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COHOMOLOGICAL REPRESENTATIONS

OF PARAHORIC SUBGROUPS

CHARLOTTE CHAN AND ALEXANDER IVANOV

Abstract. We give a geometric construction of representations of parahoric
subgroups P of a reductive group G over a local field which splits over an
unramified extension. These representations correspond to characters θ of un-
ramified maximal tori and, when the torus is elliptic, are expected to give
rise to supercuspidal representations of G. We calculate the character of
these P -representations on a special class of regular semisimple elements of
G. Under a certain regularity condition on θ, we prove that the associated
P -representations are irreducible. This generalizes a construction of Lusztig
from the hyperspecial case to the setting of an arbitrary parahoric.

1. Introduction

Let k be a non-archimedean local field with finite residue field. Let G be a
reductive group over k, and let T ⊆ G be a maximal torus defined over k and split
over an unramified extension of k. Let P be a parahoric model of G, defined over
the integers Ok. Then P is attached to a point x in the Bruhat–Tits building Bk of
the adjoint group of G over k, lying in the apartment of T . We denote the schematic
closure of T in P again by T . We will construct and study a tower of varieties over
an algebraic closure of the residue field Fq of k whose cohomology realizes interesting
representations of P (Ok) parametrized by characters of T (Ok). This construction
generalizes classical Deligne–Lusztig theory [DL76] (for reductive groups over finite
fields), as well as the work of Lusztig [Lus04] and Stasinski [Sta09] (for reductive
groups over henselian rings). Further, we give an explicit formula for the character
on certain very regular elements, generalizing a special case of the character formula
for representations of reductive groups over finite fields [DL76, Theorem 4.2].

More precisely, we work with a Moy–Prasad filtration quotient G = Gr (r ≥ 1)
of P , regarded as (the perfection of) a smooth affine group scheme of finite type
over Fq. We normalize this quotients such that G1 is canonically isomorphic to the
reductive quotient of the special fiber of P . As such, one has a Frobenius σ : G → G
and the corresponding Lang map G → G, g $→ g−1σ(g). Choose a Borel subgroup
of G containing T (defined over some unramified extension of k) with unipotent
radical U . In G we have the subgroups T and U, corresponding to the closures
of T and U in P . Consider the subscheme ST,U = ST,U,r ⊂ G defined as the
preimage of U under the Lang map. By construction, ST,U has a natural action of
P (Ok)× T (Ok) given by left and right multiplication. It factors through an action
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of G(Fq) × T(Fq). For a smooth character θ : T(Fq) → Q×
! (# '= char Fq), we define

Rθ
T,U to be the θ-isotypic component of the alternating sum of the cohomology

groups of ST,U with Q!-coefficients. This is a virtual P (Ok)-representation.

In [Lus04, 1.5] the notion of regularity of a character θ : Tr(Fq) → Q×
! is defined

for r ≥ 2. We recall this notion (adapted to our situation) in Section 2.10 below.
Roughly speaking, a character is regular if it is “very non-trivial” on ker(Tr(Fq) →
Tr−1(Fq)). Our first main result is the following generalization of [Lus04, 2.4, 2.5].

Theorem 1.1. Fix an r ≥ 1 and let (T, U) and (T ′, U ′) be two pairs as above,

such that x lies in the intersection of apartments of T and T ′. Let θ : T(Fq) → Q×
! ,

θ′ : T′(Fq) → Q×
! be two characters and assume that at least one of θ, θ′ is regular

if r ≥ 2. Then

〈Rθ
T,U , Rθ′

T ′,U ′〉G(Fq) = #{w ∈ Wx(T, T ′)σ : θ ◦ Ad(w) = θ′},

where Wx(T, T ′) = T1(Fq)\{g ∈ G1(Fq) : gT1 = T′
1} is the transporter from T1 to

T′
1 in G1 (a homogeneous space under the Weyl group of T1 in G1; cf. Section 2.8).
Consequently, if θ regular, then

(i) Rθ
T,U is independent of the choice of U .

(ii) If additionally the stabilizer of θ in Wx(T, T )σ is trivial, then ±Rθ
T,U is an

irreducible representation of G(Fq) (and of P (Ok)).

The proof of Theorem 1.1, given in Section 4.2 below, mainly follows the original
method of Lusztig [Lus04], who treated the special case when P is reductive over
Ok. The main idea in [Lus04] is as follows: Theorem 1.1 reduces to the computation
of the T(Fq) × T′(Fq)-equivariant #-adic Euler characteristic of Σ = G(Fq)\ST,U ×
ST ′,U ′ . Then one partitions Σ into locally closed T(Fq) × T′(Fq)-stable varieties in
a very subtle way, so that on each such piece, one can construct by hand an action
of a connected algebraic group which commutes with the action of T(Fq)×T′(Fq).
The construction of this action is remarkably delicate, and the subtleties here are
responsible for the regularity assumption on the character θ.

Let us now describe the technical issue we must tackle in generalizing Lusztig’s
hyperspecial setting to the general setting. For each 1 ≤ s ≤ r − 1, we have the
unipotent group Gs

r = ker(Gr → Gs). Now, the above-mentioned locally closed
decomposition comes from a very particular filtration of G1

r by locally closed sub-
schemes (not subgroups) with subtle properties [Lus04, 1.7,1.8]. Its definition uses
that the successive quotients Gs−1

s (1 < s ≤ r) are abelian if P is reductive. How-
ever, in general, the quotient G1

2 need not be abelian (Remark 2.3). This forces
us to refine the filtration {Gs

r}s of G1
r (Section 4.3) by a filtration of each graded

object Gs−1
s (for fixed s) by certain subgroups H(ε) (0 < ε ≤ 1). Roughly speaking,

H(ε) is generated by the “Gs−1
s -slices” of T (Ok̆) and of the root subgroups Uα of

T in G for which the fractional part of the distance of x to the closest affine root
hyperplane with vector part α is ≤ 1 − ε. The graded pieces of this new filtration
are abelian (Lemma 4.4) and moreover satisfy properties (Sections 4.4, 4.5) similar
to those in [Lus04, 1.7]. This in turn allows us to define an associated stratifica-
tion of Σ for which we can construct an action of an algebraic group on each piece
(Section 4.6).
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Our second result is the computation of traces of unramified very regular elements
of P (Ok) acting on Rθ

T,U (Definition 5.1). The proof is based on the Deligne–Lusztig
fixed point formula [DL76, Theorem 3.2] and adapts ideas of [DL76, Theorem 4.2].

Theorem 1.2. For any character θ : T (Ok) → Q×
! and any unramified very regular

element g ∈ P (Ok),

Tr(g, Rθ
T,U ) =

∑

w∈Wx(T,Z◦(g))σ

(θ ◦ Ad(w−1))(g).

When G is any inner form of GLn over k and T is an unramified maximal elliptic
torus, we prove in [CI20] that the Deligne–Lusztig-type set considered by Lusztig
in [Lus79] is a scheme and its cohomology realizes the compact inductions πθ to
G(k) of (an extension of) the P (Ok)-representations Rθ

T,U . Furthermore, we show—
crucially using specializations of both Theorems 1.1 and 1.2—that on the locus of
sufficiently generic characters, the correspondence θ $→ πθ is compatible with the
composition of the local Langlands and Jacquet–Langlands correspondences.

As such, we expect this work to be closely related to the problem of geometri-
cally constructing representations of p-adic groups in general. More specifically, we

expect that if T is elliptic and θ : T (k) → Q×
! is a sufficiently generic character, then

the compact induction to G(k) of (an extension of) the P (Ok)-representation Rθ
T,U

is related to the supercuspidal representations constructed by Yu [Yu01]. Both the
irreducibility of and the character formula for Rθ

T,U are crucial ingredients to un-
derstanding the corresponding G(k)-representation within the context of the local
Langlands correspondence.

Finally, we make note of the importance of studying these varieties in the present
setting of general parahoric subgroups P . Already in the setting of inner forms of
GLn, it is not enough to study Rθ

T,U for reductive P ; for example, when G is an
anisotropic modulo center inner form of GLn, and T unramified elliptic, then the
apartment of T in Bk consists of one point, x, and the corresponding parahoric
subgroup P is an Iwahori subgroup. This can occur even if G is split: if G = Sp4,
then there is a conjugacy class of maximal elliptic tori in G, such that the relevant
P is non-reductive, with the reductive quotient of the special fiber being isomorphic
to SL2 × SL2.

2. Preliminaries

2.1. Notation. We denote by k a non-archimedean local field with residue field
Fq of prime characteristic p, and by k̆ the completion of a maximal unramified
extension of k. We denote by Ok, pk (resp. O, p) the integers and the maximal
ideal of k (resp. k̆). The residue field of k̆ is an algebraic closure Fq of Fq. We write

σ for the Frobenius automorphism of k̆, which is the unique k-automorphism of k̆,
lifting the Fq-automorphism x $→ xq of Fq. Finally, we denote by ' a uniformizer

of k (and hence of k̆) and by ord = ordk̆ the valuation of k̆, normalized such that
ord(') = 1.

If k has positive characteristic, we let W denote the ring scheme over Fq where
for any Fq-algebra A, W(A) = A!'". If k has mixed characteristic, we let W denote
the k-ramified Witt ring scheme over Fq so that W(Fq) = Ok and W(Fq) = O. As
the Witt vectors are only well behaved on perfect Fq-algebras, algebro-geometric
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considerations when k has mixed characteristic are taken up to perfection. We fix
the following convention.

Convention. If k has mixed characteristic, whenever we speak of a scheme over its
residue field Fq, we mean a perfect scheme, that is a set-valued functor on perfect
Fq-algebras.

For results on perfect schemes we refer to [Zhu17,BS17]. Note that passing to
perfection does not affect the #-adic étale cohomology; thus for purposes of this
paper, we could in principle pass to perfection in all cases. However, in the equal
characteristic case working on non-perfect rings does not introduce complications,
and we prefer to work in this slightly greater generality.

Fix a prime # '= p and an algebraic closure Q! of Q!. The field of coefficients of
all representations is assumed to be Q! and all cohomology groups throughout are
compactly supported #-adic étale cohomology groups.

2.2. Group-theoretic data. We let G be a connected reductive group over k,
such that the base change Gk̆ to k̆ is split. Let T be a k-rational, k̆-split maximal
torus in G. Let Bk̆ and Bk denote the Bruhat–Tits building of the adjoint group

of G over k̆ and over k, and let AT,k̆ ⊆ Bk̆ denote the apartment of T . Note that

there is a natural action of σ ∈ Aut(k̆/k) on Bk̆ and on AT,k̆, and that Bk = B〈σ〉
k̆

.

Let X∗(T ) and X∗(T ) denote the group of characters and cocharacters of T . We
denote by 〈·, ·〉 : X∗(T )×X∗(T ) → Z the natural Z-linear pairing between them. We
extend it to the uniquely determined R-linear pairing 〈·, ·〉 : X∗(T )R×X∗(T )R → R,
where we write MR = M ⊗Z R for a Z-module M .

Denote by Φ the set of roots of T in Gk̆ and for a root α ∈ Φ let Uα ⊆ Gk̆ denote
the corresponding root subgroup. There is an action of 〈σ〉 on Φ. Fix a Chevalley
system uα : Ga

∼→ Uα for Gk̆ (cf. e.g. [BT84, 4.1.3]). To any root α ∈ Φ we can

attach the valuation ϕα : Uα(k̆) → Z given by ϕα(uα(y)) = ord(y). The set of
valuations {ϕα}α∈Φ defines a point x0 in the apartment AT,k̆. Moreover AT,k̆ is an
affine space under X∗(T )R and the point x0 +v ∈ AT,k̆ for v ∈ X∗(T )R corresponds
to the valuations {ϕ̃α}α∈Φ of the root datum given by ϕ̃α(u) = ϕα(u) + 〈α, v〉 (see
[BT72, 6.2]).

We let U, U− be the unipotent radicals of two opposite k̆-rational Borel subgroups
of Gk̆ containing T .

2.3. Affine roots and filtration on the torus. We have the set Φaff of affine
roots of T in Gk̆. It is the set of affine functions of AT,k̆ defined as

Φaff = {x $→ α(x − x0) + m : α ∈ Φ, m ∈ Z}.

Denote the affine root (α, m) : x $→ α(x − x0) + m and call α its vector part. We
have the affine root subgroups Ŭα,m ⊆ Uα(k̆), defined by

Ŭα,m = {u ∈ Uα(k̆) : u = 1 or ϕα(u) ≥ m}

They define a descending separated filtration of Uα(k̆). There is a natural action of
the Frobenius σ on the set of affine roots, determined by Ŭσ(α,m) = σ(Ŭα,m). We
make it explicit:

Lemma 2.1. Let (α, m) ∈ Φaff . Then σ(α, m) = (σ(α), m − 〈α,σ(x0) − x0〉).
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Proof. We have σ(α, m) = (σ(α), m′) for some m′ ∈ Z. The evaluation of the
affine-linear form (α, m) on the apartment AT,k̆ is σ-linear, thus we have for all
x ∈ AT,k̆:

σ(α, m)(x) = (α, m)(σ−1(x)) = 〈α,σ−1(x) − x0〉 + m

= 〈σ(α),x− x0〉 + m − 〈σ(α),σ(x0) − x0〉.

On the other side, (σ(α), m′)(x) = 〈σ(α),x− x0〉 + m′, hence the lemma. !

Let R̃ = R∪ {r+: r ∈ R}∪ {∞} denote the ordered monoid as in [BT72, 6.4.1].

Let T̆ 0 ⊆ T (k̆) be the maximal bounded subgroup. For r ∈ R̃≥0 ! {∞}, we have a

descending separated filtration of T̆ 0 given by

T̆ r = {t ∈ T̆ 0 : ord(χ(t) − 1) ≥ r ∀χ ∈ X∗(T )}.

2.4. Parahoric subgroups, the Moy–Prasad filtration, and integral mod-
els. Fix a point x ∈ AT,k̆. Following Bruhat and Tits [BT84, 5.2.6], there is a
parahoric group scheme Px over O attached to x, with generic fiber G, and with
connected special fiber. The group P̆x := Px(O) is generated by T̆ 0 and Ŭα,m

for all (α, m) ∈ Φaff such that 〈α,x − x0〉 ≥ −m (that is, (α, m)(x) ≥ 0). The
schematic closure of T in Px is the connected Néron model of T . We denote it
again by T . We have T (O) = T̆ 0. (As Gk̆ is split, condition (T) of [Yu15, 8.1] is
satisfied. The claim about the closure of T in Px follows e.g. from [Yu15, Corollary
8.6(ii)]. Again, because Gk̆ is split, it also follows [BT84, 4.6.1] that the connected
Néron model of T is equal to the maximal subgroup scheme of finite type of the
lft model of T . The O-points of the latter are equal to T̆ 0, hence we indeed have
T (O) = T̆ 0.)

The Moy–Prasad filtration on P̆x is given by the series of normal subgroups
P̆ r

x ⊆ P̆x (r ∈ R̃≥0 ! {∞}), generated by T̆ r and Ŭα,m for all (α, m) ∈ Φaff such
that 〈α,x − x0〉 ≥ r − m. By [Yu15, 8.6 Corollary], there is a unique smooth O-
model P r

x of G, such that P r
x(O) = P̆ r

x . Moreover, part (ii) of the same corollary
describes the schematic closures of Uα, T in P r

x , and in particular, we have

(2.1) P̆ r
x ∩ Uα(k̆) = Ŭα,*r−〈α,x−x0〉+ and P̆ r

x ∩ T (k̆) = T̆ r.

Note that for r ∈ R≥0, we have P̆ r+
x =

⋃
s∈R,s>r P̆ s

x . For further properties of the
Moy–Prasad filtration we refer to [MP94, §2.6] and for further properties of the
smooth models P r

x we refer to [Yu15].
Assume now that x ∈ AT,k̆ ∩ Bk. Then all group schemes Px, P r

x descend to
smooth group schemes over Ok, again denoted by Px, P r

x (cf. [Yu15, §9.1]). In par-
ticular, all groups P̆ r

x (r ≥ 0) are σ-stable (this can also be deduced from Lemma 2.1,
which shows that σ maps Ŭα,*r−〈α,x−x0〉+ isomorphically onto Ŭσ(α),*r−〈σ(α),x−x0〉+),

and Px(Ok) = P̆ σ
x and P r

x(Ok) = (P̆ r
x)σ.

2.5. Moy–Prasad quotients. For a scheme X over Ok (resp. over O), the functor
of positive loops L+X is the functor on Fq-algebras (resp. Fq-algebras) given by

L+X(R) = X(W(R)).

If X is affine and of finite type, then L+X is represented by an affine scheme (cf.
[PR08, §1.a] if char k > 0 and [Zhu17, §1] if char k = 0; for the truncated versions
of L+, see [Gre61,Gre63]).
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Let x ∈ AT,k̆ ∩ Bk be as in Section 2.4. We have the infinite-dimensional

affine Fq-group scheme L+Px, and will now introduce convenient (perfectly) finitely
presented quotients of it. Let r ∈ Z≥1. We consider the fpqc quotient sheaf

Gr := L+Px/L+P (r−1)+
x . By [CI20, Proposition 4.2(ii)] it is representable by (the

perfection of) a smooth affine group scheme over Fq of finite type, which we again

denote by Gr. From [Yu15, Theorem 8.8], along with the fact that L+P (r−1)+
x is

pro-unipotent, it follows by taking Galois cohomology,

Ğr := Gr(Fq) = P̆x/P̆ (r−1)+
x and Ğσ

r = Gr(Fq) = (P̆x/P̆ (r−1)+
x )σ.

For r ≥ s ≥ 1 we have natural surjections of Fq-groups L+Px → Gr → Gs.

We write Gs
r = ker(Gr " Gs) and Ğs

r := Gs
r(Fq). Moreover, we also have natural

surjections G2 → Px ⊗Ok Fq → (Px ⊗Ok Fq)red = G1 identifying G1 with the
reductive quotient of the special fiber of Px.

2.6. Subgroups of Gr. Let H ⊆ Gk̆ be a closed subgroup scheme. Let r ∈ Z≥1.
We will attach to H the subgroup Hr ⊆ Gr,Fq

as follows. The schematic closure

Hx of H in Px,O is flat (by [BT72, 1.2.6] as O-flat is equivalent to O-torsion free).
It follows that Hx is a closed subgroup scheme of Px,O ([BT72, 1.2.7]). Apply
L+

r to the inclusion Hx ⊆ Px,O to obtain the subgroup scheme L+
r Hx ⊆ L+

r Px,O.
The last inclusion is a closed immersion (e.g. by [Gre61, Corollary 2 on p. 639]).
We define the closed subgroup scheme Hr ⊆ Gr,Fq

as the image of L+
r Hx under

L+
r Px,O " Gr,Fq

. We write Hs
r := ker(Hr → Hs) and Hs,∗

r := Hs
r ! Hs+1

r .

Suppose now additionally that Hx is smooth. Then L+
r Hx is reduced (one could

e.g. use [Gre63, Corollary 2 on p. 264]), and hence Hr is too. If H is already
defined over the finite subextension of k̆/k of degree d, then Hx is defined over the
integers of this subextension. This implies that Hr(Fq) is stable under the action
of σd. Hence Hr is defined over Fqd (here we use that Hr is (the perfection of) a
reduced separated scheme of finite type over Fq).

Using the procedure described above we obtain the closed Fq-subgroup Tr ⊆
Gr attached to T ⊆ G. Analogously, we have the subgroups Ur, U−

r ⊆ Gr,Fq

corresponding to U, U− ⊆ Gk̆ and for any root α ∈ Φ the subgroup Ur,α ⊆ Gr,Fq

corresponding to Uα. Note that all these are reduced connected closed subgroups
of Gr,Fq

. Moreover, Ur,α is defined over Fqd where d ∈ Z≥1 is the smallest positive

integer such that σd(α) = α in Φ (indeed the group Uα,x is smooth by [Yu15, 8.3
Theorem (ii)]), and a similar statement holds for Ur, U−

r .
For any reduced Fq-subscheme Xr ⊆ Gr,Fq

, we define X̆r := Xr(Fq) ⊆ Gr(Fq) =

Ğr. Thus for example we write Ŭa
α,r = Ua

α,r(Fq) for α ∈ Φ and 1 ≤ a ≤ r − 1.
Following Lusztig, we denote by T the groups Tr−1

r . For α ∈ Φ, let Tα ⊂ Tk̆ ⊂ Gk̆
be the unique 1-dimensional torus contained in the subgroup of Gk̆ generated by
Uα and U−α; let Tα

r be the corresponding subgroup scheme of Gr,Fq
and write

T α := Tα,r−1
r .

Lemma 2.2. Let r ∈ Z≥1 and 1 ≤ a ≤ r − 1.

(i) The group Ğr is generated by T̆r and all Ŭα,r (α ∈ Φ).

(ii) The group Ğa+1
r is generated by T̆ a+1

r and all Ŭa+1
β,r (α ∈ Φ)
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Proof. Both cases follow from [Yu15, Theorem 8.3] applied to the smooth models
Px and P a+

x of G respectively (note that with notations as in loc. cit., the group
G(k)x,f is by definition the one generated by all Ua(k)x,f(a)). !
Remark 2.3. Let U ′ be the unipotent radical of some other Borel subgroup of
Gk̆ containing T . Although U and U ′ are conjugate by an element of G(k̆), the
groups Ur(Fq) and U′

r(Fq) need not be isomorphic. For example, let G be the

anisotropic modulo center inner form of GL3 (it splits over k̆ and its k-points
are isomorphic to the units of a division algebra over k). Let x be the unique
point in Bk. Then G1 = T1 is a torus and (after an appropriate choice of x0)

one has G2(Fq) =

(
W2(Fq)× Fq Fq

&Fq W2(Fq)× Fq

&Fq &Fq W2(Fq)×

)
, with the multiplication induced by

identifying Fq with W1(Fq), 'Fq with the ideal 'W2(Fq) ⊂ W2(Fq), and noting
that 'W2(Fq) is naturally a W1(Fq)-module. Now, let U and U ′ be the group of
upper- and lower-triangular unipotent matrices in G. Then U2 = U1

2 is non-abelian,
whereas U′

2 = U′,1
2 is abelian.

2.7. The groups Uα,r. We now give explicit formulas for Uα,r ⊆ Gr.

Definition 2.4. Let x ∈ AT,k̆. We call a root α ∈ Φ

reductive if 〈α,x− x0〉 ∈ Z
non-reductive otherwise.

For any α ∈ Φ, we may uniquely write 〈α,x − x0〉 = −mα + εα with mα ∈ Z and
0 ≤ εα < 1. We have mα = −3〈α,x− x0〉4.

Note that α ∈ Φ is reductive if and only if Uα,1 '= 1.

Lemma 2.5. Let x ∈ AT,k̆ and let r ∈ Z≥1. Let α ∈ Φ. We have

mα + m−α =

{
0 if α is reductive

1 otherwise.

Moreover, the natural map P̆x " Gr(Fq) induces

Uα,r(Fq) =

{
Ŭα,mα/Ŭα,mα+r if α reductive,

Ŭα,mα/Ŭα,mα+r−1 otherwise.

Thus for a ∈ Z, r ≥ a ≥ 1, the same map induces

Ua
α,r(Fq) =

{
Ŭα,mα+a/Ŭα,mα+r if α reductive,

Ŭα,mα+a−1/Ŭα,mα+r−1 otherwise.

Finally, we have Tr(Fq) = T̆ 0/T̆ r and Ta
r = T̆ a/T̆ r.

Proof. Noting that 5−s6 = −3s4 for s ∈ R, the lemma follows immediately from
(2.1) and the definitions of Uα,r, Ua

α,r and Gr. !
We have the following elementary lemma will be useful later.

Lemma 2.6. Let α,β ∈ Φ and assume that p, q ∈ Z≥1, such that pα + qβ ∈ Φ.
Then pmα + qmβ − mpα+qβ = pεα + qεβ − εpα+qβ = 3pεα + qεβ4. In particular,
pmα + qmβ − mpα+qβ ≥ 0.
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Proof. The first equality is immediate. In particular, pεα + qεβ − εpα+qβ is an
integer. This, along with the fact that 0 ≤ εpα+qβ < 1 by definition, implies the
second equality. !

2.8. Weyl groups and the Bruhat decomposition. We have the group

Wx(T ) := (NG(T )(k̆) ∩ P̆ 0
x)/T̆ 0

(cf. [HR08, Proposition 8]), and it coincides with the Weyl group W (T1, G1) of the
torus T1 in the special fiber G1 of Px ([HR08, Proposition 12]). It follows that both
natural maps in the composition

Wx(T ) → NGr (Tr)(Fq)/Tr(Fq) → NG1(T1)(Fq)/T1(Fq)

are isomorphisms. Here NG(H) denotes the scheme-theoretic normalizer of the sub-
group H of a group G (note that it might be non-reduced, but we have NG(H)(Fq) =
NG(H)red(Fq) = {g ∈ G(Fq) : gHg−1 = H}). We also note that Wx(T ) coincides
with the subgroup of the Weyl group W = W (T, G) of T in G generated by the
vector parts of all affine roots ψ ∈ Φaff satisfying ψ(x) = 0 (cf. [Tit79, 1.9, 3.5.1]).
It depends only on the facet of Bk̆ in which x lies, not on x itself.

We will need a second k-rational, k̆-split maximal torus T ′ of G whose apartment
AT ′,k̆ in Bk̆ passes through the point x. Let NG(T, T ′) = {g ∈ G : gTg−1 = T ′} be
the transporter from T to T ′ and analogously, let NGr (Tr, T′

r) be the transporter
from Tr to T′

r. (Again, these need not be reduced, but we are interested in Fq-points
only.) We then have the principal homogeneous space

Wx(T, T ′) := T̆ 0\(NG(T, T ′)(k̆) ∩ P̆ 0
x) = Tr(Fq)\NGr (Tr, T′

r)(Fq).

under Wx(T ). Indeed, this follows as T and T ′ are conjugate by an element of
Px(O).

Let r ≥ 1. For each w ∈ Wx(T, T ′) choose a representative ẇ ∈ NGr (Tr, T′
r)(Fq),

and denote its image in G1 again by ẇ. We have the Bruhat decomposition G1 =⊔
w∈Wx(T,T ′) G1,w of the reductive quotient, where G1,w = U1ẇT′

1U′
1. For r ≥ 1,

define Gr,w to be the pullback of G1,w along the natural projection Gr " G1. Thus
Gr =

⊔
w∈Wx(T,T ′) Gr,w. Let Kr := U−

r ∩ ẇU′−
r ẇ−1 and K1

r := Kr ∩ G1
r.

Lemma 2.7. For r ≥ 1, we have Gr,w = UrK1
rẇT′

rU′
r.

Proof. We compute

Gr,w = UrẇT′
rG1

rU′
r = UrẇT′

r

(
(G1

r ∩ T′
r)(G1

r ∩ U′−
r )(G1

r ∩ U′
r)
)

U′
r

= UrẇT′
r(G1

r ∩ U′−
r )U′

r = Ur

(
ẇ(G1

r ∩ U′−
r )ẇ−1

)
ẇT′

rU′
r

= Ur

(
U−

r ∩ ẇ(G1
r ∩ U′−

r )ẇ−1
)
ẇT′

rU′
r = UrK1

rẇT′
rU′

r,

where the second equality follows from [BT72, 6.4.48]. !

2.9. Commutation relations. For two subgroups H1, H2 of an abstract group H,
we denote by [H1, H2] their commutator. For x, y ∈ H, we write [x, y] := x−1y−1xy.

For α ∈ Φ, let Tα ⊆ T denote the image of the coroot corresponding to α. It is
a one-dimensional subtorus. We also write T̆α,r = Tα(k̆) ∩ T̆ r.

Lemma 2.8.

(i) Let α ∈ Φ and r, m ∈ R̃. Then [T̆ r, Ŭα,m] ⊆ Ŭα,m+r.
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(ii) If α,β ∈ Φ, α '= −β, and m1, m2 ∈ Z, then [Ŭα,m1 , Ŭβ,m2 ] is contained

in the group generated by Ŭpα+qβ,pm1+qm2 for all p, q ∈ Z≥1, such that
pα + qβ ∈ Φ.

(iii) Let α ∈ Φ and m1, m2 ∈ Z. Then [Ŭα,m1 , Ŭ−α,m2 ] ⊆ T̆α,m1+m2 . For any el-

ement x ∈ Ŭ−α,m2 ! Ŭ−α,m2+1, the map ξ $→ [ξ, x] induces an isomorphism
(of abelian groups)

λx : Ŭα,m1/Ŭα,m1+1
∼→ T̆α,m1+m2/T̆α,m1+m2+1.

Proof. (ii) follows from [BT72, (6.2.1)]. (i), (iii): By considering a morphism from
SL2 to Gk̆, whose image is generated by U±α (as in [BT72, (6.2.3) b)]), and pulling
back the valuation of the root datum along this morphism, it suffices to prove the
same statement for SL2(k̆). This is an immediate computation. !

For two smooth (connected) closed subgroups H1, H2 of a connected linear al-
gebraic group G over a field, we denote by [H1, H2] their commutator “in the sense
of group varieties” as in [Bor91, §2.3] (it would be more precise to consider the
scheme-theoretic commutator, but for our purposes this suffices).

Lemma 2.9. Let r ≥ 2 and 1 ≤ a ≤ r − 1. Let α ∈ Φ.

(a) If α is non-reductive, then [Ga+1
r , Ur−a

α,r ] = 1.
(b) If α is reductive, then [Ga

r , Ur−a
r,α ] = 1.

Proof. It suffices to prove the claims on Fq-points.

(a): By Lemma 2.2 it suffices to show to show that [T̆ a+1
r , Ŭr−a

α,r ] = 1 and that

[Ŭa+1
β,r , Ŭr−a

α,r ] = 1 (∀β ∈ Φ) in Gr. By Lemma 2.5 T̆ a+1
r is the image in Ğr of T̆ a+1,

Ŭr−a
α,r is the image of Ŭα,mα+r−a−1, and similar claims hold for all β ∈ Φ. But

[T̆ a+1, Ŭα,mα+r−a−1] ⊆ Ŭα,r+mα by Lemma 2.8(i), and Ŭα,r+mα maps to 1 in Gr, so

[T̆ a+1
r , Ŭr−a

α,r ] = 1 follows. Now assume that β = −α. Then −α is non-reductive as

α is, and by Lemma 2.8(iii), [Ŭ−α,m−α+a, Ŭα,mα+r−a−1] ⊆ T̆α,r+mα+m−α−1 = T̆α,r

maps to 1 in Gr. This shows [Ŭa+1
−α,r, Ŭ

r−a
α,r ] = 1. Thus we can assume β ∈ Φ,

β '= −α. We have two cases.

Case (β is reductive). Then by Lemma 2.5, Ŭa+1
β,r is the image in Ğr of Ŭβ,mβ+a+1

and by Lemma 2.8(ii) we have

[Ŭβ,mβ+a+1, Ŭα,mα+r−a−1] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a+1).

To ensure that this product maps to 1 in Ğr, it suffices to show that for all p, q ∈ Z≥1

with pα + qβ ∈ Φ, one has p(mα + r − a − 1) + q(mβ + a + 1) ≥ mpα+qβ + r, or
equivalently,

pmα + qmβ − mpα+qβ + (p − 1)(r − a − 1) + (q − 1)(a + 1) ≥ 0.

But this follows from Lemma 2.6.

Case (β is non-reductive). By Lemma 2.5, Ŭa+1
β,r is the image in Ğr of Ŭβ,mβ+a and

by Lemma 2.8(ii) we have

[Ŭβ,mβ+a, Ŭα,mα+r−a−1] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a).
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To show that the image of this product vanishes in Gr, we have to show that each
single term does. Assume that pα+ qβ occurs in the product and is non-reductive.
Then vanishing of Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a) in Ğr amounts to the inequality

pmα + qmβ − mpα+qβ + (p − 1)(r − a − 1) + (q − 1)a ≥ 0,

which holds true by Lemma 2.6. Assume finally that pα+ qβ occurs in the product
and is reductive. Then vanishing of Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a) in Ğr amounts to
the inequality

pmα + qmβ − mpα+qβ + (p − 1)(r − a − 1) + (q − 1)a ≥ 1,

or equivalently,

3pεα + qεβ4 + (p − 1)(r − a − 1) + (q − 1)a ≥ 1,

i.e. it suffices to show that pεα + qεβ ≥ 1. But as pα + qβ is reductive,

(2.2) Z 7 〈pα+qβ,x−x0〉 = p〈α,x−x0〉+q〈β,x−x0〉 = −pmα−qmβ+pεα+qεβ .

As −pmα − qmβ ∈ Z, we deduce pεα + qεβ ∈ Z. On the other side εα, εβ > 0 (as
α,β non-reductive), and hence pεα + qεβ > 0. Thus, pεα + qεβ ≥ 1. This finishes
the proof of (a).

(b): We have [T̆ a, Ŭα,mα+r−a] ⊆ Ŭα,mα+r by Lemma 2.8(i), and the latter group

maps to 1 in Ğr. Thus [T̆ a
r , Ŭr−a

α,r ] = 1. Further, Lemma 2.8(iii) shows

[Ŭ−α,m−α+a, Ŭα,mα+r−a] ⊆ T̆α,mα+m−α+r = T̆α,r,

which maps to 1 in Ğr. Thus [Ŭa
−α,r, Ŭ

r−a
α,r ] = 1. Finally, let β ∈ Φ, β '= −α. Again

we have two cases.

Case (β is reductive). By Lemma 2.8(ii),

[Ŭβ,mβ+a, Ŭα,mα+r−a] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a)+q(mβ+a),

Now, by Lemma 2.6 we have

p(mα + r − a) + q(mβ + a) ≥ mpα+qβ + r.

So, regardless of whether

pα + qβ

is reductive or not, it follows that Ŭpα+qβ,p(mα+r−a)+q(mβ+a) maps to 1 in Ğr, and

hence [Ŭa
β,r, Ŭ

r−a
α,r ] = 1.

Case (β is non-reductive). By Lemma 2.8(ii),

[Ŭβ,mβ+a−1, Ŭα,mα+r−a] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a)+q(mβ+a−1),

and the proof can be finished exactly as in the “β non-reductive”-case of part
(a). !
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2.10. Regularity of characters. Recall the notation T from Section 2.6. Con-
sider the norm map Nσm

σ : T (Fq)σ
m →T (Fq)σ =T (Fq) given by t $→ tσ(t) · · ·σm−1(t).

Let r ∈ Z≥1 be fixed. Following Lusztig [Lus04, 1.5], we say a character χ : T (Fq) →
Q×

! is regular if for any α ∈ Φ and any m ≥ 1 such that σm(α) = α, the restriction
of χ ◦ Nσm

σ to T α(Fq)σ
m

is non-trivial. A character χ of T̆σ
r is called regular if its

restriction χ|T (Fq) is regular.

Let θ : T (k) → Q×
! be a character of level r − 1; that is, θ is trivial on T̆ (r−1)+ ∩

T (k) but nontrivial on T̆ (r−2)+. Its restriction to T̆ 0 ∩ T (k) can be viewed as a
character χ of T̆σ

r = (T̆ 0/T̆ (r−1)+)σ. We say θ is regular if χ is.

Remark 2.10. When G is an inner form of GLn(K) and T is a maximal nonsplit
unramified torus, then T (k) ∼= L×, where L is the degree-n unramified extension of

k. If θ : L× → Q×
! is a smooth character trivial on (T̆ r)σ = Ur

L = 1+'rOL, then θ
being regular is the same as being primitive in the sense of Boyarchenko–Weinstein
[BW16, Section 7.1]. This is closely related to θ being minimal admissible in the
sense of Bushnell–Henniart [BH05, Section 1.1]. We refer to [CI20, Remark 12.1]
for a more precise comparison.

3. Representations of parahoric subgroups of G(k)

We use notation from Section 2. We fix a point x ∈ Bk, an integer r ≥ 1,
a maximal torus T of G defined over k, split over k̆, and such that x ∈ AT,k̆.

Further, we fix the unipotent radicals U, U− of opposite Borels containing T in Gk̆.
By construction from Section 2.6, this gives the groups Gr, Tr, Ur, U−

r over Fq resp.
Fq.

3.1. The schemes ST,U . Let d be the smallest positive integer such that σd(U) =
U . To this data, we attach the Fqd -subscheme of Gr,

Sx,T,U,r := {x ∈ Gr : x−1σ(x) ∈ Ur}.

To match the notation of [Lus04], we write ST,U for Sx,T,U,r.

Lemma 3.1. ST,U is separated, and (the perfection of a) smooth scheme of finite
type over Fqd , which is of dimension (r − 1)#Φ+ + #Φ+,red, where Φ+ and Φ+,red

are the roots and reductive roots of T in U .

Proof. Indeed, ST,U is the pullback of Ur under the finite étale Lang map Gr →
Gr, x $→ x−1σ(x), and Ur is isomorphic to (the perfection of) the affine space of
dimension (r − 1)#Φ+ + #Φ+,red. !

The finite group Ğσ
r × T̆σ

r acts on ST,U by (g, t) : x $→ gxt.

Remark 3.2. ST,U admits also a natural (free) action of Ur ∩ σ−1(Ur) by right
multiplication. If r = 1, the quotient of ST,U by this action is (Fq-isomorphic to) a
classical Deligne–Lusztig variety for the reductive Fq-group G1.

Lemma 3.3. Let (T, U), (T ′, U ′) be two pairs as above (so that, in particular,
x ∈ AT,k̆ ∩ AT ′,k̆). Then

Ğσ
r \(ST,U × ST ′,U ′)

∼→ Σ, (g, g′) $→ (g−1σ(g), g′−1σ(g′), g−1g′),

is a T̆σ
r × T̆ ′σ

r -equivariant isomorphism, where Ğσ
r acts diagonally on ST,U ×ST ′,U ′ .



12 CHARLOTTE CHAN AND ALEXANDER IVANOV

By functoriality of cohomology, the Ğσ
r×T̆σ

r -action on ST,U induces for each i ∈ Z
a Ğσ

r × T̆σ
r -action on Hi

c(ST,U , Q!). For a character θ : T̆σ
r → Q×

! , let Hi
c(ST,U , Q!)θ

denote the θ-isotypic component. It is stable under the action of Ğσ
r .

Definition 3.4. We define the virtual Ğσ
r -representation with Q!-coefficients

Rθ
x,T,U,r :=

∑

i∈Z
(−1)iHi

c(ST,U , Q!)θ.

By pullback, we can also consider Rθ
x,T,U,r a virtual representation of the parahoric

subgroup P̆ σ
x of G(k). If x is clear from the context, we write Rθ

T,U,r for Rθ
x,T,U,r .

Moreover, by Theorem 1.1(i), Rθ
T,U,r does not depend on the choice of U , if θ is

regular. In this case we denote Rθ
T,U,r by Rθ

T,r. For the dependence on r see Section
3.2.

Recall the group NGr (Tr, T′
r) from Section 2.8. Now we generalize [Lus04, 2.2].

Proposition 3.5. Assume that r ≥ 2. Let (T, U), (T ′, U ′) be two pairs as above.

Furthermore, let θ : T̆σ
r → Q×

! , θ′ : T̆ ′σ
r → Q×

! be two characters.

(i) Let i, i′ ∈ Z. Assume that an irreducible Ğσ
r -representation appears in the

dual space (Hi
c(ST,U , Q!)θ−1)∨ of Hi

c(ST,U , Q!)θ and in Hi′
c (ST ′,U ′ , Q!)θ′ .

Then there exists an integer n ≥ 1 and a g ∈ NGr (T′
r, Tr)(Fqn) such that

the adjoint action of g carries θ ◦ Nσn

σ |T (Fq)σn to θ′ ◦ Nσn

σ |T ′(Fq)σn .

(ii) Assume that an irreducible Ğσ
r -representation occurs in Rθ

T,U,r and Rθ′

T ′,U ′,r.
Then there exist some n ≥ 1 and g ∈ NGr (T′

r, Tr)(Fqn) such that the adjoint
action of g carries θ ◦ Nσn

σ |T (Fq)σn to θ′ ◦ Nσn

σ |T ′(Fq)σn .

Proof. The proof (using Lemma 3.3 and Lemma 4.1 below) is literally the same as
the proof of [Lus04, Proposition 2.2]. We omit the details. !

3.2. Change of level. One could hope that if θ is a character of T (Ok) = (T̆ 0)σ

which is trivial on (T̆ r)σ, then the representations Rθ
T,U,r and Rθ

T,U,s for all s ≥ r
coincide. In [CI20, Proposition 7.6], it is shown that this holds when G is an inner
form of GLn(k) and T is an elliptic torus. We will show in subsequent work that for
general G which split over k̆, this is true when T is elliptic. However this fails for
general T . In some sense, the more T splits, the bigger is the discrepancy between
Rθ

T,U,r and Rθ
T,U,r+1. We will explain the failure in an example.

Assume that G is quasi-split over k and let T ⊆ G be a maximal k-rational
torus, which contains a k-split maximal torus of G. Under these assumptions there
is a k-rational Borel subgroup of G containing T . Let U be its unipotent radical.
There is a hyperspecial vertex x = x0 contained in AT,k̆ ∩Bk. Let r ≥ 1, and let θ

be a character of (T̆ 0)σ, which factors through the character (again denoted θ) of
T̆σ

r . For each s ≥ r,

Sx,T,U,s/Us = (Gs/Us)
σ = Gσ

s /Uσ
s

is a discrete point set. For a surjection of groups H " K, let InfH
K denote the

inflation functor from virtual K-representations to virtual H-representations given
by pullback. Since Sx,T,U,s and Sx,T,U,s/Ur have the same cohomology groups up
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to an even degree shift, we then have

Rθ
x,T,U,s = Ind

Ğσ
s

B̆σ
s

Inf
B̆σ

s

B̆σ
r

θ,

Inf
Ğσ

s

Ğσ
r

Rθ
x,T,U,r = Inf

Ğσ
s

Ğσ
r

Ind
Ğσ

r

B̆σ
r

θ = Ind
Ğσ

s

B̆σ
s Ğr,σ

s
Inf

B̆σ
s Ğr,σ

s

B̆σ
r

θ,

where the last formula follows from a general commutativity fact for inflation and

induction (IndG
HN InfHN

HN/N χ = InfG
G/N IndG/N

HN/N χ for an abstract group G, a sub-

group H ⊆ G, a normal subgroup N ⊆ G, and a representation χ of HN/N). Thus

Rθ
x,T,U,s is bigger than Inf

Ğσ
s

Ğσ
r

Rθ
x,T,U,r .

4. The scheme Σ

Let the notation be as in the beginning of Section 3. Moreover, let T ′ be another
torus such that x ∈ AT,k̆∩AT ′,k̆, and let U ′, U ′,− be the unipotent radicals of a pair

of opposite Borels containing T ′. Let T′
r, U′

r, U′,−
r be the corresponding subgroups

of Gr.

4.1. Definition of Σ, Σw. Attached to (T, U), (T ′, U ′), we consider the following
locally closed reduced subscheme of σ(Ur)× σ(U′

r)×Gr whose Fq-points are given
by

Σ(Fq) :=
{
(x, x′, y) ∈ σ(Ŭr) × σ(Ŭ ′

r) × Ğr : xσ(y) = yx′
}

.

Recalling the Bruhat decomposition discussed in Section 2.8, the scheme Σ decom-
poses into a disjoint union of locally closed subsets Σ =

∐
w∈Wx(T,T ′) Σw, where

Σw is the reduced subscheme of Σ with Fq-points

Σw(Fq) :=
{
(x, x′, y) ∈ Σ(Fq) : y ∈ Gr,w(Fq)

}
.

The group T̆σ
r × T̆ ′σ

r acts on Σ and each Σw by

(t, t′) : (x, x′, y) $→ (txt−1, t′x′t′−1, tyt′−1).

The following lemma is completely analogous to [Lus04, Lemma 1.4].

Lemma 4.1. Let r ≥ 2 and let θ : T̆σ
r → Q×

! , θ′ : T̆ ′σ
r → Q×

! be characters such that
Hj

c (Σ)θ−1,θ′ '= 0 for some j ∈ Z. Then there exist n ≥ 1 and g ∈ NGr (T′
r, Tr)σ

n

such that Ad(g) carries θ|T σ ◦ Nσn

σ to θ′|T ′σ ◦ Nσn

σ .

Proof. The proof of [Lus04] applies. The only point where one must be careful is
the claim that T and T ′ centralize G1

r (this is used to extend the action of T (Fq)×
T ′(Fq) on a covering of Σw to an action of a connected group). Passing to Fq-

points, this is the claim that the subgroups T̆ (r−2)+/T̆ (r−1)+ = T̆ (r−1)/T̆ (r−1)+ and

T̆ ′(r−2)+/T̆ ′(r−1)+ = T̆ ′(r−1)/T̆ ′(r−1)+ centralize P̆ 0+
x /P̆ (r−1)+

x . By [MP94, §2.6,

end of p.396], we have [P 0+
x , P (r−1)

x ] ⊆ P (r−1)+
x , which verifies the claim. !

4.2. Euler characteristic of Σ. Fix some w ∈ Wx(T, T ′). Consider the locally
closed subscheme Σ̂′

w of σ(Ur)×σ(U′
r)×Ur ×U′

r × (K1
r ! {1})×T′

r, determined by

Σ̂′
w(Fq) = {(x, x′, u, u′, z, τ ′) ∈ σ(Ŭr) × σ(Ŭ ′

r) × Ŭr×Ŭ ′
r × (K̆1

r ! {1}) × T̆ ′
r :

xσ(uzẇτ ′u′) = uzẇτ ′u′x′},
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and define an action of T̆σ
r × T̆ ′σ

r on it by
(4.1)

(t, t′) : (x, x′, u, u′, z, τ ′) $→ (txt−1, t′x′t′−1, tut−1, t′u′t′−1, tzt−1, ẇ−1tẇτ ′t′−1).

Generalizing [Lus04, 1.9(c)], we will show the following proposition, which is the
main technical result of Section 4.

Proposition 4.2. Let θ and θ′ be characters of T̆σ
r and T̆ ′σ

r respectively, and assume
that θ or θ′ is regular. For each w ∈ Wx(T, T ′), we have

(4.2)
∑

i∈Z
(−1)i dim Hi

c(Σ̂
′
w, Q!)θ−1,θ′ = 0.

We prove Proposition 4.2 in Section 4.6 after the necessary preparations. As a
corollary to Proposition 4.2, we deduce the following analogue of [Lus04, Lemma
1.9] and use it to prove Theorem 1.1.

Corollary 4.3. With assumptions as in Proposition 4.2, we have
∑

i∈Z
dim Hi

c(Σ, Q!)θ−1,θ′ = #{w ∈ Wx(T, T ′)σ : θ ◦ Ad(ẇ) = θ′}.

Proof. The proof goes along the lines of the proof of [Lus04, 1.9] (all arguments
except for the proof of Proposition 4.2 are literally the same). !

Proof of Theorem 1.1. The case r = 1 is equivalent to the classical Deligne–Lusztig
orthogonality relations [DL76, Theorem 6.8] for the reductive group G1 over Fq.
Suppose now that r ≥ 2. For the first statement of Theorem 1.1 observe that
a standard computation using Lemma 3.3 and the Künneth formula shows that
〈Rθ

T,U , Rθ′

T ′,U ′〉 =
∑

i∈Z dim Hi
c(Σ, Q!)θ−1,θ′ . Now apply Corollary 4.3. Now state-

ments (i) and (ii) follow from the already proven part as in [Lus04, 2.4]. !

4.3. Filtration of Ga
a+1. The main difference between the present article and

[Lus04] is that if Px is not reductive (i.e. if x is not a hyperspecial point), then
G1

2 may not be abelian. This is significant because Lusztig’s construction of a
stratification of Σ̂w and a corresponding action of a connected algebraic group
[Lus04, 1.7,1.8] depend on the abelianness of Ga

a+1. To deal with this problem, we
need a refinement of the filtration of G1

r by its subgroups Ga
r for 1 ≤ a ≤ r− 1. For

a ≥ 1, we define a filtration of Ga
a+1 as follows: let

H(1) := subgroup of Ga
a+1 generated Ta

a+1 and Ua
α,a+1 for all reductive α ∈ Φ,

and for all 0 ≤ ε < 1, let

H(ε) := subgroup of Ga
a+1 generated by H(1) and all Ua

α,a+1 for α ∈ Φ,

satisfying εα ≥ ε.

Note that Ta
a+1 ⊆ H(1) ⊆ H(ε′) ⊆ H(ε) ⊆ Ga+1

a for all 1 > ε′ ≥ ε > 0. Moreover,
there are only finitely many values of ε (“jumps”) satisfying H(ε) "

⋃
ε′>ε H(ε′).

We denote these jumps by 1 =: εs+1 > εs > · · · > ε1 > 0 for some s ≥ 0 (thus 1 is
a jump by definition). The jumps are independent of a. We have H(ε1) = Ga

a+1.
For a ≤ r − 1, let p : Ga

r " Ga
a+1 be the natural projection, and for s + 1 ≥ i ≥ 1,

put

Ga,i
r := p−1(H(εi)).
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For convenience, we put Ga,s+2
r := Ga+1

r . This defines a refinement {Ga,i
r }r−1≥a≥1

s+2≥i≥1

of the filtration {Ga
r}r−1≥a≥1 of G1

r, decreasing with respect to the lexicographical
ordering on pairs (a, i). For s + 1 ≥ i ≥ 1, let Φi be the set of roots “appearing” in
H(εi)/H(εi+1):

Φi :=

{
{α ∈ Φ : εα = 0} if i = s + 1,

{α ∈ Φ : εα = εi} if s ≥ i ≥ 1.

Lemma 4.4. Let r ≥ 2 and r − 1 ≥ a ≥ 1.

(i) Let a ≥ 2. Then Ga
r/Ga+1

r = Ga
a+1 is abelian, and in particular, for s+1 ≥

i ≥ 1, Ga,i
r /Ga,i+1

r is abelian.
(ii) Let a = 1 and s + 1 ≥ i ≥ 1. Then G1,i

r is normal in G1
r and the quotient

G1,i
r /G1,i+1

r is abelian.

Proof. It suffices to prove the assertions on Fq-points. To show (i), notice that

if a ≥ 2, then [P̆ (a−1)+
x , P̆ (a−1)+

x ] ⊆ P̆ 2(a−1)+
x ⊆ P̆ a+

x , so it follows that Ğa
a+1 =

P̆ (a−1)+
x /P̆ a+

x is abelian. To establish (ii), it is enough to show that (with a = 1)
for any s+1 ≥ i ≥ 1, H(εi) is normal in G1

2 and that H(εi)/H(εi+1) is abelian. We
spend the rest of the proof establishing these two claims. Recall that for s + 1 ≥
i ≥ 1, H(εi) is generated by T1

2 and all U1
α,2 with α ∈

⊔s+1
j=i Φj .

We start with i = s+1, i.e. the case H(εs+1) = H(1). By Lemma 2.8, [T̆ 1
2 , Ŭ1

α,2] =
1. Let α ∈ Φs+1 (thus α is reductive) and let β ∈ Φ be any non-reductive root.
Then [Ŭ1

α,2, Ŭ
1
β,2] is the image in Ğ1

2 of

(4.3) [Ŭα,mα+1, Ŭβ,mβ ] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+1)+qmβ
.

Using Lemma 2.6 along with p ≥ 1, we see that p(mα + 1) + qmβ ≥ mpα+qβ + 1.

Thus the contribution of pα+qβ to the commutator lies in Ŭpα+qβ,mpα+qβ+1. From
this we deduce [U1

α,2, U1
β,2] ⊆ H(1). Thus if x ∈ U1

β,2 for any β ∈ Φ, and y ∈ U1
α,2,

then xyx−1 = [x−1, y−1]y ∈ H(1), which shows that H(1) is normal in G1
2. A

computation analogous to (4.3) for α,β ∈ Φ+ both reductive, shows immediately
that [U1

α,2, U1
β,2] = 1 and [T1

2, U1
α,2] = 1, so H(1) is abelian.

Next, pick some s ≥ i ≥ 1. We show that H(εi) is normal in G1
2. Since we have

already established that H(εs+1) is normal in G1
2, it suffices to check as above that

for all (non-reductive) α ∈ Φ with εα ≥ εi and all non-reductive β ∈ Φ, we have
[U1

α,2, U1
β,2] ⊆ H(εi). Now, [Ŭ1

α,2, Ŭ
1
β,2] is the image in Ğ1

2 of

[Ŭα,mα , Ŭβ,mβ ] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,pmα+qmβ .

Now, if εpα+qβ ≥ εi, then the contribution of pα+qβ to the commutator is contained
in U1

pα+qβ,2 ⊆ H(εi). If pα+qβ is reductive, the same computation as in (2.2) shows

that Ŭpα+qβ,pmα+qmβ ⊆ Ŭpα+qβ,mpα+qβ " Ŭ1
pα+qβ,2. It remains to handle the case

that pα + qβ is non-reductive with εpα+qβ < εi. If pεα + qεβ < 1, then by Lemma
2.6, pεα+qεβ−εpα+qβ = 3pεα+qεβ4 = 0, i.e. εi > εpα+qβ = pεα+qεβ ≥ pεi, which
is a contradiction. Thus we must have pεα+qεβ ≥ 1, hence pmα+qmβ−mpα+qβ =

3pεα + qεβ4 ≥ 1. Thus Ŭpα+qβ,pmα+qmβ ⊆ Ŭpα+qβ,mpα+qβ+1, whose image in Ğ1
2
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vanishes. We may finally conclude that [U1
α,2, U1

β,2] ⊆ H(εi), which finishes the

proof of normality of H(εi) in G1
2.

For α and β non-reductive with εα = εβ = εi, a similar computation shows that
[U1

α,2, U1
β,2] ⊆ H(εi+1). Thus H(εi)/H(εi+1) is abelian. !

4.4. Pairings induced by the commutator. Let N, N− be the unipotent rad-
icals of any two opposite Borel subgroups of G which contain T and are defined
over k̆. (We will specify N to suit our needs in Section 4.6.) For r − 1 ≥ a ≥ 1,
let Nr, N−

r and Na
r , N−,a

r be the corresponding subgroups of Gr and Ga
r . Let

Φ+ = {α ∈ Φ : Uα,r ⊆ Nr} and Φ− = Φ!Φ+ = {α ∈ Φ : Uα,r ⊆ N−
r }. For

s + 1 ≥ i ≥ 1, set Φ+
i = Φi ∩ Φ+ and Φ−

i = Φi ∩ Φ−, and let N1,i
r = G1,i

r ∩ Nr. We
study some pairings induced by the commutator map. Note that the targets of the
maps in Lemma 4.5 are abelian by Lemma 4.4.

Lemma 4.5. Let r ≥ 2 and r − 1 ≥ a ≥ 1. Let α ∈ Φ be a non-reductive root.

(i) Let a ≥ 2. The commutator map induces a bilinear pairing of abelian
groups,

Ur−a
α,r /Ur−a+1

α,r × Na
r/Na+1

r → Gr−1
r , (ξ̄, x̄) $→ [ξ̄, x̄].

(ii) Let a = 1 and s + 1 ≥ i ≥ 1. Assume that ε−α = εi (thus εα = 1− εi). We
have [Ur−1

α,r , N1,i
r ] ⊆ Gr−1,s+1

r and [Ur−1
α,r , N1,i+1

r ] = 1. The commutator map
induces a bilinear pairing of abelian groups,

Ur−1
α,r × N1,i

r /N1,i+1
r → Gr−1,s+1

r , (ξ, x̄) $→ [ξ̄, x̄].

Proof.
(i): By Lemma 2.9 applied three times, the commutator map Ur−a

α,r × Na
r → Gr

induces the claimed pairing. It is linear in x̄: if x1, x2 ∈ N̆a
r , then

[ξ, x1x2] = ξ−1x−1
2 x−1

1 ξx1x2 = ξ−1x−1
1 x−1

2 ξx2x1 = ξ−1x−1
1 ξ[ξ, x2]x1 = [ξ, x1][ξ, x2],

where the second equality follows from Lemma 2.9 and Na
r/Na+1

r being abelian, and
the fourth follows from Lemma 2.9 as [ξ, x2] ∈ Ğr−1

r , the assumption a ≥ 2, and
the subsequent fact that Na

a+1 is generated by root subgroups contained in it. The
linearity in ξ̄ is shown similarly.

(ii): We work on Fq-points. To show the first claim, we observe that Ur−1
α,r com-

mutes with N2
r by Lemma 2.9. As N1,i+1

r is generated by N2
r along with U1

β,r
for all β which are either reductive or satisfy εβ ≥ εi, we have to show that
[Ur−1

α,r , U1
β,r] ⊆ Gr−1,s+1

r for all such β. We have two cases:

Case (β is non-reductive). We have to show that [Ŭα,mα+r−2, Ŭβ,mβ ] maps to

Ğr−1,s+1
r inside Ğr. Using Lemma 2.8(ii), it is enough to show that for all p, q ∈ Z≥1

such that pα + qβ ∈ Φ, Ŭpα+qβ,p(mα+r−2)+qmβ
maps to 1 in Ğr if pα + qβ is non-

reductive and maps to Ŭr−1
pα+qβ,r if pα+qβ is reductive. In both cases, this amounts

to the claim that

p(mα + r − 2) + qmβ ≥ mpα+qβ + r − 1,

which in turn by Lemma 2.6 is equivalent to

3pεα + qεβ4 + (p − 1)(r − 2) ≥ 1,

which is true as εβ ≥ εi = ε−α = 1 − εα.
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Case (β is reductive). This case is shown similarly (in fact, slightly simplier) to
the above, and we omit the details. This finishes the proof of the first claim, i.e.,
[Ur−1

α,r , N1,i
r ] ⊆ Gr−1,s+1

r .
We now show the second claim, i.e., [Ur−1

α,r , N1,i+1
r ] = 1. Proceeding analogously

as in the proof of the first claim, we need only to show that for all β ∈ Φ either
reductive or satisfying εβ ≥ εi+1, one has [Ur−1

α,r , U1
β,r] = 1. We again have two

cases:

Case (β is non-reductive). We have to show that [Ŭα,mα+r−2, Ŭβ,mβ ] maps to 1 in

Ğr. Using Lemma 2.8(ii), it is enough to show that for all p, q ∈ Z≥1 such that
pα + qβ ∈ Φ, Ŭpα+qβ,p(mα+r−2)+qmβ

maps to 1 in Ğr. If pα + qβ is non-reductive,
this follows from the similar statement in the proof of the first claim, as εi+1 ≥ εi.
If pα + qβ is reductive, it amounts to claim that

p(mα + r − 2) + qmβ ≥ mpα+qβ + r,

which by Lemma 2.6 is equivalent to

3pεα + qεβ4 + (p − 1)(r − 2) ≥ 2,

But this is true, as 3pεα + qεβ4 ≥ 2. Indeed, as pα + qβ is reductive, εpα+qβ = 0.
Hence by Lemma 2.6 3pεα + qεβ4 = pεα + qεβ ≥ εα + εβ > 1. Being an integer,
3pεα + qεβ4 must be ≥ 2.

Case (β is reductive). This case is shown similarly (in fact, slightly simpler) to the
above, and we omit the details. This finishes the proof of the second claim.

We are now ready to show that the claimed pairing is well-defined. Indeed, let
ξ ∈ Ŭr−1

α,r and let x, x′ ∈ N̆1,i
r with the same image x̄ = x̄′ ∈ N̆1,i

r /N̆1,i+1
r . Then

there is an y ∈ N̆1,i+1
r such that x′ = xy. We compute:

[ξ, x′] = [ξ, xy] = ξ−1y−1x−1ξxy = y−1[ξ, x]y = [ξ, x],

where for the third equality we use that [Ur−1
α,r , N1,i+1

r ] = 1 and for the last we use

that [ξ, x] ∈ Ğr−1,s+1
r and [Gr−1,s+1

r , N1
r] = 1 (indeed, for any reductive root γ we

have [Ur−1
γ,r , N1

r] = 1 by Lemma 2.9). Now we show that this pairing is linear in the

second variable. Therefore, let ξ ∈ Ŭr−1
α,r and x1, x2 ∈ N̆1,i

r . We compute:

[ξ, x1x2] = ξ−1x−1
2 x−1

1 ξx1x2 = ξ−1[x2, x1]x
−1
1 x−1

2 ξx1x2

= [x2, x1]ξ
−1x−1

1 x−1
2 ξx1x2 = [x2, x1]ξ

−1x−1
1 x−1

2 ξx2x1[x1, x2]

= [x2, x1]ξ
−1x−1

1 ξ[ξ, x2]x1[x1, x2] = [x2, x1][ξ, x1][ξ, x2][x1, x2]

= [ξ, x1][ξ, x2].

The third equality follows as [x2, x1] ∈ N̆1,i+1
r (as N1,i

r /N1,i+1
r is abelian) and as

[Ur−1
α,r , N1,i+1

r ] = 1. The sixth equality follows as [ξ, x2] ∈ Ğr−1,s+1
r commutes

with x1 ∈ N̆1
r . The last equality follows as [ξ, x1], [ξ, x2] ∈ Ğr−1,s+1

r commute
with [x1, x2] ∈ N̆1

r , and as [x2, x1][x1, x2] = 1. An analogous (slightly simplier)
computation shows the linearity in the first variable. !
Remark 4.6. Lemma 2.8(ii) can certainly be generalized. As we will not use the
following generalization, we state it without proof. As for any root α ∈ Φ, −α is a
root too, and ε−α = 1−εα, we have a symmetry between the jumps εi. Concretely,
we have εi = 1 − εs+1−i for 1 ≤ i ≤ s. For each 1 ≤ a ≤ r − 1, let Ga,i

r be
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the subgroup of Ga
r generated by Ga+1

r , Ta
r , Ua

α,r (α reductive or εα ≥ εi). Then
Lemma 2.8 extends to the following general duality statement: Fix 1 ≤ a ≤ r − 1
and 1 ≤ i ≤ s. Then the commutator induces a bilinear pairing,

Gr−a,s+1−i
r /Gr−a,s+2−i

r × Ga,i
r /Ga,i+1

r → Gr−1,s+1
r .

4.5. Stratification on (subgroups of) N1
r. Recall that for any subgroup H ⊂ G

and associated subgroups Hr ⊂ Gr, we have the notation Ha,∗
r = Ha

r !Ha+1
r (open

subscheme) and hence the corresponding set H̆a,∗
r of Fq-valued points.

Lemma 4.7. Let r ≥ 2 and let r − 1 ≥ a ≥ 1. For z ∈ N̆a,∗
r , write z =

∏
β∈Φ+ xz

β

with xz
β ∈ Ŭa

β,r for a fixed (but arbitrary) order on Φ+. For β ∈ Φ+, let a ≤
a(β, z) ≤ r be the integer such that xz

β ∈ Ŭa(β,z),∗
β,r .

(i) If a ≥ 2, then the set

Az := {β ∈ Φ+ : a(β, z) = a}
is non-empty and independent of the chosen order on Φ+.

(ii) Let a = 1 and let s + 1 ≥ i ≥ 1 be such that z ∈ N̆1,i,∗
r . Then the set

Az := {β ∈ Φ+
i : a(β, z) = 1}

is non-empty and independent of the chosen order on Φ+. Moreover, a(β, z)
> 1 for all β ∈

⋃i−1
j=1 Φ

+
j .

Proof.
(i): As a ≥ 2, the quotient Na

r/Na+1
r is abelian by Lemma 4.4. Thus its Fq-points

are simply tuples (x̄β)β∈Φ+ with x̄β ∈ Ŭa
β,a+1 with entry-wise multiplication. If

z̄ = (x̄z
β) is the image of z in this quotient, then Az identifies with the set of those

β for which x̄z
β '= 1 (which is obviously independent of the order).

(ii): Assume that the last claim of (ii) is not true. Then let 1 ≤ i0 < i be the
smallest integer such that a(β, z) = 1 for some β ∈ Φ+

i0
. Then from Lemma 4.4

it follows that z ∈ N̆1,i0,∗
r , which contradicts the assumption. This shows the last

claim. The first claim follows by the same argument as in (i). !
Using Section 4.4 we can now prove the following generalization of [Lus04,

Lemma 1.7].

Definition 4.8. For α ∈ Φ+ define its height ht(α) (relative to N) to be the largest
integer m ≥ 1 such that α =

∑m
i=1 αi with αi ∈ Φ+.

Proposition 4.9. Let r ≥ 2 and let r − 1 ≥ a ≥ 1. Let z =
∏

β∈Φ+ xz
β ∈ N̆a,∗

r for

xz
β ∈ Ŭa

β,r and let Az be as in Lemma 4.7.

(i) If Az contains a non-reductive root, let −α ∈ Az be a non-reductive root
of maximal height and α ∈ Φ− its opposite. Then for any ξ ∈ Ur−a

α,r , we
have [ξ, z] ∈ T αN−,r−1

r . Moreover, projecting [ξ, z] into T α induces an
isomorphism

λz : Ur−a
α,r /Ur−a+1

α,r
∼→ T α

(ii) If Az contains only reductive roots, let −α ∈ Az be a root of maximal
height and α ∈ Φ− its opposite. Then for any ξ ∈ Ur−a−1

α,r , we have [ξ, z] ∈
T αN−,r−1

r . Moreover, projecting [ξ, z] into T α induces an isomorphism

λz : Ur−a−1
α,r /Ur−a

α,r
∼→ T α



COHOMOLOGICAL REPRESENTATIONS OF PARAHORIC SUBGROUPS 19

Proof. Parts (i) and (ii) can be proven in the same way. We give the full proof of
(i) only.

Proof of (i) when a ≥ 2. We work on Fq-points. Assume that Az contains a non-
reductive root and let −α be such a root of maximal height and α ∈ Φ− its opposite.
Let ξ ∈ Ŭr−a

α,r and let ξ̄ ∈ Ŭr−a
α,r /Ŭr−a+1

α,r and z̄ ∈ N̆a
r /N̆a+1

r be the images of ξ and
z respectively. By Lemma 4.4 we may write

z̄ = x̄z
−α

∏

β∈Φ+ red.

x̄z
β ·

∏

β∈Φ+ non-red., β -=−α
ht(β)≤ht(−α)

x̄z
β,

where x̄z
β ∈ Ŭa

β,r/Ŭa+1
β,r and where the products are taken in any order. Lemma

4.5 shows that [ξ, z] is the product of [ξ̄, x̄z
−α] with all the [ξ̄, x̄z

β ] for β ∈ Φ+, the

product taken in any order. If β is reductive, then [ξ̄, x̄z
β] ∈ [Ŭr−a

α,r , Ŭa
β,r] = 1 by

Lemma 2.9. If β '= −α is non-reductive, then by assumption ht(β) ≤ ht(−α). The
commutator [ξ̄, x̄z

β] is the image of an element of

(4.4) [Ŭα,mα+(r−a)−1, Ŭβ,mβ+a−1] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,pmα+qmβ+p(r−a−1)+q(a−1)

Lemma 4.10. The image of the right hand side of (4.4) in Ğr lies in N̆−,r−1
r .

Proof. It is enough to show that for each (p, q) occurring in the product, the cor-
responding factor is either contained in N̆−,r−1

r or vanishes in Ğr. If p ≥ q, then
ht(β) ≤ ht(−α) implies pα + qβ '∈ Φ+. So, we may assume that q > p and in
particular q ≥ 2. It is enough to show that

Ŭpα+qβ,pmα+qmβ+p(r−a−1)+q(a−1) ⊆
{

Ŭpα+qβ,mpα+qβ+r if pα + qβ reductive

Ŭpα+qβ,mpα+qβ+r−1 otherwise,

as both map to 1 in Ğr. Equivalently, we have to show that

pmα + qmβ −mpα+qβ +p(r−a−1)+ q(a−1)− (r−1) ≥
{

1 if pα + qβ reductive

0 otherwise.

But this holds as by Lemma 2.6, pmα + qmβ − mpα+qβ = 3pεα + qεβ4 is ≥ 1 if
pα + qβ is reductive and is ≥ 0 otherwise, and as q ≥ 2 and a ≥ 2. !

Finally, [ξ̄, x̄z
−α] = [ξ, xz

−α] ∈ T α(Fq) by Lemma 2.8(iii). Thus [ξ, z] ∈
T α(Fq)N̆−,r−1

r . Moreover, if we project onto T α(Fq), then only [ξ̄, x̄z
−α] survives

and Lemma 2.8(iii) proves the desired isomorphism λz. This finishes the proof of
(i) in the case a ≥ 2.

Proof of (i) when a = 1. Let s ≥ i ≥ 1 denote the integer such that z ∈ N̆1,i,∗.
(Note that i '= s + 1 as Az contains a non-reductive root by assumption). We have
ξ ∈ Ŭr−1

α,r , and we let z̄ denote the image of z in N̆1,i
r /N̆1,i+1

r . By Lemma 4.4 we
may write

z̄ = x̄z
−α




∏

β∈Φ+
i : β -=−α

ht(β)≤ht(−α)

x̄z
β




,



20 CHARLOTTE CHAN AND ALEXANDER IVANOV

(product are taken in any order). By Lemma 4.5, [ξ, z̄] is the product of [ξ, x̄z
−α]

with all the [ξ, x̄z
β] taken in any order. By assumption εβ = εi = ε−α = 1 − εα.

In particular, all β’s are non-reductive. Now, [ξ, x̄z
β] is the image in Ğr−1,s+1

r of an
element of

(4.5) [Ŭα,mα+r−2, Ŭβ,mβ ] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,pmα+qmβ+p(r−2)

Lemma 4.11. The image of the right hand side of (4.5) in Ğr lies in N̆−,r−1
r .

Proof. Note that the right hand side of (4.5) is contained in Ğr−1,s+1
r (exactly as in

the proof of Lemma 4.5(ii)). Now the same arguments as in the proof Lemma 4.10
apply. If p ≥ q, then ht(β) ≤ ht(−α) implies pα+ qβ '∈ Φ+, thus the corresponding
factor of the product is contained in N̆−

r ∩ Ğr−1,s+1
r ⊆ N̆−,r−1

r . Thus we may
assume that q > p and in particular q ≥ 2. It is enough to show that

Ŭpα+qβ,pmα+qmβ+p(r−2) ⊆
{

Ŭpα+qβ,mpα+qβ+r if pα + qβ is reductive

Ŭpα+qβ,mpα+qβ+r−1 otherwise,

as both map to 1 in Ğr. Equivalently, we have to show that

pmα + qmβ − mpα+qβ + p(r − 2) − (r − 1) ≥
{

1 if pα + qβ is reductive

0 otherwise.

By Lemma 2.6, this follows from 3pεα + qεβ4 ≥ 2 if pα + qβ is reductive, resp. to
3pεα + qεβ4 ≥ 1 if pα + qβ is non-reductive. But in any case we have pεα + qεβ ≥
εα + 2(1− εα) = 2− εα > 1 by assumptions. In particular, we are done in the case
when pα + qβ is non-reductive. If pα + qβ is reductive, then pεα + qεβ must also
be an integer (by Lemma 2.6) and hence ≥ 2, and we are done in this case too. !

Finally, [ξ, x̄z
−α] ∈ T α(Fq) by Lemma 2.8(iii). Thus [ξ, z] ∈ T α(Fq)N̆−,r−1

r .
Moreover, if we project onto T α(Fq), then only [ξ̄, x̄z

−α] survives and Lemma 2.8(iii)
proves the desired isomorphism λz. This finishes the proof of (i). !

Remark 4.12. We note that in the proof of [Lus04, Lemma 1.7] there is an (easily
correctable) mistake. It is claimed that whenever −α,β ∈ Φ+ with −α '= β and
ht(−α) ≥ ht(β), then pα + qβ '∈ Φ+ for all p, q ∈ Z≥1. This is not true. For
example, let Φ be of type C2, let ε1, ε2 denote a basis for X∗(T ) such that the
Φ+ = {ε1−ε2, ε1+ε2, 2ε1, 2ε2}. Then taking α = −2ε1, β = ε1+ε2. Then ht(−α) =
3 > 2 = ht(β). But α + 2β = 2ε2 ∈ Φ+. Observe here that α + β /∈ Φ+, which
contradicts the parenthetical assertion at the end of the proof of [Lus04, Lemma
1.7].

Surely, the statement of [Lus04, Lemma 1.7] remains true. The place in its
proof, where the abovementioned claim is used, can be corrected as follows: if
pα + qβ ∈ Φ+ for some p, q ∈ Z≥1, then q ≥ 2 and the part of the commutator
(as in the proof of Proposition 4.9) inside Upα+qβ,r vanishes, since all roots are
reductive and r ≥ 2.
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Let Kr = U−
r ∩ Nr. Let Φ′ = {β ∈ Φ+ : Uβ,r ⊆ Kr}. Let X denote the set of all

non-empty subsets I ⊆ Φ′ satisfying

(i) the restriction of ht : Φ+ → Z≥0 to I is constant, and
(ii) I contains either only reductive or only non-reductive roots.

To z ∈ K̆1
r ! {1} we attach a pair (az, Iz) with 1 ≤ az ≤ r−1 and Iz ∈ X . Define az

by z ∈ K̆az,∗
r . Let Az be as in Lemma 4.7. If Az contains a non-reductive root, let

Iz ⊆ Az be the subset of all non-reductive roots of maximal height. If Az contains
only reductive roots, let Iz ⊆ Az be the subset of all roots of maximal height. We
have a stratification into locally closed subsets
(4.6)

K1
r ! {1} =

⊔

a,I

Ka,∗,I
r , where Ka,∗,I

r (Fq) = {z ∈ K̆1
r ! {1} : (az, Iz) = (a, I)}.

4.6. Cohomology of Σ̂′. We now prove Proposition 4.2. Using the stratification
(4.6) and Proposition 4.9, the proof of Proposition 4.2 is very similar to the proof
of [Lus04, 1.9 (c)]. We sketch the arguments here. It is enough to show that
Hj

c (Σ̂′
w)θ,θ′ = 0 for all j ≥ 0. For a T ′(Fq)σ-module M and a character χ of

T ′(Fq)σ, write M(χ) for the χ-isotypic component of M . Note that T ′(Fq)σ acts

on Σ̂′
w by

t′ : (x, x′, u, u′, z, τ ′) $→ (x, t′x′t′−1, u, t′u′t′−1, z, τ ′t′−1).

Hence Hj
c (Σ̂′

w) is a T ′(Fq)-module. It is enough to show that Hj
c (Σ̂′

w)(χ) = 0 for any
regular character χ of T ′(Fq). Fix such a χ. Set N = ẇU ′−ẇ−1, N− = ẇU ′ẇ−1.

The stratification (4.6) of K1
r !{1} induces a stratification of Σ̂′

w into locally closed
subsets indexed by 1 ≤ a ≤ r − 1 and I ∈ X :

Σ̂′
w =

⊔

a,I

Σ̂′,a,I
w where Σ̂′,a,I

w (Fq) = {(x, x′, u, u′, z, τ ′) ∈ Σ̂′
w(Fq) : z ∈ K̆a,∗,I

r }.

Note that each Σ̂′,a,I
w is stable under T ′(Fq). Thus (4.2) follows from

(4.7) Hj
c (Σ̂′,a,I

w , Q!)(χ) = 0 for any fixed a, I.

To show (4.7), choose a root α such that −α ∈ I. Then Uα,r ⊆ Ur ∩ ẇU′
rẇ

−1. By

Proposition 4.9 for any z ∈ K̆a,∗,I
r , we have an isomorphism

λz : Ur−a
α,r /Ur−a+1

α,r
∼−→ T α, if α is non-reductive,

λz : Ur−a−1
α,r /Ur−a

α,r
∼−→ T α, if α is reductive.

Let π denote the natural projection Ur−a
α,r → Ur−a

α,r /Ur−a+1
α,r if α is non-reductive

and the natural projection Ur−a−1
α,r → Ur−a−1

α,r /Ur−a
α,r if α is reductive. Let ψ be a

section to π such that πψ = 1 and ψ(1) = 1. Let

H′ := {t′ ∈ T ′ : t′−1σ(t′) ∈ ẇ−1T αẇ}.

This is a closed subgroup of T ′. For any t′ ∈ T ′ define ft′ : Σ̂′,a,I
w → Σ̂′,a,I

w by

ft′(x, x′, u, u′, z, τ ′) = (xσ(ξ), x̂′, u,σ(t′)−1u′σ(t′), z, τ ′σ(t′)),

where

ξ = ψλ−1
z (ẇσ(t′)−1t′ẇ−1) ∈

{
Ur−a−1

α,r ⊆ Ur ∩ ẇU′
rẇ

−1 if α is reductive,

Ur−a
α,r ⊆ Ur ∩ ẇU′

rẇ
−1 otherwise,
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and x̂′ ∈ Gr is defined by the condition that

xσ(ξzẇτ ′σ(t′)) ∈ uzẇτ ′σ(t′)σ(t′)−1u′σ(t′)x̂′.

To check that ft′ is well-defined we have to show x̂′ ∈ σ(U′
r). This is done with

exactly the same computation as in the proof of [Lus04, Lemma 1.9], and we omit
this. It is clear that ft′ : Σ̂′,a,I

w → Σ̂′,a,I
w is an isomorphism for any t′ ∈ H′. Moreover,

since T ′(Fq) ⊆ H′ and since for any t′ ∈ T ′(Fq) the map ft′ coincides with the action

of t′ in the T ′(Fq)-action on Σ̂′,a,I
w (we use ψ(1) = 1 here), it follows that we have

constructed an action f of H′ on Σ̂′,a,I
w extending the T ′(Fq)-action.

If a connected group acts on a scheme, the induced action in the cohomol-
ogy is constant. Thus for any t′ ∈ H′◦, the induced map f∗

t′ : Hj
c (Σ̂′,a,I

w , Q!) →
Hj

c (Σ̂′,a,I
w , Q!) is constant when t′ varies in H′◦. Hence T ′(Fq) ∩ H′◦ acts trivially

on Hj
c (Σ̂′,a,I

w , Q!).
We can find some m ≥ 1 such that σm(ẇ−1T αẇ) = ẇ−1T αẇ. Then

t′ $→ t′σ(t′)σ2(t′) · · ·σm−1(t′)

defines a morphism ẇ−1T αẇ → H′. Since T α is connected, its image is also
connected and hence contained in H′◦. If t′ ∈ (ẇ−1T α(Fq)ẇ)σ

m
, then Nσm

σ (t′) ∈
T ′(Fq)σ and hence also Nσm

σ (t′) ∈ T ′(Fq)σ∩H′◦(Fq). Thus the action of Nσm

σ (t′) ∈
T ′(Fq)σ on Hj

c (Σ̂′,a,I
w ) is trivial for any t′ ∈ (ẇ−1T α(Fq)ẇ)σ

m
.

Finally, observe that if Hj
c (Σ̂′,a,I

w , Q!)(χ) '= 0, then the above shows that t′ $→
χ(Nσm

σ (t′)) must be the trivial character, which contradicts the regularity assump-
tion on χ. This establishes (4.7), finishing the proof of Propositon 4.2.

5. Traces of very regular elements

Let the notation be as in the beginning of Section 4. The finale of this section
is the proof of Theorem 1.2.

Definition 5.1. We say that s ∈ P̆x is unramified very regular with respect to x
if the following conditions hold:

(i) s is a regular semisimple element of Gk̆,

(ii) the connected centralizer Z◦(s) of s is a k̆-split maximal torus of Gk̆ whose
apartment contains x, and

(iii) α(s) '≡ 1 modulo p for all roots α of Z◦(s) in Gk̆.

For r ≥ 2, we say that s ∈ Gr is unramified very regular, if s is the image of an
unramified very regular element of P̆x.

Note that condition (ii) implies condition (i). Note that in condition (iii) the
character α : Z◦(s) → Gm,k̆ induces a homomorphism of maximal bounded sub-

groups: α : Z̆◦(s) → O×, and hence the condition makes sense.

Remark 5.2. When G is an inner form of GLn and T is the maximal nonsplit
unramified torus in G, Definition 5.1 says that x ∈ (T̆ 0)σ = O×

L (here k̆ ⊇ L ⊇ k
is the degree-n-subextension) is unramified very regular if and only if the image
of x in (OL/U1

L) ∼= F×
qn has trivial Gal(Fqn/Fq)-stabilizer. This is not equivalent

to (though is implied by) the condition that the image of x in F×
qn is a generator

although this last condition is sometimes also associated to the same terminology
[Hen92,BW13,CI20].
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Note that if s ∈ P̆x is unramified very regular, then we may consider the Wx(T )-
homogeneous space Wx(T, Z◦(s)) (see Section 2.8).

Before proving Theorem 1.2, we point out the following corollary.

Corollary 5.3. Let T ′ ⊂ G be a k-rational k̆-split maximal torus whose apartment
contains x. If T and T ′ are not conjugate by an element of P̆ σ

x , then for any
s ∈ T ′(k) unramified very regular with respect to x,

Tr(s, Rθ
T,U,r) = 0.

Proof. We need to show that for two such tori, Wx(T, T ′)σ = ∅. Suppose there is
an element w ∈ Wx(T, T ′)σ. Then its preimage in NGr (Tr, T′

r) form a Fq-rational
Tr-torsor, which by Lang’s theorem has a rational point. Doing this for all r and
using that the inverse limit of a family of non-empty compact sets is non-empty, we
can find an element n ∈ P̆ σ

x , which conjugates T (O) into T ′(O). The centralizer of
T (O) in G(k̆) is T (k̆) (and similarly for T ′), so n also conjugates T (k̆) into T ′(k̆),
and so it conjugates T into T ′, which contradicts the assumption. !

We now make some preparations that we will use to prove Theorem 1.2. Let B
denote the Borel subgroup of G whose unipotent radical is the fixed subgroup U ,
and let Br be the corresponding subgroup of Gr. The following result shows that
Br behaves in certain aspects like a Borel subgroup of Gr (although it is not a Borel
subgroup if r ≥ 2). Similar results in the case that Px is reductive are shown in
[Sta12].

Proposition 5.4. Let s ∈ Ğr be an unramified very regular element. If x ∈ Ğr is
such that s ∈ xB̆rx−1, then there exists a unique w ∈ Wx(T, Z0(s)) such that for
any lift ẇ ∈ Ğr, we have x ∈ ẇB̆r.

Proof. The maximal k̆-split tori T and Z◦(s) are conjugate by an element y ∈ P̆x,
as x is contained in the intersection of their apartments. Conjugating by y we thus
may reduce to the special case that Z◦(s) = T .

We first prove the assertion in the case r = 1. The image of s in the reductive
group Ğ1 is regular semisimple and B1 ⊆ G1 is a Borel subgroup. By [DL76,
Proposition 4.4(ii)], we see that there is an element ẇ ∈ Ğ1 normalizing T , and
satisfying xB1x−1 = ẇ−1B1ẇ. Since Borel subgroups are self-normalizing, ẇ−1x ∈
B̆1, and we are done.

We now prove the assertion for r ≥ 2. By the above, we see that there exists a
unique w ∈ Wx(T ) such that x ∈ ẇB̆rĞ1

r. We proceed by induction; to this end, it
suffices to prove that if x ∈ ẇB̆rĞr−1

r , then x ∈ ẇB̆r.
Since Gr−1

r is normal in Gr, we may write x = ẇhb for some h ∈ Ğr−1
r and

b ∈ B̆r. By [MP96, Theorem 4.2], Ğr−1
r has an Iwahori decomposition, so we may

write h = h−h+ with h− ∈ Ŭ−,r−1
r and h+ ∈ B̆r−1

r . Replacing b by h+b and
h by h−, we now have h ∈ Ŭ−,r−1

r . Since x−1sx ∈ B̆r by assumption, we have
h−1Ad(w−1)(s)h ∈ B̆r. Writing t for the very regular element Ad(w−1)(s) ∈ T̆r,
we deduce h−1(tht−1)t ∈ B̆r, and thus h−1(tht−1) ∈ B̆r. Since h ∈ Ŭ−,r−1

r by
construction, h−1(tht−1) ∈ B̆r only if h = tht−1, which holds only when h = 1 by
Lemma 5.5. !
Lemma 5.5. Let r ≥ 2 and let t ∈ T̆r ⊂ Ğr be unramified very regular. If tht−1 = h
for some h ∈ Ŭr, then h = 1.
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Proof. Fixing an order on the roots Φ+ = Φ(T, U), we may write h uniquely as∏
α∈Φ+ ψα(hα), where ψα is an isomorphism of Uα,r with a framing object coming

from the Chevalley system. Then
∏

α∈Φ+

ψα(hα) = h = ζ−1hζ =
∏

α∈Φ+

ψα(α(ζ−1)hα),

and hence (by uniqueness of the presentation as a product) hα = α(ζ−1)hα. We
have naturally hα ∈ pr1,α/pr2,α for appropriate r1,α ≤ r2,α ∈ Z. As ζ−1 is very
regular, α(ζ−1) '≡ 1 mod p, and hence the above equality forces hα = 0 for all α.
Thus h = 1. !

By Proposition 5.4,

(5.1) S(g,T)
T,U := {x ∈ Ğr : x−1σ(x) ∈ Ŭr and gx ∈ xT̆σ

r } =
⊔

w∈Wx(T,Z0(g))

S(g,T)
T,U (w),

where
S(g,T)

T,U (w) := {x ∈ ẅB̆r : x−1σ(x) ∈ Ŭr and gx ∈ xT̆σ
r },

for some (any) lift ẅ ∈ Gr of w. For any k-rational k̆-split maximal torus T ′ ⊂ G
whose apartment contains x, the preimage of any w ∈ Wx(T, T ′)σ in Gr is an Fq-
rational Tr-torsor, so by Lang’s theorem, it contains a Fq-rational point ẇ. For any
w ∈ W (T, T ′)σ we fix such a ẇ.

Proposition 5.6. Let g ∈ Ğσ
r be an unramified very regular element. Then

S(g,T)
T,U (w) =

{
ẇT̆σ

r if w ∈ Wx(T, Z0(g))σ,

∅ otherwise.

Proof. Let w ∈ Wx(T, Z0(g)) and let ẅ be any lift of w to Ğr. Assume that

S(g,T)
T,U (w) '= ∅ and let x ∈ S(g,T)

T,U (w). Then ẅ−1x ∈ B̆r and we may write x = ẅtv

with t ∈ T̆r and v ∈ Ŭr. We have x−1gx = v−1t−1ẅ−1gẅtv = v−1svs−1s ∈ Tσ
r ,

where s := ẅ−1gẅ ∈ Tσ
r is unramified very regular. Then v−1svs−1 ∈ Tσ

r , hence
necessarily v = svs−1, which forces v = 1 by Lemma 5.5.

We now have x = ẅt ∈ ẅT̆r. By construction, t−1ẅ−1σ(ẅ)σ(t) ∈ Ŭr. Since the
left-hand side is semisimple, we have ẅt = σ(ẅt), thus forcing w ∈ Wx(T, Z0(g))σ

and S(g,T)
T,U (w) = ẇT̆σ

r . !

Proof of Theorem 1.2. For any k̆-split maximal torus T ′ ⊂ G, we have a short exact
sequence

1 → (T̆ ′
r
1)σ → T̆ ′

r
σ → T̆ ′

1
σ → 1

of finite abelian groups with (T̆ ′
r
1)σ of p-power order and T̆ ′

1
σ of order prime to p.

(The surjectivity on the right holds as T̆ ′
1
σ → H1(Gal(Fq/Fq), T̆ ′

r
1) must be the

zero morphism, as the latter is a p-group). This sequence is split.
Applying the above to T ′ = Z0(g), we may write g = st1 where t1 ∈ (T̆ ′

r
1)σ has

p-power order and s is in the image of the splitting and hence of order prime to p.
It is easy to see that t1 and s are both powers of g. Note that s is still very regular
and Z0(s) = Z0(g). Analogously, applying the above to T ′ = T , for any τ ∈ T̆σ

r ,
we may write τ = ζτ1 with τ1 ∈ (T̆ 1

r )σ, and ζ in the image of the splitting. Thus
(g, τ ) ∈ Ğσ

r × T̆σ
r has the decomposition (g, τ ) = (s, ζ) · (t1, τ1), where (s, ζ) and

(t1, τ1) are both powers of (g, τ ) such that (s, ζ) has prime-to-p order and (t1, τ1) has
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p-power order. Averaging over T̆σ
r and applying the Deligne–Lusztig trace formula

[DL76, Theorem 3.2] (which we may do by Lemma 3.1), we deduce

Tr(g, Rθ
T,U,r) =

1

#T̆σ
r

∑

τ∈T̆σ
r

θ(τ )−1 Tr

(
(g, τ )∗;

∑

i

(−1)iHi
c(ST,U , Q!)

)

=
1

#T̆σ
r

∑

τ∈T̆σ
r

θ(τ )−1 Tr

(
(t1, τ1)

∗;
∑

i

(−1)iHi
c(S

(s,ζ)
T,U , Q!)

)
,(5.2)

where S(s,ζ)
T,U := {x ∈ Gr : x−1σ(x) ∈ Ur, sxζ = x} is the set of fixed points of ST,U

under (s, ζ).

We obviously have S(s,ζ)
T,U ⊆ S(g,T)

T,U , and it now follows easily from Proposition 5.6
that

S(s,ζ)
T,U =

{
ẇTσ

r if ζ = Ad(w−1)(s−1) for some (unique) w ∈ Wx(T, Z0(g))σ,

∅ otherwise.

Now (t1, τ1) acts on a point ẇa∈ ẇTσ
r by (t1, τ1) : ẇa $→ t1ẇaτ1 = ẇAd(w−1)(t1)aτ1,

and thus

Tr

(
(t1, τ1)

∗;
∑

i

(−1)iHi
c(S

(s,ζ)
T,U , Q!)

)
= Tr

(
(t1, τ1)

∗; H0
c (ẇTσ

r )
)

=

{
#T̆σ

r if τ1 = Ad(w−1)(t−1
1 ),

0 otherwise,

and Theorem 1.2 now follows from (5.2). !
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