [b] +w [c].
where [c] = [ci]i>o for some c; € Alaj,b; : j <i].
(c) Forany [a] = [a;]i=0 € AV,

wxwy [a] =1[0,1,0,...] xw [a] = [O,ag,a?,...].

Lemma 3.1.3. Let A be an Fy-algebra.

(a) Foranyla1],...,lan] € AN where laj] = lajili>o,
[] lej]= ( I1 [aj]) +w [c],
1<j=n 1<j=n
wrt. W wrt. W
where [c] = [c;]i>o for some c; € A[af‘i1 ---af{’in Dt tin <i, eq,...,eq € Lxo].
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(b) Forany[ail....,[an] € AN where la;] = laj,ili>o
> la)= ( > [aj]) +w [e].
1<j<n 1<j<n
w.rt. W wrt. W
where [c] = [cj]i>o0 for some ¢; € Alay,j,...,an,; : ] <1i].

We call the portion coming from W the “major contribution” and [c] the “minor contribution.”

3.2. Normed indexing sets. We define indexing sets associated to the unipotent group
Up, x that will be crucial to the proof of Theorem 5.1.1.

Define
AT =16, j ) 1<i,j<n 1<]<h—1},

A={, j.1)e AT i # ),
A ={0,j,l)e A:i =1}

Write A[A 7] to denote the affine space of dimension #A ™" over IF, with coordinates indexed
by AT. We fix an identification Uy, x = A[4™] (as F4-schemes) as follows: Every point of
Up k is of the form (A4; ;) 1<i,j<n, Where

(3.1) Aij =Y V'r(Agjm). wherel* :=

{1 ifi > j,
>0

I+1 ifi<j.

Thus the element (i, j,[*) € A7 corresponds to the coefficient of 7! in the (i, j)th entry of an
element of Uy, ;. Continuing this dictionary, # corresponds to the elements of Uy x with 1’s
along the diagonal, and A~ corresponds to the elements of Uy, ; with 1’s along the diagonal
and zeros everywhere else but the top row.

Definition 3.2.1. Define a norm on A7 :

AT = {1,2,....n(h— 1)},
(@, ). 1) =G j. Dl =[] —i] +nd = 1).

Given two sequences of integers

(3.2) l=mg<my<my<---<my <mypy1:=n, m|mjyq,
3.3) h=1h02h1>h2>'-->hr2hr+1 =1,

we can define the following subsets of A for 0 < s,7 <r:

'A’S,t = {(l’.lvl) €A .] =i (mOd mS)? .] ¢l (mOd mS+1)v 1 = ) = ht - 1}9
ALy = gy DA

For the proof of Theorem 5.1.1, we will need to consider the following decomposition of Ay,

Isr :={(1, j.1) € Ay, [(1, j,D)| > Tn(h, — D},
Fsi =1, j.1) € Ay, (1, j. )] < In(h, — D)}
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For any real number v > 0, define

r r
sz,t = I_l As,t, sz,t = |_| J(s,ty
s=[v] s=[v]

r
ng,t = I_l gs,t, A;v,t = sz,t N A_,
s=[v]

and observe that

‘AES,Z ={(l’]’1)€AJ Ei(mOde)’ 1 Slfht_l}

Remark 3.2.2. Recall that the Howe factorization of y € 7,5 gives rise to two
sequences of integers exactly of the form (3.2) and (3.3), where (3.2) corresponds to the con-
ductors appearing in the Howe factorization and (3.3) corresponds to the levels in which the
conductor jumps.

Lemma 3.2.3. There is an order-reversing injection J5; — s, that is a bijection if
and only if #As ; is even. Explicitly, it is given by

dst > Jser (Lol (1), 1) = (1,67 (1), hy = 1),

where o is the permutation defined in Definition 2.3.1. Note that #Ag ; is even unless n and h;
are both even.

Proof. 1tis clear thatif mg | j and mgy1 + j,thenmg | (n — j) and mg1 + (n — j).
By assumption, |(1,0/(1),])| = o/ (1) =1 +n(l —1) > %n(h, — 1). Then
|(L,o" 7 (1), hy =) =n—0/Q)+ 1) +nh; —1 —1)
=nh; —1)—|(1,07/ (1), ])] < %n(ht —1).

It is clear that the map is a bijection if and only if the indexing set s, contains an element of
norm %n(h, —1). m]

Remark 3.2.4. Note that the divisibility condition on g, implies that there is at most
one s such that (l,a”/z(l),ht/Z) € 4s.:- Hence outside this s, the sets J5; and J, are in
bijection.

Definition 3.2.5. For A = (i, j,[) € AT, define

WY (jyi,hy—1=1) ifi =j.
(J.ihe =1) ifi # .
Lemma 3.2.6. Write A = (A; j)1<i,j<n € Upk, where A; j is as in equation (3.1).

Assume that for A, A» € AT, the variables A, and Ay, appear in the same monomial in
det(4) e W /l)for some h' < h.

(@) Then || + Aa| < n(h — 1),
(b) If |A1] + [A2| = n(h' — 1), then 22 = A{.
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Proof. By definition,

det(4) = Y ] Aiyey € WP EFy.

yeS, 1<i<n

Let [ < h’ — 1. If K has characteristic p, then the contributions to the !t -coefficient coming
from y € S, are of the form )
[T4craan.

i=1

where (/1,...,[,) is a partition of /. Then

G y@). 1] = [y(@) =il +n( = 1) = y(i) =i +nl;,

and therefore

(3.4) Doy I =Y y@) =i +nli =Y nli =nl <n(h' —1).

If K has characteristic 0, then by Lemma 3.1.3, the major contributions to the nl-coefficient

coming from y are of the form
n

e
1_[ A(isy(i),li*)’

i=1

where the e; are some nonnegative integers and where (/1,...,[,) is a partition of /. Hence

(3.5) DGy @) I =nl <n(' —1).

i=1
The minor contributions to the 77! -coefficient coming from y are polynomials in

4

n
€
1_[ Ai,y(i),ll.*’

i=1

where /1 + -+ 4+ I, < [ and the e] are some nonnegative integers. Hence

D OIG v, 1] < nh' = 1).

i=1

Suppose now that A1 = (i1, j1,/1), A2 = (i2, j2,l2) € AT are such that Ay, and A4,
contribute to the same monomial in det(M) € W(,l ). Then there exists some y € Sy such that
y(i1) = j1 and y(i2) = j2, and by equations (3.4) and (3.5),

A1)+ [A2] <n(h' = 1).

Observe that if K has characteristic 0 and A; and A, occur in a minor contribution, then
[A1|+|A2| < n(h'—1). This proves (a) and furthermore, we see that if 11|+ |A2| = n(h'—1),
then the simultaneous contribution of Ay, and A,, comes from a major contribution. But
now (b) follows: since |A| > 0 for any A € A, it follows from equations (3.4) and (3.5) that if
|A1] 4+ [A2] = n(h’ — 1), then necessarily the associated y € S, must be a transposition. O
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Example 3.2.7. We illustrate a way to visualize the indexing sets >y, in a small
example. Consider the sequences
{mo,mi,ma,m3,ma} ={1,2,4,8,8}, {ho,h1,h2,h3, ha}.
This corresponds to a character of the form
x = x1(Nmg /5 ;) - xo(Nmg _g/F ) - 13

where )(l(.’: W}S)(qu,) — @Z is primitive. Then we have

1 % % % % % % *
(*1******
* % 1 % % % % k
_ * % x 1 % k% % k
‘A’ZOJ_ * ok ok ok 1 % % % ’depthht ’
* % k k k 1 % k
K******l*) )
* k %k k k % k |
1 * ok ok
( 1 % x *\
* 1 * %k
‘AZIJ_ ***11*** ’depthht ’
*x ok 1 *
x ok ok 1 } )
* ok ok 1
1 *
(1, )
1 *
Azz’t = % 1 1 * y depth ht s
* 1
* 1 )
* 1
1
[t
1
'A’23,t = 1 1 , depth ht
1
\ 1
1

In Section 5, we will calculate certain cohomology groups H, c’ (%, ) inductively:

X <«— A= As0,1 v A>11 (Proposition 5.3.2)
v A>12 (Proposition 5.3.1)
v A>2 0 (Proposition 5.3.2)

v A>23 =@ (Proposition 5.3.1).

This reduces the calculation of H Cl (%, F) to the calculation of the cohomology of a point.
(Warning: There may be a step in the inductive process where the reduction is to the cohomol-
ogy of a curve. This happens exactly when #+ ; is odd, which can occur for at most one s.)

3.3. Dimension of X},.
Proposition 3.3.1.  The Fyn-scheme X}, is smooth, affine, and of dimension (n—1)(h—1).

Proof. By Definition 2.3.3, X}, C A[#4T] is defined by the following polynomials:
(@) . .
fioiinn) = Mioiirny =M gy,  for2sismlsj=nlsl=h-1
g1 = pry(det(M)) — pr;(det(M))? for1l <l <h-—1,

where
pry: W;fl) — Al [Lay,....ap_1] — ay.
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This gives us n(n — 1)(h — 1) + (h — 1) equations and #4A™ = n?(h — 1), and so to prove the
proposition, it suffices to find a submatrix of size (1> —n + 1)(h — 1) x (1> —n + 1)(h — 1)
of the Jacobian matrix that is nonsingular for every point of X7,.

Consider the submatrix Jo of the Jacobian corresponding to the partial derivatives with
respect to the following subset of 4™

Ao :={(i,07 (), 1) e AT i £13U{1,1,]) € AT).

Since we are working in characteristic p, we have

0 1 ifA=2x,
(3.6) i _ L irh=
oM, 0 otherwise,
3 1 ifl' =1,
3.7) _8 o ifr >,
OM11,17) .
ifl’ <.
Reorder the rows of Jy so that the first n(n — 1)(h — 1) rows correspond to the f3 for A € Ay
and the remaining 2 — 1 rows correspond to g1, ..., g5—1. Reorder the columns of Jy so that
the first n(n — 1)(h — 1) columns correspond to the M) for A € Ay and the remaining & — 1
columns correspond to My 1,1y, ..., M(1,1,5—1)- Then

A B
Jo = .

where A is a permutation matrix of size n(n — 1)(h — 1) x n(n — 1)(h — 1) (by equation (3.6)),
B is the zero matrix of size n(n — 1)(h — 1) x (h — 1) (by equation (3.6)), and D is a unipotent
lower-triangular matrix of size (h —1) x (h — 1) (by equation (3.7)). Hence for any point in X},
the matrices A and D are nonsingular, and so Jy is as well. This shows that X}, is a smooth
complete intersection of dimension n?(h — 1) — (n> —n + 1)(h = 1) = (n = 1)(h —1). O

4. On the cohomology of certain @g -local systems

In this section, we prove some general results on the cohomology of constructible
Q-sheaves. Proposition 4.1.1 is a generalization of [2, Proposition 2.3] that allows one to study
the G (IF4)-representations arising from the cohomology of a variety X C G defined over F,~ .
From this perspective, [2, Proposition 2.3] is the N = 1 setting of Proposition 4.1.1.

The other main result of this section is Proposition 4.2.1, which is a general result on the
cohomology of constructible Q-sheaves coming from pullbacks of local systems. Its proof is
similar to that of [2, Proposition 2.10] and [6, Proposition 3.4]. We then apply Proposition 4.2.1
to the special case when the local system is an Artin—Schreier-like sheaf (see Proposition 4.2.2).

Throughout this paper, we choose the convention that Fry is the geometric Frobenius so
that Fr, acts on the Tate twist Qy(—1) by multiplication by g.

4.1. Cohomology and induced representations. If X is a locally closed subvariety of
G that is stable under the action of G(IFy), it is natural to ask what G (IF,)-representations arise
in the cohomology H, c’ (X, Qpg). To this end, it is useful to understand spaces of G(IF,)-equi-
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variant homomorphisms between H:(X, Q) and certain nice representations. The following
proposition relates such spaces to the cohomology of an explicitly constructed variety with
coefficients in a (often nonconstant) @e—sheaf. The upshot is that in the cases we deal with,
these new cohomology groups can be explicitly computed (see Section 5 where we use Propo-
sition 4.1.1 to rephrase the calculation so that we may inductively apply Proposition 4.2.2).

Proposition 4.1.1. Assume that we are given the following data:

* an algebraic group G together with a closed connected subgroup H C G over Iy with
Frobenius Fry,

e asections:G/H — G of the quotient morphism G — G/H,
* a character y: H(Fy) — @Z
* a closed subscheme Y of G defined over Fyn such that for any 0 <i # j < N —1,

the intersection Fr Y)n Frq(Y) is mdependent of i, j and is equal to a finite set of
points S.

Set X : =L, 1(Y) where Ly is the Lang map g — Fry(g)g™ Lon G. The right multiplication

action of G(Fq) on X induces linear representations of G(IFy) on the cohomology H. (X, Q Qy),
and for each i > 0, we have a vector space isomorphism

Homg ) (Indgy ) (1), HE(X, Qp) = HI(B™'(Y), P*£,)

compatible with the action of Fryn on both sides, where &£y is the rank 1 local system on H
corresponding to x, the morphism B:(G/H) x H — G is given by

B(x,h) = s(Frg(x)) - h-s(x)7",
and the morphism P: B~Y(Y) — H is the composition B~ (Y) — (G/H) x H LNy~

First observe the following easy fact about the morphism f:

Lemma 4.1.2. Let G be an algebraic group with a closed connected subgroup H C G
over Fy with Frobenius Fry. Assume that we have a section s of the quotient morphism
G — G/H. Define B: (G/H) x H — G to be the morphism B(x, h) = s(Frg(x)) - h-s(x)"L.
Forany (x,y) € (G/H) x H and any closed subscheme Y C G,

(4.1) (x.Lqg(y) € B7H(Y) < s(x)-y e L/ (V).

Moreover, B~1(Y) is affine.

Proof. Wehave B(x, Ly(y)) = s(Fry(x))-Frg(y)- y~ls(x)7! = Lg4(s(x)-y), which
establishes (4.1). For the second assertion, consider the composition

G/HxH( G/HXHL)G

Observe that this composition maps (x, y) > s(Frg(x)) - Lg(y) - s(x)™1 = Ly(s(x) - ), so
this composition is finite étale and surjective. The first map (id, L) is finite étale and surjective,
and therefore 8 must also be finite étale and surjective. Hence B! (Y) is affine. |
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We will need a couple of lemmas in the proof of Proposition 4.1.1.
Lemma 4.1.3. Let F be a pure rank-1 lisse Qg-sheaf on a smooth affine curve X
over Fy. Let X be a compactification of X and let j: X — X. Then
HYX, 7)== HOX ~ X, juF)/H(X, ju F) ® H' (X, j« F)

as Fl'q -vector spaces.

Proof. The open/closed decomposition
ji X > XXX
implies that we have the following short exact sequence of sheaves on X :
0= j1j*(JxF) = juF = ixi*(jxF) — 0.

Since X is an affine curve, HO(X, ) = 0, so the first part of the induced long exact sequence
is
0— H°X, juF) - H' X ~ X, juF) - H (X, F) - H' (X, j« F) — 0,
which implies
42 0— H'X~X,jF)/H'(X, juF) - HN X, F) - H'(X, juF) — 0.

We now show that this sequence splits. By Deligne’s work on the Weil conjectures [8, Corol-
lary 3.3.9 and Theorem 3.2.3], we know that Ho(X ~ X, j.F)/H°(X, j+¥) has weight
wt(j«F) and H'(X, j«F) has weight wt(j«F) + 1, and so the extension H}(X, j«F) is
classified by an element of H1(Z, V), where

Vi=H'X <X, j:F)/H(X, j»F)® H' (X, j+ F)*

has weight —1. Now,
HYZ,V)=2zYZ,V)/B'(Z,V),

where
ZYZ, V) ={f:Z =V : f(gh) = gf(h) + f(g) forall g, € Z},
BI(Z, Vy={f e ZI(Z, V) : there exists v € V such that f(g) = ga —a forall g € Z}.

Observe that
zZYZ,v)y=V, BYZ,V)= (Fr,—1V.

Since V' has weight —1, this implies that (Fr; —1)V = V and so
HYZ,V)=0.

Thus the short exact sequence in (4.2) splits, and the desired conclusion follows. O

Lemma 4.1.4. Let ¥ be a pure rank-1 lisse Q-sheaf on an affine curve X over Fy.
If S is a finite set of points in X, then the short exact sequence

0— HYXS, %)= H (X~ S, F)— HN(X,F) =0

of Fry-vector spaces splits.
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Proof. First assume that X is smooth. Let X be a compactification of X. Then it must
also be a compactification of X ~ §. Therefore by Lemma 4.1.3,
HY X, F)= H' X ~ X, ju7)/H°(X, jx F) @ H' (X, j« F),
HXX~S,F)= HOSUX ~X), juF)/H' (X, jxF)® H' (X, ju F)
~ HY%S,F)® H' X ~ X, j«F)/H'(X, j«F)® H' (X, j+ F)
~ HYS,F)® H (X, F).
Thus the desired short exact sequence splits.
Now assume that X is not smooth and let X be the normalization of X. Then X is

a smooth affine curve and by the previous paragraph, the upper short exact sequence of
Frg-vector spaces of the following commutative diagram splits:

e N
0 —— H)S.5) — H(X~S.F) — H{(X.F) — 0

i T T
0 —— HYS,F) — HM{X~S,F) — H}X,F) —— 0,

where we view ¥ as a sheaf on X by pulling back along the morphism X — X, and this
morphism induces the upward vertical maps. Restriction gives the dotted downward arrow.
The composition

HYX~S8.F)—> HX~S.%) > HYS.7) - HY(S.F)

gives a splitting of Frg-vector spaces of the lower short exact sequence. ]

We are now ready to prove Proposition 4.1.1.
Proof of Proposition 4.1.1.  For convenience, set Vy := Indg((i‘;)) (x). Define Y to be
the closed reduced subscheme of G such that

YH(Ey) = Y(Fg) UFrg(Y(Fg)) U--- UF) 1 (Y (Fy)) C G(Fy).

Note Y is defined over F,. By [2, Proposition 2.3], we have Fr,-compatible vector-space
isomorphisms

4.3)  Homg,)(Vy. HA(X1, Q) = HIB'(Y ). (PT)*%,) foralli >0,

where X+ = L;I(Y+) and P 7 is the composition B~ 1 (Y +) — (G/H) x H — H. We will
use open/closed decompositions and the associated long exact sequences to relate the cohomol-
ogy of X to the cohomology of X, and the cohomology of B~1(Y ) to the cohomology
of B71(Y).

Let Y't := Y+ < S. The open/closed decomposition

B S BT ) < BNS)
induces a short exact sequence of sheaves

0— jij* (PT)*Ey - (PN Ly —» ini*(PT)* L, -0
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whose associated long exact sequence in cohomology gives rise to Frg-compatible isomor-
phisms
(4.4) HIB 'Y, FH =z H(@BI(YH), 1) fori >2,
and an exact sequence
45 0= HXB'(Y' ™), FH) > HXBT' X)), F5) - H)(BT(S),FF)
= H BTV FT) » HI BT ). FH) - HI(BTH(S).FF) =0

Here, we write for convenience
Ft.= (P +)* Ly

and abuse notation by writing & for (P lg—1(y/+))* Ly and (P+|ﬂ71 (s))* Ly as well. The
same argument applied to the [, v -scheme Y’ := Y ~ S shows that we have Fr, ~ -compatible
isomorphisms

(4.6) HI(BYY), P*Ey) = HL(BI(Y), P*£y) fori >2,
and an exact sequence

4.7) 0— HY(B'(Y).F) — HI(B~'(Y). F) — H(B~H(S). F)
= H (B7'(Y').5) = H (B~ (Y). 5) — Hy (B~1(S5). F) = 0,

where P = P¥|g-1(y) and we write ¥ := P*£, and abuse notation as before.
Applying the same argument to X'+ := X+ ~ L;l (S)and X' := X ~ L;l (S) together
with the constant sheaf Q gives Frg-compatible isomorphisms

(4.8) HI(X'T, Q) = H(XT,Qp) fori >2,
exact sequences

(4.9) 0— HX(X'T,Qp) - HXXT.Qp) - HAL;'(5).Qy)
— H}X'T.Qp) — HX(XT.Qp) — HN(L;'(S).Qp) =0,

Fr, v -compatible isomorphisms
(4.10) HI(X',Qp) = HA(X,Qy) fori >2,
and exact sequences

— H}(X'.Qp) — H} (X, Q) — H}(L;'(S).Qq) =0.

By construction, FI (8~1(Y') N F/(B~1(Y')) =@ forall 0 <i # j < N —1, and hence
we have Fr, ~ -compatible isomorphisms

N-1
Hi (B~ (V') 7% = P HI(Fr (B~ (Y"), 77
j=0

Fr (B! (Y/)))
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foralli > 0. Forany 0 < j < N — 1, we have a commutative diagram

P

By — gl 23 g

l/Fr',/,' lFré lFr{,'

Frj(871(Y") —— 1) 25 B

and so it follows that ¥ 1| = (Fr,]].)*fl7 and

Frj (B=1(Y"))
He (B~ (V. 7) = He (Fry (B (YD), F s (g1 )
Thus . A
HIB YY), 7 = H(BLY), 7PV foralli > 0.

We first prove the proposition for i > 2. By equations (4.4) and (4.6), for all i > 2, we

have _ . .
HIB 'Y, FH > B, FH = HBY), 7)Y

>~ HI (B~ (Y). 7)®V.
Similarly, by equations (4.8) and (4.10), for all i > 2, we have
HI(X*. Q) = HI(X'.Qp) = HI(X'.Q)® = HI(X.Q)®".
Combining this with equation (4.3), we have Fr, v -compatible vector-space isomorphisms
HomG(]Fq) (VX s Hcl (X, @5) = HomG(]Fq) (VX’ Hcl (X+, @6))
= H{(B~' (Y ). P*Ly)
=~ HI(B7H(Y), P*£,)®N forall i > 2.

)GBN

It remains to prove the proposition for i = 0, 1. Since X is an affine scheme, we see that
HY(X, Q) #0 = dimX =0 and H!(X,Q)) #0 = dimX = 1.
First observe that S is defined over IF; and by [2, Proposition 2.3], we have
(4.12) Homgr,) (Vy. H (L' (5). Qo) = HY(BT1(S). F)

as Frg-vector spaces. We will use this to complete the proof.
Assume dim X = 0. Then dimY = 0, and by Lemma 4.1.2, we have dim =1 (Y) = 0
and dim B~1(S) = 0. By equations (4.5), (4.7), (4.9), and (4.11), we have
HP(B~'(Y D). F D) = HY (B~ (V') F 1) @ HY(B7(S). F7),
and similarly for B71(Y), X, and X. Thus we have

Homg,)(Vy. HO(X'.Q0)®" & Homg, ) (Vy. HY(Lg'(S), Qo)
>~ Homgr,) (Vy- HY(XxT, Qy)
~ HOB (Y ), )
=~ HY(B~ (Y. #)®N @ HY(B~1(S). 7).
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The last summand of the first and last lines are isomorphic by equation (4.12). Therefore as
Fr, v -vector spaces,

Homgew,)(Vy. HX(X' . Q) = HX(B~'(Y)). F).

and the desired conclusion now follows.
Finally, assume that dim X = 1. Since X is an affine variety, equations (4.5), (4.7), (4.9),
and (4.11) reduce to short exact sequences, and by Lemma 4.1.4,

H @GN, FH =/ 0N, FHe HXBTHS), F),

and similarly for 871(Y), X, and X. Using equation (4.12), we have Fr, ~-vector space
isomorphisms

Homgg,) (Vy. H! (X, @e))®N ® HX(B1(S), 7)®N
=~ Homg,) (Vy. HL (X" Q)"
= Homgx,)(Vy. He (X'T. Q)
~ H!(B'(Y'H), F)
= H (B~ (Y), 7)®N
~ HB7H(Y), 7)®N @ HO(B(S), 7)®V,

and this completes the proof of the proposition. O

4.2. An inductive strategy for calculating cohomology. In [2], Boyarchenko formu-
lated an inductive strategy for calculating the cohomology of (pullbacks of) Artin—Schreier
local systems P*.% arising from (a simplification of) Proposition 4.1.1. The morphisms P in
Boyarchenko’s setting (see Theorem 5.20 and more specifically Lemma 6.18 of [2]) are such
that at each inductive step, they are of the form

P(x,y) =n(x,y) + P2(x)

for n(x,y) = f(x)?" y — f(x)?" y4"~ so that [2, Proposition 2.10] applies. This then allows
one to write H, C’ (—, P*.%) in terms of the cohomology of either G, or a point (depending on
a parity issue).

We will execute this strategy in Section 5 to calculate H, c’ (—, P*.7) except that our situ-
ation is more complicated in two ways: .7 is a multiplicative local system on W}fl) (rather than
just on G, as in the Artin—Schreier setting) and P is more complicated than in Boyarchenko’s
setting. We therefore need a generalization of [2, Proposition 2.10].

We remark that in previous works [3, 6], the relevant sheaves P*.% were pullbacks of
Artin—Schreier sheaves, but the n were slightly more complicated than Boyarchenko’s. These
previous generalizations of [2, Proposition 2.10] are [5, Proposition 4.4] and [6, Proposi-
tions 3.4, 3.5]. The proofs of these all use essentially the same idea, so we have written down
a general statement (Proposition 4.2.1) that applies to P*.%, where .% is a general multi-
plicative local system and 7 can be arbitrarily complicated. We then specialize this (Proposi-
tion 4.2.2) to the particular class of .% and n we will need in Section 5.

Proposition 4.2.1. Let G, G’ be algebraic groups over Fy, let ¥ be a multiplicative
local system on G, and consider a filtration of finite type [F4-schemes S3 C Sy C S. Assume
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that Hé (G',Qy) is concentrated in a single degree i = r and assume that S = S, x G'. Let
n:8S2 x G' — G and Py: Sy — G be any morphisms, set P3 := Ps|s,, and define

P:S=5xG =G, (x,2) n(x,g)- P(x),
nx:G' — G, g n(x,g) forx € S,.

If n has the property that n”*¥ |s,xq’ is the constant local system and n3¥ is a nontrivial
multiplicative local system on G’ for every x € Sa(F4) ~ S3(Fy), then foralli € Z,

H{(S.P*F) = H™' (S5, P; ¥ ® H[(G'. Q)
as Frg-vector spaces, where H! (G', Qy) is a constant sheaf.

Proof. Consider the following commutative diagram, where (x) and () are Cartesian
squares and x is any point in S3 (Fq):

S
P ; I
G ——— Six G ——— HxG —= G
- 1 P
g (%x%) g (%) pr GxG = G.

By construction,
P*F =~ (n*F)Qpr* (P, F),
hence by the projection formula,
Rpry(P*F) = P;F @ Rpry(n*F) in D2(S,.Qy).

Since n* ¥ |s,xG’ = Q/ by assumption, the proper base change theorem applied to () implies
that

CRpr(n*F) = Rgi f (0" F) = Rg1(Qp).
For any x € S3 (Fq), the proper base change theorem applied to () implies that
(R'&1Qp)x = ix(R'&1Qq) = R'g| [ Qy = R'gQy = HI(G',Qy).
It therefore follows that . . -
R pry(n*F) = He (G, Q).
where the right-hand side is a constant sheaf on S3.

We now show that R pr,(n* ) is supported on S3. Now let x € S, (Fq) ~ 83 (Fq). Then
by the proper base change theorem applied to the Cartesian square

G —— S, xG’
_I
g”l lpr
{x} — S>

we have
ixRgi(n*F) = Rg) f"™*(n*F) = Rg/ (n; F).
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On the other hand, by [1, Lemma 9.4], we have
HA(G' . n*F)=0 foralli > 0.
Therefore
(Rlgi(f*F))x = R'g/ (tF) = HA(G',ntF) =0 foralli > 0.
Combining all statements above, we obtain

Ripr)(P*F) = P;¥ ® H.(G'.Qy). o

In this paper, the most important application of Proposition 4.2.1 is Proposition 4.2.2,
which we will use repeatedly to prove Theorem 5.1.1.

Proposition 4.2.2. Let y: W}fl)(Fqn) — @; be a character of conductor m and let
&£y be the corresponding local system on Whl). Let S» be a finite-type scheme over Fyn, put
S = S, x Al and suppose that a morphism P:S — Wh(l) has the form

P(x,y) = 207 (f)T = 0T + )T (4" = 3)7) - Pa(x),

n—j—+o

where
e j,0,7 > 0are integers and m does not divide j,
e 1S, - Aland P>: S, — W}fl) are morphisms defined over Fyn, and
o« gtAl Wh(l) is the morphism z — (1,0, ...,0, z).
Let S3 C S, be the subscheme defined by f(x)4" — f(x) =0 and let P3 = Pr|s;: 83— W}fl).
Then for all i € 7., we have
HL(S, P*&y) = H[7>(S3, P5&,)(-1)

as vector spaces equipped with an action of Frgn.

Proof. 1t is clear that the conclusion holds if we can apply Proposition 4.2.1 to the
situation when:

« 6 =W and G’ = A! = G,
s F =Xy,
s Sax Al > His (x.y) = g0 (F@T = FO)T + f)TTT (7" = 1)),
To this end, we must verify that:
(@) n*Lyls,xa1 is the constant local system.
(b) Forany x € 5> (Fq) ~ 53 (Fq), the sheaf n} <, is a nontrivial local system on W}fl).

Part (a) is clear since S3 = V(f4" — f) by definition and  is a character of W}fl)(Fqn). To
see (b), we use the approach of [2, Section 6.4]. First, note that n = g o ng, where

(@) = FNT + 0?7 (4

qj+1’ n

n0:Sax Al > Al =G, (x.y) P>y ),

and hence

n"Ly = noLy, wherey = X|{(1,0,...,0,*)ew,§"(JFqn)}'
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Note that £y is a multlphcatlve local | system on Gg. Fix an auxiliary nontrivial additive char-
acter Yo:IFp, — Q ¢-and forany z € F p» define

Lz :=miLy,, wherem;:G, — Gg isthe map x — xz.

Then there exists a unique z € I, such that £, = £. Since ¥ has conductor g™, the stabi-
lizer of z in Gal(F4/Fy) is exactly Gal(F,/Fgm), and hence z € Fym. By [2, Corollary 6.5],
we have ny Ly = £, x(,), where

nx(2) = f(x)?
+ f(x)1

n+o—j—t o—j— ‘r —_/—r

q”—f()Q

nj+onr n]+orq—r

C— S

n—j+o—t —j— —Jjto—t —Jj-T —n—t
= ST 2 - T T 2
n—j+o—t —Jjto—zt —Jj—T -t
= (f(x)? — f(x)? )T =z ).
But this is nonzero by assumption, so 7} £ is a nontrivial local system on G. o

5. Morphisms to the cohomology

In this section we prove a theorem calculating the space of homomorphisms

U ]P‘ . J—
Homy, , ) (Indy," ,’:((Fq)) (0, He(Xn, Qy)).

This result is crucial to the proofs of many of the theorems in Section 6. The finale of the proof
of Theorem 5.1.1 is in Section 5.4. Throughout this section, for x € A[AT], we write X(i,j,k)
to mean the coordinate of x corresponding to (i, j, k) € A™.

5.1. Nonvanishing in a single degree: Statements of results. Recall from Section 2.4
that the Howe factorization attaches to any character of Ty,  (Fy) = W}fl)(]Fqn) two sequences
of integers

l=tmog<my <mp<--<mp <Mpp1:=n
h=:hyo=h >h2>'-->hr2hr+1 =1

satisfying the divisibility m; | m;j41 for0 <i <r.

Theorem 5.1.1.  For any character y: Ty (Fq) — @Z

_@qndx/z

U F . . ® _n/2\ry\deg ifi =ry,
Homy, , e, (Indy, 52 (1) HE (X0, @) = {;QK A

otherwise,

where

é (== Y-,
+

n n
; ((mt 1 a m_t)(ht D+ Z(mt_l B 1)(hf—1 _ht))~

ni/2

N~
_— =

Moreover, Fryn acts on Hc (Xn. Qy) by multiplication by the scalar (—1)! g
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Notation 5.1.2. Following Katz [17], we write «%¢ to mean the rank-1 Q-sheaf with
the action of Fry» given by multiplication by «. Given an algebraic group G with [F,-ratio-
nal structure given by some Frobenius Fry, we let L;: G — G denote the Lang morphism
x — Fry (x)x~!. We will abuse notation by using L4 to denote the Lang morphism for differ-
ent G; we hope the meaning is still clear from the context.

Before we prove Theorem 5.1.1, we first note an easy but crucial consequence.

Corollary 5.1.3. Let v be an irreducible constituent of H] (Xp, Qy) for some r. Then

Homy, , &,)(m. H.(X3. Q) =0 foralli #r.

Proof. The representation 7 of Uy, ¢ (IF4) is a constituent of IndUh K ((g")) () for some y.

Hence Uy (B
Homy, ) (Indy,"* z ) (1), HZ (X3, Q) # 0.
By Theorem 5.1.1, it follows that r = r, and

Uy x (F ; — .
HomUh,k(Fq)(IndTZ,f((]Fq)) (X). H (X, Q) =0 foralli # ry.

The desired conclusion now holds. O

Remark 5.1.4. The arguments presented in this section can be applied to more general
contexts. For example, observe that once an analogue of the Section 5.2 is established, the
general result Proposition 4.1.1 reduces Theorem 5.1.1 to a statement about the cohomology
groups of a pullback P*&£, of an Artin—Schreier sheaf to an affine space S which can then
be calculated using an inductive method on certain linear fibrations of S. To achieve this in
the proof of Theorem 5.1.1, we use the carefully defined indexing sets sy, determined by
a Howe decomposition of the character y, where the main features of these indexing sets are
Lemmas 3.2.3 and 3.2.6.

It is possible to axiomatize the main steps of the proof of Theorem 5.1.1 so that we
specify exactly to what context one can apply the proof of Propositions 5.3.1 and 5.3.2, which
would allow us to reduce the problem of computing the cohomology of certain subschemas of
unipotent groups to a combinatorial problem about defining indexing sets analogous to Ay ;.
However, we choose to forgo this approach as we feel the present exposition is clearer and
more explicit.

We will prove Theorem 5.1.1 by combining Proposition 5.2.3 with a calculation of the
cohomology groups of the Artin—Schreier sheaves P*&£,. This calculation is driven by two
ideas: the first (Proposition 5.3.2) is an inductive argument that can be viewed as an instance
of the techniques established in Section 4, and the second (Proposition 5.3.1) comes from
factoring the morphism P through appropriate Lang maps (see Section 5.2).

5.2. Compatibility of the morphism P with the Howe factorization.
5.2.1. Induced representatlons and cohomology. We make the first reduction in the

calculation of Homy,, , (r,)(In dT: * ((F”) (). H. '(Xp,Qy)) by using Proposition 4.1.1 to relate
this space to the cohomology of the pullback of Artin—Schreier sheaves along certain mor-
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phisms P. To make this precise, first recall that over I, the quotient Uy i /Ty, x of affine
schemes can be identified with the affine space A[]. There is a section of the quotient map
Unk = Upi/Th i given by

51 (XG0 G jDed > X1+ xaw® 44y, kD]
where x1 is the n x n identity matrix and for j = 2,....n,
xj = diag(x1,j, Xo,[j+1] -+ s Xn,[jbn—1])s Xij = [X(Gj,1) -+ XG0 k1))

Since the Fgyn-subscheme Xj C Uy i is stable under the action of Uy i (Fy), there exists
a closed [Fyn-subscheme Y;, C Uy, x such that X, = L;I(Y ). Since Y}, is a closed subscheme
of an affine scheme, it must be affine. Moreover, by Lemma 2.2.4, we may take Y}, to be the
reduced subscheme such that Y}, (Fq) = (7;, N Frq(ﬁ & )- Hence we see that

Frg (Ys) N Frj (Y) = {1}

foralli # j.
Define

B:(Ung/Th) x Togx — Upg, (x.8) — s(F(x))-g-s(x)~".

The F n-scheme B~1(Y;) C (Unk/Th i) x Th g comes with two maps:
pri: B (Yp) = Upi/Thg = A[A] pra: 71 (Ys) = Thg.
The Lang morphism L is surjective. By Lemma 4.1.2, for any y € T},  such that L,(y) = g,

(x,g) € B (Yp) < s(x)-y € X

Lemma 5.2.1. The scheme B~1(Y}) is the graph of P:pri(B~1(Yy)) — W}fl), where
P is the restriction of the map A[A] — W;fl) given by

x > Lg(det(s(x))) ™! = g(det(s(x))) - det(s(x)) "

Proof. Let x € A[A] and y € Ty x be such that s(x) -y € Xj. This implies that we
have
Ly (det(s(x))) - Ly (det(y)) = Lg(det(s(x) - y)) = (1.0.....0) € W,

and hence we see that Ly (det(s(x)))™! = Ly (det(y)). In the remainder of the proof, we show
that Ly (det(y)) = Lgn(y1) for some y; € W}fl) and that L, (y) is determined by y;.
By construction, the entries along the diagonal of s(x) -y are yi,...,y, € W}fl) and
by Definition 2.3.3,
yi = (pt(i)(yl) forl <i <n.

Thus the ith coordinate of
Lqg(y) = diag(@(yo(1)). ¢(Vo(2): - - - - 9 (Vo (n))) - diag(y1., y2. ... yn) '

is the expression _ .
¢0a@) - yi ' =0T TP ) - e" OO,



124 Chan, The cohomology of semi-infinite Deligne-Lusztig varieties

where o is the bijection defined in Definition 2.3.1. By Lemma 2.3.2, we have

(o) +1=[c@)]
forall 1 <i < n, and therefore
ooty -y = PFDl(y1) - "D (71 =1 ifi #1,
ol | - ; ; _ _ P
! (0[1:(1)]()71) . (pt(l)(yl 1) = (pn(yl) . yl 1 lfl = 1

Therefore
Lg(y) = diag(¢" (y)yi ', 1., D). s

Lemma 5.2.2. The following diagram commutes:

B (Yh) = Tix
Poh x>diag(x,1,..., 1)
ALY
P
Proof. This follows from the proof of Lemma 5.2.1. O

Proposition 5.2.3. For any character x: W}fl)(Fqn) = Tpx(Fy) — @?, let &y denote
the corresponding Qg-local system on Whl . Then fori > 0, we have Fryn-compatible isomor-
phisms

U F i = ; _
Homy, ) (Indp"“ &%) (0). HI(X5 Qo)) = HE(pry (B~ (Ya)), P*£,),
where P: A[A] — Wh(l) is the morphism x +— Lg(det(s(x)))™! = (p(det(s(x))) - s(x))~ L.

Proof. By Proposition 4.1.1, we have Fry»-compatible isomorphisms

Homy, , &) (Indp“ &) (1), HI(X3, Qp) = HI(B™ (V). pr3 £5),
where éﬁ;( is the rank-1 local system on Th x corresponding to y and pr, is the composi-
tion B~1(Yy) — (Uni/Thi) x Thi LN Th . By Lemma 5.2.1, B~ 1(Yy) is the graph of
P:pry(B~ YY) — W( ) ,and by Lemma 5.2.2, pr, =i o (P o pr;), where i: W( ) Th.x
is the morphism of Fqn schemes given by x — diag(x,1,...,1). Moreover, the pullback of
éﬁ’ is z*éﬁ = &, where &£ is the rank-1 local system on W( ) corresponding to y. There-
fore

HL(B™'(Yp).pry &) = H(pr (B~ (Yp)), P*£y). o

5.2.2. Subschemes of pry(8~1(Y;)). We will calculate Hl(pr;(B~1(Yp)), P*¥£,) by
relating it to the cohomology of certain subschemes associated to the indexing sets > ;
defined in Section 3.2. We now define these subschemes and prove some first lemmas about
them.

Definition 5.2.4. Define
Posi: Xz 1= pry (B (V) N Alhsgs] - WS

x = Lg(det(s(x)) ™" = (p(det(s(x))) det(s(x))) .
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Lemma 5.2.5. The morphism P> factors through L4 via the morphism
Oss:Xs5 — W}f:) x > det(s(x))" L.

Equivalently, we have a commutative diagram

P
-%Zs,[ = ) W}fl)
stJ\z A’
(1)
Wh
Proof. This follows by definition of P> ;. i

Lemma 5.2.6. The projection map
s = Az,
is an isomorphism. Moreover, we have an isomorphism

Xssr = A[‘A’;s,t ~ ‘A’gs,l—i-l] X X>s,t41-

Proof. We will show that this map is surjective and then use a counting argument to
show injectivity.

Let x € A[A>s,] and y € Ty, x be such that z := s(x) - y € X}, . Recall that from the
proof of Lemma 5.2.1, y is determined by its first coordinate y; = [1,ay,...,ap,—1] € W( )
Then for any A = (i, j,[) € Asg,,

G.1) oz = {xA + (terms with x;_j ;) for I’ <l and ay» for 1" < 1) ifi < j,

xj + (terms with x(; ;) for I’ <l and a;» for 1”7 < 1) ifi > j.

This implies that the condition det(s(x)-y) € Wh(tl)(Fq) is equivalent to the vanishing of
h; — 1 polynomials in y and x,, for v € AZ . Explicitly, if we write

det(s(x) . y) = [1,d1’ .. .,dhl_l] (S W}Etl)’

then the s; — 1 polynomials are dl.q —d;forl <i <h;—1.

Now fix x™ € A[AZ ,]. Observe that d; is a polynomial of degree g"!in ay, so there
are at most ¢” roots of the polynomial d{ —d;. Let a; be a root, and observe that d5 is
a polynomial of degree ¢" ! in a5, so that there are at most ¢” roots of the polynomlal d —dy.
In this way, we see that there exists a y € Ty, x such that det(s(x) - y) € W (IFq) and that
there are at most q"(h’ 1 such y.

The existence of such a y € Ty, x now allows us to extend any x~ € A[AZ ] to an
element x € X>5; C A[A>;s,] satisfying s(x) - y € Xp,. This shows the surjectivity of the
projection.

Recall that x € X>;,; determines y up to Ty,  (IFy)-translates. There are exactly g
such translates, and since there are at most ¢+~ points y satisfying diq — d; for all i with
1 <i < h; — 1, we see that each of these choices of y € T}, x determine the same extension
of x™ € A[AZ ] tox € X>5; C Alss;,]. This shows injectivity. i

n(ht—l)
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Lemma 5.2.7. Let x € X5, If Xy = 0 for some v € AZ ,, then we have x) = 0 for
all A € Asg s with |A| = |v].

Proof. This follows easily from the proof of Lemma 5.2.6 (see equation (5.1)). D

For a moment, we write %>St to emphasize the dependence on n, g. For each ¢ with
0 <t <r + 1, the sequences

=myg=<myp <mpy<---<mMmMp <Mpy1:=n,

h=ho=hy>hy>--->hp >hpy1:=1
induce corresponding sequences

/ ’ / / ’ / o
l=myg<my <my<--<m,_,<m. _,=n/my, m_,:=m;/my,

h/=:h62h/1>h’2>--~>h’,_t2h/r+1_,=l, h;_, = h;
where we define

/
m:

‘_,=mi/m; and hi_,:=h; fort<i<r+1.

Note that /1, = /| if and only if t = 0. For 0 < 59,79 < r — ¢, let A;’O/',"”q denote the asso-
ciated indexing sets as in Sectlon 3.2. Under this correspondence, the scheme ¥’

be matched with f{;/s:)",’t(’)q . We make this precise in the next lemma.

>t+s 1o Can

Lemma 5.2.8. The natural projection
(5.2) AL - AV G e (SR L) ifilj =1 (mod my)

. . . n, n/mg,q"t . n, nm,ml
induces an isomorphism X%}, = i%l>/0 o' under which P} = P>(/) o

Proof. Recall that
'A’Ztt—{(l JjoD:1<i,j<n 1<l<h—1,j=i (modm,)}
A" =G j ) sV <ij sn/m 1 <T<hy—1=h, 1},
It is clear that the map (5.2) defines a bijection

(G jD:il<ijsn1<l<h —1 j=i=1(modm.)}—> A"

In particular, (5.2) induces a bijection (,A)>, )= (A;/()Tot ’qmt)_ and therefore an isomor-

phism between the associated affine spaces. We have a commutative diagram

‘%>t t ? %>0,0

| !

A[ALE)T] —— A[ALTT)),

where the vertical maps are isomorphisms by Lemma 5.2.6. It therefore follows that the top
map must be an isomorphism. O
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5.3. Calculation of Artin—Schreier sheaves. In this section, we prove the two key
propositions required to calculate the cohomology of the (pullbacks of) Artin—Schreier sheaves
at hand. Fix a character y: W}fl)(Fqn) = Thi(Fy) — @? together with a Howe factoriza-
tion y = []7=; xi and recall from Section 2 that this gives rise to associated indexing sets
Tigs Dt st s

The main idea behind Proposition 5.3.1 is to use the conductor-lowering compatibility
lemmas of Section 5.2 to induct according to the Howe factorization. This proposition allows
us to reduce a cohomological calculation about y>; = [/, xi to a calculation about x>;+1,
as long as everything is “divisible” by the conductor of y;. Proposition 5.3.1 is proved in
Section 5.3.1.

Proposition 5.3.1. For 0 <t < r, we have Fryn-compatible isomorphisms
Hi(Xp0  P*Ey.) = HEExp i1, PP Eys, )20 ® (—g"/2)200)%e,
where e; = #(AZ; ; ~ AZ, 1)
Proposition 5.3.2 is essentially proved by applying Proposition 4.2.2 inductively. The
main calculation is to show that the hypotheses of Proposition 4.2.2 hold. Proposition 5.3.2

allows us to ‘get rid of’ all the parts that are not ‘divisible’ by the conductor of y;, which
returns us to the setting of Proposition 5.3.1. Proposition 5.3.2 is proved in Section 5.3.2.

Proposition 5.3.2. For 1 <t < r, we have Fryn-compatible isomorphisms

ndy/2

HI(Xzp10, P*Ey,) = HI(Xspg, P* Ly )P0 7 [di] @ ((—g"/?) )%,

where d; = #A,_ 1

5.3.1. Proof of Proposition 5.3.1. By definition, as characters of W}f:)(Fqn), we have

X>t = Xt X=>t+1,

where y; has level h; and conductor m;, and y>;41 has level h;4; < h; and conductor
Mys41 > my, where my | myy1. This implies that

‘:6X>t =Ly, ®pr* ‘:6)(3:-;-1

as sheaves on W( ) , where pr: W(l) — W(l) .
By Lemma 5.2.8, we have an 1somorph1sm kS ff’;/omot 4" and Pl = Pf(/)"é’ gt
Therefore, by Lemma 5.2.5, we have the following equality of (Q;-sheaves on ?E>t £

P*‘:eth = P*i){t ® P*pr* $X>t+1 Q (Lqmt Xt) ® P*Pr* $X>t+l’

where Q0 = Q;/O%’ ™ . By construction, y; factors through W( )(qut) and hence L*
is the trivial local system. By Lemma 5.2.6,

cf)(z

qmt

Xorp = A["4°£z‘,t > ‘A’;t,t+1] X X>t141-

Since the push-forward of P* pr* &£,_,., to AlAZ, , ~ 'A’;t,ﬂrl] is the trivial local system,
we have
P*ile - Qe & P*int-H’
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where Qg is the constant sheaf on AlAZ, , ~ AZ, ] and P*Ey, ., is the pullback along
P*: X5t 141 — W;SJ)H. Thus by the Kiinneth formula,

H Xz Py ) = HU(A[AZ , ~ A ] X X241, Qe R Py, )

= @ Hf (A[‘A’gt,t > A;t,t—i—l]’@e) ® H (X>r,0+1, P*$X2t+l)

r+s=i
= H!(Xzrp41. P Loy D2#AZT, ~ AZ41)]
® ((_qn/z)z#(ﬁg,‘,\A;,Hl))deg‘

5.3.2. Proof of Proposition 5.3.2. The main ideas in the proof of Proposition 5.3.2 are
Lemmas 5.3.3 and 5.3.5. We will need some notation that will be used in these two lemmas
and also in the proof of the proposition at hand. Recall that

r—1 =1, j.)eA:j=1(mod me—), j # 1 (modm), 1 <1 <hy—1},
and define
Io:=dr—1 ={(1,j,1) € Ay, 2 |(1,j, D] > gnh; = D)},
Jo = Ji—10 = {1 j.1) € Ay, 11, D] < gn(he = 1)},

Recall that, as in Lemma 3.2.3, these two sets are totally ordered and come with an order-
reversing injection

Io=Jo, (1,67(1), 1)~ (1,67 (1), 1) := (1, 6" 7 (1), h; — ).

This map is a bijection if and only if 7, h; are even and (1,0™/%(1), h;/2) ¢ Jo. Otherwise,
#Jo — #1y = 1. Given this, there is a natural filtration on /¢ by iteratively removing a highest-
norm element, and analogously a natural filtration on Jy by iteratively removing a lowest-norm
element. These filtrations can be specified so that they are compatible under the map /o — Jo
above. Precisely, fix a labeling vg, vy, ..., vgr,—1 of the elements of /o where |v;| > |v; 41| for
0 <i < #lp — 1. We may define
IK+1 = I,C ~ {\)K}, JK+1 = JK ~ {U,’C}

Define

Te i ={G.[j —i+11.1) € Ar_1s: (1,o7 (1), 1) € I},
Je={G.[j —i +11.1) € A1, : (1,67 (1).]) € Ji}.

Lemma 5.3.3. For each k < #lo — 1, we have Fryn-compatible isomorphisms
Hi(Xzi-10 N AlAzes U (T U JA) P*Ey)

= H (¥sr—1 N Az U (Ter1 U T )] PFE, )% 2] ® (g7)%e.

Remark 5.3.4. A variation of Lemma 5.3.3 for the equal characteristic case with
({1, n,n}, {h, h,1}) was proved in [6, Lemma 5.11]. We give a different proof here that does
not refer to juggling sequences or the explicit equations cutting out Xp.
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Proof. Recall that by definition I, and J, depend on ¢. This proof is driven by the
following simple goal: to apply Proposition 4.2.2. To this end, the content of this lemma is the
calculation that the polynomial

PiXsi1y NA[As U(Te U Tl = W x o Ly(det(s(x)) ™"

has the required form for f(x) = x,, and y = x,/.
Letx € X571, N A[A>sr U (I U Ji)] and let y € Ty x be such that

z:=s5(x)-y € Xp.

Set v:= v, := (1,07 (1),]) € I and V' := v, := (1,6" 7/ (1),h; — ) € Ji, and note that
[v] + V| = n(hy — 1).

Take A1 := (i,07(i),1) € T, so that |A1] = |v|. Let A5 € As;, U I, U J, be such that
both z;, and z,, contribute to a monomial in det(s(x)). I first claim that necessarily A, € Te.
Indeed, if y € S, is such that y(i) = o/ (i), then m; } y(i) —i, and hence there must be
another i’ such that m; } y(i") —i’. If y corresponds to a nontrivial summand of det(z), then
Gy G, )| < n(hy — 1) = |G,y (@), 1)| <n(h; —1)/2 and so (i, y(i’).1") € Je. But now
A1)+ |G, y@E), 1) = |v| + |V'| = n(h; — 1) and by Lemma 3.2.6, this inequality must be
an equality. Thus y must be a transposition, and we see that A, € JNK and in fact

o= (07 (@i),i,n—1)= (07 @), 0" (67 (i)).n—1).

By equation (2.6), z;, and z,, are powers of z, and z,/, respectively:

10 (0’ (i) [t()—j+11-1
Zy, =28 and z), =z, =zJ .
Therefore the contribution of A1 and A5 is
110) [r()—j+11—1 .
seny 24 2 if char K > 0,
(5.3) (_1) ZAZhy = TZNZAy & gtOFhi—1 e +1=1+
Zy “Zy if char K = 0.

The contribution of z, to Ly (det(z))! is given by

(5.4) Z(lezlz)q_zllzlz’
Al

and after writing this sum in terms of z, and z,/ as in equation (5.3), all terms cancel except
for those corresponding to when

7(i)=0, t@)=n—-1, [t@)—j+1]—-1=0, or [t(i))—j+1]—-1=n—-1,
which exactly corresponds to when
t(i)=0, t@)=n-1, @)=/, or t(i)=j—1.

Hence the sum in (5.4) simplifies to

n J n n—j .
(5.5) (28 —zy) -23, + (Zg/ —zy) -z if char K > 0,
: n hy—l1 J+l n ! n—j+hg—1
@l —z )" 2 4 (zg, —zy)? -z if char K = 0.
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We now investigate how equation (5.5) allows us to understand the contribution of x, and
xy to Lgy(det(z)) = Lg(det(s(x) - y)) € Wy, . If x, appears in z, , then |A| < |A¢|. Necessar-
ily Ao does not sit on the diagonal since A does not, and hence if z, , contributes to L, (det(z)),
there must exist a A{, such that z A, also contributes to the same monomial. But by Lemma 3.2.6,
this implies that [Ay| < n(h; — 1) — [Ao| < |A’|. This shows that the contribution of x; and x;
is contained in the contribution of z, and z,,. Now,

zj = x)/ + (terms that each include a factor of x;, for Ay € Jo and |Af| < [v'])
=Z),

z) = X, + (terms that each include a factor of x, for ¢ € 76 and [Ag| < |v])

and hence we see that the contribution of x is captured by the contribution of z, which is
captured by the contribution of z,,. That is, the contribution of x is equal to

(x?" — xy) -xg}] + (X,?," —xy)xd if char K > 0,
(5.6) nesthi

n hy—I J+l n )i .
(xd" — x4 x4+ (xg, —xy)9 - xd if char K = 0.

v/

By assumption, m; does not divide j since v ¢ 4> ;. Since y>; has conductor m;, equa-
tion (5.6) shows that P has the form required to apply Proposition 4.2.2 in the case f(x) = x,-
and y = x,,. Therefore

HEXzi-1,0 N A[Az U (Te U TOL PP Ly ) = HL(S3, P*Ey. )21 ® (¢")",
where S3 C X>/—1¢ N AlAs; s U (I~,c U 7,;) ~ {v}] is the subscheme defined by
S = flx) =0.
Since S3 is the disjoint union of g” copies of X>;—1,; N A[A>;; U (7,; U .7,;) ~{v,v'}],
Hi(S3. P* £y )[2] ® (q")"
> Hl(Xsi-10 N Alhzr U T U T~ o'} P*E, )% 2] @ (¢7)e
= HI (X214 N Alhzrs U (Terr U Ter )] P2y )% 2] ® (™).
where the last equality holds by Lemma 5.2.7. O
Lemma 5.3.5. Suppose #Jo —#lo = 1. Then Jyi, = {v := (1,n/2 4+ 1,h;/2) € Jo}
and we have Fryn-compatible isomorphisms
Hé (Xsr—1, N AlA>s U j;Io], P*Ey.,)
= H!Esr-1,4 N Albse] P2, )% (1] @ (—g"/?)%e.
Proof. For ease of notation, set ip := #/ in this proof. By the divisibility assumption
on 4A>;;, we see that
Xsr10 N Az U Jip] = Esio10 0 AlAsr]) x Esr—10 N A[Tj)).
Moreover, by Lemma 5.2.6, the projection

[ FEsrm1e N A[As ) X Esr—10 NA[T]) = Esr—1, N AlAse]) x A[{v}]
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is an isomorphism of varieties. By Lemma 3.2.6, it follows that any A € Jlo can only contribute
nontrivially to the last coordinate of W @ in det(s(x)). Therefore, for Py = P|x_, , and some
morphi A (1) -

rphism n: A[{v}] — W, 7, we have

JeP Ly, = Pody., WLy,
and therefore
HI (X500 N Alhses U Tl P*Ey,)
= H!(Xs10 x A[{v}], Py Lye, Bn*Ly.,)

> P H]Ezri. PiLy,) @ HIA[DN. 1" L,.).
r+s=i

It now remains to calculate n, which we do by a similar calculation to the one in Lemma 5.3.3.
By Lemma 3.2.3, v = (1,n/2 + 1, ht/2). The contribution of x, to the last coordinate
of Ly (det(s (x)))~! is exactly given by

T(i)+1 [e(i)+n/21+1 (i) [t +n/21 |
> xd -xd —xl Xl if char K > 0,
n gt O+=D/2+1  lr)+n/21+(h—1)/2+1
Zi:1 Xv * Xy
T(i)+(h—1)/2 [e()+n/204(hs—1)/2 )
—x -x if char K = 0.
This simplifies to
qn qn/2 .
(xy —xp) X if char K > 0,
n he/2 (n+he)/2
(xd —xp)4" " Xl if char K = 0,
and it follows that
n/2 .
A W ,...,0,x7"" (x4" — x)) if char K > 0,
n:A[{v}] — Byt g thos2 gn ght/zy
©,...,0,x (x? —x) ) ifchar K = 0.

We can now make the final conclusion. By [4, equation (6.5.7)] (or [6, Step 4: Case 2 of
Proposition 6.1]), we have
, n2if =1,
dim H! (G, *Ly.,) = 17 .
- 0 otherwise.
Moreover, Frgn acts on H (G4, n* £ x=,) by multiplication by —q"/2. |

The desired conclusion of Proposition 5.3.2 now follows by combining Lemmas 5.3.3
and 5.3.5. Explicitly, by Lemma 5.3.3,

Hci (Xsr—1,0 NA[Asi—1,4]. P Ly ,)
= HI(X>1—14 N AlAsr, U (To U Jo)l. P*Ey,)
= HI(X—10 N Alhzre U (T U T P*Ly. )%

T2k @ ((—g"?)F) e
for any k < #Io. Clearly Iy, = @. If Jy1, = &, then we are done. Otherwise, Jyy, is the
singleton

J#I() = {(1’ 1+ I’l/2, (hl - 1)/2)}
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and by Lemma 5.3.5,
Hi(Ezr—10 N AlAze U (Inrg U Jyio)ls P* Ly )[2#10] © ((=¢"17)*0)ee
~ HY(Bzr, P* L)% 2810 + 1] @ (—g™/2) 2ot e,
It remains to observe that if Jy;, = &, then 2#[p = #(lo U Jo) = #(d;—1, U $1—1,¢), and
otherwise, 2#1o + 1 = #(Iop U Jo) = #(dr—1,+ U $1—1,r). This completes the proof. O
5.4. Morphisms: Proof of Theorem 5.1.1. Let y: W,fl)(IFqn) = Ty r(Fyg) — @Z be
any character and consider the sequences of integers

l=:mo<my <mp<-+<myp <Mp41:=n,

]’l=ih0=h1>h2>~-->hr2hr+12=1

associated to a(ny) Howe factorization of y. (Recall from Section 2.4 that these sequences
do not depend on the choice of Howe factorization.) Let A ; be indexing sets associated to
a Howe factorization of y. By combining Propositions 5.2.3, 5.3.2, and 5.3.1, we have

Homu, , (v, (Indp/ &4 (0. HE (X3, Q)

= Hl(pry (B~ (Ya)), P*£y) (Prop. 5.2.3)

= H;(X>0,0, P L) (Lem. 5.2.1)

= Hi(X=0,1. P*£y.,)[2e0] ((—g"/?)?¢0) " (Prop. 5.3.1)

~ HE(Es1 1, P*Ey )% [d) + 2e0]((—g"/ %)% H2¢0) % (Prop. 5.3.2)
ndy /2

=~ Hl (%512, P*Ly.,)® [di + 2(eo + el)]((—q"/z)dl+2(60+31))deg (Prop. 5.3.1)

and so forth by iteratively applying Propositions 5.3.1 and 5.3.2. Recall that

={(LjDmia|j—1myj—11=<l=<h —1}
= (i =) (he = 1) forl <t <r+1,

er = #(AS; ;> A 141)
:#{(l,j,l)mtlj—l,_]#l,ht+1—1<l§ht—1}
= (mif—l)(ht—ht-f-]) for0 <t <r.

Thus setting
dy :=di +-+dr1

r+1 n n
= E ( - _)(ht -1,
=1 \MMe—1 My
ry = (di+---+dry1) +2(e0 + -+ er)

r+1 n n n
_ (( - _)(h, _ 1) +2( - 1)(ht_1 —h,)),
— mys_1 myg me—1

the cohomology groups above are isomorphic to

; ndy/2 di
HIFspra1, PPEy )T ] (=g ) e
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Note that X, 41 is a single point and hence we obtain that as vector spaces,

_@qnd)(/Z

o o ifi =ry,
Homy,, , (v,) (Indp)" /]f((qu; (0. He (X Q) = {E)Qf :

otherwise.

Moreover, since Frgn acts trivially on H2 (%, Qy), it follows that Frgn acts by multiplication
by (—1)"*¢""x/2 on the above space of Uy x (IF4)-homomorphisms. Since every representa-
tion of Uy,  (Fy) occurs in Ind 2’ 1’: F Z) ( )() for at least one character y, the above gives a com-
plete description of the Fryn-action on H. (Xp, Q g) and this action is always by multiplication
by (_1)iqni/2‘

6. Deligne-Lusztig theory for finite unipotent groups

In this section, we prove the main theorems of this paper. We first calculate the alternat-
ing sum of the cohomology groups (Theorem 6.1.1) using a technique of [19]. This is very
similar to the results of Lusztig [20] and Stasinski [21], which study closely related groups
in a reductive setting. Combining Theorem 5.1.1 and Theorem 6.1.1 gives Theorems 6.2.1
and 6.2.2, which prove Boyarchenko’s conjectures [2, Conjectures 5.16 and 5.18] in full gener-
ality. Note that strictly speaking, as stated in [2] these two conjectures assume that char K > 0
and k = 1; however, they can be easily extended and formulated without these assumptions
(see [6, Conjectures 7.4, 7.5]). Theorems 6.2.1 and 6.2.2 can be viewed naturally as the higher-
dimensional analogues of the results of Boyarchenko and Weinstein on the cohomology of X»
in [4, Sections 4-6].

We remark that in all previous work (i.e., the 7 = 2 work of Boyarchenko—Weinstein [4]
and the primitive- y, equal-characteristic work of the author in [6], [5]), pinning down the non-
vanishing cohomological degree i = s, of Hci (Xn.Qy)[x] was a trivial consequence of (the
analogues of) Theorem 5.1.1. This is because the central character of H’(Xj,Q)[y] deter-
mines s, in these cases and so s, agrees with the r,, appearing in Theorem 5.1.1. However, in
the general setting, this no longer holds, and it is a nontrivial theorem that the equality s, = 7
is still true (Theorem 6.2.4). The proof is an application of the Deligne—Lusztig trace formula
[9, Theorem 3.2].

The trio of Theorems 6.2.1, 6.2.2, and 6.2.4 gives us a complete description of the
Th  (Fg)-eigenspaces H!(Xp,Qy)[x] together with the Frobenius action on H! (X, Q).
Combining these theorems with Theorem 5.1.1 and the fact that the multiplicity of an irre-
ducible p in the regular representation is equal to the dimension of p, we may write down an
explicit formula for the zeta function of Xj,. This is done in Theorem 6.3.1.

In Section 6.4, we demonstrate how to realize the main theorems of [2], [4], [6], and [5]
as corollaries of the theorems in this paper.

6.1. Alternating sums of eigenspaces. We study the virtual Uy,  (IF;)-representation

Ry = D (=D He (X, QoI

Theorem 6.1.1. For each y:Tp (Fg) — @z{ the Uy j (IF4n)-representation £R is
irreducible. If y # x', then £ Ry, £ R, are nonisomorphic.
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Proof. Since the dual of the virtual Uy, (F,)-representation Y, (—1)! H: (X}, Q¢)[x]
is isomorphic to Y (=1)! HI (X5, Qo) [x '],

> (=1)'* dimHomuy, , ) (H(Xa, Qo)[x), HE (X4, Qo) (X))
i,
= (1 dim (H (. Qo) ® HEX Qo)
ij
=Y (=)' dim HJ(2. Qg) -1 .

where the subscript y !

1 '® x', and

, ' denotes the (T}, x (Fy) x Tj x (Fy))-eigenspace corresponding to

L= (Xp x Xp)/Up i (Fg).
Hence the statement of the theorem is equivalent to showing

1 if y =y,
0 otherwise.

D (=D dim HA(Z.Qg) g1, = {

We follow a technique of Lusztig demonstrated in [19] wherein we construct an action of a con-
nected torus 7 over Fq on X and then use the fact (see, for example, [10, Proposition 10.15])
that

YD) HAE. Q) = Y (1) HAET. Q).

For the remainder of the proof, we extend scalars to IF;. Recall from Lemma 2.2.4 that

X =g € Upx(Fy) : Frg(9)g™" € Uy NFrg (U}
It is clear that the map

Xp x Xp = {(x,x',y,¥) € (U N Frg(Uy) x (U N Frg(U;) x Up e (Fg) x Up e (Fy) :
xy =Frg(y), y' = Frg(y)x'},
(8.8 = (Frg(9)g™ ' Fre(gNe' " g.8'™")
is an isomorphism. Since (Uh,k(Fq))Frq = Up x(Fy), for any g € Xj and h € Uy 1 (IFy), we
have gh € X}, and the image of (gh, g'h) is (Fry(g)g ™', Fry(g')g' "', gh,h~1g’~1). More-
over, Fry(gh) (gh)y™' = Fry (g)g~ ! if and only if h € Up, k (Fg). It follows from this that the
map
S — {(x,x",y) € (U NFrg(Uy)) x (Uy, N Frg(Uy)) x Uy (Fy) : xy = Frg(»)x'},
(g.8") = (Pry(2)g™ " Fry(¢hg' ™" gg'™")
is a bijection.
Since Uy, x (Fq) has an Iwahori factorization, any y € Uy (Fq) can be written uniquely
in the form
y = Yivhyivy. vi€ Uy NF N (Uy), v € Uy NEr Uy,
y{ € D - (U, NF ' (Uy). y5 € Uy NFr (Up),
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where Eh C Unk (Fq) is the subgroup of diagonal matrices. Hence X is in bijection with the
set of tuples

(. X' 1 v5 31 ¥5) € (U N Frg(Uy) x (Up N Frg(U) x (Up, N Frg ' (U))
x (U NFr (U;)) x (D - (U, nFr (T))
x (U, NFr; (Up))
satisfying
xXy1vay1 vy = Frg(yiyayiy)x'.
As inL19, p- 73],~note that any z € l7h can be written uniquely in the form F(yi)_lxyi for
yieUyN Fr,;1 (Up) and x € U, N Frg(U,") (this can be checked by the same calculation as
[2, Section 6.8]). Using this together with the substitution X" = Fry (y5)x’ € U, N Fry(U,)),
we have that ¥ is in bijection with tuples
5. 37 93) € Uy O Frg(Uy)) x (Uy N Fig ' (T;)
x (Dp, - (U, NE N (U,)) x (U, NFr; (Up)
satisfying _ _
Frg (201X € Upyyyiys = Upyiy3.-
Consider the subgroup of Uy, (Fq) x Up k (Fq) given by
H :={(t,t") : 1,¢ diag, t € Dpt’,
7V Fry (1) = /7! Fry(t') centralizes Dy, - (ﬁ}: N Frq_1 f];)}
For (¢,t") € H consider the map

ag,ey: (X, 5. Y1 5) > (Frg ()X Fry(0) 1/ yht' =1 1/ y {171 Fry (1) y5 Frg (1) ™).
We first show that a(, ;) defines a map ¥ — X for (¢,¢) € H. For
@ 5. 91, v3) € (Up NFrg(U;) x (U N Fry ' (U)
x (Dp, - (U, NErg (U))) x (U N (Un))
we have
Fry (t'yot' =1y 1Y) Fry (1)X Fry (1) ™' € Upt'y/t= Fry(£) yY Fry (1)~
if and only if
Frg (t' oy )X Frg(t) ™ € Upt'y|t7 Fry(t) yly Fry(t) ™ = Uy Fry (¢ y} y4 Fry ()7L,

where we used that 7! Fry (1) = t'~! Fry(1") commutes with y/. Since Fr, (') normalizes U,
the above holds if and only if

"1

Fry (y51)X € Upy{ s,
which exactly means (X, y5, 7, y5) € X. Since H is abelian, it is now clear that a(, ;) for
(t,t") € H defines an action on X.
Observe that H contains Ty, x (F4) x Tj x (IF4) as a subgroup. Moreover, the action of H
restricts to the left action of Ty,  (Fy) x Ty ¢ (IF,) inherited from the left-multiplication action
of Ty x(IF4) on Xj. We now pinpoint an algebraic torus 7 C H. By an explicit calculation,
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ﬁ,: N Fr(;1 l7h_ consists of matrices (5% uok) € Upx (Fq), where u,_ is a lower-triangular
matrix of rank n — k and uy is a lower-triangular matrix of rank k. Thus for any ag € Wy, (IF4)™,
the element a := diag(1,...,1,ap....,a0) € Gy x(IF4) (where there are k coordinates of ag)
centralizes D, - (U,” N Fr;1 U,). 1ft = diag(tq, ..., 1), then
Frq(¢) = diag(e(ts(1)), ¢(to(2))s - - - » 9lo@m))),
and t = Fry(¢)a is equivalent to the condition
lo(i if 1 <i <n-—k,
6.1) 1 = o( 0(1)) 1 =i=n .
@(tey) -ao ifn—k+1=<i=<n.
Since the permutation ¢ has order 7, it is clear from the above that ¢ is determined by a single
entry, say t,. Let #(£) denote the unique ¢ satisfying (6.1) with #, = £. Then Fr, (t(£)) 12 (&)
centralizes Dy, - (U,” N Frq_1 U,) and
—~ —X
T ={0).1(6):§€F } CH

is a connected algebraic torus over Fq whose action on X = (X}, x Xp)/Up x (F4) commutes
with the (T, x (F4) x Tp x (Fg))-action. One can easily see that the 7 -fixed point set of X is

=7 = {(L.1.y5.1) 1 y5 € Dp. y5 € Frg(y3) - Up)
= {(L1y3. 1) s yp € Dy} = Ty p (Fy),
where under the final identification, T, x (Fg) x Ty, x (Fq) acts by (7,¢") * y5 = ty5¢’~1. Thus
Y D HUET Qo1 = Y (D HA(Th i (Fg). Qo)1
= H(Tpx(Fq). Qo) g1
and the theorem follows from

| o 1 if y = ¥/,
dim H2 (T, 1 (F,), “Lx = -
¢ (Thr(Fg) Qﬁ)x Lx {0 otherwise.

6.2. Boyarchenko’s conjectures. In this subsection, we combine the results of Sec-
tions 5.4 and 6.1 to prove Conjectures A and B (Theorems 6.2.1 and 6.2.2). Theorem 6.2.4
can be viewed as a refinement of Conjecture B in the sense that it proves that the nonvan-
ishing cohomological degree of H C’ (X5.Qy)[x] is equal to the explicit integer ry defined in
Theorem 5.1.1.

Theorem 6.2.1.  The finite-type IF yn-scheme Xy, is maximal in the sense of Boyarchenko—
Weinstein [4]. That is, for each i > 0, we have Hc{ (Xn.Qy) = O unless i or n is even, and the
Frobenius morphism Fryn acts on H.(Xy, Q) by the scalar (—1)’ gni/2,

Proof. By Theorem 5.1.1, Frgn acts on Hci (X1, Q) by multiplication by (—1)ig"!/2.
To finish, we show that Hé (X3,.Qy) = 0if i and n are both odd. Assume that 7 is odd. By
definition of r, it is enough to show that the sum dy + --- 4 d; 11 is always even. We have

n n
d; = ( - —)(hz —1),
me—1 myg

and since n is odd by assumption, then n/m;—_; and n/m; must also be odd, and hence d; is
even. This completes the proof. O
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Theorem 6.2.2. Forany y € 7, p, the cohomology groups H, c’, (X, Qp)[x] are nonzero
in a single degree i = sy, and H(Xp,,Q o)x] is an irreducible representation of Up, i (Fy).
Moreover, H* (Xn, Qo)) = He*' (X3, Qo)) if and only if x = 1.

Proof. Let 7 be an irreducible constituent in Hg* (X, Qy)[x] for some sy. Then by
Corollary 5.1.3,

HomUh‘k(ng)(n, Hci (Xh,@g)[)(]) =0 foralli # s,.

But this implies that the alternating sum £R, = ), (-1)'H C’ (X, Qy)[x] can have no cancel-
lation, and 7 =~ +R,. By Theorem 6.1.1,

irreducible if i = sy,

0 otherwise.

HI(Xp, Qolx] = {

Moreover, if y # x’, then £R, and R are nonisomorphic by Theorem 6.1.1 and it follows
easily that H.* (X5, Qg)[x] and Hg’(/ (X, Qp)[x'] must also be nonisomorphic. i

As in Definition 2.2.3, for any { € Fyn, t € Ty x(Fy), and g € Uy 1 (Fy), let (§.1,g)
denote the map X, — X}, givenby x —~ ¢ -t -x-g- §_1.

Theorem 6.2.3. If{ € ]F;n has trivial stabilizer in Gal(Fyn /Fy), then

Tr((¢, 1, 8)*: H (Xp, Qo)) = (=1)** x(g) forany g € Ty x(Fy).

Proof. 'This is identical to [6, proof of Proposition 6.2]. The argument is very similar to
the proof of Lemma 6.2.5 in the present paper. |

Up to now, we have only shown that H, c’ (Xp, @5) [x] is concentrated in a single degree s .
It is natural to expect, based on Theorem 5.1.1, that s, = r,. We resolve this question in Theo-
rem 6.2.4. The proof uses purely cohomological techniques and essentially is a combination of
Theorem 6.2.3 together with the Deligne—Lusztig fixed point formula.

Theorem 6.2.4. Forany y: Ty (Fy) — Q.

Uy i (F —
Homy,, , ) (IndTZ,',f((FZ))(X), He* (X, Qo) # 0.

In particular, sy, = ry.
Proof. By Frobenius reciprocity, it is enough to show

n.q J—
(6.2) dimHomT;’f(Fq)(X’ H.* X%, QoD #0,

where we write T, = T:’g, Sy = s;’q, and Xj, = XZ’q to emphasize the dependence on n, g.
It is clear that once this is established, then by Theorem 5.1.1, it follows immediately that
sy = ry. For notational simplicity, we write H, (X) to mean H.(X, Q). Recall from Defini-
tion 2.2.3 that for ¢ € IF;”, t € Tpp(Fy), g € Up i (Fy), we write (£, 1, g) to denote the map
Xy, — X, givenby x > -t -x-g- 1. We first prove two lemmas.
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Lemma 6.2.5. Let po be a prime dividing n. Then, for any x € F;po ~ g and any
g € Ty i (Fq),

n.q n.q
(=% Tr((x. 1, g)s H* (X, D)[x])
ro n/pg.a?

n/ s 0
= (0% (L1 g HYY (XM PoA y)).

Proof. Fixx eF ;po ~ /. Recall that x acts by conjugation on
M = My + Myw* + - + Mw=Dl ¢ x4
(recall the standard form of a point of XZ’q in Definition 2.3.3):
xxM=x"1-M-x.

If / is the unique integer 0 </ < n — 1 such that /k = 1 modulo 7, then

xlwkox =x71 -(pl(x)-wk.

We have ¢'U~1(x) = x if and only if po | (j — 1) and therefore we see that if x * M = M,
then necessarily M; = 0 for j # 1 modulo po and

M = M; + Mp0+1w-[kpo] 4o+ Mn—po—i-lw[k(n_p())]-

For any integer m, let [m]’ be the unique integer 1 < [m]’ < % such that m = [m]’ modulo %.

I now claim that there is a T,/ (F4)-equivariant morphism

PO
f:(X;ll,Q)x N XZ/Pan

given by

M + Mp0+1w'k[1’0] 4+t Mn_p0+1w-[k("—P0)]
(k) [k(55—D

/ /
= My + Mpo-i-lwn/po n/po ’

+o ot My @

where M denotes the top-left-justified % X % matrix in M; and

o _ 0 IPLO_I
n/po . 0

Using Definition 2.3.3, it is a straightforward check to see that this morphism is well-defined
since f(M) is of the form (2.5), satisfies (2.6), and the determinant condition

@(det(M)) = det(M)

implies that 20 (det( f(M))) = det( f(M)). (This last claim can be seen by observing that the
rows and columns of M can be swapped so that the matrix becomes block diagonal of the form
diag(f(M), o* @ (f(M)), ..., " P~V ( f(M))).) The equivariance under

20
T,’fj,f (Fg) = T;:’/kpo’q (Fg)

is clear.
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By Proposition 3.3.1, X Z’q is a separated, finite-type scheme over [F;», and the action of
(x,t,8) € IF;,I X Tp k (Fg) x Ty 1 (IF4) defines a finite-order automorphism. Moreover,

(x,t,8) =(,2,8) - (x, 1, 1),

where (1,¢, g) is a p-power-order automorphism and (x, 1, 1) has prime-to-p order. Hence by
the Deligne—Lusztig fixed point formula [9, Theorem 3.2], we have

Z(—l)" Tr((x.1.9)": HA(X; ) = Z(—l)f Te((1,2, ) HA((X)PD))).
Therefore
#T (Bg) Y (=1 Tr((x. 1.9)": HL(X} ) [x)

= Y O YD Te((xr )% HE(XG )

reT) () i
= > O D Tr((L ) HI(X D))
1T} (Fy) i

= #T ’Q(Fq)Z( D Tr((1,1, )" HA((X ) [x])

—#T”(E;)Z( D Te((1, 1, @)% HL(X]P4") [4]).

i

The desired equality now follows since by Theorem 6.2.2, H! 0.6 79\ [x] and H! (X, n/po:q "0 )xl

n 9
are nonzero only wheni = Sx Tandi = =5y /Po-q respectlvely ]

Lemma 6.2.6. Let y: T}:’ ’,?(Fq) — @Z Assume that we are in one of the following
cases:

(1) n > lisodd and pg is a prime divisor of n.
(2) n > lisevenand py = 2.

Fixal € IF b Such that (¢) =T 770 and consider the corresponding extension of y defined as

~ —x , x(g) if q is even,
X:]F;po X T;;:;?(]Fq) - QK s (Zl’g) = sn,q+sn/p0,q1’0 ; ) )
(=1%o )"+ x(g) ifqisodd.

Then
Y. Tx.DHTH#o.

X x
XEFqI’O ~Fg

Proof. If q is even, then
ﬂmxpox{1} =1,

so the conclusion holds. For the remainder of the proof, assume that ¢ is odd. If we are in
Case (1), then by Theorem 6.2.1, we know that sX’q and s"/ P0:4"™ are both even. Hence

ﬂJFqXpOxu} =1
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and we are done The same conclusion holds if we are in Case (2) and s 74y sn/ Poq™0 jg even,
n/po.q?
SO assume S’y ¥ 7+ Sy ® is odd. Then y ’VIIFZPO x{1) 1s nontrivial and

Y Fx.nTt=o.

X
xe]Fq 70

Thus to show the conclusion of the lemma, it suffices to show that erqu F(x. D)7t £0.
If {™ € IF, then m must be a multiple of ¢ + 1, which is even. This implies that Y(x.1)=1
ifx € IF;, and we are done. m)

We are now ready to ) prove the theorem. First observe that X ;}/3 (Fg) and hence
for any y: Th k L(Fy) — Qe , we have

HE (X 4] = HOT M E) = 1.

so equation (6.2) holds for n = 1 and ¢ arbitrary. We now induct on the number of prime
divisors [ of n. Assume that for a fixed integer [ > 0, equation (6.2) holds for any n = ]_[5=1 Di
and arbitrary ¢, where the p; are (possibly nondistinct) primes. We will show that equation (6.2)
holds for any n = ]—[520 p; and arbitrary ¢.

If n is odd, let py be any prlme divisor of n, and if n is even, let pg = 2. Define the
character y:F * 270 X T, o (Fq) — Q ¢ asin Lemma 6.2.6. Then

(6.3) #(F 5 x Ty (Fy)) - dim Homg <, 0 v,y (0. He ' X, Dx1)

= > Fx ) Tr((x L g) B (XA
(x,g)eIF XT” q(]Fq)
= #(]F;< X T (Fq)) dlmHOm]FxXTn q(]Fq)()(, (X ’q)[)(])
+ > T, ) Tr((x, 1, 2): HEE (XD [x).
(x.8)E(F 5o ~FXT) { (Fy)
By Lemma 6.2.5,
n.q

(6.4) > 7(x. g) Tr((x, 1, ) H* (X7 )[x])

(x,8)E(F Xy ~F)XT] (Fy)

n.q_ n/po.a?0 ~ _
= ()% T Y A

(x,g)
xeF™ 2P0 \]F

n/pgy.qP0 »
STe((1, 1, g); HYX (X207 1)
n, n/ Po
= ()T gy TN

X x
xGIFqPO \]Fq

where
n/pg.a”0

= #Tj{ (Fy) - dim Homya ey (2, He (X120 ).

By the inductive hypothesis together with the fact that

T (Fg) = T Fgro) = WD (Fgn),
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we have N # 0. Since pg satisfies the hypothesis of Lemma 6.2.6, we now see that (6.4) is
nonzero. By (6.3), this implies that at least one of the following numbers is nonzero:
dimHom]Fx T;g(ﬂrq)()(, (X o1ve)
or e
. ~ 778y ,
dlmHoquxxT;;:;(/(Fq)(X, HCX (X;ll q)[X])

In either case, we must have

dlmHoan 4 (F, )()(, (X ’q)[)(]) # 0. |

6.3. The zeta function of X;. Thanks to Theorems 5.1.1 and 6.2.4, we now have an
explicit description of the nonvanishing cohomological degree r,. In the next theorem, we give
a formula for the zeta function of X,.

Theorem 6.3.1. The Hasse—Weil zeta function of Xy, is

2dim X, A
Z(Xp.t) = l_[ (1 _ (_qn/Z)i -t)(_l) dlch(thQZ)’
i=0
where
dim HZ (X5, Qg) = > g2,
X Tk (F)—>Qy
ry=i

Moreover, if n is odd, then Z(Xp, 1)~ is a polynomial.

Proof. By the Grothendieck—Lefschetz trace formula,

2dim X, _ Coyit
ZXp.)= [] (det((1 =1 Frgn): H;(X. Qy)))
i=0
By Theorem 6.2.1, we know that Fryn acts on H. (X}, Q) by multiplication by (—¢"/2)’, so
det((l — Frqil); Hé (Xh’@ﬁ)) — (1 o (_qn/Z)i . t)dirnH(’.(thQE).
It remains to prove the dimension formula.
Let H?(Xp, Qp) = @; H (X, Qg). By Theorem 6.2.2, H? (Xp, Q) is a direct sum of

distinct irreducible representations of Uy, i (IFy) (parametrized by y: Ty, x (Fg) — Q). Write

H(f(Xh,@e) =71 DDk,

where the m;; are nonlsomorphlc 1rredu01ble representations of Uy, x (IF;). Recall that the regu-
lar representation Reg := Ind ( }ik Fa) (1) has the property that an irreducible Uy, x (IF4)-repre-
sentation 7 has multiplicity dim & in Reg. Then

ki
dim Homy,, , () (Reg, H (Xh,@e)) = dimHomy,, , (v, (Reg, @mj)
j=1

ki
= Zdimmj.
Jj=1
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On the other hand, by Theorem 5.1.1,
dim HOIIth.k (]Fq) ( Reg, Hcl. (Xh R @g))

. Up x (F j o
=d1mHomUh!k(]Fq)( EB IndTZ_’:((FZ))(X)’Hé(Xh»Qe))

Xstry=i
i Un.i(Fg) j =
= dim @ Homy,, , ) (IndT::(FZ) (X), He (Xp, Q{Z))
xXstry=i
— Z qndx/z
xXstry=i

where each sum ranges over y: Ty x (IF;) — @z such that r, = i. This proves the dimension
formula. The final assertion now follows from Theorem 6.2.1 since if n is odd and

H(X5, Q) # 0,

then i must be even, and hence Z (X}, t) has no nontrivial factors in the numerator. ]

Example 6.3.2. We demonstrate how to calculate the Hasse—Weil zeta function in the
case that n is prime. First observe that the Howe decomposition of a character of W}fl)(Fqn)
must be of the form

X= X?(Nmmqn/u?q) X9,
where )((1) is a character of Wh(l)(IFq) and )(g is a primitive character of W}f,l ) (Fgn). After fixing
alevel A’ with 1 < i’ < h, the number of such y is equal to

Np = (@" " =¢" "+ 1) """V =P —g 4 1),
and
dy=m—-DH =1, ry=@m—-)Hh—-1)+0—-1)0h-1).
Thus by Theorem 6.3.1,
gh=1 ifi =2(m—1)(h—1),
Ny - q"@=DHE=D/2 ¢ — (n = 1)(h—1) + (n — D)(h = I).

We can now write down explicit formulas for the zeta function of X},. For example:

dim H. (X, Q) = {

Corollary 6.3.3. Ifn =2, then
(1 4¢3 1)@* =4+ D@~

Z(X3,1t) = 01— 07 (—¢* H@—F—ae

6.4. Examples. Prior to this work, the only cases in which the Uy,  (IF,)-representa-
tions H! (X}, Qg)[x] had been studied were in the following cases:

(1) For h = 2 and k = 1, this was done by Boyarchenko—Weinstein in [4, Theorem 4.5.1].

(2) For h, k arbitrary, y primitive, and char K > 0, this was done by the author in [6]. Before
this some smaller cases were done:

(@) Then =2, h =3,k =1, char K > 0 case was done by Boyarchenko in [2, Theo-
rem 5.20].
(b) The n = 2, h arbitrary, k = 1, char K > 0 case was done by the author in [5].

We explain how to specialize Theorems 5.1.1, 6.2.1, and 6.2.2 to recover these results.
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Note that in previous work, the unipotent group schemes are called U and are defined
over [ n, whereas the unipotent group schemes in this paper are called Uh r and are defined
over [F; (see Remark 2.2.5 for a more detalled discussion). However, U (IFqn) = Up x(Fy),
and there is a natural way to realize W (]Fqn) as a subgroup of each so the distinction
between working in the ambient Uh, and Up x only appears in the proofs and not in the
theorem statements.

6.4.1. The case h = 2,k = 1. In this setting, the subquotients of the multiplicative
group of the division algebra in equal and mixed characteristic are isomorphic, and so one does
not run into the mixed characteristic difficulties that arise when & > 2.

Note that T5 1 (Fy) = Wz(l)(]Fqn) = Fgn. Let y:Fyn — @? be a character. If y is triv-
ial, then it corresponds to ({1, 1,n},{2,1,1}), and if y is nontrivial of conductor m, then it
corresponds to ({1,m,n},{2,2,1}). Then by Theorem 5.1.1,

Pe=( =) 2R ) =n4 L2
and U 1) .
HomUz.l(]Fq) (Inquz,‘ll K ()(), Hcl(Xz,Qg)) # 0 < i=n-+ % —2.

The center of Us 4(IFy) is To,1(IF;) = Fgn. Since the actions of T 1 (IF;) and Uz 1 (Fy) on X»
agree on the center of U, 1 (IFy), the above equation implies that

H(X2, Q] #0 < i=n+2-2.

The centrality of T 1(Fy) in Uy 1(F4) (which is not true for & > 2) allowed us to obtain
Theorem 6.2.4 from Theorem 5.1.1 automatically. We now see that maximality of X, holds
by Theorem 6.2.1 (this is [4, Theorem 4.5.1 (b)]), and the irreducibility and multiplicity-one
properties of H(Xy, Qg)[y] follow from Theorem 6.2.2 (this is [4, Theorem 4.5.1 (a)]).

6.4.2. The case h,k arbitrary, x primitive, char K > 0. Let y: T (Fy) — @Z
be primitive. Then the sequences {m;}, {h;} associated to the Howe factorization of y are
({1,n,n},{h, h,1}). By Theorem 5.1.1,

ry=m=h-D)+2G - Dh-1)=n-Dh-1)
and Uy (F) .
Homy,, , ) (Indy,* 5y (1) He (X Qp)) # 0 <= i = (n—1D(h—1).
The subgroup T}, i (IF4) is not central in Uy, 4 (IF, ), but the center of Uy, i (IFy) contains Ho(IFy),
where Hy is the subgroup of Uy, i consisting of diagonal matrices with entries in

(1)
{(1,0,...,0,%)) c W,

Moreover, y is primitive if and only if its restriction to Ho(IF,) is primitive, and it therefore
follows that ry only depends on y|g,(r,)- Hence

HI(Xp. QY] #0 <= i=@n—1)(h—-1).

Note that again, it was the fact that the restriction of y to the center of Uy x (IF;) determines
1y (which is not true for nonprimitive y), which allowed us to immediately pinpoint the non-
vanishing cohomological degree of Hé (X7, Qg)[x] from Theorem 5.1.1. The irreducibility
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and multiplicity-one properties of H c’ (X3, Qg)[x] follow from Theorem 6.2.2. In this general-
ity, this is [6, Theorem 6.3], in the case (2a), this is [2, Theorem 5.20], and in the case (2b),
irreducibility is [5, Theorem 5.1] and multiplicity-one follows from the trace formula given in
[5, Theorem 5.2].

7. Torus eigenspaces of the homology of semi-infinite Deligne-Lusztig varieties

We return our discussion to the semi-infinite Deligne—Lusztig variety X associated to
L* < D*. Our goal is to understand the representations of D arising from the 6-eigenspaces
H; (Y . Q)[6], where 0: L* — @; Once we understand the relationship between the (ind-
pro-)scheme structure we defined on X in Section 2.1 and the action of L* x D*, the prob-
lem of computing the representations H; ()7 ,Q,) can be reduced to the problem of comput-
ing the representations H c’ (Xp, Q). This reduction was already known by Boyarchenko [2],
and therefore, after we summarize [2, Lemma 6.11, Corollary 6.12], Theorems 7.1.1, 7.1.2,
and 7.1.3 follow from the theorems in Section 6. We then use these results together with
a method of Henniart [13, 14] to characterize the D*-representations H; (Y ,Q)[6] in terms
of the local Langlands and Jacquet-Langlands correspondences (Theorem 7.2.1).

7.1. Seml infinite Deligne—Lusztig varieties. We first define some terminology. If
0:L* — Q ¢ is a smooth character, then there exists an / such that the restriction 9|Uh is
trivial. We call the smallest such & the level of 6. We say that x € L* is very regular if x € (9><
and its image in the residue field IFX has trivial Gal(IFqn /F4)-stabilizer. Later in this sec-
tion, we will give a character formula for H; (X @Qy)[A] on the subgroup of D> consisting of
very regular elements of L*. By work of Henniart [13, 14], such character formulas are often
enough to pinpoint these irreducible representations. We learned of this strategy from [3] where
these ideas were applied to GL, (K) and Di</n, combined this with the theory of y-datum of
Langlands—Shelstad [18] in [6, Section 7.2], and in joint work with A. Ivanov, carried it out for
any inner form of GL, (K) in [7, Section 10].

The action of L* x D* on X induces an (LX/Uh) X (DX/U"(h 1)+1) action on

Xp= | | X,

meZ

Recall that X}, is a subvariety of X! ;l ©) ~ ¥, IEO) < X, » Whose stabilizer is
~ _ _ h—
Dy i= {(r.a)) - (€67) - (U UE x Up/Up "D

and Yh is equal to the union of (LX/Uf X DX/Ug(h_l)H)—translates of (the image of) Xj,.
It therefore follows that there is a natural isomorphism

x h x n(h— 1)+1
(7.1) Hi (X, Q) = Indg /702700

)(Hi (X3 Q).
By Proposition 3.3.1,
Hi (X3 Q) = HZO™DE"D7 (X, Qp) @ (¢" 7D D)e,

Moreover, we have the following result.
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Theorem 7.1.1. Let 0: L* — @Z be a smooth character whose restriction to U Lh is
trivial and set y := 9|UL1. Then forrg :=2(n —1)(h — 1) —ry,

Hi(X. Q0] #0 < i =rq.
Moreover,
o 1= Hry (X. Qq)[0] = Ind 7 -0 (1)
where ’7/9 is a representation naturally obtained from 6 and H.” (Xp,, Qg)[x]. Explicitly:

() H *(Xp, Q)] extends to a representation ng of

G (Fyg) = Fy

h—1)+1
2o Up g (Fg) = 03 /U= D%

with Tr(ng($)) = (=1)"20(C), where § € OF is very regular. We may view 1y as a rep-
resentation of O7,.

(ii) We can extend ny to a representation 17/9 of m% . O}, by demanding 7 +— 6().

Proof. The statement is exactly parts (a) and (b) of [2, Proposition 5.19]: Part (i) holds
by Theorem 6.2.3 (see [2, Step 1 of Section 6.15]) and part (ii) essentially follows by (7.1) (see
[2, Section 6.14.5 and Step 3 of Section 6.15]). O

Theorem 7.1.2. If0:L* — @; has trivial Gal(L/K)-stabilizer, then the D> -repre-
sentation Hy, (X, Qy)[6] is irreducible.

Proof.  To prove this, we need to show that the normalizer of the (Z - O, )-representation
r}/e in D is exactly Z - O};. To see this, it is sufficient to show that 27/9 is not invariant under
the conjugation action of I1. Let x € O C O}, be very regular. Recall that by Theorem 6.2.3
and the definition of 77,9 given in Theorem 7.1.1,

Trnp(x) = (=)™ - 0(x).

For any generator IT of the unique maximal ideal of Op, we have IT - x - IT™! = (pk (x). Thus
conjugation by IT normalizes the set of very regular elements and

Trnp(IT-x - T = (=1)™ - (" (x)).

Therefore, if @ has trivial Gal(L / K )-stabilizer, then 72 - O} is the normalizer of 1, in D*. O

Theorem 7.1.3. Let x € O be very regular. Then

Trng(x) = (=D - Y 67 (x).

y€Gal(L/K)
Proof. We have

Trng(x) = Y Troplexg™) = Y (=1)-07(x),
geD*/(Z-0F) y€Gal(L/K)
gxg~! €Z-0F

where the second equality holds by [3, Lemma 5.1 (b)] together with Theorem 6.2.3. ]
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7.2. The local Langlands and Jacquet-Langlands correspondences. To conclude
the paper, we will use the above results to describe the supercuspidal D *-representation
Hy, (X, Q/)[6#] in terms of the local Langlands and Jacquet-Langlands correspondences. We
use a method of Henniart [13, 14] in the form discussed in [7, Section 10].

Fix a character e: K* — @; with ker(e) = Nmy, /g (L) and let ¥k (n) denote the set of
irreducible n-dimensional representations o of the Weil group Wk such that

ox=0Q(eo reclzl),

where recg: K* — 'Wla(b is the recﬂ)f(ocity isomorphism from local class field theory. Let X
denote the set of characters L* — Q, with trivial Gal(L/K)-stabilizer. Then there is a canon-
ical bijection

X/Gal(L/K) — gx(n), 60— oy
obtained by invoking the theory of y-datum of Langlands—Shelstad [18, Section 2.5] (also see
[6, Section 7.2] for an exposition). Now let A g (D) denote the set of isomorphism classes of
irreducible supercuspidal representations p of D> such that

0= p® (€ oNrd),
where Nrd is the reduced norm of D*. Then by local Langlands and Jacquet-Langlands corre-
spondences, there is a canonical bijection
Gk (n) - Ag(D”), og > py

satisfying certain natural properties.

Theorem 7.2.1. The bijection
X/ Gal(L/K) => Ag(D*), [0] —> Hy,(X.Qy)[6]

agrees with the composition of the local Langlands and Jacquet—Langlands correspondences.

Proof. Since Nrd(D*) C Nmy, /g (L), it follows that H,, (X.Q,)[0] € Ax(D*). By
this together with Theorems 7.1.2 and 7.1.3, we may apply [7, Proposition 10.5] to obtain
Hyy (X, Q0)[0] = po. D

In particular, by Theorem 7.2.1, the cohomology of semi-infinite Deligne—Lusztig vari-
eties for division algebras gives a geometric realization of the Jacquet-Langlands correspon-
dence on Ak (—): if D1, D, are any two division algebras over K of dimension n2 and X, 1, X 5
are the corresponding varieties, then

A (DY) ES Ak (DY), Hyy(X1. Q0] — Hyy (X5, T)[6).

(Recall from Theorem 5.1.1 that ry does not depend on the Hasse invariant of D.)
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