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Abstract

Waldspurger’s formula gives an identity between the norm of a torus period and an L-function of the
twist of an automorphic representation on GL(2). For any two Hecke characters of a fixed quadratic
extension, one can consider the two torus periods coming from integrating one character against the
automorphic induction of the other. Because the corresponding L-functions agree, (the norms of)
these periods—which occur on different quaternion algebras—are closely related. In this paper, we
give a direct proof of an explicit identity between the torus periods themselves.
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1. Introduction

Waldspurger’s work in 1985 sparked the beginnings of a rich theory studying
the relationship between special values of L-functions and automorphic periods.
In [W85a], he studies torus periods for representations of B, where B is a

quaternion algebra over a number field F. Consider

Pt 2):aP >C, [P (g - R2(g)dg,

To\Ta

where 72 is the Jacquet-Langlands transfer of an irreducible automorphic
representation 7 of GL,(Af) and £2 is a character of a maximal torus 7.
Waldspurger establishes a formula

|2(f2, )P =% L(BC(r)®£2,1), (1.1)

where * consists of factors that depend only on local data. Combining
Waldspurger’s formula with Tunnell-Saito’s work on e-dichotomy, which
characterizes the branching behavior of representations of local quaternion
algebras in terms of local e-factors, one sees that there is at most one quaternion
algebra B such that x is nonzero. If L(BC(7r) ® $2, %) # 0 and the central
character condition

wy - 2| AL = 1, where w, is the central character of 7,

holds, then there is a umique quaternion algebra B—characterized by local
e-factors—such that the linear functional (72, £2) is nonzero.

In this paper, we will consider the torus periods arising from two symmetric
special cases of this: fixing two Hecke characters y;, x, of E*, consider

(1) m =m,, and 2 = xy;
2) m =m,, and 2 = x;.

As such, the only automorphic representations of GL, we will consider are those
that arise as the automorphic induction i, of a Hecke character x. As the central
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Period identities of CM forms on quaternion algebras 3

character of m, is x| Ax *EE/Fs the analogue of the central character condition for
both (1) and (2) is

Xilax - Xelay - €p/p = 1. (1.2)

Formally, the Rankin—Selberg L-function for the (GL, x GL,)-representation
Ty, ® 7y, satisfies

LBC(7y,) ® X2, 8) = L7y, ® 7y,, 8) = L(BC(y,) ® X1, 5)- (1.3)

On the other hand, as we see in Equation (1.1), Waldspurger’s formula relates
(1) to the left-hand side of (1.3) and (2) to the right-hand side of (1.3).
Furthermore, the quaternion algebras B, and B, arising from (1) and (2) are
related by the following simple formula:

The ramification of B, and B, at a place v agrees if and only if —1 € Nm(E, /F)°).

(1.4)
Therefore one obtains a relationship between (the norms of) the torus periods
arising from our two symmetric cases.

As these torus periods occur on different quaternion algebras, it is of interest
to study these periods directly, without invoking Waldspurger. In this paper, we
do exactly this: we prove an explicit identity between the periods on By and B;.
We will employ the theta correspondence to construct automorphic forms and
compare the resulting torus periods. To this end, the key to our approach is
the construction of a seesaw of dual reductive pairs that precisely realizes the
quaternion algebras B and B;.

MAIN THEOREM (6.17). There exist explicitly constructed pairs of automorphic
forms fF e JLE (r,,) and f,* € JLE (7y,) such that

P ) = PSS, ).

We point out the simplest interesting case of the Main Theorem. Let F' = Q
and E = Q(+/—7), and consider the canonical Hecke character x.,, of E in the
sense of Rohrlich [Ro80]. Since y.., restricts to the quadratic character, x; = x2,
and x, = . satisfy (1.2) so long as n and m have opposite parity. When n = 2
and m = 3 + 2] > 3, By is the split quaternion algebra M,(Q) and B, is the
definite quaternion algebra B ramified at exactly 7 and oco. The newform f in
the automorphic induction 7,2 has weight 3 and level I'1(7) with nebentypus
o/ 70- and 8 f is a test vector for the torus period against xJ"*, where &}
is the /th iterate of the Shimura—Maass differential operator. The Main Theorem
gives an explicit automorphic form f,® in the Jacquet-Langlands transfer of T 3
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C. Chan 4

to a definite quaternion algebra such that
| ene x&ted= [ eotwds 0
[EX] [EX]

As [ changes, the 84 f live in the same representation, but on the definite side,
the representation space containing f;® also varies. This set-up is now primed
for arithmetic application: after dividing by a canonical period and taking p-adic
limits in [/, the left-hand side of (1.5) is related to logarithms of generalized
Heegner cycles via Bertolini-Darmon—Prasanna [BDP13]. Although we do not
consider arithmetic consequences of the Main Theorem here, we plan to explore
this in future work.

1.1. Outline. We begin by establishing notation and background in Sections 2
and 3. In Section 4, we give a simple description of the relationship between
B, and B,. We then construct dual reductive pairs (Ug(V), Ug(W*)) and
(Ug(Res V), Ug(W)) that both capture the behavior of E* C B[, B, and also
compatibly map into the same symplectic group. The goal of this paper is then to
study the following seesaw of similitude unitary groups with respect to the theta

correspondence:
GUg(Res V) GUg(W*) B By
GUg(V) GUEg(W) E~ E~

In Section 5, we use Kudla’s splittings for unitary groups and explicitly
study their compatibility on E* x E*. Many of the calculations are similar
to the calculations in [IP18++]. From the compatibility statements about the
splittings, we can deduce precise information about how the Weil representations
on GUz (V) x GUg(W*) and GUg(Res V) x GUg (W) are related.

In Section 6, we give a representation theoretic description of the global theta
lifts. This requires a careful study of Kudla’s splittings at the places v where
everything is unramified (Section 5.6). We prove (Theorem 6.1) that the global
theta lifts can be described in terms of automorphic induction and Jacquet—
Langlands and that the global theta lift vanishes if and only if the Jacquet—
Langlands transfer does not exist. Combining these results with the compatibility
results of Section 5, we obtain our Main Theorem (Theorem 6.17).

In Sections 7 and 8, in the case E/F is CM, we construct a Schwartz function
¢ whose theta lift 6,(x) to GL,(F) is the newform. We prove an explicit Rallis
inner product formula relating 6,(x) to L(1, x), which in particular shows that
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Period identities of CM forms on quaternion algebras 5

the theta lift is nonvanishing. These Schwartz functions have been considered in
various places before. At the finite places, they have appeared for example in [P06,
Proposition 2.5.1], [X07, N1]. At the infinite places, our choice is constructed
from a confluent hypergeometric function | Fi(a, b, t) of the first type.

We conclude the paper (Section 9) with details on the canonical Hecke
character xca, of Q(+/—7), the example mentioned earlier in Section 1.

2. Definitions

For a number field F, let O be the ring of integers of F and D the different ideal
of F over Q. Let r; be the number of real embeddings of F and 2r, be the number
of complex embeddings of F. For each finite place v of F, let O, be the ring of
integers of F,, , a uniformizer of O, and ¢, the cardinality of the residue field
O, /m,. Let D = Dy be the discriminant of F and for each finite place v of F, let
d, be the nonnegative integer such that D ® o O, = 7% O,. Set §, = 7, *. Then
1Dl = [T 98-

Throughout this paper, let E be a (possibly split) quadratic extension of F' and
let B be a quaternion algebra over F containing E. The main groups in this paper
are Ay, A}, and B} . For shorthand, we write

[EX]:= ASEX\AY, [E'l:=E"\A}, [B*]:=A;B*\B},

where in the last definition, we view A7 as the center of B, .

2.1. Measures. Throughout this paper, all integrations over adelic groups are
performed with respect to the Tamagawa measure. We define dx = [ [, dx, to be
the measure on A that is self-dual with respect to a chosen additive character
of F'. We now describe the Tamagawa measure explicitly in a few special cases.

EXAMPLE 2.1. The standard additive character of F\Ap is ¥ 1= v o Trgq,
where ¥, = ®,¥y,, is the nontrivial additive character of Q\Aq given by

eFVTIY ify = o0,
wo,v(x) = 2 1 .
e VI if v 4 oo

Observe that if v is a finite place of F, then v, is trivial on 77 O r, but nontrivial
on 7, 'O, . The measure dx on A that is self-dual with respect to ¥ has the
property that

- if v is finite, then vol(Op,, dx,) = g, "/*;

- if v is infinite, then dx, is the Lebesgue measure.
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C. Chan 6

More generally, if ¢’ is any additive character of A, then for any finite place v,
we have vol(O,, dx,) = g2, where ¢(,) is the smallest integer such that ¥,
is trivial on ¢V O, .

EXAMPLE 2.2. For any number field &, put

R £r (1) 2" (27)?hR
:= Res,_ X)) = ————,
Pk s=1 CF D2

where r| is the number of real places of k, r, is the number of complex places
of k, h = hy is the class number of k, R = R; is the regulator of k, D = Dy is
the discriminant of k, and w = wy is the number of roots of unity in k. Then the
Tamagawa measure of A/ is

x .. Tam —1 x .. Tam
d*x" = p [,
v

where
(1—g,; " "dx,/|x|, ifvis finite,

dx Tam ,__
X, = . .. .
dx,/|x|, if v is infinite.

Observe that if v is finite, then vol(O, d*x*™) = ¢, />. The Tamagawa number
of G,, is 1, that is, vol(k*\ A, d*xT™) = 1.

EXAMPLE 2.3. The previous example explicitly describes the Tamagawa
measure of Ay and A . For each place v of F, one has a short exact sequence

| > F'—> E‘—>E)—>1,

and hence we may define a local measure d'g™™ on E as the quotient measure.
Then the Tamagawa measure of E} is

m PF 1. Tam
d'g™ :=—~l_[d x,m.
PE

Observe that if v is a finite place of F, then

-1/2 . . .

qr, if v ramifies in E,
vol(E, N Ok, d'x;™) = I:dF 2 e . .

qr, " if v is inert or splitin E.

Observe that vol(E; N OF ,d'x;*) = 1 for all but finitely many places v. If F
is totally real and E/F is totally imaginary, then one can show (for example, by
calculating the measure of an annulus in C containing the unit circle) that

vol(C', d'x™) = 271
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Period identities of CM forms on quaternion algebras 7

2.2. Conductors. In this section, we briefly review the notion of the conductor
of an admissible representation. First, let £ be a non-Archimedean local field with
aring of integers O, and a fixed uniformizer . For any integer N € Z,, let

K(/)(N) = {(i Z) € GLz(Ok) . Cc e ﬂNOk} .

THEOREM 2.4 (Casselman). Let p be an irreducible admissible infinite-
dimensional representation of GL, (k) with central character w. Let c(p) € Zx
be the smallest integer such that

a b ,
{U €p:p(@v=w(@vforall g = (C d) € KO(C(p))} # {0}.
Then this space has dimension one.

We call c(p) the conductor of p. For a smooth character x : k* — C*, define
its conductor c(x) € Zx to be the smallest number such that x Ika(x) = 1, where
U= O and U =1+ 7"Oy for n > 0. Now let L/k be a (possibly split)
quadratic extension of k. Let x be a smooth character of L* and let 7, denote
its automorphic induction to GL, (k). It will be useful for us to have an explicit
description of c¢(,) in terms of c¢(x) for each place v of F. This calculation
follows from facts about Artin conductors of Galois representations and the fact
that conductors of admissible representations of GL, (k) are compatible with Artin
conductors of Galois representations under the local Langlands correspondence.
We have

C(Xl) + C(XZ) if L=k (&) k and X = X1 (24 X2,
c(my) = {e(my) = val(4) +2¢(x)  if L/k is unramified, 2.1
c(my) =1+ vali(4) +c(x) if L/k is ramified.

3. Weil representations

Let k£ be any field. Let V be a vector space over k with a symplectic form
(-, -». The Weil representation of Sp(V) is a representation of a cover of Sp(V).
It arises in a very natural way, which we briefly recall. The symplectic space V
gives rise to a Heisenberg group H (V), which is a central extension of V by k.
The natural action of Sp(V) on V extends to an action on H (V) fixing the center
Z(H(V)) = k. Let V = X 4+ Y be a complete polarization. By the Stone—von
Neumann theorem, the irreducible representations of H (V) with nontrivial central
character are uniquely determined by their central character and can be realized
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on the vector space S(X) of Schwartz functions. Thus by Schur’s lemma, the
Sp(V) action on H (V) induces an automorphism ¢, of S(X) that is unique up to
scalars. We therefore have a group homomorphism

[wy]: Sp(V) — PGL(S(X)), g = [,

where [¢,] denotes the image of ¢, under the quotient map GL(S(X)) —
PGL(S(X)). This is the projective Weil representation of Sp(V).

It is natural to try to understand when [w, ] lifts to a genuine representation of
Sp(V). When k = [, there exists a lift, but this is not the case in general. The
assignment g — ¢, satisfies

¢g¢h = ZY(ga h)¢gha for g’ h S SP(V)

It is a straightforward check that (g, h) — zy(g,h) defines a 2-cocycle in
H?(Sp(V), C*). The 2-cocycle zy corresponds to a central extension Mp(V) of
Sp(V) and certainly the projective Weil representation of Sp(V) lifts to a genuine
representation of Mp(V). But we can realize the Weil representation on Sp(V)
itself if and only if zy is in fact a 2-coboundary.

In this paper, we will be interested in the adelic Weil representation, which is
composed of Weil representations of local fields. For the rest of this section, let k
be a local field of characteristic zero, fix an additive character ¢ : k — C*, and
fix a complete polarization V = X + Y.

3.1. Metaplectic groups over local fields. Following [R93, Lemma 3.2],
there is an explicit unitary lift r: Sp(V) — GL(S(X)) (a map of sets) of the
projective Weil representation given by

(r(@)e)(x) = / Jolx +V)oxa +yy)u.(dy)

Y/ kery

for any ¢ € S(X) and any o = (;‘f §) where 1, is a Haar measure on Y/ kery, y
is the coset y + kery € Y/ kery, and f,(x + y) = ¥ (g, (x + y)) for

o (X + ) = 5(xa, xB) + 5 (yy, y8) + (yy, xB).

Moreover, this lift is the unique lift satisfying the properties in [R93,
Theorem 3.5]. We then define the 2-cocycle zy: Sp(V) x Sp(V) — C! by

r(gh) = zv(g, h)~" - r(g) - r(h).

This represents a class in H?(Sp(V),C') and therefore gives rise to a
C'-extension Mp(V) of Sp(V), which we call the metaplectic group. Explicitly,
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Period identities of CM forms on quaternion algebras 9

this group is the set Sp(V) x C! together with the multiplication rule
(&%) - (h,y) = (gh, xy - 2y (g, h)).
We define the Weil representation w, on the metaplectic group Mp(V) to be
wy: Mp(V) - GL(S(X)), (8,2) = z-r(g).

Oftentimes, it is easier to work with the following description of w,:

Wy ((a (al)_1> ,z) ¢(x) =z - |deta|'” - p(xa) (3.1
1
Wy ((1 lb) ,Z) px)=2z-Y¢ (EWX) ~(x) (3.2)
Dy ((_1 1") »Z) p(x) =z / oMY (x'y) dy (3.3)
n kn

forp € SX),x e X=k",a € GL(X) = GL,(k), b € Hom(X, Y) = M, (k) with
b' = b, and z € C'. In (3.3), we take dy to be the product of the self-dual Haar
measure on k with respect to .

It will later (for example, in Section 7) be convenient to understand how
changing the additive character y affects the Weil representation w,. One can
check that the Weil representation with respect to the additive character v, (x) :=
¥ (vx) satisfies

ww(d(v)_lgd(v), 7) = wy,(g,2), whered(v) := <(1) (3) forvek. (3.4)

If for a subgroup t: G — Sp(V), the restriction of zy represents the trivial
class in H*(G, C'), then via an explicit trivialization s of zy|g ¢, we can define
the Weil representation wy, on G as

wy: G — GL(SX)), g wy(g,s5(2).

One feature that makes the Weil representation computable is the fact that
the 2-cocycle zy can be expressed in terms of the Weil index of the Leray
invariant. Let k be a local field. For any nontrivial additive character ¥ of k
and any nondegenerate symmetric k-bilinear form ¢: V x V. — k, we write
yr(Y o g) € ug to denote the Weil index associated with the character of second
degree x — ¥ (g(x, x)) (see [R93, Appendix], [IP18+, Section 3.1.1]). For any
maximal isotropic subspaces Y, Y', Y” of V, the Leray invariant ¢ (Y, Y, Y”) is
a nondegenerate symmetric k-bilinear form on V (see [R93, Sections 2.3,2.4],
[IP18+, Section 3.1.2]). Then for any g, g, € Sp(V),

2v(81.82) = vr(G¥ o q(Y, Yg5 ', Yg)).
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3.2. The doubled Weil representation. Now consider the doubled symplectic
space V& := V + V~, where V~ has the negated form. Let X" = X + X, YX =
Y + Y™, and let co"f denote the Weil representation on the metaplectic group
Mp(VH) with respect to VF = XU+ Y. We will also make use of the polarization
VH = V2 + VY, where V2 = {(v,v) : v € V} and V¥ = {(v, —v) : v € V}.
Identifying Sp(V™) with Sp(V)°, we have a natural homomorphism

2 Mp(V) x Mp(V)® — Mp(V"), (g, 2), (h, w)) — (diag(g, h™"), zw ™).

3.3. Dual reductive pairs and the Howe correspondence. A dual reductive
pair (G, G') in Sp(V) is a pair of reductive subgroups of Sp(V), which are mutual
centralizers of each other. There is a natural map

i:GxG —SpV), (g.8)— (v g 'vg).

If the cocycle zy can be trivialized on i (G x G’) C Sp(V), we can define the Weil
representation on i (G x G’) and pull back to a Weil representation of G x G’'. In
[K94], Kudla wrote down explicit splittings of zy. We will make use of this work
heavily in the present paper.

The Weil representation wy, on G x G’ has the following multiplicity-one
property. For an irreducible G-representation 7, let S(r) denote the largest
quotient of S(X) such that G acts by 7. By [MVW, Ch. 2, Lemma II1.4], there
exists a unique irreducible G’-representation ® () such that

S(r)Zn Q@ O().

We call © () the local theta lift of .

4. Waldspurger, Tunnell-Saito, and a pair of quaternion algebras

For any quaternion algebra B over F, we write X' := {places v of F such that
B, is ramified}.

4.1. Waldspurger’s formula. Let 7 be an irreducible cuspidal automorphic
representation of GL,(Af) with central character w, that has a nonzero Jacquet—
Langlands transfer 7% to B . Recall that this means that 7, is a discrete series at
all v e X'p. Let §2 be any Hecke character of E* such that £2[,~ = w, !, Define

P, ) n? > C, fr (@) dt.
[E*]
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Period identities of CM forms on quaternion algebras 11

We have the following classical theorem, which follows from combining
Waldspurger’s formula with the local e-dichotomy theorem of Tunnell and
Saito.

THEOREM 4.1 (Waldspurger [W85a], Tunnell [T83], Saito [S93]). Let m be
an irreducible cuspidal automorphic representation of GL,(Ar) with central
character w,. If

LBC(r)® 2,2 #0, and Ry = o',
then there exists a unique quaternion algebra B = B, o over F such that
P(n®, 2) #0.
Moreover, B is the unique quaternion algebra with ramification set

Yo ={:6,BCT)RN) - w,(-1)=—1}.

Proof. If LBC(7) ® $2, %) # 0, then e(BC(7r) ® £2) = +1. Since w is a Hecke
character of A*, we must have w(—1) = +1. Therefore, there must be an even
number of places v of F such that €,(BC(7)®£2)-w,(—1) = —1, and hence there
exists a unique quaternion algebra B, o over F with ramification set X, o, and
the conclusion now follows from Waldspurger’s formula and the local branching
criterion of Tunnell and Saito. O

4.2. A pair of quaternion algebras. We now specialize to the setting where
7 comes from automorphic induction. Let x, x' be Hecke characters of A . One
has

LBC(m,) ® x',s) = L(w, @my,s) = LBC(r,) ® x, ),
and let us assume that
LBC(r,) ® x', 3) = LBC(7,) ® x, 3) # 0. 4.1)

It is a standard calculation to see that the central character of 7, (and of any
Jacquet-Langlands transfer nf) is x| A% * €EJFs where €g,p is the quadratic
character of A} associated with the quadratic extension E/F. Therefore the
central character condition in Theorem 4.1 is

X|A; : X/|A;f, € = 1. (4.2)

If x, x' satisfy (4.2), then by Theorem 4.1, B = B, , and B’ = B, , , are the
unique quaternion algebras such that Z(z7, x') # 0 and & (Jrf,', x) # 0.
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PROPOSITION 4.2. Let x, x' be Hecke characters of A} satisfying (4.1) and (4.2),
andlet E = F(i) withi? =u € F*.If B = By, x 18 the quaternion algebra that
corresponds to the Hilbert symbol (u, J), then B' = B,,X,,X corresponds to the
Hilbert symbol (u, —J).

Proof. It is a standard computation to show that

€,(BC(m,) ® x') = €,(BC(m,) ® X).

Equation (4.2) implies that @, - Wr,  €E/F = 1. Using Theorem 4.1, we see that
2z .. can be described in terms of X

5 . v_veEﬂX,X/ and eg /5, (=1) =1, 0r
Tl X T v ¢ ZﬂxsX/ and EE,,/Fv(_l) = —1.

An equivalent way to state this relationship is the following. The quaternion
algebra B can be given an F basis 1,1, j, ij such that E = F[i]. Write i> = u
and j> = J so that B is the quaternion algebra associated with the Hilbert symbol
(u, J). That is,

w,J)y=-1 < vel, ,.

By the bimultiplicativity of the Hilbert symbol, B’ is the quaternion algebra
associated with

W, J) -egp(=1) =@, J) - (u,—-1) =, —J). O

4.3. A seesaw of unitary groups. In this section, we introduce the main dual
reductive pairs of interest in this paper. Fix i € E with trz/r i = i+i = 0. Note that
E = FIi]. Let B be a (possibly split) quaternion algebra over F and let 1,1, j, k
be a standard basis for B over F. Viewing B = E @ Ej, we setpr: B — E to be
the projection onto the E-component. We consider the following spaces:

e V = B = l-dimensional right B-space with skew-Hermitian form (x, y) =
x*iy;

e W* = E®;B = 1-dimensional left B-space with Hermitian form (x, y) = xy*;

Res V = 2-dimensional right E-space with skew-Hermitian form (x, y) =
pr(x*iy);

e W = E = I-dimensional left E-space with Hermitian form (a, b) = ab;

Vo = 1-dimensional right E-space with Hermitian form (a, b), = ab;
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Period identities of CM forms on quaternion algebras 13

e Wy = B = 2-dimensional left E-space with skew-Hermitian form (x, y)q =
—ipr(xy");

oV = RGSB/F(V Rp W*) = RCSE/F(RCSV Rk W) = ReSE/F(VO Rk W()) =
4-dimensional F-space with symplectic form %TrE () @ (5 0)).

Then both pairs (Up(V), Ug(W*)) and (Ug(Res V), Ug(W)) are irreducible dual
reductive pairs (of type 1) in Sp(V). (See, for example, [P93].) For any pair
(V, W) =(V,W*), (ResV, W), or (Vy, Wy), we take as our convention

GL(V) x GL(W) - GL(V® W), (g.h)+— v@w > g 'v® wh).

It is clear that Uz(V) C Ug(Res V) and that Ug(W) C Up(W*). Furthermore,
we have a commutative diagram

Up(V) x  Up(W*) ——— Sp(Resp/r(V @5 W)

[ Lo w

Ug(Res V) X Ug(W) —— Sp(Resg,r(ResV @ W))
Therefore we have the following seesaw of dual reductive pairs:

Ug(Res V) Up(W*) G(E* x (B)*)/F* B!

> = | <

Up(V) Ug(W) E'UE7j E'

Here, B' = (iz’;jz), the superscript r € Q picks out the norm-r elements, and
G(E* x (B’)*) is the subgroup of E* x (B’)* consisting of elements («, 8) with
Nmg, () = Nrdg,r(B). Note that F* maps antidiagonally into G(E* x (B')*).
The analogous seesaw with similitudes is

GUg(ResV) GUg(W*)  (E* x (B)*)/F* B

12

T e (4.4)
GUy(V) GUL(W) E* U E¥j " Ex

The only isomorphism that is not straightforward to see is GUg(ResV) =
((B)* x E*)/F*. The E* factor comes from the fact that Res V is a right
E-space, and the (B’)* factor comes from a natural left action of (B’)* on
Res V = B defined by
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and extending this action left E-linearly. Observe that this action commutes with
right multiplication by E* on Res V.

We note that the point of introducing the E-spaces V,, and Wj is that we have
natural maps

Up(V)' = Up(Vp), Up(W*) — Up(Wp).

This will allow us to compute splittings on the quaternionic unitary groups Ug (V)
and Uy (W*) by pulling back splittings on Ug(Vy) and Ug(Wy).

5. Splittings for unitary similitude groups

Fix an additive character ¥ of A trivial on F. In this section, we define the
Weil representation wy, on the dual reductive pairs introduced in Section 4.3 using
the explicit splittings of zy defined by Kudla [K94]. The properties of the Weil
index and the Leray invariant we will use in this section can be found in [R93]
and [IP18+, Sections 3.1.1, 3.1.2]. We prove that the splittings are compatible
with the seesaws constructed in Section 4.3. In Section 5.5, we combine the
local considerations from Sections 5.1-5.4 into the global picture. Many of these
calculations (especially in Sections 5.3 and 5.4) are similar to those in [IP18+,
Appendix C] and [TP18++].

In order to describe the global automorphic theta lift from a Hecke character
to a quaternion algebra, which we will do later in Section 6, we will need to give
an explicit description of the local splittings in Section 5.3 in the special case that
the quaternion algebra is unramified (that is, split) at the place in question. We do
this in Section 5.6.

NOTATION. In Sections 5.1-5.4 and 5.6, we fix a place v of F' and suppress v
from the notation so that E is a (possibly split) quadratic extension of a local
field F. The only subsection in this section where E/F is a quadratic extension
of global fields is Section 5.5.

5.1. Kudla’s splitting for split unitary groups. We first recall Kudla’s
splitting [K94] of Rao’s cocycle [R93] for split unitary groups over E. Let
W = E?" (row vectors) be an E-vector space of dimension 2n with e-skew
Hermitian form

((x1, y1)s (X2, Y2)) = X175 — €Y1 X5,

and let e;,...,e,, €|,..., e, be the E-basis of W giving the isomorphism
W = E? Let V be an E-vector space of dimension m with a nondegenerate
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Period identities of CM forms on quaternion algebras 15

e-Hermitian form (-, -). (Here, X denotes the image of x under the nontrivial
involution of E over F and the superscript ' denotes transposition.) Then (U (V),
Ug(W)) is a dual reductive pair and there is a natural map

1 Ue(V) xUz(W) = Sp(VR: W), (hg— wvr h-'w®vg).

We denote by tw: Ug(V) = Sp(V®g W) and ty: Ug(W) — Sp(V @5 W) the
restrictions of ¢ to Ug(V) x {1} and {1} x Ug(W), respectively.
For 0 < j < n,let t; € Ug(W) be the element defined by

—ee; if1<i<],

J e e ir<i<y,
an eirj—

6T = e . P .
' e ifi > j, e; ifi > j.
Then
Ur(W) =|_| P, P,
=0
where P = Py C Ug(W) is the parabolic subgroup stabilizing the maximal

isotropic subspace Y :=spang{e}, ..., e,}.If g = p;t;p, € Pt1; P, then we define

j(@ =j, and x(g):=det(pip:ly) € E.

For any m-dimensional E-vector space V, endowed with a nondegenerate
Hermitian form, define

yF(%w ) RVO) = (M, det(VO))FyF(_u, %w)mVF(—l, %I/I)im,

where for any a € F*, we set yr(a, %w) =yr(5¥ o Q)/VF(%W 0q) € ug, a
quotient of Weil indices.

DEFINITION 5.1. Define
E(x(8)yr(3Y¥ o RV)/® ife = +1,
E(x(@)EM yr(3¥ o RV) W ife = —1,

where V' is the Hermitian form obtained by scaling the skew-Hermitian form on
V by i.

Byv:: Ug(W) — C',

THEOREM 5.2 (Kudla, [K94, Theorem 3.1]). Let & be a unitary character of
E* whose restriction to F* is €L/ where €p;p(x) = (x, u)r is the quadratic
character corresponding to the extension E/F. Then for the maximal isotropic
subspace Y :=V g Y of VR W,

2y (tv(81), tv(82)) = Bv.e(8182)Bv.e (81)7],3V,g (g)7".
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In other words, with respect to the isomorphism Mp(V®: W) = Sp(V®; W) x C!
determined by zy, the following diagram commutes:
Mp(V ®r W)y

(th l

Ug(W) — Sp(V®@e W)

5.2. Changing polarizations.

LEMMA 5.3 (Kudla, [K94, Lemma 4.2]). Let X + Y and X' + Y’ be two
polarizations of a symplectic space V. Then

2w (81, 82) = M(182)M(g) T M(g) ™" - zw (81, ),
where ): Sp(V) — C! is given by a product of Weil indices of Leray invariants:
M) = Ayev () = vrGY oq(Y, Yg ™', Y) - yr(3¥ 0 g (Y, Y, Yg)).
In particular, the bijection

Mp(V)y = Mp(V)y, (g,2) = (8, 2-A(g))

is an isomorphism.

5.3. Three seesaws of unitary groups. For any two unitary similitude groups
GUg(V) and GUg (W), we write

GUg(V) x Ug(W)) :={(g, h) € GUE(V) x GUL(W) : v(g) = v(h)}.

Fix a complete polarization V = X + Y. In this section, we define splittings (of
Zy or zyo, depending on context) for the unitary groups G(U E(VOD) x Ug(Wp)),
G(Ug(Vo) x Up(Wy)), G(Ug(Res V) x Ug(WD)), and G(Ug(Res V) x Ug(W)),
which fit into the seesaw

Uz(Res V) Ug(Wy)
| > 6
Ug (Vo) Ur(W)
and the two corresponding doubling seesaws:
U (Ve Ug(Wo) x Ug(Wo)  Ug(Res V) Ur(Wh)
| = o> ] 6
Ur (Vo) x Ur(Vo) Ug(Wp)® Ug(Res V)* Up(W) x Ug(W)
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Period identities of CM forms on quaternion algebras 17

5.3.1.  Splittings for G(Ug(VE) x U (Wp)) and G(Ug (Vo) x Ug(Wp)). Consider
the 2-dimensional E-space V, ® » W, with skew-Hermitian form given by (-, -) ®
(-, ). By a straightforward computation, we see that this allows us to identify
Vo ®r Wy = W, as E-spaces endowed with skew-Hermitian forms. Define

i G(Ug(Vo) x Up(Wy)) — Ug((Vo ® Wp)?),
(g. W)~ (V@w, v @w )~ (g vQ@wh, v Qw")),
i7: G(Ug(Vy) x Ug(Wp)) — Ur((Vo ® Wp)),
g (w, v w ) Vew, g v ®w h)),
i%: GUL(V,) x Up(Wp)) — Up(Vy" @ W),
(g, )~ Wwr g 'vwh).

We may identify VOD Q Wy = (Vo @ Wp) = WOD. We have natural embeddings

GUg(Vo) x Ug(Vp) x Ug(Wy)) < G(Ug(Vy) x Ug(Wy))
x G(Ug(Vy) x Ug(Wy))
G(Ug (Vo) x Ug(Vy) x Ug(Wy)) = G(Ug(V,) x Ug(Wp)).

Observe that for (g, g2, h) € G(Ug(Vy) x Ug(Vy) x Ug(Wy)),
(g1, Wi~ (82, 1) = i1, g2.h) € Up(Wg).
We identify Resg,r(WS) = VE and let
t: Up(Wg') — Sp(Resg;r(Wy ) = Sp(V™)
be the natural embedding. We will often identify U E(WOD) with (U E(WOD)).
DEFINITION 5.4. Pick a character £ : E* — C' such that &|px = €g,r. Define
B: Up(We) —> C', g E(x(2)) - (, =D pyr(u, 3y) 77,

Define A := Ay gye o Sp(VY) — C' and

2= (OB,

B,
BN, s = D) (B

§:=1i*B, K

(i
s 1= i*(BM), (i

LEMMA 5.5. (a) §, 57, and 5" are splittings of Zy,gwe ON the images of i, i,
0
and i®, respectively.

(b) s is a splitting of zy on the image of i, s~ is a splitting ofzy_(1 on the image
of i~, and sV is a splitting of zyo on the image of i°.
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C. Chan 18
Proof. Observe that det(Vy) = 1 and dim(V})) = 1 so that

Vi3 o RVo) = (u, Dpyp(—u, 39)ye(=1,39)7" = . =D ryr, 31).

This implies that 8 = By, v, (see Definition 5.1) and hence is a splitting of

LWt Since §, §~, and 5™ are pullbacks of S, they must also be splittings of
the same cocycle. O

LEMMA 5.6. Forany (g, h) € G(Ug(Vy) x Ug(Wy)),
57(g, h) =5(g, h) - &(det(g, h)).
Proof. Letdy:(~1) = (5 ) and set
Jwes UsWe) = Ug(We), g > dye(=Dgdye (=1).
Let g € G(Ug(Vy) x Ug(Wy)). By a straightforward computation, we have

x(i7(e) = (=1)/¥x(i(g)), and jG (g) = ji(8)-

Therefore, since yr(u, 3%)* = (u, —1)p,

§7(8) = Ex (i~ (@), =D pyp(u, 29)) 7
= E(x (@) (, =D pyr(u, 39))/
= £(x(i(8)))?5(g) = £(det(£))5 (g). -

LEMMA 5.7. For (g1, g, h) € G(Ug(Vy) x Ug(Vy) x Ug(Wy)),
s7(g1, g2, h) = s(g1, h) - s(g2, h) - £(det(i (g2, h))).

Proof. This is [HKS96, Lemma 1.1]. See also [IP18++, Lemma D.4]. O

5.3.2.  Splittings for G(Ug(Res V) x Urg(WD)) and G(Ug(Res V) x Ug(W)).
This section is completely analogous to Section 5.3.1. The 2-dimensional E-space

Res V @ W with skew-Hermitian form (-, -) ® (-, -) can be identified with Res V.
Define

i G(UEgResV) x Ug(W)) — Ug(Res VD), g, h)— ((v,v") > (g_lvh, v)),
i~ G(UgpRes V) x Ug(W)) — UpRes VD),  (g.h) > (v, v7) > (v, g v h),
i GUERes V) x Ug(WD)) > UgRes VD), (g, 1) > (v > g~ 1oh).
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Period identities of CM forms on quaternion algebras 19

We have natural embeddings

GUgRes V) x Ug(W) x Ug(W)) — G(UgRes V) x Ug(W))
X G(Ug(Res V) x Ug(W)),
GUgResV) x Ug(W) x Ug(W)) — G(Ug(Res V) x UE(WD)).

Observe that for (g, iy, hy) € G(Ug(Res V) x Ug(W) x Ug(W)),
i'(g, )i~ (g, hy) = i7'(g, hy, hy) € Ug(Res VD).
We identify Resp/ (V") = VE and let
/: Ug(Res VP) — Sp(VP)
be the natural embedding. We will often identify Ug(Res VDY) with
1(Ug(Res VD).
DEFINITION 5.8. Pick a character £: E* — C! such that &'|p« = €g,r. Define
B': UpRes V™) —> C', g E'(x(8) - (w, —Dpyrpu, 1y)7®.
Define
A = AResvogw-syO | Sp(VD) — C.
Define
S:/ = (i/)*ﬂ/’ S:—/ = (i—/)*IB/’ S:EI/ = (l.D/)*,B,,
s = BN, s = B, T = GBI
LEMMA 5.9. (a) §, §7/, and § are splittings of zresvoew on the images of i’,
i, and iV, respectively.

(b) s’ is a splitting of 7y on the image of i’, s™' is a splitting OfZ{{l on the image
of i, and sV is a splitting of zyo on the image of i%.

LEMMA 5.10. For (g, hy, hy) € G(Ug(Res V) x Ug(W) x Ug(W)),

78 s ho) = 8'(g. h) - 87(g. o) - €' (det(i' (8. 7))
5.4. Compatibility between the splittings for the three seesaws. In this
section, we investigate the compatibility of the splittings of the four pairs

of unitary groups relative to the three seesaws presented in (5.1) and (5.2).
Compatibility of the splittings in the two doubling seesaws of (5.2) is explicated
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in Lemmas 5.7 and 5.10. Hence it remains to investigate the compatibility of the

splittings
s: G(Ug(Vp) x Ug(Wp)) - C' and
Precisely, we would compare s and s’ on the subgroup

GUg(Vo) x Ug(W)) = {(a, B) € E* x E* : Nm(a) = Nm(B)}.

s’ G(Ug(Res V) x Ug(W)) — C.

We prove a sequence of lemmas that break up the computation showing

Proposition 5.14.

Leto, B € E* with Nm(a) = Nm(B) so that («, ) € G(Ug(Vy) xUg(W)). Let
g€ UE(WOD) denote the map (w, w™) — (¢ 'wB, w™) andlet g’ € Ug(Res VD)

denote the map (v, v™) — (¢ 'vB, v™). Define

i i
Uy 1= A A |
2u 2u

This defines an E-basis of WOD and of Res V™ with the following property:

i

(i, U‘,,-)o = &ij,

(vis U;) = d;j,

(via vj)O = (v,{a U;)o = Oa

(Ui’ vj) = (v;, v;) =0.

With respect to the basis {v;, v2, v}, V5},

4o | —a!
T+ p 0 1-a7 B, 0
2 4u
1 -1 1— -1
0 +a B 0 _ o '81
g: 2 4”.]
1 —1
(1 —a ' Bl 0 +;‘ P 0
_ 1 -1
0 (1 —a'B)iJ 0 +;‘ p
14+a! 1 —a
I+te” B 0 1-a7 B, 0
2 4u
l+a! 11—
0 I+a 8 0 Lﬁi
r 2 duJ
&= l+a !B
(1 — o' B)i 0 —— 0
1 ——1
0 1 —a'piJ 0 ++ﬁ

ij ) P
=, - =(1,1 = .
(%] <2L[J’ 2uJ> 5 Ul ( ) )7 v2 (.]s J)

5.3)

5.4
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Period identities of CM forms on quaternion algebras 21

Here, we view each unitary group as a subgroup of GL,(E) with GL4(E) acting
formally by right multiplication. Note however that WOD is a left E-space, and
so we interpret the formal multiplication v - a for v € WOD and a € E as av.
Throughout this section, we write g when we want to refer to one of g or g’
simultaneously.

LEMMA 5.11. We have

Conditions x(g) x(g) Jj(®@
alp=1La'f=1 1 1 0
o' p=la'B#£1 —(1—a'BiJ (1 -a'piJ I
alB#£1, a*‘ﬁ: 1 (1 —a ' (1—a ') 1
a’'B£1, CFIB # 1 -1 —-a'pa —OFIE)MJ (1—-a ') —Eilﬁ)u\] 2

Proof. The proof amounts to giving explicit decompositions

g = p1wpa,

There are four cases:

where p; € Pys and w = 1;

(a) fa~'p=1anda !B = 1, then

1o

(b) Ifa~'B=1anda"'B # 1, then g = p;7,p, and g = p 7, p} for

100 0
0 l4+a '8
p1= 2(=1+a'B)iJ |-
00 1 0
000 1
1 0 0 0
_ 1 -1g
0 (=1+a'B)iJ 0 ++’3
P2=1p 0 1 0 ’
7]_
0 0 _ >k
(-1 +a'B)iJ
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1 00 0
1 ——1
/ 0 1 _Llﬂ.
Py = 20-1+a 'piJ |,
00 1 0
000 1
1 0 0 0
1 ——1
0 —(=1+a'pjiJ 0 ++ﬂ
P2= 1o 0 1 0
——1
0 0 0 —%
(-1 +a 'B)iJ
(c) Ifa~'Bp#1and '8 = 1, then
| y 0 1 0 0
+ o~ =
01 2i(1 —a-1p) (1—a'B)i 0 1+;‘ oy
g=¢=11 0 0 0 Ty -
0 0 0 1 0 0 f)l !
0 0 1 0 0 0 N
(1—a ')
(d) Ifa™'B# landa™'B # 1,then g = p;Typ; and g’ = p| 1, p} for
1 -1
1 0 Lﬂ' 0
2(1 —a ')
l+a'B
=0 1 _L_ﬁ
2(1 —a~'B)iJ
0 0 1 0
00 0 1
1 -1
(1 —a ') 0 ++’3 0
_ 1 -1
0 (1 —a'B)iJ 0 +§‘ P
P2 = -1 s
0 0 _* B 0
(1—a ')
17
0 0 0 __*h
(1 —a 'B)iJ
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1 -1
1 Lﬁ. 0
2(1 — a1 B)i
l1+a'p
21— 'B)iJ
0 0 0
0 0 0 1
1 —1
(1 —a'B)i 0 +;‘ P 0
145!
0 A —a ' BiJ 0 +g p
Py = -1
0 0 b
(1 —a 'pi
—1
0 0 0 %
(1—a 'BiJ

From the above decompositions, we can easily read off the desired information.
O

LEMMA 5.12. Let @« = a; + bi. Then

. E(@™) - (ar, u)r ifb; =0,
S(a, o) =

E(a )y - (=2bud,u)r - yp(u, %1//) - (=1, —u)r otherwise.
Ny E@") (a,u)r ifb, =0,
S (o, ) =

@ ") (=2bjud, wp - yr(u, 3¥) - (=1, —u)r  otherwise.

Proof. We use Lemma 5.11 in the two cases where ' = 1. If '@ = 1, then
o =a and so by = 0. By Lemma 5.11, we have

Sla,0) =§' (@) =1 =& ™) (ar,u)r =&"(@") - (a1, u)r.
If «~'@ # 1, then b; # 0. Note that
l—o'@=aa—@)=a'-2bi, l-@'la=1-a'a=—a ' 2bi
The desired conclusion now follows by Lemma 5.11. O
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LEMMA 5.13. Let¢ = a + bi € E'. Then

o] ffa=1,
OV @2 ifa#,
ifa =1,

$(1.0) = 1
CEO= o0 @ 20ud 0 fa L

Progf. We use Lemma 5.11. If ¢ = 1, this corresponds to the case a~! = 1,
a 'B=1,and
s, =51,0) =1.
If ¢ # 1, this corresponds to the case ' # 1, " 'f # 1, and
$5,0) =6(—(1-0)A=Dul)-(=L,wr, §1,0)=&1=0)ul)-(—1,u)r.

The desired conclusion follows from the simple observation

1-00-0=2-2a, (1-¢*==1-01-0)=-(2-2a). O

PROPOSITION 5.14. Let g € G(Ug(Vy) x Ug(W)) C G(Ug(Vy) x Up(Wy)) and
g € GUg(Vy) x Ug(W)) € G(Ug(Res V) x Ug(W)) correspond to («, B) €
E* x E* with Nm(a) = Nm(B). Then

s'(8") = E(@)E"(B)s ().
Proof. We use the formulas given in Lemmas 5.12 and 5.13 together with
Lemma 5.3. Recall that g = g, - g2, 8’ = g/ - &,, where g; corresponds to (o, )

and g, corresponds to (1, 8/w).
First note that under the natural maps

i Up(Vo ® Wo) — Sp(V), i%: Up(Vo ® Wo) — Sp(VD),
i": Ug(ResV ® W) — Sp(V), i”: Ug(ResV ® W) — Sp(VD),

we have
i(g) =1i'(g) €Sp(V),  i7(g.) =i"'(g)) € Sp(V),
where g, denotes any of g, g;, g,. This implies that for A := Aya_,yo,
A7) = AG7'(g)) and  zy(i(g1). i(g2) = zv(i'(g}). i'(g))-
By definition,
s(8) = S5(g1) - (1) - 5(82) - (&) - zv(i(8), i (&),
s'(8) = 5'(81) - (g1 - §'(&2) - (g2 - 2w (I'(81), i'(82).
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Thus we have

X, B) =s(g)-s'(g) " =5(g1) - 5(g2) - §'(g)) " -8 (gh) ™.

Now we combine the results of Lemmas 5.12 and 5.13 to compute x («, 8).

Using the fact
T oot =F
in the calculation of §'(g})5’(g5) when & # B, we have
g™ (a, u)p aecF*,a=p
E(@™) - (ar, wp - (2 =2a)ul, u)r ceFa#p

§(g1) - 8(82) = 1 €@ - (=2byud, w)p - yr(u, 39) - (=1, —w)p a g F*,a=p
E(a™) - (=2byud, u)p - yr(u, 39) - (=1, —u)p

(2 —=2a)ud,u)r ag F*,a#p8
f/(a_l)'(alau)ﬁ* ae F*X,a=8
EB - (@ u)e- (2—2a)ud, u)p aeF*a#p

§(e) - 8(e) = V@) - (=2bwud, w)p - yelu, 19) - (=1, =) a ¢ F,a =B
EB ) (=2bud, )y, 1) - (=1, —u)p

(2 =2a)ul, u)r «d F* a+B.
Therefore
S(Ot_l)_é;/(a) OlEFX,O[:IB
_1 . /— y
x(a, B) = E@™)-&'(B) aeF ,a#p

E@)-&@ agFLa=p
E@)-§(B) agF a#p
=& )-EB) =@ )BT EBP =@ HEB. O

5.5. Product formula. In this section, we put the local considerations of
Sections 5.1-5.4 into the global picture. Once and for all, pick Hecke characters

£,8 EX\Ag — C' suchthat |, = &'|,x = egr.
Note that Uz (V,) = E* = U (V) and hence we have natural embeddings
G(Up(V) x Up(W)) <= G(Ug(Vy) x Up(Wy))
G(Us(VS)? x Ug(W)) > GUE(Vy) x Up(Wo)).
Thus functions defined on the unitary spaces pull back to functions on the

quaternionic unitary spaces. For each place v of F, by Definitions 5.4 and 5.8,
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we have functions

sp: G(Ug(V,) x Upg(W)) — C!, s GUR(VE)! x Up(W)) — C',
5!t G(Ug(Res V,) x Ug(W,)) — C!, s7": G(Ug(Res V,) x Ug(WH)) — C.

Formally define
s=[]s. s =[[s. s“=]]s. s7=]]s".
v v v v

These products converge by the following lemma, where we write ‘a.a.” for ‘all
but finitely many’.

LEMMA 5.15. (a) Let y € G(Ug(V)(F) x Ug(W)(F)). Then s,(y) = 1 for
a.a.vands(y)=1.

(b) Let y € G(Ugz(VE)(F) x Ug(W)(F)). Then sE(y) = 1 for a.a. v and

P =1.

(c) Let y € G(Ug(Res V)(F) x Ug(W)(F)). Then s,(y) = 1 for a.a. v and
s'(y) =1

(d) Lety € G(Ug(Res V)(F) x Ur (WO (F)). Then SUD/()/) =1 fora.a. vand
sY'(y) = 1.

PROPOSITION 5.16.  (a) [Lemma 5.7] For (gi,g.h) € GUg(V)°(A) x
Up(V)°(A) x Ug(W)(A)),

52 (g1, g2, 1) = s(g1, h) - 5(ga, h) - £(det(i(g2, h))).

(b) [Lemma 5.10] For (h,g1,g) € GUgResV)(A) x Ug(W)(A) x
U (W)(A)),

s (h, g1, 82) = 5'(h, g1) - (I, g2) - €' (det(i’ (h, g2))).
(c) [Proposition 5.14] For a, B € A% such that Nm(«) = Nm(g),

s'(a, B) = §(@)E'(B)s(a, B).

5.6. Two splittings on EX x GL,(F,). To calculate the theta lift at all the
unramified places, we will have to understand the Weil representation more
concretely. In particular, we will need to explicate the local splittings defined in
Section 5 in the cases v ¢ Xp and v ¢ X'p.. These exactly correspond, respectively,
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Period identities of CM forms on quaternion algebras 27

to the cases when W, , and Res V, are split Hermitian spaces. For notational
convenience, we drop the subscript v in this section.
Consider the group

R := G(E* x GLy(F)) = {(or, g) € E* x GL,(F) : Nm(at) = det(g)}.

Assume that the 2-dimensional E-spaces W, and Res V' are hyperbolic planes
(that is, they are split Hermitian spaces). Then we have embeddings

R — G(Ug(Vp) x Up(Wy)), (a, ) — (o, 8)
R — G(UgRes V) x Ug(W)), (o,8) 1 (g,a).

Furthermore, any decomposition of W, or Res V into maximal isotropic subspaces
induces a complete polarization

V=X +Y".

Our goal in this section is to explicate the values of the splittings in Section 5.3
associated with this particular polarization. To make it clear that we are working
in this specialized context, we let

s: G(Ug(Vy) x Ug(Wy)) — C!,  §': G(Ug(Res V) x Ug(W)) — C!

denote the splittings for zy defined in Section 5.3.
We briefly recall the construction of s, s'. Recall that from Sections 5.3.1
and 5.3.2, we have natural maps

i G(Ug(Vp) x Ug(Wp)) — Ur(W,?),
i": G(Ug(Res V) x Ug(W)) = Ug(Res VD).

If we let A: Sp(VY) — C' be given by
M) = vrGY o q(VA, Y g™ Y e (§ 0 g(VA, Y'H, VAg)),
then we have

s:=5-A: G(Ug(Vy) x Ug(Wp)) — C!,
s :=5 -1 G(Ug(Res V) x Ug(W)) — C',
where 9§ = LA— and 35" = Zresveogw-
Let W, and W, be isotropic subspaces such that Wy, = W, + W, and fix w; € W,

so that (w1, w,) = 1. Analogously, let V| and V, be isotropic subspaces such that
ResV = V; + V, and fix w; € V; such that (w;, w,) = 1. Define

1 1 1 1
wi = (Gwi, —5wp), Wy = (—3Wwa, ;W2), wi = (w2, wy), W, = (w;, w)
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so that we have (w;, w;) = (W}, W), (W;, W) = §;;, (W}, w;) = —§;;, and

WE = Wy + W, where W) = span{w,, w,} and W;" = span{w*, w3},
Res VP = Res VYV + Res V2,

and Res V* = span{w}, w3}.

where Res VV = span{w, w,}

Then a symplectic basis preserving the complete polarization V& = Vv 4 V2 is
given by

—1s —1e * o Xk * * xk
Wi, 71W1, Wy, 71W2, W, 1w, W, 1W,.

5.5

5.6.1. A splitting s of zy. Fora,d € F*, write D(a, d) := diag(a, d).

LEMMA 5.17. Let («, D(a,d)) € R. Then
s(a, D(a,d)) =&(—(a"'a — D)(@™'d — 1)).
In particular, fora € F* and a € E”,

s(1, D(a,a™")) = (u,a)r, s(a, D(1,Nm(a))) = &(a™).

Proof. We have (1, D(1, 1)) = (1, U(0)), and this is proved in Lemma 5.18, so
we assume that (o, D(a, d)) # (1, D(1, 1)). This assumption will be necessary
when we calculate §.

Recall that (o, D(a, d)) sends w; + o 'aw; and w, — a~'dw,. Recalling
that i: Ug(Wy) — Ug(W, + W) is defined by Ug(W,) acting linearly on W,
and trivially on W, , it is a straightforward computation to see that the image of
(a, D(a, d)) in Ug(W, + W) with respect to the basis w;, w,, W}, w3 is

ala+1 ala—1
e aeT 0 0 e ="
2 4
1d+1 “1d—1
0 o + _oz 0
2 4
“d+1
0 —@'d—1) % 0
@ la—1) 0 0 @ at
2
We have
1
i(av D(a7d))=pl p29
—1
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where
0 @la+1)? oala-1 ala+1 0
Hala—1) 4 2
(@'d+1? a'd—1 0 0 ald+1
Pr=14ea— 4 2 ’
0 0 0 (@7'd —1)
0 0 —(@'la—-1) 0
ala+1
1 0 0
2@ ta—1)
a'd+1
=10 - 0
P Aa'd—1)
0 0 1 0
0 0 0 1

This implies that
x(i(a, D@@,d))) = (@ 'a—D(@'d = 1), j(i(a, D(a,d))) =2,
and therefore by Definition 5.4,

§Gi(er, D(a,d))) =& 'a— D)@ 'd = 1)) - yr(u, 39)7°
=&(—(a'a— D@ 'd-1).

With respect to the symplectic basis given in (5.5), the image of i («w, D(a, d)) in

Sp(VP) is
xa + 1 _ yau xa — 1 ya
2 2 4 4
ya xa+1 ya xa—1

2 2 4u 4

xd +1 ydu xd — 1 vd

2 2 4 4

yd xd +1 yd xd — 1

g = 2 2 4u 4

- xd +1 vd

—(xd —1 d —

(x ) ydu 2 )
yvd xd +1
d —(xd — 1 —
y (x ) o 5
xa+1 ya
xa—1 —yau —
2 2
va va—1 ya xa+ 1
2u 2
€ Sp(vH).
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C. Chan 30
By definition,
Me, D(a, d) = yr(5¥ 0 q(VE, YT YD) - yr Y 0 g(V2, Y2, V2g)).
Since g stabilizes YU,
yrGGW oq(V2, Y g™ v9) = 1.
To calculate the second factor, note that

VA = {(07 O’ O? 05 Z1, 22, %3, Z4)},
Y/D = {(07 03 215 225 235 24, O, 0)},

Veg = {((xa — Dzy + yazs, —yauzz + (xa — 1)zy,

xd+1 vd
—(xd = Dzy + ydzp, yduzy — (xd — )25, — 5 AT 5
vd xd+1 xa+1 +ya ya +xa—|—1
3 <1 3 22 2 <3 u 245 ) <3 > 24 ) (>

and one can see that this implies that R := VA NY'P +V2NV2g +YHNVAg =
{(0, 0, %, , *, *,0,0)} and hence

YrGY o g(V2, YE, VAg)) = 1.
We therefore have
s(a, D(a,d)) = §(a, D(a,d)) = &(—(a"'a — 1)(@”'d — 1)).

This proves the main assertion and the remaining formulas can be deduced as
follows: assuming a # 1 and o # 1 (observe that if o € E', then x = 1 if and
only if ¢ = 1),

s(I, D(a,a™ ) =é(—(a—D(a' =) =&@ ' (a—1)*) =&@") = (u,a)r.
If« € E*, then

s(a, D(1,Nm(a))) = é(— (@~ ! = (e 'aa — 1))
=& Nep/r(Nm(a — 1)) = E(@). O

LEMMA 5.18. Leta € F. Then
s(1,U(a)) = 1.
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Proof. The matrix U (a) sends w; — w; 4+ aw, and w, +— w,. Recalling that
i: Ug(Wy) = Ug(Wy + W) is defined by Ug(W,) acting linearly on W, and
trivially on W, , it is a straightforward computation to see that

1 -2 %0
2 4
. 0O 1 0 0
1 =
i(1,U(a)) 0 1 0
a
0 —a - 1
)
We have
;-2 2, ; & & 1
2 4 1 0 0 0 2 4 2 1
0O 1 0 0 0a’101:0_10a71 -1
0O 0 1 oJlo O 1 0 0O 0 1 0 1 ’
0 0 O 1
0 —a 21 . 0 |
2 2

and therefore x(i(1, U(a))) = —a~! and j(i(1, U(a))) = 1. By Definition 5.4,
we have

1 ifa =0,
$5(1,U(@) = {&(=a™") - (u, —1)p
° yF(u’ %W)il = (M7 a)F : )/F(M, %‘/f)il, lfa S FX.

We next calculate A(1, U (a)). Since g = (1, U(a)) stabilizes Y'",
M) =yrG¥oq). q:=qVe Y, Vi),
Working in the F-basis given in (5.5),
V% =1{(0,0,0,0, y1, 2, y3, ya)},

Y,D = {(07 07 Y15 Y25, V3, Y4, 09 0)}9

A a a au
Vig = {(0, 0, —ays, —ya, y1 + V3, Y2 — — V4, V3, y4)} .
u 2 2
If a = 0, then A(1, U(0)) = 1, and the lemma holds. It remains to prove the
assertion for the case where a € F*. Then we have that the sum of the pairwise
intersections of V2, Y'H, V2g is R = {(0, 0, 0, 0, *, %, 0, 0)}. The perpendicular
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subspace to R in VH is equal to Rt = {(0, 0, *, *, *, *, *, )} so that

(VA)]R = {(07 Oa Oa Oa Oa Oa YI, )’2)},
(Y'?)z = {(0,0, y1, 52,0,0,0,0)},

a
(VAR = {(0 0, —ayi, — 0,0, yi, yz)} :

where the subscript R denotes the corresponding image in Rt /R. It is clear from
the above equations that

(YO ((1) ll’) = (VAg)e,

1
b . “a °
where 0 1 € Py, C Sp(R~/R), forb = "
0o =
a

By definition, ¢ = (Y')g with the symmetric bilinear form given by

1 u
q((x1, x2), (1, ¥2)) = oA + pRCitE

Therefore we have

1 u

dimg =2, detg= —%, hp(q) = <——, —) .
a a a)g

Observe that (—1, “)p = (—a, au)p(—a, a)r = (—a, u)r, and 50

A1 U@) = yr (Lp)z vr (—i, l¢> : (—1, 5)
2 a* 2 a a)g
=VrF <—1, 1W>1 “YF (—u, llﬁ> “(—a,u)p.
2 2
Finally, we have

s(1,U@) = (u, a)p - yr(u, 39) 7" yr (=1, 39) 7 yr(—u, 39) - (—a, u)p = 1.
O
LEMMA 5.19. We have

s(LW) = (u, =D - yru, 3¥).
In particular, if ord(u) is even, then

s(1, W) =1.
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Proof. The matrix W sends w; — —w; and w, — —w;,. Recalling that i (W) acts
linearly on W, and trivially on W, it is a straightforward computation to see that

L _1 1 _1
2 2 4 4
L1 1 1
i(l,W)=2244
L
S
e | 20 -1 0
1 1 - -3 1o 2 o -1
“lo o L —t]f-1 00 3 0
oo 1 —1 00 0 1

Therefore we have x(i (1, W)) = é and j(i(1, W)) = 2, and by Definition 5.4,

S, W) =) - (@, =Dp - yr(u, 39) 7% = (u, =2)p. (5.6)

We next calculate A (1, W). With respect to the symplectic basis given in (5.5), the
image of i (1, W) in Sp(VP) is

1 _1 1 _1
2 2 1 Z
1 1 _u u
4 1
1 1 1 1
2 4
1 1 _u _u
4 4 O
g = | | e Sp(V-).
—1 1 = -3
1 1
u u 5 3
-1 -1 1 1
1 1
u u 3 5
By definition,

A = yrGY oq(VA, Y g™ YD) - yr (A 0 (VA YH, V).

In the following, when calculating ¢ (Y, Y;, Y3), we write R to denote the sum
of the pairwise intersections of the Y; and write (Y;)r to mean the image of Y; in
R+/R. We have

VA = {(09 0’ 03 0’ ylv )’2» y37 Y4)},

Y/D -1 _ 1 1 1 ]
8 - Y1, Y2, V3, Y4, 2)’3’ 2uy47 2)’1’ 2uy2 )

Y/D = {(07 07 Y15 Y2, V3, Y4, 09 0)}’
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C. Chan 34
which implies that R = {(0, 0, %, *, *, x, 0, 0)} and hence
1 A /0 _—1 /Oy
Yr(GY ogq(V2, Y g™, Y'7)) = 1. (5.7
Now we calculate the second factor of A(1, W). We have

VA = {(Oy Oa 09 Oa ylv y29 )’3, y4)}1
Y,D = {(Ov 07 Y1, Y2, V3, Y4, 09 0)};

ey S TS B
8= Y15 Y25, V3, Y4, 2)’1, 2uy27 2)’37 2u}74 5

and hence R = {(0,0,0,0, %, %,0,0)}, Rt = {(0,0, *, %, %, %, %, *)}. This
implies that

(VA)]R = {(09 07 01 07 01 07 yl: y2)}:
(YP)g = {(0,0, y1, y2,0,0,0,0)},

1 1
(VAg)]R: 01 07 Y1, y2107 0,__)’1» Y2 )
27 2u

and we have

1

) 1 b
(Y%(G 1>=(VA8)R, forb=| 2

2u

It follows that

! s y0 i) o (LY o (LY (L
)/F<§1/’°C](V LY,V g))—VF(Z‘/f> VF( 4u,2‘ﬁ) ( Z’ZM)F

1
=Yr (M, Elﬁ) (2, u)F. (5.8)

Putting together Equations (5.6)—(5.8), we have

S(l, W) = 3:(17 W) : )‘(17 W) = (us _2)F : )/F(U, %1//) . (u’ Z)F
= (uv _I)F . VF(M, %w)
To see the final assertion, first observe that if ord(u) is even, then either E is split

or unramified over F. In either case, (v, —1)r = 1. By [R93, Proposition A.11],
ord(u) even implies that yr(u, 39/) = 1. O

Downloaded from https://www.cambridge.org/core. IP address: 137.83.120.234, on 04 May 2021 at 19:13:06, subject to the Cambridge
Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.21


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.21
https://www.cambridge.org/core

Period identities of CM forms on quaternion algebras 35
LEMMA 5.20. Leta € F. Then
s(1, D(—=1))s(1, W)s(1, U(a))s(1, W) = 1.

Proof. We have s(1, D(—1))s(1, W)s(1, U(a))s(1, W) = (u, —D)p((u, =) pyr
(u, 39))* = 1. O

LEMMA 5.21. If F = R and E = C, then for any (o, g) € R,
s(a, g) =&(@™).
Proof. Since (a, D(1, Nm(w))) stabilizes Y’,
s(a, g) = s(a, D(1, Nm(@))) - s(1, D(1, Nm(a) 1) g).

By Lemma 5.17, to prove the desired assertion, it remains to show thats(1, g) =1
for g € SL,(R). But this follows from [R93, Proposition A.10(1)]. O

5.6.2. A splitting s of zy. As in the previous subsection, write D(a,d) :=
diag(a, d).

LEMMA 5.22. (i) If (D(a,d), o) € G(GL,(F) x E*), then
s(D(a,d), ) =& (—(a'a — 1)(d 'a —1)).

In particular, we have s'(D(a,a™"), 1) = (u,a)r and s'(D(1, Nm(a)), )
=&'(a).

(ii) Fora € F, we haves'(1, U (a)) = 1.

(iii) We haves' (1, W) = (u, —1)r-yr(u, %1//). In particular, if ord(u) € 27, then
s(1, W) =1.

(iv) Fora € F, we have s'(1, D(—1))s'(1, W)s'(1, U(a))s'(1, W) = 1.
W) IfF=Rand E =C, thens'(a, g) = &'(a).
Proof. The proof of (i) is similar to Lemma 5.17 except that (D(a, d), o) sends

w; = a 'aw, and w, — d~'aw,. Thus the image of (D(a, d), a) in Uz (Res V+
Res V™) with respect to the basis w;, wp, Wi, wj is
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ala+1 ala—1
2 4
0 d'a+1 _d_lot —1 0
2 4
d-! 1
0 —dla—1) “TJF 0
—@'a—1) 0 0 %

To be more precise, this proof is the proof of Lemma 5.17 except with a replaced
by a~!, b replaced by b~!, and a~! replaced by «. The proofs of the remaining
parts are exactly the same as that of the analogous statements for s. O

6. Global theta lifts

In this section, we examine the global theta lifts in the similitude seesaw (4.4)
in comparison to automorphic induction. Let x be a Hecke character and recall
that its automorphic induction m, to GL,(Ar) has a Jacquet-Langlands transfer
to B* if and only if the following condition holds:

If B, is ramified, then yx, does not factor through Nm: E — F*.

We write nf to denote the Jacquet-Langlands transfer to B> if the pair (B, x)

satisfies the above condition, and we set nf = 0 otherwise. The main theorem of
this section is as follows.

THEOREM 6.1. The theta lifts ©(x - &) from GUg(V) to GUz(W*) = B*
and O'(x’ - &1 from GUg(W) to GUg(ResV) = (E* x (B)*)/F* can
be described in terms of automorphic induction and the Jacquet—Langlands
correspondence:

O(x-&=n) and O'(x-& N Zxl @' &),

where the right-hand side is viewed as a representation of GUg (Res V') descended
from (B))* x Aj.

To prove Theorem 6.1, we will need two arguments.
(1) fO(x - &) =0, then 7} = 0.
2) fO(x-£)#0,thenO(x -&) = nf.
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To prove (1), we will need to make use of the theory of doubling zeta integrals.
Since the nonvanishing of the global theta lift ®(x - £) is determined by the
nonvanishing of local doubling zeta integrals (Section 6.2), the crux of (1) is to
establish that the local zeta integral is vanishing only if the local theta lift is. To
prove (2), we will need to calculate the local theta lift from GU(1), to GU(2),
at all places where GU(2), = GU(1, 1),. After showing that & (x - £) must be
cuspidal if it is nonzero, we apply Jacquet—Langlands [JL] to conclude.

6.1. Theta lifts with similitudes. We first recall some general properties of
Weil representations. Denote by w,, and a)g the Weil representations of Mp(V)
on S(X) and of Mp(V™) on S(X) = S(X) ® S(X). We have a natural map

7: Mp(V) x Mp(V) — Mp(VD)
inducing (z;, z,) — 222 on C', and Wy, a)E enjoy the following compatibility:

~

a)E 0l = wy ® (wy ojy),

where jy is the automorphism of Mp(V)y = Sp(V) x C' defined by
(8.2 = (v(8). 27, ju(e) =du(=1)-g-dy(=1).
We make the following definitions:

GY :=GUz(VD) GY := GUy(WD)
G :=GUp(V)° X EX = GU(V,) G :=GUg(W)
H = GUg(W*) = B* C GUg(W,) H’':=GUg(ResV)= ((B)* x EX)/F*.

Recall that these groups fit into the following seesaws:

H H GH H x H H' x H' GY

S e ST

G G’ GxG H H' G x G

Adding a subscript 1 to any of the above groups indicates that we take the kernel
of the similitude character. If G, ..., G™ is a collection of unitary similitude
groups, we define

Gonrsxom = {(g1, .-, 8) € GV x - x G™ 1 w(g) =+ =v(g,)}.
We also define Z := F* and C := (AX)>(F*)*\(A*)*, where

(AT == v(G(A) Nv(H(A)) = v(G'(A) Nv(H'(A)) = Nmg/r(A}),
(F9)Y = F*n A"
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Adding a superscript + to any of the groups G, H, G, H' means we take the
preimage of (A*)™ (or (F*)* and so on) under the similitude map.
Fix sections

C—GA'Y, C—>HMW", C—->GA*", C— H AT,

of the natural surjections induced by the similitude character. We write g., A,
g., b for the images of ¢ € C under these sections. The following lemma is
straightforward.

LEMMA 6.2. The similitude character induces isomorphisms
ZAGIAGF)N\NGA)Y =C, ZMVH((MH(F)"\H®)" =C,
Z(A)GIAG (F)N\G'(A)T=C, ZMH{((AH' (F)"\H' (A" =C

and

H(A)/(H(F)HA)") = H'(A)/(H'(F)H'(A)") = Gal(E/F),
GZ(8)/(GT(F)GT(A)") = GT'(8)/(G7'(F)GT'(M)") = Gal(E/ F).
Recall that in Section 5 (see Definitions 5.4 and 5.8), for each place v of F,
we defined splittings of zy, and zyo on certain unitary groups. Recall also that

the discussion in Section 5.5 allowed us to multiply the local splittings to obtain
global splittings of zy

N QGXH(A) —> C], S/: gH/XG/(A) - Cl,
and global splittings of zyo
sP: Goo, y(A) — C s G oo(A) — CL

These allow us to define corresponding Weil representations wy,, @/, wE, a)E’. By

Proposition 5.16,

©y (81, 82, h) = wy (g1, h) ® E(det(ga, h))wy (82, 1), (81, 822 1) € Goxgxn(B),

(6.2)

w%‘,(l/lv 81, g2) = a)://(hv gl) ® é/(det(hv gz))a)://(h7 g2)ﬂ (ha 81, g2) € gH’xG’XG'(A)7
6.3)

wy(8.8) = §()5' (8w, (g, 8), (8.8) € Goxa(A). 6.4)

Define a theta distribution

©:SXMA) > C, o> Y 9.

xeX(F)
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Let ¢ € S(X(A)) and let x be a Hecke character. For h = hh, € H(A)* where
h, € H;(A), define

0, (x)(h) == f O (wy(818c, MP) x (818:) dg:-
G1(F)\G1(4)
Here, dg =[], dg,, is the Tamagawa measure on G, (A). Note that 0, (x)(yh) =
0,(x)(h) fory € H(F)N H(A)* and h € H(A)". By declaring
O,(x)(yh) =6,(x)(h), forally e H(F)andh € HA)T,

we obtain an automorphic form on the subgroup H(F)H (A)" of H(A). Let ¢ €
S(X(A)) and let x' be a Hecke character. For i’ = h\h!. € H'(A)* where h €
H{(A), define

6 () () = / 6w, I g8)0)x (5.8 dg).
G (F)\G|(A)

Here, dg| =[], dg} , is the Tamagawa measure on G/ (A).

Let ®,(x) be the automorphic representation of H(F)H (A)" generated by
0,(x) for ¢ € S(X(A)) and let ® (') be the automorphic representation of
H'(F)H'(A)" generated by 9(;()(/) for all ¢ € S(X(A)). Define

O(x) = Ind ) 40t (O2(0)),  O'(x) i=Tnd}y &) e (O (X))
By Lemma 6.2, [H(A) : H(F)H(A)"] =2, so 6,(x) extends to an automorphic

form in ®(x) via

0,(x)(hy) ifth=yh fory € H(F)and h, € H(A)*,
0 otherwise.

0, (X)(h) = {

Similarly, 6/ (x') extends to an automorphic form in ©'(x’) by setting

0 (x"H(h ifh' =yh' f H' (F)and h/, € H'(A)™T,
0 Gy o | OO T = i fory & H'(F) and B, & H'(A)
0 otherwise.

The theta lifts for wE and a)]%" are defined analogously.

6.2. The Rallis inner product formula. In this section, we will write down
an equation relating the Petersson inner product of a theta lift, to a theta lift to a
doubled unitary similitude group. To this end, we will use the doubled seesaws
in (5.2) and (6.1).
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12

For automorphic forms fi, f, on H(A) = B, and f], f; on H'(A)
(B x Ap)/Ax%, define

(f1, fadu = fith) - fo(h)ydh,  (f, f)uw = fiW') - f3(0) dh,
H] H']

[ [

where dh = [], dh, and dh’ = [, dh/ are the Tamagawa measures of H (A)
and H'(A).

Recall from Proposition 5.16 that the splittings s: Ggyn(A) — C! and
s9: Goo, 4 (A) — C! enjoy the property that for (g1, g2, h) € Goxoxn>

s9(g1, g2, 1) = s(g1, h) - s(g2, h) - £E(det(i (g2, h))).

This compatibility implies that for any &, € H,, g1, 8; € Gy, and (g, h,) €
gGXH(A)9

O (wy (818c, Mhe)e1) - O(wy (818c, hih)@2)
= O(0) (818 818:), hh)p1 ® By) - E(det(ihe) ™" - £(g18.)”.

Hence for ¢, ¢, € S(X(A)) and Hecke characters x;, x» of E*, by formally
switching the integrals at the equality, we have

(Op, (X1 - 8), 0, (X2 - E))
= // GWI(XI g)(hlhc) 'erpz(XZ'S)(hlhc)dhldC
C J[H]

Z// / / O(wy (818c, hih)p) (x15)(818:)
¢ JH1 /1G] /[G1]
- O (wy (818, Mihe)@2) (x26)(818.) dg1dg dh dc

= f / (X18)(8c8c) - (X26)(g180) (6.5)
C J[G 11 Y[G1]

/ O (@, ((818c 8180)s Mh) (@1 © 9y)) - E(det(hih,) ™" dhy dgy dg) de.
[H]
(6.6)

The inner integral in Equation (6.6) is the theta lift of &(det)~' to GUz(V"), but
to make actual sense of the above, one must be careful about convergence issues.
In the case that B is division, the quotient B*\ B, is compact, and therefore the
integral in (6.6) is absolutely convergent. Hence the formal manipulation above is
completely justified. We can then use the Siegel-Weil formula together with the
theory of doubling integrals [PSR87] to obtain a Rallis inner product formula. In
the case that B is split (that is, B = M,(F)), (6.6) does not converge absolutely
in general, so the last equality does not make sense. In this case, we use the
regularized Siegel-Weil formula of [GQT].
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6.2.1. The Siegel-Weil formula for division quaternion algebras. In this section,
we explain how to obtain a Rallis inner product formula in the case that B is
division. For ¢ € S(XV(A)), define

E@F)= Y. F,rg), where F,(g) = (@} (d(v(g)")g)¢)0).

yeP(F\U(L1)

This is the value of an Eisenstein series at s = % In this case, the Siegel-Weil
formula states that for g, g’ € GU(1) such that v(g) = v(g’),

E(s.¢). F) = [ 0@, ¢). g @) - £et(h)” dh,

[H1]

where i: G(U(1) x U(1)) — U(1, 1) and ¢ € S(VV(A)) is the partial Fourier
transform of ¢, ® @, € S(XY(A)). We now see that, continuing from (6.5)
and (6.6), we have

(Q(pl (X] : é)’ Qtpz (X2 : é))H
= f / (x16)(8180) - (X26)(8180) - E(i (818, &180), Fyp) dgi1dg, dc.
C J[G1]1 YI[G1]

We have F,(i(gi8., 818)) = F(i(g,~"g1, 1))&*(g)), and hence unfolding the
above integral and making the substitution ¢ = g,g., ¢’ = g 'g1 gives

=/ (688" - (18)(8) - Fo(i(g, 1)) dg dg'.
G JIG)

The Tamagawa measure on G;(A) can be written as a product of local measures
dgi, on G, times a global factor pr/pg (see Section 2.1). Hence if x; = o, = x
and ¢; = ¢, = ¢ = ®,¢,, we have

(O (X - 8),05(x - E))n = Foli(g, DI(xE)(EN(XE), (xE))ic1dg’

Gi(A)
PF 1
= z A~ 'F ) XU) )
pE rU[ (2 ’
where

1
Z (Ea f(pva XU) = / (a)llf(gl,v)(p’ ¢> : (Xuév)(gl,v) dgl,v' (67)
Gl,v

6.2.2. The regularized Siegel-Weil formula for (E*, GL(2)). In this section, we
follow [GQT] and describe how to make sense of (6.6) and obtain a Rallis inner
product formula in the case that B is split. We will need to translate between
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the quaternionic unitary groups (GUg(V)°, GUg(W*)) = (E*, GL,(F)) and the
dual reductive pair (GO(2), GSp(2)) = (E*, GL,(F)). In the notation of [GQT],
we have n = m = 2,r = 1, € = 1, which puts us in the second term range since
1 <2<2-1.

Recall that we have an embedding

G(Up(V)?, Ug(W")) = G(Ug(Vy) x Ug(Wp)).

When B is split, then there is a decomposition Wy = W, + W, of the E-space W,
into isotropic subspaces of dimension 1. Set

X' =Resg/r(Vo ® Wy), Y =Resgr(Vo @ W>)

so that V = X' 4+ Y’ forms a complete polarization. In Section 5.6, we explicated
a splitting s of zy,. Comparing s to the splitting

so@)spy: G(OQ2) x Sp(2)), — C!
defined in [K94], we see that forax € E*,a € F*,anda’ € F,

s(a, dINm(a))) = £(@) ™"+ 5002),5p02 (@, d(Nm())),
s(1, diag(a,a™")) = &(@)" - So@).spy (1, diag(a, a™"),

1 a 1 o
s\Llg 1)) =scosa(Llg 1))

0 1 0 1
s\L _ o)) =scasa (LI o))

Now set V) := {(v, —v) : v € Vo}and V" := {(v,v) : v € V{} so that
VY =Resg/r(Vy ® Wo),  V* =Resgr(Vy” ® Wo)

gives a complete polarization V5 = VV + V2 of the doubled symplectic space.
Let $(0¢2,2),sp(2)) denote the splitting of zya defined in [K94] and define

soe.2.s5p2) (1 8) = 800.2.500) (1 &) - Ay s (82 h)
for (g, h) € G(O(2, 2), Sp(2)),

where A := Ay 0_,ya 1S the change-of-polarization function defined in Lemma 5.3.
Then using Proposition 5.16(a),

5(g1, g2, h) =57 (g1, 82, 1) - (g1, g2, h)
=s(g1, h) - 8(g2, h) - £(det(i(ga, h))) - (g1, &2, h)
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= S(O(Z),Sp(Z))(gls h)‘i:(gl)_l * $(0(2),5p(2)) (82, h)&(g2)7!
- £(g2) & (det(h)) - A(g1, &2, h)
= 502).5p2) (&15 1) - 5002).5p2)) (82> 1)
- £(g1)7'6(2) ' E(det(h)) - A(g1, g2, )
= 5002502 (&1, &2, h) - E(g1) 'E(g2) T - Ag1, &2, h)
= S00.2.52) (81, 82, h) - E(g1)'E(g2) . (6.8)
Define P, C GO(Resg,r VOD) = GO(2, 2) to be the stabilizer of the totally
isotropic subspace Resg,r VOA of Resg/r VOD. For ¢ € S(VV(A)), define the
Siegel-Weil sections
D($)(g) = (0} (8)9)(0), for g € GO2,2), C GUx(Vy)a,
PO ($)(g) = (w, " ()$)(0), for g € GO(2,2),.
Observe that @(d))(g) = §(g) . §(O(2,2),Sp(2))(g)71 . @OSp(d))(g) We make the
analogous definitions for the local objects @,(¢,) and @S’Sp(rt)v). The Siegel-
Weil section @°5°(¢) € Indﬁg(z’z) (det) - |det|'/? determines a standard section
@DJO’SP (@) € Indﬁg(z’z) (det)-|det|* and we may form the associated Eisenstein series

E@s. @%@ (@)= > @"%(yg), forgeGOQ,2),.
yePo(F)\GO(2,2)
Define
Z(s, D, x) = / E(s, D)(g1,82) - x(g1) - X(g2) dg1dgs.
[G(O(2)x0(2))]

If® =®,®,, define

ZU(S, CDU, Xu) = /1 d)v(gm 1) : Xv(gv) dgv~
E,

By construction of the Tamagawa measure of A}. (see Section 2.1), one has

Z(s, D, x) = Pr HZU(S, Dy, Xv)-
PE 7,
Define the partial Fourier transform §: S(X'™(A)) — S(VY(A)) by
1
3(p)(u) = / PP (5(((16, ) = (u, v)))) dv,
(VANY'INV2)(4)

where we write u + v = x + y with u € VV(A), v € V2(A), x € XT(A),
y € YU (A), and dv is the Tamagawa measure.
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Observe that if ¢ € S(VV(A)) is the partial Fourier transform of ¢; ® @, for
@1, ¢ € S(X'(A)), then for the Siegel-Weil section @ = @95 (§(p; ® ©,)), we
have

1
Zv _’¢v’ v
(2 * )

vol(E) / PO (S(01 ® P (81,0. 1)+ Xu(80) dg,

= vol(E)) / (@y P (g,, 18 (01 ® ))(0) - x(21) dgy
= vol(E,) /E (@3 (80, D1 @T2)O) - xu(80) - (1) g
= vol(E,) f {0y (891, 92) - (X5 (80) g (6.9)

PROPOSITION 6.3. For ¢, ¢ € S(X'(A)), we have

(B0, (XE). O,y (xE)) = 25 1‘[2( DO (S(p) @ ). xv>.

Proof. We use (6.8) to translate between our setting and that of [GQT,
Proposition 11.1]. We have

(O, (X - €), 00, (X - E))m
:// Op (X - E)(R1he) - Oy, (X - ) (hihe) dhydc
C J[H]

=// / / O (wy(818c, hih) @) (x5)(818c)
C J[H]1J[G1] Y[G]

- O (wy (818, Mh)p2) (xE)(g18e) dgi dgy dhdc
2// / / O (@) P (g18e, hih o) (XE)(8180)
C J[Sp(2)] /[0(2)] J[0(2)]
O @ (gl g0 hih) @) (xE)(g180) - 7 (eDE (g} dgi dg| dhde

= Vals:l/Z/ / / E(s, o0, sp) (8(@1 ® ©2)))(818c, 818¢)
[0(2)] J[0(2)]

- x(818c) - X(g18.)dgidg dc
= Val,_, Z(s, D (8 (@1 ® ©3)), X)- O]

6.3. Local doubling zeta integrals. Let v be a nonsplit place of F. For
notational convenience, we drop all subscripts v in this section. We preemptively
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note that the notation we use to describe the zeta integrals in this section differs
from the notation used to describe the same (local) zeta integrals in the rest of the
paper. We learned the proof of Proposition 6.6 from Ichino. Similar arguments
appear in [GI14].

Consider the Siegel parabolic subgroup

P= {(g (a**)l) c GLZ(E)} c U, 1),

and for any unitary character n: U(1) — C!, consider the functional

Z(s,m,E): (5,6 > C, Fi> / F(i(g, D)n(g)dg,
E!l

where ¢: U(1) x U(1) — U(1, 1) is the natural map and

I(s,€%) == Indp "V (E7 - |- )

F(pg) =& @)laly > F(g)
forallg e U(l, ) and p = (5 ;1) € P

= {.7-": U, — C

is the normalized principal series representation. One has an intertwining operator
M(s,%): I(s, %) = [(=s,E ) = I(=s,8)

given by
M(s, ) F(g) = | F(wng)dn,

Np

where w = diag(1, —1) and Np is the unipotent radical of the parabolic P.
Following Lapid—Rallis (see also Gan—Ichino, Section 10), after normalizing
the intertwining operator by some rational function ¢, (s, £?),

MR (s, &%) == cy (s, EYM (s, §)

has a functional equation of the shape

Z(_Sv , 52)(M1;R(S’ 52)]:) = k- V(S + %7 , g’ ‘(//) : Z(S’ n, 52)(]:)7 (610)

where * denotes some nonzero factors. In particular, if we understand the behavior
of the intertwining operator M (s, n) and if y(sy + %, n) # 0, the functional
equation gives a relation between the nonvanishing of Z(—so, 1, £%) and the
nonvanishing of Z(sy, n, £2).
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We take a short detour to examine when the local theta lift to the nonsplit unitary
group U(2) vanishes. Define
Vn+ = Hn, V== D@anla

n

where H), is the 2n-dimensional split Hermitian E-space and D is the nonsplit
quaternion algebra over F viewed as a 2-dimensional Hermitian E-space via
(x,y) = prg(x*y). For a character n: U(1) = E' — C!, denote its theta lift
to U(VF) by Oy:(n). To make this tower ‘compatible’ one takes the Weil
representation for U(1) x U(V,}) to be such that the splitting on U(1) is given
by &. In particular, the Weil representation on U(1) x U(V0+) = U() x {1} is
given by the 1-dimensional representation £. The first occurrence of the theta lift
in the towers {U(V,") : n > 0}, {U(V,") : n > 0} is defined to be

n* =min{n: Oy+(n) #0}, n~ =min{n: Oy (n) # 0O}

The following result is a special case of a theorem of Sun—Zhu [SZ15].
THEOREM 6.4 (Sun-Zhu). n*(n) +n~(n) = 2.

We can describe the first occurrence in this setting more explicitly. By the
compatible choice of splittings in the tower of unitary groups U(V,"), we have that
Oy ( x&) # 0if and only if yx is the trivial character. Hence we must necessarily
be in the setting nt(x&) +n~ (x€) = 0+ 2, and in particular, Oy- (x&) =0.

Now suppose that x is nontrivial. Then by the previous paragraph, &y+(x§)
= 0. We now argue that ®y+(x§) 7 0. One explicit way to see this is as follows.

Let V;" = VY + V,* be a decomposition of V," into totally isotropic E-subspaces.
For the Schwartz function ¢(x) = x (x)log (x) € S(Resgr V,Y), we have

/ (@4 (9)(0) - (x&)(g) dg # 0,
El

which proves that there is a nontrivial E'-equivariant map
(SResg/r V), wy) = (C, x§).

Hence Oy+(x§) # 0 by the definition of the local theta lift. This now implies that
we must necessarily be in the settingn™ (x&)+n~ (x&) = 1+1, and @Vf (x&) £0.
In summary, the above arguments prove the following lemma.

LEMMA 6.5.  (a) Oy-(x§) # 0ifand only if x : E' — C* is nontrivial.
(b) If x: E' — C' is nontrivial, ©y+(x§) # 0.
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We now discuss the relationship between the theory of the doubling zeta
integral and the local theta correspondence. Consider the two doubling seesaws
for V" and V" :

ud, 1) UV x UV

| >

U(1) x U(1) Uv®)

If we have U(1, 1) = U(W), then one has a decomposition W = W, + W, of W
into 1-dimensional isotropic E-spaces, and hence by viewing V= as the F-space
Resg, r (W) Q& Vli) = ResE/F(Vli), the Weil representation a)E for U(1,1) x
U(Vli) can then be modeled on the space of Schwartz functions & (Vli). Define

SV = 13,8, ¢ (g (@12 1)9)0),

wherei: U(1) x U(1) — U(1, 1) is the natural map. Let R(Vli) denote the image
of this map. Since £%|zx = 1, there is a unique 1-dimensional representation
Ez of U(1, 1) extending the representation defined by (g ;l) — &£2(a). For the
0-dimensional Hermitian space V,", we define a map

SV =C— I(-3,8), z+ (g EX(3)).

Let R(V,") denote the image of this map. We say that Oy+(x§) # 0if and only if
Homy;, (2, x&) # 0. Since £2 is 1-dimensional, we have Homy ;) (€2, x£) # 0
if and only if Z(—%, x&, 52)|R(V0+) £ 0. Observe also that @v; (x&) £ 0if and
only if x = 1.

The goal of the remainder of this section is to prove the following.

PROPOSITION 6.6. Let&: Ay — C' be such that &|,x = €gr. Then
Oy-(x§) #0 = Z(, X§,§2)|R<v;> # 0.

We first remark that the converse of Proposition 6.6 is true and straightforward
to see: If Z (%, x&, &%) rwvy) # 0, then this immediately implies that
HomU(l)(wEh(U(l)x{l}), (x&)~") # 0. But since a)g‘ = wy, ®wy&” (see Lemma 5.7)
as a representation of U(1) x U(1), we have Homy(wy, (x&)™") # 0, and so
Oy (x§) # 0 by definition.

Before we prove Proposition 6.6, we recall a special case of a theorem of Kudla—
Sweet.

THEOREM 6.7 (Kudla-Sweet, [KS97, Theorem 1.2(1),(4)]). (i) R(V,") is the
unique irreducible submodule ofI(—%, £2).
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(i1) I(—%, £2)/R(0, £%) is an irreducible representation of U(1, 1).
(i) R(V/") =1(3,8).

@iv) R(V|") is the unique maximal submodule of I (%, £2) and is irreducible of
codimension 1.

We are now ready to prove the proposition.

Proof of Proposition 6.6. By Lemma 6.5(a), we may assume that x,: E! — C~
is nontrivial. Since x££ = x and x££ = 7, by the ‘Ten Commandments’ for
y-factors [LR0S5, Theorem 4], we have

L35G, ) =] [ (s, (x&)u. &, v0) - L5 = 5,70,

ves

where S is a finite set of places containing all the Archimedean places and all
places where , is ramified. Now, since x is nontrivial, we must have L5(0, x) #
0and L5(1,%) # 0, and therefore

yU(Ov (XS)m €v7 1pv) 7& O

This implies that Equation (6.10) gives

Z(5 X8 EHMG (=5, 8)(F)) = % - Z(—3, x&, E)(F), (6.11)

where * is nonzero. We now investigate the intertwining operator
LR, 1 g£. 1 g2 1 g2
M (=5,8): 1(—5,87) = 1(5,8).

We refer to Theorem 6.7 for the decomposition of the U(1, 1)-representations
(%3, £%). By [KS97, Proposition 6.4],

ker(M;"(—3,£%) = R(0,£%), Im(M;"(—3,£%) = R(V)).

Since yx is nontrivial, @VJ (x&) = 0, and therefore Z(—%, x&, 52)|R(V0+) =0.0n

the other hand, Z (—%, x&, 52) is a nonzero functional, and therefore one can find
F € I(—3, &%) such that MIbR(—l, £2)(F) # 0. By Theorem 6.7(iv), it follows

that Z(%,SX,SZNR(V() # 0. N
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6.4. Unramified local theta lifts from GU(1) to GU(1, 1). For convenience
of notation, in this subsection, we drop the subscript v. We denote by x the image
of x € E under the nontrivial involution of E/F.

Consider the 2-dimensional E-space V' = V| 4 V, with skew-Hermitian form

((x1, x2), V1, Y2)) =X1y2 + X2y
for ('xl’ x2)’ (YI, y2) (S Vl/ + V2, Then

GU(V) = GU(, 1)

= {g € GLy(E) : g <_01 (1)) g =1v(g) (_01 (1)> for some v(g) € FX} )

The upper-triangular matrices in GU(V’) form a parabolic subgroup

a VvVa x x
P._{(O va) €GLy(E):ae EX,ve F*,v eF}.
Let Pr denote the Borel subgroup of GL,(F) consisting of upper-triangular
matrices in GL, (F'). Observe that there are natural inclusions GL, (F) < GU(V’)
and E* — GU(V’) given by

d

EX = {(“ a) eGU(V/):aeEX}.

We have GU(V’) = (GLy(F) x EX)/F* and P = (Pr x E*)/F*.

Endow E with the Hermitian form (x, y) = xy so that GU(E) = GU(1) = E*.
Note that the similitude character on GU(E), which we also denote by v, is given
by the norm map E* — F*. Now consider the group

GL,(F) = {(‘CZ b) e GU(V) :a,b,c,d € F}

R:={(h,g) € EX x GU(V') :v(g) =v(h)}.

Endow the 4-dimensional F-space V' = Resg,r(V') with the symplectic form
{v, w) = %TrE/p((v, w)). There is a natural map

1:R— Sp(V), (h,g)+— (v h'vg).

The decomposition V| 4 V; of V' into isotropic subspaces induces a polarization
of V' given by

V' =X+Y', where X =Resg/r(V/) and Y’ = Resg/r(V;).
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Choose a basis ey, e, €], €5 of V' such that
X'=Fe +Fe,, Y =Fe+Fe;, (e, e}) = 8.
Now assume that we have a splitting 8: R — C' of zy.. Then

R — Mp(V)y, g+ (u(g). B(®)

is a group homomorphism and the Weil representation wy, on Mp(V")y: pulls back
to a representation of R, which we also denote by w,.
Abusing notation, define

B: EX = C', hw B(h,dWw(h))).

Observe that this defines a character since for any h € E*, t(h,d(v(h)))
stabilizes Y’'. Define

L(h)¢(x) := wy (h, d(v(h)))$(x) = B(R) k| P (xh™")
forh € E* and ¢ € S(X'). Then for any (%, g) € R,
wy (h, )¢ (x) = L(h)wy (d(v(g)")g)e(x)
= B (0 d () N)®)(xh™).  (6.12)
Consider the semidirect product E* x U(V’) with multiplication
(h1, 81) * (ha, 82) = (hihy, d(V(h2))g1d (v(h2) ™) go),
where h € E* and g € U(V').

This defines a group multiplication since the map d is multiplicative and v is a
group homomorphism to F*, an Abelian group. It is easy to show the following
lemma.

LEMMA 6.8. The Weil representation wy on R extends to a representation of
E* x U(V’) defined by

wy(h, g) = L(h)wy(g), heE”, geUWV).
In particular, the Weil representation on the quotient

0D (triv) := S(X) / N ker(a)

acHom 1 (S(X'), triv)

extends fo a representation of GU(V)"™ = {d(v) : v € Nm(E*)} x UV
satisfying
wy (d(v)) = L(h),

where h € E* is any element such that v(h) = v.
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DEFINITION 6.9. For any character ny: F* — C and any ¢ € S(X'), define
Fom: GUV) = C*, g (@)™ no(w() ™ (wy (d(v(g)")g)$)(0).
The following is straightforward.

LEMMA 6.10. Forany p = (§ 1) € GU(V"),

Fon(pg) = lal'|d|™ 2no@d)™" B(a) ™' Fy (8
forall g € GU(V') so that

. ~ b — = _
Fouo € Ind" (@), where Ty (f’) d) = mo(@d)”' pla)”".

In particular, Fy ,lcsp) is an element of the (normalized) principal series
representation
GSp)  —1 p—1 -1
IndBp (770 B & 1y ).

LEMMA 6.11. We have a nonzero R-equivariant map
(@y, SX)) — Ind32"™ () @ (no(Nm) - B), ¢ > Fy .
The right-hand side is irreducible and we have an isomorphism
Ind3" " (o) = Ind5* (15" @ (no - B © (ro(Nm) - )7,

where the right-hand side is a representation of GL,(F) x E* that descends to
the quotient (GL,(F) x E*)/F>* = GU(V’).

Proof. 1t is clear by definition that the map is nonzero. For R-equivariance,

Foyt.gr6.m0(8)

= (@) no(w(2) ™ (@y (d(w(g) N L(h)wy (d(v(g) g $)(0)

= (@)1 n0((@) " (L(h)wy (d(v(gg) ") gg)h)(0)

= (@2 no(w(@) ()T B(R) (w4 (d(v(gg") ) gg ) (0)

= B o) v(gg)™no(v(gg)) ™ (wy (d(v(gg) ") gg"$)(0)

= B mo(w(h")Fy.(28)-
The last assertion in the lemma holds since P = (Pr x E*)/F* and GU(V’) =
(GL,(F) x E*)/F*. The representation Indgizm(ﬁo) is irreducible since the

character ny'87'ng = B~ is not | - | or | - |~'. It follows that IndGPU(V/)(’ﬁo) is
irreducible. O
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The map defined in Lemma 6.11 factors through

oM () = S(X/)/ N kere,

acHom (SXN,B)

the largest quotient of S(X') such that E' acts by B. Note that by construction,
©WD(B), as a representation of U(V’), is the local theta lift of 8 to U(V’).

There are many extensions of @V (B) to a representation of EX x GU(V')™,
but specifying an action of E* determines such an extension. Explicitly, define
Ou5(B - no(Nm)) to be the unique representation of GU(V’)* such that for g =
(%) € GUY),

Ourp(B - no(Nm))(g) := no(Nm(h))™" - OV (B)(h, g).
where h € E* is any element such that v(h) = v(g) = v.

THEOREM 6.12 (Rallis). The R-equivariant map in Lemma 6.11 factors through
Ou.p(B - no(Nm)) and induces an injective map:

(wy, SX)) ——— Ind3""" ()

-

@ur,ﬁ(lg : Uo(Nm))
Moreover;
Ourp(B - no(Nm)) = Indp> " (g ex/r @ ny") ® (no(Nm)~™" - p71),

where the right-hand side is viewed as a representation of GL,(F) x E* that
descends to the quotient (GL,(F) x E*)/F* = GU(V").

Proof. This is due to Rallis [R84, Theorem II.1.1]. By the injectivity of
Oup(B - no(Nm)) = Ind3""" (i)
and the irreducibility of Inng(V/) (7o), by Lemma 6.11, we have an isomorphism
Ourp (B - o(Nm)) = Indp> " (' 87! @ my") ® (ro(Nm)~" - 7).

Finally, by Lemma 5.17, the restriction of 8 to F* is exactly the quadratic
character €g,r, and this completes the proof. O
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6.5. Proof of Theorem 6.1. In this section, we use the calculations in the
preceding sections to prove Theorem 6.1, the main theorem of this section.

Let x and x’ be Hecke characters of E*. Recall from Section 6.1 that for every
Schwartz function ¢ € S(X(A)), we have automorphic forms 6, (x) and 0(;( x")
on the adelic groups H(A) = B and H'(A) = ((By)* x Ay)/A¥, respectively.
Let ® () denote the automorphic representation of H (A) generated by 6, () for
all p € S(X(A)) and let @'(x’) denote the automorphic representation of H'(A)
generated by 6, (x) for all ¢ € S(X(A)).

PROPOSITION 6.13. If 7w} # 0, then ©(x - &) # 0. Analogously, ifyrf,' # 0, then
O'(x'-§) #0.

Proof. Recall that nf # 0 if and only if x,|g; # 1 for every place v where
B, is nonsplit. Let v be such a place, that is, B, is nonsplit and x|z # 1.
By Lemma 6.5(a), we have ®,(x,£&,) # 0, and by Proposition 6.6, we have
ZU(%, —, Xv&») # 0. Now let v be a place such that B, is split. By Lemma 6.5(b),
we have ©,(x,&,) # 0, and by Theorem 6.7(c), we have Zv(%, —, xv&,) # 0. By
the Rallis inner product formula (Proposition 6.3), @(x - &) # 0 if and only if
all the local zeta integrals ZU(%, —, Xv&») # 0, and hence we have shown that
Ox-§) #0. 0

LEMMA 6.14. If x, x' are Hecke characters of Ay whose restriction to A} is
nontrivial, then ©(x - §) is a cuspidal automorphic representation of B, and
O'(x' - &) is a cuspidal automorphic representation of B, *.

Proof. If B # M, (F), then the statement holds trivially. Now assume B = M, (F).
We would like to prove that for any Schwartz function ¢ € S(X(4)),

f 0s(x)(n(b)g)db =0, wheren(db) := ((1) lf) . (6.13)
F\Ap

Observe that if g ¢ GL; (Ar), then n(b)g ¢ GL; (Ar), and hence the integrand
in (6.13) is identically zero. Now assume g € GLI (Ar) and pick @ € A} with
Nm(«) = det(g). Then by definition,

0 ) (M(D)g) = O, (w0 (X ) (M(D)),

and therefore it remains only to show

/ 0,(x)(n(b)) db = 0.
F\Ap
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Recall that if B is split, then the 2-dimensional E-space W is a split Hermitian
space and one has a decomposition W, = W, 4+ W, into isotropic subspaces of
dimension 1. This induces a complete polarization V = X’ + Y’ given by X' =
Resg, r(Vo® Wy) and Y' = Resg,r (Vo @ W,). Then AL C U(Vp) stabilizes X’ and
Y, and so fora € A}, b € Ap,and ¢’ € S(X'(A)),

wy (a0, n(b))¢'(x) = £~ () - Y (5bxx") - ¢/ (x@).

We have

/ 0y (x) (b)) db
F\Ap
= / / > (y(e,nd))¢' (x) - (x&) () dodb
F\ar JENAL e (F)
= / > / £ (@) - Y (3bxx") - ¢ (xa) - (x€) (@) db dar
ENAE vexo(r) Y F\AF

= / 7N @) - ¢'(0) - (x8) (@) da = ¢'(0) x () do = 0. O
ENAL

ENAL
THEOREM 6.15. Let x, x' be Hecke characters of A} whose restriction to AL, is
nontrivial.

(a) If ©(x - &) is nonzero, then
O -§) =m).

(b) If ©'(x’ - &~1) is nonzero, then
O -EN Enl @K &,
where the right-hand side is viewed as a representation of H'(A) =

((By)* x Ap)/A¥% descended from the (B))* x Ay representation written
above.

Proof. We prove (a) first. By our normalization (compare the local definition
in Section 3.3 to the global definition in Section 6.1), at a place v, the local
representation corresponding to the global theta lift of x - £ is the local theta
lift of (x, - &,)~". That is,

@(X : é)v = @U((XU : Sv)il) = @v(X,jl : 5,71)

Theorem 6.12 gives a description of the right-hand side for every place v such
that
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- v splits completely in E; or

- v lies under a single place w of E and yx,: E; — C* factors through
Nm: E} — FJX.

For each such place v, by Lemma 5.17, we have
s(e, dw(@))) = &(a)”", foralla € E.
Writing x, = x..0(Nm), we have
0ot 6, Z O (6,16, Z Indp 2 (e, r, ® X0,

and therefore by Jacquet-Langlands, we have that ©® (x - ) = yrf .
The proof of (b) is very similar. In this case, because we complex-conjugate the
theta kernel in the definition of the global theta lift ®' (see Section 6.1), we have

O'(x &N =& =0,007" 8.
At every place v of F where everything is unramified, by Lemma 5.22,
sSdv(@),a) =& (a), foralla € E.
Writing x,; = x, ,(Nm) at each such place, Theorem 6.12 implies
Ou(xy ™€) Z Oungy (x) - £) = Ind3> ™ (x40 © X0 0) © (oo - €071
Smce 5 |px = €g,r,, therefore by Jacquet-Langlands, ®'(x’ - &'~ 1)v = nf,' ®
X'~ - 8. O

Theorem 6.1 now follows from Proposition 6.13 and Theorem 6.15.

Proof of Theorem 6.1. If @ (x - £) = 0, then by Proposition 6.13, we must have
n? = 0 and therefore O (x - &) = 7. If O(x - &) # 0, then by Theorem 6.15,

we must have @ (x - &) = JTB The same argument holds to conclude the desired

isomorphism for ®'(x’ - &'~ 1) O

6.6. Period identities of CM forms. We are now ready to prove an identity of
toric integrals of automorphic forms in nf and nf/. We use the seesaw

H' H GUEg([ResV) GUg(W*) ((BY* x EX)/F* B*

- > = >

G G’ GUp(V)° GUE(W) E* E*
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Recall from Proposition 5.14 that our choice of splittings
s: Goxn(A) = C', " Gorew (A) — C'
enjoys the property that for (o, 8) € Gg o' (A),
s'(a, B) =E(@) - §'(B) - s(ax, B).
THEOREM 6.16. For any Hecke characters x and x' of E,
(O (X - ), Xer = (X, 0,(x" - € D)e-
Proof. Unwinding definitions and using Proposition 5.14, we have
6o (x -8, X))o
=/ 0,(x - 6)(&) - x'(g) dg’

// 6,(x -£)(g18.) - x'(g18.) dg dc

[G}]

=// / O(wy (818, 818)9) - x(818:) - §(g180) - x'(g18.)dg1dg, dc
[G|1Y[Gi]

=// / x(818)0 (@), (818c, 818.)9) - €'(81g.) ™" - x'(g18.) dg) dgi dc
G1] J[G)]

= / / x(818)6,(x' - &) (g18.) dgidc
cJiGn
=(x.0,(x'-&)¢. O
Combining Theorems 6.15 and 6.16, we obtain the following result.

THEOREM 6.17. Let x, x' be Hecke characters of E and let ¢ € S(X(A)). Then

=008 enl, [l =6, §Den,,

and we have

‘/ ﬁ@»ﬂ@@=/ x(8) - £5(9) dg.
AXEX\AX

AFEX\AY

We point out that by Theorem 6.17, if fXB is a test vector for the Waldspurger
torus period of nf with yx’, then fXB,/ is a test vector for the Waldspurger torus
period of 77 with x.
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7. Special vectors in the Weil representation

Recall that F is a totally real field and £ = F (i) is a CM extension of F. We
choose the trace-free element i € E so that u = i* € F has the property that for
any finite place v of F,

0 if E,/F, is unramified

val, =
W=V it E,/F, is ramified.

For the rest of the paper, we take v to be the standard additive character of F\Ar
(see Section 2.1). Recall that if v is a finite place of F', then , is trivial on 7 “@O,
but nontrivial on 7~ =1, . Furthermore, recall that we let dx be the additive Haar
measure on Ay self-dual with respect to ¥ and that vol(Op,, dx,) = g, /%

In this section, we will explicitly realize the positive-weight Hecke eigenforms
as theta lifts. More precisely, let n;, ..., n, be the real embeddings of F. For
any n-tuple of nonnegative integers [ = (i, ...,[,) and any n-tuple of integers
k = (ki, ..., k,), we will specify a Schwartz function ¢; such that if x,, (z) = 77k
fori =1, ..., n, then the theta lift 0¢;( x&) is a Hecke eigenform whose weight
at each infinite place »; is |k;| + 1 + 2/;. Note that by construction (Section 6.1),
negative-weight Hecke eigenforms are not theta lifts since they are not supported
on GL,(F) GLy(Ap)™.

Fix a place v of F. In this section, we work place by place, and drop the
subscript v throughout. Let W be a 2-dimensional E-vector space endowed with
the skew-Hermitian form

((x1, x2), (Y1, Y2)) = X1y2 — X

with respect to a fixed basis w;, w, of W. Let V be a 1-dimensional E-vector
space endowed with the Hermitian form (¢, 8) = ap. Setting W; = spang(w;)
fori =1, 2, we have a decomposition W = W+ W, of W into maximal isotropic
subspaces, and this induces a complete polarization of V given by

V=X+Y, X=VeW,, Y=VW,.

Fix a splitting
s: G(U(V) x UW)) — C!

of the cocycle zy with respect to the map
11 G(UNV) x UW)) = Sp(V), (h,g)— @ wr h'v @ wg).
This determines a homomorphism

2 G(UY) x UW)) - Mp(V)y,  (h, g) = (t(h, g),s(h, 8)).
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Recall from Equation (6.12) and Lemma 5.17 that for ¢ € S(X') and (&, g) €
G(U(V) x UW)),

wy(h, )P (x) = E (WA (wy (d(v(g) Hg)P) (xh ™). (7.1
One can choose a basis of X’ and Y’ so that

a 1 a’

1(D(a)) = 1 , U@ =

(W) =
-1

By the computations of Section 5.6 and Equations (3.1)—(3.3),

wy (1, D(@)p(x) = §(@)~" - | detal - p(xa) (7.2)
wy (1, U@)e(x) = ¥ (5 Trg/r(@'xX)) - (x) (7.3)
1 1
wy (1, Wex) = (u, =1)F - VF(”7 5#/)-/ w(y)lﬂ(i TrE/F(X?)) dy. (74)
F2

If v is a finite place, let c¢(,) be the conductor of 7, and let K (N) be the
compact open subgroup as defined in Section 2.2. Writing d(v) = ((‘) S) € GLy(F)
for v € F*, define

K (N) if F has odd residue characteristic,

Ko(N) =
o) {a’(Z)K()(N)d(l/Z) if F has even residue characteristic.

7.1. Schwartz functions. In this section, we introduce Schwartz functions
that transform nicely under the Weil representation. These functions have been
considered in various places before. At the finite places, they have appeared
for example in [P06, Proposition 2.5.1], [X07, N1]. At the infinite places, our
choice is constructed from a confluent hypergeometric function , Fi(a, b, t) of
the first type. This is related to the role of hypergeometric functions in matrix
coefficients of representations of SL,(IR) (see, for example, [X07, Appendix],
[VKO1, Ch. 6, 7]).

7.1.1.  Infinite places. In this section, let v be an infinite place of F.
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DEFINITION 7.1. Fork € Z and | € Z3,, define

, 1Fi(—=1Lk+1,4m20)7%e™>%  ifk >0,
Pri(@) 1= 1Fi(=1, —k + 1,47 z2)z % e = ifk <0,
where | Fi(a, b, t) is the Kummer confluent hypergeometric function for constants
a,b
WFi(a,b,t) = JZ_; EZ—;j%ﬂ, where (a)y := 1,
and (@); ;=a(@+1D@+2)---(a+j—1).

Observe that | F(a, b, 1) is entire in 7 so long as b ¢ Z,, so that in particular, ¢,
is entire for all k € Z and [ € Z,.

The following lemma is well known.

LEMMA 7.2. (a) The function F(a,b,t) is a solution to the differential
equation

tf" @)+ (b= f' ) —af ) =0.
(b) IfRe(x) > 0 and Re(c) > O, then

0 1
/ t“ e Fi(a,b, —t)dt = ¢ T (a),F, <a, o, b, ——) ,
0 c

1\ _ @), 11y
. (a’“’b’_5>_z ®); ( c) ‘

|
j=0 I

where

LEMMA 7.3. Fora € C'and r(0) = (53, a®) € SO(2),

wy (o, 1Oy, = E(@ Ha /KTy

Proof. We follow a similar proof strategy to [X07, Proposition 2.2.5]. We

compute on the Lie algebra shL(R). It is well known that for X, = (§ ),
X-o=(10)
- 1 9 /0
wy (X)) =2mizzg, wy (X )¢ = i 92 (3_Z¢> .

We first handle the case k > 0. For any doubly differentiable function f satisfying
the differential equation

tf"® + k+1—=0)f'@)=—If @),
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we have, following from a long calculus computation,

wy (X — X ) (f(@4rz7)Z'e %)
=i[(k+ 1) f(4nzZ) — 2((k + 1 — 47zZ) f' (4n22)
+ 47 f" (4nz7)) |7 e
=itk +1+42])f(4nz2)Te 7.

By Lemma 7.2(a), Fi(—[,k + 1,¢) is such an f(¢) and hence the desired
conclusion follows.

Now assume k < 0. For any doubly differentiable function f satisfying the
differential equation

tf’(t) + (=k+1—=10)f' (@) = —-1f (1),
we have

w0y (X4 — X )(f(4mz2)z Fe %)
=i[(—k+ 1) f(4nzZ) — 2((=k + 1 — 4nz2) f' (4n 22)
+4m 7 f(4mz7)) ]z Fe
=i(—k + 1420 f(dmz2)z *e 7.

By Lemma 7.2(a), F\(—I, —k + 1,¢) is such an f(¢), and so the desired
conclusion follows.
Finally, it is easy to see that wy (o, 1)¢; , = £(a™")a "¢} ,, and it follows that

wy (o, 10y, = (0 Na ke WG] -

The following lemma is useful in understanding the relationship between the
¢, with respect to the Maass—Shimura operator on modular forms.

LEMMA 7.4. Write z = x + yi € C. For y # 0, we have

(|k| + 1)1 ( —l+l/2 2mxuv

8l (V27 (/) = Qi)

D1 (V7).

Proof. This amounts to showing

kl+142I
(az +| | )[ —1+1/2 2mxvv¢k0(v\/—)]

72—z
|k| + 1 +l —I— TIXVU 4/
= = O L 0.
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Unwinding definitions, this amounts to showing

( k| + 1421
+—
0z -
_ k1

20

) (yfllFl(—l, |k| +1, 4ﬂUUy)82ﬂiv5Z)
( —l— llFl( l_l |k| +1 47T1)1)y)€2mu"“)

Verifying this is a straightforward calculation. For example, the coefficient of
y~'=! on the left-hand side is equal to (5} + B2 . ¢2777 and this agrees

with the right-hand side. O

7.1.2.  Finite nonsplit places. In this section, let v be a finite nonsplit place of
F lying under a single prime w of E. Then E,, is a field and E,/F, is either
unramified or ramified. Assume that E,,, F, have odd residue characteristic. We
drop the subscripts w and v throughout this section.

DEFINITION 7.5. Define

, 1o, (x) if x is unramified,
¢) =1 *

X (x)lO; (x) otherwise.

LEMMA 7.6. Let ' be an unramified nontrivial additive character of F. For
heOfand g = (’j f,) € Ky := Ko(c(py,)) such that Nm(h) = det(g), we have

wy(h, 8)¢" = (x&)™'(h) - (xex/r)(a) - ¢'.

Proof. See [X07, Proposition 2.2.4], [P06, Proposition 2.5.1], and [Ch18,
Lemma 8.6]. I

LEMMA 7.7. Forh € Of and g = (“ ”) such that Nm(h) = det(g), we have

wy (h, d(8)"'gd(8)¢" = (x&) ™' () - (xep/r) (@) - ¢'.

Proof. Since ¥ has conductor §, ¥'(x) := ¥ (8x) is an unramified nontrivial
additive character of F'. The conclusion follows by Equation (3.4) and Lemma 7.6.
O

7.1.3.  Finite split places. In this section, we let v be a finite split place of F.
Then E, = F, & F,. We drop the subscript v throughout this section.
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DEFINITION 7.8. For a character x = x; ® x»: F* x F* — C*, define

1 1 oy ified.
¢,(X1,)C2) = or(x)1o, (x2) if x 1s unramifie

X (x1, x2) 10; (xl)lo; (x,) otherwise.

LEMMA 7.9. Let v’ be an unramified nontrivial additive character of F. For
heOf xOfand g = (‘j Z) € Ko with Nm(h) = det(g), we have

wy (h, §)¢" = (X&) ™' (W) - x1(@xa2(a) - ¢'.

Proof. See [X07, Proposition 2.2.4], [P06, Proposition 2.5.1], and [Ch18,
Lemma 8.9]. ]

By the same argument as in Lemma 7.7, we have the following lemma.

LEMMA 7.10. Forh € Of x Of and g = (¢ %) € Ko withNm(h) = det(g), we
have

wy (h, d(8)"'gd(8))¢" = (x&) "' (W) - x1(@)x2(a) - ¢'.

7.2. Local zeta integrals. In this section, we calculate the local zeta
integrals Z(3, ®,, x,) for the Siegel-Weil section ®, = ®2(5(¢, ® ¢,))
(see Section 6.2).

7.2.1.  Infinite nonsplit places. Let v be an infinite nonsplit place. We say that
X has infinity type (ki, k) if

Xo: C* > C*, z> g hz ke,
Assume that x,(z) = z* for z € C!, so that either ¥, is of type (—k + j, j) or
(—Jj, k — j) for some integer j. Pick an integer [ € Z>, and take
1 Fi(—1k+1,4n22)7' e ifk >0,

$,(2) = ¢ ,(2) = {IFI(—I, —k+1,4n72) 7 %e % ifk < 0.

LEMMA 7.11. Let v be an infinite nonsplit place. Then

1 o Qr)?  D(kD?
& (5’ - X”) = vol€h(g'. ¢) = AR IR (] 4 [k

Proof. By Lemma 7.3, wy (o, )¢, = &(a™ )¢/ . Thus
Zo(L by x) = / @y (g2 D). B) (6 (&) dg
(Cl
=vol(C')(¢,. ¢,) =7~ (¢}. B]).
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We have

(9, b)) = / VFi(=1, k| + 1,4m722) - (22" - e dzdz
C

2 o
:Wf VFi (=L kL + 1,07 e% e dr
0
2 N(KD? 2w (Jk])!

T @mRET kD! @R (R

7.2.2.  Finite nonsplit places. Recall from Section 7 that we set

& () = lo,, (x) if x, is unramified,
U @) 1ex (x)if x, is ramified.

LEMMA 7.12. Let v be a finite nonsplit place. If E,/ F, is unramified, then

Z,(5, D, xo)
q,"? if E,/ F, is unramified and x, is unramified,
g, —q;?) if E,/ F, is unramified and y, is ramified,
q, g, if E,/ F, is ramified and x, is unramified,

q,'q; (1 —q; ") if E,/F, is ramified and x, is ramified.

Proof. By Lemma 7.7, for g € E!, we have wy (g, )¢’ = (x,€,) ' (g) - ¢'. This
implies that
Zv(ly (pvy Xv) = VOI(E$7 dlxgam)/ (a)ljl(ga 1)¢,’ d)/)(X%-Y’)v(g) dg
E}
= vol(E,), d'x*™)* (¢, ¢')

| vol(E}, d'x*™)?vol(O,, dx,) if x, is unramified,
| vol(EL, d'x*™)2 vol (O} . dx,) otherwise.

The desired conclusion now follows from the measures in Section (2.1). I

7.2.3. Finite split places. Let v be a finite split place and write x, = x1., ®
Xow: FY x FY — C*.Recall that

, 1o, (x1)1lo, (x2) if x, is unramified,
@ (x1, x2) == ! ’

Xo (X1, X2) lO;U (x )1O?v (x,) otherwise.
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LEMMA 7.13. Let v be a finite split place and assume that x, is unramified. Then

-1 —1
2 L,(2, 8E/F)

Proof. In this setting, E! = {(a,a™") € F* x F*}. By Lemma 5.17,

a)l['((a? ail)’ l)¢/()€], xZ) = Ev(aa a71)71¢/(x1a717 )Cza)
= Sv(aa a_l)_llaOpl, (xl)lzfl(’)pv (Xz).

Hence

{wy((a,a™), D', ¢)
: £(a,a)” Lioy, D 1o10,, (02) 1o, (x1) 1o, (x2) dx1 dx,
= “.;‘,,(Ua, aH! vol(aOr, N Op,, dx,) Vol(a_lOFv N Ok,, dx,)
=& (a, al)lqlva% vol(Op, . dx,)* = &,(a, al)lqlva%qu”

We therefore have, writing w = m, for a uniformizer of F,,

1
Zv A (pvy v
(2 X)

=/ (wy(a,a g, ¢))6,(a,a ) xu(a,a™") da

—Zf (wy ("a, 7 "a ", p)E (" a, T "a™ )y (" a, w"a"" ) da

nez
_ 32 1 —gq,
' (=g xo@=1, a)NA — g5 %, (m, m71))
—3dy/2 Lu(l, Xlv ® X{i)Lv(L Xfi ® X2,v) 0
' L,(2, EE/F)

LEMMA 7.14. Let v be a finite split place and assume that x, is ramified. Then
Zv(%» D, Xv) = 61;3d"/2(1 - 451)2-

Proof. We have wy ((a,a™"), D¢'(x1, x2) = &(a,a™) " xo(a,a™) 10 (x1)
1,10z (x2) so that

<a)1//((a’ ail)a 1)¢,’ d)/) = gv(a’ ail)ilxu(a, 071)71 VOI(O;‘EU, d_xv)z:l_O;U (a)
Thus Z,(1, @,, xu) = vol(O},, dx,)? vol(OF., d'x™™). 0
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8. An explicit Rallis inner product formula

Let F be a totally real number field and let E/F be a CM extension. Assume
that every place v of F over 2 splits in E. Let 1y, ..., n, be the real embeddings
of F. Let x: EX\A; — C* be a Hecke character of infinity type (k + j, j),
where k = (k, ..., k,), j = (i, ..., ju) € Z". Assume that B = M,(F) and let
Wy = Resg/g B = W, + W, be a decomposition of the E-space W, into totally
isotropic subspaces. Set X' = Resg,r(E @ W;), Y’ = Resg/r(E ® W), and define
a Schwartz function ¢’ = ®,¢, € S(X'(A)) as in Section 7:

1Fi(=l ki + 1, 4nz0)Z%e % ifv=1; | coand k > 0,
VFi(=1;, =k +1,4nz2)z7%e ™% ifv=1n; |occand k < 0,
, lo,, (@) if v is nonsplit and y, is unramified,
01,2 1= Xv (Z)lofm () if v is nonsplit and y, is ramified,
lo, (zl)io r (22) if v splits and yx, is unramified,
X0 (21, 22) 7! Llo; (@)1o;, (22) if v splits and y, is ramified.
Define

X, :={v: x, is unramified}, X5 := {v: X, is unramified}.

For each place v of F, define

@2n)’ L(ki Y o
Gk (1 k! ifv=mn;|oo
q;"? ifveg X, vé¢ Ty, vunram
4, (1 =g, ifve X,,v¢ Xy, vunram
Tl if X X%, v unram
q, Hved,,ve ly,
c o 1 e (=g )7 (A = X (g, ) ifvg 5, v¢ Ty, vram
B D A (A (RO BTG R A DR ifve X, v¢ Ty vmam
g, %q (1 —g;H(A — g, ) ifve X,,ve Xy, vram
g, ifvg X, v¢ Zy,vsplit
1— ) —1 T, —1 1— -1 D) (T, -1
g L Q)@ DA~ Gt )a D) oo
v (1 +q;l) X X
g, 31— g (A +g;H7! ifve X, ve Zy, vsplit.

THEOREM 8.1. The Petersson inner product of the theta lift 0, (x&) is

por L(1,%)
(O (x8),0p(x5)) = — - ——=— ]| Cvs
’ ’ pr L) H
where C, = 1 at all but finitely many places. In particular, 8y (& x) # 0 if x is
nontrivial on A}..
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Proof. By the results of Section 7.2, it is a straightforward comparison to see that

1 L,(1,%)
Z\=,D,, 5o | =C,- ———— for all places v of F.
2 6 (2)

Since all but finitely many places simultaneously satisfy the conditions d, = 0,
vé¢ X, v¢ Xy, and v is split or unramified, we see that C, = 1 for all but finitely
many places, and the desired equation now follows from the doubling method.
Observe that the factor pp/pr comes from the definition of the Tamagawa
measure on A}, and the local measures on E, (Section 2.1).

Finally, since C, # O for all v, it follows that 6, (x&) # 0 if and only if L(1,
X) # 0. But L(1, X) # 0 if and only if x is trivial on A}, so the final assertion
holds. O

The Shimura—Maass differential operator

oo L (0, K
T omi\oz T -2

maps real analytic modular forms of weight k to real analytic modular forms of
weight k£ + 2. Define the composite operator

8 1= 8220081208 (8.1)

mapping real analytic modular forms of weight k to real analytic modular forms
of weight k + 21.
Let f, be the normalized newform of weight

kIl +1=(ki|+1,.... k] + 1)

inm,. Forl = (;,...,1,), let F)]( denote the automorphic form on GL,(Af)
corresponding to 8y, fy-

THEOREM 8.2. If x does not factor through the norm map Ay — A%, we have
04 (x§) = Dy - F,,  for some D; # 0.

X
Proof. First recall that by Theorem 6.15(a), the theta lift 6, (x&) is an
automorphic form in the automorphic induction 7, to GLy(Ap). If f is a
Hecke eigenform of weight |k| 4+ 1 4 2/ in m,, then it must satisfy that for all
r@) :=r6) - r@, with r(9;) € SO(2) and ky = (‘C‘ Z) € Ky := l_[v’(oo Ko
with det(ky) = 1, we have
Fr®)d@) " kod @) = [ [ %% (xersr) (@) f(g) forall g € GLy(Af).

j=1

8.2)
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Period identities of CM forms on quaternion algebras 67

By Casselman’s theorem [Ca73, Theorem 1], the dimension of automorphic
forms satisfying (8.2) must have dimension 1. Therefore to see that 6, (x&) is
a (possibly zero!) multiple of F', we need only see that it satisfies (8.2).

We first recall the definition of the theta lift 6, (x&) on GLy(Ap). If g €
GL,(Ap)T := {g € GLy(Ap) : det(g) € Nm(A})}, then for any 4 € A} such
that det(g) = Nm(h),

Oy (X5)(8) = / O (wy (hhi, 8)¢") - (x&)(hhi) dh,.
[E
We define 6, (x&) on
GLy(F) GLy(Ap)" = {g € GLy(Af) : det(g) € F* Nm(A})}

by
Oy (xE)(v8) = Oy (xE)(g), fory € GLy(F), g € GLy(Ap)™.

Note that GL,(F) GL,(Ar)* is an index-2 subgroup of GL,(Ar). We define
04 (x&) on GL,(AF) by extending by O outside GL,(F) GL,(Af). Define K, :=
[1, Ko, where Ky, C GL,(Op,) as defined in Section 7. Note that K, C
GL,(F) GL,(Ap)". By Lemmas 7.3, 7.7, and 7.10, for r () = r(6,) - - - 7 (6,) with
r(0;) € SO2) and kg = (“ %) € Ko NGLy(Ap)™,

oy (ho, r(0)d @) 'kod @))p) = [ [ €112 (x&) ™ (hho) (X €x/r) (@)},

j=1

where hy € A% is such that Nm(hy) = det(ky). This implies that for any g €
GL,(Ap)* and any h € A} with Nm(h) = det(g),

05 (x)(gr(0)d () 'kod (2))

=/ O (wy (hhiho, gr(©)d @)~ kod @))) - (x&) (hh1ho) dh,
(]

= 1_[/ @(ww(hhl, g)qﬁl’) . ot (Kj 114200
j=17IEY
- (x8) 7 (ho) - (xegsr)(a) - (x&)(hhiho) dhy

:1—[ei(lkj|+l+21j)6j(XEE/F)(a)‘/ O (wy (hhi, )¢)) - (x&)(hhy) dh,
[E"]

j=1
_ H€i<|kj|+1+21,>0, (x€p/r)(@) - By (xE)(8). 0
Jj=1
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C. Chan 68

In the next result, we give an exact formula (up to C') for the constant D in the
case that F' = Q. One can do this for the general case by comparing Theorem 8.1
to known formulas for the Petersson inner product of Hilbert modular forms, but
the formula for D, will be more complicated. In the following, we use [S76,
Equation (2.5)], [H81, Section 5] together with the factors at bad places as
determined in [Co18, Section 4.2].

Let g be a twist of f,, which is twist-minimal by x,. Let N, N,, be the levels
of f, g, and let N, , be the conductor of yx,. For every prime p, let p’ be the
exact power of p dividing N,, and p'* be the exact power of p dividing N, ,. We
denote by L(s, ad, f,) the adjoint L-function of f,. Define

1 if pt N,
(14+1/p)Ly(ad, f,1) ifptNyand p|N,
(1+1/p) if p|[ Ngand p || N,

=10 +1/pd—1/p»H~" if p|l Nyand p* | N,
1+1/p) ifro=r, >1land p™ || N,
(1+1/p)(1—1/p)~! ifrgzr)(g}landp’g+l | N,
1 ifrg >2andr > ry,.

Note that, comparing to [Co18, Section 4.2], the last case comes from the fact
that Ty = Ty ® det(eE/F).

THEOREM 8.3. Assume F = Q and let K, be any maximal compact subgroup of
GL,(Ag n) containing K =[], Ko ,(c,(7wy)) (Sections 2.2 and 7). Then

2

- e [[Cc@- o2

o Qi) (2i)

| Dy

(k] + 1
(Ko : K] (4 )+
FPSL@) s (T ke AR

In particular, |D;| ~ 7' and, up to an element of C', 04 (X&) is an algebraic
holomorphic Hecke eigenform of weight k + 1 and level c(x).

Proof. By Lemma 7.4, we have
Qi) (2i)

OO = G

: 5|lk|+1 (94)(’, (x8)).

It therefore suffices to calculate | Dy|? = (Og, (X&), O, (X)) /(Fy, Fy).
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Following [IP18+, Lemmas 6.1, 6.3], we have
T
(Fy, Fy) = @2m)- ¢~ - 27" - [Ko: K17 E[PSLz(Z) s NT - (fys o)
where (f,, f,) is normalized as in [S76, Equation (2.1)]: for any cusp form f of

weight « and level I, set

dxdy

o f) = F G+ )T+

vol(h/I") b/ I
By [S76, Equation (2.5)], [H81, Section 5], and [Co18, Section 4.2],

. |k|! O
(fir [x)=¢@2) - W . pr -L(1,ad, f,).
PIN
We have L(1,ad, f,) = L(1,%) - L(1,eg/r) = L(1,X) - pg. Therefore, by
Theorem 8.1,
- - [Ko : K] (47r) I+

IDol> = pg2 - [[Co- @ 2m) "2 < : : ,

o =pe] ]G TPSL@ : hvl kL1

Since E is CM by construction so that pz ~ 7 and since Co, ~ 7% /7*I*1, we see

D2 ~n2 7277w ' eQ. O

9. An example: the canonical Hecke character for Q(+/—7)

Let F = Q and let E = Q(+/—7). Then E has class number 1 and there is a
unique canonical character x.,, in the sense of Rohrlich [Ro80] (see also [Y95,
page 52]). Explicitly, x/.,, can be described as follows. First consider the character

<)
€: Op/(V-T) = Z)T7 - {£1).
Then e(—1) = —1, and hence the map on principal ideals
P(v=7) = {aOf : « € E* isrelatively prime to 7} - E*, «aOfr — e(0)a

is a well-defined homomorphism. Since E has class number 1, then P(/—7) =

I(+~/=7), and the above defines a Hecke character of E*. We define ycan := Xiy -

I - ||X; to be the normalized unitary Hecke character of E*. It is easy to see that

forn > 0:
(a) x&, has co-type (n,0) + (=n/2, —n/2) = (n/2, —n/2).
(b) x%, has conductor V=70 if n is odd and conductor O if n is even.
(c) Xcan|A; = EEg/F.
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C. Chan 70

9.1. Two quaternion algebras. We now compute the local epsilon factors
€,(BC(myz ) ® x4, At v = 00, this calculation depends on whether n + 1 > m

or n + 1 < m. At the local places, this can be calculated using [T83, Section 1].
The interesting finite place is v = 7.

(a) Momentarily, let v be a real place of a number field F, take f to be any
automorphic form of GL, of weight k at v, and let £2 be a Hecke character
of E such that £2,(z) = z'z”. Then

+1 itk <l =1,

@l ) o=l = {—1 ith>1—b

Since 7, has weight n + 1, this implies that

Goo(BC(jTX" ) ® X:;n) ’ wOO(_l) =

can

+1 ifn+1<m,
—1 ifn+1>m.
(b) Since X, factors through Nm for all v 7, the representation

Indwz * (Xcan,v) 1s decomposable. By [T83, Proposition 1.6], for any Hecke
character £2, we have

€,(BC(m,.,) ® 2) - w,(—1) = +1 forallv{7.

(c) First, observe that Resyy, Indxg (x) = x @ x~ for any character x of Wkg.
Since base change on the GL, side corresponds to restriction on the Galois
side, we have

€7(BC(m,,,) ® 2) = €7(Resyy, Ind)yf () ® 2) = €7(xcan$2) €7 (X5 2),

where the last equality holds because local e-factors change direct sums to
products. By [Y95, Lemma 3.2], we have

(X 2) = —()V—1 = e1(x5, Q).

Since Xcan|rx = €gsr, the automorphic representation 7w, has trivial
central character, and hence the above calculation shows €;(BC(rwr,,, ) ®
£2)w;(—1) = —1. By the above argument,

+1 if niseven,

BC(y) ® ) - wr(—1) =
BC0T)  Keaw) 1D =0 e odd.
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We can now discuss the possibilities for the quaternion algebra determined by
the pair of Hecke characters x., and x/» . First, observe that the central character
condition x x» eg,r = 1 on A* implies that n and m must have different parity.
We now have two cases:

(i) If n is odd, then €,(BC(mr,» ) ® x&4,) = —1 if and only if v = 7. This

implies that if L(BC(,y, ) ® X%, 5) # 0, then necessarily n + 1 > m so
that .. (BC(r,» ) ® x&,) = —1 and hence E”xé'a,uXé’én = {7, o0}.

(ii) If n is even, then €,(BC(r,, ) ® x[,) = +1 for all finite v. This implies
that if L(BC(r,z ) ® x4, %) # 0, then necessarily n + 1 < m so that
€00 (BC(myn ) ® xia,) = +1 and hence D = 9.

n ca
Hon > Xean

Summarizing, take n, m to have opposite parity. We have the following chart:

n+1>m n+1<m
€0 = —1 €0 = +1
n odd, m even n even, m odd
€ =+1 €7 = —1 €7 =+1 ©.1)
(definite, ramified at 7, oo) | (indefinite—in fact, split!)
=1 n even, m odd n odd, m even
€7 =+1 €7 =—1
Waldspurger’s formula is in the setting of ¢ = +1, and our Main Theorem

(Theorem 6.17) gives an identity between the two € = 41 boxes, taking B =
M,(F) and B’ = Bj7 ;. In Sections 7 and 8, we constructed a family of Schwartz
functions such that their theta lifts realize the newform and its images under
iterates of the Shimura—Maass operator. We recall this construction next.

9.2. Torus periods of a weight-(3+2/) CM form. Take the special case n =2
and let m = 3 4 2[, where [ > 0. As in Section 7.1, we take ¢, := ®v¢1',v, where

1 Fi(=1,3,4nz2)22e % if v | o0,

¢,(2) = .
" Loy, (z1) - Loy, (z2) if v 1 0.
If we set & = xcuns
Qr? 114 1 _
: = if v | oo,
Bt (1+2)! 20+2)(+ D2
Co=11 ifv£7,
-4 -7 =1 ifv—7
7 8 ’
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so that by Theorems 6.15(b) and 8.2, the theta lift 64 (x2,,&) is a Hecke eigenform
on GL,(Ag) in 7,2, - Furthermore, again by Theorem 8.1,

(O (Xean®)» Oy (X s»—( o )_1 ! L1 Xew)
¢ Xcan§ )» Vg Xcan - ﬁz 16-(U+2)-(U+1)- 2 22) .
And as before, by Theorem 6.16,

/ O Kean * §)(8) * Xemn' (8) dg = / Xen(8) - O (X352 - E-1)(g) dg,
[EX] [E*]

where by Theorem 6.15(b) the theta lift 094’5[,( x2+2 . £=1) is an automorphic form

. B’
m 7TX3+21 .

can

9.3. Nonvanishing torus periods. Recall that by Theorem 8.2, 0y (x35,£) is a
nonzero Hecke eigenform of weight 3 + 2/ in 7r,> . For a basis 1, 1, j, ij of M,(Q)
withi? =u = -7, j* = —1/7,

X . a —2b
E* — GL,(Q), a+b1|—><_bu/2 4 )

In particular, for any finite place p of Q, the induced embedding E; — GL»(Q,)
makes
GL,(Z,) if p #7,

Ky, = b
o {(“ d)eGLz(Z7):ce7Z7} ifp=7
Cc

an optimal compact open subgroup (in the sense of Gross [G88, Proposition 3.2])
with respect to x2'%, which is unramified at v 1 7 and has conductor 1 at v | 7.
By [GP91, Proposition 2.3], since x2, is unramified at every place p of Q, a
Hecke eigenform with respect to the above compact open subgroup of GL,(Ag)

is locally (up to a scalar) the Gross—Prasad test vector. By Waldspurger,

1
/ O (Ken) (@) - X (@) dg #0 = L (BC(nXgm> ® Xean 5) #0.
[EX]

Combining this with Theorems 6.17, 8.2, and 8.3, we obtain the following
corollary.

COROLLARY 9.1. Let B’ = By; ) denote the definite quaternion algebra over ()
ramified at exactly 7 and co. Define

o . 2 B .
chzan = 04 (Xcan)- fxgatz' = 9{;1/()(03;215’).
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Then, we have the following:

(@ 7! fx(lz) is an algebraic Hecke eigenform of weight 3 + 2l in 7, .

(b) fx%;*n” is an automorphic form in the Jacquet—Langlands transfer féw.

can

(c) There is an identity of torus periods
/ £ (@) X @) dg = / Xon(@) - [ R () dg,
[ XJ [ ><] an

nonzero if and only if the central value L(BC(m,: ) ® x2:¥,3) is
nonvanishing.

Note in particular that if L(BC(rr,2 ) ® x2+*) # 0, then the automorphic form

can
XB¢,/+2, on the definite quaternion algebra B’ is a test vector for the Waldspurger
torus period for the cuspidal representation f; o paired with x2 .

can
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