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Abstract
We define a stratification of Deligne–Lusztig varieties and their parahoric analogues
which we call the Drinfeld stratification. In the setting of inner forms of GLn , we study
the cohomology of these strata and give a complete description of the unique closed
stratum. We state precise conjectures on the representation-theoretic behavior of the
stratification. We expect this stratification to play a central role in the investigation of
geometric constructions of representations of p-adic groups.
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1 Introduction

Like the classical upper half-plane, its nonarchimedean analogue—the Drinfeld
upper half-plane—appears naturally in a wide range of number theoretic, represen-
tation theoretic, and algebro-geometric contexts. For finite fields, the !-adic étale
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cohomology of the Drinfeld upper half-plane P1(Fq)!P1(Fq) with coefficients in
nontrivial rank-1 local systems, is known to realize the cuspidal irreducible repre-
sentations of GL2(Fq). One can generalize this to GLn(Fq) by projectivizing the
complement of all rational sub-vector spaces of V = F⊕n

q . This is the Drinfeld upper
half-space for Fq . In this paper, we consider a stratification of the Drinfeld upper half-
space induced by “intermediate” Drinfeld upper half-spaces of smaller dimension
sitting inside P(V ).

In earlier work [9], we proved that for inner forms of GLn , Lusztig’s loop Deligne–
Lusztig set [15] is closely related to a finite-ring analogue of the Drinfeld upper
half-space. This allowed us to endow this set with a scheme structure (a statement
which is still conjectural for any group outside GLn) and define its cohomology. Under
a regularity condition, we proved in [9] that the cohomology of loop Deligne–Lusztig
varieties for inner forms of GLn realizes certain irreducible supercuspidal represen-
tations and described these representations within the context of the local Langlands
and Jacquet–Langlands correspondences. After some serious work in [8], we are able
to relax this regularity condition to something quite general, but our work still further
depends on a formal degree calculation of representations appearing in the cohomol-
ogy of these loop Deligne–Lusztig varieties. This is a highly nontrivial calculation
which we obtain in the present paper by studying the cohomology of a stratification—
theDrinfeld stratification—which comes from the aforementioned stratification of the
Drinfeld upper half-space.

Wemorever frame the Drinfeld stratification in the general context of [7], where we
studied a class of varieties Xh associated to parahoric subgroups of a(ny) connected
reductive groupG which splits over an unramified extension.We define a stratification
of Xh indexed by certain twisted Levi subgroups ofG, initiate the study of these strata,
and, in due course, supply the necessary input for the formal degree calculation in [8].

We focus on the setting of inner forms of GLn and prove the first foundational
representation-theoretic traits of the cohomology of the Drinfeld stratification: irre-
ducibility (Theorem 5.2.1) and a special character formula (Proposition 5.3.1). Using
Theorem 5.2.1, in Sect. 6 we prove that the torus eigenspaces in the cohomology
of the unique closed Drinfeld stratum is supported in a single (possibly non-middle)
degree. Furthermore, this stratum is a maximal variety in the sense of Boyarchenko–
Weinstein [2]: the number of rational points of the closed Drinfeld stratum attains its
Weil–Deligne bound. Our analysis relies on techniques developed in [5] in the special
case of division algebras and gives some context for what we expect to be the role of
maximal varieties in these Deligne–Lusztig varieties for p-adic groups.

In practice, it is sometimes only possible to work directly with the Drinfeld strat-
ification of the parahoric Deligne–Lusztig varieties Xh instead of with the entire Xh .
In this paper, for example, the maximality of the closed stratum allows us to give an
exact formula (Corollary 6.6.1) for the formal degree of the associated representation
of the p-adic group. We prove a comparison theorem in [8] relating the Euler char-
acteristic of this stratum to that of Xh . This formal degree input, by comparison with
Corwin–Moy–Sally [10], allows us to obtain a geometric supercuspidality result in [8].

We finish the present paper with a precise formulation of some conjectures (Conjec-
tures 7.1.1 and 7.2.1)which describewhatwe expect to be the shape of the cohomology
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of theDrinfeld stratification and its relation to the cohomologyof loopDeligne–Lusztig
varieties. In the “Appendix”, we present an analysis of the fibers of the natural pro-
jection maps Xh → Xh−1; we believe this could be a possible approach to proving
Conjecture 7.2.1 and may be of independent interest. It would be interesting to see if
the Drinfeld stratification plays a role in connections to orbits in finite Lie algebras, à
la work of Chen [6].

2 Notation

Let k be a nonarchimedean local field with residue field Fq and let k̆ denote the
completion of the maximal unramified extension of k. We write Ok̆ and Ok for the
rings of integers of k̆ and k, respectively, and let " be a uniformizer of k (and hence
of k̆). For any positive integer m and any l ∈ Z, we let [l]m ∈ {1, . . . ,m} denote the
unique element representing the coset l + mZ = [l]m + mZ.

The setting of Sect. 3

In Sect. 3 we work in the following general set-up. Let G be a connected reductive
group over k such that the base change Gk̆ to k̆ is split and let F denote a Frobenius
associated to the k-rational structure onG. Let T ↪→ G be a k-rational, k̆-splitmaximal
torus in G. Let B(G, k̆) denote the Bruhat–Tits building of the adjoint group of G
over k̆ and letA (T ) ⊂ B(G, k̆) denote the apartment of T . Note that there is a natural
action of F onB(G, k̆) and that since T is k-rational, the apartmentA (T ) is F-stable.

The setting of the rest of the paper

With the exception of Sect. 3, wewill takeG to be an inner form of GLn defined over k.
Letσ ∈ Gal(k̆/k)denote theFrobeniuswhich induces theqth-power automorphismon
the residuefieldFq .Abusingnotation,we also letσ denote themapGLn(k̆) → GLn(k̆)
by applying σ to each matrix entry. The inner forms of GLn are indexed by integers
0 ≤ κ ≤ n − 1; fix such an integer. Throughout the paper, we write κ/n = k0/n0
where (k0, n0) = 1, and we set κ = k0n′. We will define (Definition 4.1.1) a particular
element b cox with val det(b cox) = κ and set G = Jb cox (the σ -stabilizer of b cox) with
the k-rational structure induced by the Frobenius

F : GLn(k̆) → GLn(k̆), g (→ b coxσ (g)b−1
cox.

Note that G ∼= GLn′(Dk0/n0), where Dk0/n0 denotes the division algebra over k of
dimension n20 with Hasse invariant k0/n0. Let T denote the set of diagonal matrices in
G. Let x be the unique point in the intersectionA (T )∩B(GLn, k̆)F . Note that T (k)
is isomorphic to the multiplicative group of the unramified degree-n extension of k.

If k has characteristic p, we let W(A) = A[[" ]] for any Fq -algebra A and write
[ai ]i≥0 to denote the element

∑
i≥0 ai"

i ∈ W(A). If k has characteristic zero, we let
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W = WOk ×SpecOk SpecFq , where WOk is the Ok-ring scheme of Ok-Witt vectors
[12, Section 1.2]. Following the notation of op. cit. we write the elements of W(A)
as [ai ]i≥0 where ai ∈ A. We may now talk about W uniformly, regardless of the
characteristic of k. As usual, we have the Frobenius and Verschiebung morphisms

σ : W → W, [ai ]i≥0 (→ [aqi ]i≥0,

V : W → W, [ai ]i≥0 (→ [0, a0, a1, . . .].

For any h ∈ Z≥0, letWh = W/V hW denote the corresponding truncated ring scheme.

Summary of the schemes

We give an overview of the various schemes appearing in this paper. We hope this
will be a helpful reference point for the reader. In Sect. 3, we define in a very general
setting three schemes Sh , Xh , and Xh(b, w) (Definitions 3.1.1, 3.1.1 and 3.2.1). We
then define (Definition 3.3.1) a stratification for Sh indexed by certain twisted Levi
subgroups ofG, and use this to define a corresponding stratification for Xh (Definition
3.3.2).

In Sect. 4, we study these varieties in the special case that G is an inner form of
GLn corresponding to the fixed integer κ . We comment that in this paper, the role
of Xh(b, w) as an alternative viewpoint to Xh (Sect. 4.5). For most of this paper,
we implicitly use the identification Xh = Xh(b cox, b cox), but our calculations in
“Appendix A” require us to take advantage of an isomorphism Xh ∼= Xh(b, b cox)

for a different choice of b. This flexibility has been proven to be very useful—as an
additional example, see [9].

For our chosen inner formG of GLn , the Drinfeld stratification of Sh , Xh is indexed
by divisors r of n′ (Definition 4.3.2). We will define subschemes S(r)h ⊂ Sh and
X (r)
h ⊂ Xh which form the commutative diagram

S(r)h Sh

X (r)
h Xh

where the vertical maps are quotients by an affine space. The r th Drinfeld stratum
(4.1) of Xh is

Xh,r = X (r)
h !

⋃

r |s|n′, r<s

X (s)
h

and its closure in Xh is X (r)
h . In Sect. 4.4, we give a description of Xh,r in terms

of Drinfeld upper half-spaces and a finite-ring analogue of an isocrystal. The unique
closed Drinfeld stratum is Xh,n′ ; specializing Lemma 3.3.3, we have
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Xh,n′ = X (n′)
h =

⊔

g∈Gh(Fq )
g · X1

h,

where X1
h = Xh ∩ ker(Gh → G1).

3 The Drinfeld stratification

In this section only, we let G be any connected reductive group over k which splits
over k̆. Let F denote a Frobenius associated to the k-rational structure on G. Fix a
k-rational, k̆-split maximal torus T ⊂ G, let x ∈ A (T ) ∩ B(G, k̆)F , and let Gx,0
be the attached parahoric model. The Ok-scheme Gx,0 has a Moy–Prasad filtration
[17,19] given by a decreasing series of normal subgroups Gx,r ⊆ Gx,0 for r ∈ R≥0
and we furthermore define the subgroup Gx,r+ := ∪s>rGx,s of Gx,r .

Let h ≥ 1 be an integer. There is a smooth affine group scheme Gh over Fq such
that

Gh(Fq) = Gx,0(Ok)/Gx,(h−1)+(Ok), Gh(Fq) = Gx,0
(
Ok̆

)
/Gx,(h−1)+

(
Ok̆

)

(see [7, Section 2.5] for more details). Following [7, Section 2.6], for any closed
subgroup scheme J ⊂ Gk̆ , we may attach a subgroup Jh ⊂ Gh,Fq . For any integer
1 ≤ s ≤ h, we write Jsh := ker(Jh → Js).

Pick a k̆-rational Borel subgroup B ⊂ Gk̆ containing T and let U be the unipotent
radical of B. The subgroups T ⊂ G, U ⊂ Gk̆ have associated subgroups Th ⊂ Gh ,
Uh ⊂ Gh,Fq such that

Th(Fq) = (T (k) ∩ Gx,0(Ok))/(T (k) ∩ Gx,(h−1)+(Ok)),

Th(Fq) =
(
T (k̆) ∩ Gx,0

(
Ok̆

))
/
(
T (k̆) ∩ Gx,(h−1)+

(
Ok̆

))
,

Uh(Fq) =
(
U (k̆) ∩ Gx,0

(
Ok̆

))
/
(
U (k̆) ∩ Gx,(h−1)+

(
Ok̆

))

(Note here that Uh is defined over Fq but may not be defined over Fq as U may not
be k-rational.)

3.1 The schemes Sh and Xh

The central object of study is Xh :

Definition 3.1.1 Define the Fq -scheme

Xh := {x ∈ Gh : x−1F(x) ∈ Uh}/(Uh ∩ F−1(Uh)).

Xh comes with a natural action ofGh(Fq)×Th(Fq) by left- and right-multiplication:

(g, t) · x = gxt, for (g, t) ∈ Gh(Fq) × Th(Fq), x ∈ Xh .
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In some contexts, it will be more convenient to study Sh :

Definition 3.1.2 Define the Fq -scheme

Sh := {x ∈ Gh : x−1F(x) ∈ Uh}.

So, Sh is the closed subscheme of Gh obtained by pulling back Uh along the (finite
étale) LangmapGh → Gh, g (→ g−1F(g). Note that Sh comes with the same natural
action of Gh(Fq) × Th(Fq) as Xh .

Observe that since Uh ∩ F−1(Uh) is an affine space, the cohomology of Xh and Sh
differs only by a shift, and in particular, for any θ : Th(Fq) → Q×

! , we have

H∗
c (Xh,Q!)[θ ] = H∗

c (Sh,Q!)[θ ]

as elements of the Grothendieck group of Gh(Fq).

3.2 The scheme Xh(b,w)

In this subsection only, we further assume that G is quasisplit over k and B ⊂ G
is k-rational. In this section, we write σ = F for our q-Frobenius associated to the
k-rational structure on G. Note that by assumption, the unipotent radical U of B is
σ -stable.

Definition 3.2.1 Let b, w ∈ G(k̆). Assume that b, w both normalized the subgroups
Gx,0(Ok̆) and Gx,(h−1)+(Ok̆) of G(k̆), and additionally assume that w normalizes
T (k̆). Define the Fq -scheme

Xh(b, w) := {x ∈ Gh : x−1bσ (x) ∈ UhwUh}/Uh,

where the condition x−1bσ (x) ∈ UhwUh means the following: For any lift x̃ ∈ G of
x ∈ Gh , the element x̃−1bσ (̃x) is an element of (U ∩Gx,0)w(U ∩Gx,0)Gx,(h−1)+ ⊂
G. More precisely, Xh(b, w) = Sh(b, w)/Uh , where Sh(b, w) is the reduced Fq -
subscheme of Gh such that Sh(b, w)(Fq) is equal to the image of {x ∈ Gx,0(Ok̆) :
x−1bσ (x) ∈ (U (k̆)∩Gx,0(Ok̆))w(U (k̆)∩Gx,0(Ok̆))Gx,(h−1)+(Ok̆)} inGh(Fq). Note
that Xh(b, w) comes with a natural action by left- and right-multiplication of Gh(b)
and Th(w), where Gh(b) ⊂ Gh(Fq) is the image of {g ∈ Gx,0(Ok̆) : bσ (g)b−1 = g}
and Th(w) ⊂ Th(Fq) is the image of {t ∈ T (k̆) ∩ Gx,0(Ok̆) : wσ (t)w−1 = t}.

The next lemma is a one-line computation; we record it for easy reference.

Lemma 3.2.2 Let γ ∈ Gx,0(Ok̆). Then we have an isomorphism

Xh(b, w) → Xh(γ
−1bσ (γ ), w), x (→ γ −1x,

where γ is the image of γ in the quotient Gh(Fq).
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Lemma 3.2.3 Consider the morphism F : (Gh)Fq → (Gh)Fq given by g (→
bσ (g)b−1. If wGx,0b−1 = Gx,0 and F(Uh) = wUhb−1, then

Xh(b, w) = Xh,

where Xh is the Fq-scheme in Definition 3.1.1 associated to the group scheme (Gh)Fq
endowed with the Fq -rational structure associated to the q-Frobenius F.

Proof. We have

Xh(b, w) = {x ∈ Gh : x−1F(x) ∈ UhwUhb−1}/Uh

= {x ∈ Gh : x−1F(x) ∈ Uh F(Uh)}/Uh

= {x ∈ Gh : x−1F(x) ∈ Uh}/(Uh ∩ F−1Uh) = Xh .

3.3 The Drinfeld stratification for Sh

Let L be a k-rational twisted Levi subgroup ofG and assume that L contains T . Recall
that a k-rational subgroup L ⊂ G is a twisted Levi if Lk is a Levi subgroup of Gk .
Note also that the condition that L contains T forces L to be split over k̆. Following [7,
Section 2.6], the schematic closure Lx in Gx,0 is a closed subgroup scheme defined
over Ok . Applying the “positive loop” functor to Lx , for each positive integer h we
can define a Fq -scheme Lh such that Lh(Fq) is the image of Lx (Ok̆) in Gh(Fq).

Definition 3.3.1 (Drinfeld stratification for Sh) Define

S(L)h := {x ∈ Gh : x−1F(x) ∈ (Lh ∩ Uh)U1
h},

where (Lh ∩ Uh)U1
h ⊂ Uh is the subgroup generated by Lh ∩ Uh and U1

h (which is
normalized byLh ∩Uh). Note that the subscheme S(L)h of Sh is closed and stable under
the action of Gh(Fq) × Th(Fq).

Definition 3.3.2 (Drinfeld stratification for Xh , Xh(b, w)) Define X (L)
h to be the image

of S(L)h under the surjection Sh → Xh . Recall that for any γ ∈ Gx,0(Ok̆), we have
Xh(b, w) ∼= Xh(γ

−1bσ (γ ), w) via x (→ γ −1x . If F(Uh) = wUhb−1, then Xh =
Xh(b, w); in this setting, let Xh(γ

−1bσ (γ ), w)(L) denote the image of X (L)
h .

Another subscheme of Sh which we may associate to the twisted Levi subgroup
L ⊂ G is the intersection

Sh ∩ LhG1
h = {x ∈ LhG1

h : x−1F(x) ∈ Uh}
= {x ∈ LhG1

h : x−1F(x) ∈ (Lh ∩ Uh)U1
h},

where LhG1
h denotes the subgroup scheme of Gh generated by Lh and G1

h (which is
normalized byLh). Note that Sh ∩LhG1

h is stable under the action ofLh(Fq)G1
h(Fq)×

Th(Fq).
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Lemma 3.3.3 Let L be a k-rational twisted Levi subgroup of G containing T . Then

S(L)h =
⊔

γ∈Gh(Fq )/(Lh(Fq )G1
h(Fq ))

γ · (Sh ∩ LhG1
h).

Proof Pick any u ∈ Uh(Fq)U1
h(Fq). By surjectivity of the Lang map, there exists

x ∈ Lh(Fq)G1
h(Fq) and y ∈ Gh(Fq) such that x−1F(x) = u and y−1F(y) = u. Then

(xy−1)−1F(xy−1) = yx−1F(x) = F(y)−1 = yuF(y)−1 = yuu−1y−1 = 1.

Therefore xy−1 ∈ Gh(Fq). The assertion now follows from the fact that the stabilizer
of Sh ∩ LhG1

h in Gh(Fq) × Th(Fq) is Lh(Fq)G1
h(Fq) × Th(Fq).

By Lemma 3.3.3, we see:

Lemma 3.3.4 If L is a twisted Levi subgroup of G containing T , then for any character
θ : Th(Fq) → Q×

! and for all i ≥ 0,

Hi
c (S

(L)
h ,Q!)[θ ] ∼= Ind

Gh(Fq )
Lh(Fq )G1

h(Fq )
(
Hi
c (Sh ∩ LhG1

h,Q!)[θ ]
)
.

4 The case of GLn

In this section, we study the varieties introduced in Sect. 3 in the special case when
G is an inner form of GLn . We emphasize that these varieties Sh, Xh, Xh(b, w)—at
least a priori—depend on a choice of Borel subgroup containing the torus at hand.
From now until the end of the paper, we work with the varieties associated with the
Borel subgroup explicitly chosen in Sect. 4.2. We explicate (Sect. 4.3) the Drinfeld
stratification for Sh , Xh , and certain Xh(b, w), and give a description (Sect. 4.4) in
terms of Drinfeld upper half-spaces and Lh ⊂ W⊕n

h , a finite-ring analogue of an
isocrystal.

Let σ ∈ Gal(k̆/k) denote a lift of the qth-power Frobenius on the residue field Fq .
Abusing notation, also let

σ : GLn(k̆) → GLn(k̆), (Mi, j )i, j=1,...,n (→ (σ (Mi, j ))i, j=1,...,n .

For b ∈ GLn(k̆), let Jb be the σ -stabilizer of b: for any k-algebra R,

Jb(R) := {g ∈ GLn(R ⊗k k̆) : g−1bσ (g) = b}.

Jb is an inner form of the centralizer of theNewton point of b (which is a Levi subgroup
of GLn), and we may consider

GLn(k̆) → GLn(k̆), g (→ bσ (g)b−1
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to be an associated q-Frobenius for the k-rational structure on Jb. If b is basic (i.e.
the Newton point of b is central), then Jb is an inner form of GLn , and moreover
every inner form arises in this way. If κ = κGLn (b) := val(det(b)) and b is basic,
then Jb(k) ∼= GLn′(Dk0/n0) where κ/n = k0/n0, (k0, n0) = 1, and κ = k0n′.
Note that the isomorphism class of Jb only depends on the σ -conjugacy class [b] :=
{g−1bσ (g) : g ∈ GLn(k̆)}. Recall from Sect. 2 that for any positive integer m and
any l ∈ Z, we let [l]m ∈ {1, . . . ,m} denote the unique element representing the coset
l + mZ = [l]m + mZ.

Fix an integer 0 ≤ κ ≤ n−1. In the next sections, we will focus on representatives
b revolving around the Coxeter representative (Definition 4.1.1) and give explicit
descriptions of the varieties Xh , Xh(b, w), and their Drinfeld stratifications {X (r)

h },
{Xh(b, w)(r)}, where r runs over the divisors of n′. The X (r)

h , Xh(b, w)(r) are closed
subvarieties of Xh, Xh(b, w); we call the r th Drinfeld stratum

X (r)
h !




⋃

r<r ′≤n′
r |r ′|n′

X (r ′)
h



 , Xh(b, w)(r) !




⋃

r<r ′≤n′
r |r ′|n′

Xh(b, w)(r
′)



 (4.1)

so that the closure of the r th Drinfeld stratum is X (r)
h , Xh(b, w)(r). We denote the r th

Drinfeld stratum of Xh by Xh,r .

4.1 Explicit parahoric subgroups of G

Set

b0 :=
(

0 1
1n−1 0

)
, and tκ,n :=






diag(1, . . . , 1︸ ︷︷ ︸
n−κ

,", . . . ,"︸ ︷︷ ︸
κ

) if (κ, n) = 1,

diag(tk0,n0 , . . . , tk0,n0︸ ︷︷ ︸
n′

) otherwise.

Note here that tκ,n is defined inductively in the sense that since (k0, n0) = 1, we take
tk0,n0 = diag(1, . . . , 1,", . . . ," ) to be the n0 × n0 matrix where the first n0 − k0
entries are 1’s and the remaining k0 entries are " ’s.

Fix an integer eκ,n such that (eκ,n, n) = 1 and eκ,n ≡ k0 mod n0. If κ divides n (i.e.
k0 = 1), we always take eκ,n = 1.

Definition 4.1.1 The Coxeter-type representative attached to κ is b cox := beκ,n0 · tκ,n .

Define G := Jb cox with Frobenius

F : GLn(k̆) → GLn(k̆), g (→ b coxσ (g)b−1
cox

and define T to be the set of diagonal matrices inG. Observe that T is F-stable and that
T (k) is isomorphic to the multiplicative group of the unramified degree-n extension
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of k. Since T is elliptic, the intersectionA (T ) ∩B(G, k̆)F consists of a single point
x , and an explicit and direct calculation of x yields that Gx,0 consists of invertible
matrices (Ai, j )1≤i, j≤n where

Ai, j ∈
{
W if [i]n0 ≥ [ j]n0 ,
VW if [i]n0 < [ j]n0 .

For technical reasons, wewill need to write down the relationship between the Cox-
eter element beκ,n0 and the Coxeter element b0. Define γ to be the unique permutation
matrix which (a) fixes the first elementary column vector and (b) has the property that

γ beκ,n0 γ −1 = b0. (4.2)

Note that one can express γ explicitly as well: it corresponds to the permutation of
{1, . . . , n} given by

i (→ [(i − 1)eκ,n + 1]n .

4.2 An explicit description of Xh

The choices in this section are the same as those from [9, Section 7.7]. In the setting
of division algebras, these choices also appear in [4,5].

LetUup,Ulow ⊂ Gk̆ denote the subgroups of unipotent upper- and lower-triangular
matrices. Define

U := γ −1Ulowγ , U− := γ −1Uupγ . (4.3)

LetUh,U−
h be the associate subgroup schemes ofGh . By Chan and Ivanov [9, Lemma

7.12], we have an isomorphism of Fq -schemes

(Uh ∩ FU−
h ) × (Uh ∩ F−1Uh) → Uh, (g, x) (→ x−1gF(x). (4.4)

We will need a refinement of this isomorphism later (see Lemma 4.3.1). Define

Lh :=
(
Wh ⊕ (Wh−1)

⊕n0−1)⊕n′
.

Write tκ,n = diag{t1, . . . , tn}. Viewing any v ∈ Lh as a column vector, consider the
associated matrix

λ(v) :=
(
v1

∣∣∣ v2
∣∣∣ v3
∣∣∣ · · ·
∣∣∣ vn
)
, (4.5)

where v[ieκ,n+1]n := "−2ik0/n03 · (bσ )i (v) for 0 ≤ i ≤ n − 1. (4.6)

Lemma 4.2.1 We have

Xh = {x ∈ Gh : x−1F(x) ∈ Uh ∩ F(U−
h )}

= {λ(v) ∈ Gh : v ∈ Lh and σ (det λ(v)) = det λ(v)}.
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Proof The first equality holds by (4.4). The second equality is an explicit computation:
in the division algebra setting, see [15, Equation (2.2)], [1, Lemma 4.4], [5, Section
2.1]; in the present setting of arbitrary inner forms of GLn , see [9, Section 6]. We give
an exposition of these works here.

By direct computation, Uh ∩ F(U−
h ) is the subgroup ofGh consisting of unipotent

lower-triangular matrices whose entries outside the first column vanish:

Uh ∩ F(U−
h ) =









1
∗ 1
...

. . .
∗ 1








 .

Suppose that x ∈ Gh is such that x−1F(x) ∈ Uh ∩ F(U−
h ) and let xi denote the i th

column of x . Then recalling that b = beκ,n0 tκ,n and writing tκ,n = diag{t1, . . . , tn}, we
have

F(x) =
(
bσ (x1)

∣∣∣ bσ (x2)
∣∣∣ · · ·
∣∣∣bσ (xn)

)
b−1

=
(
t−1
[1−eκ,n]bσ

(
x[1−eκ,n]n

) ∣∣∣ t−1
[2−eκ,n]bσ

(
x[2−eκ,n ]n

) ∣∣∣ · · ·
∣∣∣t−1
[n−eκ,n]bσ

(
x[n−eκ,n]n

))
.

On the other hand, we have

x(Uh ∩ F(U−
h )) =
(
∗
∣∣∣ x2
∣∣∣ x3
∣∣∣ · · ·
∣∣∣ xn
)
.

Comparing columns, we see that each xi is uniquely determined by x1 and that we
have

x[(n−1)eκ,n+1]n = t−1
[(n−2)eκ,n+1]n bσ (x[(n−2)eκ,n+1]n ) (4.7)

= t−1
[(n−2)eκ,n+1]n t

−1
[(n−3)eκ,n+1]n bσ (bσ (x[(n−3)eκ,n+1]n )) (4.8)

= t−1
[(n−2)eκ,n+1]n t

−1
[(n−3)eκ,n+1]n · · · t

−1
1 (bσ )n−1(x1). (4.9)

Using Lemma 4.2.2, we now see that x = λ(x1), and finally, the condition
σ (det λ(x)) = det λ(x) comes from observation that x−1F(x) must have determi-
nant 1.

Lemma 4.2.2 For 1 ≤ i ≤ n − 1,

i−1∏

j=0

t[ jeκ,n+1]n = " 2ik0/n03.

Proof We prove this by induction on i . If i = 1, then by definition we have t1 = 1, so
this proves the base case. Now assume that the lemma holds for i . We would like to
prove that it holds for i + 1. This means we need to prove two assertions:

(a) If 2(i + 1)k0/n03 > 2ik0/n03, then t[ieκ,n+1]n = " .
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(b) If 2(i + 1)k0/n03 = 2ik0/n03, then t[ieκ,n+1]n = " .

The arguments are very similar. For (a): Observe that 2(i + 1)k0/n03 > 2ik0/n03
if and only if n0 > [ieκ,n]n0 ≥ n0 − k0 since eκ,n ≡ k0 mod n0. But this happens
if and only if [ieκ,n + 1]n0 > n0 − k0, which means t[ieκ,n+1]n = " by definition.
For (b): Observe that 2(i + 1)k0/n03 = 2ik0/n03 if and only if [ieκ,n]n0 = n0 or
[ieκ,n]n0 < n0 − k0. But this happens if and only if [ieκ,n + 1]n0 ≤ n0 − k0, which
means that t[ieκ,n+1]n = 1 by definition.

4.3 The Drinfeld stratification of Xh

For any divisor r | n′, define L(r) to be the twisted Levi subgroup of G consisting of
matrices (Ai, j )1≤i, j≤n such that Ai, j = 0 unless i − j ≡ 0 modulo rn0. Note that
L(r) ∼= Resk n

r
/k(GLr ) and that every k-rational twisted Levi subgroup ofG containing

T is conjugate to L(r) for some r | n′. Let L(r)
h denote subgroup of Gh associated to

L(r) and define

Uh,r := L(r)
h U1

h ∩ Uh, U−
h,r := L(r)

h U−,1
h ∩ U−

h .

Lemma 4.3.1 The isomorphism of Fq-schemes (4.4)

(Uh ∩ FU−
h ) × (Uh ∩ F−1Uh) → Uh, (g, x) (→ x−1gF(x)

restricts to an isomorphism

(Uh,r ∩ FU−
h,r ) × (Uh,r ∩ F−1Uh,r ) → Uh,r .

Proof This lemma is a refinement of [9, Lemma 7.12]. Recall that γUhγ
−1 and

γU−
h γ −1 are the subgroups consisting of unipotent lower- and upper-triangular matri-

ces in Gh . Recall also that F(g) = beκ,n0 tκ,nσ (g)t−1
κ,nb

eκ,n
0 . Conjugating (4.4), which is

proven in op. cit., we have

(
γUhγ

−1 ∩ F0
(
γU−

h γ −1))×
(
γUhγ

−1 ∩ F−1
0

(
γUhγ

−1))→ γUhγ
−1,

where F0(g) = (b0γ tκ,nγ −1)σ (g)(b0γ tκ,nγ −1)−1. Since γ L(r)γ −1 = L(r), to prove
the lemma, it suffices to show that if (g, x) ∈ (γUhγ

−1∩F0(γU−
h γ −1))×(γUhγ

−1∩
F−1
0 (γUhγ

−1)) is such that A = x−1gF(x) ∈ γUh,rγ
−1, then

(g, x) ∈
(
γUh,rγ

−1 ∩ F0
(
γU−

h,rγ
−1))×

(
γUh,rγ

−1 ∩ F−1
0

(
γUh,rγ

−1)). (4.10)
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Keeping the same notation as in [9, Lemma 7.12], write

x =





1 0 0 · · · · · · 0
b21 1 0 · · · · · · 0

b31 b32 1
. . .

...
...

. . .
. . . 0

...

bn−1,1 bn−1,2 · · · bn−1,n−2 1 0
0 · · · · · · 0 0 1





, g =





1 0 0 · · · 0
c1 1 0 · · · 0

c2 0 1
. . .

...
...

...
. . .

. . . 0
cn−1 0 · · · 0 1





.

Let γ tκ,nγ −1 = diag(s1, s2, . . . , sn) so that we have

F0(x) =





1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 σ (b21)s2/s1 1 0 0

0 σ (b31)s3/s1 σ (b32)s3/s2 1
. . .

...
...

...
. . .

. . . 1 0
0 σ (bn−1,1)sn−1/s1 σ (bn−1,2)sn−1/s2 · · · σ (bn−1,n−2)sn−1/sn−2 1





.

As in [9, Lemma 7.12], we see that the (i, j)th entry of gF0(x) is

(gF0(x))i, j =






1 if i = j,
0 if i < j,
ci−1 if i > j = 1,
σ (bi−1, j−1)si−1/s j−1 if i > j > 1.

. (4.11)

We also compute the (i, j)th entry of x A when A = (ai, j )i, j ∈ γUhγ
−1:

(x A)i, j =






1 if i = j,
0 if i < j,
bi j +
∑i−1

k= j+1 bikak j + ai j if j < i ≤ n − 1,
anj if j < i = n.

(4.12)

We now have n2 equations given by (4.11) = (4.12), viewed as equations in the
variables bi, j and ci . Let bi, j , ci , ai, j denote the images of bi, j , ci , ai, j in W1. In
particular, we have the following:

bn−1, j−1 = 0 ⇐⇒ an, j = 0, (4.13)

and for 1 < j < i < n,

bi−1, j−1 = 0 ⇐⇒ bi, j +
i−1∑

k= j+1

bi,kak, j + ai, j = 0. (4.14)
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Assume now that A ∈ γUh,rγ
−1 = γ (L(r)

h U1
h ∩Uh)γ

−1. Then ai, j = 0 if rn0 " i− j .
From (4.13) we see that bn−1, j−1 = 0 if rn0 " n − j = (n − 1) − ( j − 1). We now
proceed by (decreasing) induction on i . If i, j are such that 1 < j < i < n and
rn0 " i − j , then necessarily either rn0 " i − k or rn0 " k − j , and therefore each term
in the sum on the right-hand side of (4.14) is zero, and so bi−1, j−1 = 0.

We have therefore shown that x ∈ γ (L(r)
h U1

h ∩Uh)γ
−1∩ F−1(γUhγ

−1). In partic-
ular, F(x) ∈ γUhγ

−1. Since L(r)
h is F-stable, we have that F(x) ∈ L(r)

1 and therefore
F(x) ∈ γ (Uh ∩ L(r)

h U1
h)γ

−1. Hence x ∈ γ (Uh,r ∩ F−1Uh,r )γ
−1.

Now since A, x ∈ L(r)
1 , we must have g ∈ L(r)

1 . Since g ∈ γUhγ
−1, we must

have g ∈ γ (L(r)
h U1

h ∩ Uh)γ
−1 = γUh,rγ

−1, and since g ∈ F(γU−
h γ −1), we must

have g ∈ F(γ (L(r)
h U−,1

h ∩ U−
h )γ

−1). Hence g ∈ γUh,rγ
−1 ∩ F(γU−

h,rγ
−1). This

establishes (4.10) and finishes the proof of the lemma.

Definition 4.3.2 (Drinfeld stratification for Xh) For each divisor r | n′, we define

S(r)h := {x ∈ Gh : x−1F(x) ∈ Uh,r },
X (r)
h := {x ∈ Gh : x−1F(x) ∈ Uh,r }/(Uh,r ∩ F−1Uh,r )

= {x ∈ Gh : x−1F(x) ∈ Uh,r ∩ FU−
h,r },

where the second equality in X (r)
h holds by Lemma 3.3.

Note that S(r)h is the variety S(L)h defined in Sect. 3.3 in the special case that G is
an inner form of GLn , the twisted Levi L is L(r), andU is the unipotent radical of the
Borel subgroup specified in Sect. 4.2. By Lemma 4.3.1, we can change the quotient in
the definition of X (r)

h from Uh,r ∩ F−1Uh,r to Uh ∩ F−1Uh so that X
(r)
h is the image

of S(r)h in Xh ; that is, X
(r)
h as defined in Definition 4.3.2 agrees with the variety X (L)

h
defined in 3.3.2 in the special case L = L(r). Hence we have the picture:

S(r)h Sh

X (r)
h Xh

4.4 The Drinfeld stratification for the Drinfeld upper half-space

Consider the twisted Frobenius b coxσ : k̆⊕n → k̆⊕n . Then G(k) = Jb cox(k) is equal
to the subgroup consisting of all elements of GLn(k̆) which commute with b coxσ .
Now consider the subquotient of k̆⊕n given by

Lh :=
(
Wh(Fq) ⊕ (VWh−1(Fq))

⊕n0−1)⊕n′
⊂ Wh(Fq)

⊕n
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and writeL = lim←−h
Lh . The action of G(k) on k̆⊕n restricts to an action of Gx,0(Ok)

onL which induces an action of Gh(Fq) on Lh .
Now consider the n′-dimensional Fq -vector space V := L1 ⊂ F⊕n

q . Themorphism
"−k0(b coxσ )

n0 is a Frobenius automorphismofV anddefines aFqn0 -rational structure
on V . Observe that G1(Fq) is isomorphic to the subgroup of GL(V ) consisting of
elements which commute with "−k0(b coxσ )

n0 . For any divisor r | n′ and any Fqn0r -
rational subspace W of V , consider

)W ,qn0r := {[x] ∈ P(V ) : W is the smallest Fqn0r -rational subspace of V containingx}.

Note that )W ,qn0r ⊂ P(V ) is isomorphic to the Drinfeld upper half-space for W with
respect to Fqn0r . For any divisor r | n′, define

Sr :=
⋃

W

)W ,qn0r ,

where the union ranges over all Fqn0r -rational subspaces W of dimension n′/r in V .
The following lemma records some easy facts.

Lemma 4.4.1 We have

(i) S1 = )V ,qn0 and Sn′ = P(V )(Fqn ).
(ii) If r | r ′ | n′ and W is a Fqn0r -rational subspace of V , then )W ,qn0r ′ ⊆ )W ,qn0r .
(iii) If r | r ′ | n′, thenS1 ∩ Sr ′ ⊆ S1 ∩ Sr .

Note that S1 is the classical Deligne–Lusztig variety for G1(Fq) ∼= GLn′(Fqn0 )

with respect to the nonsplit maximal torus T1(Fq) ∼= F×
qn [11, Section 2.2] and the

variety Xh when h = 1 is a F×
qn -cover of S1. Hence for any h ≥ 1, we have a map

Xh → X1 → S1.

Lemma 4.4.2 For any divisor r | n′, the variety X (r)
h is the preimage ofS1∩Sr under

the composition map Xh → X1 → S1.

Proof To prove this, we use the explicit description of Xh coming from Lemma 4.2.1:

Xh = {λ(v) ∈ Gh : v ∈ Lh and σ (det λ(v)) = det λ(v)}.

By Definition 4.3.2, if v ∈ Lh is such that λ(v) ∈ X (r)
h , then λ(v)−1F(λ(v)) ∈

Uh,r ∩ FU−
h,r , which is equivalent to

F(λ(v)) = λ(v)A, for some A ∈ Uh,r ∩ FU−
h,r .
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Note that A = (ai, j )1≤i, j≤n has the property that

ai,i = 1, for i = 1, . . . , n,

ai,1 ∈ Wh, if i ≡ 1 mod rn0,

ai,1 ∈ VWh−1 ⊂ Wh, if i 7≡ 1 mod rn0,

ai, j = 0 otherwise.

The first column of F(λ(v)) is the vector σ n(v). Therefore (4.4) implies that

σ n(v) =
n∑

i=1

ai,1λ(v)i = v +
n∑

i=2

ai,1λ(v)i ,

where λ(v)i denotes the i th column of λ(v). Recall from (4.6) that λ(v)[ieκ,n+1]n =∏i−1
j=0 t

−1
[ jeκ,n+1] · (bσ )i (v). If [ieκ,n + 1]n ≡ 1 modulo rn0, then i ≡ 0 modulo rn0.

Therefore, if v denotes the image of v inL1, we have (using (4.6)),

σ n(v) ∈ span{v,"−rk0 (bσ )rn0 (v),"−2rk0 (bσ )2rn0 (v), . . . ,"−(n′−1)rk0 (bσ )(n
′−1)rn0 (v)}.

Since λ(v) ∈ Gh , necessarily v,"−rk0(bσ )rn0(v), . . . ,"−(n′−1)rk0(bσ )(n
′−1)rn0(v)

are linearly independent and therefore span a n′/r -dimensional subspace ofL1. This
exactly means that v ∈ S1 ∩ Sr , so the proof is complete.

Remark 4.4.3 By Lemma 4.4.2, we see that for GLn and its inner forms, the Drinfeld
stratification of Xh is induced by considering intermediate Drinfeld upper half-spaces
of smaller dimension embedding in Pn′

Fqn0 .

4.5 The Drinfeld stratification of Xh(b,w)

In this section, we consider the varieties Xh(b, w) in the special case

b = g0b coxσ (g0)−1 for some g0 ∈ Gx,0(Ok̆), and w = b cox.

For any such b, recall from Lemmas 3.2.2 and 3.2.3 that

Xh = Xh(b cox, b cox) ∼= Xh(b, b cox), (4.15)

where the second isomorphism is given by x (→ g0x , where g0 is the image of g0 in
Gh(Fq). Therefore the Drinfeld stratification {X (r)

h } of Xh gives rise to a stratification
{Xh(b, b cox)

(r)} for Xh(b, b cox). The proof of Lemma 4.5.3 shows that if σ n(g0) =
g0, then the Drinfeld stratification of Xh(b, b cox) does not depend on the choice of
g0.
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Definition 4.5.1 Let b = g0b coxσ (g0)−1 ∈ G(k̆) for some g0 ∈ Gx,0(Ok̆). To each
v ∈ Lh , define

gb(v) :=
(
v1

∣∣∣ v2
∣∣∣ v3
∣∣∣ · · ·
∣∣∣ vn
)

where vi := " 2(i−1)k0/n03 · (bσ )i−1(v) for 1 ≤ i ≤ n − 1,

where we abuse notation by writing " 2(i−1)k0/n03 · (bσ )i−1 for the map Lh → Lh
which takes v to the image " 2(i−1)k0/n03 · (bσ )i−1(̃v) in the subquotient Lh of k̆⊕n ,
where ṽ is any lift of v inL ⊂ k̆⊕n .

Lemma 4.5.2 If b = g0b coxσ (g0)−1 for some g0 ∈ Gx,0(Ok̆), then

Xh(b, b cox) ∼=
{
v ∈ Lh : σ (det gb(v)) =

det b cox

det b
· det gb(v) ∈ W×

h

}
.

Proof. First note that one can obtain gb cox(v) from λ(v) by permuting columns. In
particular,

Xh(b cox, b cox) = Xh ∼= {v ∈ Lh : σ (det gb cox(v)) = det gb cox(v) ∈ W×
h }.

Since Xh(b cox, b cox) ∼= Xh(b, b cox) is given by x (→ g0x where g0 denotes the image
of g0 in Gh(Fq), we have that Xh(b, b cox) is isomorphic to the set of g0 · gb cox(v)

where v ∈ Lh satisfies the above criterion. By direct computation,

g0 · gb cox(v) = gb(g0 · v),

and hence if σ (det gb cox(v)) = det gb cox(v), then

σ (det gb(g0 · v)) = σ (detg0) · σ (det gb cox(v)) = σ (det g0) · det gb cox(v)

= σ (det g0)
det g0

· det gb(g0 · v) =
det b cox

det b
· det gb(g0 · v).

Lemma 4.5.3 Let b = g0b coxσ (g0)−1 for some g0 ∈ Gx,0(Ok̆) and assume that the
image g0 ∈ Gh(Fq) of g0 has the property that σ n(g0) = g0. Let r | n′ be any divisor.
For v ∈ Lh, let v denote its image inL1. Then

Xh(b, b cox)
(r) ∼=




v ∈ Lh : σ (det gb sp(v)) =
det b cox

det b
· det gb(v) ∈ W×

h

σ n(v) ∈ span{"−ik0r (bσ )irn0(v) : 0 ≤ i ≤ n′ − 1}




 .

In particular, the Drinfeld stratification of Xh(b, b cox) does not depend on the choice
of g0.
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Proof Recall that

Xh(b cox, b cox)
(r) ∼=
{

v ∈ Lh :
σ (det gb cox (v)) = det gb cox (v) ∈ W×

h

σ n(v) ∈ span{"−ik0r (b coxσ )irn0 (v) : 0 ≤ i ≤ n′ − 1}

}

.

By definition, every element in Xh(b, b cox)
(r) is of the form g0gb cox(v) for some v ∈

Lh satisfying the above criteria. Since g0gb cox(v) = gb(g0v) and since σ n(g0) = g0,
we have

g0σ
n(v) ∈ span{g0"−ik0r (b coxσ )

irn0(v) : 0 ≤ i ≤ n′ − 1}.

But now g0"
−ik0r (b coxσ )

irn0(v) = "−ik0r (bσ )irn0(v) and therefore the desired
conclusion follows.

Remark 4.5.4 In “Appendix A”, we will work directly with a particular b called the
special representative in [9] (see Definition A.1.1 of the present paper). The special
representative satisfies the hypotheses of Lemma 4.5.3.

5 Torus eigenspaces in the cohomology

We prove an irreducibility result for torus eigenspaces in the alternating sum of the
cohomology of Xh ∩ L(r)

h G1
h .

5.1 Howe factorizations

Let Tn,h denote the set of characters θ : W×
h (Fqn ) → Q×

! . Recall that if h ≥ 2,
we have natural surjections pr : W×

h → W×
h−1 and injections Ga → W×

h given by
x (→ [1, 0, . . . , 0, x]. For every divisorm of n, we have normmapsNm : W×

h (Fqn ) →
W×

h (Fqm ). These maps induce

pr∗ : Tn,h′ → Tn,h, for h′ < h,

Nm∗ : Tm,h → Tn,h, for m | n.

First consider the setting h ≥ 2. By pulling back along Ga → W×
h , x (→

[1, 0, . . . , 0, x], we may restrict characters of W×
h (Fqn ) to characters of Fqn . We

say that θ ∈ Tn,h is primitive if θ |Fqn has trivial stabilizer in Gal(Fqn/Fq). If h = 1,

then θ ∈ Tn,h is a character θ : F×
qn → Q×

! , and we say it is primitive if θ has trivial
stabilizer in Gal(Fqn/Fq). For any h ≥ 1, we write T 0

n,h ⊂ Tn,h to denote the subset
of primitive characters.

We can decompose θ ∈ Tn,h into primitive components in the sense of Howe [13,
Corollary after Lemma 11].
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Definition 5.1.1 A Howe factorization of a character θ ∈ Tn,h is a decomposition

θ =
d∏

i=1

θi , where θi = pr∗ Nm∗ θ0i and θ0i ∈ T 0
mi ,hi ,

such that mi < mi+1, mi | mi+1, and hi > hi+1. It is automatic that mi ≤ n and
h ≥ hi . For any integer 0 ≤ t ≤ d, set θ0 to be the trivial character and define

θ≥t :=
d∏

i=t

θi ∈ Tn,ht .

Observe that the choice of θi in a Howe factorization θ = ∏r
i=1 θi is not unique,

but the mi and hi only depend on θ . Hence the Howe factorization attaches to each
character θ ∈ Tn,h a pair of well-defined sequences

1 =: m0 ≤ m1 < m2 < · · · < md ≤ md+1 := n

h =: h0 ≥ h1 > h2 > · · · > hd ≥ hd+1 := 1

satisfying the divisibility mi | mi+1 for 0 ≤ i ≤ d.

Example 5.1.2 We give some examples of the sequences associated to characters θ ∈
Tn,h .

(a) If θ is the trivial character, then d = 1 and the associated sequences are

{m0,m1,m2} = {1, 1, n}, {h0, h1, h2} = {h, 1, 1},

wherewe note thatT1,1 = T 0
1,1 since any character ofF×

q has trivial Gal(Fqn/Fq)-
stabilizer.

(b) Say h ≥ h′. We say that θ is a primitive character of level h′ ≥ 2 if θ |Wh′
h (Fqn ) = 1

and θ |Wh′−1
h′ (Fqn )

has trivial Gal(Fqn/Fq)-stabilizer. Then d = 1 and the associated
sequences are

{m0,m1,m2} = {1, n, n}, {h0, h1, h2} = {h, h′, 1}.

In the division algebra setting, this case is studied in [3,4]. For arbitrary inner
forms of GLn over K , we considered minimal admissible θ , which are exactly
the characters θ ∈ Tn,h which are either primitive or have d = 2 with associated
sequences

{m0,m1,m2,m3} = {1, 1, n, n}, {h0, h1, h2, h3} = {h, h1, h2, 1}.

This is a very slight generalization over the primitive case.
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(c) Say h ≥ 2. If θ |W2
h(Fqn ) = 1 and the stabilizer of θ |W1

2(Fqn ) in Gal(Fqn/Fq) is
Gal(Fqn/Fqm ), then d = 1 and the associated sequences are

{m0,m1,m2} = {1,m, n}, {h0, h1, h2} = {h, 2, 1}.

In the division algebra setting, the case h = 2 is studied in [1,2].
(d) Say h ≥ 1. If θ |W1

h(Fqn ) = 1 and the stabilizer of θ : F×
qn → Q×

! is Gal(Fqn/Fqm ),
then d = 1 and the associated sequences are

{m0,m1,m2} = {1,m, n}, {h0, h1, h2} = {h, 1, 1}.

This is the so-called “depth zero” case.

5.2 Irreducibility

Recall that the intersection Xh∩L(r)
h G1

h has an actionby the subgroupL
(r)
h (Fq)G1

h(Fq)×
Th(Fq) ⊂ Gh(Fq)×Th(Fq). In this section, we study the irreducibility of the virtual
L(r)
h (Fq)G1

h(Fq)-representation H∗
c (Xh ∩ L(r)

h G1
h)[θ ], where θ : Th(Fq) → Q×

! is
arbitrary.

We follow a technique of Lusztig which has appeared in the literature in many
incarnations, the closest analogues being [7,16,18]. In these works, the strategy is
to translate the problem of calculating an inner product between two representations
to calculating the cohomology of a third variety *. This is done by first writing
* = *′ 8 *′′, proving the cohomology of *′′ gives the expected outcome, and then
putting a lot of work into showing that the cohomology of *′ does not contribute. In
the three works cited, one can only prove the vanishing of (certain eigenspaces of) the
Euler characteristic of *′ under a strong regularity condition on the characters θ, θ ′.
The key new idea here is adapted from [8, Section 3.2], which allows us to relax this
regularity assumption by working directly with * throughout the proof. We give only
a sketch of the proof of Theorem 5.2.1 here, as the proof of [8, Theorem 3.1] is very
similar.

Theorem 5.2.1 Let θ, θ ′ : Th(Fq) → Q×
! be any two characters. Then

〈
H∗
c (Xh∩L(r)

h G1
h)[θ ], H∗

c (Xh∩L(r)
h G1

h)[θ ′]
〉

L(r)
h (Fq )G1

h(Fq )
= #{w ∈ WF

L(r)
h

: θ ′ = θ◦Ad(w)},

where W F
L(r)
h

= NL(r)
h (Fq )(Th(Fq))/Th(Fq).

Since WF
L(r)
h

∼= Gal(Fqn/Fqn0r ), we obtain the following theorem as a direct corol-

lary of Theorem 5.2.1.

Corollary 5.2.2 Let θ : Th(Fq) ∼= W×
h (Fqn ) → Q×

! be any character. Then the virtual

L(r)
h (Fq)G1

h(Fq)-representation H∗
c (Xh ∩L(r)

h G1
h)[θ ] is (up to sign) irreducible if and

only if θ has trivial Gal(Fqn/Fqn0r )-stabilizer.
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In the special case that r = n′, we have L(n′)
h = Th and using Lemma 4.2.1 and

Definition 4.3.2, we have that Sh ∩ ThG1
h is an affine fibration over

{
x ∈ ThG1

h : x−1F(x) ∈ U1
h ∩ FU−,1

h

}
.

and that
Xh ∩ ThG1

h =
⊔

t∈Th(Fq )
t · X1

h, where X1
h = Xh ∩ G1

h .

Here we have
X1
h =
{
x ∈ G1

h : x−1F(x) ∈ U1
h ∩ FU−,1

h

}
. (5.1)

Corollary 5.2.3 Let χ : T1
h(Fq) → Q×

! be any character. Then H∗
c (X

1
h,Q!)[χ ] is an

irreducible representation of G1
h(Fq). Moreover, if χ ,χ ′ are any two characters of

T1
h(Fq), then H∗

c (X
1
h,Q!)[χ ] ∼= H∗

c (X
1
h,Q!)[χ ′] if and only if χ = χ ′.

Corollary 5.2.3 follows from Corollary 5.2.2 (by arguing the relationship between
the cohomologyof X1

h and the cohomologyof Xh∩ThG1
h), but one cangive an alternate

proof using [5, Section 6.1], which is based on [15]. We do this in Sect. 5.2.2.

Remark 5.2.4 Recall that specializing Lemma 3.3.4 yields that

H∗
c
(
X (r)
h ,Q!

)
[θ ] ∼= Ind

Gh(Fq )
L(r)
h (Fq )G1

h(Fq )
(
H∗
c (Xh ∩ L(r)

h G1
h,Q!)[θ ]

)
.

We expect that H∗
c (X

(r)
h ,Q!)[θ ] should be irreducible if θ satisfies an appropriate

regularity condition depending on r . In the case r = n′, we prove in [8, Theorem4.1(b)]
that H∗

c (X
(r)
h ,Q!)[θ ] is irreducible if θ |T1

h(Fq ) has trivial Gal(Fqn/Fq)-stabilizer. (This
is more subtle than one might expect—as an indication of this subtlety, we remark
that we are only able to establish this irreducibility for p > n.)

5.2.1 Proof of Theorem 5.2.1

Recall that by definition

Sh ∩ L(r)
h G1

h = {g ∈ L(r)
h G1

h : g−1F(g) ∈ Uh,r }, where Uh,r = L(r)
h U1

h ∩ Uh .

Consider the variety

*(r) = {(x, x ′, y) ∈ F(Uh,r ) × F(Uh,r ) × L(r)
h G1

h : xF(y) = yx ′}

endowed with the Th(Fq) × Th(Fq)-action given by (t, t ′) : (x, x ′, y)
(→ (t xt−1, t ′x ′t ′−1, t yt ′−1). Then we have an isomorphism

L(r)
h (Fq)G1

h(Fq)\
((
Sh ∩ L(r)

h G1
h
)
×
(
Sh ∩ L(r)

h G1
h
))

→ *(r),

(g, g′) (→ (g−1F(g), g′−1F(g′), g−1g′),
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equivariant with respect to Th(Fq) × Th(Fq). To prove Theorem 5.2.1, we need to
establish

∑

i

(−1)i dim Hi
c (*

(r),Q!)θ,θ ′ = #
{
w ∈ WF

L(r)
h

: θ ′ = θ ◦ Ad(w)

}
. (5.2)

The Bruhat decomposition of the reductive quotient G1 lifts to a decomposition
Gh = ⊔w∈WGh

Gh,w, where Gh,w = UhThẇK1
hUh and K1

h = (U−
h )

1 ∩ ẇ−1U−,1
h ẇ

[7, Lemma 8.6]. This induces the decomposition

L(r)
h G1

h =
⊔

w∈WF

L(r)h

G(r)
h,w, where G(r)

h,w = Gh,w ∩ L(r)
h G1

h .

and also the locally closed decomposition

*(r) =
⊔

w∈WO

*(r)
w , where *(r)

w = * ∩
(
F(Uh,r ) × F(Uh,r ) × G(r)

h,w

)
.

We will calculate (5.2) by analyzing the cohomology of

*̂(r)
w = {(x, x ′, y1, τ, z, y2) ∈ F(Uh,r ) × F(Uh,r ) × Uh,r × Th × K1

h × Uh :
xF(y1τ ẇzy2) = y1τ ẇzy2x ′}.

Since *̂
(r)
w → *

(r)
w , (x, x ′, y1, τ, z, y2) (→ (x, x ′, y1τ zy2) is a locally trivial fibration,

showing (5.2) is equivalent to showing

∑

i

(−1)i dim Hi
c
(
*̂(r)

w ,Q!

)
θ,θ ′ =





1 if w ∈ WF

L(r)
h

and θ ′ = θ ◦ Ad(w),

0 otherwise.
(5.3)

As in [16, 1.9], we can simplify the formulation of *̂w by replacing x by xF(y1) and
replacing x ′ by x ′F(y2)−1. We then obtain

*̂(r)
w = {(x, y1, τ, z, y2) ∈ FUh,r×Uh,r×Th×K1

h×Uh,r : xF(τ ẇz) ∈ y1τ ẇzy2FUh,r }.

Lemma 5.2.5 Assume that there exists some 2 ≤ i ≤ n which satisfies the string of
inequalities [γ ẇγ −1(i)] > [γ ẇγ −1(i − 1)+ 1] > 1. Then *̂w = ∅.

Proof By the same argument as in [8, Lemma 3.4], we may assume h = 1 and come to
the statement that *̂w = ∅ if there does not exist (x, y12, y21, τ ) ∈ FU1,r × (U1,r ∩
FU−

1,r ) × (U1,r ∩ FU−
1,r ) × T1 such that

ẇ−1τ y12xF(ẇ) ∈ y21F
(
U1 ∩ L(r)

1

)
.
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Therefore to prove the lemma, it is enough to analyze the intersection

[
ẇ−1(U1,r ∩ FU−

1,r

)
· FU1,r F(ẇ)

]
∩
[(
U1,r ∩ FU−

1,r

)
· F
(
U1 ∩ L(r)

1

)]
.

By construction (see (4.2), (4.3), and write F0(g) = b0γ tκ,nγ −1σ (g)t−1
κ,nγ b0γ

−1), we
have

ẇ−1(T1 ∩ (U1,r ∩ FU−
1,r ) · FU1,r )F(ẇ) ∩ ((U1,r ∩ FU−

1,r ) · FU1,r )

= γ −1(γ ẇ−1γ −1)(T1 · (Ulow,1,r ∩ F0Uup,1,r ) · F0Ulow,1,r )F0(γ ẇ−1γ −1)γ

∩ γ −1((Ulow,1,r ∩ F0Uup,1,r ) · F0Ulow,1,r )γ .

Now the desired result holds by Chan and Ivanov [8, Lemma 3.5].

The rest of the proof now proceeds exactly as in [8, Section 3.3, 3.4], which we
summarize now. By Chan and Ivanov [8, Lemma 3.5], if 1 7= w ∈ WL(r)

h
is such

that *̂w 7= ∅, then Uh ∩ ẇ−1Uhẇ is centralized by a subtorus of Th which properly
contains the center of Gh . In particular, the group

Hw = {(t, t ′) ∈ Th×Th : ẇ−1t−1F(t)ẇ = t ′−1F(t ′) centralizes Kh = U∩ẇ−1Uhẇ}

has the property that its imageunder the projectionsπ1,π2 : Th×Th → T1×T1 → T1

contains a rank-1 regular1 torus. Crucially, Hw acts on *̂
(r)
w via

(t, t ′) : (x, y1, τ, z, y2) (→
(
F(t)xF(t)−1, F(t)y1F(t)−1, tτ ẇt ′−1

ẇ−1, t ′zt ′−1, F(t ′)y2F(t ′)−1),

and this action extends the action of Th(Fq) × Th(Fq). Then H∗
c (*̂w,Q!) =

H∗
c (*̂

H0
w,red

w ,Q!) and using [8, Lemma 3.6], we can calculate:

*̂
H0
w,red

w =
{
(Thẇ)F if F(ẇ) = ẇ,

∅ otherwise.

Now (5.3) holds for all w 7= 1. To obtain (5.3) for w = 1, we may apply [8, Section
3.4] directly. We have now finished the proof of Theorem 5.2.1

5.2.2 Proof of Corollary 5.2.3

Consider

*1 =
{
(x, x ′, y) ∈

(
U1
h ∩ FU−,1

h

)
×
(
U1
h ∩ FU−,1

h

)
× G1

h : xF(y) = yx ′}.

1 We mean here that this torus is not contained in ker(α) for any root α of T1 the reductive group G1. See
[8, Lemma 3.7].
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Then we have an isomorphism

Gh(Fq )\
((
Xh ∩ ThG1

h
)
×
(
Xh ∩ ThG1

h
))

→ *1, (g, g′) (→
(
g−1F(g), g′−1F(g′), g−1g′).

Since G1
h has an Iwahori factorization, any y ∈ G1

h can be written uniquely in the
form

y = y′
1y

′
2y

′′
1 y

′′
2 , y′

1 ∈ U1
h ∩ F−1(U1

h
)
, y′

2 ∈ U1
h ∩ F−1(U−,1

h

)
,

y′′
1 ∈ Th ·

(
U−,1
h ∩ F−1U−,1

h

)
, y′′

2 ∈ U−,1
h ∩ F−1U1

h .

Then our defining equation becomes

xF
(
y′
1y

′
2y

′′
1 y

′′
2
)
= y′

1y
′
2y

′′
1 y

′′
2 x

′.

By (4.4), every element of Uh can be written uniquely in the form y′
1−1xF(y′

1). We
also have F(y′′

2 ), x
′ ∈ U1

h ∩ FU−,1
h and we can replace x ′ by x ′F(y′′

2 )
−1. Therefore

*1 is the set of tuples (x ′, y′
2, y

′′
1 , y

′′
2 ) ∈ (U1

h ∩ FU−,1
h ) × (U1

h ∩ F−1U−,1
h ) × (Th ·

(U−,1
h ∩ F−1U−,1

h )) × (U−,1
h ∩ F−1U1

h) which satisfy

y′′
1 y

′′
2 x

′ ∈ y′
2
−1Uh F(y′

2)F(y
′′
1 ) = Uh F(y′

2)F(y
′′
1 ).

Now consider the subgroup

H :=
{
(t, t ′) ∈ Th ×Th : t−1F(t) = t ′−1F(t ′) centralizes Th ·

(
U−,1
h ∩ F−1U−,1

h

)}
.

It is a straightforward check that for any (t, t ′) ∈ H , the map

(x ′, y′
2, y

′′
1 , y

′′
2 ) (→ (F(t ′)−1x ′F(t ′), t−1y′

2t, t
−1y′′

1 t
′, F(t ′)−1y′′

2 F(t
′))

defines an action of H on*1. By explicit calculation, one can check that H contains an
algebraic torus T over Fq and that the fixed points of *1 under T is equal to T1

h(Fq).
We therefore have

dim H∗
c (*

1,Q!)θ−1,θ ′ =
{
1 if χ = χ ′,
0 otherwise,

and this completes the proof.

5.3 Very regular elements

Recall that we say that an element g ∈ Th(Fq) ∼= Wh(Fqn )
× is very regular if its

image in F×
qn has trivial Gal(Fqn/Fq)-stabilizer.
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Proposition 5.3.1 Let θ : Th(Fq) → Q×
! be any character. If g ∈ Th(Fq) ⊂

L(r)
h (Fq)G1

h(Fq) is a very regular element, then

Tr
(
g; H∗

c
(
Xh ∩ L(r)

h G1
h
)
[θ ]
)
=

∑

γ∈Gal(L/k)[n′/r ]
θγ (x),

where Gal(L/k)[n′/r ] is the unique order-n′/r subgroup of Gal(L/k).

Proof. Let g ∈ Th(Fq) be a very regular element and let t ∈ Th(Fq) be any element.
Since the action of (g, t) on Xh∩L(r)

h G1
h is a finite-order automorphism of a separated,

finite-type scheme over Fqn , by the Deligne–Lusztig fixed point formula,

Tr
(
(g, t)∗; H∗

c
(
Xh ∩ L(r)

h G1
h
)
[θ ]
)
= Tr
(
(gu, tu)∗; H∗

c
((
Xh ∩ L(r)

h G1
h
)(gs ,ts ))[θ ]

)
,

where g = gsgu and t = ts tu are decompositions such that gs, ts is a power of g, t of
p-power order and gu, tu is a power of g, t of prime-to-p order.

Recall fromSect. 4.2 that every element x of Xh∩L(r)
h G1

h is amatrix that is uniquely
determined by its first column (x1, x2, . . . , xn). Furthermore, we have an isomorphism

Wh(Fqn )
× → Th(Fq), t (→ diag(t, σ l(t), σ 2l(t), . . . , σ (n−1)l(t)).

Under this identification, for g, t ∈ Th(Fq), the element gxt ∈ Xh ∩ L(r)
h G1

h cor-
responds to the vector (gtx1, σ l(g)t x2, σ 2l(g)t x3, . . . , σ (n−1)l(g)t xn). In particular,
we see that if x ∈ (Xh ∩ L(r)

h G1
h)

(g,t), then (for any i = 1, . . . , n) xi 7= 0 implies
t = σ (i−1)l(g)−1. Using the assumption that g is very regular and therefore gs has
trivial Gal(L/k)-stabilizer, this implies that (Xh ∩L(r)

h G1
h)

(g,t) exactly consists of ele-
ments corresponding to vectors with a single nonzero entry xi . Now, if i 7≡ 1 modulo
n0, then the corresponding x cannot lie in Xh as then det(x) /∈ Wh(Fq)

×. On the other
hand, if i ≡ 1 modulo n0 and i 7≡ 1 modulo n0r , then the corresponding x cannot lie
in L(r)

h G1
h . If x ∈ Xh ∩L(r)

h G1
h corresponds to (0, . . . , 0, xi , 0, . . . , 0) for some i ≡ 1

modulo n0r , then xi can be any element of W×
h (Fqn ). Hence:

(Xh ∩ L(r)
h G1

h)
(gs ,ts ) =

{
bi0Th(Fq) if t = σ (i−1)l(g)−1 for somei ≡ 1 mod n0r ,
∅ otherwise.

Furthermore, for gu, tu ∈ Th(Fq) and bi0x ∈ (Xh ∩ L(r)
h G1

h)
(gs ,ts ),

gu · bi0x · tu = bi0
(
b−i
0 gubi0

)
xtu = bi0

(
σ (i−1)l(gu)xtu

)
.

We are now ready to put all the above together. We have
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Tr
(
g; H∗

c
(
Xh ∩ L(r)

h G1
h
)
[θ]
)

= 1
#Th(Fq )

∑

t∈Th (Fq )
θ(t)−1 Tr

(
(g, t); H∗

c
(
Xh ∩ L(r)

h G1
h
))

= 1
#Th(Fq )

∑

t∈Th (Fq )
θ(t)−1 Tr

(
(gu , tu); H∗

c
((
Xh ∩ L(r)

h G1
h
)(gs ,ts )))

= 1
#Th(Fq )

∑

1≤i≤n
i≡1 (mod n0r)

θ
(
σ (i−1)l(gs)

) ∑

tu∈T1
h (Fq )

θ(tu)−1 Tr
(
(gu , tu); H∗

c
(
bi0Th(Fq )

))

= 1
#Th(Fq )

∑

1≤i≤n
i≡1 (mod n0r)

θ
(
σ (i−1)l(gs)

) ∑

tu∈T1
h (Fq )

θ(tu)−1
∑

θ ′ : Th (Fq )→Q!

θ ′(σ (i−1)l(gu)
)
θ ′(tu)

=
∑

1≤i≤n
i≡1 (mod n0r)

θ
(
σ (i−1)l(gs)

)
θ
(
σ (i−1)l (gu)

)
=

∑

γ∈Gal(L/k)[n′/r ]
θγ (g).

Remark 5.3.2 The notion of very regularity can be generalized outside the setting that
G is an inner form of GLn—in [7, Section 5, Definition 5.1 and Theorem 5.3], we
define a notion of being unramified very regular and establish a character formula for
H∗
c (Xh,Q!)[θ ] on the locus of such elements. The same analysis as in op. cit. can

be performed to obtain a generalization of Proposition 5.3.1 for arbitrary G: for any
character θ : Th(Fq) → Q×

! , if g ∈ Gx,0(Ok) is an unramified very regular element
with respect to x such that g ∈ T (Ok),

Tr(g; H∗
c (Xh ∩ LhG1

h,Q!)[θ ]) =
∑

γ∈NLx,0(Ok )(T )/(T (k)∩Gx,0(Ok ))

θγ (g).

6 The closed stratum is amaximal variety

Recall that X (r)
h is the closure of the r th Drinfeld stratum and that the unique closed

Drinfeld stratum is the n′th Drinfeld stratum

Xh,n′ = X (n′)
h := {x ∈ Gh : x−1σ (x) ∈ U1

r }.

Recall further that X (n′)
h is a finite disjoint union of copies of X1

h := X (n′)
h ∩ G1

h :

X (n′)
h =

⊔

g∈G1(Fq )
[g] · X1

h,

where [g]denotes a coset representative inGh(Fq) for g ∈ G1(Fq) = Gh(Fq)/G1
h(Fq).

For any character θ : Th(Fq) → Q×
! , we have an isomorphism of Gh(Fq)-

representations
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Hi
c (X

(n′)
h ,Q!)[θ ] ∼= Ind

Gh(Fq )
Th(Fq )G1

h(Fq )

(
Hi
c
(
X (n′)
h ∩ ThG1

h,Q!

)
[θ ]
)
, for all i ≥ 0.

Let χ := θ |T1
h(Fq ). As G

1
h(Fq)-representations,

Hi
c

(
X (n′)
h ∩ ThG1

h,Q!

)
[θ ] ∼= Hi

c
(
X1
h,Q!

)
[χ ], for all i ≥ 0.

The subvariety X1
h ⊂ Xh is stable under the action of/h := {(α,α−1) : α ∈ Th(Fq)} ·

(G1
h(Fq)×T1

h(Fq)),where the product is viewed as a product of subgroups ofGh(Fq)×
Th(Fq). Observe that /h ∼= F×

qn $ (G1
h(Fq) × T1

h(Fq)) and note that /h · ({1} ×
Th(Fq)) = Gh(Fq) × Th(Fq). Therefore

Ind
Gh(Fq )×Th(Fq )
/h

(
Hi
c
(
X1
h,Q!

)
[χ ]
) ∼=
⊕

θ ′
Hi
c
(
Xh ∩ ThG1

h
)
[θ ′],

where θ ′ ranges over all characters of Th(Fq) which restrict to χ on T1
h(Fq). The

action of (ζ, g, t) ∈ F×
qn $ (G1

h(Fq) × T1
h(Fq)) ∼= /h on x ∈ X1

h is given by

(ζ, g, t) ∗ x = ζ(gxt)ζ−1,

where we view ζ ∈ F×
qn as an element ofWh(Fqn )

× ∼= Th(Fq).

6.1 The nonvanishing cohomological degree

Recall from Sect. 5.1 that any character θ : Th(Fq) → Q×
! has a Howe factorization.

For any Howe factorization θ = ∏d
i=1 θi of θ , define a Howe factorization for χ :=

θ |T1
h(Fq ) by

χ =
d ′∏

i=1

χi , where χi := θi |T1
h(Fq ) and d ′ :=

{
d if hd ≥ 2,
d − 1 if hd = 1.

As in Sect. 5.1, although the characters χi are not uniquely determined, we have two
well-defined sequences of integers

1 =: m0 ≤ m1 < m2 < · · · < md ′ ≤ md ′+1 ≤ md+1 := n

h =: h0 ≥ h1 > h2 > · · · > hd ′ > hd ′+1 = hd+1 := 1

satisfying the divisibility mi | mi+1 for 0 ≤ i ≤ d.
We state the main result of this section.

Theorem 6.1.1 Let χ : T1
h(Fq) ∼= W1

h(Fqn ) → Q×
! be any character. Then

Hi
c (X

1
h,Q!)[χ ] =

{
irreducible G1

h(Fq)-representation if i = rχ ,
0 if i 7= rχ ,
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where

rχ = 2(n′ − 1)+ 2eχ + fχ

eχ =
(

n
md ′

− 1
)
(hd ′ − 1) −

(
n

lcm(md ′ , n0)
− 1
)

− (h0 − hd ′ )+
d ′−1∑

t=0

n
mt

(ht − ht+1)

fχ =
(
n − n

md ′

)
−
(
n′ − n

lcm(md ′ , n0)

)
+

d ′−1∑

t=0

(
n
mt

− n
mt+1

)
ht+1

Moreover, Frqn acts on H
rχ
c (X1

h,Q!) as multiplication by (−1)i qni/2.

The assertion about the action of Frqn on Hi
c (X

1
h,Q!)[θ ] is equivalent to saying that

X1
h is amaximal variety in the sense of Boyarchenko–Weinstein [2]; that is, #X1

h(Fqn )

attains its Weil–Deligne bound

#X1
h(Fqn ) =

∑

i≥0

(−1)i Tr(Frqn ; Hi
c (X

1
h,Q!)) ≤

∑

i≥0

qni/2 dim Hi
c (X

1
h,Q!).

For easy reference later, we record the following special case of Theorem 6.1.1.

Corollary 6.1.2 Let χ : T1
h(Fq) ∼= W1

h(Fqn ) → Q×
! be any character with trivial

Gal(L/k)-stabilizer. Then

Hi
c (X

1
h,Q!)[χ ] =

{
irreducible if i = rχ ,
0 if i 7= rχ ,

where

rχ = n(h − h1)+ h(n − 2)+ hd ′ − (n − n′)+
d ′−1∑

t=1

n
mt

(ht − ht+1).

Proof The assumption that χ has trivial Gal(L/k)-stabilizer is equivalent to the
assumption that md ′ = n. We see then that the formula for rχ given in Theorem
6.1.1 simplifies as follows:

rχ = 2(n′ − 1)+
d ′−1∑

t=0

2
(

n
mt

− 1
)
(ht − ht+1)

+
d ′−1∑

t=0

((
n
mt

− n
mt+1

)
(ht+1 − 1) −

(
n

lcm(mt , n0)
− n

lcm(mt+1, n0)

))

= 2(n′ − 1) − 2(h0 − hd ′) −
(

n
m0

− n
md ′

)
−
(

n
lcm(m0, n0)

− n
lcm(md ′ , n0)

)
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+ n
m0

(2h0 − h1) − n
md ′

(hd ′)+
d ′−1∑

t=1

n
mt

(ht − ht+1).

Using the fact that h0 = h andm0 = 1 by construction, the above expression simplifies
to the one given in the statement of the corollary.

6.2 RamifiedWitt vectors

We give a brief summary of ramified Witt vectors, following [5, Section 3.1]. In this
section, we assume k has characteristic 0. We first define a “simplified version” of the
ramified Witt ring W.

Definition 6.2.1 For any Fq -algebra A, let W (A) be the set AN endowed with the
following coordinatewise addition and multiplication rule:

[ai ]i≥0 +W [bi ]i≥0 = [ai + bi ]i≥0,

[ai ]i≥0 ∗W [bi ]i≥0 =
[

i∑
j=0

aq
i− j

j bq
i

i− j

]

i≥0

.

It is a straightforward check that W is a commutative ring scheme over Fq . It comes
with Frobenius and Verschiebung morphisms ϕ and V .

The relationship between the ring scheme W and the ring scheme W of ramified
Witt vectors is captured by the following lemma. The key point here is the notion of
“major contribution” and “minor contribution”; this will appear in Lemma 6.3.3 and
(implicitly) in Proposition 6.4.4.

Lemma 6.2.2 Let A be an Fq-algebra.

(a) For any [a1], . . . , [an] ∈ AN where [a j ] = [a j,i ]i≥0,

∏

1≤ j≤n
w.r.t. W

[a j ] =




∏

1≤ j≤n
w.r.t. W

[a j ]



+W [c],

where [c] = [ci ]i≥0 for some ci ∈ A[ae11,i1 · · · a
en
n,in : i1+· · ·+in < i, e1, . . . , en ∈

Z≥0].
(b) For any [a1], . . . , [an] ∈ AN where [a j ] = [a j,i ]i≥0,

∑

1≤ j≤n
w.r.t. W

[a j ] =




∑

1≤ j≤n
w.r.t. W

[a j ]



+W [c],

where [c] = [ci ]i≥0 for some ci ∈ A[a1, j , . . . , an, j : j < i].
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We call the portion coming from W the “major contribution” and [c] the “minor
contribution.”

6.3 Normed indexing sets

The groupG1
h is an affine space of dimension n2(h − 1). To prove Theorem 6.1.1, we

will need to coordinatize G1
h , and we do this here by defining an indexing set A+ of

triples (i, j, l). Our strategy for approaching Theorem 6.1.1 is to perform an inductive
calculation based on a Howe factorization of the character χ : T1

h(Fq) → Q×
! . In this

section, we will also define a filtration of A+ corresponding to the two sequences
{mi }, {hi } associated with χ .

The algebraic group G1
h can be described very explicitly: it consists of matrices

(Ai, j )1≤i, j≤n where

Ai, j =






[1, A(i, j,1), A(i, j,2), . . . , A(i, j,h−1)] ∈ W1
h if i = j,

[A(i, j,0), A(i, j,1), . . . , A(i, j,h−2)] ∈ Wh−1 if [i]n0 > [ j]n0 ,
[0, A(i, j,1), A(i, j,2), . . . , A(i, j,h−1)] ∈ Wh if [i]n0 ≤ [ j]n0 and i 7= j .

Here, we recall that for x ∈ Z, we write [x]n0 to denote the unique representative
of xZ/n0Z in the set of coset representatives {1, . . . , n0}. We have a well-defined
determinant map

det : G1
h → W1

h .

In the way described above, G1
h can be coordinatized by the indexing set

A+ :=




(i, j, l) ∈ Z⊕3 :
1 ≤ i, j ≤ n

0 ≤ l ≤ h − 2 if [i]n0 > [ j]n0
1 ≤ l ≤ h − 1 if [i]n0 ≤ [ j]n0




 .

We also define:

A := {(i, j, l) ∈ A+ : i 7= j},
A− := {(i, j, l) ∈ A : j = 1}.

The indexing set A corresponds to the elements of G1
h with 1’s along the diagonal,

and A− remembers only the first column of elements of G1
h with (1, 1)-entry 1.

Definition 6.3.1 Define a norm on A+:

A+ → R≥0,

(i, j, l) (→ |(i, j, l)| := i − j + nl.

Definition 6.3.2 For λ = (i, j, l) ∈ A+, define

λ∨ := ( j, i, h − 1 − l).
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The following seemingly innocuous lemma is in some sense the key reason that
the indexing sets above allow us to carry over the calculations in [5, Section 5] from
n′ = 1 setting to the present general n′ setting with very few modifications.

Lemma 6.3.3 Following the conventions as set up above, write A = (Ai, j )1≤i, j≤n ∈
G1

h, where

Ai, j =






[1, A(i, j,1), . . . , A(i, j,h−1)] ∈ W1
h if i = j,

[A(i, j,0), . . . , A(i, j,h−2)] ∈ Wh−1 if [i]n0 > [ j]n0 ,
[0, A(i, j,1), . . . , A(i, j,h−1)] ∈ Wh if [i]n0 ≤ [ j]n0 and i 7= j .

Assume that for λ1, λ2 ∈ A+, the variables Aλ1 and Aλ2 appear in the samemonomial
in det(A) ∈ Wh′ for some h′ ≤ h.

(a) Then |λ1| + |λ2| ≤ n(h′ − 1).
(b) If |λ1| + |λ2| = n(h′ − 1), then λ2 = λ∨

1 , where
∨ is taken relative to h′.

Proof By definition,

det(A) =
∑

γ∈Sn

∏

1≤i≤n

Ai,γ (i) ∈ Wh′(Fq).

Let l ≤ h′ − 1. If K has characteristic p, then the contributions to the " l -coefficient
coming from γ ∈ Sn are of the form

n∏

i=1

A(i,γ (i),li ),

where (l1, . . . , ln) is a partition of l. Then

n∑

i=1

|(i, γ (i), li )| =
n∑

i=1

i − γ (i)+ nli =
n∑

i=1

nli = nl ≤ n(h′ − 1). (6.1)

If K has characteristic 0, then the major contributions to the " l -coefficient coming
from γ are of the form

n∏

i=1

Aei
(i,γ (i),li )

,

where the ei are some nonnegative integers and where (l1, . . . , ln) is a partition of l.
Hence

n∑

i=1

|(i, γ (i), li )| = nl ≤ n(h′ − 1). (6.2)

The minor contributions to the " l -coefficient coming from γ are polynomials in
∏n

i=1 A
e′
i
(i,γ (i),li )

where l1 + · · · + ln < l and the e′
i are some nonnegative integers.

Hence
∑n

i=1 |(i, γ (i), li )| < n(h′ − 1).
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Suppose now that λ1 = (i1, j1, l1), λ2 = (i2, j2, l2) ∈ A+ are such that Aλ1 and
Aλ2 contribute to the samemonomial in det(M) ∈ W1

h′ . Then there exists some γ ∈ Sn
such that γ (i1) = j1 and γ (i2) = j2, and by Eqs. (6.1) and (6.2),

|λ1| + |λ2| ≤ n(h′ − 1).

Observe that if K has characteristic 0 and λ1 and λ2 occur in a minor contribution,
then |λ1|+ |λ2| < n(h′). This proves (a), and furthermore, we see that if |λ1|+ |λ2| =
n(h′ − 1), then the simultaneous contribution of Aλ1 and Aλ2 comes from a major
contribution. But now (b) follows: since the image of G1

h under the determinant is
W1

h , if |λ1| + |λ2| = n(h′ − 1), then necessarily the contribution of λ1 and λ2 to the
(h′ − 1)th coordinate of the determinant must come from a transposition.

Given two sequences of integers

1 =: m0 ≤ m1 < m2 < · · · < md ′ ≤ md ′+1 ≤ md+1 := n

h =: h0 ≥ h1 > h2 > · · · > hd ′ > hd ′+1 = hd+1 := 1

satisfying mi | mi+1 for 0 ≤ i ≤ d, we can define the following subsets of A for
0 ≤ s, t ≤ d:

As,t := {(i, j, l) ∈ A : i ≡ j (mod ms), i 7≡ j (mod ms+1), l ≤ ht − 1},
A−

s,t := As,t ∩ A−.

We will need to understand which λ ∈ A are such that xλ contributes nontrivially
to the determinant. We denote the set of all such λ by Amin. We may describe this
explicitly:

Amin = {λ ∈ A : λ∨ ∈ A}

=





(i, j, l) ∈ A :

0 ≤ l ≤ h − 2 if [i]n0 > [ j]n0
1 ≤ l ≤ h − 1 if [i]n0 < [ j]n0
1 ≤ l ≤ h − 2 if [i]n0 = [ j]n0





. (6.3)

For 0 ≤ s, t ≤ r , by considering ∨ relative to ht , we may similarly define

Amin
s,t := {λ ∈ As,t : λ∨ ∈ As,t }

=





(i, j, l) ∈ As,t :

0 ≤ l ≤ ht − 2 if [i]n0 > [ j]n0
1 ≤ l ≤ ht − 1 if [i]n0 < [ j]n0
1 ≤ l ≤ ht − 2 if [i]n0 = [ j]n0





.
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DefineA−,min
s,t := A− ∩Amin

s,t = A−
s,t ∩Amin

s,t . Define the following decomposition of
A−,min

s,t :

Is,t := {(i, 1, l) ∈ A−,min
s,t : |(i, 1, l)| > n(ht − 1)/2},

Js,t := {(i, 1, l) ∈ A−,min
s,t : |(i, 1, l)| ≤ n(ht − 1)/2}.

For any real number ν, define

Amin
≥ν,t :=

r⊔

s=;ν<
Amin

s,t , A−,min
≥ν,t = A− ∩ Amin

≥ν,t ,

and observe that for 0 ≤ s ≤ r an integer,

Amin
≥s,t =





(i, j, l) ∈ A :

j ≡ i (mod ms)

0 ≤ l ≤ ht − 2 if [i]n0 > [ j]n0
1 ≤ l ≤ ht − 1 if [i]n0 < [ j]n0
1 ≤ l ≤ ht − 2 if [i]n0 = [ j]n0





.

Lemma 6.3.4 There is an order-reversing injection Is,t → Js,t that is a bijection if
and only if A−,min

s,t is even. Explicitly, it is given by

Is,t ↪→ Js,t , (i, 1, l) (→ ([n − i + 2]n, 1, ht − 2 − l).

Note that #A−,min
s,t is even unless n and ht are both even.

Proof If (i, 1, l) ∈ A−,min
s,t , then by definition i ≡ 1 modulo ms and i 7≡ 1 modulo

ms+1. Thus [n − i + 2]n ≡ 1 modulo ms and [n − i + 2]n 7≡ 1 modulo ms+1, which
shows that (i, 1, l) ∈ A−,min

s,t implies ([n − i + 2]n, 1, l) ∈ A−,min
s,t . Since i ≥ 2 by

assumption, we have i + [n − i + 2]n = n + 2 and

|(i, 1, l)| + |([n − i + 2]n, 1, ht − 2 − l)| = n(ht − 1).

Hence if (i, 1, l) ∈ Is,t , then ([n − i + 2]n, 1, l) ∈ Js,t . It is clear that the map is a
bijection if and only if Js,t does not contain an element of norm n(ht − 1)/2. Such an
element must necessarily be of the form ((n + 2/2), 1, (ht − 2)/2), which is integral
if and only if n and ht are both even.

6.4 The cohomology of X1h

The purpose of this section is to establish the following result:

Theorem 6.4.1 For any character χ : T1
h(Fq) → Q×

! ,
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HomG1
h (Fq )

(
Ind

G1
h (Fq )

T1
h (Fq )

(χ), Hi
c
(
X1
h,Q!

))
=
{
Q⊕qn fχ /2

! ⊗ ((−qn/2)rχ )deg if i = rχ ,

0 otherwise.

Moreover, Frqn acts on Hi
c (X

1
h,Q!) by multiplication by the scalar (−1)i qni/2.

This is a technical calculation which follows the strategy developed in [5] (in
particular, see Sections 4 and 5 of op. cit.). We first rephrase space of homomorphisms
in the statement of Theorem 6.4.1 in terms of the cohomology of a related variety.
Every coset of G1

h/T1
h has a unique coset representative g whose diagonal entries are

identically 1. Over Fq , we may identify G1
h/T1

h with the affine space A[A] (the affine
space of dimension #A with coordinates indexed by the set A of Sect. 6.3). Then the
quotient morphism G1

h → G1
h/T1

h has a section given by

s : G1
h/T1

h → G1
h, (x(i, j,l))(i, j,l)∈A (→ (xi, j )i, j=1,...,n,

where

xi, j =






1 ∈ W1
h if i = j,

[x(i, j,0), x(i, j,1), . . . , x(i, j,h−2)] ∈ Wh−1 if [i]n0 > [ j]n0 ,
[0, x(i, j,1), x(i, j,2), . . . , x(i, j,h−1)] ∈ Wh if [i]n0 ≤ [ j]n0 and i 7= j .

As in [5, Section 5.1.1], there exists a closed Fqn -subscheme Y 1
h of G1

h such that
Xh = L−1

q (Y 1
h ) which satisfies the condition that Friq(Y

1
h ) ∩ Fr jq(Y 1

h ) = {1} for all
i 7= j . We are therefore in a setting where we can invoke [5, Proposition 4.1.1].

Define

β :
(
G1

h/T1
h
)
× T1

h → G1
h, (x, g) (→ s(Frq(x)) · g · s(x).

The affine Fqn -scheme β−1(Y 1
h ) ⊂ (G1

h/T1
h) × T1

h comes with two maps:

pr1 : β−1(Y 1
h
)

→ G1
h/T1

h = A[A], pr2 : β−1(Y 1
h
)

→ T1
h .

Recall from [5, Lemma 4.1.2] that since the Lang morphism Lq is surjective,

(x, g) ∈ β−1(Y 1
h
)

⇐⇒ s(x) · y ∈ Xh, (6.4)

where y ∈ T1
h is any element such that Lq(y) = g.

Proposition 6.4.2 For any character χ : T1
h(Fq) ∼= W1

h(Fqn ) → Q×
! , let Lχ denote

the corresponding Q!-local system on W1
h. For i ≥ 0, we have Frqn -compatible

isomorphisms

HomG1
h(Fq )
(
Ind

G1
h(Fq )

T1
h(Fq )

(χ), Hi
c (Xh,Q!)

)
∼= Hi

c (A[A−], P∗Lχ ),
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where P : A[A−] → W1
h is the morphism (x(i,1,l))(i,1,l)∈A− (→

Lq(det(gredb (1, x2, . . . , xn)))−1 for xi := [x(i,1,0), x(i,1,1), . . . , x(i,1,h−1)].

Proof By [5, Proposition 4.1.1],

HomG1
h(Fq )
(
Ind

G1
h(Fq )

T1
h(Fq )

(χ), Hi
c (Xh,Q!)

)
∼= Hi

c
(
β−1(Y 1

h
)
, pr∗2 Fχ

)
,

where Fχ is the rank-1 local system on T1
h corresponding to χ . By the same proof

as [5, Lemma 5.1.1], β−1(Y 1
h ) is the graph of the morphism P0 : A[A] → W1

h given
by x (→ Lq(det(s(x)))−1. Furthermore, as morphisms on β−1(Y 1

h ), we have pr2 =
i ◦ P0 ◦ pr1, where i : W1

h → T1
h, x (→ diag(x, 1, . . . , 1). Therefore, as sheaves on

pr1(β
−1(Y 1

h )), we have pr
∗
2 Fχ = P∗

0 i
∗Fχ = P∗

0 Lχ , so

Hi
c
(
β−1(Y 1

h
)
, pr∗2 Fχ

)
= Hi

c
(
pr1
(
β−1(Y 1

h
))
, P∗

0 Lχ

)
.

Next we claim that the projection A[A] → A[A−] induces an isomorphism
pr1(β

−1(Y 1
h )) → A[A−]. Injectivity is clear: using (6.4), we know that x ∈

pr1(β
−1(Y 1

h )) if s(x) · y ∈ X1
h for some y ∈ T1

h . Since s(x) · y is uniquely determined
by its first column, then s(x) is uniquely determined by its first column, which is
precisely the projection of x to A[A−]. To see surjectivity, we need to show that for
any x ∈ A[A−](Fq), there exists a y ∈ T1

h(Fq) such that gredb (x) · y ∈ X1
h . Pick any

y = diag(y1, σ (y1), . . . , σ (y1)) ∈ T1
h(Fq) such that det(y) = det(gredb (x))−1. Then

gredb (x) · y ∈ Xh since gredb (x) · y = gredb (xy1) and det(gredb (x) · y) = 1 ∈ W1
h(Fq).

Under the isomorphism pr1(β
−1(Y 1

h ))
∼= A[A−], the sheaf P∗

0 Lχ is identified with
P∗Lχ , and the proposition now follows.

Note that the last paragraph of the above proof is a simpler and more conceptual
proof of [5, Lemma 5.1.6]. To calculate Hi

c (A[A−], P∗Lχ ), we will use an inductive
argument on affine fibrations that relies on iteratively applying the next two proposi-
tions:

Proposition 6.4.3 For 0 ≤ t ≤ d ′, we have Frqn -compatible isomorphisms

Hi
c
(
A
[
A−,min

≥t,t
]
, P∗Lχ≥t

) ∼= Hi
c
(
A
[
A−,min

≥t,t+1

]
, P∗Lχ≥t+1

)
[2et ] ⊗

((
− qn/2
)2et )deg,

where et = #(A−,min
≥t,t ! A−,min

≥t,t+1).

Proof Theproof is the sameas the proof of [5, Proposition 5.3.1].Wegive a sketch here.
By definition, χ≥t = χt · χ≥t+1 and χt factors through the norm map W1

ht (Fqn ) →
W1

ht (Fqmt ). Let pr : W1
ht → W1

ht+1
. Since P : A[A−,min

≥t,t ] → W1
ht factors through

Lqmt , this implies that

P∗Lχ≥t = P∗Lχt ⊗ P∗ pr∗ Lχ≥t+1 = Q! ! P∗Lχ≥t+1,
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where Q! is the constant sheaf on A[A−,min
≥t,t ! A−,min

≥t,t+1] and P∗Lχ≥t+1 is the pull-

back along P : A[A−,min
≥t,t+1] → W1

ht+1
. The conclusion then follows from the Künneth

formula.

Proposition 6.4.4 For 0 ≤ t ≤ d ′ − 1, we have Frqn -compatible isomorphisms

Hi
c
(
A
[
A−,min

≥t,t+1

]
, P∗Lχ≥t+1

) ∼= Hi
c
(
A
[
A−,min

≥t+1,t+1

]
, P∗Lχ≥t+1

)⊕qn ft /2 [ ft ]⊗
((

− qn/2
) ft )deg,

where ft = #(A−,min
≥t,t+1 ! A−,min

≥t+1,t+1) = #A−,min
t,t+1 .

Proof By replacing [5, Lemmas 3.2.3, 3.2.6] with Lemmas 6.3.3 and 6.3.4, the proof
of [5, Proposition 5.3.2] applies. (The proof is quite technical; simpler incarnations of
this idea have appeared in [1,3,4].)

Proof of Theorem 6.4.1 ByProposition 6.4.2, we need to calculate Hi
c (A[A−], P∗Lχ ).

Since P(A[A− ! A−,min]) = {1} ∈ W1
h and #(A− ! A−,min) = n′ − 1, we see that

Hi
c (A[A−], P∗Lχ ) = Hi

c (A[A−,min], P∗Lχ )[2(n′ − 1)] ⊗
((

− qn/2
)2(n′−1))deg

.

Using Propositions 6.4.3 and 6.4.4 iteratively, we have

Hi
c
(
A
[
A−,min], P∗Lχ

)

= Hi
c
(
A
[
A−,min

≥0,0

]
, P∗Lχ≥0

)
(by def)

∼= Hi
c
(
A
[
A−,min

≥0,1

]
, P∗L≥1

)
[2e0] ⊗

((
− qn/2
)2e0)deg (Prop 6.4.3)

∼= Hi
c
(
A
[
A−,min

≥1,1

]
, P∗L≥1

)⊕qn f0/2 [ f0 + 2e0] ⊗
((

− qn/2
) f0+2e0

)deg
(Prop 6.4.4)

∼= Hi
c
(
A
[
A−,min

≥1,2

]
, P∗L≥2

)⊕qn f0/2 [ f0 + 2(e0 + e1)] ⊗
((

− qn/2
) f0+2(e0+e1)

)deg
(Prop 6.4.3)

and so forth until

∼= Hi
c
(
A
[
A−,min

≥d ′,d ′+1

]
, P∗Lχ≥d′+1

)⊕qn fχ /2
[ fχ + 2eχ ] ⊗

((
− qn/2
) fχ+2eχ

)
,

where
fχ := f0 + f1 + · · · + fd ′−1, eχ := e0 + e1 + · · · + ed ′ .

Since A≥d ′,d ′+1 = ∅, now we have shown

Hi
c
(
A
[
A−,min], P∗Lχ

) ∼= Hi
c (∗,Q!)

⊕qn fχ /2 [ fχ + 2eχ ] ⊗
((

− qn/2
) fχ+2eχ

)deg
.

(6.5)
Set rχ := 2(n′ − 1)+ fχ + 2eχ . By Proposition 6.4.2, we now have

HomG1
h(Fq )
(
Ind

G1
h(Fq )

T1
h(Fq )

(χ), Hi
c (Xh,Q!)

)
∼=
{
Qqn fχ /2

! if i = rχ ,
0 otherwise.
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Moreover, since Frqn acts trivially on Hi
c (A[A−,min

≥d ′,d ′+1], P∗Lχ≥d′+1
) = H0(∗,Q!),

then Frqn acts by multiplication by (−1)rχ qnrχ /2 on the above space of homomor-
phisms.

To finish the proof of Theorem 6.4.1, we need only calculate eχ , fχ , rχ . Unwinding
the definitions of indexing sets given in Sect. 6.3, we have, for 0 ≤ t ≤ d ′,

A−,min
≥t,t =





(i, 1, l) ∈ Z⊕3 :

2 ≤ i ≤ n, i ≡ 1 (mod mt )

0 ≤ l ≤ ht − 2 if [i]n0 7= 1

1 ≤ l ≤ ht − 2 if [i]n0 = 1





,

A−,min
≥t,t+1 =




(i, 1, l) ∈ Z⊕3 :
2 ≤ i ≤ n, i ≡ 1 (mod mt )

0 ≤ l ≤ ht+1 − 2 if [i]n0 7= 1
1 ≤ l ≤ ht+1 − 2 if [i]n0 = 1




 .

Therefore, we have

et =
( n
mt

− 1
)
(ht − ht+1) if 0 ≤ t ≤ d ′ − 1,

ed ′ =
( n
md ′

− 1
)
(hd ′ − 1) −

( n
lcm(md ′, n0)

− 1
)
.

For 0 ≤ t ≤ d ′ − 1, we have

A−,min
t,t+1 =




(i, 1, l) ∈ Z⊕3 :
2 ≤ i ≤ n, i ≡ 1 (mod mt ), i 7≡ 1 (mod mt+1)

0 ≤ l ≤ ht+1 − 2 if [i]n0 7= 1
1 ≤ l ≤ ht+1 − 2 if [i]n0 = 1






so that

ft =
(

n
mt

− n
mt+1

)
(ht+1 − 1) −

(
n

lcm(mt , n0)
− n

lcm(mt+1, n0)

)
.

6.5 The nonvanishing cohomological degree

In this section, we use the results of the preceding sections to finish the proof of
Theorem 6.1.1. Observe that from Theorem 6.4.1 together with Corollary 5.2.2, we
have the following:

Corollary 6.5.1 Let π be an irreducible constituent of Hr
c (Z

1
h,Q!) for some r. Then

HomG1
h(Fq )
(
π, Hi

c (X
1
h,Q!)
)
= 0 for all i 7= r .

In particular, for any χ : T1
h(Fq) → Q×

! , there exists a positive integer sχ such that

Hi
c (X

1
h,Q!)[χ ] =

{
irreducible if i = sχ ,
0 if i 7= sχ .
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Proof This is the same as the proof of [5, Corollary 5.1.3]. The irreducible G1
h(Fq)-

representation π ⊂ Hr
c (X

1
h,Q!) is a summand of Ind

G1
h(Fq )

T1
h(Fq )

(χ ′) for some χ ′. Hence

HomG1
h(Fq )

(
Ind

G1
h(Fq )

T1
h(Fq )

(χ ′), Hr
c
(
X1
h,Q!

))
7= 0.

Theorem 6.4.1 implies that r = rχ ′ and that there are no G1
h(Fq)-equivariant homo-

morphisms from π to Hi
c (X

1
h,Q!) for i 7= rχ ′ . This proves the first assertion.

To see the second assertion, first recall from Corollary 5.2.2 that H∗
c (X

1
h,Q!)[χ ]

is (up to sign) an irreducible G1
h(Fq)-representation. Therefore, we may apply the

above argument to H∗
c (X

1
h,Q!)[χ ] and we see that if H∗

c (X
1
h,Q!)[χ ] is a summand

of Ind
G1
h(Fq )

T1
h(Fq )

(χ ′), then

Hi
c
(
X1
h,Q!

)
[χ ] =
{
irreducible if i = rχ ′,

0 otherwise.

Since the number rχ ′ only depends on χ , we final assertion of the corollary holds
taking sχ = rχ ′ .

We see now that the upshot of Theorem 6.4.1 is that we already know that
Hi
c (X

1
h,Q!)[χ ] is concentrated in a single degree sχ . However, it would be much

more satisfying—for many reasons, computational, conceptual, idealogical—if we
could pinpoint this nonvanishing cohomological degree. Taking a hint from the proof
of Corollary 6.5.1, one strategy to prove that sχ = rχ is to prove that H

sχ
c (X1

h,Q!)[χ ]
is a summand of Ind

G1
h(Fq )

T1
h(Fq )

(χ). This is our next result.

Theorem 6.5.2 For any χ : T1
h(Fq) → Q×

! ,

HomG1
h(Fq )

(
Ind

G1
h(Fq )

T1
h(Fq )

(χ), H
sχ
c
(
Z1
h,Q!

)
[χ ]
)

7= 0.

In particular, sχ = rχ .

The proof of Theorem 6.5.2 is essentially the same proof as [5, Theorem 6.2.4]. By
Frobenius reciprocity, it is enough to show

HomT1
h(Fq )
(
χ , H

sχ
c
(
X1
h,Q!

)
[θ ]
)

7= 0. (6.6)

We will sometimes write T1
h = T1

h,n,q and G1
h = G1

h,n,q , X
1
h = X1

h,n,q , g
n,q
b , and

sχ = sn,qχ to emphasize the dependence on n, q. It is clear that once (6.6) is established,
then by Theorem 6.4.1, it follows that sχ = rχ . We first establish two lemmas. Just
for these two lemmas, we write Hi

c (X) to mean Hi
c (X ,Q!) for notational brevity.
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Lemma 6.5.3 For any ζ ∈ F×
qn with trivial Gal(Fqn/Fq)-stabilizer and any g ∈

T1
h(Fq),

Tr
(
(ζ, 1, g); Hsχ

c
(
X1
h
)
[χ ]
)
= (−1)sχ χ(g).

Proof Recall that the action of (ζ, 1, 1) ∈ /h is given by conjugation. Observe that if
x ∈ (X1

h)
(ζ,1,1), then x = gb(v1, 0, . . . , 0). Furthermore, this forces v1 ∈ W1

h(Fqn ).
Therefore (X1

h)
(ζ,1,1) = T1

h(Fq). By the Deligne–Lusztig fixed point formula,

Tr
(
(ζ, g, 1)∗; H∗

c
(
X1
h
)
[χ]
)
= 1

#T1
h(Fq )

∑

t∈T1
h (Fq )

χ(t)−1 Tr
(
(ζ, g, t)∗; H∗

c
(
X1
h
))

= 1

#T1
h(Fq )

∑

t∈T1
h (Fq )

χ(t)−1 Tr
(
(1, g, t)∗; H∗

c
((
X1
h
)(ζ,1,1)))

= 1

#T1
h(Fq )

∑

t∈T1
h (Fq )

χ(t)−1 Tr
(
(1, g, t)∗; H∗

c
(
T1
h
(
Fq
)))

= 1

#T1
h(Fq )

∑

t∈T1
h (Fq )

χ(t)−1
∑

χ ′ : T1
h (Fq )→Q×

!

χ ′(g)χ ′(t) = χ(g).

The conclusion of the lemma now follows from Corollary 6.5.1.

Lemma 6.5.4 Let p0 be a prime dividing n. For any ζ ∈ F×
q p0 !F×

q and any g ∈
T1
h(Fq),

(−1)s
n,q
χ Tr
(
(ζ, 1, g); Hsn,qχ

c
(
X1
h,n,q
)
[χ]
)
= (−1)s

n/p0 ,q
p0

χ Tr
(
(1, 1, g); Hs

n/p0 ,q
p0

χ
c

(
X1
h,n/p0,q p0

)
[χ]
)
.

Proof Recall that the action of (ζ, 1, 1) ∈ /h is given by conjugation. Observe that if
x ∈ (X1

h)
(ζ,1,1), then x = gb(v1, . . . , vn) where vi = 0 for all i 7≡ 1 modulo p0. The

map

f :
(
X1
h,n,q
)(ζ,1,1) → X1

h,n/p0,q p0

gn,qb (v1, v2, . . . , vn) (→ gn/p0,q
p0

b (v1, vp0+1, v2p0+1, . . . , vn−p0+1)

defines an isomorphism equivariant under the action of T1
h,n,q(Fq) × T1

h,n,q(Fq) ∼=
T1
h,n/p0,q p0 (Fq)×T1

h,n/p0,q p0 (Fq). (Note that the determinant condition on the image

can be seen by observing that the rows and columns of x := gn,qb (v1, . . . , vn) can be
rearranged so that the matrix becomes block-diagonal of the form
diag( f (x), σ l( f (x)), . . . , σ [l(p0−1)]n ( f (x))). Hence the determinant of x is fixed by
σ if and only if the determinant of f (x) is fixed by σ p0 .)

By the Deligne–Lusztig fixed-point formula,

Tr
(
(ζ, g, t)∗; H∗

c
(
X1
h,n,q
))

= Tr
(
(1, g, t)∗; H∗

c
(
X1
h,n,q
)(ζ,1,1))

,
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so that

Tr
(
(ζ, g, 1)∗; H∗

c
(
X1
h,n,q
)
[χ ]
)
= 1

#T1
h(Fq )

∑

t∈T1
h(Fq )

χ(t)−1 Tr
(
(ζ, g, t)∗; H∗

c
(
X1
h,n,q
))

= 1

#T1
h(Fq )

∑

t∈T1
h(Fq )

χ(t)−1 Tr
(
(1, g, t)∗; H∗

c
((
X1
h,n,q
)(ζ,1,1))[χ ]

)

= 1

#T1
h(Fq )

∑

t∈T1
h(Fq )

χ(t)−1 Tr
(
(1, g, t)∗; H∗

c
(
X1
h,n/p0,q p0

))

= Tr
(
(1, g, 1)∗; H∗

c
(
X1
h,n/p0,q p0

)
[χ ]
)
.

The conclusion of the lemma now holds by Corollary 6.5.1.

Lemma 6.5.5 Let χ : T1
h(Fq) → Q×

! . Assume that we are in one of the following
cases:

(1) n > 1 is odd and p0 is a prime divisor of n.
(2) n > 1 is even and p0 = 2.

Fix a ζ ∈ F×
q p0 such that 〈ζ 〉 = F×

q p0 and consider the extension of χ defined by

χ̃ : F×
q p0×T1

h(Fq) → Q×
! , (ζ i , g) (→

{
χ(g) if q is even,
(
(−1)s

n,q
χ +s

n/p0,q
p0

χ
)i · χ(g) if q is odd.

Then ∑

x∈F×
q p0

!Fq

χ̃(x, 1)−1 7= 0.

Proof This is the same proof as [5, Lemma 6.2.6].

Proof of Theorem 6.5.2 The proof is exactly as in [5, Theorem 6.2.4]. We give a sketch
here. Since X1

h,1,q = T1
h(Fq) and hence for any χ : T1

h(Fq) → Q×
! , we have

H
s1,qχ
c
(
X1
h,1,q
)
[χ ] = H0

c
(
T1
h
(
Fq
))
[χ ] = χ ,

so Eq. (6.6) holds for n = 1 and q arbitrary.We induct on the number of prime divisors
of n: assume that for a fixed integer l ≥ 0, Eq. (6.6) holds for any

∏l
i=1 pi and arbitrary

q, where the pi are (possibly non-distinct) primes. We will show that Eq. (6.6) holds
for any

∏l
i=0 pi and arbitrary q. If n is even, let p0 = 2; otherwise, p0 can be taken

to be anything. Let χ̃ be as in Lemma 6.5.5. Then
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∑

(x,g)∈F×
q p0

×T1h (Fq )
χ̃(x, g)−1 Tr

(
(x, 1, g); Hsn,qχ

c
(
X1
h,n,q
)
[χ ]
)

= #
(
F×
q × T1

h(Fq )
)
· dimHomF×

q ×T1h (Fq )
(
χ̃ , H

sn,qχ
c
(
X1
h,n,q
)
[χ ]
)

+
∑

(x,g)∈F×
q p0

×T1h (Fq )
x∈F×

q p0
!F×

q

χ̃(x, g)−1 · (−1)s
n,q
χ +s

n/p0,q
p0

χ · Tr
(
(1, 1, g); Hs

n/p0,q
p0

χ
c

(
X1
h,n/p0,q

p0

)
[χ ]
)
.

By the inductive hypothesis together with Lemma 6.5.5, the second summand is a
nonzero number, and hence necessarily either the left-hand side is positive or the first
summand is positive. In either case, Eq. (6.6) must hold.

For the reader’s benefit, we summarize the discussion of this section to prove
Theorem 6.1.1.

Proof of Theorem 6.1.1 By Corollary 5.2.2, we know that H∗
c (X

1
h,Q!)[χ ] is (up to

sign) an irreducible G1
h(Fq)-representation. By Theorem 6.4.1, for any character χ ′,

HomG1
h(Fq )
(
Ind

G1
h(Fq )

T1
h(Fq )

(χ ′), Hi
c
(
X1
h,Q!

))
7= 0 ⇐⇒ i = rχ ′ .

As explained in Corollary 6.5.1, this implies that if H∗
c (X

1
h,Q!)[χ ] is a summand of

Ind
G1
h(Fq )

T1
h(Fq )

(χ ′) for some χ ′, then

Hi
c
(
X1
h,Q!

)
[χ ] 7= 0 ⇐⇒ i = rχ ′ =: sχ .

By Theorem 6.5.2, we see that in fact we can take χ ′ = χ , and therefore the nonvan-
ishing cohomological degree of Hi

c (X
1
h,Q!)[χ ] is in fact i = rχ . The final assertion

about the action of Frqn on H
rχ
c (X1

h,Q!)[θ ] = (−1)rχ H∗
c (X

1
h,Q!)[θ ] now follows

from Theorem 6.4.1.

6.6 Dimension formula

We use Theorem 6.1.1 to give an explicit dimension formula for the G1
h(Fq)-

representation H∗
c (X

1
h,Q!)[χ ].

Corollary 6.6.1 If χ : T1
h(Fq) ∼= W1

h(Fqn ) → Q×
! is any character, then

dim H
rχ
c
(
X1
h,Q!

)
[χ ] = q(n

2−n)(h−1)−nrχ /2.
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In particular, if χ has trivial Gal(L/k)-stabilizer, then

logq
(
dim H

rχ
c
(
X1
h,Q!

)
[χ ]
)
= n

2

(
n(h1−1)−(hd ′−1)−(n′−1)−

d ′−1∑
t=1

n
mt
(ht−ht+1)

)
.

Proof By applying [1, Lemma 2.12] to calculate the character of H
rχ
c (X1

h,Q!)[χ ] at
the identity, we have

dim H
rχ
c
(
X1
h,Q!

)
[χ ] = (−1)rχ

λ · #T1
h(Fq)

∑

t∈T1
h(Fq )

χ(t) · #S1,t ,

where S1,t = {x ∈ X1
h(Fq) : σ (Frqn (x)) = x · t} and λ is the scalar by which Frqn

acts on H
rχ
c (X1

h,Q!)[χ ]. Suppose that x ∈ S1,t . Then by the same argument as [9,
Lemma 9.3], det(bσ (gb(x))) = t · det(b) det(gb(x)), which then forces t = 1. By
construction, S1,1 = G1

h(Fq), so therefore

dim H
rχ
c
(
X1
h,Q!

)
[χ ] = #G1

h(Fq)

qnrχ /2 · #T1
h(Fq)

= q(n
2−n)(h−1)−nrχ /2,

where we also use the fact that λ = (−1)rχ qnrχ /2 from Theorem 6.1.1. The assertion
in the case that χ has trivial Gal(L/k)-stabilizer follows from Corollary 6.1.2.

7 Conjectures

7.1 Concentration in a single degree

Recall that from Corollary 5.2.2, we know that if θ : Th(Fq) ∼= W×
h (Fqn ) →

Q×
! is a character with trivial Gal(Fqn/Fqn0r )-stabilizer, then the alternating sum

H∗
c (Xh∩L(r)

h G1
h,Q!)[θ ] is (up to sign) an irreducibleL(r)

h (Fq)G1
h(Fq)-representation.

We conjecture that in fact these cohomology groups should be concentrated in a single
degree.

Conjecture 7.1.1 Let r | n′ and let θ : Th(Fq) ∼= W×
h (Fqn ) → Q×

! be a character
with trivial Gal(Fqn/Fqn0r )-stabilizer. Then there exists an integer iθ,r such that

Hi
c
(
Xh ∩ L(r)

h G1
h,Q!

)
[θ ] 7= 0 ⇐⇒ i = iθ,r .

In this paper, we proved this conjecture in the case r = n′ and in fact pinpointed the
nonvanishing cohomological degree iθ,n′ (Theorem 6.1.1). We expect that a similar
formula for iθ,r is obtainable, where the methods in this paper can be used to reduce
the determination of iθ,r to a “depth-zero” setting. The hypotheses of Conjecture 7.1.1
should be equivalent to saying that the consequent depth-zero input comes from the θ0-
isotypic part of the cohomology of a classical Deligne–Lusztig variety (of dimension
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r − 1) for the twisted Levi L1,r in G1, where θ0 is a character of T1(Fq) ∼= F×
qn in

general position.

7.2 Relation to loop Deligne–Lusztig varieties

The varieties Xh are closely related to a conjectural construction of Deligne–Lusztig
varieties for p-adic groups initiated by Lusztig [15]. We call these sets loop Deligne–
Lusztig varieties, although the algebro-geometric structure is still unknown in general.

In [9], we studied this question for a certain class of these sets attached to inner
forms of GLn . We prove (see also [8, Proposition 2.6]) that the fpqc-sheafification X
of the presheaf on category PerfFq of perfect Fq -schemes

X : R (→ {x ∈ LG(R) : x−1F(x) ∈ LU (R)}/L(U ∩ F−1U )

is representable by a perfect Fq -scheme and that X is the perfection of

⊔

g∈G(k)/Gx,0(Ok )

g · lim←−
h

Xh .

We see that an intermediate step to understanding the cohomology of loop Deligne–
Lusztig is to calculate the cohomology of Xh .

However, for various reasons, it is often easier to calculate the cohomology of the
Drinfeld stratification. For example, in [8], to prove cuspidality of H∗(X ,Q!)[θ ] for
a broad class of characters θ : T (k) → Q×

! , we calculate the formal degree of this

representation, which we achieve by calculating the dimension of H∗
c (X

(n′)
h ,Q!)[θ ]

from the Frobenius eigenvalues (see Corollary 6.6.1). In this setting, we can prove
a comparison formula between the cohomology of X (n′)

h and the cohomology of Xh
(see Section 7.2.1.2).

We conjecture the following comparison theorem between the cohomology of Xh
and its Drinfeld stratification. In Sect. 7.2.1, we present evidence supporting the truth
of this conjecture.

Conjecture 7.2.1 Let r | n′ and let θ : Th(Fq) ∼= W×
h (Fqn ) → Q×

! be a character with
trivial Gal(L/k)-stabilizer. Let χ := θ |W1

h(Fqn ) and assume that the stabilizer of χ in
Gal(L/k) is equal to the unique index-n0r subgroup. Then we have an isomorphism
of virtual Gh(Fq)-representations

H∗
c (Xh,Q!)[θ ] ∼= H∗

c
(
X (r)
h ,Q!

)
[θ ].
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Combining Conjectures 7.1.1 and 7.2.1 with Corollary 5.2.2, the above conjecture
asserts that as elements of the Grothendieck group of Gh(Fq),

H∗
c (Xh,Q!)[θ ] = (−1)iθ,r H iθ,r

c
(
X (r)
h ,Q!

)
[θ ]

= (−1)iθ,r Ind
Gh(Fq )
L(r)
h (Fq )G1

h(Fq )

(
Hiθ,r
c
(
Xh ∩ L(r)

h G1
h,Q!

)
[θ ]
)
.

7.2.1 Evidence

At present, we can prove Conjecture 7.2.1 in some special cases. We discuss these
various cases, their context, and the ideas involved in the proof.
7.2.1.1. The most degenerate setting of Conjecture 7.2.1 is when G is a division
algebra over k. Then n′ = 1 and so the closedDrinfeld stratum X (n′)

h = X (1)
h is the only

Drinfeld stratum.Additionally,we have that X (n′)
h is a disjoint union of #Gh(Fq) copies

of X1
h := Xh∩G1

h . In [5], all the technical calculations happen at the level of X
1
h (though

in different notation in op. cit.), and using the newmethods developed there, one knows
nearly everything about the representations Hi

c (X
1
h,Q!)[χ ] for arbitrary characters

χ : T1
h(Fq) → Q×

! . However, the expected generalization of these techniques extend
not to Hi

c (Xh,Q!)[χ ], but to Hi
c (X

(r)
h ,Q!)[χ ]—hence one is really forced to work

on the stratum in order to approach Xh (at least with the current state of technology).
7.2.1.2. Now let G be any inner form of GLn (as it has been this entire paper, outside
Sect. 3). We are close to establishing Conjecture 7.2.1 when χ = θ |W1

h(Fqn ) has

trivial Gal(L/k)-stabilizer. In this case, Conjecture 7.2.1 says that H∗
c (Xh,Q!)[θ ] ∼=

H∗
c (X

(n′)
h ,Q!)[θ ] as virtualGh(Fq)-representations. In [8, Theorem4.1],weprove this

isomorphism holds under the additional assumption that p > n. The idea here is to use
a highly nontrivial generalization of a method of Lusztig to calculate the inner product〈
H∗
c (Xh,Q!)[θ ], H∗

c (X
(n′)
h ,Q!)[θ ]

〉
in the space of conjugation-invariant functions on

Gh(Fq).
In “Appendix A”, we present a possible geometric approach to Conjecture 7.2.1

which has its roots in the GL2 setting of the proof of [14, Theorem 3.5]. The idea
is to study the fibers of the natural projection2 π : Xh → Xh−1. We can show that
the behavior of π−1(x) depends only on the location of x relative to the Drinfeld
stratification of Xh : If r is the smallest divisor of n′ such that x ∈ X (r)

h (i.e. x is in the
r th Drinfeld stratum Xh,r of Xh), then there exists a morphism

π−1(x) →
⊔

Wh−1
h (Fqn0r )

An−1

which is a composition of isomorphisms and purely inseparablemorphisms.Moreover,
the action of ker(Wh−1

h (Fqn ) → Wh−1
h (Fqn0r )) on π−1(x) fixes the set of connected

2 When G = GLn , then this is literally what we do in “Appendix A”. When G is a nonsplit inner form
of GLn , in order to get a shape analogous to the split case, we work with an auxiliary scheme which is an
affine fibration over Xh .
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components. The crucial point here is that the fibers of the natural map

Xh,r/ ker
(
Wh−1

h (Fqn ) → Wh−1
h

(
Fqn/(n0r)

))
→ Xh−1,r

are again isomorphic to
⊔

Wh−1
h (Fqn0r )

An−1 and therefore ker(Wh−1
h (Fqn ) →

Wh−1
h (Fqn/(n0r) )) acts trivially on the cohomology of Xh,r :

H∗
c (Xh,r ,Q!) ∼= H∗

c (Xh,r ,Q!)
ker(Wh−1

h (Fqn )→Wh−1
h (F

qn/(n0r)
))
.

Using open/closed decompositions of Xh via Drinfeld strata, we have that if θ is trivial
on ker(Wh−1

h (Fqn ) → Wh−1
h (Fqn/(n0r) )), then

H∗
c (Xh,Q!)[θ ] ∼= H∗

c (X
(r)
h ,Q!)[θ ]

as virtualGh(Fq)-representations. It seems reasonable to guess that if one can general-
ize “Appendix A” to study the fibers of Xh → X1, then one could establish Conjecture
7.2.1 using a similar reasoning as above.
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Appendix A. The geometry of the fibers of projectionmaps

In this section, we study the fibers of the projection maps Xh → Xh−1. This is
a technical computation which we perform by first using the isomorphism Xh ∼=
Xh(b, b cox) for a particular choice of b which we call the special representative. This
is the first time in this paper that we see the convenience of having the alternative
presentations of Xh discussed in Sects. 3.2 and 4.5.

A.1 The special representative

We first recall the content of Sect. 4.5 in the context of a particular representative of
the σ -conjugacy class corresponding to the fixed integer κ .

Definition A.1.1 The special representative b sp attached to κ is the block-diagonal

matrix of size n × n with (n0 × n0)-blocks of the form
(

0 "

1n0−1 0

)κ

.

By [9, Lemma 5.6], there exists a g0 ∈ Gx,0(Ok̆) such that b sp = g0b coxσ (g0)−1.
Observe further that since b sp, b cox are σ -fixed and bnsp = bncox = " kn ,

σ n(g0) = g0.
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Therefore b sp satisfies the conditions of Lemma 4.5.3. Recall from Sect. 4.5 that we
have

Xh ∼= Xh(b sp, b cox) ∼= {v ∈ Lh : σ (det gb sp(v)) = (−1)n−1 det gb sp(v) ∈ W×
h },
(A.1)

where

Lh =
(
Wh ⊕ (VWh−1)

⊕n0−1)⊕n′
⊂ W⊕n

h

gb sp(v) =
(
v1
∣∣ v2
∣∣ v3
∣∣ · · ·
∣∣ vn
)

where vi = " 2(i−1)k0/n03 · (b spσ )
i−1(v) for 1 ≤ i ≤ n − 1.

In this section, we will work with

X+
h := {v ∈ L +

h : σ (det gb sp(v)) = det gb sp(v) ∈ W×
h } (A.2)

where L +
h is now the subquotient of W⊕n

h+1

L +
h :=
(
Wh ⊕ (VWh)

⊕n0−1)⊕n′
,

and gb sp(v) is defined as before. Note that (A.1) differs from (A.2) in that the former
takes place in Gx,0/Gx,(h−1)+ and the latter takes place in Gx,0/Gx,h . A straightfor-
ward computation shows that the defining equation of X+

h does not depend on the
quotient L +

h /Lh = An−n′
.

Observe that det gb sp(ζv) = Nm(ζ ) · det gb sp(ζv) where Nm(ζ ) = ζ · σ (ζ ) ·
σ 2(ζ ) · · · σ n−1(ζ ). Picking any ζ such that σ (Nm(ζ )) = (−1)n−1 Nm(ζ ) allows us
to undo the (−1)n−1 factor in the defining equation in (A.1). In particular, this means

Hi
c (X

+
h ,Q!) = Hi+2(n−n′)

c (Xh,Q!), for all i ≥ 0.

For each divisor r | n′, we define the r th Drinfeld stratum X+
h,r of X+

h to be the
preimage of Xh,r under the natural surjection X+

h → Xh .

A.2 Fibers of X+h,r → X+h−1,r

For notational convenience, we write b = b sp. We may identify L +
h = An(h−1)

with coordinates x = {xi, j }1≤i≤n, 0≤ j≤h−1 which we typically write as x =
(̃x, x1,h−1, x2,h−1, . . . , xn,h−1) ∈ L +

h−1 × An ; here, an element v = (v1, . . . , vn) ∈
L +

h is such that vi = [xi,0, xi,1, . . . , xi,n] if i ≡ 1 (mod n0) and vi =
[0, xi,0, xi,1, . . . , xi,n] if i 7≡ 1 (mod n0).

In this section, fix a divisor r | n′. From the definitions, X+
h,r can be viewed as the

subvariety of X+
h−1,r × An cut out by the equation

0 = P0(x)q − P0(x),
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where P0 is the coefficient of " h−1 in the expression det gredb (v). Let c denote the
polynomial consisting of the terms of P0(x) which only depend on x̃ . An explicit
calculation shows that there exists a polynomial P1 in x such that

P0(x) = c(̃x)+
n0−1∑

i=0

P1(x)q
i
. (A.3)

Therefore X+
h,r is the subvariety of X+

h−1,r × An cut out by

P1(x)q
n0 − P1(x) = c(̃x) − c(̃x)q .

One can calculate P1 explicitly (see [9, Proposition 7.5]):

Lemma A.2.1 Explicitly, the polynomial P1 is

P1(x) =
∑

1≤i, j≤n′
m ji x

q( j−1)n0

1+n0(i−1),h−1,

where m := (m ji ) j,i is the adjoint matrix of gb(x̄) and x̄ denotes the image of x in
V = L0/L

(1)
0 . Explicitly, m ·gb(x̄) = det gb(x̄) and the ( j, i)th entry of m is (−1)i+ j

times the determinant of the (n′ −1)× (n′ −1)matrix obtained from gb(x̄) by deleting
the i th row and jth column.

The main result of this section is:

Proposition A.2.2 There exists an X+
h−1,r -morphism

Mr : X+
h−1,r × An → X+

h−1,r × An

(the left An in terms of the coordinates {xi,h−1}ni=1 and the right An in terms of new
coordinates {zi }ni=1) satisfying the following properties:

(i) Mr is a composition of X+
h−1,r -isomorphisms and purely inseparable X+

h−1,r -
morphisms.

(ii) Mr (X+
h,r ) is the closed subscheme defined by the equation

zq
n0r

1 − z1 = c(̃x) − c(̃x)q ,

where c is as in (A.3).
(iii) Mr is Wh−1

h (Fqn )-equivariant after equipping the left X+
h−1,r × An with the

Wh−1
h (Fqn )-action

1+ " h−1a : xi,h−1 (→ xi,h−1 + xi,0a, for all 1 ≤ i ≤ n,
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and the right X+
h−1,r × An with theWh−1

h (Fqn )-action

1+ " h−1a : zi (→






z1 + TrFqn /Fqn0r (a) if i = 1,

z2 + a if r 7= n′ and i = 2,
zi otherwise.

In the rest of this section we prove Proposition A.2.2. To simplify the notation we
will first establish the proposition in the case κ = 0 (i.e. G = GLn), and at the end
generalize it to all κ . The first part of the proof of Proposition A.2.2 is given by the
lemma below. Before stating it, we establish some notation. For an ordered basisB of
V and v ∈ V , let vB denote the coordinate vector of v in the basisB. For two ordered
bases B,C = {ci }ni=1 of V , let MB,C denote the base change matrix between them,
that is, the i th column vector of MB,C is ci,B . It is clear that

• MC ,B = M−1
B,C ,

• for any v ∈ V , MB,C vC = vB ,
• for a third ordered basis D of V , one has MB,C MC ,D = MB,D .

For a linear map f : V → V , let MB,C ( f ) denote the matrix representation of f ;
that is, MB,C ( f ) · vC = f (v)B . In V we have the two ordered bases:

E := the standard basis of V , arising from the basis{ei } of the latticeL0,

Bx := {σ i−1
b (x)}ni=1, attached to the given x ∈ X+

0 .

We identify V with Fn
q via the standard basis E and write v = vE for all v ∈ V .

Lemma A.2.3 Assume κ = 0. There exists an X+
h−1,r -isomorphism X+

h−1,r × An ∼→
X+
h−1,r × An given by a linear change of variables xi,h−1 " x ′

i,h−1, such that P1 in
the new coordinates x ′

i,h−1 takes the form

P1 = x ′
1,h−1 + x ′,q

1,h−1 + · · · + x ′,qn−1

1,h−1 +
s∑

j=0

i j+1∑

λ=i j+1

x ′,qλ

s+2− j,h−1,

and the action of 1+ " h−1a ∈ Wh−1
h (Fqn ) on the coordinates x ′

i,h−1 is given by

x ′
i,h−1 (→

{
x ′
1,h−1 + a if i = 1,
xi,h−1 if i ≥ 2.

(A.4)

Proof of Lemma A.2.3 We have to find a morphism C := (ci j ) : X+
h−1,r → GL(V ) =

GLn,Fq (this identification uses the standard basis E of V ) such that the corresponding
linear change of coordinates

xi,h−1 = ci,1x ′
1,h−1 + ci,2x ′

2,h−1 + · · · + ci,nx ′
n,h−1, for all 1 ≤ i ≤ n. (A.5)
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brings P1 to the requested form. Moreover, it suffices to do this fiber-wise by first
determining C(x̃) for any point x̃ ∈ X+

h−1,r and then seeing that x̃ (→ C(x̃) is in fact
an algebraic morphism.

Fix x̃ ∈ X+
h−1,r with image x ∈ X+

1 , and write C instead of C(x̃) to simplify
notation. Let Ci denote the i th column of C . Our coordinate change replaces P1 by
the polynomial (after dividing by the irrelevant non-zero constant det gb(x) ∈ F×

q )

P1 = x ′
1,h−1(m1 · C1)+ x ′,q

1,h−1(m2 · σb(C1))+ x ′,q2
1,h−1(m3 · σ 2

b (C1))+ · · · + x ′,qn−1

1,h−1 (mn · σ n−1
b (C1))

+ x ′
2,h−1(m1 · C2)+ x ′,q

2,h−1(m2 · σb(C2))+ x ′,q2
2,h−1(m3 · σ 2

b (C2))+ · · · + x ′,qn−1

2,h−1 (mn · σ n−1
b (C2))

+ · · ·+

+ x ′
n,h−1(m1 · Cn)+ x ′,q

n,h−1(m2 · σb(Cn))+ x ′,q2
n,h−1(m3 · σ 2

b (Cn))+ · · · + x ′,qn−1

n,h−1(mn · σ n−1
b (Cn))

(A.6)

in the indeterminates {x ′
i,h−1}ni=1. Here, we writemi to mean the i th row of the matrix

m (adjoint to gb(x)) from Lemma A.2.1. For z ∈ V , we put

m ∗ z =
n∑

i=1

(mi · (bσ )i−1(z))ei . (A.7)

The intermediate goal is to describe the map m∗ : V → V in terms of a coordinate
matrix. Of course, m∗ is not linear, but its composition with the projection on the i th
component (corresponding to the i th standard basis vector) is σ i−1-linear. Thus we
instead will describe the linear map (m∗)′ : V → V , which is the composition of m∗
and the map

∑
i vi ei (→∑i σ

−(i−1)(vi )ei . This is done by the following lemma.

Lemma A.2.4 Assume κ = 0. We have

ME ,Bx ((m∗)′) =





1 0 0 · · · 0 0
1 0 0 · · · 0 σ−1(y1)
...

...
...

... σ−2(y2) ∗
1 0 0

... ∗
...

1 0 σ−(n−2)(yn−2)
...

... ∗
1 σ−(n−1)(yn−1) ∗ · · · ∗ ∗





where the yi ’s are defined by the equation

(bσ )n(v) = v +
n−1∑

i=1

yi (bσ )i (v).
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More precisely, if µi, j denotes the (i, j)th entry of det(gb(x̄))−1ME ,Bx ((m∗)′), then
for 1 ≤ i, j ≤ n we have

µi, j =






1 if j = 1
0 if i + j ≤ n + 1 and j > 1
σ−(i−1)(yi−1) if i + j = n + 2
µi−1, j + σ−(i−1)(yi−1)σ

n−(i−1)(µn, j+i−(n+1)) if i + j ≥ n + 3 and i ≥ 3.

In particular, if i + j ≥ n + 3 and yi−1 = 0, then µi, j = µi−1, j .

Proof of Lemma A.2.4 Let z = ∑n
i=1 zi (bσ )

i−1(x) be a generic element of V , writ-
ten in Bx -coordinates, that is zBx is the n-tuple (zi )ni=1. The (i, j)th entry of
ME ,Bx ((m∗)′) is equal to σ−(i−1) applied to the coefficient of σ i−1(z j ) in the i th
entry of (bσ )i−1(z)Bx (= the i th entry of m ∗ z).

The coordinate matrix of the σ -linear operator bσ : V → V in the basis Bx ,

MBx ,Bx (bσ ) =





0 0 · · · 0 1
1 0 · · · 0 y1

0 1
. . .

... y2
...

. . .
. . . 0

...

0 · · · 0 1 yn−1




.

That is, for any z ∈ V ,

bσ (z)Bx = MBx ,Bx (bσ ) · σ (zBx ), (A.8)

where the last σ is applied entry-wise. Explicitly, the first entry of bσ (z)Bx is σ (zn),
and for 2 ≤ i ≤ n the i th entry of bσ (z)Bx is σ (zi−1) + yi−1σ (zn). This allows to
iteratively compute bσ i (z) for all i , which we do to finish the proof.

First, we see that z1 can occur in the nth (i.e. last) entry of (bσ )λ−1(z)Bx only if
λ ≥ n; hence its contribution to the i th entry of (bσ )i−1(z)Bx for i ≤ n is simply
σ i−1(z1). This shows that the first column of ME ,Bx ((m∗)′) consists of 1’s. Assume
now j ≥ 2. Then there is a smallest (if any) i0 , such that z j occurs in the i0th entry of
(bσ )i0−1(z)Bx . Note that as j ≥ 2, one has i0 ≥ 2. Then z j must have been occurred
in the nth entry of (bσ )i0−2(z)Bx . As z j occurs in zBx in exactly the j th entry, and it
needs (n− j) times to apply bσ to get it to the nth entry, we must have i0 −2 ≥ n− j .
This shows that the (i, j)th entry of ME ,Bx ((m∗)′) is 0, unless i ≥ n + 2 − j . The
same consideration shows that if i = n+2− j , then σ i−1(z j ) has the coefficient yi−1

in σ i−1
b (z)Bx . This gives the entries of ME ,Bx ((m∗)′) on the diagonal i = n+ 2− j .

It remains to compute the entries below it, so assume i > n + 2 − j . Again, by
the characterization of the entries of ME ,Bx ((m∗)′) in the beginning of the proof
and by the explicit description of how σb acts (in the Bx -coordinates), it is clear
that the (i, j)th entry of ME ,Bx ((m∗)′) is just the sum of the (i − 1, j)th entry and
σ−(i−1)(yi−1)σ

n−(i−1)((n, j − 1)th entry). This finishes the proof of Lemma A.2.4.
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Now we continue the proof of Lemma A.2.3. Let C denote the ordered basis of V
consisting of columns C1,C2, . . . ,Cn of C . We have MBx ,C = (det gb(x))−1m · C .
In particular, to give the invertible matrixC it is equivalent to give the invertible matrix
MBx ,C . But the i th column of MBx ,C is the coordinate vector of Ci in the basisBx ,
i.e., what we denoted Ci,Bx . We now show that one can find an invertible MBx ,C ,
such that for its columns Ci,Bx we have

m ∗ C1,Bx =
n∑

λ=1
eλ

m ∗ Cs+2− j,Bx =
i j∑

λ=i j+1
eλ for s ≥ j ≥ 0,

m ∗ C j ′,Bx = 0 if j ′ > s + 2. (A.9)

Taking into account Eq. (A.6) and the definition ofm∗ in (A.7), this (plus the fact that
x (→ MBx ,C will in fact an algebraic morphism) finishes the proof of Lemma A.2.3,
except for the claim regarding the Wh−1

h (Fqn )-action.
To find MBx ,C satisfying (A.9), first observe that by Lemma A.2.4, there is some

invertible matrix S depending on x̃ ∈ X+
h−1,r (in fact, only on its image x ∈ X+

1 ),
such that ME ,Bx ((m∗)′) · S has the following form: its first column consists of 1’s; its
i th column is 0, unless i = n + 1 − i j for some s ≥ j ≥ 0; for s ≥ j ≥ 0, the λth
entry of its (n + 1 − i j )th column is 1 if i j + 1 ≤ λ ≤ i j+1 (we put is+1 := n here)
and zero otherwise. (To show this, use the general shape of ME ,Bx ((m∗)′) provided
by Lemma A.2.4, and then consecutively apply row operations to it and use the last
statement of Lemma A.2.4). Moreover, it is also clear from Lemma A.2.4 that S will
be upper triangular with the upper left entry = 1.

Secondly, let T be amatrix such that: the first row has 1 in the first position and zeros
otherwise; all except for the first entry of the first column are 0; for s ≥ j ≥ 0, the
(n+1− i j )th row has 1 in the (s+2− j)th position and 0’s otherwise; the remaining
rows can be chosen arbitrarily. Obviously, T can be chosen to be a permutation matrix
with entries only 0 or 1, and in particular invertible and independent of x . Finally, put
MBx ,C := S · T . Explicitly the columns of the matrix

ME ,Bx ((m∗)′) · MBx ,C = (ME ,Bx ((m∗)′) · S) · T (A.10)

are as follows: the first column consist of 1’s; for s ≥ j ≥ 0, the the λth entry of
the (s + 2 − j)th column is 1 if i j + 1 ≤ λ ≤ i j+1, and zero otherwise; all other
columns consist of 0’s. On the other side, the j th column of of ME ,Bx ((m∗)′) ·MBx ,C
is precisely m ∗ C j,Bx (up to the unessential σ−∗-twist in each entry). This justifies
(A.9).

The action of 1+" ha ∈ Wh−1
h (Fqn )on the coordinates xi,h is given by (xi,h)ni=1 (→

(xi,h + axi,0)ni=1. We determine the action 1 + " ha in the coordinates x ′
i,h . Indeed,
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let C−1 = (di, j )1≤i, j≤n . Then 1+ " ha acts on x ′
i,h by

x ′
i,h =

n∑

j=1

di, j x j,h (→
n∑

j=1

di, j (x j,h + ax j,0) = x ′
i,h + a

n∑

j=1

di, j x j,0.

Organizing the xi,h for 1 ≤ i ≤ n in one (column) vector, we can rewrite this as

1+ " ha : (x ′
i,h)

n
i=1 (→ (x ′

i,h)
n
i=1 + aC−1 · x .

WedetermineC−1·x .AsMBx ,C = det(gb(x))−1mC = gb(x)−1C (as det(gb(x))−1m
= gb(x)−1), we have C−1 = M−1

Bx ,C
gb(x)−1. But x is the first column of gb(x), thus

C−1 · x = M−1
Bx ,C

gb(x)−1 · x = M−1
Bx ,C

· (1, 0, . . . , 0)ᵀ,

so C−1 · x is the first column of M−1
Bx ,C

= (ST )−1 = T−1S−1. But S is upper

triangular with upper left entry = 1, so the first column of M−1
Bx ,C

is the first column
of T−1, which is (1, 0, . . . , 0)ᵀ. This finishes the proof of the lemma.

The second part of the proof is given by the following lemma.

Lemma A.2.5 Assume κ = 0. There exists a X+
h−1,r -morphism X+

h−1,r × An →
X+
h−1,r × An such that if {zi } denotes the coordinates on An on the target An, then

the image of X+
h,r in X+

h−1,r × An and the action of Wh−1
h (Fqn ) on zi are given

by Proposition A.2.2(ii),(iii). Moreover, such a morphism is given by the composi-
tion of the change-of-variables x ′

i,h and purely inseparable morphisms of the form

x ′
i,h−1 (→ x ′,q− j

h−1 for appropriate i, j .

Proof If r = n, this is literally Lemma A.2.3. Assume r < n. First, for s ≥ j ≥ 0,

replace x ′
s+2− j by x ′,qi j+1

s+2− j . Then, by applying a series of iterated changes of variables

of the form x ′
c =: x ′

c + x ′,qλ

d for appropriate 2 ≤ c, d ≤ s + 2 and λ (essentially
following the Euclidean algorithm to find the gcd of the integers (i j+1 − i j ) (this gcd
is equal to r )), we transform P1 from Lemma A.2.3 to the form

P1 =
n−1∑

i=0

x ′,qi
1,h +

r−1∑

i=0

x ′,qi
2,h .

As these operations does not involve x ′
1,h , the formulas (A.4) remain true. Now make

the change of variables given by z1 := x ′
2,h +
∑ n

r −1
j=0 x ′,qr j

1,h and z2 := x ′
1,h−1. In this

coordinates, P1 =
∑r−1

i=0 z
qi

1 and the action is as claimed.

We are now ready to complete the proof of Proposition A.2.2.
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Proof of Proposition A.2.2 Combining Lemmas A.2.3 and A.2.5 we obtain Proposition
A.2.2 in the case κ = 0. Now let κ be arbitrary. It is clear that the proof of LemmaA.2.3
can be applied to this more general situation. One then obtains the same statement,
with the only difference being that now our change of variables does not affect the
variables xi,h−1 for i 7≡ 1 mod n0 (these are exactly the variables which do not
show up in P1). That is, the right-hand side X+

h−1,r × An will have the coordinates
{x ′

i,h−1 : i ≡ 1 mod n0, 1 ≤ i ≤ n} ∪ {xi,h−1 : i 7≡ 1 mod n0, 1 ≤ i ≤ n} and the
polynomial defining X+

h,r as a relative X+
h−1,r hypersurface in X+

h−1,r × An is

P1 = x ′
1,h−1 + x ′,qn0

1,h−1 + · · · + x ′,qn0(n′−1)

1,h−1 +
s∑

j=0

i j+1∑

λ=i j+1

x ′,qn0λ

s+2− j,h−1,

and the Wh−1
h (Fqn )-action is given by

1+ " h−1a : x ′
i,h−1 (→






x ′
1,h−1 + a if i = 1
x ′
i,h−1 if i ≡ 1 mod n0and i > 1
xi,h−1 + xi,0a if i 7≡ 1 mod n0.

We now apply the change of variables replacing xi,h−1 by x ′
i,h−1 := xh−1−xi,0x ′

1,h−1
for all i 7≡ 1 mod n0. This exactly gives us Lemma A.2.3 for arbitrary κ (the only
difference being the qn0 -powers occurring in P1). Now Lemma A.2.5 can be applied
as in the case κ = 0, and this finishes the proof of Proposition A.2.2.
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