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COHOMOLOGICAL REPRESENTATIONS
OF PARAHORIC SUBGROUPS

CHARLOTTE CHAN AND ALEXANDER IVANOV

ABSTRACT. We give a geometric construction of representations of parahoric
subgroups P of a reductive group G over a local field which splits over an
unramified extension. These representations correspond to characters 6 of un-
ramified maximal tori and, when the torus is elliptic, are expected to give
rise to supercuspidal representations of G. We calculate the character of
these P-representations on a special class of regular semisimple elements of
G. Under a certain regularity condition on 6, we prove that the associated
P-representations are irreducible. This generalizes a construction of Lusztig
from the hyperspecial case to the setting of an arbitrary parahoric.

1. INTRODUCTION

Let k£ be a non-archimedean local field with finite residue field. Let G be a
reductive group over k, and let 7' C G be a maximal torus defined over k and split
over an unramified extension of k. Let P be a parahoric model of G, defined over
the integers Oy. Then P is attached to a point x in the Bruhat—Tits building %, of
the adjoint group of G over k, lying in the apartment of 7. We denote the schematic
closure of T in P again by T. We will construct and study a tower of varieties over
an algebraic closure of the residue field F, of £ whose cohomology realizes interesting
representations of P(Q}) parametrized by characters of T'(Oy). This construction
generalizes classical Deligne-Lusztig theory [DL76] (for reductive groups over finite
fields), as well as the work of Lusztig [Lus04] and Stasinski [Sta09] (for reductive
groups over henselian rings). Further, we give an explicit formula for the character
on certain very regular elements, generalizing a special case of the character formula
for representations of reductive groups over finite fields [DL76, Theorem 4.2].

More precisely, we work with a Moy—Prasad filtration quotient G = G, (r > 1)
of P, regarded as (the perfection of) a smooth affine group scheme of finite type
over F,. We normalize this quotients such that G; is canonically isomorphic to the
reductive quotient of the special fiber of P. As such, one has a Frobeniuso: G - G
and the corresponding Lang map G — G, g — g~ 'o(g). Choose a Borel subgroup
of G containing T (defined over some unramified extension of k) with unipotent
radical U. In G we have the subgroups T and U, corresponding to the closures
of T and U in P. Consider the subscheme Sty = Sy, C G defined as the
preimage of U under the Lang map. By construction, S7 ¢y has a natural action of
P(Oy) x T(Oy) given by left and right multiplication. It factors through an action
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of G(F,) x T(F,). For a smooth character 6: T(F,) — @Z (¢ # charF,), we define
R%)U to be the f-isotypic component of the alternating sum of the cohomology

groups of St ¢ with Qy-coefficients. This is a virtual P(O})-representation.

In [Lus04] 1.5] the notion of regularity of a character 6: T, (F,) — @Z is defined
for » > 2. We recall this notion (adapted to our situation) in Section 2.10] below.
Roughly speaking, a character is regular if it is “very non-trivial” on ker(T,(F,) —
T,_1(F,)). Our first main result is the following generalization of [Lus04| 2.4, 2.5].

Theorem 1.1. Fiz an v > 1 and let (T,U) and (T7,U") be two pairs as above,
such that x lies in the intersection of apartments of T and T'. Let §: T(F,) — @@X,

0': T'(Fy) — @Z be two characters and assume that at least one of 6,0 is reqular
if r > 2. Then

(RY 1, Ry y)ar,) = #{w € Wi(T,T)7: § 0 Ad(w) = 0},

where Wy (T, T') = T1(Fy)\{g € G1(F,): 9Ty = T} is the transporter from Ty to
T} in G1 (a homogeneous space under the Weyl group of T1 in G1; cf. Section [2.8]).
Consequently, if 0 reqular, then

(i) R%U 1s independent of the choice of U.
(ii) If additionally the stabilizer of 0 in Wy (T, T)? is trivial, then :I:R%)U is an
irreducible representation of G(F,) (and of P(Ok)).

The proof of Theorem [I.1], given in Section 4.2l below, mainly follows the original
method of Lusztig [Lus04], who treated the special case when P is reductive over
Oy.. The main idea in [Lus04] is as follows: Theorem[LIlreduces to the computation
of the T(F,) x T'(F,)-equivariant ¢-adic Euler characteristic of ¥ = G(F,)\St,v x
St/ . Then one partitions ¥ into locally closed T(F,) x T'(F,)-stable varieties in
a very subtle way, so that on each such piece, one can construct by hand an action
of a connected algebraic group which commutes with the action of T(F,) x T'(FF,).
The construction of this action is remarkably delicate, and the subtleties here are
responsible for the regularity assumption on the character 6.

Let us now describe the technical issue we must tackle in generalizing Lusztig’s
hyperspecial setting to the general setting. For each 1 < s < r — 1, we have the
unipotent group G2 = ker(G, — G;). Now, the above-mentioned locally closed
decomposition comes from a very particular filtration of G} by locally closed sub-
schemes (not subgroups) with subtle properties [Lus04, 1.7,1.8]. Its definition uses
that the successive quotients G5~! (1 < s < r) are abelian if P is reductive. How-
ever, in general, the quotient G3 need not be abelian (Remark [2.3). This forces
us to refine the filtration {G$}; of G} (Section [L.3]) by a filtration of each graded
object G5~! (for fixed s) by certain subgroups H(¢) (0 < e < 1). Roughly speaking,
H(e) is generated by the “G:~'-slices” of T(Oy) and of the root subgroups U, of
T in G for which the fractional part of the distance of x to the closest affine root
hyperplane with vector part « is < 1 — e. The graded pieces of this new filtration
are abelian (Lemmal4.4])) and moreover satisfy properties (Sections 4.4] [A.5]) similar
to those in [Lus04, 1.7]. This in turn allows us to define an associated stratifica-
tion of X for which we can construct an action of an algebraic group on each piece

(Section [4.6]).
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Our second result is the computation of traces of unramified very regular elements
of P(Oy) acting on R, ; (Definition5.1]). The proof is based on the Deligne-Lusztig
fixed point formula [DL76, Theorem 3.2] and adapts ideas of [DL76, Theorem 4.2].

Theorem 1.2. For any character 6: T(Oy) — @ZX and any unramified very regular
element g € P(Oy),

Tr(g, R7p) = Y. (BoAdw)(g).

weW(T,Z°(g))°

When G is any inner form of GL,, over k£ and T is an unramified maximal elliptic
torus, we prove in [CI20] that the Deligne-Lusztig-type set considered by Lusztig
in [Lus79] is a scheme and its cohomology realizes the compact inductions my to
G(k) of (an extension of) the P(Of)-representations R, ;;. Furthermore, we show—
crucially using specializations of both Theorems [L1] and [L2—that on the locus of
sufficiently generic characters, the correspondence 6 +— 7y is compatible with the
composition of the local Langlands and Jacquet—Langlands correspondences.

As such, we expect this work to be closely related to the problem of geometri-
cally constructing representations of p-adic groups in general. More specifically, we
expect that if T" is elliptic and 0: T'(k) — @Z is a sufficiently generic character, then
the compact induction to G (k) of (an extension of) the P(O)-representation RT U
is related to the supercuspidal representations constructed by Yu [YuOl]. Both the
irreducibility of and the character formula for R%U are crucial ingredients to un-
derstanding the corresponding G(k)-representation within the context of the local
Langlands correspondence.

Finally, we make note of the importance of studying these varieties in the present
setting of general parahoric subgroups P. Already in the setting of inner forms of
GL,, it is not enough to study RGT’U for reductive P; for example, when G is an
anisotropic modulo center inner form of GL,,, and T unramified elliptic, then the
apartment of T in ), consists of one point, x, and the corresponding parahoric
subgroup P is an Iwahori subgroup. This can occur even if G is split: if G = Sp,,
then there is a conjugacy class of maximal elliptic tori in G, such that the relevant
P is non-reductive, with the reductive quotient of the special fiber being isomorphic
to SLQ X SL2

2. PRELIMINARIES

2.1. Notation. We denote by k a non-archimedean local field with residue field
F, of prime characteristic p, and by k the completion of a maximal unramified
extension of k. We denote by O, pi (resp. O, p) the integers and the maximal
ideal of k (resp. l?:) The residue field of k is an algebraic closure F, of F,. We write
o for the Frobenius automorphism of k, which is the unique k-automorphism of ]:),
lifting the F,-automorphism = + 2% of F,. Finally, we denote by @ a uniformizer
of k (and hence of k) and by ord = ordy the valuation of k, normalized such that
ord(w) =1

If £ has positive characteristic, we let W denote the ring scheme over F, where
for any [F,-algebra A, W(A) = Afw]. If k has mixed characteristic, we let W denote
the k- ramlﬁed Witt ring scheme over F, so that W(F,) = Oy, and W(F,) = O. As
the Witt vectors are only well behaved on perfect F,-algebras, algebro-geometric
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considerations when k has mixed characteristic are taken up to perfection. We fix
the following convention.

Convention. If k has mixed characteristic, whenever we speak of a scheme over its
residue field F,, we mean a perfect scheme, that is a set-valued functor on perfect
F,-algebras.

For results on perfect schemes we refer to [Zhul7,[BS17]. Note that passing to
perfection does not affect the f-adic étale cohomology; thus for purposes of this
paper, we could in principle pass to perfection in all cases. However, in the equal
characteristic case working on non-perfect rings does not introduce complications,
and we prefer to work in this slightly greater generality.

Fix a prime ¢ # p and an algebraic closure Q, of Q. The field of coefficients of
all representations is assumed to be Q, and all cohomology groups throughout are
compactly supported f-adic étale cohomology groups.

2.2. Group-theoretic data. We let G be a connected reductive group over k,
such that the base change G, to k is split. Let T' be a k-rational, k-split maximal
torus in G. Let %} and %) denote the Bruhat-Tits building of the adjoint group

of G over k and over k, and let o7, ; C %, denote the apartment of T'. Note that

there is a natural action of o € Aut(k/k) on %y, and on . 1, and that By, = %ég>.

Let X*(T) and X, (T') denote the group of characters and cocharacters of T'. We
denote by (-, -): X*(T')x X, (T) — Z the natural Z-linear pairing between them. We
extend it to the uniquely determined R-linear pairing (-,-): X*(T)r X X«(T)r — R,
where we write Mr = M ®z R for a Z-module M.

Denote by ® the set of roots of T' in G and for a root a € ® let U, C G}, denote
the corresponding root subgroup. There is an action of (o) on ®. Fix a Chevalley
system uq: G, = U, for Gy, (cf. e.g. [BT84, 4.1.3]). To any root a € ® we can
attach the valuation ¢, : Ua(luc) — Z given by ¢q(uq(y)) = ord(y). The set of
valuations {¢q }aea defines a point xg in the apartment o7, ;. Moreover 27, Tk 1s an
affine space under X, (T)gr and the point xg+v € JZ%T i, for v E X (T)r corresponds
to the valuations {@, }aca of the root datum given by @, (u) = @q(u) + (@, v) (see
[BT72, 6.2)).

We let U, U~ be the unipotent radicals of two opposite k-rational Borel subgroups
of G}, containing 7T'.

2.3. Affine roots and filtration on the torus. We have the set ®.,4 of affine
roots of T in G It is the set of affine functions of szT i defined as

D5 ={x— ax—x¢)+m: a€ ®,meZ}

Denote the affine root (o, m): x — a(x — xo) + m and call « its vector part. We
have the affine root subgroups Ua m C Uy (k;) defined by

Ua,m = {U S Ua(k): u=1or (pa(u) > m}

They define a descending separated filtration of U, (u) There is a natural action of
the Frobenius o on the set of affine roots, determined by Ug(a m) = o( m). We
make it explicit:

Lemma 2.1. Let (a,m) € pg. Then o(a,m) = (o(a),m — (o, 0(X0) — Xo))-
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Proof. We have o(a,m) = (o(«),m’) for some m’ € Z. The evaluation of the
affine-linear form (o, m) on the apartment A, ; is o-linear, thus we have for all
x€App:

ym)(o(x)) = (o, 071 (%) = Xo) +m

= (o(@),x = %¢) +m — (o(a),0(x0) = Xo)-

On the other side, (o(a), m')(x) = (o(a),x — x¢) + m’, hence the lemma. O

ola,m)(x) = («

Let R =R U {r+: r € R} U{oc} denote the ordered monoid as in [BT72, 6.4.1].
Let T° C T'(k) be the maximal bounded subgroup. For r € Rzo ~ {00}, we have a
descending separated filtration of 70 given by

T ={teT°: ord(x(t)— 1) >r Vx € X*(T)}.

2.4. Parahoric subgroups, the Moy—Prasad filtration, and integral mod-
els. Fix a point x € bchjg. Following Bruhat and Tits [BT84, 5.2.6], there is a
parahoric group scheme Py over O attached to x, with generic fiber G, and with
connected special fiber. The group P = P, (O) is generated by T° and Tja,m
for all (a,m) € @,g such that (o, x — x¢) > —m (that is, (o,m)(x) > 0). The
schematic closure of T' in Py is the connected Néron model of T. We denote it
again by T. We have T(O0) = T°. (As G, is split, condition (T) of [Yul5, 8.1] is
satisfied. The claim about the closure of T in Py follows e.g. from [Yul5, Corollary
8.6(ii)]. Again, because Gy, is split, it also follows [BT84, 4.6.1] that the connected
Néron model of T is equal to the maximal subgroup scheme of finite type of the
Ift model of T. The O-points of the latter are equal to T O hence we indeed have
T(0) =T°.)

The Moy—Prasad filtration on Py is given by the series of normal subgroups
Pr C Py (r € R~ {oo}), generated by 77 and Uy, for all (a,m) € ®uq such
that (a,x — x¢) > r —m. By [Yul5, 8.6 Corollary], there is a unique smooth O-
model P! of G, such that PI(©) = P7. Moreover, part (ii) of the same corollary
describes the schematic closures of U,, T in Py, and in particular, we have

(2.1) PLNUa(k) = Usfr—(ax—xoyy and PLNT(k)=T".

Note that for » € R>(, we have Ij’j(""‘ = Use]R . Ps For further properties of the
Moy—Prasad filtration we refer to [MP94] §2. 6] and for further properties of the
smooth models P. we refer to [Yul5).

Assume now that x € #7.; N %;. Then all group schemes Py, Py descend to
smooth group schemes over Oy, again denoted by Py, PL (cf. [Yul5, §9.1]). In par-
ticular, all groups P[ (r > ()) are o-stable (this can also be deduced from Lemmal[2.1]
which shows that o maps U .[r—(a,x—x)] 1somorphically onto Ug(a) [r—(o(a)x—x0)])»
and Py (O) = P¢ and PL(O) = (Pr)°.

2.5. Moy—Prasad quotients. For a scheme X over Oy, (resp. over O), the functor

of positive loops LT X is the functor on F,-algebras (resp. F,-algebras) given by
LTX(R) = X(W(R)).

If X is affine and of finite type, then LTX is represented by an affine scheme (cf.

[PROS, §1.a] if char k& > 0 and [Zhul7l §1] if char k = 0; for the truncated versions
of LT, see [Gre61,[Gre63]).
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Let x € . ; N %, be as in Section 2.4 We have the infinite-dimensional
affine F,-group scheme Lt Py, and will now introduce convenient (perfectly) finitely
presented quotients of it. Let r € Z>;. We consider the fpqc quotient sheaf
G, := L+ P,/L+ P VT, By [CI20, Proposition 4.2(ii)] it is representable by (the
perfection of) a smooth affine group scheme over F, of finite type, which we again
denote by G,. From [Yul5, Theorem 8.8], along with the fact that LrPI T s
pro-unipotent, it follows by taking Galois cohomology,

G =G, (F,) = Po/PI ™V and  GI =G, (F,) = (P/PI V).

For 7 > s > 1 we have natural surjections of F,-groups LTPx — G, — Gs;.
We write G¢ = ker(G, — G,) and G2 := G5(F,). Moreover, we also have natural
surjections Go — Px ®p, F; — (Px ®o, IFq)er = (G, identifying Gy with the
reductive quotient of the special fiber of Px.

2.6. Subgroups of G,. Let H C G}, be a closed subgroup scheme. Let r € Z>;.
We will attach to H the subgroup H, C Grﬁq as follows. The schematic closure
Hy of H in Py o is flat (by [BT72, 1.2.6] as O-flat is equivalent to O-torsion free).
It follows that Hx is a closed subgroup scheme of Py o ([BI72, 1.2.7]). Apply
L} to the inclusion Hyx C Px o to obtain the subgroup scheme L) Hyx C L) Py 0.
The last inclusion is a closed immersion (e.g. by [Gre61, Corollary 2 on p. 639]).
We define the closed subgroup scheme H, C Gr,Fq as the image of L H, under
L}Pyo — G, 5, We write H} := ker(H, — Hy) and H* :=H} \ Hs+L.

Suppose now additionally that Hy is smooth. Then L;” Hy is reduced (one could
e.g. use [Gre63, Corollary 2 on p. 264]), and hence H, is too. If H is already
defined over the finite subextension of k /k of degree d, then Hy is defined over the
integers of this subextension. This implies that H,.(F,) is stable under the action
of 0. Hence H, is defined over F 4 (here we use that H, is (the perfection of) a
reduced separated scheme of finite type over F,).

Using the procedure described above we obtain the closed F,-subgroup T, C
G, attached to 7' C G. Analogously, we have the subgroups U,,U, C Gn]b—‘q
corresponding to U, U~ C Gy and for any root o € ® the subgroup U, , C Gr,Fq
corresponding to U,. Note that all these are reduced connected closed subgroups
of GT,FQ~ Moreover, Uy, is defined over F s where d € Z>1 is the smallest positive
integer such that 0%(a) = a in ® (indeed the group U, x is smooth by [Yul5, 8.3
Theorem (ii)]), and a similar statement holds for U,., U, .

For any reduced Fq—subscheme X, C Grfq’ we define X, := X, (Fq) C GT(FQ) =
G,. Thus for example we write (?g’,« = UZ’T(FQ) fora e and 1 <a <r—-1
Following Lusztig, we denote by T the groups T~ 1. For a € ®, let T C Ty C Gy,
be the unique 1-dimensional torus contained in the subgroup of G generated by
U, and U_,; let T¢ be the corresponding subgroup scheme of Gr,Fq and write

T = ’H‘,‘?‘*“l.
Lemma 2.2. Letr € Z>1 and 1 <a <r—1.

(i) The group G, is generated by Ty and all Uy, (a € ®).
(i) The group G*t' is generated by T and all Ug:l (a € ®)
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Proof. Both cases follow from [Yulb, Theorem 8.3] applied to the smooth models
Px and P2T of G respectively (note that with notations as in loc. cit., the group
G (k)x,s is by definition the one generated by all U, (k)x, ¢(a))- O

Remark 2.3. Let U’ be the unipotent radical of some other Borel subgroup of
Gy containing T'. Although U and U’ are conjugate by an element of G(luc), the
groups U, (F,) and U/ (F,) need not be isomorphic. For example, let G be the
anisotropic modulo center inner form of GLj (it splits over k and its k-points
are isomorphic to the units of a division algebra over k). Let x be the unique

point in %. Then G; = Ty is a torus and (after an appropriate choice of xg)

— W’2(Fq)>< Fq Fq
one has Gq(F,) = wof, WyF,)* F, , with the multiplication induced by
wfF, wlf, Wy (Fy)*

identifying F, with Wy (F,), @wF, with the ideal wW(F,) C Wx(F,), and noting
that wWy(F,) is naturally a W, (F,)-module. Now, let U and U’ be the group of
upper- and lower-triangular unipotent matrices in G. Then Uy = U} is non-abelian,
whereas Uy = Uj" is abelian.

2.7. The groups U,,,. We now give explicit formulas for U, , C G,.
Definition 2.4. Let x € &/, ;. We call a root o € ®

reductive if (a,x —x¢) € Z
non-reductive otherwise.
For any a € ®, we may uniquely write (o, x — Xg) = —mq + €4 with m, € Z and
0 <e, < 1. We have m,, = —|{a,x — Xq) |.

Note that a € ® is reductive if and only if U, 1 # 1.

Lemma 2.5. Let x € o/ and let r € Z>1. Let o € ®. We have

0 if a is reductive
Mo +M_q = .
1 otherwise.

Moreover, the natural map Py — G,.(F,) induces

Uayma /Uayma+r if a reductive,

Uq,r(Fy) = { .

Ua,me /Uama+r—1  otherwise.

Thus for a € Z, r > a > 1, the same map induces

= [u]a m a Uoc Ma+T ) ducti ,
e, (F,) = | 0 uta/ mat if re.uc ive
Ua,mo+a—1/Ua,mgy+r—1  Otherwise.
Finally, we have T, (F,) = TO/T7 and T = T/T7.
Proof. Noting that [—s] = —|s| for s € R, the lemma follows immediately from
([2.1) and the definitions of Uy, Ug, . and G, O

We have the following elementary lemma will be useful later.

Lemma 2.6. Let o, 3 € ® and assume that p,q € Z>1, such that pa+ g € P.
Then pmq + gmg — Mpatq8 = P€a + G€3 — Epatqp = |PEa + qep]. In particular,
pMa + qmpg — Mpayqp > 0.
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Proof. The first equality is immediate. In particular, pe, 4+ geg — €patqs is an
integer. This, along with the fact that 0 < e,0448 < 1 by definition, implies the
second equality. (Il

2.8. Weyl groups and the Bruhat decomposition. We have the group
Wi(T) == (N (T)(k) N PY)/T°
(cf. [HRO8| Proposition 8]), and it coincides with the Weyl group W (T, G1) of the

torus T in the special fiber G; of Py ([HRO8|, Proposition 12]). It follows that both
natural maps in the composition

Wx(T) — Ne, (Tr)(Fq)/Tr(Fq) — Ne, (T1)(Fy) /T1(Fy)

are isomorphisms. Here N¢(H) denotes the scheme-theoretic normalizer of the sub-
group H of a group G (note that it might be non-reduced, but we have N¢ (H) (F,) =
Ng(H)rea(Fy) = {g € G(F,): gHg™' = H}). We also note that Wy (T') coincides
with the subgroup of the Weyl group W = W(T,G) of T in G generated by the
vector parts of all affine roots i € ®,q satisfying ¢(x) = 0 (cf. [Tit79, 1.9, 3.5.1]).
It depends only on the facet of %}, in which x lies, not on x itself.

We will need a second k-rational, lvc—split maximal torus 7’ of G whose apartment
Ay i in By, passes through the point x. Let Na(T, T')={g€ G: gTg~t =T} be
the transporter from T to 7" and analogously, let Ng, (T,,T..) be the transporter
from T, to T... (Again, these need not be reduced, but we are interested in [F,-points
only.) We then have the principal homogeneous space

Wx(T, TI) = TO\(NG(T> T/)(]%) n p)(c)) = Tr(Fq)\NGT(Tra T;)(Fq)‘
under Wy (T). Indeed, this follows as T and T’ are conjugate by an element of
P, (0).
Let r > 1. For each w € Wy (T, T") choose a representative W € Ng, (T, T.)(F,),
and denote its image in G; again by w. We have the Bruhat decomposition G; =
|_|w€Wx(T’T,) G1, of the reductive quotient, where Gq,, = U;wT;U;. For r > 1,

define G,.,, to be the pullback of G ,, along the natural projection G, — G;. Thus
G, = LlweWx(T,T') G- Let K, := U, NwU ™! and KL := K, NGL.

Lemma 2.7. Forr > 1, we have G, ., = U, KT, U,.

Proof. We compute
Gy = U T, GLU, = U, T, ((G1 NT,)(GrNU)(GENU,)) UL

= U T, (G NU)U, = U, (w(G} NU )™ t) wT, U,
=U, (U; nw(GrNU )™ !) wT.U. = U KT, U,
where the second equality follows from [BT72, 6.4.48]. O

2.9. Commutation relations. For two subgroups H;, Hs of an abstract group H,
we denote by [Hj, Ha] their commutator. For z,y € H, we write [x,y] := 2~ 'y~ lay.
For a € ®, let T* C T denote the image of the coroot corresponding to a. It is

a one-dimensional subtorus. We also write 7" = T (k) N T".

Lemma 2.8.
(i) Let o € ® and r,m € R. Then [TT, (u]a,m] C (?a’err.
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(ii)) If a,8 € @, a« # —f, and my,my € Z, then Wayml,(j'ﬁme] is contained
in the group generated by Upatqppm,tqms for all p,q € Zsy, such that
pa+qB € .

(iii) Let v € ® and my, ma € Z. Then [Ugm,, U—qmy] C T®™+™2 For any el-
ement x € Tjal,m? ~ ﬁ,a7m2+1, the map & — [£, x] induces an isomorphism
(of abelian groups)

/\w: Ua,ml/Ua7m1+1 :> Ta1m1+m2/Ta7ml+m2+1.

Proof. (ii) follows from [BT72, (6.2.1)]. (i), (iii): By considering a morphism from
SL3 to Gy, whose image is generated by U, (as in [BT72, (6.2.3) b)]), and pulling
back the valuation of the root datum along this morphism, it suffices to prove the
same statement for SLy (k). This is an immediate computation. O

For two smooth (connected) closed subgroups Hj, Hs of a connected linear al-
gebraic group G over a field, we denote by [Hj, Hs] their commutator “in the sense
of group varieties” as in [Bor91l §2.3] (it would be more precise to consider the
scheme-theoretic commutator, but for our purposes this suffices).

Lemma 2.9. Letr>2and1<a<r-—1. Let v € P.
(a) If a is non-reductive, then [G$+1,Ug7—ra} =1.
(b) If a is reductive, then Gy, U; ] = 1.

Proof. Tt suffices to prove the claims on Fq—points.
(a): By Lemma [2.2]it suffices to show to show that [T%t1, ﬁg;“] = 1 and that
[(jgjl, ﬁg;“} =1 (V8 € ®) in G,. By Lemmal[Z5 7%t is the image in G, of T*+1,

(u];:“ is the image of (u]a)maﬂ_a_l, and similar claims hold for all 5 € ®. But
[T“‘H, Tja,ma”,a,l] C ﬁa7r+ma by Lemmal[2.8(i), and (V]mHma maps to 1 in G,, so

[To+1, l?];;a] =1 follows. Now assume that 8 = —a. Then —« is non-reductive as
« is, and by Lemma [2.8](iii), [U,a’mﬁﬁm ﬁa,maﬂ,a,l] C Tartmatm_a—l _ Jar

maps to 1 in G,. This shows [U%F}

,w,fjg;a] = 1. Thus we can assume f € O,
B # —a. We have two cases.

Case (B is reductive). Then by Lemma [2.5] Tj’gil is the image in G, of (751m5+a+1
and by Lemma [2.§](ii) we have

[Uﬁ,m5+a+1; Ua,ma+r7a71] c H Upa+q[3,p(ma+r—a—1)+q(m,3+a+1)-
P,qE€EL>1
pa+qBeP
To ensure that this product maps to 1 in G, it suffices to show that for all p, ¢ € VA
with pa + ¢8 € ®, one has p(mo +r —a—1) +qg(mg +a+1) > mpatqs + 7, OF
equivalently,

PMg + qmg — Mpatgs + (P —1)(r—a—1)+(¢—1)(a+1) > 0.
But this follows from Lemma [2.6]

Case (8 is non-reductive). By Lemma [2.5] Tjgtl is the image in G, of (jﬁymﬁﬂl and
by Lemma [2.8[(ii) we have

[UB,mBJraaUa,maHfa*l]g H Upoz+<1/3,p(ma+r—a—1)+q(mﬁ+a)'

P,qE€EL>1
pa+qBeP
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To show that the image of this product vanishes in G,., we have to show that each
single term does. Assume that pa + g8 occurs in the product and is non-reductive.
Then vanishing of Upa1¢8,p(ma+r—a—1)+q(ms+a) i1 Gr amounts to the inequality

Pma +qmg = Mpatqp + (p—1)(r—a—1)+(¢—1)a =0,
which holds true by Lemma 2.6 ASS}II’Ile finally that pa + ¢f8 occurs in the product
and is reductive. Then vanishing of U,a 448, p(ma+r—a—1)+q(ms+a) i G amounts to
the inequality

PMey +qmg — Mpatgs + 0 —1)(r—a—1)+(¢—1)a > 1,
or equivalently,

lpea +qep) +(p—1)(r—a—1)+ (¢ —1)a>1,

i.e. it suffices to show that pe, + geg > 1. But as pa + ¢f is reductive,
(2.2) Z 3 (pa+q¢B,x—x¢) = p{o, x—X0)+q(B,X—X0) = —pMma—gma+pea+¢es.

As —pm, — gmg € Z, we deduce pey + geg € Z. On the other side 4,65 > 0 (as
a, f non-reductive), and hence pe, + geg > 0. Thus, pe, + geg > 1. This finishes
the proof of (a).

(b): We have [T“, (j'ayma”,a] C ﬁa,ma+r by Lemma [2.8[i), and the latter group
maps to 1 in G,.. Thus [T%, Ug;“] = 1. Further, Lemma [2.8]iii) shows

[Ufa,m_,,nLaa Uoz,maJrrfa] g Ta,maer,aJrr = Ta,'r7

V)

which maps to 1 in G,.. Thus [U*

@ s (?g;a] = 1. Finally, let 8 € ®, 8 # —a. Again
we have two cases.

Case (B is reductive). By Lemma [2.8[ii),

[Us,ms+as Ua,ma+r—a) C H Upa+qB.p(ma-+r—a)+q(ms+a)
P,qEL>1
pa+qBed

Now, by Lemma [2.6] we have
p(ma +1—a)+q(ms + a) > mpatqp + 7.
So, regardless of whether
pa+qp
is reductive or not, it follows that Upa+qﬁ,p(ma+r—a)+q(m5+a) maps to 1 in ér, and
hence [lu]g)r, [u]g_ra] =1
Case (B is non-reductive). By Lemma [2.8]ii),
[Uﬁ,m5+a—17 Ua,ma+r—a] c H Upa-i—qﬁ,p(ma+7‘—a)+q(mg+a—1)a
P,qEL>1
pa+qBeEP

and the proof can be finished exactly as in the “8 mon-reductive”-case of part
(a). O
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2.10. Regularity of characters. Recall the notation 7 from Section [2.61 Con-
sider the norm map N?": T(F,)°" =T (F,)” =T (F,) given by t + to(t)--- o™ (t).
Let r € Z>1 be fixed. Following Lusztig [Lus04| 1.5], we say a character x: T (F,) —
@Z is regular if for any o € ® and any m > 1 such that c™(a)) = «, the restriction
of x o N to T*(F,)°" is non-trivial. A character y of T is called regular if its
restriction X|T(1Fq) is regular.

Let 0: T(k) — @Z be a character of level r — 1; that is, 6 is trivial on 7=+
T(k) but nontrivial on T=2+, Tts restriction to 7° N T'(k) can be viewed as a
character x of 79 = (T°/T=11)7. We say 0 is regular if x is.

Remark 2.10. When G is an inner form of GL,(K) and T is a maximal nonsplit
unramified torus, then T'(k) = L*, where L is the degree-n unramified extension of

k. If6: L* — Q, is a smooth character trivial on (77)° = U] =14w"Op, then 0
being regular is the same as being primitive in the sense of Boyarchenko—Weinstein
[BWI16, Section 7.1]. This is closely related to 6 being minimal admissible in the
sense of Bushnell-Henniart [BHO5, Section 1.1]. We refer to [CI20, Remark 12.1]
for a more precise comparison.

3. REPRESENTATIONS OF PARAHORIC SUBGROUPS OF G(k)

We use notation from Section Rl We fix a point x € %y, an integer r > 1,
a maximal torus T of G defined over k, split over k, and such that x € fsszjC.
Further, we fix the unipotent radicals U, U™ of opposite Borels containing T' in G
By construction from Section[2.6] this gives the groups G, T, U,, U, over F, resp.
F,.
3.1. The schemes S7;. Let d be the smallest positive integer such that o?(U) =
U. To this data, we attach the F a-subscheme of G,

Sxrvr i ={r€G,: 27 o(x) €U, }.
To match the notation of [Lus04], we write St for Sk r.u,r-

Lemma 3.1. Sy is separated, and (the perfection of a) smooth scheme of finite
type over Fa, which is of dimension (r — 1)#®T + #®T4 where ®* and &4
are the roots and reductive roots of T in U.

Proof. Indeed, St is the pullback of U, under the finite étale Lang map G, —

G, z = 2~ 'o(x), and U, is isomorphic to (the perfection of) the affine space of

dimension (r — 1)#®+ 4 #pHred, O
The finite group G x T acts on St by (g,t): x — gat.

Remark 3.2. Sty admits also a natural (free) action of U, N o~1(U,) by right
multiplication. If » = 1, the quotient of Sty by this action is (Fq—isomorphic to) a
classical Deligne-Lusztig variety for the reductive Fg-group Gj.

Lemma 3.3. Let (T,U), (T',U’) be two pairs as above (so that, in particular,
X € Ny, ). Then

GI\(Stu % Sro) 32, (9,9) = (97 0(9), 9 a(d). 971,

is a T7 x T)7 -equivariant isomorphism, where G2 acts diagonally on Sty X St+ .
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By functoriality of cohomology, the va'jf X T,ﬁ’ -action on Sp y induces for each ¢ € Z
a G7 x T7-action on H!(Sp,7,Q,). For a character 6: T7 — Q,, let Hi(St1,Qp)e
denote the #-isotypic component. It is stable under the action of G¢.

Definition 3.4. We define the virtual (V}'Z—representation with Q,-coefficients

Rf{,T,U,r = Z(—l)iHé(ST,U,@z)e-
i€
By pullback, we can also consider Ri,T’ v, & virtual representation of the parahoric

subgroup PZ of G(k). If x is clear from the context, we write R%U’T for Ri’T’U’T.
Moreover, by Theorem [L.I[i), R%U_r does not depend on the choice of U, if 6 is
regular. In this case we denote R%U’T by RGT’,,. For the dependence on r see Section

3.2
Recall the group Ng, (T,,T.) from Section 2.8] Now we generalize [Lus04] 2.2].

Proposition 3.5. Assume that r > 2. Let (T,U), (T',U’) be two pairs as above.
Furthermore, let 0: T2 — Q, , ¢/': T/ — Q, be two characters.

(i) Let i,i" € Z. Assume that an irreducible é?-representation appears in the
dual space (H:(St,u,Qp)g-1)" of H:(Stu,Qp)e and in H: (S0, Qp)er
Then there exists an integer n > 1 and a g € Ng, (T, T,)(Fgn) such that
the adjoint action of g carries 8 o Ng" T, 0 ¢ o N"

o

TI(Fy)e"

(ii) Assume that an irreducible G7 -representation occurs in R9T7U7r and R0T1/7U/7r.
Then there exist somen > 1 and g € Ng, (T}, T,)(Fyn) such that the adjoint
action of g carries 6 o Nf,’n|7—(@q)an to§ o N" 7@,y

Proof. The proof (using Lemma [3.3] and Lemma [4.1] below) is literally the same as
the proof of [Lus04] Proposition 2.2]. We omit the details. O

3.2. Change of level. One could hope that if 6 is a character of T(Oy) = (1°)°
which is trivial on (77)7, then the representations R%U)T and R%)U’S for all s > r
coincide. In [CI20, Proposition 7.6], it is shown that this holds when G is an inner
form of GL,, (k) and T is an elliptic torus. We will show in subsequent work that for
general G which split over k, this is true when T is elliptic. However this fails for
general T'. In some sense, the more T splits, the bigger is the discrepancy between
R%) v, and R9T7U7T 41- We will explain the failure in an example.

Assume that G is quasi-split over k£ and let 7' C G be a maximal k-rational
torus, which contains a k-split maximal torus of G. Under these assumptions there
is a k-rational Borel subgroup of G containing 7. Let U be its unipotent radical.
There is a hyperspecial vertex x = x( contained in WT, NPy Let r > 1, and let 6

be a character of (7°)?, which factors through the character (again denoted ) of
T7. For each s > r,

Sx,T,U,s/Us = (GS/US)U = GZ/U;‘

is a discrete point set. For a surjection of groups H — K, let Infg denote the
inflation functor from virtual K-representations to virtual H-representations given
by pullback. Since Sk ru,s and Sk 1.u,s/U, have the same cohomology groups up
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to an even degree shift, we then have
0 G7 1 eB?
Ry rus = Indgg InfJéeg 0,

Brgne

G? 5
v By

<o Inf
BIGy?

0

)

G7 Gg 1 .G7
Inf;: Ry 7y, = Inf; Ind 7 6 = Ind

where the last formula follows from a general commutativity fact for inflation and
induction (Ind$ Infg%/N x = Inf§ /N Indg/NA;N x for an abstract group G, a sub-
group H C G, a normal subgroup N C G, and a representation x of HN/N). Thus

9 . G? po
Ry 7.v.s 18 bigger than Inféd Ry v

4. THE SCHEME X
Let the notation be as in the beginning of Section[3l Moreover, let T" be another

torus such that x € @/ ; N/, ., and let U’,U"~ be the unipotent radicals of a pair

of opposite Borels containing 7”. Let T/, U,, U\~ be the corresponding subgroups
of G,.

4.1. Definition of ¥, ¥,,. Attached to (T,U), (T",U"), we consider the following
locally closed reduced subscheme of o(U,) x o(U.) x G, whose F,-points are given
by

»(F,) = {(m,x’,y) eo(U,) x o(U) x Gy: zo(y) = ym’}.

Recalling the Bruhat decomposition discussed in Section 2.8] the scheme ¥ decom-
poses into a disjoint union of locally closed subsets ¥ = HweWx(T ) 3w, where

Y. is the reduced subscheme of ¥ with Fq—points
Sw(Fq) = {(z,2",y) € (Fy): y € Gr0y(Fy) } .
The group T,ﬁ’ X T,ﬁ” acts on X and each ¥, by
(t,t): (z,2',y) — (twt™ "ttt ™).
The following lemma is completely analogous to [Lus04, Lemma 1.4].
Lemma 4.1. Letr > 2 and let 6: T° — Q, , 0': T/ — Q, be characters such that

HI(X)p-19 # 0 for some j € Z. Then there exist n > 1 and g € Ng, (T%, T,)°"
such that Ad(g) carries 0|7« o NI to 0|70 o NI

Proof. The proof of [Lus04] applies. The only point where one must be careful is
the claim that 7 and 7’ centralize G} (this is used to extend the action of 7 (F,) x
T'(F,) on a covering of ¥, to an action of a connected group). Passing to F,-
points, this is the claim that the subgroups 7" =2+ /T(r=D+ — 7 =1) /(r=1+ apq
Tr=2+ =D+ — =1 )=+ centralize POT/PY YT, By [MP94, §2.6,
end of p.396], we have [P, P,(f_l)] C P YT which verifies the claim. O

4.2. Euler characteristic of . Fix some w € Wy (T,T"). Consider the locally
closed subscheme %/, of o(U,.) x o(U,) x U, x U\ x (KL \ {1}) x T/, determined by

S (Fy) = {(z, 2 u, o, 2,7') € o(Uy) x o(UL) x Upx UL x (K}~ {1}) x 1!

zo(uzwt'u') = uzir'v'z'},
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and define an action of 77 x T/° on it by
(4.1)
(t,t): (z, 2’ u, ', 2, 7') e (bt 2ttt Y et T .

Generalizing [Lus04] 1.9(c)], we will show the following proposition, which is the
main technical result of Section [l

Proposition 4.2. Let 0 and 6’ be characters ofT,? and TT"T respectively, and assume
that 0 or 0" is reqular. For each w € Wy (T, T"), we have

(4.2) > (=1)' dim HL(X,,Q)g-1,6 = 0.
i€l
We prove Proposition [4.2] in Section [4.6] after the necessary preparations. As a
corollary to Proposition 1.2} we deduce the following analogue of [Lus04, Lemma
1.9] and use it to prove Theorem [L.1]

Corollary 4.3. With assumptions as in Proposition [4.2], we have

> dim HA(S, Q-1 = #{w € W (T, T')7: 60 Ad(1b) = 6},

icZ
Proof. The proof goes along the lines of the proof of [Lus04, 1.9] (all arguments
except for the proof of Proposition 4.2] are literally the same). O

Proof of Theorem [L1l The case r = 1 is equivalent to the classical Deligne-Lusztig
orthogonality relations [DL76, Theorem 6.8] for the reductive group G; over F,.
Suppose now that » > 2. For the first statement of Theorem [LI] observe that
a standard computation using Lemma [3.3] and the Kiinneth formula shows that
(R%U, RGT',,UJ = ez dim H!(2,Qy)p-1,6. Now apply Corollary [£.3] Now state-
ments (i) and (ii) follow from the already proven part as in [Lus04] 2.4]. O

4.3. Filtration of G%,,. The main difference between the present article and
[Lus04] is that if Py is not reductive (i.e. if x is not a hyperspecial point), then
G3 may not be abelian. This is significant because Lusztig’s construction of a
stratification of iw and a corresponding action of a connected algebraic group
[Lus04, 1.7,1.8] depend on the abelianness of G¢, ;. To deal with this problem, we
need a refinement of the filtration of G! by its subgroups G for 1 < a < r—1. For
a > 1, we define a filtration of GZ ; as follows: let

H(1) := subgroup of Gg; generated Ty, and U, ,,, for all reductive a € @,
and for all 0 < e < 1, let

H(e) := subgroup of Gy, generated by H(1) and all U, ,,, for a € @,
satisfying e, > €.

Note that T¢,, € H(1) € H(¢') C H(e) C Gt for all 1 > &’ > & > 0. Moreover,
there are only finitely many values of € (“jumps”) satisfying H(e) 2 U, .. H(¢').
We denote these jumps by 1 =: 441 > e > -+ > ¢e; > 0 for some s > 0 (thus 1 is
a jump by definition). The jumps are independent of a. We have H(e1) = G4 ;.
For a <r —1, let p: G - G%,, be the natural projection, and for s +1 > i > 1,
put

Gyt = p~H(H(si))-
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For convenience, we put G%**2 := G¢*1. This defines a refinement {G'}, _1>4>1
s42>i>1
of the filtration {G%},_1>4>1 of G!, decreasing with respect to the lexicogr;rpﬁigal
ordering on pairs (a,4). For s+1 > i > 1, let ®; be the set of roots “appearing” in
H(ei)/H(giy1):
o, {{aefb:aa—()} ifi=s+1,
{aed:e,=¢;} ifs>i>1.

Lemma 4.4. Letr>2andr—1>a> 1.

(i) Leta >2. Then G2/GT! = G2, is abelian, and in particular, for s+1 >
i>1, G/G¥*1 s abelian.
(ii) Leta =1 and s+ 1 >1i > 1. Then G* is normal in G and the quotient
GLi/GL*Y s abelian.
Proof. Tt suffices to prove the assertions on F,-points. To show (i), notice that
if @ > 2, then [péa71)+,15£a71)+] - pz(a71)+ - P,?"’, so it follows that égH =
]3,Ea_1)+/]5,’j+ is abelian. To establish (ii), it is enough to show that (with a = 1)
for any s+1 > > 1, H(g;) is normal in G} and that H(e;)/H(g;11) is abelian. We
spend the rest of the proof establishing these two claims. Recall that for s +1 >
i >1, H(e;) is generated by T} and all U}, , with o € |_|S'Irl
We start with ¢ = s+1, i.e. the case H(es41) = H(1). By Lemmalm, T4, ﬁéQ] =
1. Let o € ®441 (thus « is reductive) and let § € ® be any non-reductive root.
Then [[7;72, [7612] is the image in G} of

(4.3) Uaimet1:Usms) €[] UpataBptmastyrame-
P,q€EZL>1
pa+qBed

Using Lemma [2.6] along with p > 1, we see that p(m, + 1) + gmg > mpares + 1.
Thus the contribution of pa+ ¢S to the commutator lies in ﬁpa+qﬁ)mpa+q5+1. From
this we deduce [U} Q,Uég] C H(1). Thus if x € Uj , for any 8 € ®, and y € U}, ,,
then zyx~! = [z~! y !y € H(1), which shows that H(1) is normal in G. A
computation analogous to (£3) for o, 8 € ®* both reductive, shows immediately
that [U}, 5, Ug 5] = 1 and [T5,Uj 5] = 1, so H(1) is abelian.

Next, pick some s >4 > 1. We show that H(e;) is normal in G3. Since we have
already established that H (g4, 1) is normal in G3, it suffices to check as above that
for all (non-reductive) oo € ® with €, > ¢; and all non-reductive 8 € ®, we have
[]Uoc 27U%3,2] - H(el) NOW [Ua
[ﬁaﬂna’Uﬁva] c H ﬁpaJrqﬁ-,pmaJrqma'

P,qE€EL>1
pa+qBeP

9, Uéyz] is the image in G} of

Now, if epatqp > €i, then the contribution of pa+¢/S to the commutator is contained

in ]Upa+qﬁ 5 € H(g;). If pa+¢p is reductive, the same computation as in (2.2) shows

that Upeqs. pmatams C Upartqs, Mpates UplaJrqB_Q. It remains to handle the case
that pa + ¢f is non-reductive with €,0448 < €;. If peq + geg < 1, then by Lemma
2.6 peq +qe8 —Epatqp = [Pea+qep] =0, 1€. & > epatqp = PEa+qep > pe;, which
is a contradiction. Thus we must have pe, +agp 2 1, hence pmq+gmg —mpatqp =
|pea + qep| > 1. Thus Upas s, pmatams < Upartqs. Mpatqs+1, Whose image in G}
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vanishes. We may finally conclude that [U} 2,Up o] € H(ei), which finishes the

proof of normality of H(g;) in G3.
For o and 3 non-reductive with e, = g = €;, a similar computation shows that
[Uh.2,Up o] © H(eiy1). Thus H(e;)/H(eiy1) is abelian. O

4.4. Pairings induced by the commutator. Let N, N~ be the unipotent rad-
icals of any two opposite Borel subgroups of G which contain 7" and are defined
over k. (We will specify N to suit our needs in Section L6l) For r —1 > a > 1,
let N,, N7 and N¢, N7* be the corresponding subgroups of G, and G?. Let
ot = {a € ©: Uy, C N} and & = &\ 0" = {a € ®: U,, C N }. For
s+1>i>1,set & =&, NdT and ; = &, N &, and let N} = GL N N,. We
study some pairings induced by the commutator map. Note that the targets of the
maps in Lemma [4.5] are abelian by Lemma 4.4

Lemma 4.5. Letr > 2 andr —1>a>1. Let « € ® be a non-reductive root.
(i) Let a > 2. The commutator map induces a bilinear pairing of abelian
groups,
UL /UG < NY/NPT = GI7Y, o (€,2) = [6, ).

(ii) Leta=1and s+1>1i>1. Assume thate_, =¢; (thuseq =1—¢;). We
have U1, N3] € G bt and UL, Nt = 1. The commutator map
induces a bilinear pairing of abelian groups,

Unr X NN = G0t (6,3) = (€, 7).
Proof.
(i): By Lemma R.9] applied three times, the commutator map U, % x N} — G,
induces the claimed pairing. It is linear in Z: if z1, 29 € Nf}, then

(€, w1ms] = €y tay mwy = € T g Hmamy = €T LS o]y = (€ @][€, wa),

where the second equality follows from Lemma [2.9land N2 /N2*! being abelian, and
the fourth follows from Lemma [2.9] as [€,z5] € G7~1, the assumption a > 2, and
the subsequent fact that N7, is generated by root subgroups contained in it. The
linearity in € is shown similarly.

(ii): We work on F,-points. To show the first claim, we observe that Ua ;. com-
mutes with N? by Lemma 2.9 As NLT! is generated by N2 along with U%ﬂr
for all B which are either reductive or satisfy e > ¢;, we have to show that
(U}, Up,] € Gy hs*! for all such 5. We have two cases:

o,T )

Case (B is non-reductive). We have to show that [Ug . 1r 2, (?Bmﬁ} maps to
CVY”"_LSH inside G,.. Using Lemma[2.8[(ii), it is enough to show that for all p, ¢ € Z>4
such that pa + g8 € D, pa+q5 p(ma+r—2)+qms Maps to 1 in G, if pa + ¢ is non-
reductive and maps to Ur- a+q6 , if pa+qp is reductive. In both cases, this amounts
to the claim that

p(ma +7—=2) +qmg > mpatqp +1 — 1,

which in turn by Lemma [2.6] is equivalent to

pea +qepl + (0 - 1(r—2) > 1,

which is true as eg > ¢, =e_o =1 — €,.
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Case (8 is reductive). This case is shown similarly (in fact, slightly simplier) to
the above, and we omit the details. This finishes the proof of the first claim, i.e.,
[UZ;}, N}N’Z] g G;—1,8+1.

We now show the second claim, i.e., [IU’,;;}, NL#1] = 1. Proceeding analogously
as in the proof of the first claim, we need only to show that for all § € ® either
reductive or satisfying eg > €;41, one has [Ug;l,Ué,r] = 1. We again have two
cases:

Case (f is non-reductive). We have to show that [(U]ayma”,g, U'ﬁymﬁ} maps to 1 in
G,. Using Lemma [2.8[(ii), it is enough to show that for all p,q € Z>; such that
pa+qp € P, (v]pa+qﬁ7p(ma+T_2)+qu maps to 1 in ér. If pa + ¢fB is non-reductive,

this follows from the similar statement in the proof of the first claim, as ;11 > €;.
If pa + gpB is reductive, it amounts to claim that

p(ma +r— 2) +qmg = Mparqes + 1,
which by Lemma [2.6] is equivalent to
lpea +qep] +(p—1)(r —2) 2 2,

But this is true, as |peq + geg| > 2. Indeed, as pa + ¢f is reductive, €patqs = 0.
Hence by Lemma [2.6] |peq + geg| = pea + g€ > €q + € > 1. Being an integer,
|pea + ¢ep ] must be > 2.
Case (B is reductive). This case is shown similarly (in fact, slightly simpler) to the
above, and we omit the details. This finishes the proof of the second claim.

We are now ready to show that the claimed pairing is well-defined. Indeed, let
¢ € Ut and let 2,2’ € N} with the same image = &’ € N}*/N}b*+!. Then
there is an y € N*1 such that 2’ = zy. We compute:

(2] = [y =y e iy = y € 2]y = [€, 2],

where for the third equality we use that [U}, ', N}*"'] =1 and for the last we use

that [¢,2] € G715+ and [Gr~1+! N!| = 1 (indeed, for any reductive root  we
have [UZ7!,N}] = 1 by Lemma[2.9). Now we show that this pairing is linear in the
second variable. Therefore, let £ € (7;;1 and z1, 2 € J\uf}’ We compute:

11— _ 11
(€, 2129] = €Myt Hmymy = € o, oy My Heaag

= (w2, 21 )¢ a2y i my = (w9, m1]E oy Tag maa [, 2]

= [, 21 )¢y e[S, wolwn 21, ma] = [w2, 21][€, 21][€, wo][m1, 22

= [57:1;1][57‘7;2]‘
The third equality follows as [x2, 2] € N}M*1 (as NL#/NL#*1 is abelian) and as
(U1, N3] = 1. The sixth equality follows as [£,z5] € G~ b*t! commutes
with 2; € N}!. The last equality follows as [€,z1],[¢, 2] € GI~15t! commute
with [z1,29] € N}, and as [z2,21][z1,22] = 1. An analogous (slightly simplier)
computation shows the linearity in the first variable. ([l

Remark 4.6. Lemma [2.8](ii) can certainly be generalized. As we will not use the
following generalization, we state it without proof. As for any root « € ®, —« is a
root too, and e_, = 1 —¢&,, we have a symmetry between the jumps ¢;. Concretely,
we have ¢, = 1 —g541; for 1 < i <. Foreach 1 < a < r —1, let Gﬂ?i be
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the subgroup of G¢ generated by G¢*', T¢, U% . (« reductive or e, > ;). Then
Lemma [2.8] extends to the following general duality statement: Fix 1 <a <7 —1
and 1 <7 < s. Then the commutator induces a bilinear pairing,

r—a,s+1—1 r—a,s+2—1 a,i a,i+1 r—1,s+1
G, /Gy, x Gt /G — G, .

4.5. Stratification on (subgroups of) N!. Recall that for any subgroup H C G
and associated subgroups H, C G,.,, we have the notation H»* = H% \ He¢*! (open
subscheme) and hence the corresponding set H®* of F,-valued points.

Lemma 4.7. Letr > 2 andletr—1>a>1. For z € N;}’*, write z = Hﬁew xg
with xf € Ugr for a fized (but arbitrary) order on ®. For f € ®7T, let a <
a(B, z) <1 be the integer such that xf € lu]g’(f’z)’*.
(i) If a > 2, then the set
A, ={B€d" :a(B,2)=a}
is non-empty and independent of the chosen order on ®7.
(ii) Leta=1 and let s+ 1 >i > 1 be such that = € NY%*. Then the set

A, ={Be€®:a(B,z) =1}

is non-empty and independent of the chosen order on ®*. Moreover, a(f, z)

>1 forall B € U;;l @;‘.
Proof.

(i): As a > 2, the quotient N* /N2*! is abelian by Lemmal[4.4l Thus its F,-points
are simply tuples (Zg)gce+ With Zg € ﬁ§7a+1 with entry-wise multiplication. If
zZ= (5273) is the image of z in this quotient, then A, identifies with the set of those
p for which 75 # 1 (which is obviously independent of the order).

(ii): Assume that the last claim of (ii) is not true. Then let 1 < 4y < i be the
smallest integer such that a(3,z) = 1 for some 8 € <I>;g. Then from Lemma [4.4]
it follows that z € J\Ufrl’io’*, which contradicts the assumption. This shows the last
claim. The first claim follows by the same argument as in (i). (]

Using Section [4.4] we can now prove the following generalization of [Lus04]
Lemma 1.7].

Definition 4.8. For o € ®* define its height ht() (relative to N) to be the largest
integer m > 1 such that o = ZZ’;I o; with o; € ®F.

Proposition 4.9. Letr > 2 and letr —1>a > 1. Let z = Hﬂeqﬁ Th € ]Vﬂ* for
Th € Ugr and let A, be as in Lemma A7
(i) If A, contains a non-reductive root, let —a € A, be a non-reductive root
of mazimal height and o € ®~ its opposite. Then for any § € Uy *, we
have [€,2] € TN "=1. Moreover, projecting [¢,z] into T induces an
isomorphism
A U /UL ot S 7
(ii) If A, contains only reductive roots, let —a € A, be a root of mazimal
height and o € ®~ its opposite. Then for any € € Ug}“_l, we have [€, 2] €
TN "L, Moreover, projecting [€, 2] into T® induces an isomorphism

~

A UL un e 5 e
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Proof. Parts (i) and (ii) can be proven in the same way. We give the full proof of
(i) only.

Proof of (i) when a > 2. We work on F,-points. Assume that A, contains a non-
reductive root and let —a be such a root of maximal height and o € &~ its opposite.
Let € € ﬁ;‘r" and let € € U;;G/U;;a“ and z € N/N&*t! be the images of £ and
z respectively. By Lemma [4.4] we may write

Z—oc H ‘/EZ’ ’ H jé’
BEPT red. Bedt non-red., B#—a
ht(B)<ht (- o)

Kl

z =

where 73 € l?gr JU 9t1 and where the products are taken in any order. Lemma

[4.5] shows that [¢, 2] is the product of [¢, %7 ] with all the [€, z3] for B € ®T, the
product taken in any order. If 3 is reductive, then [€, T3] € [ﬁg;a,ﬁg)r} =1 by

Lemma 2.9l If 3 # —a is non-reductive, then by assumption ht(3) < ht(—ca). The
commutator [§, 73] is the image of an element of

(4‘4) [Ua,maJr(rfa)*l’ Uﬂ,mfﬁa*l} c H UpaJrfI@;Dma+qm/3+17(7“*a*1)+f1(a*1)
P,q€EZL>1
pa+qBedD

Lemma 4.10. The image of the right hand side of (&4) in G, lies in N "1,

Proof. 1t is enough to show that for each (p,q) occurring in the product, the cor-
responding factor is either contained in Nf’r_l or vanishes in G,. If p > q, then
ht(8) < ht(—«) implies pa + g8 ¢ ®T. So, we may assume that ¢ > p and in
particular ¢ > 2. It is enough to show that

[GER

o UpatqB,mposqs+r if pa + ¢f reductive
UpatgB.pma+qms+p(r—a—1)+q(a—1) S

Upa+qﬁ,mm+q5+r71 otherwise,
as both map to 1 in G,.. Equivalently, we have to show that

1 if pa + ¢B reductive
PMe +aqmg —Mpares +0(r—a—1)+qla—1)—(r—1) > )

0 otherwise.
But this holds as by Lemma [2.6] pm, + gmg — Mpatqs = |Pea + gep] is > 1 if
pa + gf is reductive and is > 0 otherwise, and as ¢ > 2 and a > 2. O

Finally, [£,2%,] = [£,2%,] € T%(F,) by Lemma R8(iii). Thus [¢,2] €
T (FQ)NP"’l. Moreover, if we project onto 7<(F,), then only [¢,z* ] survives

and Lemma [2.§[(iii) proves the desired isomorphism A,. This finishes the proof of
(i) in the case a > 2.

Proof of (i) when a =1. Let s > i > 1 denote the integer such that z € NLix,
(Note that ¢ # s+ 1 as A, contains a non-reductive root by assumption). We have
¢ € Ust, and we let z denote the image of z in N}/NYi+!. By Lemma E.4] we
may write

N
Il
S

| &
Q

8l
=N

ped}: p#—a
ht(8) <ht(—a)
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(product are taken in any order). By Lemma [4.5] [, Z] is the product of [£,z7% ]
with all the [§, 73] taken in any order. By assumption 5 =& = c_o =1 — &q.
In particular, all 5’s are non-reductive. Now, [, i‘%] is the image in GT~ 1% of an
element of

(4~5) [Ua,mu+r—2v Uﬂ,ma] - I I UpoHrqﬂ,pma +gmp+p(r—2)
P,qE€EL>1
pa+qBed

Lemma 4.11. The image of the right hand side of (LE) in G, lies in N "1,

Proof. Note that the right hand side of ({.5) is contained in G7~ 15! (exactly as in
the proof of Lemma [A.5(ii)). Now the same arguments as in the proof Lemma [4.10]
apply. If p > g, then ht(83) < ht(—«) implies pa+q3 ¢ ®*, thus the corresponding
factor of the product is contained in ]\7; N va'fl’sﬂ c ]\7;”*1. Thus we may
assume that ¢ > p and in particular ¢ > 2. It is enough to show that

C< .

i o oma(r—2) {Upa+qﬁ,mpa+q5+r if pa + ¢gp is reductive
patqB,pmatqmp+p(r—2) =

UpatgB,mparqs+r—1 Otherwise,
as both map to 1 in G,.. Equivalently, we have to show that

P+ g = Mg +p(r —2) = (1 = 1) 2 {1 i pat a7 s reductive

0 otherwise.
By Lemma [2.6] this follows from |pe, + geg| > 2 if pa + ¢ is reductive, resp. to
|pea + qeg] > 1 if pa+ ¢ is non-reductive. But in any case we have pe, + geg >
€a+2(1 —e4) =2—¢, > 1 by assumptions. In particular, we are done in the case
when pa + ¢ is non-reductive. If pa + g3 is reductive, then pe, + geg must also
be an integer (by Lemma [2.6]) and hence > 2, and we are done in this case too. O

Finally, [¢,7%,] € T*(F,) by Lemma 28(iii). Thus [¢,2] € T*F,)N; "
Moreover, if we project onto 7(F,), then only [¢, 2% ] survives and Lemma [2.8]iii)
proves the desired isomorphism A.. This finishes the proof of (i). |

Remark 4.12. We note that in the proof of [Lus04, Lemma 1.7] there is an (easily
correctable) mistake. Tt is claimed that whenever —a, 8 € ®T with —a # 8 and
ht(—a) > ht(B3), then pa + g8 € ®* for all p,q € Z>;. This is not true. For
example, let ® be of type Cs, let €1, e denote a basis for X*(T) such that the
& = {e] —€a,€1+€2,2¢1,262}. Then taking o = —2¢1, 8 = €1 +€2. Then ht(—a) =
3> 2 =nht(B). But @+ 28 = 2e, € ®T. Observe here that o + 8 ¢ &+, which
contradicts the parenthetical assertion at the end of the proof of [Lus04, Lemma
1.7].

Surely, the statement of [Lus04, Lemma 1.7] remains true. The place in its
proof, where the abovementioned claim is used, can be corrected as follows: if
pa+ qB € 1 for some p,q € Z>1, then ¢ > 2 and the part of the commutator
(as in the proof of Proposition [4.9) inside Upqyqp,» vanishes, since all roots are
reductive and r > 2.
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Let K, = U, NN,. Let ® = { € ®*: Ug, C K,}. Let X denote the set of all

non-empty subsets I C @ satisfying

(i) the restriction of ht: ®* — Zs( to I is constant, and

(ii) I contains either only reductive or only non-reductive roots.
To z € K} ~ {1} we attach a pair (a.,I,) with 1 < a, <r—1and I, € X. Define a,
by z € R’f}z’*. Let A, be as in Lemma L7 If A, contains a non-reductive root, let
I, C A, be the subset of all non-reductive roots of maximal height. If A, contains
only reductive roots, let I, C A, be the subset of all roots of maximal height. We
have a stratification into locally closed subsets
(4.6)

KA1} = | K=, where K&9H(F,) = {2z € K}~ {1}: (az,I.) = (a, 1)}
a,l

4.6. Cohomology of 5. We now prove Proposition 4.2l Using the stratification
(4.6) and Proposition [4.9] the proof of Proposition 4.2]is very similar to the proof
of [Lus04, 1.9 (c)]. We sketch the arguments here. It is enough to show that
Hg(f]gv)gﬂ/ = 0 for all j > 0. For a T'(F,;)’-module M and a character x of
T'(Fq)?, write M(,y for the x-isotypic component of M. Note that 7'(F,)? acts
on 3/, by

N O R TR o N € R TR L VA A Sl §

Hence H7(3/,) is a T'(F,)-module. It is enough to show that HJ (ig})(x) = 0 for any
regular character y of 7'(F,). Fix such a x. Set N = wU'~w~!, N™ = wU'w~L.
The stratification ([@.6) of K2~ {1} induces a stratification of ¥/, into locally closed
subsets indexed by 1 <a<r—1and [ € X:

iiu - |—|§Z’G71 where iib‘l’l(Fq) = {(x,x/au,ulaszl) € i\:;1;(Fq) AS R;«l)*’]}.
a,l

Note that each 3547 is stable under T (F,). Thus (4.2) follows from
(4.7) Hg(iijﬂ’l,@@)(x) =0  for any fixed a,I.

To show (4.7), choose a root « such that —a € I. Then U, , C U, NwU,w~!. By
Proposition [4.9] for any z € K%*! we have an isomorphism

Az Ut /Ug)‘f“ — T, if @ is non-reductive,

Az Ug}“_l/U;}“ = T, if v is reductive.
Let 7 denote the natural projection Uy " — Ug " /Ug;aﬂ if « is non-reductive
and the natural projection U}, ¢~ — U, *~1 /UL~ if o is reductive. Let ¢ be a

section to 7 such that m¢) =1 and ¥ (1) = 1. Let
H ={t' cT:t' o) e w ' T}
This is a closed subgroup of 7”. For any ¢’ € T’ define f : iﬁf?l — iﬁf’l by
fo (@ 2 uus 2, 7)) = (20(€), 2 u, () /a(t), z, 7o (t)),
where
€ = b (o (t) i) {Ugﬁl CU, N1 if a is reductive,

U,* CcU:n WUt otherwise,
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and 2’ € G, is defined by the condition that
ro (€2t o(t')) € uzit' ot )o(t') o (t)i.

To check that fp is well-defined we have to show & € o(U,.). This is done with
exactly the same computation as in the proof of [Lus04, Lemma 1.9], and we omit
this. It is clear that fy : 5% — /@1 is an isomorphism for any ¢’ € H'. Moreover,
since 7'(F;) € H' and since for any ¢ € T'(F,) the map f; coincides with the action
of ¢’ in the T (F,)-action on X;*! (we use ¢)(1) = 1 here), it follows that we have
constructed an action f of H' on X.:%! extending the T'(F,)-action.

If a connected group acts on a scheme, the induced action in the cohomol-
ogy is constant. Thus for any ¢ € H'°, the induced map f;;: HI($h%1,Q,) —
Hg(E;f;I,@e)_is constant when ¢’ varies in H'°. Hence T'(F,) N H'® acts trivially
on H(J: (2;}11717 QK)

We can find some m > 1 such that o™ (=17 %) = =17 *i. Then

t' = to(t)o?(t')--- o™ Lt
defines a morphism w'7%) — H'. Since T is connected, its image is also
connected and hence contained in H'°. If ¢ € (w='T(F,)w)°", then NI" (') €
T'(F,)° and hence also NZ" (') € T'(F,)° NH'"°(F,). Thus the action of NZ" (¢') €
T'(F,)7 on HI(X:%T) is trivial for any ¢/ € (w17 (F,)w)”"
Finally, observe that if H(X;%!,Q,)(y) # 0, then the above shows that ¢’ —

x(NZ™ (t')) must be the trivial character, which contradicts the regularity assump-
tion on y. This establishes (4.7)), finishing the proof of Propositon [4.21

5. TRACES OF VERY REGULAR ELEMENTS

Let the notation be as in the beginning of Section [4l The finale of this section
is the proof of Theorem [1.2]

Definition 5.1. We say that s € Py is unramified very reqular with respect to x
if the following conditions hold:
(i) s is a regular semisimple element of G,
(i) the connected centralizer Z°(s) of s is a k-split maximal torus of G i whose
apartment contains x, and

(iii) a(s) # 1 modulo p for all roots a of Z°(s) in Gy,.
For r > 2, we say that s € G, is unramified very regular, if s is the image of an
unramified very regular element of P,.

Note that condition (ii) implies condition (i). Note that in condition (iii) the
character a: Z°(s) — G,  induces a homomorphism of maximal bounded sub-

groups: «: zZ° (s) = O*, and hence the condition makes sense.

Remark 5.2. When G is an inner form of GL, and T is the maximal nonsplit
unramified torus in @, Definition B.1 says that = € (17°)7 = OF (here kD2LDk
is the degree-n-subextension) is unramified very regular if and only if the image
of z in (O /Uj) = Fy. has trivial Gal(Fy» /F)-stabilizer. This is not equivalent
to (though is implied by) the condition that the image of x in F}. is a generator
although this last condition is sometimes also associated to the same terminology
[Hen92,[BW13,ICT20].
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Note that if s € Py is unramified very regular, then we may consider the W (T')-
homogeneous space Wy (T, Z°(s)) (see Section [2.8]).
Before proving Theorem [1.2] we point out the following corollary.

Corollary 5.3. Let T' C G be a k-rational luc—split mazimal torus whose apartment
contains x. If T and T' are not conjugate by an element of PZ, then for any
s € T'(k) unramified very regular with respect to x,

Tr(s, Ry ,) = 0.

Proof. We need to show that for two such tori, Wy (T, T')° = &. Suppose there is
an element w € Wy (T, T")?. Then its preimage in Ng, (T,,T,) form a F,-rational
T,-torsor, which by Lang’s theorem has a rational point. Doing this for all r and
using that the inverse limit of a family of non-empty compact sets is non-empty, we
can find an element n € P2, which conjugates T(©) into T”(©). The centralizer of
T(0) in G(k) is T(k) (and similarly for T"), so n also conjugates T'(k) into T"(k),
and so it conjugates T into T, which contradicts the assumption. |

We now make some preparations that we will use to prove Theorem [1.2l Let B
denote the Borel subgroup of G whose unipotent radical is the fixed subgroup U,
and let B, be the corresponding subgroup of G,.. The following result shows that
B, behaves in certain aspects like a Borel subgroup of G, (although it is not a Borel
subgroup if > 2). Similar results in the case that Py is reductive are shown in
[Stal2].

Proposition 5.4. Let s € G, be an unramified very reqular element. If x € G, is
such that s € xB.x~', then there exists a unique w € Wy (T, Z%(s)) such that for
any lift w € G,, we have x € WB,.

Proof. The maximal k-split tori T and Z°(s) are conjugate by an element y € Py,
as x is contained in the intersection of their apartments. Conjugating by y we thus
may reduce to the special case that Z°(s) =T.

We first prove the assertion in the case r = 1. The image of s in the reductive
group Gy is regular semisimple and B; C G is a Borel subgroup. By [DLT76
Proposition 4.4(ii)], we see that there is an element w € G1 normalizing T, and
satisfying zBiz~! = 1w~ !By1w. Since Borel subgroups are self-normalizing, v~z €
f?l, and we are done.

We now prove the assertion for r > 2. By the above, we see that there exists a
unique w € Wy (T) such that x € wér(?}n We proceed by induction; to this end, it
suffices to prove that if x € wéréfl, then x € Wh,.

Since G’~! is normal in G,, we may write # = whb for some h € G-~ and
b € B,. By [MP96, Theorem 4.2], G%~! has an Iwahori decomposition, so we may
write b = h_h, with h_ € U7"' and hy € B.~'. Replacing b by hyb and
h by h_, we now have h € ij“l. Since z71sz € B, by assumption, we have
h='Ad(w ") (s)h € B,. Writing ¢ for the very regular element Ad(w~')(s) € T},
we deduce h™'(tht=1)t € B,, and thus h='(tht~') € B,. Since h € U7 "' by
construction, h='(tht~!) € B, only if h = tht~!, which holds only when h = 1 by
Lemma [5.5] O

Lemma 5.5. Letr > 2 and lett € T, C G, be unramified very regqular. Iftht=1 = h
for some h € U,., then h = 1.
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Proof. Fixing an order on the roots ®* = ®(T,U), we may write h uniquely as
[Tocor Yalha), where ¢ is an isomorphism of U, , with a framing object coming
from the Chevalley system. Then

[T vathe) =h=¢"0¢= ] ala(¢Hha),
acdt acdt

and hence (by uniqueness of the presentation as a product) hy = a(¢"1)hs. We
have naturally h, € p™t=/p™e for appropriate r1 o, < 72, € Z. As (! is very
regular, «(¢™1) # 1 mod p, and hence the above equality forces h, = 0 for all a.

Thus h = 1. (]
By Proposition [5.4]
(5.1) Sgg) ={zxeG, 2 0(x) €U, and gz € 2T} = |_| Sg;}r)(w),

wEW(T,Z°(g))

where ) ; ]
S(Téjg) (w) :={x € WB, : 2 'o(z) € U, and gz € 2T},

for some (any) lift & € G, of w. For any k-rational k-split maximal torus 77 C G
whose apartment contains x, the preimage of any w € Wi (T,T")? in G, is an Fy-
rational T,-torsor, so by Lang’s theorem, it contains a IF,-rational point w. For any
w € W(T,T")° we fix such a .

Proposition 5.6. Let g € é;‘ be an unramified very regular element. Then

Wl if w e Wi(T, Z%(g))°,
549 () { (T, 2°(9))
(%) otherwise.

Proof. Let w € Wy (T, Z%g)) and let @ be any lift of w to G,. Assume that
S%’[}T)(w) # @ and let = € S%q,’[}r)(w). Then @~ 'z € B, and we may write = wtv
with ¢t € T, and v € U,. We have 7 lgr = v Y gty = v tsvs s € T,
where s := W™ lgiw € T? is unramified very regular. Then v~ !svs™! € T, hence
necessarily v = svs™!, which forces v = 1 by Lemma [5.5

We now have & = it € wT,. By construction, t~ &~ 'o(i)o(t) € U,. Since the
left-hand side is semisimple, we have Wt = o (1t), thus forcing w € Wi (T, Z°(g))°
and Sgi}r) (w) = wT°. U

Proof of Theorem [L2l For any Iuc—split maximal torus 7" C G, we have a short exact
sequence

1 (TN T - T17 -1
of finite abelian groups with (Tr'l)" of p-power order and T{" of order prime to p.
(The surjectivity on the right holds as T} — H'(Gal(F,/F,), T'!) must be the
zero morphism, as the latter is a p-group). This sequence is split.

Applying the above to T' = Z°(g), we may write g = st; where t; € (Tr/l)" has
p-power order and s is in the image of the splitting and hence of order prime to p.
It is easy to see that ¢t; and s are both powers of g. Note that s is still very regular
and Z°(s) = Z%(g). Analogously, applying the above to T/ = T, for any 7 € 17,
we may write 7 = (1 with 7 € (T,})", and (¢ in the image of the splitting. Thus
(9,7) € G7 x T7 has the decomposition (g,7) = (s,¢) - (t1,71), where (s,¢) and
(t1,71) are both powers of (g, 7) such that (s, {) has prime-to-p order and (¢, 71) has
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p-power order. Averaging over T,ﬁ’ and applying the Deligne-Lusztig trace formula
[DL76, Theorem 3.2] (which we may do by Lemma [3.1)), we deduce

1

Ti(g, RTp,) = Fo >0 T (9.7)%5 ) (~1) Hi(Sr,0, Q)
17 TeTe g
1 ) =
(5.2) b DU (R WEIRHCHRAE
T orele @

where S(Tfé) ={z € G,: 27 o(z) € Uy, sz( = z} is the set of fixed points of St s
under (s, ().

We obviously have ST(JT ’5) C S’(Tg’ ’5), and it now follows easily from Proposition [5.6]
that

WwT? if ¢ = Ad(w™1)(s71) for some (unique) w € Wi (T, Z°%(g))?,

S(S’O —
oy %] otherwise.

Now (t1,71) acts on a point wa€wT? by (t1,71): wa — tywary =wAd(w™1)(t)am,

and thus

Tr [ (t, 7)Y (1) HASES Q) | = Tr ((t,m)"; HO(wT?))

i
#T7 if 7 = Ad(w N)(t7Y),
0 otherwise,

and Theorem [L.2]now follows from (5.2). O
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