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Soil moisture links hydrologic and atmospheric processes and impacts important properties of the atmospheric
boundary layer via turbulent land-atmosphere exchange. Research on land-atmosphere interactions and their
impacts on the simulated boundary layer in semi-arid regions with substantial irrigation is relatively sparse. We
use the Weather Research and Forecasting (WRF) model to evaluate the influence different land surface models
(LSMs) and planetary boundary layer (PBL) schemes have on the performance of simulations through compar-
isons with multi-scale observations during a fifteen-day summertime period during 2016. The focus region for
this study is the Central Valley (CV), California, which receives little to no rain in the summer and relies on
widespread irrigation for agriculture. Results demonstrate that the LSM drives the differences between simula-
tions, showing only minor variations with changing the PBL scheme. Simulations using the RUC (Rapid Update
Cycle) and PX-NO (Pleim-Xu without soil moisture and soil temperature nudging) LSMs generated better com-
parisons with observed PBL depths. Contrasting RUC however, PX-NO better simulates surface fluxes and hu-
midity, whereas Noah (Noah Unified) and Noah-MP (Noah Multiparameterization) simulate better temperatures
despite relatively poor surface flux performance. For most quantities, indirect soil nudging in PX (Pleim-Xu) did
not improve results compared to PX-NO, which may be related to soil moisture initialization, the nudging
dataset, or a need for model improvements in arid regions. Despite these variations in performance statistics
across simulations and quantities, we show that potential evapotranspiration (ETo) has robust performance
statistics across simulations. This suggests that ETo depends more strongly on net radiation, which performs
relatively well across simulations, than on wind, temperature, and humidity, and indicates a further disconnect
between ETo and latent heat fluxes in WRF simulations. Finally, we suggest strategies to obtain the necessary
observations to better understand the multi-scale dynamics in the CV and drive subsequent model development.

1. Introduction

Nonlinear physical processes relating conditions of the land-surface
with the overlying atmosphere drive the partitioning of available sur-
face energy and surface exchanges through heat, momentum, and water
vapor fluxes (Wyngaard, 2010). Through land-atmosphere coupling, soil
moisture is a critical component that links the surface hydrologic and
atmospheric systems. For example, soil moisture impacts precipitation
(Ford et al., 2015; Koster et al., 2004; Welty and Zeng, 2018; Zhang
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et al., 2008), near-surface meteorology (Berg et al., 2014; Gevaert et al.,
2018; Kala et al., 2015; Schwingshackl et al., 2017; Sun et al., 2017),
intensification of droughts (Basara et al., 2019; Christian et al., 2019;
Fernando et al., 2016; Leeper et al., 2017; Zaitchik et al., 2013), and
evolution of the planetary boundary layer (PBL) height and structure
(Dirmeyer and Halder, 2016; Santanello et al., 2018; 2007). Simulating
land surface properties, including soil moisture, is complicated and re-
quires parameterizations for the vegetation and soil properties in a nu-
merical grid cell (Ning et al., 2010; Santanello et al., 2018; 2011; 2019),
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often leading to uncertainties in simulating land-atmosphere exchanges.
Land-atmosphere exchange processes are typically simulated using a
land surface model (LSM) to communicate between land surface prop-
erties, or boundary conditions, and the state of the lowest layer of the
atmosphere in numerical weather prediction (NWP) models.

LSM performance varies by geographic region and is affected by the
sophistication of parameterizations (Van Den Broeke et al., 2018). Re-
gions heavily dominated by agriculture often exhibit large uncertainties
due to anthropogenic water and land use. Irrigation and vegetation
properties vary in space and time and hence, are difficult to constrain in
the LSM (Jackson, 2021). For example, studies of the Central Valley (CV)
of California have found that the vast agricultural land-use in the region
requires parameterizations in the LSM that impact simulated soil
moisture content (Kueppers and Snyder, 2012; Sorooshian et al., 2011;
2012). These parameterizations help account for irrigation, typically
reduce model errors of the near-surface meteorology, and range in
complexity (see also Section 2.2). While these parameterizations can
sometimes improve simulations, they can also create unrealistic condi-
tions in the vadose zone—the region between the soil surface and the
water table—for the CV (Sorooshian et al.,, 2014). A more complex
scheme that is based on vegetation greenness during summertime tends
to increase the amount of soil moisture and has been shown to lead to
increased latent heat flux, decreased sensible heat flux, and increased
available energy due to surface cooling and reduced outgoing longwave
radiation (Yang et al., 2019). In addition, it may be feasible to include
statistical irrigation modeling approaches in WRF (e.g., via Noah-MP by
Zhang et al., 2020), however, the necessary data to develop and test
these approaches are not available. A relatively sophisticated LSM that
includes parameterizations for complex plant physiology and multiple
canopy layers improved evapotranspiration estimates in the CV
compared to control simulations (Xu et al., 2017). However, a system-
atic study of how various, widely available LSMs impact atmospheric
simulations over the summertime CV using comparisons with a wide
range of multi-scale observations is needed to better quantify their
respective performance and influences on the atmospheric boundary
layer.

In addition to irrigation and soil moisture, the meteorology and wind
flow patterns in the CV are complex due to the mountainous terrain, an
incoming marine-layer system, and heterogeneous land surfaces (i.e.,
rapidly changing surface types: urban, rural, vegetation, and savanna).
The complex atmospheric processes that occur in the CV have been
investigated through modeling, observational, and remote-sensing
based studies (Bao et al., 2008; Bianco et al., 2011; Caputi et al.,
2019; Faloona et al., 2020; Kueppers and Snyder, 2012; Lawston et al.,
2017; Lin and Jao, 1995; Lo and Famiglietti, 2013; Michelson and Bao,
2008; Sorooshian et al., 2014; 2011; 2012; Xu et al., 2017; Yang et al.,
2019). Both observations and simulations have shown a decrease in
near-surface air temperature over regions of agricultural land-use due to
increased evapotranspiration. Additionally, observations in the CV
showed that summertime irrigation increased the near-surface soil
moisture over agricultural land and changed localized land-surface pa-
rameters, such as albedo, which Bianco et al. (2011) suggest may in-
fluence large-scale effects generating lower PBL heights compared to
other times of the year. Furthermore, Kueppers and Snyder (2012) used
a regional climate model to investigate the impact of climate change in
the CV and found reduced PBL heights, increased evapotranspiration,
weaker near-surface wind speeds, and reduced air temperatures even
over nonagricultural locations.

Many land-atmosphere coupling studies focus on their impacts on
cloud development and precipitation and therefore, focus their research
on regions where precipitation is likely (e.g., Ek and Holtslag, 2004;
Guillod et al., 2015; Hohenegger et al., 2009; Milovac et al., 2016;
Santanello et al., 2018; Santanello et al., 2011). This study focuses on the
summertime CV, an arid and semi-arid agricultural region having almost
no precipitation in the hot summer where soil moisture lost through
evapotranspiration can only be replenished by irrigation (Kueppers and
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Snyder, 2012). Therefore, we aim to investigate how land-atmosphere
coupling and LSMs drive atmospheric boundary layer properties (e.g.,
Michelson and Bao, 2008), as opposed to precipitation. Due to the lack
of summertime precipitation and fertile soils, the CV contains 9.3
million acres of irrigated farmland as of 2015 (Dieter et al., 2018), and it
supports more than 250 crop varieties with a value greater than $20
billion per year (Faunt et al., 2016). Mixed land-use resulting from the
spatial distribution of agricultural practices in the CV generates a
patchwork of surface conditions and soil moisture that vary consider-
ably throughout the basin (Koster et al., 2019) and that vary temporally
depending on irrigation timing and depth. Studies to date have inves-
tigated the effects of soil moisture on one component of the atmospheric
system in the CV, such as near-surface meteorology (Michelson and Bao,
2008), PBL depth (Bianco et al., 2011; Jackson, 2021; Sorooshian et al.,
2011), evapotranspiration (Sorooshian et al., 2012; Xu et al., 2017) or
the larger-scale water cycle which can influence precipitation and cloud
formation downstream of the CV over Nevada, Utah, and Colorado
(Huang and Ullrich, 2016; Lo and Famiglietti, 2013). The goal of this
study is to use a regional-scale model to evaluate various combinations
of LSM and PBL schemes via comparisons with multi-scale observations
in the summertime CV including near-surface meteorology, PBL struc-
ture and depth, and turbulent surface fluxes. Since the CV is a semi-arid
region with substantial agricultural activity, this paper specifically aims
to investigate soil moisture initialization, LSM differences in modeled
soil moisture and land-atmosphere coupling, and their subsequent im-
pacts on the atmospheric boundary layer.

Section 2 describes the WRF model configuration, with a focus on
how the LSMs simulate soil moisture and surface fluxes. It also provides
a brief overview of observations used for comparisons, and model
evaluation statistics used in this study. In Section 3, the results and
discussion of the LSM and PBL scheme sensitivity testing in WRF are
provided and compared to aircraft and/or ground-based observations of
turbulent fluxes, near-surface meteorology, boundary layer structure
and depth, and potential evapotranspiration (ETo) estimated from
standard meteorological stations. Finally, Section 4 suggests strategies
for a comprehensive study to better understand the multi-scale dy-
namics in the CV and to help drive subsequent model development.

2. Methods
2.1. WRF model configurations

The WRF model is a fully compressible, non-hydrostatic regional
atmospheric model (Skamarock et al., 2008). The Advanced Research
version of WRF, version 3.8.1, was configured using two, two-way
nested domains with 12- and 4-km horizontal resolutions (Fig. 1).
Domain 1 (12-km) covers much of the western United States and extends
into the eastern Pacific Ocean to include variations of synoptic-scale
motions associated with coastal flow patterns, which drive many
meteorological processes in the CV (Bao et al., 2008). Domain 2 (4-km)
centers on California’s CV and is the primary interrogation region for
this paper. Simulations used 50 vertical, terrain-following levels, with
30 below 3 km, including 13 levels below 1 km agl (above ground level).
The centroid of the lowest grid box was located at 10 m agl. The terrain
elevation in Domain 2 ranged from 10 m below sea level to above 4000
m in the Sierra-Nevada Range. The U.S. Geological Survey 28-category
land cover dataset was used for land-use information in all the simula-
tions due to its increased agricultural land-use designations in the CV
compared to other land-use datasets. The land-use data, which are based
on the principal land-use within the numerical grid (Fig. 1), provide
important land surface boundary conditions and characteristics, such as
aerodynamic resistance and shade fraction.

Simulations were initialized at 00 UTC 24 July 2016 and were run
through 8 August 2016, except for the one simulation using the PX LSM,
which was initialized on 00 UTC 14 July 2016 to incorporate the indirect
soil moisture and temperature nudging, which requires a 10-day spin-up
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Fig. 1. WRF two-way nested domains at 12 and 4 km with terrain elevation represented in meters. Inlay shows land-use in the interior of the CV, with the California
Irrigation Management Information System (CIMIS) stations, the US-Tw3 Ameriflux Station, the wind profiler at Visalia, and the California Baseline Ozone Transport

Study (CABOTS) flight domain used for comparisons (see Section 2.4).

period (Pleim and Xiu, 2003; Ran et al., 2015; 2016). The selected
analysis period corresponds with available flight data, described below.
Simulation times before 25 July 2016, the beginning of the analysis
period, were considered to be model spin-up and not used in the ana-
lyses. Boundary and initial conditions were from the North American
Regional Reanalysis (NARR) with the 3-hourly dataset and 32-km nat-
ural grid (Mesinger et al., 2006). NARR was chosen due to its relatively
high temporal resolution compared to other reanalysis products for
North America. Each simulation used two types of four-dimensional data
assimilation, or grid and surface nudging, in Domain 1. Grid nudging
above the planetary boundary layer adjusted wind speed and direction,
atmospheric moisture, and temperature based on Upper-Air Observa-
tional Weather Data (NOAA/NCEP 2004, 2004b). Surface nudging of
wind speed and direction, specific humidity, and temperature were
provided from the National Centers for Environmental Prediction Global
Surface Observational Weather Data and compiled through the
OBSGRID program with the Cressman radius of influence scheme
(NOAA/NCEP 2004, 2004a; Skamarock et al., 2008).

To address the objectives in this paper, a WRF sensitivity study was
designed, specifically varying the WRF schemes that impact land-
atmosphere interactions. The WRF simulations compared different
combinations of the LSM and PBL schemes are listed in Table 1 which
also lists the surface layer scheme for each sensitivity experiment. The
other physics options were kept the same in each simulation and are also
listed in Table 1 under “Common Model Options™.

2.2. Land surface models

This study uses four LSMs available in the WRF model: Rapid Update
Cycle (RUC), Noah Unified (Noah), Noah Multiparameterization (Noah-
MP), and Pleim-Xiu (PX) with and without (PX-NO) indirect soil mois-
ture and soil temperature nudging. These LSMs were selected because
they vary in the level of complexity and are commonly used in land-
atmosphere coupling studies. Within the WRF model framework, the
LSM simulates sub-grid processes that occur at or below the land surface,
such as energy partitioning, the evolution of soil moisture and soil
temperature, snow physics, and the evolution of the surface water
budget. For soil moisture, all of the LSMs in this study rely on the same
fundamental model, where the vertical distribution of soil moisture is
calculated based on the 1-D Richards Equation (Richards, 1931;

Table 1

List of the nine WRF experiments with corresponding Land Surface Models
(LSM), Planetary Boundary Layer (PBL) Schemes, and Surface Layer Schemes, in
the left four columns. The righttwo columns show the common physics options
used in all simulations.

Simulation Naming Convention Common Model Options

Model LSM PBL Surface Category Option Chosen
Label Layer
Scheme
ACM2 PX ACM2 Pleim-Xiu  Microphysics Morrison
PX- Double Moment
NO
ACM2 PX ACM2 Pleim-Xiu Longwave RRTMG
PX Radiation Longwave
Scheme
ACM2 RUC ACM2 Revised Shortwave RRTMG Short-
RUC MM5 Radiation wave Scheme
Scheme
MYNN RUC MYNN Revised Cumulus Kain-Fritsch
RUC 2.5 MM5 Parameteri- Cumulus
Scheme zation
MYNN Noah MYNN Revised Land Use USGS 28
Noah Unified 2.5 MM5 Table Catagory
Scheme
MYNN Noah- MYNN Revised Boundary NARR
Noah- MP 2.5 MM5 Conditions
MP Scheme
YSU RUC YSU Revised Model FDDA &
RUC MM5 Nudging Observational
Scheme Nudging
YSU Noah YSU Revised
Noah Unified MM5
Scheme
YSU Noah- YSU Revised
Noah- MP MMS5
MP Scheme

Smirnova et al.,, 1997) and the soil type is assumed to be constant
throughout the soil column.

LSMs have a significant impact on the simulated moisture properties
with large uncertainties in the hydrological variables, e.g., latent heat
flux (LH), humidity, and precipitation. In atmospheric models, the sur-
face energy balance equation is used to prognostically estimate the
surface temperature and humidity. In the surface energy balance
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equation, the bulk transfer method is used to approximate the surface
sensible and latent heat fluxes using the potential temperature and hu-
midity gradients, respectively. There are large differences in the pa-
rameterizations of the LH between the different LSMs that are
incorporated through evaporation parameterizations. In general, the
calculation of the total evaporation in the LSM is split into four different
physical mechanisms:

E = (Ep +Ec +Er +Ejy), M

where Ep is the amount of direct evaporation from the soil surface, E¢ is
the evaporation from water droplets on the canopy surfaces, Er is the
transpiration from the plant canopy and roots, and Eg is the contribution
of the snow surface. There is no snow in the CV during August hence, Eg
is not applicable to this study. Parameterizations for E7 include a sto-
matal resistance term. Noah, RUC, PX, and PX-NO use the Jarvis method
(see Xiu and Pleim, 2001) which accounts for how radiation stress, soil
stress, vapor pressure deficit, and ambient air temperature impact sto-
matal resistance. In contrast, Noah-MP implements the Ball-Berry
Method for stomatal response as described in Appendix B of Niu et al.
(2011).

The RUC LSM is different from most LSMs because it uses a thin layer
approximation where the surface energy balance equation is applied
over a thin layer, defined as the region from the middle of the lowest
atmospheric layer to the middle of the first soil layer (Benjamin et al.,
2004; Smirnova et al., 1997; 2015). The three other LSMs (Noah,
Noah-MP, and PX) incorporate a surface resistance model to estimate the
evapotranspiration (E7). All three of these LSMs use a framework that
relies on the resistance analogy to estimate evaporation, where the
different resistances represent physical processes in the plant canopy
and atmosphere. This framework still relies on the bulk transfer method
because the vertical gradient of moisture is used in the evaporation
calculation. An aerodynamic resistance accounts for the atmospheric
processes and the canopy resistance incorporates parameterizations for
the effects of radiation, water stress or vegetation wilting, vapor pres-
sure deficit, and air temperature dependence. Each LSM uses a different
formulation to calculate these resistances but Noah, Noah-MP, and PX
all start with the simple resistance model in Noilhan and Planton (1989).
Noah, the least complex of the three, accounts for stomatal effects in the
canopy resistance and updates have added leaf area index (LAI) datasets
to improve the physical representativeness of the model (Chen et al.,
1996; Ek et al., 2003). Noah-MP starts with the Noah LSM and enhances
it by implementing more physically representative mathematical for-
mulations and a framework that allows for multiple implementations of
the parameterized physical processes for vegetation versus other land
cover in the LSM (Niu et al., 2011; Yang et al., 2011). The PX LSM up-
dates the Noah modeling framework for the surface and canopy re-
sistances, where the soil evaporation equations are updated with a
parameter that better accounts for different soil types, and the canopy
resistance is updated with a formulation of the stomatal resistance,
adding LAI and including a scaling factor to account for shading (Gilliam
and Pleim, 2010; Pleim and Xiu, 2003; Xiu and Pleim, 2001).

Two of the LSMs, RUC and PX, include additional methods that aim
to improve the soil moisture estimates. These soil moisture modifica-
tions have a significant impact in arid regions, especially those with
irrigated agricultural land. Specifically, RUC modifies the soil moisture
to account for a plant wilting point, which is the soil moisture content
where transpiration would stop. The wilting point is a hydraulic
parameter that is based on soil type in atmospheric simulations. RUC
uses this parameter as cut-off factor by not allowing the soil moisture to
be less than 20% above the soil moisture wilting point (Smirnova et al.,
1997; 2015). While this method does not directly incorporate irrigation
patterns, it can increase the amount of soil moisture for cropland,
especially for arid/semi-arid regions.

The PX model modifies soil moisture through two methods: recal-
culation of vegetation fraction and indirect soil temperature and soil
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moisture nudging. It recalculates vegetation parameters, including
vegetation fraction, by aggregating them from high resolution (1-km)
datasets to set the average grid-cell values (Xiu and Pleim, 2001). The
adjusted vegetation fraction modifies surface soil moisture by increasing
(decreasing) vegetation fraction, causing decreased (increased) direct
evaporation from the soil surface and increased (decreased) losses to the
lower soil layer (Pleim and Xiu, 2003; Xiu and Pleim, 2001). Addition-
ally, the PX model features the option for indirect soil moisture and soil
temperature nudging in both soil layers (Pleim and Gilliam, 2009; Pleim
and Xiu, 2003). The indirect soil nudging uses the weighted differences
between simulated surface air temperature and relative humidity and
observational or assimilated data, with the aim of reducing biases (Pleim
and Gilliam, 2009; Pleim and Xiu, 2003). Specific information regarding
the data assimilation WRF used for indirect soil moisture and soil tem-
perature nudging for this study of the CV is provided in the Supple-
mental Material.

2.3. Planetary boundary layer schemes

The three PBL schemes used in this study include the Mellor-Yamada
Nakanishi Niino (MYNN) 2.5 scheme, a 2.5-order local closure scheme
with turbulence closure constants that are tuned using a database of
large-eddy simulation results (Cohen et al., 2015; Nakanishi and Niino,
2004; 2009); the Yonsei University (YSU) scheme, a first-order,
non-local closure scheme with a counter-gradient flux term for scalar
mixing and an explicit treatment of the entrainment zone (Hong et al.,
2006); and the Asymmetric Convection Model 2 (ACM2) scheme, a
hybrid local and non-local first-order closure scheme featuring a
weighted counter-gradient flux correction term that increases in in-
tensity near the surface (Pleim, 2007a; 2007b). To couple the LSM and
PBL schemes, two surface layer schemes, the revised MM5 and PX, were
used in this study. They differ only by the addition of a parameterization
of the viscous sub-layer that is modeled using a quasi-laminar boundary
layer resistance in PX (Jiménez et al., 2012; Pleim, 2006). All model
combinations are listed in Table 1, where ‘ACM2 PX-NO’ indicates that
indirect soil moisture and soil temperature nudging options were not
used, whereas ACM2 PX implemented the nudging with a ten-day
spin-up.

Each PBL scheme uses a different method to compute the PBL
heights, based either on bulk Richardson numbers or turbulence kinetic
energy (Sathyanadh et al., 2017). To use a common PBL metric across
simulations, the PBL heights were recalculated using profiles of the bulk
Richardson number, where the PBL height is designated as the vertical
level where the Richardson number crosses a critical value, Ri, = 0.2,
following Zhang et al. (2014) and Sun et al. (2017).

2.4. Observations

Comparisons with a suite of multi-scale observations were used to
evaluate simulation results. Near-surface observations of two-meter air
temperature (T2), two-meter dew point temperature (Td2), two-meter
wind speed (WS2), and potential evapotranspiration (ETo) were ob-
tained from the California Irrigation Management Information System
(CIMIS) stations. CIMIS stations measure relevant meteorological vari-
ables, reported hourly, to estimate potential evapotranspiration for
agricultural practices based on the ‘CIMIS Penman’ equation, a
Pruitt-Doorenbos modified Penman equation (Pruitt and Doorenbos,
1977), which incorporates a weighting function between net radiation
and a vapor pressure deficit wind function with unique cloud factor
values for each station location (California Department of Water Re-
sources, 2021; Dong et al., 1992). Forty-one CIMIS stations at sites with
diverse land-use, including fallow fields, low lying shrubs, and annual
crops, were active within the CV during the simulation period (see
Fig. 1). Due to instrumentation sensitivity and limitations, 102 CIMIS
data points were removed during the study period, amounting to less
than one percent of the number of points used for comparisons. WRF
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does not directly calculate two-meter wind speeds (WS2), therefore
Monin-Obukhov similarity theory and the simulated ten-meter wind
speed were used to extrapolate for WS2 comparisons (see details in the
Supplemental Materials).

Additionally, surface turbulent fluxes (via eddy-covariance methods)
and soil moisture measurements from the Ameriflux Twitchell Island 3,
listed as US-Tw3, in the Sacramento-San Joaquin River Delta (latitude:
38.1159N, longitude 121.64666W, elevation: -9 m relative to sea level)
served as a dataset for comparisons with simulations (Oikawa et al.,
2017). The flux station is located over an alfalfa field that uses
sub-surface irrigation throughout the dry summer, and the
eddy-covariance sensors are mounted at 2.8 m agl. Within WRF simu-
lations, this site is designated irrigated cropland.

Airborne measurements from the California Baseline Ozone Trans-
port Study (CABOTS) (Faloona et al., 2020) provided observations of
potential temperature and specific humidity profiles. Daytime CABOTS
flights took place during the afternoons (11:00 and 16:00 PST) on 27-29
July 2016 and 04-06 August 2016, which correspond to the so-called
‘EPA Flights’ during the full CABOTS campaign (Faloona et al., 2020).
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PBL heights determined from bulk Richardson number analyses (see
Section 2.3) of individual potential temperature and specific humidity
profiles were temporally averaged through the period of active growth
(i.e., 11:00-16:00 LST) and spatially averaged within the shaded region
in Fig. 1 for comparison with WRF simulations. These measurements act
as a bulk estimate of the PBL heights within San Joaquin Valley. Further
information on the methodology used to collect this dataset can be found
in Caputi et al. (2019), Trousdell et al. (2019), and Faloona et al. (2020).
Finally, afternoon comparisons of vertical profiles of wind speed and
direction use in-situ measurements from a 915 MHz wind profiler near
Visalia, CA (latitude: 36.31N, longitude -119.39W, elevation: 81 me-
ters). This profiler measures hourly averaged wind speed and direction
from near the surface to approximately 1 km agl and is part of the Na-
tional Oceanic and Atmospheric Administration Earth Systems Research
Laboratories (NOAA-ESRL) network of sensors throughout California.

2.5. Model evaluation metrics

Near-surface meteorological variables (T2, Td2, WS2, and ETo) in

0.02 0.06 0.10 0.14

0.18

0.22
Volumetric Soil Moisture (cm3 cm™3)

0.26 0.30

Fig. 2. Simulated top layer soil moisture averaged between 25 July 2016 00 UTC to 08 Aug 2016 00 UTC from MYNN RUC (0 cm), ACM2 PX-NO (0.5 cm), ACM2 PX
(0.5 cm), MYNN Noah-MP (5 cm), and MYNN Noah (5 cm) WRF simulations with initialization conditions (NARR reanalysis dataset). The Central Valley is outlined

in black on all panels.
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the CV and time series statistics of surface turbulent fluxes were
compared with respective observations through calculation of the Mean
Bias (MB), Index of Agreement (IOA), the Mean Absolute Error (MAE),
and the Root Mean Square Error (RMSE). MB is an unbounded metric,
with negative values describing an underestimation compared to ob-
servations, and positive values corresponding to an over-estimation. The
optimal value MB is zero, indicating perfect agreement between simu-
lated and observed values. MAE and RMSE are a measure of agreement
between simulated and observed values bounded between 0 and + oo,
with the point of optimality at zero. Finally, IOA is an additional statistic
to detect the differences between simulated and observed values,
bounded by 0 and 1. The IOA is sensitive to outliers due to the squared
difference in both the numerator and denominator. The respective
mean, standard deviation (STD), and median (MED) values are also
provided. Evaluation statistics are mathematically defined in the Sup-
plemental Material.

3. Results and discussion
3.1. Soil moisture

Figure 2 shows the simulated mean volumetric soil moisture fields
from the top soil layers in WRF and NARR that were used for initial
conditions. All data were averaged temporally over the analysis period
(25 July 2016 at 00 UTC to 8 August 2016 at 00 UTC). Soil moisture
fields differ by less than 2% by changing the PBL schemes for a given
LSM, so only results from the ACM2 and MYNN PBL schemes are shown
for the various LSMs and YSU results are not shown. Across all LSMs, the
highest soil moisture is located over a patchwork along southwest edge
of the southern CV and in northern portions of the CV in the regions
designated as irrigated cropland or mixed dryland/irrigated cropland in
Fig. 1, hereafter called ‘cropland’. Most of the rest of the CV is desig-
nated as savanna and is relatively drier. This is most prominent in the
RUC LSM, for which soil moisture is approximately 0.24 cm® cm ™2 in the
cropland regions, or more than double compared to those from Noah,
Noah-MP, and the NARR initialization. The PX-NO simulation shows the
second highest soil moisture values in the cropland regions, approxi-
mately 0.15 cm® cm™3. However, both PX and PX-NO are drier else-
where, and the PX simulation produces the driest fields overall. For
these cases, the direct effect of soil moisture nudging in the PX simula-
tion was to generate lower soil moisture values compared to the PX-NO
simulation, especially for cropland. This is a surprising result. Given the
high amounts of irrigation applied to grow crops in the otherwise arid
agricultural lands of the CV, the tendency for the simulations to
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underestimate soil moisture (Fig. 3), and the challenges associated with
constraining irrigation in models, we expected PX to produce higher soil
moisture values than PX-NO. PX also produced a drying effect from
initial conditions (NARR), even in the cropland regions.

In addition, the PX, PX-NO and RUC simulated soil moisture fields
exhibit larger spatial variability, which likely reflects their additional
parameterizations for croplands that aim to generate improved soil
moisture estimates, as discussed in Section 2.2. In these WRF simula-
tions, the treatment of soil moisture affects both spatial heterogeneity
and the range of soil moisture values that occur. In contrast, Noah and
Noah-MP exhibit only slightly more variability that the initial condi-
tions, which likely reflects the simulations having higher spatial reso-
lution than the NARR reanalysis data. The soil moisture values from
Noah and Noah-MP are similar to NARR with only slightly higher values
in the cropland regions.

Time series of soil moisture were also analyzed to compare temporal
trends between LSMs and to compare with the available in-situ obser-
vations at the US-Tw3 Ameriflux site (Fig. 3). In general, a dearth of
publicly available soil moisture data, especially in the CV, limits com-
parisons with observations for agricultural lands to the single site. The
uppermost observation levels at US-Tw3 (10 cm and 20 cm) are shown
with the simulated values from the available top soil layer from each
LSM (RUC: 0 cm, PX: 0.5 cm, Noah/Noah-MP: 5 cm). The US-Tw3 site
receives sub-surface irrigation in summer. However, no irrigation signal
(i.e., a significant increase in observed soil moisture) is visible at either
depth during the study period nor in multi-year time series of soil
moisture during the summertime (not shown). Given the challenges
associated with comparing a model grid cell to a single point measure-
ment and the differences in the physical locations for the top layer be-
tween simulations, comparisons of soil moisture values are somewhat
qualitative. In general, these comparisons show that the time series
reflect differences between LSMs seen in the averaged fields for cropland
in the CV (Fig. 2). More prominently, they show that the simulated
values are lower than those observed, which may indicate two things: (i)
that the LSMs underestimate irrigation soil moisture in croplands, even
those with additional parameterizations designed to improve soil
moisture estimates, and (ii) that despite these underestimations, soil
moisture nudging in PX produces drier soil than PX-NO. Noah and Noah-
MP show a clear drawdown signal and produce very similar values. PX-
NO also exhibits a drawdown trend, though less strongly toward the end
of analysis period, and the observations show a slight moisture draw-
down. Uniquely, the RUC simulation shows no temporal variability due
to the cropland parameterization in the RUC model for which the soil
moisture is not allowed to be lower than 20% above the soil moisture
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Fig. 3. Time series of daily mean soil moisture from 25 July 2016 to 08 August 2016 showing the top two soil moisture measurements (10 cm and 20 cm) from in-situ
observations at the US-Tw3 AmeriFlux site compared to the top soil moisture layer from MYNN RUC (0 cm), MYNN Noah (5 cm), MYNN Noah-MP (5 cm), ACM2 PX
(0.5 cm), and ACM2 PX-NO (0.5 cm) from WRF. Timestamp tick marks indicate midnight.
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that corresponds to the vegetation wilting point. In other words, RUC,
despite showing the highest values for croplands in Fig. 2, produces only
the minimum value possible for the vegetation. Finally, PX shows a very
slight increase in soil moisture toward the end of the period, which likely
corresponds to the nudging adjusting to a new synoptic setup (see
Supplemental Material) but could also indicate a need for longer spin-up
time.

While these LSMs have been shown to be successful in simulating soil
moisture in a variety of scenarios (Ek et al., 2003; Gilliam and Pleim,
2010; Niu et al., 2011; Smirnova et al., 2015), none of these studies focus
specifically on irrigated cropland in the CV where available observa-
tional soil moisture data are sparse. Furthermore, most of these studies
focused on the midwestern or eastern U.S.A. regions which are much less
arid compared to the summertime CV. However, some studies have
shown that Noah tends to over-estimate soil moisture in regions with
observed low soil moisture, much like the non-irrigated regions of the
CV, and under-estimate soil moisture in areas of observed high soil
moisture, like the irrigated regions of the CV (Fan et al., 2011; Xia et al.,
2015). The comparisons to other studies indicate that LSMs performance
in simulating soil moisture will vary by region. Hence, an increase in
publicly available soil moisture observations in this region is crucial step
toward improving LSM performance. It is worth mentioning that satel-
lite remote sensing products for the CV (not shown), specifically, the Soil
Moisture Active-Passive (SMAP) L2, L3, and L4 (O’Neill et al., 2019;
Reichle et al., 2018), show even lower soil moisture values than PX
during the same time period. Since they were lower values and also
require a degree of modeling, we determined that they are not a good
comparative reference for this study. This highlights that improving
satellite remote sensing for this region is an important area of research
needing more attention and surface observations for verification.

3.2. Surface turbulent fluxes

3.2.1. Time series comparison

Figure 4 shows time series comparisons of surface H, surface LH,
ground heat flux (G), and net radiation (R,) between observations from
the US-Tw3 Ameriflux station, and those from the nine WRF simulations
(Table 1). For the purposes of this study, observed R, is defined to be the
sum of LH, H, and G to make direct comparisons with the WRF simu-
lations for which R, is partitioned between only these three components.
Corresponding evaluation statistics computed between observations and
simulations are shown in Table 2.

From the US-Tw3 station, observed turbulent flux partitioning was
dominated by LH, which peaked around 400 Wm ™2 during much of the
simulation period. Observed H peaked during the day near 100 Wm ™2
throughout most of the simulation period but increased to daily maxi-
mums of over 200 Wm ™2 in the last three days of the analysis period,
corresponding to a stark decrease in LH maximums (180 Wm ) and a
subsequent flip in Bowen ratios (not plotted directly). At daily scales, the
observed H moved from positive to negative in the early afternoon,
which is likely due to well-watered crops and the dominance of the LH
according to Stull (1988). Observed G peaked in magnitude, ~ 75
Wm 2, near the times of maximum R, and slowly decreased throughout
the night. Observed R, typically followed a diel pattern with a fairly
consistent peak approaching 600 Wm 2. Given the rare cloud formation
over the CV during summertime, variations in observed R, and the
general overestimations of R, from the simulations may be due to the
smoke plume from the Soberanes Fire (Langford et al., 2020).

The simulated surface fluxes at the grid cell containing the US-Tw3
station were highly insensitive to changing the PBL scheme and
similar to the soil moisture, variations between simulations correlate
with changing LSMs (see Table 2 and Fig. 4). In comparison to the ob-
servations, the best performing simulation, by far, is the ACM2 PX-NO
(lowest RMSE, MAE and MB in Table 2), which tends to over-estimate
daytime LH during much of the analysis period by an average of 58.2
Wm 2 and with a maximum over-estimation of 340.7 Wm™2. Noah,
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RUC, and PX simulations all underestimated LH by ~ 100 — 200 Wm 2
with high RMSE, MAE, and negative MB. The overestimate from PX-NO
in the first three days could be related to higher than observed R,,
potentially due to differences in atmospheric transmissivities, because H
and G compare well during this period. The last three days of the
simulation present an exception, for which observed LH from PX-NO
drops, and simulations using RUC and Noah produce the best results.

Noah-MP simulations of LH tend to plateau during the day (07-19
LST), which lacks a physically-viable explanation. They leveled off to LH
values of about 70 Wm ™2, an average underestimation of —163.6 Wm 2,
and produce the worst summary statistics by a substantial margin
(Table 2). In general, the CV is a moisture-limited evaporative system,
meaning that the partitioning of energy to latent heat is limited by soil
moisture availability as opposed to available energy (Koster et al., 2004;
Santanello et al., 2011). However, relatively dry soil conditions simu-
lated by the Noah-MP LSM were not the primary reason for the poor
performance in its LH estimates, given that Noah produces a similar soil
moisture field (Figs. 2 and 3). Instead, model parameters are likely a
significant factor. Since the soil resistance used in Noah-MP is identical
to that in Noah, the simulated behavior in LH is likely caused by the
stomatal parameterization (see Niu et al., 2011), for which Noah-MP’s
implementation is different from all of the other LSMs (Section 2.2).

Simulation evaluation statistics for H are similar to those of LH, with
the worst estimates compared to observations generated from the Noah-
MP LSM, followed by the RUC LSM, the Noah LSM, and the PX simu-
lation, and with the best H results generated by PX-NO simulation
(Fig. 4B and Table 2). PX-NO simulates H especially well over the first
four days, and the degradation in model performance might be due to
the long simulation length, the change in synoptic set up, or a combi-
nation of the two. All LSMs over-estimated H, including PX-NO, on most
days. The Noah-MP simulations over-estimated daytime H peaks by as
much as nine times but more typically, by about four times, seemingly
compensating for its plateau in LH in the energy flux partitioning. The
observed afternoon drop toward negative H was not simulated with
most of the LSMs until significantly later in the evening, closer following
the trends in R,. In general, the simulated nighttime H values are larger
(closer to zero) than the observations. Noteworthy exceptions are the
positive H values produced by PX on several nights; these, along with the
high daytime H peaks indicate that the soil moisture nudging scheme
tends to produce worse results compared to those from PX-NO
simulations.

Simulated G and R, were typically too high during the daytime and
too low during the nighttime (Fig. 4C and D, respectively). The Noah-MP
simulations over-estimated the variability of the observed G, with
standard deviations of ~70 Wm 2 compared to an observed ~ 30
Wm~2. Simulations with RUC exhibit similar but less extreme behavior,
whereas PX and PX-NO tend to under-estimate G, with a notable day for
which the G from PX never becomes positive. Simulations that used the
Noah LSM most closely matched the observed G, with the most signifi-
cant differences resulting from an over-cooling during nighttime, and
small differences in estimated daytime maximums. Despite the generally
poor performance across the simulations for the individual components
of the surface energy budget, results for the summed R, tend to match
obserged R, comparatively more closely (peak differences of ~100
Wm™ ).

3.2.2. Spatial distributions of turbulent surface fluxes

Spatial variability of afternoon-averaged (11-16 LST) simulated LH
and H (Fig. 5) are analyzed to investigate correlations with land-use
designation, the spatially distributed soil moisture, and PBL depth
(later, in Section 3.3) from each LSM. Again, negligible differences in
these fields are associated with changing the PBL scheme (see Fig. 4 and
Table 2). This was further verified by the two-sample Kolmogorov-
Smirnov test which showed that the choice of the PBL scheme is sta-
tistically insignificant. Therefore, Fig. 5 shows only results for the same
LSMs as in Fig. 2.
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Fig. 4. Thirty-minute averaged time evolution of sensible heat flux (H), latent heat flux (LH), ground heat flux (G), and net radiation (R,), defined to be the sum of
other three panels, comparing the simulated quantities to observations from US-Tw3 Ameriflux from 25 July to 8 August 2016. Timestamp tick marks indi-

cate midnight.
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Table 2

Agricultural and Forest Meteorology 317 (2022) 108898

Summary statistics calculated between observed Latent Heat Flux (LH), Sensible Heat Flux (H), Ground Heat Flux (G), and Net Radiation (R,), defined to be the sum of
the previous three, and estimates from WRF simulations at the US-Tw3 Ameriflux Site.

PBL: ACM2 MYNN YSU OBS
LSM: PX-NO PX RUC RUC Noah Noah-MP RUC Noah Noah-MP

LH (Wm?)
Mean: 154.9 65.9 72.8 69.5 67.2 33.4 70.5 66.1 32.8 124.7
STD: 173.1 72.7 67.5 69.9 79.0 30.6 67.1 78.0 30.6 144.8
MED: 72.0 30.1 46.1 42.4 24.8 22.6 445 23.0 21.9 49.9
MB: 29.4 —~59.0 -~ 521 — 555 - 57.8 -~ 91.4 — 545 - 58.8 - 920 -
MAE: 51.2 74.1 80.0 78.3 63.6 95.2 80.0 64.4 95.5 -
RMSE: 79.8 114.1 115.7 116.4 97.7 150.9 117.6 99.0 151.0 -

H (Wm %)
Mean: 42,5 135.6 108.8 112.3 95.3 125.1 118.9 9.5 127.8 9.3
STD: 108.7 161.4 170.5 162.0 141.0 170.4 168.3 147.5 173.7 84.0
MED: -81 48.1 11.1 7.7 3.6 16.7 8.0 6.2 25.2 —14.2
MB: 335 126.2 99.2 102.8 85.8 115.4 102.3 87.0 118.1 -
MAE: 54.9 131.8 115.8 113.7 94.4 123.6 116.5 97.0 126.7 -
RMSE: 76.6 184.1 168.2 166.3 139.4 184.2 169.3 143.3 187.6 -

G (Wm™?)
Mean: —16.1 —31.4 —1.4 -1.9 -1.2 2.7 —1.4 - 0.9 2.0 8.9
STD: 40.5 50.6 60.6 64.4 40.4 71.8 62.0 38.4 70.4 30.8
MED: - 26.3 —42.4 29.4 29.0 11.3 - 337 29.1 115 - 347 -6.3
MB: —25.0 —40.3 -10.3 -10.8 —-10.1 -62 —-10.3 -9.8 - 6.9 -
MAE: 29.1 45.1 80.3 83.9 62.6 39.0 81.6 60.8 37.8 -
RMSE: 33.9 51.2 91.1 94.6 71.4 43.0 92.4 69.0 41.7 -

R, (Wm™?)
Mean: 181.3 170.2 183.0 183.7 163.7 161.3 183.8 163.6 162.5 142.9
STD: 279.2 272.4 280.9 278.3 252.1 265.0 279.9 255.9 267.4 217.8
MED: 37.9 27.4 61.7 54.4 43.7 33.7 59.7 50.8 38.4 20.2
MB: 37.9 26.9 39.8 40.5 20.5 18.1 40.6 20.4 19.4 -
MAE: 101.5 103.1 87.1 85.6 69.6 75.7 86.7 71.7 77.4 -
RMSE: 135.5 132.9 118.1 117.1 92.7 96.7 118.3 94.7 98.8 -

The PX-NO and RUC simulations produced the highest LH fields (PX-
NO average: 223.46 Wm™2, RUC average: 147.14 Wm™2) during the
afternoon throughout the CV, with several pockets of higher LH (over
400 Wm2) in many sub-regions generally designated as cropland. Noah
and Noah-MP simulations produced much lower mean LH fields (78.1
Wm 2 and 55.36 Wm 2, respectively) and it appears that the plateauing
behavior exhibited by Noah-MP at the US-TW3 site (Fig. 4A) similarly
occurs throughout the CV. Cropland regions are generally associated
with higher LH, which correlate with the soil moisture fields in RUC and
PX-NO (Fig. 2) and generally, but do not necessarily, correlate with soil
moisture fields for Noah and Noah-MP. In addition to the regions of
elevated LH discussed previously, the PX-NO simulation also produces a
region in the southern CV, approaching the eastern boundary exhibiting
some of the highest LH values across all simulations. The land-use of this
regions is also cropland but has relatively lower soil moisture than the
other high LH cropland regions. This suggests that while land-use
designation and soil moisture are important in driving LH in PX-NO,
there are additional variables, model components, or physics that also
play an important role. The PX LSM produces the only LH spatial dis-
tribution that does not readily appear to directly correlate with the
cropland regions or soil moisture and instead, has sparse, relatively high
LH patches near the southwest CV boarder. This pattern may be linked to
some regional climatic differences as the soil nudging schemes aim
reduce MB in the localized temperature and humidity values, however,
similar patterns are not visible in the PX soil moisture field.

Simulated spatial distributions of H essentially invert those of LH
throughout the CV, where locations with high (low) LH correspond to
low (high) H for the same period (Fig. 5). This reflects the partitioning of
H and LH as the two dominating non-radiative components in the sur-
face energy budget (see also Fig. 4). Noah-MP produced the highest
average H at 393.81 Wm 2 followed by PX with 345.73 Wm ™2, Noah
with 337.70 Wm 2, RUC with 292.98 Wm ™2, and PX-NO with 286.21
Wm 2. Even though RUC produced a relatively low average H, it ex-
hibits areas with some of the highest H values, typically for regions
designated as savanna in Fig. 1. This exemplifies the significance of the

additional parameterizations that RUC implements for cropland desig-
nations, and that without them, the soil moisture, LH and H fields might
be more like those from Noah.

3.3. Planetary boundary layer height & structure

PBL heights determined from the critical bulk Richardson number for
the WRF simulations compared with those derived from the potential
temperature and relative humidity profiles from the CABOTS flights are
shown in Fig. 6 for the days with available flight data (see Section 2.4).
The mean observed daytime PBL heights, ~550 m agl, agree well with
the analyses from Bianco et al. (2011) and Jackson (2021). However, all
WREF simulations over-estimated PBL heights for each of the CABOTS
flight days. The ACM2 PX-NO simulation produced the best PBL height
estimates (within 29% of observations) for the July flights but increase
to nearly a factor of 2 larger for the August flights, when RUC simula-
tions tend to perform slightly better. In contrast, the ACM2 PX simula-
tion with indirect soil nudging generated PBL heights that are over
double those observed. Comparing ACM2 PX and ACM2 PX-NO PBL
heights indicate that the relatively poor surface fluxes from PX propa-
gate to upper levels and significantly impact PBL heights. Simulations
with the RUC LSM over-estimated PBL heights by 71% on average
compared to observations, while Noah and Noah-MP simulations
over-estimated by 140% on average. The most extreme cases, from Noah
and Noah-MP, are larger than observed quantities by a factor of ~ three.

PBL heights simulated with the YSU PBL scheme are higher by 10%
on average than those generated by the MYNN PBL scheme. When
comparing across RUC LSM simulations, the MYNN RUC estimated the
lowest PBL heights, the ACM2 RUC simulations estimated 8% higher
PBL compared to the MYNN RUC simulations, and the YSU RUC simu-
lations estimated 12% higher than MYNN RUC. Non-local closure
schemes, such as the YSU PBL scheme, tend to over-deepen simulated
PBL heights in convective regimes compared to local closure schemes (e.
g., the MYNN PBL scheme) due to increased propagation of large-scale
eddies throughout the PBL, as also shown by others (Cohen et al.,
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Fig. 5. Afternoon (11-16 LST) averaged a) latent heat flux and b) sensible heat flux at 4-km resolution in the Central Valley from (left to right) MYNN RUC, ACM2 PX,
ACM2 PX-NO, MYNN Noah-MP, and MYNN Noah simulations. Boundaries of the Central Valley are outlined in black.
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2015; Sathyanadh et al., 2017).

Though there are significant differences in PBL height that arise from
changing the PBL schemes, the results in Fig. 6 show that again, the LSM
drives most of the differences between simulation results. Generally, the
simulations with relatively higher (lower) patches of LH (H) within the
CABOTS domain more closely estimated the observed PBL heights
(Bianco et al., 2011; Jackson, 2021). Excluding PX simulations, these
relatively low simulated PBL heights are linked more to the LSMs with
modified parameterizations for soil moisture, than to the actual soil
moisture values, recalling that Noah and Noah-MP have higher soil
moisture than PX-NO. This may imply that the surface flux parameter-
izations specific to each LSM, mainly the evapotranspiration (ET)

o July Flight Averages
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parameterizations, play a significant role. For example, Jackson (2021)
found that simulated PBL heights in the CV during the summer are
significantly reduced by adding extra moisture to the soil boundary
condition. However, other idealized studies (e.g., Patton et al., 2005 and
Rihani et al., 2015) have linked the variability in soil moisture to
improved regional-scale dynamics as it produces more ‘realistic’ varia-
tions in localized pressure gradients allowing the formation of convec-
tive structures that contribute to the total vertical temperature and
moisture fluxes.

Further investigations of the mean PBL structure compares vertical
profiles of wind speed, wind direction, potential temperature, and spe-
cific humidity to observations (Fig. 7). Observations of wind speed and
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Fig. 7. Daily afternoon (11-16 LST) averaged vertical profiles of wind speed, wind direction, potential temperature and specific humidity for the 27 to 29 July 2016
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wind direction profiles are from the Visalia wind profiler and observed
profiles potential temperature and specific humidity are averages from
the CABOTS flight region when data are available.

No single simulation compares well with the observed vertical dis-
tributions of wind speed and direction for both the July and August
flight periods. For wind speeds, most simulations are biased high below
~ 600 m (the approximate PBL height from Fig. 6) in July but
conversely, tend to be biased low in August. The observed windspeed
profile in August has more of a jet-like shape, which could be argued is
somewhat captured by ACM2 PX but with a lower peak. In theory, this
could be associated with up-valley flow (toward southern end of the CV),
but a low-level jet in this region is usually associated with nocturnal
flows (Bao et al., 2008; Caputi et al., 2019). Over both periods in Fig. 7,
the YSU model simulations (darker colors) generated higher wind speeds
compared to corresponding MYNN simulations for the same LSMs.
Hence, during the July period, the MYNN simulations captured the
observed wind speed profile magnitude and shape better (especially
with Noah-MP), while the YSU model performed better in August
(especially with RUC). Focusing again on the PBL region (~ 600 m and
below), vertical wind direction profiles for both periods behave simi-
larly, in that near-surface winds are from the northwest, exhibiting
up-valley flow directions as seen by Bao et al. (2008) and Bianco et al.
(2011). During the July flights, the upper-level winds continue to
smoothly veer north as elevation increases. In contrast, during the
August flights, increased variability in the wind direction and veering
toward the west is seen above ~ 1100 m, the approximate height of the
coastal mountain range, located west of the wind profiler site (Faloona
et al., 2020). This may be associated with a difference in larger-scale
meteorology (see Supplemental Materials) and its interactions with
the terrain.

The WRF simulations underestimated vertical profiles of specific
humidity and potential temperature (with some exceptions discussed
below) during both CABOTS flight periods and show more variation by
changing the LSM than by changing PBL schemes. In the PBL (up to =~
600 m), the observed specific humidity profiles are significantly higher
(nearly twice) than those simulated and exhibit a lot more variability.
The observed profiles of specific humidity peak a few hundred meters
above ground level suggesting some moist air advection, potentially
originating with the incoming marine flow (see Figure 11 in Bao et al.,
2008). The simulated specific humidity profiles are lower, clustered
together and well-mixed suggesting that the modeled soil moisture
boundary conditions may be too low throughout the CV and not just at
the US-Tw3 Ameriflux site (see Fig. 3). One outlier from the simulated
specific humidity profiles is from the July ACM2 PX-NO, which shows
some PBL variation that is closer to the observed values but still too dry.
July ACM2 PX-NO also correlates with higher LH in the beginning of the
analysis period (see Fig. 4). Figure 7 shows that, soil moisture nudging in
the ACM2 PX simulation produces worse specific humidity results than
PX-NO for the July period and has very little impact in August. Noah and
Noah-MP boundary layers were the driest, followed by RUC and
PX-based simulations. Simulated profiles of potential temperature invert
specific humidity, in that those that performed better for specific hu-
midity, performed worse for potential temperature and vice versa. For
instance, Noah and Noah-MP estimate the boundary layer potential
temperatures quite well, and the nudging in ACM2 PX does improve
potential temperature results, especially for the July period.

PBL depth and structure provide important variables for many ap-
plications that rely on WRF simulations. These results show that the
differences in the state of the PBL for the CV are largely driven by the
LSMs. Therefore, these PBL-scale variables also play an important role
for evaluations and new model development of the LSMs. Future work to
improve simulations of the PBL for the CV should therefore prioritize
improving the LSMs over PBL schemes. Improvements to model
initialization would likely also improve the PBL simulations.
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3.4. Near-surface meteorological variables

Data from CIMIS stations located throughout the CV (see Fig. 1) were
used to generate comprehensive evaluation statistics for near-surface
meteorological variables. The Taylor diagram in Fig. 8 shows a com-
parison of the comprehensive performance statistics for the near-surface
meteorology for the nine WRF simulations. Again, this shows that the
PBL scheme has much less overall impact on these quantities than the
LSM, except for dew point temperatures which show no general trends
for LSM or PBL schemes. However, no single LSM outperformed all the
others for all variables under all statistical metrics. In general, simulated
air temperature (T2) and potential evapotranspiration (ETo) have the
best overall statistics. They are highly correlated with observed quan-
tities across the CV (R > 0.9) and have the lowest RMSE and normalized
standard deviations. In this framework, Td2 has the worst performance
statistics and is essentially uncorrelated with the observations. Evalu-
ating each simulation’s performance depends on the variable and metric
of interest. Additional evaluation statistics are presented in Table 6,
located in the Supplemental Material.

While the Taylor diagram provides a sense of the overall model
performance statistics, diel performance statistics are also useful to
evaluate simulation performance. For example, the Taylor diagram
shows that T2 exhibits the best model performance, but Fig. 9A shows
that all model runs typically have a cool bias that is worst around
midnight and a warm bias that peaks around midday by as much as 4 °C.
In addition, the Taylor diagram (and Table 6 in Supplemental Material)
shows that T2 and Td2 model performance improves somewhat through
the indirect soil nudging in ACM2 PX versus ACM2 PX-NO. However, the
time-series plots show that on shorter time scales, there are many cases
for which ACM2 PX has higher bias magnitudes especially during the
daytime when the LH is most active. Most simulated cases tend to be
biased toward low humidity (Td2) and low wind speeds (WS2), but
exhibit diel cycles with + biases for both T2 and ETo. The RUC-based
simulations typically have the lowest biases for T2, Td2 and WS2, but
with a midday ETo bias that is only slightly better than Noah and Noah-
MP and notably worse than those from PX and PX-NO.

R, (see Fig. 4) and the variables in Fig. 9A-C are all used in ETo
calculations, and so the biases in the diel cycles of each variable will
impact those of ETo. Hence, ETo’s strong evaluation statistics in the
Taylor Diagram (Fig. 8) may be misleading, and especially so when
attempting to correlate with simulated LH. This could point to a stronger
dependence (weight) on R,, which compared relatively well between
observations and simulations, in the ETo formulation. Model ETo biases
tend to be positive at night and negative during the day when it is most
useful for irrigation scheduling, meaning that using these WRF ETo
values and a crop coefficient will underestimate the amount of water
loss from the surface. Furthermore, Kelley et al. (2020) show that dif-
ferences between ETo and actual ET in the CV can be significant, espe-
cially on daily time scales, even with on-site measurements of
meteorological quantities. Such differences in ETo and actual ET are
especially important when drought conditions necessitate water con-
servation and deficit irrigation practices. All of this indicates that despite
the strong performance statistics, simulated ETo for the CV may not be a
useful practical quantity.

The generally poor comparisons between simulated and measured
humidity, low specific humidity profiles in Fig. 7 and negative dew point
temperature biases in Fig. 9, suggest that there is not enough water in
the overall system, which might be improved with improvements to the
soil moisture initialization from NARR. The soil moisture time series
comparisons for the US-TW3 site, for which all simulations show
significantly lower moisture than measured, help to confirm this asser-
tion. However, point-based soil moisture measurement comparisons
with WRF-scale grid cells should be viewed cautiously since using point
measurements to represent even plot-scale or flux footprint soil moisture
contains inherent uncertainties. In this case though, the correlations
between low humidity and low soil moisture, suggest that additional soil
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Fig. 8. Taylor diagram showing performance of 2-m air temperature (T2), 2-m dew point temperature (Td2), 2-m wind speed (WS2), and 2-m potential evapo-
transpiration (Eto), simulated by nine WRF cases compared to observations from 41 CIMIS Stations in the Central Valley.

moisture, to better account for irrigation in the CV, could improve
simulations. However, PX-NO, which has drier overall conditions than
RUC, Noah and Noah-MP, often performs better for humidity and per-
forms the best overall for LH, with all simulations except PX-NO
underestimating LH. This suggests that treatment of the surface fluxes
in the LSM also plays an important role in producing high quality hu-
midity estimates near the surface and in the PBL and not just soil
moisture magnitudes. In contrast, most of the LSMs perform relatively
well for temperatures (Figs. 9 and 7) despite gross overestimations of H,
with the exception of PX-NO in the first few days of the study period
when it simulates the observed H quite well. These results suggest that
while the surface flux partitioning in the energy budget is important, a
turbulent flux that is significantly biased can still simulate mean con-
ditions well (e.g., Noah-MP, which has the highest H overestimates,
produces good temperature comparisons). It is possible too that the
values are ‘right’ for the wrong reasons, however, more flux observa-
tions in this region are necessary to confirm these assertions and better
understand how the boundary conditions and flux parameterizations
relate to atmospheric variables.

Finally, these analyses show that in several variables (most notably,
LH, humidity, and PBL height) the indirect soil moisture and tempera-
ture nudging in PX appears to produce worse, rather than improved,
results compared with PX-NO for which the additional soil nudging does
not take place. Temperatures show some minor improvements for PX
versus PX-NO, but humidity performance declines between PX and PX-
NO is significant, especially during the first five days of the analysis
period, or in the top panel of Figs. 7 and in Fig. 9A and B). This effect is
partially explained by the WRF assimilated nudging datasets which are
hotter and drier compared to independent, in-situ CIMIS observations
over cropland. Additional information on the indirect soil nudging is
provided in the Supplemental Material Table 5 and Figures 11 and 12.
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Since humidity and air temperature are critical components in the PX
indirect soil nudging scheme, these discrepancies between the CIMIS
observations and the nudging dataset likely cause PX to dry further, and
ultimately worsen simulation performance. This implies that the WRF
data assimilation products used for the indirect soil moisture nudging in
the CV and other arid regions with significant agricultural activities also
need developments and should include more direct observations over
irrigated croplands. In general, the soil nudging schemes and simula-
tions likely also require better initialization for use in arid regions (see
also Pleim and Gilliam, 2009). PX may also need additional model
development for arid regions, as it has performed better in extensive
testing in the eastern United States (e.g., Gilliam and Pleim, 2010).
However, given that the first five days of the simulation show worse
comparative statistics for PX than the last five, this may also (or alter-
natively) indicate that the nudging schemes work better under certain
synoptic conditions (see the synoptic conditions in the Supplemental
Materia) or that arid regions require longer spin-up times for the soil
state.

4. Conclusions

Land-atmosphere interactions and boundary layer dynamics over
California’s Central Valley (CV) are important for a wide range of ap-
plications from agricultural practices to managing and forecasting air
quality. Evaluating regional-scale simulations of the CV requires using
multi-scale observations of both mean and turbulent quantities because
of the range of multi-scale dynamics that occur in this complex marine-
valley-mountain system (Bao et al., 2008; Bianco et al., 2011; Faloona
et al., 2020). This study compared nine, 15-day, high-resolution WRF
simulations that combine various iterations of frequently-used land
surface models (LSMs) and planetary boundary layer (PBL) schemes,
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m dew point temperature (Td2), (C) 2-m wind speed (WS2), and potential evapotranspiration (ETo). Timestamp tick marks indicate midnight.

with a suite of multi-scale observations including near-surface meteo-
rology, surface fluxes, and PBL depth and structure.

An important summarizing result from this study is that changing the
PBL scheme resulted in only minor changes to the variables investigated,
including PBL structure and height (though it had the most impact on
PBL height and PBL wind speeds). Rather the choice of LSM drives most
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of the variability between simulations of the boundary layer over the CV
for every quantity analyzed. This highlights the importance of the sur-
face state and land-atmosphere coupling in the CV to boundary layer
dynamics. The dominating impacts of LSM over PBL scheme choice do,
however, contradict test studies for other regions and seasons such as by
Cohen et al. (2015).
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This study also shows there are some major modeling deficiencies for
the CV, and likely for other water-limited regions with similarly arid
climates and wide-spread agricultural activities. These WRF results are
significantly and negatively impacted by three model aspects. First, our
results suggest that soil moisture initializations are too dry, resulting in
an insufficient amount of water in the system and leading to excep-
tionally low humidity. Second, the LSMs show clear deficiencies in
simulating sensible heat flux (H) and latent heat flux (LH), and need
improvements or new parameterizations for croplands. For example,
daytime LH from Noah-MP exhibits nonphysical behavior. It plateaus at
values less than 100 Wm™2 throughout most of the day (Figs. 4 and 5),
and we hypothesize that this is related to problems with the parame-
terizations for stomatal resistances. Third, air temperatures and hu-
midity from the WRF data assimilation used for indirect nudging in PX
are too hot and dry for croplands this region. These assimilation datasets
may benefit from improved parameterizations but including more in-
situ observations from croplands (e.g., from the CIMIS or other exist-
ing agricultural networks) would provide a resource for significant im-
provements by reducing biases related to irrigation and subsequently,
allowing for better evaluations of the model parameterizations. All these
problems contribute to biases in the simulated surface H and LH, which
drives the simulated PBL dynamics and boundary layer height for the CV
(see also Jackson, 2021).

While our study used an unprecedented number of multi-scale ob-
servations for the CV, some uncertainty regarding our conclusions re-
mains because available observational data are sparse throughout the
region. Another limitation highlighted by this study is a critical need for
observations that can be used in WRF initializations and nudging data-
sets, for model comparisons, and to drive new parameterization de-
velopments. Our results also reveal aims for comprehensive,
simultaneous and co-located observational strategies and model devel-
opment, specifically:

e Distributed soil moisture measurements on the scale of the CIMIS
network (Fig. 1), or better, would provide important data to quantify
both the magnitudes and the heterogeneity of the soil moisture for
model comparisons and initializations without relying so heavily on
reanalysis or remote sensing products that presently, are too dry for
the CV as we have shown. In addition to spatial distribution targeting
cropland and other land use patches, we recommend employing
standardized depths for soil observations and model outputs to better
allow for comparisons with data but also across simulations. These
data would also improve our understanding of the physical processes
regarding how the soil state impacts micro-meteorology and mete-
orology at multiple scales. Further, they would inform LSM de-
velopments, soil initializations, data assimilation products, and new
developments and verifications of satellite remote sensing products
such as SMAP.

Full energy budget, especially surface flux observations, co-located
with those of the soil state and boundary layer profiles of wind,
temperature, humidity, and ideally, turbulence, are critical to begin
to understand land-atmosphere exchange processes and how they
impact the larger-scale boundary layer (see also strategies proposed
by Wulfmeyer et al., 2018).

The CIMIS network allowed for a comprehensive analysis of the
surface meteorology at several locations across the CV. It is a valu-
able network, especially for evaluating sub-regional performance
differences, for which additional statistical analyses (not shown)
suggest may be significant. Bao et al. (2008) found that simulated
near-surface winds in different subregions of the CV were more
sensitive to different processes e.g., initialization of larger-scale
winds or forcing versus the soil states. Hence, a systematic study of
land-atmosphere processes and drivers of boundary layer dynamics
of the CV must include observational strategies that probe (at a
minimum) areas in the Sacramento Valley (northern CV) and the San
Joaquin Valley (southern CV). Simultaneously investigating the river
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delta where these valleys meet is also suggested as this location in the
CV where the marine layer may have the most influence on surface
and near-surface conditions.

These observations along with a highly structured, systematic study
focused on constraining the soil moisture initialization and boundary
condition for irrigated cropland in arid/semi-arid regions and the
development and performance of LSMs, like those that have been done
in other regions (e.g., Dirmeyer et al., 2018), are necessary for
improving regional-scale numerical simulations of the CV and regions
with similar climates. Furthermore, sensitivity testing of atmospheric
models with improved land-atmosphere coupling would allow for a
better understanding of the relative impacts of terrain, soil moisture
content, and soil moisture heterogeneity on the simulated PBL dynamics
(see also Patton et al., 2005 and Rihani et al., 2015). These improve-
ments would benefit several applications beyond meteorology for the
CV, including water use efficiencies for growers (via improved estimates
of LH and methodologies for ETo), state-wide water resource planning
under climate change scenarios, chemical transport modeling and air
quality studies, and wildfire hazard assessments.
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