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The cohomology of semi-infinite
Deligne–Lusztig varieties

By Charlotte Chan at Princeton

Abstract. We prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite
Deligne–Lusztig varieties attached to division algebras over local fields. We also prove the
two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-
infinite Deligne–Lusztig varieties are ind-schemes comprised of limits of certain finite-type
schemes Xh. Boyarchenko’s two conjectures are on the maximality of Xh and on the behavior
of the torus-eigenspaces of their cohomology. Both of these conjectures were known in full
generality only for division algebras with Hasse invariant 1=n in the case h D 2 (the “lowest
level”) by the work of Boyarchenko–Weinstein on the cohomology of a special affinoid in the
Lubin–Tate tower. We prove that the number of rational points of Xh attains its Weil–Deligne
bound, so that the cohomology of Xh is pure in a very strong sense. We prove that the torus-
eigenspaces of the cohomology group H i

c
.Xh/ are irreducible representations and are sup-

ported in exactly one cohomological degree. Finally, we give a complete description of the
homology groups of the semi-infinite Deligne–Lusztig varieties attached to any division
algebra, thus giving a geometric realization of a large class of supercuspidal representations
of these groups. Moreover, the correspondence ✓ 7! H

i
c
.Xh/Œ✓ç agrees with local Langlands

and Jacquet–Langlands correspondences. The techniques developed in this paper should be
useful in studying these constructions for p-adic groups in general.
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1. Introduction

The seminal work of Deligne and Lusztig on the representations of finite reductive groups
[9] has influenced an industry studying parallel constructions in the same theme. Classically,
one begins with a reductive group G over Fq together with a maximal torus T ⇢ G, and writ-
ing G WD G.Fq/, T WD T .Fq/, one considers the G-representations arising from the torus-
eigenspacesH i

c
.ÅXT⇢G ;Q`/Œ✓ç of the cohomology of the Deligne–Lusztig variety ÅXT⇢G . The

Deligne–Lusztig variety is a T -torsor over a subvariety of the flag variety, and can be defined
to be

ÅXT⇢G WD .ÅU \ F�1
.ÅU//nπg 2 ÅG W F.g/g�1

2
ÅU º;

where ÅT DT .Fq/, ÅGDG.Fq/, ÅU ⇢ ÅG is the unipotent radical of a Borel ÅB ⇢ ÅG containing ÅT ,
and F W ÅG ! ÅG is the group automorphism induced by the Frobenius element in Gal.Fq=Fq/.

Following this philosophy, it is natural to ask whether a similar construction can be
used to study representations of reductive groups over finite rings or over local fields. Both
of these set-ups have been studied by Lusztig – for reductive groups over finite rings, see
for example [20], and for reductive groups over local fields, see [19]. In the present paper, we
study the latter situation using the construction proposed by Lusztig in [19]. We recall Lusztig’s
construction now. The analogy with the classical Deligne–Lusztig varieties ÅXT⇢G will be ap-
parent.

For a reductive group G over a non-Archimedean local field K with residue field Fq , let
T ⇢ G be an elliptic unramified maximal torus over K, and write T WD T .K/, G WD G.K/,
and ÅT WD T .bKnr

/, ÅG WD G.bKnr
/. Assume that there exists a Borel subgroup ÅB ⇢ ÅG defined

over bKnr and containing ÅT , and let ÅU be its unipotent radical. Let F W ÅG ! ÅG denote the group
automorphism induced by the Frobenius element in Gal.bKnr

=K/. Lusztig’s construction, which
we call the semi-infinite Deligne–Lusztig set, is the quotient

ÅX WD .ÅU \ F�1
.ÅU//nπg 2 ÅG W F.g/g�1

2
ÅU º:

In [19], Lusztig suggests that ÅX should have the structure of an infinite-dimensional variety
over Fq and that for a fixed character ✓ WT ! Q

⇥
`

, the subspace Hi .ÅX;Q`/Œ✓ç wherein T acts
by ✓ should be zero for large i and be concentrated in a single cohomological degree if ✓
is in general position. The long-term goal is to give a uniform construction of supercuspidal
representations of p-adic groups by realizing them in the cohomology of ÅX .

We make this precise and realize this goal in the case when G D D⇥ for an n2-dimen-
sional division algebra D D Dk=n over K and T D L⇥, where L is the degree-n unramified
extension of K. Following Boyarchenko [2], we define an ind-scheme structure on ÅX together
with homology groups Hi .ÅX;Q`/ that yield smooth representations of T ⇥G. We now state
the main theorem, which gives a complete description of the subspaces Hi .ÅX;Q`/Œ✓ç.

Main Theorem 1. Let ✓ WL
⇥
! Q

⇥
`

be any smooth character.

(a) There exists an r✓ 2 Z�0 such that

Hi .
ÅX;Q`/Œ✓ç ¤ 0 ” i D r✓ :

Furthermore, r✓ can be determined in terms of the Howe factorization of ✓ , which

measures the extent to which ✓ arises from characters that factor through norm maps.
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(b) For any very regular element x 2 O
⇥
L
⇢ D

⇥
,

Tr.xIHr✓
.ÅX;Q`/Œ✓ç/ D .�1/

r✓
�

X

�2Gal.L=K/

✓
�
.x/:

(c) If ✓ has trivial Gal.L=K/-stabilizer, then the D
⇥

-representation Hr✓
.ÅX;Q`/Œ✓ç is irre-

ducible.

When ✓ has trivial Gal.L=K/-stabilizer, there is a canonical way of assigning a corre-
sponding irreducible representation of the Weil group WK . In this setting, by work of Henniart
[13, 14] (see [7] for a discussion), Main Theorem 1 is enough to characterize the correspon-
dence ✓ 7! Hr✓

.ÅX;Q`/Œ✓ç in terms of the local Langlands and Jacquet–Langlands correspon-
dences:

Corollary. Let ✏ be any character of K
⇥

with ker.✏/ D NmL=K.L⇥
/. Let X denote the

set of smooth characters L
⇥
! Q

⇥
`

with trivial Gal.L=K/-stabilizer and let AK.D
⇥
/ denote

the set of isomorphism classes of irreducibleD
⇥

-representations ⇢ such that ⇢ä ⇢˝ .✏ ıNrd/,
where Nrd is the reduced norm of D

⇥
. The correspondence ✓ 7! Hr✓

.ÅX;Q`/Œ✓ç induces a bi-

jection

X=Gal.L=K/ ⇠��! AK.D
⇥
/

which agrees with the local Langlands and Jacquet–Langlands correspondences. In particular,

the representations in AK.D
⇥
/ are exactly the irreducible representations ofD

⇥
appearing in

the cohomology of ÅX .

The proof of Main Theorem 1 splits into two parts:

(1) Prove that if ✓ j
U

h
L
D 1, where U h

L
D 1C ⇡

h
OL, then

Hi .
ÅX;Q`/Œ✓ç D IndD

⇥
K⇥�O⇥

D

�
“H 2d�i

c
.Xh;Q`/Œ�ç”

�
;

where Xh is a finite-type variety of pure dimension d and � WD ✓ j
U

1
L

. Here, K⇥ is the
center of D⇥, the ring OD is the unique maximal order of D, and the cohomology group
H
2d�i
c

.Xh;Q`/Œ�ç – which a priori is a representation of a subquotient of O
⇥
D

– is
extended to a representation ofK⇥

�O
⇥
D

in a way uniquely determined by the character ✓ .

(2) For any �WU 1
L
=U

h

L
! Q

⇥
`

, characterize H i
c
.Xh;Q`/Œ�ç as a representation of a certain

finite unipotent group Uh;k.Fqn/.

Part (1) was proved by Boyarchenko in [2], where he made two conjectures about Part (2) (see
[2, Conjectures 5.16 and 5.18]). In light of this, the obstruction to understandingHi .ÅX;Q`/Œ✓ç

reduces to the study of H i
c
.Xh;Q`/Œ�ç. For the reader’s convenience, we recall the two con-

jectures on these cohomology groups here.

Conjecture A (Boyarchenko). The finite-type Fqn-scheme Xh is a maximal variety in
the sense of Boyarchenko–Weinstein [4]. Equivalently, we have H i

c
.Xh;Q`/ D 0 unless i or

n is even, and the geometric Frobenius Frqn acts on H i
c
.Xh;Q`/ by the scalar .�1/iq

ni
2 .

Conjecture B (Boyarchenko). Given a character �WU 1
L
=U

h

L
! Q

⇥
`

, there exists an
r� � 0 such that H i

c
.Xh;Q`/Œ�ç D 0 for all i ¤ r�. Moreover, H r�

c .Xh;Q`/Œ�ç is an irre-
ducible representation of Uh;k.Fqn/.
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Remark 1.0.1. A finite-type FQ-scheme S is a maximal variety if S.FQ/ attains its
Weil–Deligne bound. More explicitly, by the Grothendieck–Lefschetz trace formula and
Deligne’s work on the Weil conjectures [8, Theorem 3.3.1],

#S.FQ/ D
X

i2Z

.�1/
i Tr.FrQ;H i

c
.S;Q`//



X

i2Z

Q
i
2 dimH

i

c
.S;Q`/:

Observe that this bound is realized exactly when FrQ acts by the scalar .�1/iQ
i
2 .

We describe the progress on these two conjectures prior to the present work. Under the
assumption k D 1, Conjectures A and B were proved in the h D 2 case by Boyarchenko and
Weinstein in [4], where they show that the perfection of X2 is the special fiber of a particular
open affinoid V in the Lubin–Tate tower, and then prove that the cohomology of V realizes
certain cases of the local Langlands and Jacquet–Langlands correspondences by calculating
H
i
c
.X2;Q`/Œ�ç. For h > 2, the results are more sparse. Nearly nothing was known about Con-

jecture A, and the only work on Conjecture B required the assumption that � is a primitive

character (i.e., the restriction of � to U h�1
L

=U
h

L
ä Fqn has trivial Gal.Fqn=Fq/-stabilizer). For

primitive �, Conjecture B was proved: in [2] for k D 1, h D 3, n D 2, and charK > 0; in [5]
for k; h arbitrary, n D 2, and charK > 0; and in [6] for k; h; n arbitrary, and charK > 0. In
these works, it was also shown that Frqn acts on H i

c
.Xh;Q`/Œ�ç in the predicted way for �

primitive, and this is the extent to which Conjecture A was known for h > 2.
We remark that the restriction to the class of primitive characters also appears in various

other works, for example [20, 21], where they are called regular characters. The present paper
is the first paper to study in detail cohomology groups of this type for the class of all characters.

The approach of this paper is of a somewhat different nature to the earlier work towards
Boyarchenko’s conjectures. Before this paper, the idea was to define a unipotent group scheme
U
n;q

h;k
over Fqn such that U n;q

h;k
.Fqn/ is a subquotient of O

⇥
D

and stabilizes an Fqn-subscheme
Xh ⇢ U

n;q

h;k
via the natural multiplication action. This approach has the disadvantage that U n;q

h;k

does not arise naturally from the set-up and also does not have a mixed characteristic analogue.
(Only when h D 2 does the unipotent group scheme work in mixed characteristic, and [4]
makes use of this.) In this paper we work with a unipotent group scheme Uh;k over Fq that
arises naturally from the set-up and has the feature that Uh;k.Fq/ is a subquotient of O

⇥
D

and
stabilizes an Fqn-subscheme Xh ⇢ Uh;k via the natural multiplication action. There is a subtle
issue that Xh is not defined over Fq , but this can be dealt with by relating the cohomology of
Xh to the cohomology of the union of q-Frobenius translates of Xh in Uh;k .

Main Theorem 2. The two conjectures of Boyarchenko are true.

The proof of the two conjectures of Boyarchenko comprises most of the present paper. We
expect that the techniques we develop and use to prove these conjectures should be applicable
to studying semi-infinite Deligne–Lusztig varieties for more general reductive groups. Indeed,
since Uh;k.Fq/ is a subquotient of the standard Iwahori subgroup of GLn.bKnr

/, we expect
that these ideas should apply to Deligne–Lusztig varieties associated to more general parahoric
subgroups of p-adic groups. In forthcoming work with A. Ivanov, we investigate this program
for any inner form G of GLn.K/.



Chan, The cohomology of semi-infinite Deligne–Lusztig varieties 97

Remark 1.0.2. The term “semi-infinite Deligne–Lusztig variety” is intended to be rem-
iniscent of the following analogies:

Deligne–Lusztig variety W flag variety;
affine Deligne–Lusztig variety W affine flag variety;

semi-infinite Deligne–Lusztig variety W semi-infinite flag variety:

Here, we use the term “semi-infinite” in the sense of Feigin–Frenkel [12]. We also remark that
by recent work joint with A. Ivanov [7], there is a close relationship between semi-infinite
Deligne–Lusztig varieties and affine Deligne–Lusztig varieties of higher level in the sense
of [16].

1.1. Outline of the paper. Fix coprime integers k; n � 1. In Section 2, we define semi-
infinite Deligne–Lusztig sets and recall the (ind-pro-)scheme structure on the set ÅX attached to
a division algebra. This naturally leads us to study a family of finite type Fqn-schemes Xh that
arise as subschemes of a unipotent group scheme Uh;k over Fq . There is a natural subgroup
scheme Th;k ⇢ Uh;k analogous to T ⇢ G as in the introduction, and the natural left- and right-
multiplication actions of Th;k.Fq/ and Uh;k.Fq/ on Uh;k stabilize Xh. In Remark 2.2.5, we
discuss how Uh;k differs from the unipotent group schemes U n;q

h;k
appearing in [2, 4–6].

We also define the notion of the Howe factorization of a character of Th;k.Fq/ in the
sense of [15]. The Howe factorization gives rise to a pair of sequences .πmiº; πhiº/ from which
one can define a stratification of an indexing set A

C (see Section 3). One of the most important
features of A

C is that it is normed and satisfies Lemma 3.2.6. As a quick application, we prove
in Section 3.3 that Xh is smooth, affine, and has dimension .n � 1/.h � 1/.

In Section 4, we prove several general results on the cohomology of constructible
Q`-sheaves coming from pullbacks of local systems. Proposition 4.1.1 is a generalization of
[2, Proposition 2.3] that allows one to calculate spaces of homomorphisms between represen-
tations of G.Fq/ and cohomology groups of X ⇢ G even if X is not defined over Fq . Proposi-
tion 4.2.1 relates the cohomology of a scheme S to the cohomology of a subscheme of smaller
dimension, and Proposition 4.2.2 is a particular specialization of this proposition which will be
one of the main structural techniques used in the proof of Theorem 5.1.1. We remark that one
can view [2, Proposition 2.10], [6, Propositions 3.4, 3.5], and Proposition 4.2.2 as variations of
the same theme under the umbrella of Proposition 4.2.1.

The content of Section 5 is Theorem 5.1.1, and this is really the heart of the proof of
Conjectures A and B. In this theorem, we prove

HomUh;k.Fqn /

�
IndUh;k.Fqn /

Th;k.Fqn /
.�/;H

i

c
.Xh;Q`/

�
¤ 0 ” i D r�;

where r� can be given explicitly in terms of the Howe factorization of �. The driving idea of
the proof is to calculate certain cohomology groups by inducting along linear fibrations (using
Proposition 4.2.2) determined by the stratification of A

C associated to the Howe factorization
of �.

We begin Section 6 by proving (Theorem 6.1.1) that the alternating sum
X

.�1/
i
H
i

c
.Xh;Q`/Œ�ç

is an irreducible representation of Uh;k.Fq/. This is very close to results of Lusztig [19,20] and
Stasinski [21]. This result together with Theorem 5.1.1 immediately implies Main Theorem 2,



98 Chan, The cohomology of semi-infinite Deligne–Lusztig varieties

and in particular Conjecture B. There is a subtlety that occurs here: while it follows from Theo-
rem 5.1.1 and Theorem 6.1.1 that the cohomology groups H i

c
.Xh;Q`/Œ�ç are concentrated in

a single degree, it requires a nontrivial argument to show that this nonvanishing cohomological
degree is the r� from Theorem 5.1.1. This is the content of Theorem 6.2.4. In Section 6.4, we
show that r� indeed specializes to the formulas obtained in [4] and [6].

We also prove related results in the same theme. We prove a multiplicity-one statement
(Theorem 6.2.2): the association � 7! H

⇤
c
.Xh;Q`/Œ�ç defines an injection into the set of irre-

ducible representations of Uh;k.Fq/. In addition, we compute the character of H⇤
c
.Xh;Q`/Œ�ç

on the set of very regular elements of L⇥ (Theorem 6.2.3), which we utilize in the proof of
Theorem 6.2.4. Finally, we give an explicit formula for the zeta function ofXh (Theorem 6.3.1).

In the concluding section, Section 7, we use the discussion of semi-infinite Deligne–
Lusztig varieties in Section 2.1 and the theorems of Sections 5 and 6 to prove Main Theorem 1.
We then finish the paper with a discussion of the local Langlands and Jacquet–Langlands cor-
respondences and prove the above stated Corollary to Main Theorem 1 (see Theorem 7.2.1).

The techniques of this paper should be directly applicable to studying the homology
groups of semi-infinite Deligne–Lusztig varieties attached to an arbitrary pair T ⇢ G, where
T is a maximal unramified torus of a reductive group G over a non-Archimedean local field.
For example, this can be done whenG is any pure inner form of GLn, and this is part of ongoing
work with A. Ivanov. See Remark 5.1.4 for a more technical discussion.

Acknowledgement. I would like to thank Bhargav Bhatt for several helpful conversa-
tions and Alex Ivanov for helpful comments on an earlier draft. I would also like to thank the
anonymous referee for numerous observations and suggestions that have improved this paper.

2. Definitions

We fix, once and for all, an integer n � 1, a non-Archimedean local field K with finite
residue field Fq of characteristic p, and a uniformizer ⇡ of K. Let L be the unique degree-n
unramified extension of K and let OL be its ring of integers with unique maximal ideal PL.
Write U h

L
WD 1C P

h

L
. For a division algebra D over K, we denote by OD its ring of in-

tegers (i.e., its unique maximal order) and denote by PD the unique maximal ideal of OD .
Write U h

D
WD 1C P

h

D
. IfD has Hasse invariant k=n 2 Q=Z, where .k; n/ D 1, we sometimes

write D D Dk=n.
If K has characteristic p, we let W .A/ D AŒŒ⇡çç for any Fq-algebra A and if ai 2 A for

i � 0, we write Œai çi�0 to denote the element
P
i�0 ai⇡

i
2W .A/. If K has characteristic 0,

we let W D WOK
⇥Spec OK

Spec Fq , where WOK
is the OK-ring scheme of OK-Witt vectors

[11, Section 1.2]. Following the notation of op. cit., for an Fq-algebra A, we write the elements
of W .A/ as Œai çi�0 where each ai 2 A. As usual, we have the Frobenius and Verschiebung
morphisms

'WW !W ; Œai çi�0 7! Œa
q

i
çi�0;

V WW !W ; Œai çi�0 7! Œ0; a0; a1; : : :ç:

One also has a morphism

r WA!W .A/; a 7! Œa; 0; : : :ç
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for any Fq-algebra A. Note that

⇡ � Œai çi�0 D

´
Œ0; a0; a1; : : :ç if charK > 0;

Œ0; a
q

0
; a
q

1
; : : :ç if charK D 0:

For any h 2 N, let Wh WDW =V
hW be the corresponding truncated ring scheme. For any

r 2 N, consider the group schemes

W .r/
WD 1C V

rW ⇢W ⇥
;

W .r/

h
WD 1C V

rWh�r ⇢W ⇥
h
:

These are all defined over Fq .
For any integerm, define Œmç to be the unique integer with 1 Œmç n such thatm ⌘ Œmç

modulo n.

2.1. Semi-infinite Deligne–Lusztig varieties for division algebras. Let G be a con-
nected reductive group overK and writeG D G.K/ and ÅG D G.bKnr

/ so thatG D ÅGF , where
F W ÅG ! ÅG is the Frobenius map induced by the arithmetic Frobenius in Gal.bKnr

=K/. Let
T ⇢ G be an elliptic maximal torus over K and assume that there exists a Borel subgroup B
of G defined over bKnr such that T .bKnr

/ ⇢ B.bKnr
/ DW ÅB . Let ÅU denote the unipotent radical

of ÅB .

Definition 2.1.1. The semi-infinite Deligne–Lusztig set associated toG WDG.K/D ÅGF
and T WD T .K/ D ÅT F is the quotient

X WD .ÅU \ F�1
.ÅU//nπg 2 ÅG W F.g/g�1

2
ÅU º:

It is clear that X is endowed with a left-multiplication action of T and a right-multiplication
action of G.

Remark 2.1.2. Definition 2.1.1 is due to Lusztig [19], where he defined X to be

πg 2 ÅG W g�1
F.g/ 2 ÅU º=.ÅU \ F�1

.ÅU//;

which has a right-multiplication action of T and a left-multiplication action ofG. In this paper,
we follow the convention set in [2], where the quotient is taken on the other side.

The Brauer group of the local field K is isomorphic to Q=Z. Hence for any integer
1  k  n with .k; n/ D 1, there is a corresponding division algebra Dk=n of dimension n2

over K. The group L⇥ is an unramified anisotropic torus in D⇥
k=n

, and we can realize

L
⇥
,! D

⇥
k=n

in this framework in two ways. Set ÅG WD GLn.bKnr
/ and consider the automorphisms

F1W
ÅG ! ÅG; g 7! $

�1
k
'.g/$k; $k WD

 
0 1n�1
⇡
k

0

!
;(2.1)

F2W
ÅG ! ÅG; g 7! $

�k
'.g/$

k
; $ WD

 
0 1n�1
⇡ 0

!
;(2.2)
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where 1n�1 denotes the identity matrix of size .n�1/⇥ .n�1/ and '.g/ is the matrix obtained
by applying the arithmetic Frobenius ' 2 Gal.bKnr

=K/ to each entry of g. Then for i D 1; 2, the
morphism Fi is a Frobenius relative to aK-rational structure and we denote the corresponding
algebraic group by Gi . Consider the diagonal torus ÅT ⇢ ÅG and let ÅB ⇢ ÅG be the standard
Borel. Since Fi stabilizes ÅT , it defines a K-rational structures on ÅT , and we can denote the
corresponding algebraic group by Ti . Note that neither F1 nor F2 stabilizes ÅB and we have

G1.K/
ä

��! G2.K/; T1.K/
ä

��! T2.K/;

where the isomorphism is given by f Wg 7! �
�1
� g � � , where � D �0 � diag.⇡�1 ; : : : ;⇡

�n/ for
a permutation matrix �0 and for some �1; : : : ;�n 2 Z. Since the image of$ in the Weyl group
has order n, we may assume that e1 � �0 D e1, where e1 is the first elementary row vector. For
i D 1; 2, set Gi WD Gi .K/ � Ti .K/ DW Ti . We have G1 ä G2 ä D⇥

k=n
and T1 ä T2 ä L⇥.

Let X denote the semi-infinite Deligne–Lusztig set associated to G1 and T1. We now
recollect how to realize X as the Fq-points of an infinite-dimensional scheme using a method
suggested by Lusztig in [19] and formalized by Boyarchenko in [2]. By [2, Corollary 4.3],
X can be identified with the set

(2.3) ÅX WD πg 2 ÅG W F1.g/g�1
2
ÅU \ F1.ÅU�

/º;

where ÅU� is the unipotent radical of the opposite Borel to ÅB . By [2, Lemma 4.4], a matrix
A 2 ÅG belongs to ÅX if and only if it has the form

A D x.a1; : : : ; an/(2.4)

WD

0

BBBBBBB@

a1 a2 a3 � � � an

⇡
k
'.an/ '.a1/ '.a2/ � � � '.an�1/

⇡
k
'
2
.an�1/ ⇡

k
'
2
.an/ '

2
.a1/ � � � '

2
.an�2/

:
:
:

:
:
:

: : :
: : :

:
:
:

⇡
k
'
n�1

.a2/ ⇡
k
'
n�1

.a3/ ⇡
k
'
n�1

.a4/ � � � '
n�1

.a1/

1

CCCCCCCA

;

where ai 2 bKnr and det.A/ 2 K⇥. (Note the indexing difference between equation (2.4) and
[2, equation (4.5)].) We may therefore write

ÅX D
G

m2Z

ÅX .m/;

where ÅX .m/ consists of all A 2 ÅX with det.A/ 2 ⇡mO
⇥
K

. Note that the action of$k takes each
ÅX .m/ isomorphically onto ÅX .mCk/, and the action of ⇡ takes each ÅX .m/ isomorphically onto
ÅX .mCn/. Since .k; n/ D 1 by assumption, the ÅX .m/ are all isomorphic. It is therefore sufficient
to show that ÅX .0/ can be realized as the Fq-points of a scheme. To do this, we use Lemma 2.1.3,
whose proof (see [6, Lemma 7.1]) is nearly exactly the same as that of [2, Lemma 4.5].

Lemma 2.1.3 (Boyarchenko, [2, Lemma 4.5]). Assume .k; n/ D 1. If a matrix A of the

form (2.4) satisfies det.A/ 2 O
⇥
K

, then aj 2 ⇡
�b.j�1/k=ncbOnr

K
for 1  j  n and a1 2 .

bOnr

K
/
⇥

.

We have now shown that ÅX .0/ consists of matrices of the form

A.a1; a2; : : : ; an/ WD x.a
0
1
; a

0
2
; : : : ; a

0
n
/
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for some a1 2 .bOnr
K
/
⇥ and aj 2 bOnr

K
for 2  j  n, where we write

a
0
j
WD ⇡

�b.j�1/k=nc
aj for 1  j  n:

Note that the .L⇥
⇥D

⇥
/-action on ÅX induces an .O⇥

L
⇥O

⇥
D
/-action on ÅX .0/. (The stabilizer

of ÅX .0/ in L⇥
⇥D

⇥ is actually slightly bigger, but we save this discussion for Section 7.)
For each integer h � 1, define ÅX .0/

h
to be the set of matrices

ÅX .0/
h
WD

®
A.a1; a2; : : : ; an/ W a1 2 .

bOnr
K
=⇡

hbOnr
K
/
⇥
;

aj 2
bOnr
K
=⇡

h�1bOnr
K

for 2  j  n,

det.A.a1; : : : ; an// 2 .OK=⇡hOK/
⇥¯
:

This can be naturally viewed as the set of Fq-points of a scheme of finite type over Fq (see
[2, Section 4.5] for k D 1 and [6, Section 7.1] for the completely analogous general case).

Note that ÅX .0/
h

has a left-multiplication action of O
⇥
L
=U

h

L
and a right-multiplication

action of O
⇥
D
=U

n.h�1/C1
D

, and these actions are defined over Fqn . Because of this, from

now on, we will regard ÅX .0/
h

as an Fqn-scheme. By Lemma 2.1.3, we have

ÅX .0/ D lim
 �

h

ÅX .0/
h
;

so that ÅX .0/ is the set of Fq-points of a (pro-)scheme over Fqn . Similarly, set

ÅX .m/
h
WD

ÅX .0/
h
� .$

a

k
⇡
b
/;

where a; b 2 Z are (any!) such that ak C bn D m. Note that ÅX .m/
h

does not depend on the
choice of a; b and that like X .0/

h
it has a left-multiplication action of O

⇥
L
=U

h

L
and a right-

multiplication action of O
⇥
D
=U

n.h�1/C1
D

. Having this, we now define `-adic homology groups
of ÅX .m/.

Lemma 2.1.4 (Boyarchenko, [2, Lemma 4.7]). The left-multiplication action of the

group Wh WD U
h�1
L

=U
h

L
on ÅX .m/

h
preserves every fiber of the natural map ÅX .m/

h
!

ÅX .m/
h�1,

the induced morphism Whn
ÅX .m/
h
!

ÅX .m/
h�1 is smooth, and each of its fibers is isomorphic to

the affine space An�1
over Fq .

For a scheme S of pure dimension d , setHi .S;Q`/ WDH
2d�i
c

.S;Q`/. By Lemma 2.1.4,

Hi .
ÅX .m/
h�1;Q`/

ä

��! Hi .
ÅX .m/
h
;Q`/

Wh

and in particular, we have a natural embedding Hi .ÅX .m/h�1;Q`/ ,! Hi .
ÅX .m/
h
;Q`/. We set

Hi .
ÅX .m/;Q`/ WD lim

�!

h

Hi .
ÅX .m/
h
;Q`/;

Hi .
ÅX;Q`/ WD

M

m

Hi .
ÅX .m/;Q`/:

For each i � 0, the vector space Hi .
ÅX;Q`/ inherits commuting smooth actions of L⇥

and D⇥
k=n

.
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We will need a slightly different incarnation of ÅX .0/
h

. The morphism

f WG1 ! G2: g 7! �
�1
� g � �

induces an .O⇥
L
=U

h

L
/ ⇥ .O

⇥
D
=U

n.h�1/C1
D

/-equivariant isomorphism of Fqn-schemes

ÅX .0/
h

ä

��!
ÅX 0
h

.0/
;

where if we write A0
.a0; : : : ; an�1/ WD ��1

� A.a0; : : : ; an�1/ � � , then

ÅX 0
h

.0/
D

®
A

0
.a0; : : : ; an�1/ W a0 2 .bOnr

K
=⇡

hbOnr
K
/
⇥
;

aj 2
bOnr
K
=⇡

h�1bOnr
K

for 1  j  n � 1,
det.A0

.a0; : : : ; an�1// 2 .OK=⇡hOK/
⇥¯
:

Observe that the determinant condition holds by multiplicativity. This proves:

Lemma 2.1.5. For all i � 0, as representations of O
⇥
L
=U

h

L
⇥O

⇥
D
=U

n.h�1/C1
D

,

H
i

c
.ÅX .0/
h
;Q`/ ä H

i

c
.ÅX 0
h

.0/
;Q`/

In the next subsections, we will define a subvariety Xh ⇢ ÅX 0
h

.0/ satisfying the following:
the stabilizer of Xh in O

⇥
L
=U

h

L
⇥O

⇥
D
=U

n.h�1/C1
D

is equal to the subgroup

Äh WD π.x
�1
; x/ W x 2 O

⇥
L
=U

h

L
º � .U

1

L
=U

h

L
⇥ U

1

D
=U

n.h�1/C1
D

/;

and ÅX 0
h

.0/ is equal to the .O⇥
L
=U

h

L
⇥O

⇥
D
=U

n.h�1/C1
D

/-translates of Xh. This implies that

H
i

c
.ÅX 0
h

.0/
;Q`/ ä IndO

⇥
L=U

h
L⇥O

⇥
D=U

n.h�1/C1
D

Äh

�
H
i

c
.Xh;Q`/

�
:

The bulk of this paper is devoted to studying the cohomology of Xh, and we only return to
the setting of the semi-infinite Deligne–Lusztig variety ÅX in Section 7, the final section of
this paper.

2.2. The unipotent group scheme Uh;k and the subscheme Xh. For r 2 N, let Ir
denote the r th subgroup in the standard Iwahori filtration for GLn.W / over Fq . Explicitly, for
any Fq-algebra A, let b0.A/ be the preimage of the standard upper-triangular Borel subalgebra
of Mn.A/ under the reduction Mn.W .A//!Mn.A/. Consider the morphism

V WMn.W .A//!Mn.W .A//; g 7!

 
0 1n�1
V 0

!
g;

where if g D .aij /ni;jD1, its image has .i; j /th coordinate

.Vg/ij D

´
aiC1;j if i D 1; : : : ; n � 1,
Va1;j if i D n.

For integers r � 1, define br=n WD V
rb0: Then the Iwahori subgroup I0 WD b⇥

0
has a filtration

given by Ir WD 1C br ; and for any 0  r  s, we may consider the quotient Ir;s WD Ir=Is:
We write IrC WD

S
s>r

Is .
Let F D F2 from equation (2.2). Note that Ir is stable under F since $�1b0$ ⇢ b0.
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Definition 2.2.1. The quotient I0;.h�1/C admits an Fq-rational structure with associated
Frobenius F . We denote by Gh;k the resulting group scheme defined over Fq with associated
Frobenius Frq . Define T 0

h;k
⇢ Gh;k to be the subgroup consisting of diagonal matrices and

define
Uh;k WD I0C;.h�1/C ⇢ Gh;k;

Th;k WD πdiagonal matrices in Uh;kº;

so that we have group schemes
T 0
h;k

Gh;k

Th;k Uh;k

all defined over Fq . We view the determinant as a morphism

detWGh;k !W ⇥
h
:

Remark 2.2.2. Over Fq , the above groups have the following explicit description:

(i) Gh;k can be identified with the group of n ⇥ n matrices .Mij / with Mi i 2W ⇥
h

and
Mij 2Wh�1 for i < j , Mij 2 VWh�1 for i > j ,

(ii) T 0
h;k

is the subgroup consisting of matrices .Mij / 2 Gh;k with Mij D 0 if i ¤ j ,

(iii) Uh;k is the subgroup consisting of matrices .Mij / 2 Gh;k with Mi i 2W .1/

h
,

(iv) Th;k is the subgroup consisting of matrices .Mij / 2 Uh;k with Mij D 0 if i ¤ j .

In addition,

Gh;k.Fq/ ä O
⇥
D
=U

n.h�1/C1
D

; T 0
h;k
.Fq/ ä O

⇥
L
=U

h

L
;

Uh;k.Fq/ ä U
1

D
=U

n.h�1/C1
D

; Th;k.Fq/ ä U
1

L
=U

h

L
:

Observe also that Gh;k.Fq/ ä F⇥
qn ËUh;k.Fq/:

By construction, ÅX 0
h

.0/
.Fq/ ⇢ Gh;k.Fq/. Moreover, it is stabilized by Frn

q
(but not

by Frq!) and the resulting Fqn-rational structure agrees with the standard Fqn-rational structure
on ÅX 0

h

.0/. Hence ÅX 0
h

.0/ is a subscheme of Gh;k defined over Fqn .

Definition 2.2.3. For any Fqn-algebra A, define

Xh.A/ WD
ÅX 0
h

.0/
.A/ \Uh;k.A/:

The finite group Th;k.Fq/ ⇥Gh;k.Fq/ acts on Uh;k by

.⇣; t; g/ ⇤ x WD ⇣ � t � x � g � ⇣
�1
; t 2 Th;k.Fq/; .⇣; g/ 2 F⇥

qn ËUh;k.Fq/ ä Gh;k.Fq/:

This action stabilizes the Fqn-subscheme Xh ⇢ Uh;k .

Lemma 2.2.4. Let ÅUh ⇢ Uh;k.Fq/ denote the subgroup of upper-triangular unipotent

matrices. Then

Xh.Fq/ D πx 2 Uh;k.Fq/ W Frq.x/x�1
2
ÅUh \ Frq.ÅU�

h
/º:
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Proof. We use (2.3). If g 2 ÅG is such that F 0
.g/g

�1
2
ÅU \ F 0

.ÅU�
/, then

F.�
�1
g�/�

�1
g

�1
� D �

�1
F

0
.g/g

�1
� 2 �

�1
.ÅU \ F 0

.ÅU�
//� D ÅU \ F.ÅU�

/;

where the last equality holds since e1 � �0 D e1 by construction and ÅU \ F 0
.ÅU�

/ exactly con-
sists of upper-triangular unipotent matrices with nonzero nondiagonal entries only in the first
row. The conclusion follows.

Remark 2.2.5. Note that the unipotent group scheme Uh;k is a rather different object
to the unipotent group schemes appearing in previous work.

(i) In [4, Section 4.4.1], the unipotent group U n;q over Fqn is defined to be the group con-
sisting of formal expressions 1C a1 � e1 C � � �C an � en which are multiplied according
to the rule ei � a D aq

i
� ei for all 1  i  n and

ei � ej D

´
eiCj if i C j  n;
0 otherwise.

This can be viewed as the unipotent group associated to the parameters: h D 2, k D 1,
arbitrary n, and char.K/ arbitrary.

(ii) In [2, Definition 5.5], for any Fp-algebra A, the unipotent group U n;q
h
.A/ is defined to be

the elements of Ah⌧i=.⌧n.h�1/C1
/ with constant term 1. Here, Ah⌧i is the twisted poly-

nomial ring with the commutation relation ⌧ � a D aq � ⌧ for a 2 A. This can be viewed
as the unipotent group associated to the parameters: arbitrary h, k D 1, arbitrary n, and
char.K/ D p. Note that U n;q

2
D U

n;q and h D 2 is the only h such that U n;q
2

can be
used when char.K/ D 0.

(iii) The unipotent groups in [6] and [5] are specializations of those in (ii). In [6], we define
a unipotent group U n;q

h;k
together with a subscheme Xh ⇢ U

n;q

h;k
. The unipotent group is

isomorphic to U n;q
l

h
described in (ii) where l is an integer with lk ⌘ 1modulo n, but the

variety Xh depends on k (and hence l).

When char.K/ D p, one can prove the theorems of this paper using U n;q
h;k

instead of Uh;k , and
the proofs are very similar. However, it does not seem possible to formulate a characteristic
zero analogue of U n;q

h;k
. The upshot of the unipotent group scheme Uh;k over Fq defined in

Definition 2.2.1 is that it removes all hypotheses on the parameters, and in particular, we are
able to work with arbitrary h over K of arbitrary characteristic. Furthermore, the definition of
Uh;k seems to lend itself to generalizations to other reductive groups over local fields.

2.3. An explicit description of Xh.

Definition 2.3.1. We define three bijections associated to F WD F2 and F 0
WD F1 (see

equations (2.1) and (2.2)).

(1) Let � W π1; : : : ; nº ! π1; : : : ; nº be the permutation such that

F.diag.y1; : : : ; yn// D diag.'.y�.1//; : : : ; '.y�.n///:

(2) Let � 0
W π1; : : : ; nº ! π1; : : : ; nº be the permutation such that

F
0
.diag.y1; : : : ; yn// D diag.'.y� 0.1//; : : : ; '.y� 0.n///:
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(3) Let ⌧ W π1; : : : ; nº ! π0; : : : ; n � 1º be the bijection such that

�0 � diag.y1; : : : ; yn/ � ��1
0
D diag.y⌧.1/C1; : : : ; y⌧.n/C1/:

By the assumption that e1 � �0 D e1, we have ⌧.1/ D 0.

The following lemma is an easy calculation.

Lemma 2.3.2. For each 1  i  n,

⌧.�.i//C 1 D �
0
.⌧.i/C 1/ D Œ⌧.i/C 1 � 1ç D Œ⌧.i/ç:

Proof. By construction,

�
�1
0
� F

0
.diag.y1; : : : ; yn// � �0 D F.��1

0
� diag.y1; : : : ; yn/ � �0/:

Thus we have

�
�1
0
� F

0
.diag.y1; : : : ; yn// � �0 D ��1

0
� diag.'.y� 0.1/; : : : ; y� 0.n/// � �0

D diag.'.y⌧�1.� 0.1/�1/; : : : ; y⌧�1.� 0.n/�1///;

F .�
�1
0
� diag.y1; : : : ; yn/ � �0/ D F.diag.y⌧�1.0/; : : : ; y⌧�1.n�1///

D diag.'.y�.⌧�1.0//; : : : ; y�.⌧�1.n�1////:

Hence for each 1  i  n, we have

⌧
�1
.�

0
.i/ � 1/ D �.⌧

�1
.i � 1//

and therefore � 0
.⌧.j /C 1/ D ⌧.�.j //C 1. The remaining equalities follow from the explicit

computation that F 0
.diag.y1; : : : ; yn// D diag.'.yn/; '.y1/; : : : ; '.yn�1//.

Definition 2.3.3. A useful description ofXh is the following. LetM D .Mi;j /i;jD1;:::;n
be an element of Uh;k . Then we may write

(2.5) M DM
0
1
CM

0
2
$
k
CM

0
3
$
Œ2kç
C � � �CM

0
n
$
Œk.n�1/ç

;

where

M
0
i
D diag.M1;Œ.i�1/kC1ç;M2;Œ.i�1/kC2ç; : : : ;Mn;Œ.i�1/kCnç/
D diag.M1;� i�1.1/;M2;� i�1.2/; : : : ;Mn;� i�1.n// for 1  i  n,

Mi;j D

´
Œ1;M.i;j;1/; : : : ;M.i;j;h�1/ç 2W .1/

h
if i D j ;

ŒM.i;j;1/; : : : ;M.i;j;h�1/ç 2Wh�1 if i ¤ j ,
for 1  i; j  n.

We know that M 2 Xh if and only if ��1
M� 2 ÅX .0/

h
. Therefore if M 2 Xh, then ��1

M
0
i
� is

of the form diag.A; '.A/; '2.A/; : : : ; 'n�1
.A//. We have

�
�1
M

0
i
� D diag.M⌧�1.0/;� i�1.⌧�1.0//;M⌧�1.1/;� i�1.⌧�1.1//; : : : ;M⌧�1.n�1/;� i�1.n�1//

and therefore

(2.6) Mj;� i�1.j / D '
⌧.j /

.M1;� i�1.1// for 1  i; j  n.

In particular, Mi;i D '
⌧.i/
.M1;1/ for 1  i  n. For any Fqn-algebra A, we have M 2 Xh.A/

if and only if M satisfies (2.6) and '.det.M// D det.M/, where det.M/ 2W .1/

h
.A/. We call

M the standard form of an A-point of Xh.
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2.4. The Howe factorization. Let Tn;h denote the set of all Q`-valued characters
of W .1/

h
.Fqn/. Recall that we have natural surjections prWW .1/

h
!W .1/

h�1 and injections
Ga !W .1/

h
given by x 7! Œ1; 0; : : : ; 0; xç. Furthermore, for any subfield F ⇢ L, the norm

map L⇥
! F

⇥ induces a map NmWW .1/

h
.kL/!W .1/

h
.kF /. These maps induce

pr⇤
WTn;h0 ! Tn;h for h0

< h;

Nm⇤
WTm;h ! Tn;h for m j n:

By pulling back along the map Ga !W .1/

h
; x 7! Œ1; 0; : : : ; 0; xç, we may restrict characters

of W .1/

h
.Fqn/ to characters of Fqn . We say that � 2 Tn;h has conductor m if the stabilizer

of �jFqn in Gal.Fqn=Fq/ is Gal.Fqn=Fqm/. If � 2 Tn;h has conductor n, we say that � is
primitive. We write T 0

n;h
⇢ Tn;h to denote the subset of primitive characters.

We can decompose � 2 Tn;h into primitive components in the sense of Howe [15, Corol-
lary after Lemma 11]. (Howe’s formulation involves a non-degeneracy condition on the partial
products �1�2 � � ��i of the factorization below, but this condition is equivalent to the primitiv-
ity condition on the individual factors �i .)

Definition 2.4.1. A Howe factorization of a character � 2 Tn;h is a decomposition

� D

rY

iD1
�i ; where �i D pr⇤ Nm⇤

�
0

i
and �0

i
2 T 0

mi ;hi
;

such that mi < miC1, mi j miC1, and hi > hiC1. It is automatic that mi  n and h � hi . For
any integer 0  t  r , set �0 to be the trivial character and define

��t WD
rY

iDt
�i 2 Tn;ht

:

Observe that the choice of �i in a Howe factorization � D
Q
r

iD1 �i is not unique, but
the mi and hi only depend on �. Hence the Howe factorization attaches to each character
� 2 Tn;h a pair of well-defined sequences

1 DW m0  m1 < m2 < � � � < mr  mrC1 WD n;
h DW h0 � h1 > h2 > � � � > hr � hrC1 WD 1

satisfying the divisibility mi j miC1 for 0  i  r .

Example 2.4.2. We give some examples of the sequences associated to characters
� 2 Tn;h.

(a) If � is the trivial character, the associated sequences are

πm0; m1; m2º D π1; 1; nº; πh0; h1; h2º D πh; 1; 1º:

(b) We say that � is a primitive character of level h0 if �jUh0
L
D 1 and �jUh0�1

L =U
h0
L

has trivial
Gal.Fqn=Fq/-stabilizer. In this setting, � 2 Tn;h if we have h � h0, and then the associ-
ated sequences are

πm0; m1; m2º D π1; n; nº; πh0; h1; h2º D πh; h
0
; 1º:

The case h D h0 is studied in [5, 6].
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(c) If �jU 2
L
D 1 and �jU 1

L=U
2
L

has conductor m, then the associated sequences are

πm0; m1; m2º D π1;m; nº; πh0; h1; h2º D πh; 2; 1º:

The case h D 2 is studied in [2, 4].

3. Indexing sets

We first recall some basic facts about the ramified Witt vectors, which we will need to
work with to handle the charK D 0 setting. In Section 3.2, we define indexing sets and prove
some fundamental properties of these indexing sets that will be heavily used in Section 5. As
a quick application of Section 3.2, we calculate the dimension of Xh in Section 3.3.

3.1. Ramified Witt vectors. In this subsection, we assume K has characteristic 0. We
first define a “simplified version” of the ramified Witt ring W .

Definition 3.1.1. For any Fq-algebra A, let W.A/ be the set AN endowed with the
following coordinatewise addition and multiplication rule:

Œai çi�0 CW Œbi çi�0 D Œai C bi çi�0;

Œai çi�0 ⇤W Œbi çi�0 D

"
iX

jD0
a
q

i�j

j
b
q

i

i�j

#

i�0
:

It is a straightforward check that W is a commutative ring scheme over Fq . It comes with
Frobenius and Verschiebung morphisms ' and V .

Lemma 3.1.2. Let A be an Fq-algebra.

(a) For any Œaç D Œai çi�0; Œbç D Œbi çi�0 2 AN
,

Œaç ⇤W Œbç D Œaç ⇤W ŒbçCW Œcç;

where Œcç D Œci çi�0 for some ci 2 AŒa
e1

i1
b
e2

i2
W i1 C i2 < i; e1; e2 2 Z�0ç.

(b) For any Œaç D Œai çi�0; Œbç D Œbi çi�0 2 AN
,

ŒaçCW Œbç D ŒaçCW ŒbçCW Œcç;

where Œcç D Œci çi�0 for some ci 2 AŒaj ; bj W j < i ç.

(c) For any Œaç D Œai çi�0 2 AN
,

⇡ ⇤W Œaç D Œ0; 1; 0; : : :ç ⇤W Œaç D Œ0; a
q

0
; a
q

1
; : : :ç:

Lemma 3.1.3. Let A be an Fq-algebra.

(a) For any Œa1ç; : : : ; Œanç 2 A
N

where Œaj ç D Œaj;i çi�0,

Y

1jn
w.r.t. W

Œaj ç D

 
Y

1jn
w.r.t.W

Œaj ç

!
CW Œcç;

where ŒcçD Œci çi�0 for some ci 2AŒa
e1

1;i1
� � � a

en

n;in
W i1C � � �C in < i; e1; : : : ; en 2Z�0ç:
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(b) For any Œa1ç; : : : ; Œanç 2 A
N

where Œaj ç D Œaj;i çi�0,

X

1jn
w.r.t. W

Œaj ç D

 
X

1jn
w.r.t.W

Œaj ç

!
CW Œcç;

where Œcç D Œci çi�0 for some ci 2 AŒa1;j ; : : : ; an;j W j < i ç:

We call the portion coming fromW the “major contribution” and Œcç the “minor contribution.”

3.2. Normed indexing sets. We define indexing sets associated to the unipotent group
Uh;k that will be crucial to the proof of Theorem 5.1.1.

Define
A

C
WD π.i; j; l/ W 1  i; j  n; 1  l  h � 1º;

A WD π.i; j; l/ 2 A
C
W i ¤ j º;

A
�
WD π.i; j; l/ 2 A W i D 1º:

Write AŒAC
ç to denote the affine space of dimension #A

C over Fq with coordinates indexed
by A

C. We fix an identification Uh;k D AŒAC
ç (as Fq-schemes) as follows: Every point of

Uh;k is of the form .Ai;j /1i;jn, where

(3.1) Ai;j D

X

l�0
V
l
r.A.i;j;l⇤//; where l⇤ WD

´
l if i � j ,
l C 1 if i < j .

Thus the element .i; j; l⇤/ 2 A
C corresponds to the coefficient of ⇡ l in the .i; j /th entry of an

element of Uh;k . Continuing this dictionary, A corresponds to the elements of Uh;k with 1’s
along the diagonal, and A

� corresponds to the elements of Uh;k with 1’s along the diagonal
and zeros everywhere else but the top row.

Definition 3.2.1. Define a norm on A
C:

A
C
! π1; 2; : : : ; n.h � 1/º;

.i; j; l/ 7! j.i; j; l/j WD Œj � i çC n.l � 1/:

Given two sequences of integers

1 DW m0  m1 < m2 < � � � < mr  mrC1 WD n; mi j miC1;(3.2)
h DW h0 � h1 > h2 > � � � > hr � hrC1 WD 1;(3.3)

we can define the following subsets of A for 0  s; t  r :

As;t WD π.i; j; l/ 2 A W j ⌘ i .mod ms/; j 6⌘ i .mod msC1/; 1  l  ht � 1º;
A

�
s;t
WD As;t \A

�
:

For the proof of Theorem 5.1.1, we will need to consider the following decomposition of A
�
s;t

:

Is;t WD π.1; j; l/ 2 A
�
s;t
W j.1; j; l/j >

1

2
n.ht � 1/º;

Js;t WD π.1; j; l/ 2 A
�
s;t
W j.1; j; l/j 

1

2
n.ht � 1/º:
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For any real number ⌫ � 0, define

A�⌫;t WD
rG

sDd⌫e
As;t ; I�⌫;t WD

rG

sDd⌫e
Is;t ;

J�⌫;t WD
rG

sDd⌫e
Js;t ; A

�
�⌫;t WD A�⌫;t \A

�
;

and observe that

A�s;t D π.i; j; l/ 2 A W j ⌘ i .mod ms/; 1  l  ht � 1º:

Remark 3.2.2. Recall that the Howe factorization of � 2 Tn;h gives rise to two
sequences of integers exactly of the form (3.2) and (3.3), where (3.2) corresponds to the con-
ductors appearing in the Howe factorization and (3.3) corresponds to the levels in which the
conductor jumps.

Lemma 3.2.3. There is an order-reversing injection Is;t ,! Js;t that is a bijection if

and only if #As;t is even. Explicitly, it is given by

Is;t ,! Js;t ; .1; �
j
.1/; l/ 7! .1; �

n�j
.1/; ht � l/;

where � is the permutation defined in Definition 2.3.1. Note that #As;t is even unless n and ht

are both even.

Proof. It is clear that if ms j j and msC1 ≠ j , then ms j .n � j / and msC1 ≠ .n � j /.
By assumption, j.1; �j .1/; l/j D �j .1/ � 1C n.l � 1/ > 1

2
n.ht � 1/. Then

j.1; �
n�j

.1/; ht � l/j D .n � �
j
.1/C 1/C n.ht � l � 1/

D n.ht � 1/ � j.1; �
j
.1/; l/j <

1

2
n.ht � 1/:

It is clear that the map is a bijection if and only if the indexing set Js;t contains an element of
norm 1

2
n.ht � 1/.

Remark 3.2.4. Note that the divisibility condition on Js;t implies that there is at most
one s such that .1; �n=2.1/; ht=2/ 2 Js;t . Hence outside this s, the sets Is;t and Js;t are in
bijection.

Definition 3.2.5. For � D .i; j; l/ 2 A
C, define

�
_
WD

´
.j; i; ht � 1 � l/ if i D j .
.j; i; ht � l/ if i ¤ j .

Lemma 3.2.6. Write A D .Ai;j /1i;jn 2 Uh;k , where Ai;j is as in equation (3.1).
Assume that for �1;�2 2 A

C
, the variables A�1

and A�2
appear in the same monomial in

det.A/ 2W .1/

h0 for some h
0
 h.

(a) Then j�1j C j�2j  n.h
0
� 1/.

(b) If j�1j C j�2j D n.h
0
� 1/, then �2 D �

_
1

.
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Proof. By definition,

det.A/ D
X

�2Sn

Y

1in
Ai;�.i/ 2W .1/

h0 .Fq/:

Let l  h0
� 1. If K has characteristic p, then the contributions to the ⇡ l -coefficient coming

from � 2 Sn are of the form
nY

iD1
A.i;�.i/;l⇤i /;

where .l1; : : : ; ln/ is a partition of l . Then

j.i; �.i/; l
⇤
i
/j D Œ�.i/ � i çC n.l

⇤
i
� 1/ D �.i/ � i C nli ;

and therefore

(3.4)
nX

iD1
j.i; �.i/; l

⇤
i
/j D

nX

iD1
�.i/ � i C nli D

nX

iD1
nli D nl  n.h

0
� 1/:

If K has characteristic 0, then by Lemma 3.1.3, the major contributions to the ⇡ l -coefficient
coming from � are of the form

nY

iD1
A
ei

.i;�.i/;l
⇤
i /
;

where the ei are some nonnegative integers and where .l1; : : : ; ln/ is a partition of l . Hence

(3.5)
nX

iD1
j.i; �.i/; l

⇤
i
/j D nl  n.h

0
� 1/:

The minor contributions to the ⇡ l -coefficient coming from � are polynomials in

nY

iD1
A
e

0
i

i;�.i/;l
⇤
i

;

where l1 C � � �C ln < l and the e0
i

are some nonnegative integers. Hence

nX

iD1
j.i; �.i/; l

⇤
i
/j < n.h

0
� 1/:

Suppose now that �1 D .i1; j1; l1/;�2 D .i2; j2; l2/ 2 A
C are such that A�1

and A�2

contribute to the same monomial in det.M/ 2W .1/

h0 . Then there exists some � 2 Sn such that
�.i1/ D j1 and �.i2/ D j2, and by equations (3.4) and (3.5),

j�1j C j�2j  n.h
0
� 1/:

Observe that if K has characteristic 0 and �1 and �2 occur in a minor contribution, then
j�1jCj�2j < n.h

0
�1/. This proves (a) and furthermore, we see that if j�1jCj�2j D n.h0

�1/,
then the simultaneous contribution of A�1

and A�2
comes from a major contribution. But

now (b) follows: since j�j > 0 for any � 2 A, it follows from equations (3.4) and (3.5) that if
j�1j C j�2j D n.h

0
� 1/, then necessarily the associated � 2 Sn must be a transposition.
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Example 3.2.7. We illustrate a way to visualize the indexing sets A�s;t in a small
example. Consider the sequences

πm0; m1; m2; m3; m4º D π1; 2; 4; 8; 8º; πh0; h1; h2; h3; h4º:

This corresponds to a character of the form

� D �
0

1
.NmF

q8=Fq2
/ � �

0

2
.NmF

q8=Fq4
/ � �

0

3
;

where �0
i
WW .1/

ht
.Fqmt /! Q

⇥
`

is primitive. Then we have

A�0;t D

0

BB@

0

BB@

1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ 1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ 1 ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ 1 ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ 1 ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ 1 ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 1 ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 1

1

CCA ; depth ht

1

CCA ;

A�1;t D

0

BB@

0

BB@

1 ⇤ ⇤ ⇤
1 ⇤ ⇤ ⇤

⇤ 1 ⇤ ⇤
⇤ 1 ⇤ ⇤

⇤ ⇤ 1 ⇤
⇤ ⇤ 1 ⇤

⇤ ⇤ ⇤ 1
⇤ ⇤ ⇤ 1

1

CCA ; depth ht

1

CCA ;

A�2;t D

0

BB@

0

BB@

1 ⇤
1 ⇤
1 ⇤
1 ⇤

⇤ 1
⇤ 1

⇤ 1
⇤ 1

1

CCA ; depth ht

1

CCA ;

A�3;t D

0

BB@

0

BB@

1
1
1
1
1
1
1
1

1

CCA ; depth ht

1

CCA :

In Section 5, we will calculate certain cohomology groups H i
c
.X;F / inductively:

X ! A D A�0;1 A�1;1 (Proposition 5.3.2)
 A�1;2 (Proposition 5.3.1)
 A�2;2 (Proposition 5.3.2)
 A�2;3 D ¿ (Proposition 5.3.1):

This reduces the calculation of H i
c
.X;F / to the calculation of the cohomology of a point.

(Warning: There may be a step in the inductive process where the reduction is to the cohomol-
ogy of a curve. This happens exactly when #As;t is odd, which can occur for at most one s.)

3.3. Dimension of Xh.

Proposition 3.3.1. The Fqn-schemeXh is smooth, affine, and of dimension .n�1/.h�1/.

Proof. By Definition 2.3.3, Xh ⇢ AŒAC
ç is defined by the following polynomials:

f.i;�j .i/;l/ WDM.i;�j .i/;l/ �M
q

⌧.i/

.1;�j .1/;l/
for 2  i  n, 1  j  n; 1  l  h � 1;

gl WD prl.det.M// � prl.det.M//
q for 1  l  h � 1;

where
prl WW

.1/

h
! A1; Œ1; a1; : : : ; ah�1ç 7! al :
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This gives us n.n � 1/.h � 1/C .h � 1/ equations and #A
C
D n

2
.h � 1/, and so to prove the

proposition, it suffices to find a submatrix of size .n2 � nC 1/.h � 1/ ⇥ .n2 � nC 1/.h � 1/
of the Jacobian matrix that is nonsingular for every point of Xh.

Consider the submatrix J0 of the Jacobian corresponding to the partial derivatives with
respect to the following subset of A

C:

A0 WD π.i; �
j
.i/; l/ 2 A

C
W i ¤ 1º [ π.1; 1; l/ 2 A

C
º:

Since we are working in characteristic p, we have�f��M�0
D

´
1 if � D �0,
0 otherwise,

(3.6)

�gl�M.1;1;l 0/
D

8
<̂

:̂

1 if l 0 D l ,
0 if l 0 > l ,
‹ if l 0 < l .

(3.7)

Reorder the rows of J0 so that the first n.n � 1/.h � 1/ rows correspond to the f� for � 2 A0
and the remaining h � 1 rows correspond to g1; : : : ; gh�1. Reorder the columns of J0 so that
the first n.n � 1/.h � 1/ columns correspond to the M� for � 2 A0 and the remaining h � 1
columns correspond to M.1;1;1/; : : : ;M.1;1;h�1/. Then

J0 D

 
A B

C D

!
;

whereA is a permutation matrix of size n.n � 1/.h � 1/ ⇥ n.n � 1/.h � 1/ (by equation (3.6)),
B is the zero matrix of size n.n� 1/.h� 1/⇥ .h� 1/ (by equation (3.6)), andD is a unipotent
lower-triangular matrix of size .h�1/⇥ .h�1/ (by equation (3.7)). Hence for any point inXh,
the matrices A and D are nonsingular, and so J0 is as well. This shows that Xh is a smooth
complete intersection of dimension n2.h � 1/ � .n2 � nC 1/.h � 1/ D .n � 1/.h � 1/.

4. On the cohomology of certain Q`-local systems

In this section, we prove some general results on the cohomology of constructible
Q`-sheaves. Proposition 4.1.1 is a generalization of [2, Proposition 2.3] that allows one to study
the G.Fq/-representations arising from the cohomology of a variety X ⇢ G defined over FqN .
From this perspective, [2, Proposition 2.3] is the N D 1 setting of Proposition 4.1.1.

The other main result of this section is Proposition 4.2.1, which is a general result on the
cohomology of constructible Q`-sheaves coming from pullbacks of local systems. Its proof is
similar to that of [2, Proposition 2.10] and [6, Proposition 3.4]. We then apply Proposition 4.2.1
to the special case when the local system is an Artin–Schreier-like sheaf (see Proposition 4.2.2).

Throughout this paper, we choose the convention that Frq is the geometric Frobenius so
that Frq acts on the Tate twist Q`.�1/ by multiplication by q.

4.1. Cohomology and induced representations. If X is a locally closed subvariety of
G that is stable under the action of G.Fq/, it is natural to ask what G.Fq/-representations arise
in the cohomology H i

c
.X;Q`/. To this end, it is useful to understand spaces of G.Fq/-equi-
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variant homomorphisms between H i
c
.X;Q`/ and certain nice representations. The following

proposition relates such spaces to the cohomology of an explicitly constructed variety with
coefficients in a (often nonconstant) Q`-sheaf. The upshot is that in the cases we deal with,
these new cohomology groups can be explicitly computed (see Section 5 where we use Propo-
sition 4.1.1 to rephrase the calculation so that we may inductively apply Proposition 4.2.2).

Proposition 4.1.1. Assume that we are given the following data:

✏ an algebraic group G together with a closed connected subgroup H ⇢ G over Fq with

Frobenius Frq ,

✏ a section sWG=H ! G of the quotient morphism G ! G=H ,

✏ a character �WH.Fq/! Q
⇥
`

,

✏ a closed subscheme Y of G defined over FqN such that for any 0  i ¤ j  N � 1,

the intersection Fri
q
.Y / \ Frjq.Y / is independent of i; j and is equal to a finite set of

points S .

Set X WD L
�1
q
.Y /, where Lq is the Lang map g 7! Frq.g/g�1

on G. The right multiplication

action of G.Fq/ on X induces linear representations of G.Fq/ on the cohomologyH
i
c
.X;Q`/,

and for each i � 0, we have a vector space isomorphism

HomG.Fq/

�
IndG.Fq/

H.Fq/
.�/;H

i

c
.X;Q`/

�
ä H

i

c
.ˇ

�1
.Y /; P

⇤
L�/

compatible with the action of FrqN on both sides, where L� is the rank 1 local system on H

corresponding to �, the morphism ˇW .G=H/ ⇥H ! G is given by

ˇ.x; h/ D s.Frq.x// � h � s.x/�1;

and the morphism P Wˇ
�1
.Y /! H is the composition ˇ

�1
.Y / ,! .G=H/ ⇥H

pr2
��! H .

First observe the following easy fact about the morphism ˇ:

Lemma 4.1.2. Let G be an algebraic group with a closed connected subgroup H ⇢ G

over Fq with Frobenius Frq . Assume that we have a section s of the quotient morphism

G ! G=H . Define ˇW .G=H/ ⇥H ! G to be the morphism ˇ.x; h/ D s.Frq.x// � h � s.x/�1.

For any .x; y/ 2 .G=H/ ⇥H and any closed subscheme Y ⇢ G,

(4.1) .x; Lq.y// 2 ˇ
�1
.Y / ” s.x/ � y 2 L

�1
q
.Y /:

Moreover, ˇ
�1
.Y / is affine.

Proof. We have ˇ.x;Lq.y// D s.Frq.x// �Frq.y/ �y�1
� s.x/

�1
D Lq.s.x/ �y/, which

establishes (4.1). For the second assertion, consider the composition

G=H ⇥H
.id;Lq/

�����! G=H ⇥H
ˇ

�����! G:

Observe that this composition maps .x; y/ 7! s.Frq.x// � Lq.y/ � s.x/�1 D Lq.s.x/ � y/, so
this composition is finite étale and surjective. The first map .id; Lq/ is finite étale and surjective,
and therefore ˇ must also be finite étale and surjective. Hence ˇ�1

.Y / is affine.
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We will need a couple of lemmas in the proof of Proposition 4.1.1.

Lemma 4.1.3. Let F be a pure rank-1 lisse Q`-sheaf on a smooth affine curve X

over Fq . Let X be a compactification of X and let j WX ! X . Then

H
1

c
.X;F / ä H

0
.X XX; j⇤F /=H

0
.X; j⇤F /˚H

1
.X; j⇤F /

as Frq-vector spaces.

Proof. The open/closed decomposition

j WX ,! X  - X XX W i:

implies that we have the following short exact sequence of sheaves on X :

0! jäj
⇤
.j⇤F /! j⇤F ! i⇤i⇤.j⇤F /! 0:

Since X is an affine curve,H 0
c
.X;F / D 0, so the first part of the induced long exact sequence

is
0! H

0
.X; j⇤F /! H

0
.X XX; j⇤F /! H

1

c
.X;F /! H

1
.X; j⇤F /! 0;

which implies

(4.2) 0! H
0
.X XX; j⇤F /=H

0
.X; j⇤F /! H

1

c
.X;F /! H

1
.X; j⇤F /! 0:

We now show that this sequence splits. By Deligne’s work on the Weil conjectures [8, Corol-
lary 3.3.9 and Theorem 3.2.3], we know that H 0

.X XX; j⇤F /=H
0
.X; j⇤F / has weight

wt.j⇤F / and H 1
.X; j⇤F / has weight wt.j⇤F /C 1, and so the extension H 1

c
.X; j⇤F / is

classified by an element of H 1
.bZ; V /, where

V WD H
0
.X XX; j⇤F /=H

0
.X; j⇤F /˝H

1
.X; j⇤F /

⇤

has weight �1. Now,
H
1
.bZ; V / D Z1.bZ; V /=B1.bZ; V /;

where

Z
1
.bZ; V / D πf WbZ! V W f .gh/ D gf .h/C f .g/ for all g; h 2 bZº;

B
1
.bZ; V / D πf 2 Z1.bZ; V / W there exists v 2 V such that f .g/ D ga � a for all g 2 bZº:

Observe that
Z
1
.bZ; V / ä V; B

1
.bZ; V / ä .Frq �1/V:

Since V has weight �1, this implies that .Frq �1/V D V and so

H
1
.bZ; V / D 0:

Thus the short exact sequence in (4.2) splits, and the desired conclusion follows.

Lemma 4.1.4. Let F be a pure rank-1 lisse Q`-sheaf on an affine curve X over Fq .

If S is a finite set of points in X , then the short exact sequence

0! H
0

c
.S;F /! H

1

c
.X X S;F /! H

1

c
.X;F /! 0

of Frq-vector spaces splits.
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Proof. First assume that X is smooth. Let X be a compactification of X . Then it must
also be a compactification of X X S . Therefore by Lemma 4.1.3,

H
1

c
.X;F / ä H

0
.X XX; j⇤F /=H

0
.X; j⇤F /˚H

1
.X; j⇤F /;

H
1

c
.X X S;F / ä H

0
.S [ .X XX/; j⇤F /=H

0
.X; j⇤F /˚H

1
.X; j⇤F /

ä H
0
.S;F /˚H

0
.X XX; j⇤F /=H

0
.X; j⇤F /˚H

1
.X; j⇤F /

ä H
0

c
.S;F /˚H

1

c
.X;F /:

Thus the desired short exact sequence splits.
Now assume that X is not smooth and let ÅX be the normalization of X . Then ÅX is

a smooth affine curve and by the previous paragraph, the upper short exact sequence of
Frq-vector spaces of the following commutative diagram splits:

0 H
0
c
.ÅS;F / H

1
c
.ÅX X ÅS;F / H

1
c
.ÅX;F / 0

0 H
0
c
.S;F / H

1
c
.X X S;F / H

1
c
.X;F / 0,

where we view F as a sheaf on ÅX by pulling back along the morphism ÅX ! X , and this
morphism induces the upward vertical maps. Restriction gives the dotted downward arrow.
The composition

H
1

c
.X X S;F /! H

1

c
.ÅX X ÅS;F /! H

0

c
.ÅS;F /! H

0

c
.S;F /

gives a splitting of Frq-vector spaces of the lower short exact sequence.

We are now ready to prove Proposition 4.1.1.

Proof of Proposition 4.1.1. For convenience, set V� WD IndG.Fq/

H.Fq/
.�/. Define Y C to be

the closed reduced subscheme of G such that

Y
C
.Fq/ D Y.Fq/ [ Frq.Y.Fq// [ � � � [ FrN�1

q
.Y.Fq// ⇢ G.Fq/:

Note Y C is defined over Fq . By [2, Proposition 2.3], we have Frq-compatible vector-space
isomorphisms

(4.3) HomG.Fq/

�
V�;H

i

c
.X

C
;Q`/

�
ä H

i

c
.ˇ

�1
.Y

C
/; .P

C
/
⇤
L�/ for all i � 0,

where XC
D L

�1
q
.Y

C
/ and PC is the composition ˇ�1

.Y
C
/ ,! .G=H/ ⇥H ! H:We will

use open/closed decompositions and the associated long exact sequences to relate the cohomol-
ogy of XC to the cohomology of X , and the cohomology of ˇ�1

.Y
C
/ to the cohomology

of ˇ�1
.Y /.

Let Y 0C
WD Y

C
X S . The open/closed decomposition

ˇ
�1
.Y

0C
/
j

,! ˇ
�1
.Y

C
/
i

 - ˇ
�1
.S/

induces a short exact sequence of sheaves

0! jäj
⇤
.P

C
/
⇤
L� ! .P

C
/
⇤
L� ! i⇤i⇤.PC

/
⇤
L� ! 0
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whose associated long exact sequence in cohomology gives rise to Frq-compatible isomor-
phisms

(4.4) H
i

c
.ˇ

�1
.Y

0C
/;F

C
/ ä H

i

c
.ˇ

�1
.Y

C
/;F

C
/ for i � 2;

and an exact sequence

0! H
0

c
.ˇ

�1
.Y

0C
/;F

C
/! H

0

c
.ˇ

�1
.Y

C
/;F

C
/! H

0

c
.ˇ

�1
.S/;F

C
/(4.5)

! H
1

c
.ˇ

�1
.Y

0C
/;F

C
/! H

1

c
.ˇ

�1
.Y

C
/;F

C
/! H

1

c
.ˇ

�1
.S/;F

C
/ D 0:

Here, we write for convenience
F

C
WD .P

C
/
⇤
L�

and abuse notation by writing F
C for .PC

jˇ�1.Y 0C//
⇤
L� and .PC

jˇ�1.S//
⇤
L� as well. The

same argument applied to the FqN -scheme Y 0
WD Y X S shows that we have FrqN -compatible

isomorphisms

(4.6) H
i

c
.ˇ

�1
.Y

0
/; P

⇤
L�/ ä H

i

c
.ˇ

�1
.Y /; P

⇤
L�/ for i � 2,

and an exact sequence

0! H
0

c
.ˇ

�1
.Y

0
/;F /! H

0

c
.ˇ

�1
.Y /;F /! H

0

c
.ˇ

�1
.S/;F /(4.7)

! H
1

c
.ˇ

�1
.Y

0
/;F /! H

1

c
.ˇ

�1
.Y /;F /! H

1

c
.ˇ

�1
.S/;F / D 0;

where P D PC
jˇ�1.Y / and we write F WD P

⇤
L� and abuse notation as before.

Applying the same argument toX 0C
WD X

C
X L

�1
q
.S/ andX 0

WD X X L
�1
q
.S/ together

with the constant sheaf Q` gives Frq-compatible isomorphisms

H
i

c
.X

0C
;Q`/ ä H

i

c
.X

C
;Q`/ for i � 2,(4.8)

exact sequences

0! H
0

c
.X

0C
;Q`/! H

0

c
.X

C
;Q`/! H

0

c
.L

�1
q
.S/;Q`/(4.9)

! H
1

c
.X

0C
;Q`/! H

1

c
.X

C
;Q`/! H

1

c
.L

�1
q
.S/;Q`/ D 0;

FrqN -compatible isomorphisms

H
i

c
.X

0
;Q`/ ä H

i

c
.X;Q`/ for i � 2;(4.10)

and exact sequences

0! H
0

c
.X

0
;Q`/! H

0

c
.X;Q`/! H

0

c
.L

�1
q
.S/;Q`/(4.11)

! H
1

c
.X

0
;Q`/! H

1

c
.X;Q`/! H

1

c
.L

�1
q
.S/;Q`/ D 0:

By construction, F i .ˇ�1
.Y

0
//\F

j
.ˇ

�1
.Y

0
//D¿ for all 0 i ¤ j N �1, and hence

we have FrqN -compatible isomorphisms

H
i

c
.ˇ

�1
.Y

0C
/;F

C
/ ä

N�1M

jD0
H
i

c

�
Frj
q
.ˇ

�1
.Y

0
//;F

C
jFrj

q .ˇ
�1.Y 0//

�
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for all i � 0. For any 0  j  N � 1, we have a commutative diagram

ˇ
�1
.Y

0
/ ˇ

�1
.Y

0C
/ H

Frjq.ˇ�1
.Y

0
// ˇ

�1
.Y

0C
/ H

Frj
q

P

P
C

Frj
q Frj

q

P
C

and so it follows that F
C
jFrj

q .ˇ
�1.Y 0// D .Frjq/⇤F and

H
i

c
.ˇ

�1
.Y

0
/;F / D H

i

c

�
Frj
q
.ˇ

�1
.Y

0
//;F

C
jFrj

q .ˇ
�1.Y 0//

�
:

Thus
H
i

c
.ˇ

�1
.Y

0C
/;F

C
/ ä H

i

c
.ˇ

�1
.Y

0
/;F /

˚N for all i � 0:

We first prove the proposition for i � 2. By equations (4.4) and (4.6), for all i � 2, we
have

H
i

c
.ˇ

�1
.Y

C
/;F

C
/ ä H

i

c
.ˇ

�1
.Y

0C
/;F

C
/ ä H

i

c
.ˇ

�1
.Y

0
/;F /

˚N

ä H
i

c
.ˇ

�1
.Y /;F /

˚N
:

Similarly, by equations (4.8) and (4.10), for all i � 2, we have

H
i

c
.X

C
;Q`/ ä H

i

c
.X

0C
;Q`/ ä H

i

c
.X

0
;Q`/

˚N
ä H

i

c
.X;Q`/

˚N
:

Combining this with equation (4.3), we have FrqN -compatible vector-space isomorphisms

HomG.Fq/

�
V�;H

i

c
.X;Q`/

�˚N
ä HomG.Fq/

�
V�;H

i

c
.X

C
;Q`/

�

ä H
i

c
.ˇ

�1
.Y

C
/; P

⇤
L�/

ä H
i

c
.ˇ

�1
.Y /; P

⇤
L�/

˚N for all i � 2.

It remains to prove the proposition for i D 0; 1. Since X is an affine scheme, we see that

H
0

c
.X;Q`/ ¤ 0 H) dimX D 0 and H

1

c
.X;Q`/ ¤ 0 H) dimX D 1:

First observe that S is defined over Fq and by [2, Proposition 2.3], we have

(4.12) HomG.Fq/
.V�;H

0

c
.L

�1
q
.S/;Q`// ä H

0

c
.ˇ

�1
.S/;F /

as Frq-vector spaces. We will use this to complete the proof.
Assume dimX D 0. Then dimY D 0, and by Lemma 4.1.2, we have dimˇ

�1
.Y / D 0

and dimˇ
�1
.S/ D 0. By equations (4.5), (4.7), (4.9), and (4.11), we have

H
0

c
.ˇ

�1
.Y

C
/;F

C
/ ä H

0

c
.ˇ

�1
.Y

0C
/;F

C
/˚H

0

c
.ˇ

�1
.S/;F

C
/;

and similarly for ˇ�1
.Y /, XC, and X . Thus we have

HomG.Fq/

�
V�;H

0

c
.X

0
;Q`/

�˚N
˚ HomG.Fq/

�
V�;H

0

c
.L

�1
q
.S/;Q`/

�

ä HomG.Fq/

�
V�;H

0

c
.X

C
;Q`/

�

ä H
0

c
.ˇ

�1
.Y

C
/;F

C
/

ä H
0

c
.ˇ

�1
.Y

0
/;F /

˚N
˚H

0

c
.ˇ

�1
.S/;F /:
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The last summand of the first and last lines are isomorphic by equation (4.12). Therefore as
FrqN -vector spaces,

HomG.Fq/
.V�;H

0

c
.X

0
;Q`// ä H

0

c
.ˇ

�1
.Y

0
/;F /;

and the desired conclusion now follows.
Finally, assume that dimX D 1. Since X is an affine variety, equations (4.5), (4.7), (4.9),

and (4.11) reduce to short exact sequences, and by Lemma 4.1.4,

H
1

c
.ˇ

�1
.Y

0C
/;F

C
/ ä H

1

c
.ˇ

�1
.Y

C
/;F

C
/˚H

0

c
.ˇ

�1
.S/;F /;

and similarly for ˇ�1
.Y /, XC, and X . Using equation (4.12), we have FrqN -vector space

isomorphisms

HomG.Fq/

�
V�;H

1

c
.X;Q`/

�˚N
˚H

0

c
.ˇ

�1
.S/;F /

˚N

ä HomG.Fq/

�
V�;H

1

c
.X

0
;Q`/

�˚N

ä HomG.Fq/

�
V�;H

1

c
.X

0C
;Q`/

�

ä H
1

c
.ˇ

�1
.Y

0C
/;F

C
/

ä H
1

c
.ˇ

�1
.Y

0
/;F /

˚N

ä H
1

c
.ˇ

�1
.Y /;F /

˚N
˚H

0

c
.ˇ

�1
.S/;F /

˚N
;

and this completes the proof of the proposition.

4.2. An inductive strategy for calculating cohomology. In [2], Boyarchenko formu-
lated an inductive strategy for calculating the cohomology of (pullbacks of) Artin–Schreier
local systems P ⇤F arising from (a simplification of) Proposition 4.1.1. The morphisms P in
Boyarchenko’s setting (see Theorem 5.20 and more specifically Lemma 6.18 of [2]) are such
that at each inductive step, they are of the form

P.x; y/ D ⌘.x; y/C P2.x/

for ⌘.x; y/ D f .x/qj
y � f .x/

q
n
y
q

n�j so that [2, Proposition 2.10] applies. This then allows
one to write H i

c
.�; P

⇤F / in terms of the cohomology of either Ga or a point (depending on
a parity issue).

We will execute this strategy in Section 5 to calculate H i
c
.�; P

⇤F / except that our situ-
ation is more complicated in two ways: F is a multiplicative local system on W .1/

h
(rather than

just on Ga, as in the Artin–Schreier setting) and P is more complicated than in Boyarchenko’s
setting. We therefore need a generalization of [2, Proposition 2.10].

We remark that in previous works [5, 6], the relevant sheaves P ⇤F were pullbacks of
Artin–Schreier sheaves, but the ⌘ were slightly more complicated than Boyarchenko’s. These
previous generalizations of [2, Proposition 2.10] are [5, Proposition 4.4] and [6, Proposi-
tions 3.4, 3.5]. The proofs of these all use essentially the same idea, so we have written down
a general statement (Proposition 4.2.1) that applies to P ⇤F , where F is a general multi-
plicative local system and ⌘ can be arbitrarily complicated. We then specialize this (Proposi-
tion 4.2.2) to the particular class of F and ⌘ we will need in Section 5.

Proposition 4.2.1. Let G, G
0

be algebraic groups over Fq , let F be a multiplicative

local system on G, and consider a filtration of finite type Fq-schemes S3 ⇢ S2 ⇢ S . Assume
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that H
i
c
.G

0
;Q`/ is concentrated in a single degree i D r and assume that S D S2 ⇥G

0
. Let

⌘WS2 ⇥G
0
! G and P2WS2 ! G be any morphisms, set P3 WD P2jS3

, and define

P WS D S2 ⇥G
0
! G; .x; g/ 7! ⌘.x; g/ � P2.x/;

⌘x WG
0
! G; g 7! ⌘.x; g/ for x 2 S2:

If ⌘ has the property that ⌘
⇤
F jS3⇥G0 is the constant local system and ⌘

⇤
x
F is a nontrivial

multiplicative local system on G
0

for every x 2 S2.Fq/ X S3.Fq/, then for all i 2 Z,

H
i

c
.S; P

⇤
F / ä H

i�r
c

.S3; P
⇤
3

F ˝H
r

c
.G

0
;Q`//

as Frq-vector spaces, where H
r
c
.G

0
;Q`/ is a constant sheaf.

Proof. Consider the following commutative diagram, where .⇤/ and .⇤⇤/ are Cartesian
squares and x is any point in S3.Fq/:

S

G
0

S3 ⇥G
0

S2 ⇥G
0

G

.⇤⇤/ .⇤/ G ⇥G G.

πxº S3 S2 G

f
0

g
0

y
f

g

y
pr

⌘

.�;1/

m

ix ◆

P3

P2 .1;�/

By construction,
P

⇤
F ä .⌘

⇤
F /˝ pr⇤

.P
⇤
2

F /;

hence by the projection formula,

R prä.P
⇤
F / ä P

⇤
2

F ˝R prä.⌘
⇤
F / in Db

c
.S2;Q`/:

Since ⌘⇤
F jS3⇥G0 D Q` by assumption, the proper base change theorem applied to .⇤/ implies

that
◆
⇤
R prä.⌘

⇤
F / ä Rgäf

⇤
.⌘

⇤
F / D Rgä.Q`/:

For any x 2 S3.Fq/, the proper base change theorem applied to .⇤⇤/ implies that

.R
i
gäQ`/x D i

⇤
x
.R
i
gäQ`/ D R

i
g

0
ä
f

0⇤Q` D R
i
g

0
ä
Q` D H

i

c
.G

0
;Q`/:

It therefore follows that
◆
⇤
R
i prä.⌘

⇤
F / ä H

i

c
.G

0
;Q`/;

where the right-hand side is a constant sheaf on S3.
We now show thatRi prä.⌘⇤

F / is supported on S3. Now let x 2 S2.Fq/ X S3.Fq/. Then
by the proper base change theorem applied to the Cartesian square

G
0

S2 ⇥G
0

πxº S2

f
00

g
00
y

pr

ix

we have
i
⇤
x
Rgä.⌘

⇤
F / ä Rg

00
ä
f

00⇤
.⌘

⇤
F / ä Rg

00
ä
.⌘

⇤
x
F /:
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On the other hand, by [1, Lemma 9.4], we have

H
i

c
.G

0
; ⌘

⇤
x
F / D 0 for all i � 0:

Therefore

.R
i
gä.⌘

⇤
F //x ä R

i
g

00
ä
.⌘

⇤
x
F / D H

i

c
.G

0
; ⌘

⇤
x
F / D 0 for all i � 0.

Combining all statements above, we obtain

R
i prä.P

⇤
F / ä P

⇤
3

F ˝H
i

c
.G

0
;Q`/:

In this paper, the most important application of Proposition 4.2.1 is Proposition 4.2.2,
which we will use repeatedly to prove Theorem 5.1.1.

Proposition 4.2.2. Let �WW .1/

h
.Fqn/! Q

⇥
`

be a character of conductor m and let

L� be the corresponding local system on W .1/

h
. Let S2 be a finite-type scheme over Fqn , put

S D S2 ⇥A1 and suppose that a morphism P WS !W .1/

h
has the form

P.x; y/ D g.y
q

j C⌧

.f .x/
q

n

� f .x//
q

�

C f .x/
q

n�j C�

.y
q

n

� y/
q

⌧

/ � P2.x/;

where

✏ j; �; ⌧ � 0 are integers and m does not divide j ,

✏ f WS2 ! A1 and P2WS2 !W .1/

h
are morphisms defined over Fqn , and

✏ gWA1 !W .1/

h
is the morphism z 7! .1; 0; : : : ; 0; z/.

Let S3⇢ S2 be the subscheme defined by f .x/
q

n
�f .x/D 0 and let P3DP2jS3

WS3!W .1/

h
.

Then for all i 2 Z, we have

H
i

c
.S; P

⇤
L�/ ä H

i�2
c

.S3; P
⇤
3

L�/.�1/

as vector spaces equipped with an action of Frqn .

Proof. It is clear that the conclusion holds if we can apply Proposition 4.2.1 to the
situation when:

✏ G DW .1/

h
and G0

D A1 D Ga,
✏ F D L�,
✏ ⌘WS2⇥A1 ! H is .x; y/ 7! g.y

q
j C⌧

.f .x/
q

n
�f .x//

q
�
Cf .x/

q
n�j C�

.y
q

n
�y/

q
⌧
/.

To this end, we must verify that:

(a) ⌘⇤
L�jS3⇥A1 is the constant local system.

(b) For any x 2 S2.Fq/ X S3.Fq/, the sheaf ⌘⇤
x
L� is a nontrivial local system on W .1/

h
.

Part (a) is clear since S3 D V .f q
n
� f / by definition and � is a character of W .1/

h
.Fqn/. To

see (b), we use the approach of [2, Section 6.4]. First, note that ⌘ D g ı ⌘0, where

⌘0WS2 ⇥A1 ! A1 D Ga; .x; y/ 7! y
q

j C⌧

.f .x/
q

n

� f .x//
q

�

C f .x/
q

n�j C�

.y
q

n

� y/
q

⌧

;

and hence
⌘

⇤
L� ä ⌘

⇤
0
L ; where  D �jπ.1;0;:::;0;⇤/2W .1/

h .Fqn /º:
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Note that L is a multiplicative local system on Ga. Fix an auxiliary nontrivial additive char-
acter  0WFp ! Q

⇥
`

, and for any z 2 Fp, define

Lz WD m
⇤
z
L 0 ; where mz WGa ! Ga is the map x 7! xz.

Then there exists a unique z 2 Fq such that L D Lz . Since  has conductor qm, the stabi-
lizer of z in Gal.Fq=Fq/ is exactly Gal.Fq=Fqm/, and hence z 2 Fqm . By [2, Corollary 6.5],
we have ⌘⇤

x
L ä L⌘

⇤
x.z/

, where

⌘
⇤
x
.z/ D f .x/

q
nC��j �⌧

z
q

�j �⌧

� f .x/
q

��j �⌧

z
q

�j �⌧

C f .x/
q

n�j C��n�⌧

z
q

�n�⌧

� f .x/
q

n�j C��⌧

z
q

�⌧

D f .x/
q

n�j C��⌧

.z
q

�j �⌧

� z
q

�⌧

/ � f .x/
q

�j C��⌧

.z
q

�j �⌧

� z
q

�n�⌧

/

D .f .x/
q

n�j C��⌧

� f .x/
q

�j C��⌧

/.z
q

�j �⌧

� z
q

�⌧

/:

But this is nonzero by assumption, so ⌘⇤
x
L is a nontrivial local system on Ga.

5. Morphisms to the cohomology

In this section we prove a theorem calculating the space of homomorphisms

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�
:

This result is crucial to the proofs of many of the theorems in Section 6. The finale of the proof
of Theorem 5.1.1 is in Section 5.4. Throughout this section, for x 2 AŒAC

ç, we write x.i;j;k/
to mean the coordinate of x corresponding to .i; j; k/ 2 A

C.

5.1. Nonvanishing in a single degree: Statements of results. Recall from Section 2.4
that the Howe factorization attaches to any character of Th;k.Fq/ äW .1/

h
.Fqn/ two sequences

of integers

1 DW m0  m1 < m2 < � � � < mr  mrC1 WD n
h DW h0 D h1 > h2 > � � � > hr � hrC1 WD 1

satisfying the divisibility mi j miC1 for 0  i  r .

Theorem 5.1.1. For any character �WTh;k.Fq/! Q
⇥
`

,

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�
D

´
Q

˚qnd�=2

`
˝ ..�q

n=2
/
r�/

deg
if i D r�;

0 otherwise,

where

d� D

rC1X

tD1

✓
n

mt�1
�

n

mt

◆
.ht � 1/;

r� D

rC1X

tD1

✓✓
n

mt�1
�

n

mt

◆
.ht � 1/C 2

✓
n

mt�1
� 1

◆
.ht�1 � ht /

◆
:

Moreover, Frqn acts on H
i
c
.Xh;Q`/ by multiplication by the scalar .�1/

i
q
ni=2

.
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Notation 5.1.2. Following Katz [17], we write ˛deg to mean the rank-1 Q`-sheaf with
the action of Frqn given by multiplication by ˛. Given an algebraic group G with Fq-ratio-
nal structure given by some Frobenius Frq , we let LqWG ! G denote the Lang morphism
x 7! Frq.x/x�1. We will abuse notation by using Lq to denote the Lang morphism for differ-
ent G; we hope the meaning is still clear from the context.

Before we prove Theorem 5.1.1, we first note an easy but crucial consequence.

Corollary 5.1.3. Let ⇡ be an irreducible constituent of H
r
c
.Xh;Q`/ for some r . Then

HomUh;k.Fq/
.⇡;H

i

c
.Xh;Q`// D 0 for all i ¤ r .

Proof. The representation ⇡ of Uh;k.Fq/ is a constituent of IndUh;k.Fq/

Th;k.Fq/
.�/ for some �.

Hence
HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

r

c
.Xh;Q`/

�
¤ 0:

By Theorem 5.1.1, it follows that r D r� and

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�
D 0 for all i ¤ r�.

The desired conclusion now holds.

Remark 5.1.4. The arguments presented in this section can be applied to more general
contexts. For example, observe that once an analogue of the Section 5.2 is established, the
general result Proposition 4.1.1 reduces Theorem 5.1.1 to a statement about the cohomology
groups of a pullback P ⇤

L� of an Artin–Schreier sheaf to an affine space S which can then
be calculated using an inductive method on certain linear fibrations of S . To achieve this in
the proof of Theorem 5.1.1, we use the carefully defined indexing sets As;t determined by
a Howe decomposition of the character �, where the main features of these indexing sets are
Lemmas 3.2.3 and 3.2.6.

It is possible to axiomatize the main steps of the proof of Theorem 5.1.1 so that we
specify exactly to what context one can apply the proof of Propositions 5.3.1 and 5.3.2, which
would allow us to reduce the problem of computing the cohomology of certain subschemas of
unipotent groups to a combinatorial problem about defining indexing sets analogous to As;t .
However, we choose to forgo this approach as we feel the present exposition is clearer and
more explicit.

We will prove Theorem 5.1.1 by combining Proposition 5.2.3 with a calculation of the
cohomology groups of the Artin–Schreier sheaves P ⇤

L�. This calculation is driven by two
ideas: the first (Proposition 5.3.2) is an inductive argument that can be viewed as an instance
of the techniques established in Section 4, and the second (Proposition 5.3.1) comes from
factoring the morphism P through appropriate Lang maps (see Section 5.2).

5.2. Compatibility of the morphism P with the Howe factorization.

5.2.1. Induced representations and cohomology. We make the first reduction in the
calculation of HomUh;k.Fq/

.IndUh;k.Fq/

Th;k.Fq/
.�/;H

i
c
.Xh;Q`// by using Proposition 4.1.1 to relate

this space to the cohomology of the pullback of Artin–Schreier sheaves along certain mor-
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phisms P . To make this precise, first recall that over Fq , the quotient Uh;k=Th;k of affine
schemes can be identified with the affine space AŒAç. There is a section of the quotient map
Uh;k ! Uh;k=Th;k given by

sW .x.i;j;l//.i;j;l/2A 7! x1 C x2$
Œkç
C � � �C xn$

Œk.n�1/ç
;

where x1 is the n ⇥ n identity matrix and for j D 2; : : : ; n,

xj D diag.x1;j ; x2;ŒjC1ç; : : : ; xn;ŒjCn�1ç/; xi;j D Œx.i;j;1/; : : : ; x.i;j;h�1/ç:

Since the Fqn-subscheme Xh ⇢ Uh;k is stable under the action of Uh;k.Fq/, there exists
a closed Fqn-subscheme Yh ⇢ Uh;k such that Xh D L�1

q
.Yh/. Since Yh is a closed subscheme

of an affine scheme, it must be affine. Moreover, by Lemma 2.2.4, we may take Yh to be the
reduced subscheme such that Yh.Fq/ D ÅUh \ Frq.ÅU�

h
/. Hence we see that

Fri
q
.Yh/ \ Frj

q
.Yh/ D π1º

for all i ¤ j .
Define

ˇW .Uh;k=Th;k/ ⇥ Th;k ! Uh;k; .x; g/ 7! s.F.x// � g � s.x/
�1
:

The Fqn-scheme ˇ�1
.Yh/ ⇢ .Uh;k=Th;k/ ⇥ Th;k comes with two maps:

pr1Wˇ
�1
.Yh/! Uh;k=Th;k D AŒAç; pr2Wˇ

�1
.Yh/! Th;k :

The Lang morphism Lq is surjective. By Lemma 4.1.2, for any y 2 Th;k such that Lq.y/ D g,

.x; g/ 2 ˇ
�1
.Yh/ ” s.x/ � y 2 Xh:

Lemma 5.2.1. The scheme ˇ
�1
.Yh/ is the graph of P W pr1.ˇ�1

.Yh//!W .1/

h
, where

P is the restriction of the map AŒAç!W .1/

h
given by

x 7! Lq.det.s.x///�1 D '.det.s.x/// � det.s.x//�1:

Proof. Let x 2 AŒAç and y 2 Th;k be such that s.x/ � y 2 Xh. This implies that we
have

Lq.det.s.x/// � Lq.det.y// D Lq.det.s.x/ � y// D .1; 0; : : : ; 0/ 2W .1/

h
;

and hence we see that Lq.det.s.x///�1 D Lq.det.y//. In the remainder of the proof, we show
that Lq.det.y// D Lqn.y1/ for some y1 2W .1/

h
and that Lq.y/ is determined by y1.

By construction, the entries along the diagonal of s.x/ � y are y1; : : : ; yn 2W .1/

h
and

by Definition 2.3.3,
yi D '

⌧.i/
.y1/ for 1  i  n.

Thus the i th coordinate of

Lq.y/ D diag.'.y�.1//; '.y�.2//; : : : ; '.y�.n/// � diag.y1; y2; : : : ; yn/�1

is the expression
'.y�.i// � y

�1
i
D '.'

⌧.�.i//
.y1// � '

⌧.i/
.y

�1
1
/;
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where � is the bijection defined in Definition 2.3.1. By Lemma 2.3.2, we have

⌧.�.i//C 1 D Œ⌧.i/ç

for all 1  i  n, and therefore

'.y�.i// � y
�1
i
D

´
'
Œ⌧.i/ç

.y1/ � '
⌧.i/
.y

�1
1
/ D 1 if i ¤ 1,

'
Œ⌧.i/ç

.y1/ � '
⌧.i/
.y

�1
1
/ D '

n
.y1/ � y

�1
1

if i D 1.

Therefore
Lq.y/ D diag.'n.y1/y�1

1
; 1; : : : ; 1/:

Lemma 5.2.2. The following diagram commutes:

ˇ
�1
.Yh/ Th;k

W .1/

h
.

pr2

Pıpr1 x 7!diag.x;1;:::;1/

Proof. This follows from the proof of Lemma 5.2.1.

Proposition 5.2.3. For any character �WW .1/

h
.Fqn/ ä Th;k.Fq/! Q

⇥
`

, let L� denote

the corresponding Q`-local system on W .1/

h
. Then for i � 0, we have Frqn-compatible isomor-

phisms

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�
ä H

i

c
.pr1.ˇ

�1
.Yh//; P

⇤
L�/;

where P WAŒAç!W .1/

h
is the morphism x 7! Lq.det.s.x///�1 D .'.det.s.x/// � s.x//�1.

Proof. By Proposition 4.1.1, we have Frqn-compatible isomorphisms

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�
ä H

i

c
.ˇ

�1
.Yh/; pr⇤

2
L

0
�
/;

where L
0
�

is the rank-1 local system on Th;k corresponding to � and pr2 is the composi-
tion ˇ�1

.Yh/ ,! .Uh;k=Th;k/ ⇥ Th;k
pr
�! Th;k . By Lemma 5.2.1, ˇ�1

.Yh/ is the graph of
P W pr1.ˇ�1

.Yh//!W .1/

h
, and by Lemma 5.2.2, pr2 D i ı .P ı pr1/, where i WW .1/

h
! Th;k

is the morphism of Fqn-schemes given by x 7! diag.x; 1; : : : ; 1/. Moreover, the pullback of
L

0
�

is i⇤L
0
�
D L�, where L� is the rank-1 local system on W .1/

h
corresponding to �. There-

fore
H
i

c
.ˇ

�1
.Yh/; pr⇤

2
L

0
�
/ D H

i

c
.pr1.ˇ

�1
.Yh//; P

⇤
L�/:

5.2.2. Subschemes of pr1.ˇ�1.Yh//. We will calculateH i
c
.pr1.ˇ�1

.Yh//; P
⇤
L�/ by

relating it to the cohomology of certain subschemes associated to the indexing sets A�s;t
defined in Section 3.2. We now define these subschemes and prove some first lemmas about
them.

Definition 5.2.4. Define

P�s;t WX�s;t WD pr1.ˇ
�1
.Yh// \AŒA�s;t ç!W .1/

ht

by
x 7! Lq.det.s.x///�1 D .'.det.s.x/// det.s.x///�1:
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Lemma 5.2.5. The morphism P�s;t factors through Lq via the morphism

Q�s;t WX�s;t !W .1/

ht
; x 7! det.s.x//�1:

Equivalently, we have a commutative diagram

X�s;t W .1/

h

W .1/

h
.

P�s;t

Q�s;t Lq

Proof. This follows by definition of P�s;t .

Lemma 5.2.6. The projection map

X�s;t ! AŒA�
�s;t ç

is an isomorphism. Moreover, we have an isomorphism

X�s;t ä AŒA�
�s;t XA

�
�s;tC1ç ⇥ X�s;tC1:

Proof. We will show that this map is surjective and then use a counting argument to
show injectivity.

Let x 2 AŒA�s;t ç and y 2 Tht ;k
be such that z WD s.x/ � y 2 Xht

. Recall that from the
proof of Lemma 5.2.1, y is determined by its first coordinate y1 D Œ1; a1; : : : ; aht �1ç 2W .1/

ht
.

Then for any � D .i; j; l/ 2 A�s;t ,

(5.1) z� D

´
x� C .terms with x.i;j;l 0/ for l 0 < l and al 00 for l 00 < l/ if i < j ,
x� C .terms with x.i;j;l 0/ for l 0 < l and al 00 for l 00  l/ if i > j .

This implies that the condition det.s.x/ � y/ 2W .1/

ht
.Fq/ is equivalent to the vanishing of

ht � 1 polynomials in y and x⌫ for ⌫ 2 A
�
�s;t . Explicitly, if we write

det.s.x/ � y/ D Œ1; d1; : : : ; dht �1ç 2W .1/

ht
;

then the ht � 1 polynomials are dq
i
� di for 1  i  ht � 1.

Now fix x�
2 AŒA�

�s;t ç. Observe that d1 is a polynomial of degree qn�1 in a1, so there
are at most qn roots of the polynomial dq

1
� d1. Let a1 be a root, and observe that d2 is

a polynomial of degree qn�1 in a2, so that there are at most qn roots of the polynomial dq
2
� d2.

In this way, we see that there exists a y 2 Tht ;k
such that det.s.x/ � y/ 2W .1/

ht
.Fq/ and that

there are at most qn.ht �1/ such y.
The existence of such a y 2 Tht ;k

now allows us to extend any x�
2 AŒA�

�s;t ç to an
element x 2 X�s;t ⇢ AŒA�s;t ç satisfying s.x/ � y 2 Xht

. This shows the surjectivity of the
projection.

Recall that x 2X�s;t determines y up to Tht ;k
.Fq/-translates. There are exactly qn.ht �1/

such translates, and since there are at most qn.ht �1/ points y satisfying dq
i
� di for all i with

1  i  ht � 1, we see that each of these choices of y 2 Tht ;k
determine the same extension

of x�
2 AŒA�

�s;t ç to x 2 X�s;t ⇢ AŒA�s;t ç. This shows injectivity.
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Lemma 5.2.7. Let x 2 X�s;t . If x⌫ D 0 for some ⌫ 2 A
�
�s;t , then we have x� D 0 for

all � 2 A�s;t with j�j D j⌫j.

Proof. This follows easily from the proof of Lemma 5.2.6 (see equation (5.1)).

For a moment, we write Xn;q�s;t to emphasize the dependence on n; q. For each t with
0  t  r C 1, the sequences

1 DW m0  m1 < m2 < � � � < mr  mrC1 WD n;
h DW h0 D h1 > h2 > � � � > hr � hrC1 WD 1

induce corresponding sequences

1 D m
0
0
 m

0
1
< m

0
2
< � � � < m

0
r�t  m

0
rC1�t D n=mt ; m

0
i�t WD mi=mt ;

h
0
DW h

0
0
� h

0
1
> h

0
2
> � � � > h

0
r�t � h

0
rC1�t D 1; h

0
i�t WD hi

where we define

m
0
i�t WD mi=mt and h

0
i�t WD hi for t  i  r C 1:

Note that h0
0
D h

0
1

if and only if t D 0. For 0  s0; t0  r � t , let A
n=mt ;q

mt

s0;t0
denote the asso-

ciated indexing sets as in Section 3.2. Under this correspondence, the scheme Xn;q�tCs0;tCt0 can
be matched with Xn=mt ;q

mt

�s0;t0 . We make this precise in the next lemma.

Lemma 5.2.8. The natural projection

(5.2) A
n;q

�t;t ! A
n=mt ;q

mt

�0;0 ; .i; j; l/ 7!
�
i;
j�i
mt
C 1; l

�
if i; j ⌘ 1 .mod mt /

induces an isomorphism Xn;q�t;t ä Xn=mt ;q
mt

�0;0 under which P
n;q

�t;t D P
n=mt ;q

mt

�0;0 :

Proof. Recall that

A
n;q

�t;t D
®
.i; j; l/ W 1  i; j  n; 1  l  ht � 1; j ⌘ i .mod mt /

¯
;

A
n=mt ;q

mt

�0;0 D

®
.i; j; l/ W 1  i; j  n=mt ; 1  l  h

0
0
� 1 D ht � 1

¯
:

It is clear that the map (5.2) defines a bijection

π.i; j; l/ W 1  i; j  n; 1  l  ht � 1; j ⌘ i ⌘ 1 .mod mt /º ! A
n=mt ;q

mt

�0;0 :

In particular, (5.2) induces a bijection .An;q

�t;t /� D .A
n=mt ;q

mt

�0;0 /
� and therefore an isomor-

phism between the associated affine spaces. We have a commutative diagram

Xn;q�t;t Xn=mt ;q
mt

�0;0

AŒ.An;q

�t;t /�ç AŒ.An=mt ;q
mt

�0;0 /
�
ç,

where the vertical maps are isomorphisms by Lemma 5.2.6. It therefore follows that the top
map must be an isomorphism.
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5.3. Calculation of Artin–Schreier sheaves. In this section, we prove the two key
propositions required to calculate the cohomology of the (pullbacks of) Artin–Schreier sheaves
at hand. Fix a character �WW .1/

h
.Fqn/ ä Th;k.Fq/! Q

⇥
`

together with a Howe factoriza-
tion � D

Q
r

iD1 �i and recall from Section 2 that this gives rise to associated indexing sets
Tht
; Is;t ;Js;t ;As;t .

The main idea behind Proposition 5.3.1 is to use the conductor-lowering compatibility
lemmas of Section 5.2 to induct according to the Howe factorization. This proposition allows
us to reduce a cohomological calculation about ��t D

Q
r

iDt �i to a calculation about ��tC1,
as long as everything is “divisible” by the conductor of �t . Proposition 5.3.1 is proved in
Section 5.3.1.

Proposition 5.3.1. For 0  t  r , we have Frqn-compatible isomorphisms

H
i

c
.X�t;t ; P ⇤

L��t / ä H
i

c
.X�t;tC1; P ⇤

L��tC1
/Œ2et ç˝ ..�q

n=2
/
2et /

deg
;

where et D #.A�
�t;t XA

�
�t;tC1/.

Proposition 5.3.2 is essentially proved by applying Proposition 4.2.2 inductively. The
main calculation is to show that the hypotheses of Proposition 4.2.2 hold. Proposition 5.3.2
allows us to ‘get rid of’ all the parts that are not ‘divisible’ by the conductor of �t , which
returns us to the setting of Proposition 5.3.1. Proposition 5.3.2 is proved in Section 5.3.2.

Proposition 5.3.2. For 1  t  r , we have Frqn-compatible isomorphisms

H
i

c
.X�t�1;t ; P ⇤

L��t / ä H
i

c
.X�t;t ; P ⇤

L��t /
˚qndt =2

Œdt ç˝ ..�q
n=2
/
dt /

deg
;

where dt D #A
�
t�1;t .

5.3.1. Proof of Proposition 5.3.1. By definition, as characters of W .1/

ht
.Fqn/, we have

��t D �t � ��tC1;

where �t has level ht and conductor mt , and ��tC1 has level htC1 < ht and conductor
mtC1 > mt , where mt j mtC1. This implies that

L��t D L�t ˝ pr⇤
L��tC1

as sheaves on W .1/

ht
, where prWW .1/

ht
!W .1/

htC1
:

By Lemma 5.2.8, we have an isomorphism Xn;q�t;t ä Xn=mt ;q
mt

�0;0 and P n;q�t;t D P
n=mt ;q

mt

�0;0 .
Therefore, by Lemma 5.2.5, we have the following equality of Q`-sheaves on Xn;q�t;t :

P
⇤
L��t D P

⇤
L�t ˝ P

⇤ pr⇤
L��tC1

D Q
⇤
.L

⇤
qmt L�t /˝ P

⇤ pr⇤
L��tC1

;

whereQ D Qn=mt ;q
mt

�0;0 . By construction, �t factors through W .1/

ht
.Fqmt / and hence L⇤

qmt L�t

is the trivial local system. By Lemma 5.2.6,

X�t;t D AŒA�
�t;t XA

�
�t;tC1ç ⇥ X�t;tC1:

Since the push-forward of P ⇤ pr⇤
L��tC1

to AŒA�
�t;t XA

�
�t;tC1ç is the trivial local system,

we have
P

⇤
L��t D Q` ⇥ P ⇤

L��tC1
;
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where Q` is the constant sheaf on AŒA�
�t;t XA

�
�t;tC1ç and P ⇤

L��tC1
is the pullback along

P
⇤
WX�t;tC1 !W .1/

htC1
. Thus by the Künneth formula,

H
i

c
.X�t;t ; P ⇤

L��t / D H
i

c

�
AŒA�

�t;t XA
�
�t;tC1ç ⇥ X�t;tC1;Q` ⇥ P ⇤

L��tC1

�

ä

M

rCsDi
H
r

c

�
AŒA�

�t;t XA
�
�t;tC1ç;Q`

�
˝H

s

c
.X�t;tC1; P ⇤

L��tC1
/

D H
i

c
.X�t;tC1; P ⇤

L��tC1
/Œ2#.A�

�t;t XA
�
�t;tC1/ç

˝

�
.�q

n=2
/
2#.A��t;t XA

�
�t;tC1/

�deg
:

5.3.2. Proof of Proposition 5.3.2. The main ideas in the proof of Proposition 5.3.2 are
Lemmas 5.3.3 and 5.3.5. We will need some notation that will be used in these two lemmas
and also in the proof of the proposition at hand. Recall that

A
�
t�1;t WD π.1; j; l/ 2 A W j ⌘ 1 .mod mt�1/; j 6⌘ 1 .mod mt /; 1  l  ht � 1º;

and define

I0 WD It�1;t D π.1; j; l/ 2 A
�
t�1;t W j.1; j; l/j >

1

2
n.ht � 1/º;

J0 WD Jt�1;t D π.1; j; l/ 2 A
�
t�1;t W j.1; j; l/j 

1

2
n.ht � 1/º:

Recall that, as in Lemma 3.2.3, these two sets are totally ordered and come with an order-
reversing injection

I0 ,! J0; .1; �
j
.1/; l/ 7! .1; �

j
.1/; l/

0
WD .1; �

n�j
.1/; ht � l/:

This map is a bijection if and only if n; ht are even and .1; �n=2.1/; ht=2/ … J0. Otherwise,
#J0 � #I0 D 1. Given this, there is a natural filtration on I0 by iteratively removing a highest-
norm element, and analogously a natural filtration on J0 by iteratively removing a lowest-norm
element. These filtrations can be specified so that they are compatible under the map I0 ! J0

above. Precisely, fix a labeling ⌫0; ⌫1; : : : ; ⌫#I0�1 of the elements of I0 where j⌫i j � j⌫iC1j for
0  i < #I0 � 1. We may define

IC1 WD I X π⌫º; JC1 WD J X π⌫0

º:

Define

ÅI WD π.i; Œj � i C 1ç; l/ 2 At�1;t W .1; �j .1/; l/ 2 Iº;
ÅJ WD π.i; Œj � i C 1ç; l/ 2 At�1;t W .1; �j .1/; l/ 2 Jº:

Lemma 5.3.3. For each   #I0 � 1, we have Frqn-compatible isomorphisms

H
i

c
.X�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ç; P ⇤

L��t /

ä H
i

c
.X�t�1;t \AŒA�t;t [ .ÅIC1 [ ÅJC1/ç; P ⇤

L��t /
˚qn

Œ2ç˝ .q
n
/

deg
:

Remark 5.3.4. A variation of Lemma 5.3.3 for the equal characteristic case with
.π1; n; nº; πh; h; 1º/ was proved in [6, Lemma 5.11]. We give a different proof here that does
not refer to juggling sequences or the explicit equations cutting out Xh.
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Proof. Recall that by definition I and J depend on t . This proof is driven by the
following simple goal: to apply Proposition 4.2.2. To this end, the content of this lemma is the
calculation that the polynomial

P WX�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ç!W .1/

h
; x 7! Lq.det.s.x///�1

has the required form for f .x/ D x⌫ and y D x⌫0

.

Let x 2 X�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ç and let y 2 Th;k be such that

z WD s.x/ � y 2 Xh:

Set ⌫ WD ⌫ WD .1; �j .1/; l/ 2 I and ⌫0
WD ⌫

0

WD .1; �

n�j
.1/; ht � l/ 2 J , and note that

j⌫j C j⌫
0
j D n.ht � 1/.

Take �1 WD .i; �j .i/; l/ 2 ÅI so that j�1j D j⌫j. Let �2 2 A�t;t [ ÅI [ ÅJ be such that
both z�1

and z�2
contribute to a monomial in det.s.x//. I first claim that necessarily �2 2 ÅJ .

Indeed, if � 2 Sn is such that �.i/ D �j .i/, then mt ≠ �.i/ � i , and hence there must be
another i 0 such that mt ≠ �.i 0/ � i 0. If � corresponds to a nontrivial summand of det.z/, then
j.i

0
; �.i

0
/; l

0
/j  n.ht � 1/ � j.i; �.i/; l/j  n.ht � 1/=2 and so .i 0; �.i 0/; l 0/ 2 ÅJ . But now

j�1j C j.i
0
; �.i

0
/; l

0
/j � j⌫j C j⌫

0
j D n.ht � 1/ and by Lemma 3.2.6, this inequality must be

an equality. Thus � must be a transposition, and we see that �2 2 ÅJ and in fact

�2 D .�
j
.i/; i; n � l/ D .�

j
.i/; �

n�j
.�
j
.i//; n � l/:

By equation (2.6), z�1
and z�2

are powers of z⌫ and z⌫0 , respectively:

z�1
D z

q
⌧.i/

⌫
and z�2

D z
q

⌧.�j .i//

⌫0 D z
q

Œ⌧.i/�j C1ç�1

⌫0 :

Therefore the contribution of �1 and �2 is

(5.3) .�1/
sgn�

z�1
z�2
D �z�1

z�2
D

´
z
q

⌧.i/

⌫ � z
q

Œ⌧.i/�j C1ç�1

⌫0 if charK > 0;

z
q

⌧.i/Cht �l

⌫ � z
q

Œ⌧.i/�j C1ç�1Cl

⌫0 if charK D 0:

The contribution of z⌫ to Lq.det.z//�1 is given by

(5.4)
X

�1

.z�1
z�2
/
q
� z�1

z�2
;

and after writing this sum in terms of z⌫ and z⌫0 as in equation (5.3), all terms cancel except
for those corresponding to when

⌧.i/ D 0; ⌧.i/ D n � 1; Œ⌧.i/ � j C 1ç � 1 D 0; or Œ⌧.i/ � j C 1ç � 1 D n � 1;

which exactly corresponds to when

⌧.i/ D 0; ⌧.i/ D n � 1; ⌧.i/ D j; or ⌧.i/ D j � 1:

Hence the sum in (5.4) simplifies to

(5.5)

´
.z
q

n

⌫ � z⌫/ � z
q

j

⌫0 C .z
q

n

⌫0 � z⌫0/ � z
q

n�j

⌫ if charK > 0;

.z
q

n

⌫ � z⌫/
q

ht �l
� z
q

j Cl

⌫0 C .z
q

n

⌫0 � z⌫0/q
l
� z
q

n�j Cht �l

⌫ if charK D 0:
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We now investigate how equation (5.5) allows us to understand the contribution of x⌫ and
x⌫0 to Lq.det.z// D Lq.det.s.x/ � y// 2Wht

. If x� appears in z�0
, then j�j  j�0j. Necessar-

ily �0 does not sit on the diagonal since � does not, and hence if z�0
contributes to Lq.det.z//,

there must exist a �0
0

such that z�0
0

also contributes to the same monomial. But by Lemma 3.2.6,
this implies that j�0

0
j  n.ht � 1/ � j�0j  j�

0
j. This shows that the contribution of x� and x�0

is contained in the contribution of z� and z�0 . Now,

z�0 D x�0C .terms that each include a factor of x�0
0

for �0
0
2
ÅJ0 and j�0

0
j< j⌫

0
j/

D z�0 ;

z� D x� C .terms that each include a factor of x�0
for �0 2 ÅJ0 and j�0j < j⌫j/

and hence we see that the contribution of x� is captured by the contribution of z� which is
captured by the contribution of z⌫ . That is, the contribution of x� is equal to

(5.6)

´
.x
q

n

⌫ � x⌫/ � x
q

j

⌫0 C .x
q

n

⌫0 � x⌫0/ � x
q

n�j

⌫ if charK > 0;

.x
q

n

⌫ � x⌫/
q

ht �l
� x
q

j Cl

⌫0 C .x
q

n

⌫0 � x⌫0/q
l
� x
q

n�j Cht �l

⌫ if charK D 0:

By assumption,mt does not divide j since ⌫ … A�t;t . Since ��t has conductormt , equa-
tion (5.6) shows that P has the form required to apply Proposition 4.2.2 in the case f .x/ D x⌫0

and y D x⌫ . Therefore

H
i

c
.X�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ç; P ⇤

L��t
/ ä H

i

c
.S3; P

⇤
L��t

/Œ2ç˝ .q
n
/

deg
;

where S3 ⇢ X�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ X π⌫ºç is the subscheme defined by

f .x/
q

n

� f .x/ D 0:

Since S3 is the disjoint union of qn copies of X�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ X π⌫; ⌫0
ºç,

H
i

c
.S3; P

⇤
L��t

/Œ2ç˝ .q
n
/

deg

ä H
i

c
.X�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ X π⌫; ⌫0

ºç; P
⇤
L��t

/
˚qn

Œ2ç˝ .q
n
/

deg

D H
i

c
.X�t�1;t \AŒA�t;t [ .ÅIC1 [ ÅJC1/ç; P ⇤

L��t
/
˚qn

Œ2ç˝ .q
n
/

deg
;

where the last equality holds by Lemma 5.2.7.

Lemma 5.3.5. Suppose #J0 � #I0 D 1. Then J#I0
D πv WD .1; n=2C 1; ht=2/ 2 J0º

and we have Frqn-compatible isomorphisms

H
i

c
.X�t�1;t \AŒA�t;t [ ÅJ#I0

ç; P
⇤
L��t /

D H
i

c
.X�t�1;t \AŒA�t;t ç; P ⇤

L��t /
˚qn=2

Œ1ç˝ .�q
n=2
/

deg
:

Proof. For ease of notation, set i0 WD #I0 in this proof. By the divisibility assumption
on A�t;t , we see that

X�t�1;t \AŒA�t;t [ ÅJi0 ç D .X�t�1;t \AŒA�t;t ç/ ⇥ .X�t�1;t \AŒÅJi0 ç/:

Moreover, by Lemma 5.2.6, the projection

f W .X�t�1;t \AŒA�t;t ç/ ⇥ .X�t�1;t \AŒÅJi0 ç/! .X�t�1;t \AŒA�t;t ç/ ⇥AŒπvºç
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is an isomorphism of varieties. By Lemma 3.2.6, it follows that any � 2 ÅJi0 can only contribute
nontrivially to the last coordinate of W .1/

ht
in det.s.x//. Therefore, for P0 D P jX�t;t

and some
morphism ⌘WAŒπvºç!W .1/

ht
, we have

f⇤P ⇤
L��t D P

⇤
0

L��t ⇥ ⌘⇤
L��t ;

and therefore

H
i

c
.X�t;t \AŒA�t;t [ ÅJi0 ç; P ⇤

L��t /

D H
i

c
.X�t;t ⇥AŒπvºç; P ⇤

0
L��t ⇥ ⌘⇤

L��t /

ä

M

rCsDi
H
r

c
.X�t;t ; P ⇤

0
L��t /˝H

s

c
.AŒπvºç; ⌘⇤

L��t /:

It now remains to calculate ⌘, which we do by a similar calculation to the one in Lemma 5.3.3.
By Lemma 3.2.3, v D .1; n=2C 1; ht=2/. The contribution of xv to the last coordinate

of Lq.det.s.x///�1 is exactly given by
8
ˆ̂̂
<

ˆ̂̂
:

P
n

iD1 x
q

⌧.i/C1

v � x
q

Œ⌧.i/Cn=2çC1

v � x
q

⌧.i/

v � x
q

Œ⌧.i/Cn=2ç

v if charK > 0,
P
n

iD1 x
q

⌧.i/C.ht �1/=2C1

v � x
q

Œ⌧.i/Cn=2çC.ht �1/=2C1

v

�x
q

⌧.i/C.ht �1/=2

v � x
q

Œ⌧.i/Cn=2çC.ht �1/=2

v if charK D 0.

This simplifies to ´
.x
q

n

v � xv/ � x
q

n=2

v if charK > 0,

.x
q

n

v � xv/
q

ht =2
� x
q

.nCht /=2

v if charK D 0,

and it follows that

⌘WAŒπvºç!W .1/

ht
; x 7!

´
.0; : : : ; 0; x

q
n=2
.x
q

n
� x// if charK > 0,

.0; : : : ; 0; x
q

.nCht /=2
.x
q

n
� x/

q
ht =2

/ if charK D 0.

We can now make the final conclusion. By [4, equation (6.5.7)] (or [6, Step 4: Case 2 of
Proposition 6.1]), we have

dimH
i

c
.Ga; ⌘

⇤
L��t / D

´
q
n=2 if i D 1,
0 otherwise.

Moreover, Frqn acts on H 1
c
.Ga; ⌘

⇤
L��t / by multiplication by �qn=2.

The desired conclusion of Proposition 5.3.2 now follows by combining Lemmas 5.3.3
and 5.3.5. Explicitly, by Lemma 5.3.3,

H
i

c
.X�t�1;t \AŒA�t�1;t ç; P ⇤

L��t /

D H
i

c
.X�t�1;t \AŒA�t;t [ .ÅI0 [ ÅJ0/ç; P ⇤

L��t /

ä H
i

c
.X�t�1;t \AŒA�t;t [ .ÅI [ ÅJ/ç; P ⇤

L��t /
˚qn

Œ2ç˝ ..�q
n=2
/
2
/

deg

for any   #I0. Clearly I#I0
D ¿. If J#I0

D ¿, then we are done. Otherwise, J#I0
is the

singleton
J#I0
D π.1; 1C n=2; .ht � 1/=2/º
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and by Lemma 5.3.5,

H
i

c
.X�t�1;t \AŒA�t;t [ .I#I0

[ J#I0
/ç; P

⇤
L��t /Œ2#I0ç˝ ..�qn=2/2#I0/

deg

ä H
i

c
.X�t;t ; P ⇤

L��t /
˚qn=2

Œ2#I0 C 1ç˝ ..�qn=2/2#I0C1
/

deg
:

It remains to observe that if J#I0
D ¿; then 2#I0 D #.I0 [ J0/ D #.It�1;t [ Jt�1;t /, and

otherwise, 2#I0 C 1 D #.I0 [ J0/ D #.It�1;t [ Jt�1;t /. This completes the proof. ⇤

5.4. Morphisms: Proof of Theorem 5.1.1. Let �WW .1/

h
.Fqn/ ä Th;k.Fq/! Q

⇥
`

be
any character and consider the sequences of integers

1 DW m0  m1 < m2 < � � � < mr  mrC1 WD n;
h DW h0 D h1 > h2 > � � � > hr � hrC1 WD 1

associated to a(ny) Howe factorization of �. (Recall from Section 2.4 that these sequences
do not depend on the choice of Howe factorization.) Let As;t be indexing sets associated to
a Howe factorization of �. By combining Propositions 5.2.3, 5.3.2, and 5.3.1, we have

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�

ä H
i

c
.pr1.ˇ

�1
.Yh//; P

⇤
L�/ (Prop. 5.2.3)

D H
i

c
.X�0;0; P ⇤

L��0/ (Lem. 5.2.1)

ä H
i

c
.X�0;1; P ⇤

L��1/Œ2e0ç
�
.�q

n=2
/
2e0
�deg (Prop. 5.3.1)

ä H
i

c
.X�1;1; P ⇤

L��1/
˚qnd1=2

Œd1 C 2e0ç
�
.�q

n=2
/
d1C2e0

�deg (Prop. 5.3.2)

ä H
i

c
.X�1;2; P ⇤

L��2/
˚qnd1=2

Œd1 C 2.e0 C e1/ç
�
.�q

n=2
/
d1C2.e0Ce1/

�deg (Prop. 5.3.1)

and so forth by iteratively applying Propositions 5.3.1 and 5.3.2. Recall that

dt D #A
�
t�1;t

D π.1; j; l/ W mt�1 j j � 1; mt ≠ j � 1; 1  l  ht � 1º
D

�
n

mt�1
�

n

mt

�
.ht � 1/ for 1  t  r C 1;

et D #.A�
�t;t XA

�
�t;tC1/

D #π.1; j; l/ W mt j j � 1; j ¤ 1; htC1 � 1 < l  ht � 1º
D

�
n

mt
� 1

�
.ht � htC1/ for 0  t  r:

Thus setting

d� WD d1 C � � �C drC1

D

rC1X

tD1

✓
n

mt�1
�

n

mt

◆
.ht � 1/;

r� WD .d1 C � � �C drC1/C 2.e0 C � � �C er/

D

rC1X

tD1

✓✓
n

mt�1
�

n

mt

◆
.ht � 1/C 2

✓
n

mt�1
� 1

◆
.ht�1 � ht /

◆
;

the cohomology groups above are isomorphic to

H
i

c
.X�r;rC1; P ⇤

L��r /
q

nd�=2

Œr�ç
�
.�q

n=2
/
r�
�deg

:
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Note that X�r;rC1 is a single point and hence we obtain that as vector spaces,

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�
D

´
Q

˚qnd�=2

`
if i D r�;

0 otherwise.

Moreover, since Frqn acts trivially on H 0
c
.⇤;Q`/, it follows that Frqn acts by multiplication

by .�1/r�q
nr�=2 on the above space of Uh;k.Fq/-homomorphisms. Since every representa-

tion of Uh;k.Fq/ occurs in IndUh;k.Fq/

Th;k.Fq/
.�/ for at least one character �, the above gives a com-

plete description of the Frqn-action onH i
c
.Xh;Q`/, and this action is always by multiplication

by .�1/iqni=2.

6. Deligne–Lusztig theory for finite unipotent groups

In this section, we prove the main theorems of this paper. We first calculate the alternat-
ing sum of the cohomology groups (Theorem 6.1.1) using a technique of [19]. This is very
similar to the results of Lusztig [20] and Stasinski [21], which study closely related groups
in a reductive setting. Combining Theorem 5.1.1 and Theorem 6.1.1 gives Theorems 6.2.1
and 6.2.2, which prove Boyarchenko’s conjectures [2, Conjectures 5.16 and 5.18] in full gener-
ality. Note that strictly speaking, as stated in [2] these two conjectures assume that charK > 0

and k D 1; however, they can be easily extended and formulated without these assumptions
(see [6, Conjectures 7.4, 7.5]). Theorems 6.2.1 and 6.2.2 can be viewed naturally as the higher-
dimensional analogues of the results of Boyarchenko and Weinstein on the cohomology of X2
in [4, Sections 4-6].

We remark that in all previous work (i.e., the h D 2 work of Boyarchenko–Weinstein [4]
and the primitive-�, equal-characteristic work of the author in [6], [5]), pinning down the non-
vanishing cohomological degree i D s� of H i

c
.Xh;Q`/Œ�ç was a trivial consequence of (the

analogues of) Theorem 5.1.1. This is because the central character of H i
c
.Xh;Q`/Œ�ç deter-

mines s� in these cases and so s� agrees with the r� appearing in Theorem 5.1.1. However, in
the general setting, this no longer holds, and it is a nontrivial theorem that the equality s� D r�
is still true (Theorem 6.2.4). The proof is an application of the Deligne–Lusztig trace formula
[9, Theorem 3.2].

The trio of Theorems 6.2.1, 6.2.2, and 6.2.4 gives us a complete description of the
Th;k.Fq/-eigenspaces H i

c
.Xh;Q`/Œ�ç together with the Frobenius action on H i

c
.Xh;Q`/.

Combining these theorems with Theorem 5.1.1 and the fact that the multiplicity of an irre-
ducible ⇢ in the regular representation is equal to the dimension of ⇢, we may write down an
explicit formula for the zeta function of Xh. This is done in Theorem 6.3.1.

In Section 6.4, we demonstrate how to realize the main theorems of [2], [4], [6], and [5]
as corollaries of the theorems in this paper.

6.1. Alternating sums of eigenspaces. We study the virtual Uh;k.Fq/-representation

R� WD

X

i

.�1/
i
H
i

c
.Xh;Q`/Œ�ç:

Theorem 6.1.1. For each �WTh;k.Fq/! Q
⇥
`

, the Uh;k.Fqn/-representation ˙R� is

irreducible. If � ¤ �
0
, then˙R�;˙R�0 are nonisomorphic.
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Proof. Since the dual of the virtual Uh;k.Fq/-representation
P
i
.�1/

i
H
i
c
.Xh;Q`/Œ�ç

is isomorphic to
P
i
.�1/

i
H
i
c
.Xh;Q`/Œ�

�1
ç,

X

i;j

.�1/
iCj dim HomUh;k.Fq/

�
H
i

c
.Xh;Q`/Œ�ç;H

i

c
.Xh;Q`/Œ�

0
ç
�

D

X

i;j

.�1/
iCj dim

�
H
i

c
.Xh;Q`/Œ�

�1
ç˝H

i

c
.Xh;Q`/Œ�

0
ç
�Uh;k.Fq/

D

X

i

.�1/
i dimH

i

c
.†;Q`/��1;�0 ;

where the subscript ��1
;�

0 denotes the .Th;k.Fq/ ⇥ Th;k.Fq//-eigenspace corresponding to
�

�1
˝ �

0, and
† WD .Xh ⇥Xh/=Uh;k.Fq/:

Hence the statement of the theorem is equivalent to showing

X
.�1/

i dimH
i

c
.†;Q`/��1;�0 D

´
1 if � D �0

;

0 otherwise.

We follow a technique of Lusztig demonstrated in [19] wherein we construct an action of a con-
nected torus T over Fq on † and then use the fact (see, for example, [10, Proposition 10.15])
that P

.�1/
i
H
i
c
.†;Q`/ D

P
.�1/

i
H
i
c
.†

T
;Q`/:

For the remainder of the proof, we extend scalars to Fq . Recall from Lemma 2.2.4 that

Xh D πg 2 Uh;k.Fq/ W Frq.g/g�1
2
ÅUh \ Frq.ÅU�

h
/º:

It is clear that the map

Xh ⇥Xh ! π.x; x
0
; y; y

0
/ 2 .ÅUh \ Frq.ÅU�

h
// ⇥ .ÅUh \ Frq.ÅU�

h
// ⇥Uh;k.Fq/ ⇥Uh;k.Fq/ W

xy D Frq.y/; y0
D Frq.y0

/x
0
º;

.g; g
0
/ 7! .Frq.g/g�1

;Frq.g0
/g

0�1
; g; g

0�1
/

is an isomorphism. Since .Uh;k.Fq//Frq
D Uh;k.Fq/, for any g 2 Xh and h 2 Uh;k.Fq/, we

have gh 2 Xh, and the image of .gh; g0
h/ is .Frq.g/g�1

;Frq.g0
/g

0�1
; gh; h

�1
g

0�1
/. More-

over, Frq.gh/.gh/�1 D Frq.g/g�1 if and only if h 2 Uh;k.Fq/. It follows from this that the
map

†! π.x; x
0
; y/ 2 .ÅUh \ Frq.ÅU�

h
// ⇥ .ÅUh \ Frq.ÅU�

h
// ⇥Uh;k.Fq/ W xy D Frq.y/x0

º;

.g; g
0
/ 7! .Frq.g/g�1

;Frq.g0
/g

0�1
; gg

0�1
/

is a bijection.
Since Uh;k.Fq/ has an Iwahori factorization, any y 2 Uh;k.Fq/ can be written uniquely

in the form

y D y
0
1
y

0
2
y

00
1
y

00
2
; y

0
1
2
ÅUh \ Fr�1

q
.ÅUh/; y

0
2
2
ÅUh \ Fr�1

q
.ÅU�
h
/;

y
00
1
2
ÅDh � .ÅU�

h
\ Fr�1

q
.ÅU�
h
//; y

00
2
2
ÅU�
h
\ Fr�1

q
.ÅUh/;
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where ÅDh ⇢ Uh;k.Fq/ is the subgroup of diagonal matrices. Hence † is in bijection with the
set of tuples

.x; x
0
; y

0
1
; y

0
2
; y

00
1
; y

00
2
/ 2 .ÅUh \ Frq.ÅU�

h
// ⇥ .ÅUh \ Frq.ÅU�

h
// ⇥ .ÅUh \ Fr�1

q
.ÅUh//

⇥ .ÅUh \ Fr�1
q
.ÅU�
h
// ⇥ .ÅDh � .ÅU�

h
\ Fr�1

q
.ÅU�
h
///

⇥ .ÅU�
h
\ Fr�1

q
.ÅUh//

satisfying
xy

0
1
y

0
2
y

00
1
y

00
2
D Frq.y0

1
y

0
2
y

00
1
y

00
2
/x

0
:

As in [19, p. 73], note that any z 2 ÅUh can be written uniquely in the form F.y
0
1
/
�1
xy

0
1

for
y

0
1
2
ÅUh \ Fr�1

q
.ÅUh/ and x 2 ÅUh \ Frq.ÅU�

h
/ (this can be checked by the same calculation as

[2, Section 6.8]). Using this together with the substitution Åx0
D Frq.y00

2
/x

0
2
ÅUh \ Frq.ÅU�

h
/,

we have that † is in bijection with tuples

.Åx0
; y

0
2
; y

00
1
; y

00
2
/ 2 .ÅUh \ Frq.ÅU�

h
// ⇥ .ÅUh \ Fr�1

q
.ÅU�
h
//

⇥ .ÅDh � .ÅU�
h
\ Fr�1

q
.ÅU�
h
/// ⇥ .ÅU�

h
\ Fr�1

q
.ÅUh//

satisfying
Frq.y0

2
y

00
1
/Åx0
2
ÅUhy0

2
y

00
1
y

00
2
D
ÅUhy00

1
y

00
2
:

Consider the subgroup of Uh;k.Fq/ ⇥Uh;k.Fq/ given by

H WD π.t; t
0
/ W t; t

0 diag, t 2 ÅDht 0,
t
�1 Frq.t/ D t 0�1 Frq.t 0/ centralizes ÅDh � .ÅU�

h
\ Fr�1

q
ÅU�
h
/º:

For .t; t 0/ 2 H consider the map

a.t; t 0/W .Åx0
; y

0
2
; y

00
1
; y

00
2
/ 7! .Frq.t/Åx0 Frq.t/�1; t 0y0

2
t
0�1
; t

0
y

00
1
t
�1
;Frq.t/y00

2
Frq.t/�1/:

We first show that a.t; t 0/ defines a map †! † for .t; t 0/ 2 H . For

.Åx0
; y

0
2
; y

00
1
; y

00
2
/ 2 .ÅUh \ Frq.ÅU�

h
// ⇥ .ÅUh \ Fr�1

q
.ÅU�
h
//

⇥ .ÅDh � .ÅU�
h
\ Fr�1

q
.ÅU�
h
/// ⇥ .ÅU�

h
\ Fr�1

q
.ÅUh//;

we have

Frq.t 0y0
2
t
0�1
t
0
y

00
1
t
�1
/Frq.t/Åx0 Frq.t/�1 2 ÅUht 0y00

1
t
�1 Frq.t/y00

2
Frq.t/�1

if and only if

Frq.t 0y0
2
y

00
1
/Åx0 Frq.t/�1 2 ÅUht 0y00

1
t
�1 Frq.t/y00

2
Frq.t/�1 D ÅUh Frq.t 0/y00

1
y

00
2

Frq.t/�1;

where we used that t�1 Frq.t/ D t 0�1 Frq.t 0/ commutes with y00
1

. Since Frq.t 0/ normalizes ÅUh,
the above holds if and only if

Frq.y0
2
y

00
1
/Åx0
2
ÅUhy00

1
y

00
2
;

which exactly means .Åx; y0
2
; y

00
1
; y

00
2
/ 2 †. Since H is abelian, it is now clear that a.t; t 0/ for

.t; t
0
/ 2 H defines an action on †.

Observe thatH contains Th;k.Fq/ ⇥ Th;k.Fq/ as a subgroup. Moreover, the action ofH
restricts to the left action of Th;k.Fq/ ⇥ Th;k.Fq/ inherited from the left-multiplication action
of Th;k.Fq/ on Xh. We now pinpoint an algebraic torus T ⇢ H . By an explicit calculation,
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ÅU�
h
\ Fr�1

q
ÅU�
h

consists of matrices . un�k 0

0 uk
/ 2 Uh;k.Fq/, where un�k is a lower-triangular

matrix of rank n � k and uk is a lower-triangular matrix of rank k. Thus for any a0 2Wh.Fq/⇥,
the element a WD diag.1; : : : ; 1; a0; : : : ; a0/ 2 Gh;k.Fq/ (where there are k coordinates of a0)
centralizes ÅDh � .ÅU�

h
\ Fr�1

q
ÅU�
h
/. If t D diag.t1; : : : ; tn/, then

Frq.t/ D diag.'.t�.1//; '.t�.2//; : : : ; '.t�.n///;

and t D Frq.t/a is equivalent to the condition

(6.1) ti D

´
'.t�.i// if 1  i  n � k,
'.t�.i// � a0 if n � k C 1  i  n.

Since the permutation � has order n, it is clear from the above that t is determined by a single
entry, say tn. Let t .⇠/ denote the unique t satisfying (6.1) with tn D ⇠ . Then Frq.t.⇠//�1t .⇠/
centralizes ÅDh � .ÅU�

h
\ Fr�1

q
ÅU�
h
/ and

T WD π.t.⇠/; t.⇠// W ⇠ 2 F
⇥
q
º ⇢ H

is a connected algebraic torus over Fq whose action on † D .Xh ⇥Xh/=Uh;k.Fq/ commutes
with the .Th;k.Fq/ ⇥ Th;k.Fq//-action. One can easily see that the T -fixed point set of † is

†
T
D π.1; 1; y

0
2
; 1/ W y

0
2
2
ÅDh; y0

2
2 Frq.y0

2
/ � ÅUhº

D π.1; 1; y
0
2
; 1/ W y

0
2
2
ÅDFrq

h
º ä Th;k.Fq/;

where under the final identification, Th;k.Fq/ ⇥ Th;k.Fq/ acts by .t; t 0/ ⇤ y0
2
D ty

0
2
t
0�1. Thus

X
.�1/

i
H
i

c
.†

T
;Q`/��1;�0 D

X
.�1/

i
H
i

c
.Th;k.Fq/;Q`/��1;�0

D H
0

c
.Th;k.Fq/;Q`/��1;�0

and the theorem follows from

dimH
0

c
.Th;k.Fq/;Q`/��1;�0 D

´
1 if � D �0,
0 otherwise.

6.2. Boyarchenko’s conjectures. In this subsection, we combine the results of Sec-
tions 5.4 and 6.1 to prove Conjectures A and B (Theorems 6.2.1 and 6.2.2). Theorem 6.2.4
can be viewed as a refinement of Conjecture B in the sense that it proves that the nonvan-
ishing cohomological degree of H i

c
.Xh;Q`/Œ�ç is equal to the explicit integer r� defined in

Theorem 5.1.1.

Theorem 6.2.1. The finite-type Fqn-schemeXh is maximal in the sense of Boyarchenko–

Weinstein [4]. That is, for each i � 0, we have H
i
c
.Xh;Q`/ D 0 unless i or n is even, and the

Frobenius morphism Frqn acts on H
i
c
.Xh;Q`/ by the scalar .�1/

i
q
ni=2

.

Proof. By Theorem 5.1.1, Frqn acts on H i
c
.Xh;Q`/ by multiplication by .�1/iqni=2.

To finish, we show that H i
c
.Xh;Q`/ D 0 if i and n are both odd. Assume that n is odd. By

definition of r�, it is enough to show that the sum d1 C � � �C drC1 is always even. We have

dt D

✓
n

mt�1
�

n

mt

◆
.ht � 1/;

and since n is odd by assumption, then n=mt�1 and n=mt must also be odd, and hence dt is
even. This completes the proof.
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Theorem 6.2.2. For any � 2 Tn;h, the cohomology groupsH
i
c
.Xh;Q`/Œ�ç are nonzero

in a single degree i D s�, and H
s�
c .Xh;Q`/Œ�ç is an irreducible representation of Uh;k.Fq/.

Moreover, H
s�
c .Xh;Q`/Œ�ç ä H

s�0
c .Xh;Q`/Œ�

0
ç if and only if � D �

0
.

Proof. Let ⇡ be an irreducible constituent in H s�
c .Xh;Q`/Œ�ç for some s�. Then by

Corollary 5.1.3,

HomUh;k.Fq/
.⇡;H

i

c
.Xh;Q`/Œ�ç/ D 0 for all i ¤ s�:

But this implies that the alternating sum˙R� D
P
i
.�1/

i
H
i
c
.Xh;Q`/Œ�ç can have no cancel-

lation, and ⇡ ä ˙R�. By Theorem 6.1.1,

H
i

c
.Xh;Q`/Œ�ç D

´
irreducible if i D s�,
0 otherwise.

Moreover, if � ¤ �0, then˙R� and˙R�0 are nonisomorphic by Theorem 6.1.1 and it follows
easily that H s�

c .Xh;Q`/Œ�ç and H s�0
c .Xh;Q`/Œ�

0
ç must also be nonisomorphic.

As in Definition 2.2.3, for any ⇣ 2 Fqn , t 2 Th;k.Fq/, and g 2 Uh;k.Fq/, let .⇣; t; g/
denote the map Xh ! Xh given by x 7! ⇣ � t � x � g � ⇣

�1.

Theorem 6.2.3. If ⇣ 2 F⇥
qn has trivial stabilizer in Gal.Fqn=Fq/, then

Tr
�
.⇣; 1; g/

⇤
IH

s�
c .Xh;Q`/Œ�ç

�
D .�1/

s��.g/ for any g 2 Th;k.Fq/:

Proof. This is identical to [6, proof of Proposition 6.2]. The argument is very similar to
the proof of Lemma 6.2.5 in the present paper.

Up to now, we have only shown thatH i
c
.Xh;Q`/Œ�ç is concentrated in a single degree s�.

It is natural to expect, based on Theorem 5.1.1, that s� D r�. We resolve this question in Theo-
rem 6.2.4. The proof uses purely cohomological techniques and essentially is a combination of
Theorem 6.2.3 together with the Deligne–Lusztig fixed point formula.

Theorem 6.2.4. For any �WTh;k.Fq/! Q
⇥
`

,

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

s�
c .Xh;Q`/Œ�ç

�
¤ 0:

In particular, s� D r�.

Proof. By Frobenius reciprocity, it is enough to show

(6.2) dim HomTn;q
h;k .Fq/

.�;H
s

n;q
�
c .X

n;q

h
;Q`/Œ�ç/ ¤ 0;

where we write Th;k DTn;q

h;k
, s�D s

n;q

� , and XhDX
n;q

h
to emphasize the dependence on n; q.

It is clear that once this is established, then by Theorem 5.1.1, it follows immediately that
s� D r�. For notational simplicity, we write H i

c
.X/ to mean H i

c
.X;Q`/. Recall from Defini-

tion 2.2.3 that for ⇣ 2 F⇥
qn , t 2 Th;k.Fq/, g 2 Uh;k.Fq/, we write .⇣; t; g/ to denote the map

Xh ! Xh given by x 7! ⇣ � t � x � g � ⇣
�1. We first prove two lemmas.
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Lemma 6.2.5. Let p0 be a prime dividing n. Then, for any x 2 F⇥
qp0
X F⇥

q
and any

g 2 Th;k.Fq/,

.�1/
s

n;q
� Tr

�
.x; 1; g/IH

s
n;q
�
c .X

n;q

h
/Œ�ç

�

D .�1/
s

n=p0;qp0
� Tr

�
.1; 1; g/IH

s
n=p0;qp0
�
c .X

n=p0;q
p0

h
/Œ�ç

�
:

Proof. Fix x 2 F⇥
qp0
X F⇥

q
. Recall that x acts by conjugation on

M DM1 CM2$
k
C � � �CMn$

Œk.n�1/ç
2 X

n;q

h

(recall the standard form of a point of Xn;q
h

in Definition 2.3.3):

x ⇤M D x
�1
�M � x:

If l is the unique integer 0  l  n � 1 such that lk D 1 modulo n, then

x
�1
�$

k
� x D x

�1
� '
l
.x/ �$

k
:

We have 'l.j�1/
.x/ D x if and only if p0 j .j � 1/ and therefore we see that if x ⇤M DM ,

then necessarily Mj D 0 for j 6⌘ 1 modulo p0 and

M DM1 CMp0C1$ Œkp0ç
C � � �CMn�p0C1$ Œk.n�p0/ç:

For any integerm, let Œmç0 be the unique integer 1  Œmç0  n

p0
such thatm ⌘ Œmç0 modulo n

p0
.

I now claim that there is a Tn;q

h;k
.Fq/-equivariant morphism

f W .X
n;q

h
/
x
! X

n=p0;q
p0

h

given by

M1 CMp0C1$kŒp0ç
C � � �CMn�p0C1$ Œk.n�p0/ç

7!M
0
1
CM

0
p0C1$

Œkç
0

n=p0
C � � �CM

0
n�p0C1$

Œk.
n

p0
�1/ç0

n=p0
;

where M 0
j

denotes the top-left-justified n

p0
⇥

n

p0
matrix in Mj and

$n=p0
D

 
0 1 n

p0
�1

⇡ 0

!
:

Using Definition 2.3.3, it is a straightforward check to see that this morphism is well-defined
since f .M/ is of the form (2.5), satisfies (2.6), and the determinant condition

'.det.M// D det.M/

implies that 'p0.det.f .M/// D det.f .M//. (This last claim can be seen by observing that the
rows and columns ofM can be swapped so that the matrix becomes block diagonal of the form
diag.f .M/; '

⌧.2/
.f .M//; : : : ; '

⌧.p0�1/
.f .M///.) The equivariance under

Tn;q

h;k
.Fq/ ä Tn=p0;q

p0

h;k
.Fq/

is clear.
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By Proposition 3.3.1, Xn;q
h

is a separated, finite-type scheme over Fqn , and the action of
.x; t; g/ 2 F⇥

qn ⇥ Th;k.Fq/ ⇥ Th;k.Fq/ defines a finite-order automorphism. Moreover,

.x; t; g/ D .1; t; g/ � .x; 1; 1/;

where .1; t; g/ is a p-power-order automorphism and .x; 1; 1/ has prime-to-p order. Hence by
the Deligne–Lusztig fixed point formula [9, Theorem 3.2], we have

X

i

.�1/
i Tr

�
.x; t; g/

⇤
IH

i

c
.X

n;q

h
/
�
D

X

i

.�1/
i Tr

�
.1; t; g/

⇤
IH

i

c
..X

n;q

h
/
x
/
�
:

Therefore

#Tn;q

h;k
.Fq/

X

i

.�1/
i Tr

�
.x; 1; g/

⇤
IH

i

c
.X

n;q

h
/Œ�ç

�

D

X

t2Tn;q
h;k .Fq/

�.t/
�1X

i

.�1/
i Tr

�
.x; t; g/

⇤
IH

i

c
.X

n;q

h
/
�

D

X

t2Tn;q
h;k .Fq/

�.t/
�1X

i

.�1/
i Tr

�
.1; t; g/

⇤
IH

i

c
..X

n;q

h
/
x
/
�

D #Tn;q

h;k
.Fq/

X

i

.�1/
i Tr

�
.1; 1; g/

⇤
IH

i

c
..X

n;q

h
/
x
/Œ�ç

�

D #Tn;q

h;k
.Fq/

X

i

.�1/
i Tr

�
.1; 1; g/

⇤
IH

i

c
.X

n=p0;q
p0

h
/Œ�ç

�
:

The desired equality now follows since by Theorem 6.2.2,H i
c
.X

n;q

h
/Œ�ç andH i

c
.X

n=p0;q
p0

h
/Œ�ç

are nonzero only when i D sn;q� and i D sn=p0;q
p0

� , respectively.

Lemma 6.2.6. Let �WTn;q

h;k
.Fq/! Q

⇥
`

. Assume that we are in one of the following

cases:

(1) n > 1 is odd and p0 is a prime divisor of n.

(2) n > 1 is even and p0 D 2.

Fix a ⇣ 2 F⇥
qp0

such that h⇣i D F⇥
qp0

and consider the corresponding extension of � defined as

Å�WF⇥
qp0 ⇥ Tn;q

h;k
.Fq/! Q

⇥
`
; .⇣

i
; g/ 7!

8
<

:
�.g/ if q is even,

..�1/
s

n;q
� Csn=p0;qp0

� /
i
� �.g/ if q is odd.

Then X

x2F⇥
qp0

XF⇥
q

Å�.x; 1/�1 ¤ 0:

Proof. If q is even, then
Å�jF⇥

qp0
⇥π1º D 1;

so the conclusion holds. For the remainder of the proof, assume that q is odd. If we are in
Case (1), then by Theorem 6.2.1, we know that sn;q� and sn=p0;q

p0

� are both even. Hence

Å�jF⇥
qp0

⇥π1º D 1
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and we are done. The same conclusion holds if we are in Case (2) and sn;q� C s
n=p0;q

p0

� is even,
so assume sn;q� C s

n=p0;q
p0

� is odd. Then Å�jF⇥
qp0

⇥π1º is nontrivial and
X

x2F⇥
qp0

Å�.x; 1/�1 D 0:

Thus to show the conclusion of the lemma, it suffices to show that
P
x2F⇥

q
Å�.x; 1/�1 ¤ 0:

If ⇣m 2 F⇥
q

, then m must be a multiple of q C 1, which is even. This implies that Å�.x; 1/ D 1
if x 2 F⇥

q
, and we are done.

We are now ready to prove the theorem. First observe that X1;q
h
D T1;q

h;k
.Fq/ and hence

for any �WT1;q

h;k
.Fq/! Q

⇥
`

, we have

H
s

1;q
�
c .X

1;q

h
/Œ�ç D H

0

c
.T1;q

h;k
.Fq//Œ�ç D �;

so equation (6.2) holds for n D 1 and q arbitrary. We now induct on the number of prime
divisors l of n. Assume that for a fixed integer l � 0, equation (6.2) holds for any n D

Q
l

iD1 pi
and arbitrary q, where the pi are (possibly nondistinct) primes. We will show that equation (6.2)
holds for any n D

Q
l

iD0 pi and arbitrary q.
If n is odd, let p0 be any prime divisor of n, and if n is even, let p0 D 2. Define the

character Å�WF⇥
qp0
⇥ Tn;q

h;k
.Fq/! Q

⇥
`

as in Lemma 6.2.6. Then

#.F⇥
qp0 ⇥ Tn;q

h;k
.Fq// � dim HomF⇥

qp0
⇥Tn;q

h;k .Fq/

�
Å�;H s

n;q
�
c .X

n;q

h
/Œ�ç

�
(6.3)

D

X

.x;g/2F⇥
qp0

⇥Tn;q
h;k .Fq/

Å�.x; g/�1 Tr
�
.x; 1; g/IH

s
n;q
�
c .X

n;q

h
/Œ�ç

�

D #.F⇥
q
⇥ Tn;q

h;k
.Fq// � dim HomF⇥

q ⇥Tn;q
h;k .Fq/

�
Å�;H s

n;q
�
c .X

n;q

h
/Œ�ç

�

C

X

.x;g/2.F⇥
qp0

XF⇥
q /⇥Tn;q

h;k .Fq/

Å�.x; g/�1 Tr
�
.x; 1; g/IH

s
n;q
�
c .X

n;q

h
/Œ�ç

�
:

By Lemma 6.2.5,
X

.x;g/2.F⇥
qp0

XF⇥
q /⇥Tn;q

h;k .Fq/

Å�.x; g/�1 Tr
�
.x; 1; g/IH

s
n;q
�
c .X

n;q

h
/Œ�ç

�
(6.4)

D .�1/
s

n;q
� Csn=p0;qp0

�
�

X

.x;g/

x2F⇥
qp0

XF⇥
q

Å�.x; g/�1

� Tr
�
.1; 1; g/IH

s
n=p0;qp0
�
c .X

n=p0;q
p0

h
/Œ�ç

�

D .�1/
s

n;q
� Csn=p0;qp0

�
�

X

x2F⇥
qp0

XF⇥
q

Å�.x; 1/�1 �N;

where

N WD #Tn;q

h;k
.Fq/ � dim HomTn;q

h;k .Fq/

�
�;H

s
n=p0;qp0
�
c .X

n=p0;q
p0

h
/Œ�ç

�
:

By the inductive hypothesis together with the fact that

Tn;q

h;k
.Fq/ D Tn=p0;q

p0

h;k
.Fqp0 / äW .1/

h
.Fqn/;
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we have N ¤ 0. Since p0 satisfies the hypothesis of Lemma 6.2.6, we now see that (6.4) is
nonzero. By (6.3), this implies that at least one of the following numbers is nonzero:

dim HomF⇥
qp0

⇥Tn;q
h;k .Fq/

�
Å�;H s

n;q
�
c .X

n;q

h
/Œ�ç

�

or
dim HomF⇥

q ⇥Tn;q
h;k .Fq/

�
Å�;H s

n;q
�
c .X

n;q

h
/Œ�ç

�
:

In either case, we must have

dim HomTn;q
h;k .Fq/

�
�;H

s
n;q
�
c .X

n;q

h
/Œ�ç

�
¤ 0:

6.3. The zeta function of Xh. Thanks to Theorems 5.1.1 and 6.2.4, we now have an
explicit description of the nonvanishing cohomological degree r�. In the next theorem, we give
a formula for the zeta function of Xh.

Theorem 6.3.1. The Hasse–Weil zeta function of Xh is

Z.Xh; t / D

2 dimXhY

iD0

�
1 � .�q

n=2
/
i
� t
�.�1/iC1 dimH i

c .Xh;Q`/
;

where

dimH
i

c
.Xh;Q`/ D

X

�WTh;k.Fq/!Q
⇥
` ;

r�Di

q
nd�=2:

Moreover, if n is odd, then Z.Xh; t /
�1

is a polynomial.

Proof. By the Grothendieck–Lefschetz trace formula,

Z.Xh; t / D

2 dimXhY

iD0

�
det..1 � t Frqn/IH

i

c
.Xh;Q`//

�.�1/iC1

:

By Theorem 6.2.1, we know that Frqn acts on H i
c
.Xh;Q`/ by multiplication by .�qn=2/i , so

det..1 � t Frqn/IH
i

c
.Xh;Q`// D

�
1 � .�q

n=2
/
i
� t
�dimH i

c .Xh;Q`/
:

It remains to prove the dimension formula.
Let H ✏

c
.Xh;Q`/ D

L
i
H
i
c
.Xh;Q`/. By Theorem 6.2.2, H ✏

c
.Xh;Q`/ is a direct sum of

distinct irreducible representations of Uh;k.Fq/ (parametrized by �WTh;k.Fq/! Q`). Write

H
i

c
.Xh;Q`/ D ⇡i;1 ˚ � � �˚ ⇡i;ki

;

where the ⇡ij are nonisomorphic irreducible representations of Uh;k.Fq/. Recall that the regu-
lar representation Reg WD IndUh;k.Fq/

π1º .1/ has the property that an irreducible Uh;k.Fq/-repre-
sentation ⇡ has multiplicity dim⇡ in Reg. Then

dim HomUh;k.Fq/

�
Reg;H i

c
.Xh;Q`/

�
D dim HomUh;k.Fq/

 
Reg;

kiM

jD1
⇡ij

!

D

kiX

jD1
dim⇡ij :
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On the other hand, by Theorem 5.1.1,

dim HomUh;k.Fq/

�
Reg;H i

c
.Xh;Q`/

�

D dim HomUh;k.Fq/

✓ M

� s.t. r� D i

IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

◆

D dim
M

� s.t. r� D i

HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�

D

X

� s.t. r� D i

q
nd�=2;

where each sum ranges over �WTh;k.Fq/! Q
⇥
`

such that r� D i . This proves the dimension
formula. The final assertion now follows from Theorem 6.2.1 since if n is odd and

H
i

c
.Xh;Q`/ ¤ 0;

then i must be even, and hence Z.Xh; t / has no nontrivial factors in the numerator.

Example 6.3.2. We demonstrate how to calculate the Hasse–Weil zeta function in the
case that n is prime. First observe that the Howe decomposition of a character of W .1/

h
.Fqn/

must be of the form
� D �

0

1
.NmFqn=Fq

/ � �
0

2
;

where �0
1

is a character of W .1/

h
.Fq/ and �0

2
is a primitive character of W .1/

h0 .Fqn/. After fixing
a level h0 with 1  h0

 h, the number of such � is equal to

Nh0 WD .qh�1
� q

h
0�1
C 1/ � .q

p.h
0�1/
� q

p.h
0�2/
� q C 1/;

and
d� D .n � 1/.h

0
� 1/; r� D .n � 1/.h � 1/C .n � 1/.h � h

0
/:

Thus by Theorem 6.3.1,

dimH
i

c
.Xh;Q`/ D

´
q
h�1 if i D 2.n � 1/.h � 1/,
Nh0 � qn.n�1/.h0�1/=2 if i D .n � 1/.h � 1/C .n � 1/.h � h0

/.

We can now write down explicit formulas for the zeta function of Xh. For example:

Corollary 6.3.3. If n D 2, then

Z.X3; t / D
.1C q

3
� t /

.q
2�qC1/.q2�q/q

.1 � q2 � t /q
2
� .1 � q4 � t /.q

4�q2�qC1/q2
:

6.4. Examples. Prior to this work, the only cases in which the Uh;k.Fq/-representa-
tions H i

c
.Xh;Q`/Œ�ç had been studied were in the following cases:

(1) For h D 2 and k D 1, this was done by Boyarchenko–Weinstein in [4, Theorem 4.5.1].

(2) For h; k arbitrary, � primitive, and charK > 0, this was done by the author in [6]. Before
this some smaller cases were done:
(a) The n D 2, h D 3, k D 1, charK > 0 case was done by Boyarchenko in [2, Theo-

rem 5.20].
(b) The n D 2, h arbitrary, k D 1, charK > 0 case was done by the author in [5].

We explain how to specialize Theorems 5.1.1, 6.2.1, and 6.2.2 to recover these results.
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Note that in previous work, the unipotent group schemes are called U n;q
h;k

and are defined
over Fqn , whereas the unipotent group schemes in this paper are called Uh;k and are defined
over Fq (see Remark 2.2.5 for a more detailed discussion). However, U n;q

h;k
.Fqn/ ä Uh;k.Fq/,

and there is a natural way to realize W .1/

h
.Fqn/ as a subgroup of each, so the distinction

between working in the ambient U n;q
h;k

and Uh;k only appears in the proofs and not in the
theorem statements.

6.4.1. The case h D 2; k D 1. In this setting, the subquotients of the multiplicative
group of the division algebra in equal and mixed characteristic are isomorphic, and so one does
not run into the mixed characteristic difficulties that arise when h > 2.

Note that T2;1.Fq/ äW .1/

2
.Fqn/ ä Fqn . Let �WFqn ! Q

⇥
`

be a character. If � is triv-
ial, then it corresponds to .π1; 1; nº; π2; 1; 1º/, and if � is nontrivial of conductor m, then it
corresponds to .π1;m; nº; π2; 2; 1º/. Then by Theorem 5.1.1,

r� D .n �
n

m
/C 2.

n

m
� 1/ D nC

n

m
� 2

and
HomU2;1.Fq/

�
IndU2;1.Fq/

Fqn
.�/;H

i

c
.X2;Q`/

�
¤ 0 ” i D nC

n

m
� 2:

The center of U2;q.Fq/ is T2;1.Fq/ ä Fqn . Since the actions of T2;1.Fq/ and U2;1.Fq/ on X2
agree on the center of U2;1.Fq/, the above equation implies that

H
i

c
.X2;Q`/Œ�ç ¤ 0 ” i D nC

n

m
� 2:

The centrality of T2;1.Fq/ in U2;1.Fq/ (which is not true for h > 2) allowed us to obtain
Theorem 6.2.4 from Theorem 5.1.1 automatically. We now see that maximality of X2 holds
by Theorem 6.2.1 (this is [4, Theorem 4.5.1 (b)]), and the irreducibility and multiplicity-one
properties of H i

c
.Xh;Q`/Œ�ç follow from Theorem 6.2.2 (this is [4, Theorem 4.5.1 (a)]).

6.4.2. The case h; k arbitrary, � primitive, char K > 0. Let �WTh;k.Fq/! Q
⇥
`

be primitive. Then the sequences πmiº; πhiº associated to the Howe factorization of � are
.π1; n; nº; πh; h; 1º/. By Theorem 5.1.1,

r� D .n �
n

n
/.h � 1/C 2.

n

n
�
n

n
/.h � 1/ D .n � 1/.h � 1/

and
HomUh;k.Fq/

�
IndUh;k.Fq/

Th;k.Fq/
.�/;H

i

c
.Xh;Q`/

�
¤ 0 ” i D .n � 1/.h � 1/:

The subgroup Th;k.Fq/ is not central in Uh;k.Fq/, but the center of Uh;k.Fq/ containsH0.Fq/,
where H0 is the subgroup of Uh;k consisting of diagonal matrices with entries in

π.1; 0; : : : ; 0;⇤/º ⇢W .1/

h
:

Moreover, � is primitive if and only if its restriction to H0.Fq/ is primitive, and it therefore
follows that r� only depends on �jH0.Fq/

. Hence

H
i

c
.Xh;Q`/Œ�ç ¤ 0 ” i D .n � 1/.h � 1/:

Note that again, it was the fact that the restriction of � to the center of Uh;k.Fq/ determines
r� (which is not true for nonprimitive �), which allowed us to immediately pinpoint the non-
vanishing cohomological degree of H i

c
.Xh;Q`/Œ�ç from Theorem 5.1.1. The irreducibility
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and multiplicity-one properties of H i
c
.Xh;Q`/Œ�ç follow from Theorem 6.2.2. In this general-

ity, this is [6, Theorem 6.3], in the case (2a), this is [2, Theorem 5.20], and in the case (2b),
irreducibility is [5, Theorem 5.1] and multiplicity-one follows from the trace formula given in
[5, Theorem 5.2].

7. Torus eigenspaces of the homology of semi-infinite Deligne–Lusztig varieties

We return our discussion to the semi-infinite Deligne–Lusztig variety ÅX associated to
L

⇥
,! D

⇥
:Our goal is to understand the representations ofD⇥ arising from the ✓ -eigenspaces

Hi .
ÅX;Q`/Œ✓ç, where ✓ WL⇥

! Q
⇥
`
: Once we understand the relationship between the (ind-

pro-)scheme structure we defined on ÅX in Section 2.1 and the action of L⇥
⇥D

⇥, the prob-
lem of computing the representations Hi .ÅX;Q`/ can be reduced to the problem of comput-
ing the representations H i

c
.Xh;Q`/. This reduction was already known by Boyarchenko [2],

and therefore, after we summarize [2, Lemma 6.11, Corollary 6.12], Theorems 7.1.1, 7.1.2,
and 7.1.3 follow from the theorems in Section 6. We then use these results together with
a method of Henniart [13, 14] to characterize the D⇥-representations Hi .ÅX;Q`/Œ✓ç in terms
of the local Langlands and Jacquet–Langlands correspondences (Theorem 7.2.1).

7.1. Semi-infinite Deligne–Lusztig varieties. We first define some terminology. If
✓ WL

⇥
! Q

⇥
`

is a smooth character, then there exists an h such that the restriction ✓ j
U

h
L

is
trivial. We call the smallest such h the level of ✓ . We say that x 2 L⇥ is very regular if x 2 O

⇥
L

and its image in the residue field F⇥
qn has trivial Gal.Fqn=Fq/-stabilizer. Later in this sec-

tion, we will give a character formula for Hi .ÅX;Q`/Œ✓ç on the subgroup of D⇥ consisting of
very regular elements of L⇥. By work of Henniart [13, 14], such character formulas are often
enough to pinpoint these irreducible representations. We learned of this strategy from [3] where
these ideas were applied to GLn.K/ and D⇥

1=n
, combined this with the theory of �-datum of

Langlands–Shelstad [18] in [6, Section 7.2], and in joint work with A. Ivanov, carried it out for
any inner form of GLn.K/ in [7, Section 10].

The action of L⇥
⇥D

⇥ on ÅX induces an .L⇥
=U

h

L
/ ⇥ .D

⇥
=U

n.h�1/C1
D

/-action on

ÅXh WD
G

m2Z

ÅXh.m/:

Recall that Xh is a subvariety of ÅX 0
h

.0/
ä
ÅX .0/
h

,! ÅXh whose stabilizer is

ÅÄh WD h.⇡;⇡�1
/i � h.⇣; ⇣

�1
/i � .U

1

L
=U

h

L
⇥ U

1

D
=U

n.h�1/C1
D

/

⇢ L
⇥
=U

h

L
⇥D

⇥
=U

n.h�1/C1
D

;

and ÅXh is equal to the union of .L⇥
=U

h

L
⇥D

⇥
=U

n.h�1/C1
D

/-translates of (the image of) Xh.
It therefore follows that there is a natural isomorphism

(7.1) Hi .
ÅXh;Q`/ ä Ind.L

⇥
=U

h
L/⇥.D⇥

=U
n.h�1/C1
D /

ÅÄh

.Hi .Xh;Q`//:

By Proposition 3.3.1,

Hi .Xh;Q`/ ä H
2.n�1/.h�1/�i
c

.Xh;Q`/˝ .q
n.n�1/.h�1/

/
deg
:

Moreover, we have the following result.
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Theorem 7.1.1. Let ✓ WL
⇥
! Q

⇥
`

be a smooth character whose restriction to U
h

L
is

trivial and set � WD ✓ j
U

1
L

. Then for r✓ WD 2.n � 1/.h � 1/ � r�,

Hi .
ÅX;Q`/Œ✓ç ¤ 0 ” i D r✓ :

Moreover,

⌘✓ WD Hr✓
.ÅX;Q`/Œ✓ç ä IndD

⇥
⇡Z�O⇥

D
.⌘

0
✓
/;

where ⌘
0
✓

is a representation naturally obtained from ✓ and H
r�
c .Xh;Q`/Œ�ç. Explicitly:

(i) H r�
c .Xh;Q`/Œ�ç extends to a representation ⌘

ı
✓

of

Gh;k.Fq/ ä F⇥
qn ËUh;k.Fq/ ä O

⇥
D
=U

n.h�1/C1
D

with Tr.⌘ı
✓
.⇣// D .�1/

r✓ ✓.⇣/, where ⇣ 2 O
⇥
L

is very regular. We may view ⌘
ı
✓

as a rep-

resentation of O
⇥
D

.

(ii) We can extend ⌘
ı
✓

to a representation ⌘
0
✓

of ⇡
Z
�O

⇥
D

by demanding ⇡ 7! ✓.⇡/.

Proof. The statement is exactly parts (a) and (b) of [2, Proposition 5.19]: Part (i) holds
by Theorem 6.2.3 (see [2, Step 1 of Section 6.15]) and part (ii) essentially follows by (7.1) (see
[2, Section 6.14.5 and Step 3 of Section 6.15]).

Theorem 7.1.2. If ✓ WL
⇥
! Q

⇥
`

has trivial Gal.L=K/-stabilizer, then the D
⇥

-repre-

sentation Hr✓
.ÅX;Q`/Œ✓ç is irreducible.

Proof. To prove this, we need to show that the normalizer of the .Z �O⇥
D
/-representation

⌘
0
✓

in D⇥ is exactly Z �O⇥
D

. To see this, it is sufficient to show that ⌘0
✓

is not invariant under
the conjugation action of …. Let x 2 O

⇥
L
⇢ O

⇥
D

be very regular. Recall that by Theorem 6.2.3
and the definition of ⌘0

✓
given in Theorem 7.1.1,

Tr ⌘0
✓
.x/ D .�1/

r✓
� ✓.x/:

For any generator … of the unique maximal ideal of OD , we have … � x �…�1
D '

k
.x/. Thus

conjugation by … normalizes the set of very regular elements and

Tr ⌘0
✓
.… � x �…

�1
/ D .�1/

r�
� ✓.'

k
.x//:

Therefore, if ✓ has trivial Gal.L=K/-stabilizer, then ⇡Z
�O

⇥
D

is the normalizer of ⌘0
✓

inD⇥.

Theorem 7.1.3. Let x 2 O
⇥
L

be very regular. Then

Tr ⌘✓ .x/ D .�1/r✓
�

X

�2Gal.L=K/

✓
�
.x/:

Proof. We have

Tr ⌘✓ .x/ D
X

g2D⇥
=.Z�O⇥

D/

gxg
�12Z�O⇥

D

Tr ⌘0
✓
.gxg

�1
/ D

X

�2Gal.L=K/

.�1/
r✓
� ✓
�
.x/;

where the second equality holds by [3, Lemma 5.1 (b)] together with Theorem 6.2.3.
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7.2. The local Langlands and Jacquet–Langlands correspondences. To conclude
the paper, we will use the above results to describe the supercuspidal D⇥-representation
Hr✓

.ÅX;Q`/Œ✓ç in terms of the local Langlands and Jacquet–Langlands correspondences. We
use a method of Henniart [13, 14] in the form discussed in [7, Section 10].

Fix a character ✏WK⇥
! Q

⇥
`

with ker.✏/ D NmL=K.L⇥
/ and let GK.n/ denote the set of

irreducible n-dimensional representations � of the Weil group WK such that

� ä � ˝ .✏ ı rec�1
K /;

where recK WK⇥
! W

ab
K

is the reciprocity isomorphism from local class field theory. Let X
denote the set of characters L⇥

! Q
⇥
`

with trivial Gal.L=K/-stabilizer. Then there is a canon-
ical bijection

X=Gal.L=K/! GK.n/; ✓ 7! �✓

obtained by invoking the theory of �-datum of Langlands–Shelstad [18, Section 2.5] (also see
[6, Section 7.2] for an exposition). Now let AK.D

⇥
/ denote the set of isomorphism classes of

irreducible supercuspidal representations ⇢ of D⇥ such that

⇢ ä ⇢˝ .✏ ı Nrd/;

where Nrd is the reduced norm ofD⇥. Then by local Langlands and Jacquet–Langlands corre-
spondences, there is a canonical bijection

GK.n/! AK.D
⇥
/; �✓ 7! ⇢✓

satisfying certain natural properties.

Theorem 7.2.1. The bijection

X=Gal.L=K/ ⇠��! AK.D
⇥
/; Œ✓ç 7�! Hr✓

.ÅX;Q`/Œ✓ç

agrees with the composition of the local Langlands and Jacquet–Langlands correspondences.

Proof. Since Nrd.D⇥
/ ⇢ NmL=K.L⇥

/, it follows that Hr✓
.ÅX;Q`/Œ✓ç 2 AK.D

⇥
/. By

this together with Theorems 7.1.2 and 7.1.3, we may apply [7, Proposition 10.5] to obtain
Hr✓

.ÅX;Q`/Œ✓ç ä ⇢✓ .

In particular, by Theorem 7.2.1, the cohomology of semi-infinite Deligne–Lusztig vari-
eties for division algebras gives a geometric realization of the Jacquet–Langlands correspon-
dence on AK.�/: ifD1,D2 are any two division algebras overK of dimension n2 and ÅX1, ÅX2
are the corresponding varieties, then

AK.D
⇥
1
/

JLC
�! AK.D

⇥
2
/; Hr✓

.ÅX1;Q`/Œ✓ç 7�! Hr✓
.ÅX2;Q`/Œ✓ç:

(Recall from Theorem 5.1.1 that r✓ does not depend on the Hasse invariant of D.)
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