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Abstract

We define a stratification of Deligne—Lusztig varieties and their parahoric analogues
which we call the Drinfeld stratification. In the setting of inner forms of GL,,, we study
the cohomology of these strata and give a complete description of the unique closed
stratum. We state precise conjectures on the representation-theoretic behavior of the
stratification. We expect this stratification to play a central role in the investigation of
geometric constructions of representations of p-adic groups.
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1 Introduction

Like the classical upper half-plane, its nonarchimedean analogue—the Drinfeld
upper half-plane—appears naturally in a wide range of number theoretic, represen-
tation theoretic, and algebro-geometric contexts. For finite fields, the ¢-adic étale
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cohomology of the Drinfeld upper half-plane P! (Fq)\IP’1 (Fy) with coefficients in
nontrivial rank-1 local systems, is known to realize the cuspidal irreducible repre-
sentations of GL,(IF,;). One can generalize this to GL,(IF;) by projectivizing the

complement of all rational sub-vector spaces of V = F>". This is the Drinfeld upper
half-space for I, In this paper, we consider a stratification of the Drinfeld upper half-
space induced by “intermediate” Drinfeld upper half-spaces of smaller dimension
sitting inside P(V).

In earlier work [9], we proved that for inner forms of GL,,, Lusztig’s loop Deligne—
Lusztig set [15] is closely related to a finite-ring analogue of the Drinfeld upper
half-space. This allowed us to endow this set with a scheme structure (a statement
which is still conjectural for any group outside GL,,) and define its cohomology. Under
aregularity condition, we proved in [9] that the cohomology of loop Deligne-Lusztig
varieties for inner forms of GL, realizes certain irreducible supercuspidal represen-
tations and described these representations within the context of the local Langlands
and Jacquet-Langlands correspondences. After some serious work in [8], we are able
to relax this regularity condition to something quite general, but our work still further
depends on a formal degree calculation of representations appearing in the cohomol-
ogy of these loop Deligne-Lusztig varieties. This is a highly nontrivial calculation
which we obtain in the present paper by studying the cohomology of a stratification—
the Drinfeld stratification—which comes from the aforementioned stratification of the
Drinfeld upper half-space.

We morever frame the Drinfeld stratification in the general context of [7], where we
studied a class of varieties X} associated to parahoric subgroups of a(ny) connected
reductive group G which splits over an unramified extension. We define a stratification
of X, indexed by certain twisted Levi subgroups of G, initiate the study of these strata,
and, in due course, supply the necessary input for the formal degree calculation in [8].

We focus on the setting of inner forms of GL, and prove the first foundational
representation-theoretic traits of the cohomology of the Drinfeld stratification: irre-
ducibility (Theorem 5.2.1) and a special character formula (Proposition 5.3.1). Using
Theorem 5.2.1, in Sect. 6 we prove that the torus eigenspaces in the cohomology
of the unique closed Drinfeld stratum is supported in a single (possibly non-middle)
degree. Furthermore, this stratum is a maximal variety in the sense of Boyarchenko—
Weinstein [2]: the number of rational points of the closed Drinfeld stratum attains its
Weil-Deligne bound. Our analysis relies on techniques developed in [5] in the special
case of division algebras and gives some context for what we expect to be the role of
maximal varieties in these Deligne—Lusztig varieties for p-adic groups.

In practice, it is sometimes only possible to work directly with the Drinfeld strat-
ification of the parahoric Deligne—Lusztig varieties X, instead of with the entire Xj,.
In this paper, for example, the maximality of the closed stratum allows us to give an
exact formula (Corollary 6.6.1) for the formal degree of the associated representation
of the p-adic group. We prove a comparison theorem in [8] relating the Euler char-
acteristic of this stratum to that of X,. This formal degree input, by comparison with
Corwin—-Moy—Sally [10], allows us to obtain a geometric supercuspidality resultin [8].

We finish the present paper with a precise formulation of some conjectures (Conjec-
tures 7.1.1 and 7.2.1) which describe what we expect to be the shape of the cohomology
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of the Drinfeld stratification and its relation to the cohomology of loop Deligne—Lusztig
varieties. In the “Appendix”, we present an analysis of the fibers of the natural pro-
jection maps X, — Xp—1; we believe this could be a possible approach to proving
Conjecture 7.2.1 and may be of independent interest. It would be interesting to see if
the Drinfeld stratification plays a role in connections to orbits in finite Lie algebras, a
la work of Chen [6].

2 Notation

Let k be a nonarchimedean local field with residue field I, and let k denote the
completion of the maximal unramified extension of k. We write O; and Oy for the
rings of integers of k and k, respectively, and let = be a uniformizer of k£ (and hence
of I;). For any positive integer m and any [ € Z, we let [[],, € {1, ..., m} denote the
unique element representing the coset [ + mZ = [I],, + mZ.

The setting of Sect. 3

In Sect. 3 we work in the following general set-up. Let G be a connected reductive
group over k such that the base change G to k is split and let F' denote a Frobenius
associated to the k-rational structureon G.Let T — G be a k-rational, l;—split maximal
torus in G. Let Z(G, k) denote the Bruhat—Tits building of the adjoint group of G
over k and let </ (T) C A(G, 12) denote the apartment of 7. Note that there is a natural
action of F on #(G, 12) and that since T is k-rational, the apartment <7 (T') is F-stable.

The setting of the rest of the paper

With the exception of Sect. 3, we will take G to be an inner form of GL,, defined over k.
Leto € Gal(k/k) denote the Frobenius which induces the gth-power automorphism on
the residue field Fq . Abusing notation, we also let o denote the map GL,, (l;) — GL, (I;)
by applying o to each matrix entry. The inner forms of GL,, are indexed by integers
0 < k < n — 1; fix such an integer. Throughout the paper, we write «/n = ko/ng
where (kg, ng) = 1, and we set k = kon’. We will define (Definition 4.1.1) a particular
element b .ox with val det(box) = k and set G = Jj,,, (the o-stabilizer of b ox) With
the k-rational structure induced by the Frobenius

F: GL,(k) = GL,(k), g+ beox0(8)bap,.

Note that G = GL, (Dgy/n,), Where Dy, n, denotes the division algebra over k of
dimension n(z) with Hasse invariant ko /ng. Let T denote the set of diagonal matrices in
G. Let x be the unique point in the intersection <7 (T') N ZA(GL,,, k). Note that T (k)
is isomorphic to the multiplicative group of the unramified degree-n extension of k.
If k has characteristic p, we let W(A) = A[[e ] for any [F,-algebra A and write
[a;]i>0 to denote the element Zi>0 a;w’ € W(A). If k has characteristic zero, we let
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W = Wo, Xspec o, SpecFy, where W, is the Ok-ring scheme of O-Witt vectors
[12, Section 1.2]. Following the notation of op. cit. we write the elements of W(A)
as [a;]i>0 where a; € A. We may now talk about W uniformly, regardless of the
characteristic of k. As usual, we have the Frobenius and Verschiebung morphisms

o:W—>W, [aili=0 — [ali=0.
Viw—->W, [ailiso— [0,a0,a1,...].

Forany h € Z=,let W), = W/ V"W denote the corresponding truncated ring scheme.

Summary of the schemes

We give an overview of the various schemes appearing in this paper. We hope this
will be a helpful reference point for the reader. In Sect. 3, we define in a very general
setting three schemes S, X, and X, (b, w) (Definitions 3.1.1, 3.1.1 and 3.2.1). We
then define (Definition 3.3.1) a stratification for S;, indexed by certain twisted Levi
subgroups of G, and use this to define a corresponding stratification for X, (Definition
3.3.2).

In Sect. 4, we study these varieties in the special case that G is an inner form of
GL, corresponding to the fixed integer x. We comment that in this paper, the role
of Xj (b, w) as an alternative viewpoint to X (Sect. 4.5). For most of this paper,
we implicitly use the identification X; = Xp(bcox, beox), but our calculations in
“Appendix A” require us to take advantage of an isomorphism X, = X, (b, bcox)
for a different choice of b. This flexibility has been proven to be very useful—as an
additional example, see [9].

For our chosen inner form G of GL,,, the Drinfeld stratification of Sy, X}, is indexed
by divisors r of n’ (Definition 4.3.2). We will define subschemes S,(lr) C Sj and

X ,(lr) C X}, which form the commutative diagram

Sy Sy

!

X — X

where the vertical maps are quotients by an affine space. The rth Drinfeld stratum
(4.1) of Xj, is
Xpr = Xf(lr) N U Xf(f)

rlsin’, r<s
and its closure in Xy is X,(f). In Sect. 4.4, we give a description of X} , in terms

of Drinfeld upper half-spaces and a finite-ring analogue of an isocrystal. The unique
closed Drinfeld stratum is X, ,; specializing Lemma 3.3.3, we have
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Xiw=X" = || & X,
8€Gp(Fq)

where X}l = X, Nker(Gp, — Gy).

3 The Drinfeld stratification

In this section only, we let G be any connected reductive group over k which splits
over k. Let F denote a Frobenius associated to the k-rational structure on G. Fix a
k-rational, l;-split maximal torus T C G, let x € </ (T) N A(G, I;)F, and let Gy o
be the attached parahoric model. The Ok-scheme Gy o has a Moy—Prasad filtration
[17,19] given by a decreasing series of normal subgroups Gy, € Gy forr € Rxg
and we furthermore define the subgroup Gy 4 1= Us~, Gy s of Gy r.

Let 4 > 1 be an integer. There is a smooth affine group scheme Gy, over F; such
that

Gr(Fy) = G1,0(00)/Gx,h-1)+(O1), Gu([Fy) = G10(Of)/Gx,n—1)+(0%)

(see [7, Section 2.5] for more details). Following [7, Section 2.6], for any closed
subgroup scheme J C Gp, we may attach a subgroup J, C thq. For any integer
1 <s < h,wewrite J§ :=ker(J, — Jy).

Pick a k-rational Borel subgroup B C Gy, containing T and let U be the unipotent
radical of B. The subgroups T C G, U C Gy have associated subgroups T, C Gy,
U, C Gh,Fq such that

Tr(Fy) = (T(k) NGy 0(O) /(T (k) NG, (h—1)+(Ok)),
Ty ([Fy) = (T k) N Gr0(O))/(TH) NG i—1+(0})),
Up(Fy) = (UK NG 0(0;)) /(UK NGy h—1y+(OF))

(Note here that Uy, is defined over Fq but may not be defined over I, as U may not
be k-rational.)

3.1 The schemes S, and X,

The central object of study is Xj,:

Definition 3.1.1 Define the F,-scheme
X :={x € Gy : x"'F(x) € Up}/(U, N F~(WUy)).
X, comes with a natural action of Gy (F;) x Ty, (FF,) by left- and right-multiplication:

(g,l)'.ng.xt, for(g,t)EGh(]Fq)XTh(]Fq),XGXh.
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In some contexts, it will be more convenient to study Sy:

Definition 3.1.2 Define the Fq—scheme
Spi={x €Gy:x 'F(x) € Uy).

So, Sy, is the closed subscheme of Gy, obtained by pulling back Uy along the (finite
étale) Lang map G, — Gy, g — g_1 F (g). Note that S, comes with the same natural
action of G, (IF;) x Ty (IF,) as Xj.

Observe that since U, N F~! (Up) is an affine space, the cohomology of X; and S,
differs only by a shift, and in particular, for any 6 : Tj,(F,) — @Z , we have

H} (X, Q)01 = HY (Sh, Qp)[6]

as elements of the Grothendieck group of G (F,).

3.2 The scheme X, (b, w)

In this subsection only, we further assume that G is quasisplit over k and B C G
is k-rational. In this section, we write 0 = F for our g-Frobenius associated to the
k-rational structure on G. Note that by assumption, the unipotent radical U of B is
o-stable.

Definition 3.2.1 Let b, w € G(I;). Asvsume that b, w both normalized the subgroups
Gx,0(0p) and Gy (1—1)+(O;y) of G(k), and additionally assume that w normalizes

T(l;). Define the Fq-scheme
Xn(b,w) :={x € Gy, : x 'bo (x) € UpwlU,}/Up,

where the condition x ~'bo (x) € U,wU), means the following: For any lift X € G of
x € Gy, the element X' bo (X) is an element of (U NG o)w(U N Gx.0)Gx,(h—1)+ C
G. More precisely, X, (b, w) = S,(b, w)/Uyp, where S, (b, w) is the reduced Fq-
subscheme of Gy, such that Sy, (b, w)(Fq) is equal to the image of {x € G, 0(0p) :
x7'bo (x) € (UKING  0(Op)w(U (K)NG . 0(Op)Grx h—1)4- (O} in Gy (Fy). Note
that X, (b, w) comes with a natural action by left- and right-multiplication of G (b)
and Ty, (w), where G (b) C Gy, (Fq) is the image of {g € G ,0(O;) : bo(g)b~ ! =g}
and Ty (w) C Ty, (Fq) is the image of {t T(l;) N G 0(Op) : wo (Hw™ ! =1}

The next lemma is a one-line computation; we record it for easy reference.

Lemma3.2.2 Let y € G, 0(Op). Then we have an isomorphism
Xp(b,w) = Xp(y o (y), w), x+ 7 'x,

where y is the image of y in the quotient Gy, (Fq).
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Lemma 3.2.3 Consider the morphism F: (Gh)?q — (Gh)Fq given by g +—
bo ()b~ . If wG, b~ = Gy g and F(Uy) = wU,b™ ", then

Xp(b, w) = Xp,

where Xy, is the Fq -scheme in Definition 3.1.1 associated to the group scheme (Gy, )F,,
endowed with the F;-rational structure associated to the q-Frobenius F.

Proof. We have

Xn(b,w) = {x € Gy : x'F(x) € UpwUyb~"}/U,
={x € Gy :x 'F(x) € U,F(Up)}/U,
={x € Gy :x"'F(x) e Up}/(U, N F~'U) = X;. O

3.3 The Drinfeld stratification for S,

Let L be a k-rational twisted Levi subgroup of G and assume that L contains 7. Recall
that a k-rational subgroup L C G is a twisted Levi if Lz is a Levi subgroup of Gg.

Note also that the condition that L contains 7" forces L to be split over k. Following [7,
Section 2.6], the schematic closure L, in Gy o is a closed subgroup scheme defined
over Ok. Applying the “positive loop” functor to L, for each positive integer & we
can define a Fq—scheme Ly, such that Ly, (Fq) is the image of L, (Oy) in G, (Fq).

Definition 3.3.1 (Drinfeld stratification for Sj) Define
SV = {x € Gy : xT'F(x) € Ly NURULY,

where (L, N Uh)U,ll C Uy, is the subgroup generated by L, N Uy and U,L (which is

normalized by L, NUp). Note that the subscheme S,(zL) of Sy, is closed and stable under
the action of Gy, (IF;) x Tx ().

Definition 3.3.2 (Drinfeld stratification for X, X (b, w)) Define X\’ to be the image
of S;(lL) under the surjection S — Xj. Recall that for any y € Gx,o(@,;), we have
Xn(b,w) = Xp(y 'bo(y), w) viax — y~'x. If F(U,) = wU,b~!, then X; =
X5, (b, w); in this setting, let X5 (y ~'bo (y), w)X) denote the image of X}(lL).

Another subscheme of S, which we may associate to the twisted Levi subgroup
L C G is the intersection

Sk NLyG) = (x € LyG) - x ' F(x) € Up)
={x e L;G} : x7'F(x) € (Ly NTUp)ULY,
where L; G }l denotes the subgroup scheme of G generated by L, and G}l (which is

normalized by IL;). Note that S, NIL, G111 is stable under the action of Ly, (Fq)G}, (Fy) x
T, (Fy).
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Lemma 3.3.3 Let L be a k-rational twisted Levi subgroup of G containing T. Then

L
s = || y - (S NLyG)).
y€Gh(Fy)/ (L (FGL(Fy)

Proof Pick any u € Uy (Fq)U}l (Fq). By surjectivity of the Lang map, there exists
x € Ly(F,)G} (F,) and y € G(F,) such thatx ' F(x) = uand y~! F(y) = u. Then

Gy YT Py ™ =y F) = FO) T = yuF )T = yuny T = 1

Therefore xy~! € G, (). The assertion now follows from the fact that the stabilizer
of Sy NLyG) in Gy (Fy) x T)(Fy) is Ly (FG) (Fy) x Th(Fy). O

By Lemma 3.3.3, we see:

Lemma 3.3.4 If L is a twisted Levi subgroup of G containing T, then for any character
0: Ty (F,) — Q, andforalli >0,

Gh(Fq)

i L) ~ ~
H{SP Qo) = Ind "

(H. (S N LaGy, QoI6]).

4 The case of GL,

In this section, we study the varieties introduced in Sect. 3 in the special case when
G is an inner form of GL,,. We emphasize that these varieties Sy, X, X5, (b, w)—at
least a priori—depend on a choice of Borel subgroup containing the torus at hand.
From now until the end of the paper, we work with the varieties associated with the
Borel subgroup explicitly chosen in Sect. 4.2. We explicate (Sect. 4.3) the Drinfeld
stratification for S, X, and certain X, (b, w), and give a description (Sect. 4.4) in
terms of Drinfeld upper half-spaces and %}, C W;?", a finite-ring analogue of an
isocrystal.

Leto € Gal(k /k) denote a lift of the gth-power Frobenius on the residue field Fq.
Abusing notation, also let

o: GLy(k) = GL,(k),  (M; )i j=t1..n /> (0 (M; )i j=1...n-

For b € GL,, (I;), let J, be the o-stabilizer of b: for any k-algebra R,
Jp(R) :={g € GL,(R @y k) : g 'bo(g) = b}.

Jp is an inner form of the centralizer of the Newton point of b (which is a Levi subgroup
of GL,), and we may consider

GL,(k) > GL,(k), g bo(g)b™!
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to be an associated g-Frobenius for the k-rational structure on Jj. If b is basic (i.e.
the Newton point of b is central), then J, is an inner form of GL,, and moreover
every inner form arises in this way. If ¥k = kg, (b) := val(det(b)) and b is basic,
then Jb(k) = GLn/(Dko/no) where K/n = ko/no, (ko, n()) = 1, and k = kon/.
Note that the isomorphism class of Jj, only depends on the o -conjugacy class [b] :=
(g 'bo(g) : g € GL, (I;)}. Recall from Sect. 2 that for any positive integer m and
any !/ € Z,welet[l],, € {1, ..., m} denote the unique element representing the coset
l+mZ =[], + mZ.

Fix an integer 0 < ¥k < n — 1. In the next sections, we will focus on representatives
b revolving around the Coxeter representative (Definition 4.1.1) and give explicit
descriptions of the varieties X, X (b, w), and their Drinfeld stratifications {X }(,r)},

{Xn (b, w)(’)}, where r runs over the divisors of n’. The X(r), X5 (b, w)(’) are closed
subvarieties of X, X (b, w); we call the rth Drinfeld stratum

xP~ U x| xeew® < | X w® (4.1)
r<r'<n’ r<r'sn’
rlr'|n’ rlr'|n’

so that the closure of the rth Drinfeld stratum is X }(lr), Xn(b, w)(’). ‘We denote the rth
Drinfeld stratum of Xj by Xj, .

4.1 Explicit parahoric subgroups of G

Set
diag(l,...,1l,@,..., @) if (k,n) =1,
— ——
bg = 0 1 and 1t = nTK K
=\t o) ) diag (kg ngs - -+ s trouno) otherwise.
—————

n'

Note here that #, , is defined inductively in the sense that since (kq, np) = 1, we take
tko.ny = diag(l, ..., 1, @, ..., @) to be the ng x no matrix where the first no — ko
entries are 1’s and the remaining kg entries are @'’s.

Fix an integer e, , such that (e, ,, n) = 1 and e, , = ko mod ng. If « divides n (i.e.
ko = 1), we always take e, , = 1.

€x.n

Definition 4.1.1 The Coxeter-type representative attached to « is b cox 1= by™" - tic -

Define G := Jp, . with Frobenius

Cox

F: GL,(k) = GL,(k), gr> beoxo (2)b2)

COoxX

and define T to be the set of diagonal matrices in G. Observe that T is F'-stable and that
T (k) is isomorphic to the multiplicative group of the unramified degree-n extension
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of k. Since T is elliptic, the intersection <7 (T) N AB(G, k)F consists of a single point
x, and an explicit and direct calculation of x yields that G, o consists of invertible
matrices (A; j)1<i,j<n Where

W if [i]ny = [Jlno>

Ajj € o .
VW if [i14y < [J1ng-

For technical reasons, we will need to write down the relationship between the Cox-
eter element b(e)“’ and the Coxeter element by. Define y to be the unique permutation
matrix which (a) fixes the first elementary column vector and (b) has the property that

ybe"y ™! = bo. 4.2)

Note that one can express y explicitly as well: it corresponds to the permutation of
{1,...,n} given by
i [ — l)ek,n + 1],.

4.2 An explicit description of X,

The choices in this section are the same as those from [9, Section 7.7]. In the setting
of division algebras, these choices also appear in [4,5].
Let Uyp, Ulow C G denote the subgroups of unipotent upper- and lower-triangular
matrices. Define
U= VﬁlUloWVs U= VﬁlUupV' 4.3)

Let Uy, U, be the associate subgroup schemes of G;,. By Chan and Ivanov [9, Lemma
7.12], we have an isomorphism of Fq-schemes

Uy NFU) x (U NF'UR) = Uy, (g,0) > x 'gF(x).  (4.4)
We will need a refinement of this isomorphism later (see Lemma 4.3.1). Define
Ly = (Wi @ (thl)@no_l)@n/'

Write t, , = diag{r1, ..., t,}. Viewing any v € .%}, as a column vector, consider the
associated matrix

A(v) = (vl ’ V) vn) , 4.5)

where vjje, ,+1), = @ 1M1 (bo) (v) for 0 < i <n— 1. (4.6)

e

Lemma 4.2.1 We have

Xp={x €Gy:x'F(x) e Uy N F(U;))
={A(v) € Gy : v € Z and o (det A(v)) = det A(v)}.
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Proof The first equality holds by (4.4). The second equality is an explicit computation:
in the division algebra setting, see [15, Equation (2.2)], [1, Lemma 4.4], [5, Section
2.1]; in the present setting of arbitrary inner forms of GL,,, see [9, Section 6]. We give
an exposition of these works here.

By direct computation, U, N F(U,) is the subgroup of Gy, consisting of unipotent
lower-triangular matrices whose entries outside the first column vanish:

1
UnFUH ="
.

Suppose that x € Gy, is such that x ' F(x) € U, N F(U, ) and let x; denote the ith

column of x. Then recalling that b = b(e)”'” tc.n and writing ¢, , = diag{t1, ..., t,}, we
have

F(x) = (ba(xl)‘bo(xz)’ ‘ba(x,,)) =

= (15 oo Gt

-1
t[2—€,(wn]b0’ ('x[z_e/(,n]n) ‘ e |
On the other hand, we have

XUy O FU) = (%] 22 3]

).

Comparing columns, we see that each x; is uniquely determined by x; and that we
have

X[(1—Den+11n = f[fnl_z)ek,nﬂ]nbo (X[(n=2)eg n+11) 4.7)
=l nt 1 01— nt 11, 0T BT FL1=3e11,) 4.8)

= a—2yeq 1 Hn—3ye 1, 11 (B0 (). 4.9)

Using Lemma 4.2.2, we now see that x = A(x1), and finally, the condition
o(det A(x)) = det A(x) comes from observation that x ! F(x) must have determi-
nant 1. O

Lemmad.2.2 For1 <i <n-—1,

i—1

[T wecssn, = @/l
j=0

Proof We prove this by induction on i. If i = 1, then by definition we have t; = 1, so
this proves the base case. Now assume that the lemma holds for i. We would like to
prove that it holds for i + 1. This means we need to prove two assertions:

(@) If L0 + Dko/nol > Lliko/nol, then Hieqn+1], = @ -
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(b) If L + Dko/no) = Liko/no). then tjie, ,+1), = @.

The arguments are very similar. For (a): Observe that [(i + 1)ko/no| > liko/no]
if and only if ng > [iec nlny = no — ko since e, ,, = ko mod ng. But this happens
if and only if [ie(, + 11,, > no — ko, which means fj;¢, ,+1), = @ by definition.
For (b): Observe that | (i + 1)ko/no] = liko/no] if and only if [ie ,1n, = no or
liec,nlng < no — ko. But this happens if and only if [ie, , + 1], < no — ko, which
means that f[;.,,+1, = 1 by definition. O

4.3 The Drinfeld stratification of X,

For any divisor r | ', define L") to be the twisted Levi subgroup of G consisting of
matrices (A; j)1<i,j<n such that A; ; = O unless i — j = 0 modulo rng. Note that
L? = Resy, /k(GL,) and that every k-rational twisted Levi subgroup of G containing

T is conjugate to L) for some r | n’. Let Lg) denote subgroup of Gy, associated to
L") and define

Upr i=LyUN Uy, U;, =LU; nU;.
Lemma 4.3.1 The isomorphism of Fq-schemes 4.4)
(Up N FU,) x (Up NF'UR) — Up, (g,%) > x 'gF(x)
restricts to an isomorphism

(Up,r N FU;, ) x Up,r N F~'Upp) = Upyr

Proof This lemma is a refinement of [9, Lemma 7.12]. Recall that yUhy_l and

yU, v ~1 are the subgroups consisting of unipotent lower- and upper-triangular matri-
ces in Gy,. Recall also that F(g) = bg"'” t,(,,,a(g)t,;,llbg"’”. Conjugating (4.4), which is
proven in op. cit., we have

YUy~ ' 0 Fo(y U, v ™)) x (yUny =" 0 Fy (v Uny 1) — y Uiy,

where Fo(g) = (boyteny o (8)(boyteny ") ~L. Since y LWy~ = L), to prove
the lemma, it suffices to show thatif (g, x) € (yUpry ' NFy(yU;, y ")) x (yUpy N

F()_I(VUh)/_l)) is such that A = x~1gF(x) € yUp,y ", then

(8.x) € (YUnry "N R (yUy,.y™")) x (YUnry ™" 0 Fy (yUnyy ™)) (410)
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Keeping the same notation as in [9, Lemma 7.12], write

1 0 0 0
boy 1 0 0 ! 0 0
cl 1 0 0
c=| b3 b3 1 Coe=l e 0 1
b ‘ b . b 1 : 0
n—1,1 n—1,2 " n—1,n—2
0 . . 0 0 1 -1 0 0 1
Let yt,(,,,y_l = diag(sy, 2, - - ., S,) so that we have
1 0 0 0 0
0 1 0 0
0 o(ba1)s2/s1 1 0 0
PO=1L0 sass  otmisis 1
: 1 0

0 0(bp_1,1)8n-1/51 0 (by—12)Sn-1/52 - - 6 (bu—1,n=2)Sn—1/Sn—2 1

Asin [9, Lemma 7.12], we see that the (i, j)th entry of g Fp(x) is

1 ifi = j,
0 ifi < j,
(8Fo(x))i,j = SV . 4.11)
Ci—1 ifi >j=1,
o(bi—1j—1)si—1/sj—1 ifi > j> 1.
We alSO CompUtC the (l, ])th entry Ofo When A= (ai,j)i,j [ ‘}/Uh‘}/_1:
1 ifi = j,
0 ifi < j,
xA)ij = - P 4.12)
" bij+z;<:1j+1 biragj +a;j  if j <i<n-—1,
Anj if j <i=n.

We now have n? equatiorls given by (4.11) = (4.12), viewed as equations in the
variables b; ; and c;. Let b; ;, ¢;, a; j denote the images of b; ;, ¢;, a; j in W;. In
particular, we have the following:

by_1j-1=0 & @G, =0, (4.13)
andforl < j <i <n,
i—1

bi—1,j-1=0 — B,’,j + Z E,-,kak,,- +a;j=0. (4.14)
k=j+1
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Assume now that A € yUj,,y~! = y(Lg)U}, NUp)y ! Thena; ; = 0ifrng{i—j.
From (4.13) we see that E,,_l,j_1 =0ifrngtn—j=m—1) —(j —1). We now
proceed by (decreasing) induction on i. If i, j are such that | < j < i < n and
rng i — j, then necessarily either rng 1 i — k or rng t k — j, and therefore each term
in the sum on the right-hand side of (4.14) is zero, and so E,-_l,j_l =0.

We have therefore shown that x € y (]L;lr)IU}l NULy 'NF~ 1 (yUyy~"). In partic-
ular, F(x) € yU,y~!. Since }Lg) is F-stable, we have that F(X) € Lg” and therefore
Fx) e y(UpnN Lg)TU}l)y_l. Hence x € y (U, N F_IIU;,,,))/_I.

Now since A, X € ]L(lr), we must have g € ]LY). Since g € yU,y~!

, We must
have g € y(]L;r)[U,ll NULy~' = yU,,y~!, and since g € F(VU;y_l), we must
have g € F(y(Lg)U;’l N U;)y‘l). Hence g € yUh,ry_l N F(yU,Zry_l). This
establishes (4.10) and finishes the proof of the lemma. O

Definition 4.3.2 (Drinfeld stratification for X},) For each divisor r | n’, we define

S\ = {x € Gy : x'F(x) € Uy, ),
X" = (x € Gy x'F(x) € Uy, }/(Up, N F UL,
={xeGy: x_lF(x) eU,,N FU,zr},

where the second equality in X,(Zr) holds by Lemma 3.3.

Note that S}(lr) is the variety S,(IL) defined in Sect. 3.3 in the special case that G is
an inner form of GL,,, the twisted Levi L is L and U is the unipotent radical of the
Borel subgroup specified in Sect. 4.2. By Lemma 4.3.1, we can change the quotient in
the definition of X}(lr) from Uy, N F_th,, to U, N F~1U;, so that X,(lr) is the image
of S,(lr) in Xjy; that is, X}(,r) as defined in Definition 4.3.2 agrees with the variety X,gL)

defined in 3.3.2 in the special case L = L. Hence we have the picture:

S s,

!

X;lr) — Xp

4.4 The Drinfeld stratification for the Drinfeld upper half-space
Consider the twisted Frobenius b cox0 : k®" — k®" Then G (k) = Jp,, (k) is equal

to the subgroup consisting of allvelements of GL, (I;) which commute with b0
Now consider the subquotient of k" given by

Ly = (Wi(F,) & (VW,_ (F,)®0)®" ¢ W, (F,)®"
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and write & = 1(121 Y %,. The action of G (k) on k®" restricts to an action of G..0(Or)
on . which induces an action of G, (IF,) on .%},.

. . . = =® .
Now consider the n’-dimensional I, -vector space V := £} C Fq " The morphism

w ko (b cox0)"" is a Frobenius automorphism of V and defines a F o -rational structure
on V. Observe that G (IF,) is isomorphic to the subgroup of GL(V) consisting of
elements which commute with @ %0 (b cox0)™. For any divisor r | n’ and any Fynor -
rational subspace W of V, consider

Qy gror := {[x] € P(V) : W is the smallest IFjnor -rational subspace of V containingx}.

Note that Qw 40r C P(V) is isomorphic to the Drinfeld upper half-space for W with
respect to Fynor. For any divisor 7 | n’, define

S = Qu.gor,
w

where the union ranges over all Fnor -rational subspaces W of dimension n’/r in V.
The following lemma records some easy facts.

Lemma 4.4.1 We have

(i) A = Qy gno and Sy =P(V)([Fyn).
@) Ifr | v’ | n’ and W is a I ynor -rational subspace of V, then Qw,q"or’ C Qyy gnor.
Gii) Ifr | r' | 0/, then S NS C A NS

Note that .77 is the classical Deligne-Lusztig variety for G1(IF;) = GL, (Fyn0)
with respect to the nonsplit maximal torus T (F,;) = F;,, [11, Section 2.2] and the
variety X, whenh = lisa F;,l -cover of .#]. Hence for any & > 1, we have a map

X, - X1 —> A.

Lemma 4.4.2 For any divisorr | n’, the variety X,(lr) is the preimage of 1 N .7, under
the composition map X, — X| — 7.

Proof To prove this, we use the explicit description of Xj; coming from Lemma 4.2.1:
Xn ={A() € Gy : v € L and o (det A(v)) = det A(v)}.

By Definition 4.3.2, if v € .%, is such that A(v) € X\, then A(v)~'F(r(v)) €
UnrNF U,:r, which is equivalent to

F(A(v)) = A(v)A, for some A € Uy, N F[U/Zr.
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Note that A = (a;,j)1<i, j<n has the property that

ai; =1, fori=1,...,n,
a;,1 € Wy, if i = 1 mod rny,
ai1 € VW1 C Wy, if i #% 1 mod rno,
aj,j=0 otherwise.

The first column of F (A(v)) is the vector o (v). Therefore (4.4) implies that
n n
o"(v) =Y aihv)i =v+ Y a1,
i=1 =2

where A(v); denotes the ith column of A(v). Recall from (4.6) that A(v)[ie, ,+1], =
]_['j_:lo t[;;,(,,,Jrl] (b)) (v). If [iecn + 1], = 1 modulo rngp, then i = 0 modulo rny.
Therefore, if v denotes the image of v in £}, we have (using (4.6)),

0" (v) € span{o, w0 (be) ™ (v), @ 2R (be) M0 (v), ..., @ DK (por) W10 (1))

Since A(v) € Gy, necessarily v, @ "R (bo ) M0 (v), . .., ' =Drko (ba)("/’l)’"0 (v)
are linearly independent and therefore span a n’ /r-dimensional subspace of .. This
exactly means that v € .1 N .%}, so the proof is complete. O

Remark 4.4.3 By Lemma 4.4.2, we see that for GL,, and its inner forms, the Drinfeld

stratification of X}, is induced by considering intermediate Drinfeld upper half-spaces
of smaller dimension embedding in P, "o
q

4.5 The Drinfeld stratification of X, (b, w)
In this section, we consider the varieties X, (b, w) in the special case
b= gobmxa(go)*1 for some gg € Gx,o(('),;), and w = b¢ox.
For any such b, recall from Lemmas 3.2.2 and 3.2.3 that
Xn = Xn(bcox, beox) = Xn(b, beox), (4.15)

where the second isomorphism is given by x — ggx, where g is the image of g¢ in
Gy, (Fq). Therefore the Drinfeld stratification {X}(lr)} of X} gives rise to a stratification

(X (b, beox) ™} for X, (b, beox). The proof of Lemma 4.5.3 shows that if 0" (g,)) =
8, then the Drinfeld stratification of X, (b, b¢ox) does not depend on the choice of

80-
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Definition 4.5.1 Let b = gobcoxo (g0) "' € G(I;) for some go € G, 0(0p). To each
v € %, define
u,,)

where v; = @ LE=Dko/mo) (p) =T ) for1 <i <n —1,

gr(v) == (vl‘vz‘u3‘

where we abuse notation by writing o L= Dko/ '_’OJ - (bo)!~! for the map %, —>uZh
which takes v to the image wl(’v_l)ko/ "m0l . (bo)'~1 (V) in the subquotient .%j, of k®",
where ©'is any lift of v in . C k9",

Lemma4.5.2 Ifb = gobcoxo (g0) " for some gy € G,0(Op), then

det b cox
detb

Xp(b, beox) = {v € % s o(detgy(v)) = -det gp(v) € W;} .

Proof. First note that one can obtain g (v) from A(v) by permuting columns. In
particular,

Xn(beoxs beox) = Xn = {v € & : o (det gy, (v) = det gp,,, (v) € Wy}
Since X (b coxs bcox) = Xp(b, beox) is given by x — gox where g denotes the image

of go in Gy (F,), we have that X, (b, bcox) is isomorphic to the set of g - gp. ., (V)
where v € 7, satisfies the above criterion. By direct computation,

80 " 8beox (V) = 86(80 - V),
and hence if o (det g, (v)) = det gp, (v), then

o (det g5 (o - v)) = o (detgo) - o (det gp,,, (v)) = o (det go) - det gp,,, (v)

o (detggp) _ det b cox
dorg, Cct&r8o-v) =40

~detgp(gp-v). O

Lemma4.5.3 Letb = gobcoxa(go)_1 for some go € GX,O(O,;) and assume that the
image g € Gy, (Fq) of go has the property that 6" (g,) = go. Let r | n’ be any divisor.
Forv € %, let v denote its image in £). Then

det bcox
det b
0" (v) € span{w ~¥0" (b )"0 (0) : 0 <i <n' — 1)

o (det gp,, (v)) = -det gp(v) € Wy

Xh(b7bcox)(r) =Jve fh :

In particular, the Drinfeld stratification of Xy, (b, b cox) does not depend on the choice
of go.
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Proof Recall that

o (det gp.,, (V) = detgp ., (v) € W)
Xp(beox. o) = {ve %, : i cox 1 cox / s
0" (0) € span{m ~K0" (b ooxo) M0 (0) 1 0 < i <n’ — 1}

By definition, every element in X, (b, beox)” ) is of the form 808beo, (V) for some v €
2, satisfying the above criteria. Since gy8p.., (V) = 8»(g(v) and since 6" (g() = gy,
we have

200" (v) € span{go@ " (booxo) M0 (0) 1 0 < i < n' — 1}.

But now §0w_ik0’(bcoxa)i’”0 (v) = @ k0" (bg)"0(v) and therefore the desired
conclusion follows. O

Remark 4.5.4 In “Appendix A”, we will work directly with a particular b called the
special representative in [9] (see Definition A.1.1 of the present paper). The special
representative satisfies the hypotheses of Lemma 4.5.3.

5 Torus eigenspaces in the cohomology

We prove an irreducibility result for torus eigenspaces in the alternating sum of the
cohomology of X}, N Lzr)((},i.

5.1 Howe factorizations

Let .7, 5 denote the set of characters 0: W;l‘ Fyn) — @Z . Recall that if h > 2,
we have natural surjections pr: W;° — W, and injections G, — W given by
x — [1,0,...,0, x]. Forevery divisor m of n, we have norm maps Nm : W; Fyn) —
W, (Fym). These maps induce

pr*: Tow = Tun, for i’ < h,
Nm*: Tun — T, for m | n.

First consider the setting 47 > 2. By pulling back along G, — W, x
[1,0,...,0,x], we may restrict characters of W; (Fgn) to characters of Fyn. We
say that 6 € 9}, j, is primitive if 0 |Fqn has trivial stabilizer in Gal(IF» /). If h = 1,
then 6 € 7, 5 is a character 0 qu,, — @Z , and we say it is primitive if 8 has trivial
stabilizer in Gal(F,» /F,). For any h > 1, we write ,7”?,7 C . n to denote the subset
of primitive characters.

We can decompose 6 € .7, j into primitive components in the sense of Howe [13,
Corollary after Lemma 11].
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Definition 5.1.1 A Howe factorization of a character 6 € .7, j is a decomposition
6= HG,-, where 6; = pr* Nm* 6 and 6 € 3,,?1,’,1!,,

such that m; < m;y1, m; | mjy1, and h; > h;41. It is automatic that m; < n and
h > h;. For any integer 0 < t < d, set 6 to be the trivial character and define

d
921 = HG, € gi’ht.

i=t

Observe that the choice of 6; in a Howe factorization 6 = ]_[lr: 1 6; is not unique,
but the m; and &; only depend on 6. Hence the Howe factorization attaches to each
character 0 € .7, j, a pair of well-defined sequences

l=—mog<my<mp<---<mg <mgy:=n

h=:hy>hy>hy>--->hg>hgy1 =1
satisfying the divisibility m; | m;y1 for0 <i <d.

Example 5.1.2 We give some examples of the sequences associated to characters 6 €
T

)

(a) If O is the trivial character, then d = 1 and the associated sequences are
{mo,my,ma} ={1,1,n},  {ho, h1, ha} ={h, 1,1},

where we note that 77 | = 9& since any character of F ; has trivial Gal(F» /I )-
stabilizer.
(b) Say h > h’. We say that 0 is a primitive character of level A’ > 2 if 0 |y
h
and |WZ;’1 (Fn
sequences are

=1
Eyn)
) has trivial Gal(IF;» /IF;)-stabilizer. Then d = 1 and the associated

{mo,my,ma} ={1,n,n},  {ho,h1,ha} ={h h' 1}.

In the division algebra setting, this case is studied in [3,4]. For arbitrary inner
forms of GL,, over K, we considered minimal admissible 6, which are exactly
the characters 6 € .7, ; which are either primitive or have d = 2 with associated
sequences

{mo,m1,mp,m3} ={1,1,n,n},  {ho, h1, h2, h3} = {h, h1, ha, 1}.

This is a very slight generalization over the primitive case.
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(c) Say h = 2. If €|Wﬁ<Fqn) = 1 and the stabilizer of 9|W£(Fq”) in Gal(IFyn /F,) is
Gal(F,» /Fym), then d = 1 and the associated sequences are

{mo,my,mp} ={1,m,n},  {ho,hy,h2} =1{h,2,1}.

In the division algebra setting, the case & = 2 is studied in [1,2].
(d) Sayh > 1. If@'w,l’(Fqn) = 1 and the stabilizer of 6 : IE‘;,, — @; is Gal(Fyn /Fym),
then d = 1 and the associated sequences are

{mo,mi,mp} ={1,m,n},  {ho, h1,h2} =1{h,1,1}.

This is the so-called “depth zero” case.

5.2 Irreducibility

Recall that the intersection X, ﬂIL;lr) G}l has an action by the subgroup IL;[) (Fq)G}l (Fy)x
Tp(Fy) C Gp(Fy) x Tp(F,). In this section, we study the irreducibility of the virtual

L,([)(IE‘q)G}l (IF,)-representation HX (X, N L;lr)G}l)[O], where 6: T,(F,) — @Z is

arbitrary.

We follow a technique of Lusztig which has appeared in the literature in many
incarnations, the closest analogues being [7,16,18]. In these works, the strategy is
to translate the problem of calculating an inner product between two representations
to calculating the cohomology of a third variety X. This is done by first writing
¥ = ¥’ u ¥”, proving the cohomology of & gives the expected outcome, and then
putting a lot of work into showing that the cohomology of ¥’ does not contribute. In
the three works cited, one can only prove the vanishing of (certain eigenspaces of) the
Euler characteristic of X" under a strong regularity condition on the characters 6, 6’.
The key new idea here is adapted from [8, Section 3.2], which allows us to relax this
regularity assumption by working directly with ¥ throughout the proof. We give only
a sketch of the proof of Theorem 5.2.1 here, as the proof of [8, Theorem 3.1] is very
similar.

Theorem 5.2.1 Let6,60’: T}, Fy) — @Z be any two characters. Then

(HC*(Xhﬂ]L;f)G}Z)[G], Hj(thLﬁf)G}l)[e’]> =#{w e Wl 16’ =6oAdw)),
h

Ly (Fy)GL(Fy)
F
where WLE,” = N]L,(f) F) (Th(Eg))/Th(Fg).
Since Wf(r) = Gal(Fyn /IFgnor ), we obtain the following theorem as a direct corol-
h
lary of Theorem 5.2.1.

Corollary 5.2.2 Let0: T, (IF,) = W; (Fyn) — @Z be any character. Then the virtual
]L;lr) (I, )G}l (Fy)-representation HX (X; N ]L;lr) G},)[e] is (up to sign) irreducible if and
only if 0 has trivial Gal(IF4n /T ynor )-stabilizer.
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In the special case that r = n’, we have ]L;l"/) = T}, and using Lemma 4.2.1 and
Definition 4.3.2, we have that S, 0Ty, G}l is an affine fibration over

[x € WG} : x "' F(x) e Uy N FU; '}

and that
XhﬂThG},z |_| t-X}l, WhereX;llzXhﬂG}l.
teTh(]Fq)
Here we have
Xl ={xeG) :x"Fx) e U, N FU,'). (5.1)

Corollary 5.2.3 Let x : T}l(]Fq) — @; be any character. Then H:.“(Xl,@g)[x] is an
irreducible representation of G}l (Fy). Moreover, if x, x' are any two characters of

T} (Fy). then HY (X}, Qo)x]1 = H (X}, Qo)lx' if and only if x = x'.

Corollary 5.2.3 follows from Corollary 5.2.2 (by arguing the relationship between
the cohomology of X ,i and the cohomology of X,NT;, G }11 ), butone can give an alternate
proof using [5, Section 6.1], which is based on [15]. We do this in Sect. 5.2.2.

Remark 5.2.4 Recall that specializing Lemma 3.3.4 yields that

Gn (€F)

L”)(IF,,)G (F,) (HZ (X 0 ]L;l')((}]i, Q)I0]).

HE (X, Q)01 =

We expect that HX (X, ) , @,)[0] should be irreducible if 6 satisfies an appropriate
regularity condition depending on r. In the case r = n’, we prove in [8, Theorem 4.1(b)]

that HX (X, ") , Qp)[0]isirreducible if 6 |'J1‘}, F,) has trivial Gal(Fn /FF,)-stabilizer. (This
is more subtle than one might expect—as an indication of this subtlety, we remark
that we are only able to establish this irreducibility for p > n.)

5.2.1 Proof of Theorem 5.2.1
Recall that by definition
SNLYGh =g e LV'G) : g7 'F(g) € Uy}, where Uy, = LV UL N,
Consider the variety
2 = {(x,x',y) € F(Up,) x F(Up,) x LG} : xF(y) = yx')

endowed with the T,(F,) x T,(Fy)-action given by (r,7): (x,x',y)
— (txt~', /x't'~1, tyt’~1). Then we have an isomorphism

L FHGLEN((Sy "L GL) x (Sy LY GL)) — =0,
3.8V~ (g 'F(g). 8 'F(g). g7 'g).
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equivariant with respect to Ty (F;) x Ty (IF;). To prove Theorem 5.2.1, we need to
establish

Z(—l)" dim H/(Z"), Q.o = # {w € me 0 =60o Ad(w)} . (5.2)
. h

1

The Bruhat decomposition of the reductive quotient G lifts to a decomposition
Gh = Llwews, Chws where Gy = Uy Thi KUy and Kj = (U)! N0,
[7, Lemma 8.6]. This induces the decomposition

LGy = || G whereG}), =GpwnL G}.

how?

F
wEWL;’r)

and also the locally closed decomposition

2O = || 59,  where 0 = 5N (F(Up,) x F(Up,) x Gj,).
weWp

We will calculate (5.2) by analyzing the cohomology of

SO = (G, x', y1. 7.2, y2) € F(Upy) x F(Upy) x Upy x Ty x K} x Uy, ¢
xF(y1tibzys) = yirzysx'}.

Since fflf) — >:5,’>, (x,x', y1, 7,2, y2) = (x,x’, y1tzy2) is alocally trivial fibration,
showing (5.2) is equivalent to showing

PO 1 ifwe Wl and6' =60 Ad(w),
Z(—n dim H. (25, Qp), 4 = Ly, (5.3)
i

0  otherwise.

Asin [16, 1.9], we can simplify the formulation of S by replacing x by x F'(y1) and
replacing x’ by x’F(y2)~!. We then obtain

=0 = ((x, 1, 7, 2, y2) € FUp, xUp, xTy xK} x Uy, : xF(tiz) € yiTbzy2 FUy ).

Lemma 5.2.5 Assume that there exists some 2 < i < n which satisfies the string of
inequalities [)/u')y’l(i)] > [yu')yfl(i —1D+1]>1.Then ¥, = @.

Proof By the same argument as in [8, Lemma 3.4], we may assume 2 = 1 and come to
the statement that X, = & if there does not exist (x, yi2, y21,7) € FUp, x (Uy N
FIU;,) x (U, N FIUI_J) x Ty such that

Wl typx F(w) € yle(Ul N ]LY))‘
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Therefore to prove the lemma, it is enough to analyze the intersection
[w~! (U1, N FU,) - FULF@)]N[(Ur, N FUL,) - F(U NL{Y)].

By construction (see (4.2), (4.3), and write Fo(g) = boytic.n ylo (g)t,;,i yboy 1), we
have

W™ (Ty N (Uy, NFUT,) - FUL)F @) N (U, N FUY,) - FUL,)
=y 'y Yy TN - Uiow,1,r N FoUup1,r) - FoUlow,1,-) Fo(yw ™'y ™1y
N V_l((Ulow,l,r N F()Uup,l,r) : FOUIOW,I,r)V-

Now the desired result holds by Chan and Ivanov [8, Lemma 3.5]. O

The rest of the proof now proceeds exactly as in [8, Section 3.3, 3.4], which we
summarize now. By Chan and Ivanov [8, Lemma 3.5], if 1 # w € WL") is such
h

that £, # &, then Uy N~ Upib is centralized by a subtorus of T, which properly
contains the center of G, In particular, the group

Hy = {(t, 1) € TyxTy : w 't ' F@)w = ' "' F(t') centralizes Kj, = Unw ™ 'Upw)

has the property that its image under the projections w1, w2 : Ty, x Ty, — T xT; — Ty
contains a rank-1 regular! torus. Crucially, H,, acts on E,(Z ) via

1) (x,y1,1,2, ) = (FOxF@O ™ FOy F@) ™ trid’ ™!
li}_l, I/Zl‘/_l, F(t/)yzF(t/)_l),

and this action extends the action of Tj(F;) x Ty (FF;). Then H;"(fw,@g) =

~HO —
H*(Z,""™, Q) and using [8, Lemma 3.6], we can calculate:

st _ (Tpw)t  if F(w) = w,
* e otherwise.

Now (5.3) holds for all w # 1. To obtain (5.3) for w = 1, we may apply [8, Section
3.4] directly. We have now finished the proof of Theorem 5.2.1

5.2.2 Proof of Corollary 5.2.3
Consider

o= {Ge.x,y) € (U}l N FU;’I) X (U}l N FU;’I) x G} : xF(y) = yx'}.

1 We mean here that this torus is not contained in ker(c) for any root « of T the reductive group G. See
[8, Lemma 3.7].
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Then we have an isomorphism

GrE)\((Xn NTiG}) x (Xn NTaGy)) > = (8.8) > (¢7'F(g). g 'F(gh.g7'¢)).

Since (G}l has an Iwahori factorization, any y € G}l can be written uniquely in the
form

y= s,y eUpnFTH(U), e U nFH (U, ),
el (U ' nFu Y, Y eU, ' nFuL

Then our defining equation becomes
XF (y1y531y3) = yiyay{ vy’

By (4.4), every element of Uy, can be written uniquely in the form y| —1x F(y}). We
also have F(y5), x" € IUI NnFrU,- !"and we can replace x" by x' F(y5)~ ! Therefore
» 1 is the set of tuples (x', y}, ¥/, ¥§) € (U} N FU;") x (UL N F~'U") x (T -
U, nF'U; YY) x (U, 0 F'0L) which satisfy

Y ¥ix' € ¥y U F 3 F () = Un F () F (3)).
Now consider the subgroup
H:={@t,1) € Ty xTpp : 7 F(t) = ' " F(¢') centralizes Ty, - (U, n F~'U,")}.
It is a straightforward check that for any (¢, t') € H, the map
& ¥y Y V) e (F) T F (), e yhe, ey ) Iy F())
defines an action of H on X !. By explicit calculation, one can check that H contains an

algebraic torus 7 over Fq and that the fixed points of ! under 7 is equal to T}; (Fy).
We therefore have

1 ify =y,

. 1 ~
dim H (2, Q1o = 0 otherwise

and this completes the proof.

5.3 Very regular elements

Recall that we say that an element g € T),(IF;) = W, ([F;n)> is very regular if its
image in IFan has trivial Gal(F,» /I, )-stabilizer.



The Drinfeld stratification for GL,, Page 250f 54 50

Proposition 5.3.1 Let 0: T (F,) — @Z be any character. If ¢ € Tp(F,) C
L,(lr)(IFq)G}l (Fy) is a very regular element, then

Tr (g; H (X, NLVG))[6]) = 3 07 (x),
yeGal(L/k)[n'/r]

where Gal(L /k)[n'/r] is the unique order-n' /r subgroup of Gal(L /k).

Proof. Let g € T (IF,) be a very regular element and let ¢ € T}, (IF,) be any element.

Since the action of (g, ) on X, ﬂ]LElr) G}, is a finite-order automorphism of a separated,
finite-type scheme over F;», by the Deligne-Lusztig fixed point formula,

Tr ((g, 0% HY (X5 0 LZ”GL)[Q]) —Tr ((gu, t)*s HY((Xa 0 L,ﬁ’)G,L)(g-““))[e]) :

where ¢ = gsg, and ¢t = 1, are decompositions such that g, #; is a power of g, ¢ of
p-power order and gy, t,, is a power of g, ¢ of prime-to-p order.

Recall from Sect. 4.2 that every element x of X}, ﬂ]Ly) G}l is amatrix thatis uniquely
determined by its first column (x1, x3, ..., x,). Furthermore, we have an isomorphism

Wy ([Fgn) — Tu(Fy), ¢+ diag(t, o (1), 0% (1), ..., 0" V(1)).

Under this identification, for g,t € Ty (IF;), the element gxt € X, N ]L;IF)(G}I cor-
responds to the vector (grxy, ol(g)txz, o (@)txs, ..., o=l (g)txy). In particular,
we see that if x € (X, N Lg)G}l)(g”), then (for any i = 1,...,n) x; # 0 implies
t = o@=Dl(g)~! Using the assumption that g is very regular and therefore g, has
trivial Gal(L /k)-stabilizer, this implies that (X NL\” G} )0 exactly consists of ele-
ments corresponding to vectors with a single nonzero entry x;. Now, if i % 1 modulo
no, then the corresponding x cannot lie in X, as then det(x) ¢ Wj, (Fq )*. On the other
hand, if i = 1 modulo n¢ and i # 1 modulo ngr, then the corresponding x cannot lie

in ]L;lr)((}}l. Ifx € Xp, ﬂ]L;lr)G}l corresponds to (0, ..., 0, x;,0,...,0) for somei = 1
modulo ngr, then x; can be any element of W;l‘ (F4n). Hence:

(X, ]L(V)Gl)(g“’é') _ béTh(IFq) if t = 0=Vl (g)~1 for somei = 1 mod nor,
hh 1%/ otherwise.

Furthermore, for gy, #, € Ty (F,) and bix € (X, N LZ’)GD(A’.{,G)’

8u - bf)x ty = bé(bgigubé)xttl = bf)(o(’;l)l(gu)xtu).

We are now ready to put all the above together. We have
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Tr (g; HY (Xn LY G})10])

1
= WED > 0 Tr ((g.0: HY (Xa LY GY))
W) erw,)
= 2 OO T (g s HE(Xn N LG ™)
#Th (Fq) 1T, (Fy) ¢
1 [ .
=gy 2 PETV@)) D0 00T T (e s H (BTH(E,)))
n(Fq) V2 e
i=1 (mod nor)
1 [ .
:W Z 9(0(1—1)1(&)) Z 0(t,)"" Z 9'(0('_”[(5;”))9'@,,)
! izll(éifinnor) 1, €T} (Fy) 0': Ty (Fy)—Qp
= Y 00"V g)= Y. 0.
l=<i<n yeGal(L/k)[n'/r]
i=1 (mod nor)

Remark 5.3.2 The notion of very regularity can be generalized outside the setting that
G is an inner form of GL,,—in [7, Section 5, Definition 5.1 and Theorem 5.3], we
define a notion of being unramified very regular and establish a character formula for
H}(Xp, @5)[0] on the locus of such elements. The same analysis as in op. cit. can
be performed to obtain a generalization of Proposition 5.3.1 for arbitrary G: for any

character 0: T, (F,;) — @Z ,if g € G, ,0(Of) is an unramified very regular element
with respect to x such that g € T (Oy),

Tr(g; HY (Xp N LGy, Qp)[0]) = > 67 (2)-
YENL, 00 (/[ (T (K)NG,0(Op)
6 The closed stratum is a maximal variety

Recall that X ;Lr) is the closure of the rth Drinfeld stratum and that the unique closed
Drinfeld stratum is the n’th Drinfeld stratum

Xpw = X,(l"/) ={xeGp:xlox) e UL}
Recall further that X}(lnl) is a finite disjoint union of copies of X! := X,(l",) N G}l:

=L el xi,
8€G1(Ey)

where [g] denotes a coset representative in Gy, (Fy) forg € G (Fy) = G (Fy)/ G}l (Fy).

For any character 6: T;(F,;) — @; , we have an isomorphism of Gy (F,)-
representations
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Gh (]Fq )

HI(X, Qo1 = Indy, &6l @,

(Hi(xy" TG} Q)i61),  foralli 0.
Let x 1= Olpi ) As G} (F,)-representations,
i (@) 17 ~ iyl & .
H. (X" NTyG,, Q) 6] = H. (X, Q)[x], foralli > 0.

The subvariety X}, C X}, is stable under the action of I'y, := {(«, e H:aeT, F}-
(G}l (Fy)x T}, (IF,)), where the product is viewed as a product of subgroups of G, () x
Tp(Fy). Observe that 'y, = IF;" X (G}l(Fq) X ’]I‘}l(Fq)) and note that I'y, - ({1} x
Ty@¥y) = Gy (Fy) x Ty (Fy). Therefore
Gy, (Fy) x Ty, (F i — ~ ;
Ind" D (i (x], Qo) x) = @ H (X N TAGL)IO'],
9/

where 0 ranges over all characters of Tj(IF,) which restrict to x on ']I‘,ll (Fy). The
action of (£, g, 1) € Fy x (G} (Fy) x T} (F,)) =T, onx € X, is given by

(€, g, 1) xx =(gxt)c ™,

where we view ¢ € F;,, as an element of Wy, (Fyn)* = Ty ().

6.1 The nonvanishing cohomological degree

Recall from Sect. 5.1 that any character 6 : Tj,(F;) — @Z has a Howe factorization.
For any Howe factorization 6 = ]_[;i=1 0; of 6, define a Howe factorization for x :=
0 |T}1 (F,) by

d ifhg > 2,

al/
= ;. where x; :=6; and d’ =
X il]Xt Xi 1|TPI¢(JF<1) d—1 ifhy=1.

As in Sect. 5.1, although the characters x; are not uniquely determined, we have two
well-defined sequences of integers

l="myg<m)p<mp<---<mg <mgy] <myq] :=n
h=1ho>hy>hy>--->hgy >hgyy1 =hgy;:=1
satisfying the divisibility m; | m;y1 for0 <i <d.
We state the main result of this section.
Theorem 6.1.1 Let x : ']I‘}l Fy) = W}l (Fyn) — @Z be any character. Then

irreducible G}l (Fy)-representation  ifi =ry,

i 1 N —
H (X @olx] =y ifi # 1y,
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where

ry =2(n"—1)+2e, + fy
d'—1

n n n
ex=(—=1)a =D = (= = 1) = o —ha) + Y — (= h141)
mgr lem(my, no) pr L
n n il n
/
=(n- (- - - h
Jx (n md’) <i’l lem(mgr, ”0)) - ; <mt mt+l> o

Moreover, Fryn acts on H.* (X}, Q) as multiplication by (—1)! g"'/2.

The assertion about the action of Fr,» on H! (X}, Q,)[0]is equivalent to saying that
X ,]l is a maximal variety in the sense of Boyarchenko—Weinstein [2]; that is, #X }ll (Fgn)
attains its Weil-Deligne bound

#X)(Fyn) = Z(—n" Tr(Fryn; HL(X), Qp)) < Z ¢"/*dim H (X}, Qy).

i=0 i=0
For easy reference later, we record the following special case of Theorem 6.1.1.

Corollary 6.1.2 Let x: 'H‘}l(IFq) = W}l Fyn) — @Z be any character with trivial
Gal(L /k)-stabilizer. Then

irreducible  ifi =ry,

HI(XE, Qolx] = 0 ity
X

where

/ d-1 n
re=nh—h) +h(e=2) +ha = (0 =n)+ Y —(hy = hig).
t

t=1

Proof The assumption that y has trivial Gal(L/k)-stabilizer is equivalent to the
assumption that my = n. We see then that the formula for r, given in Theorem
6.1.1 simplifies as follows:

d—

1
re =20 — 1)+ Zz(mitq) (hy — hest)

t=0

-1
n n n n
- hooy —1) — _
i ; ((m, mt+1) (i =1 (10m(mt, no)  lem(miqq, no)>>

t

n n n n
=2 —1)—2(hg—hg)— | — - — ) — —
(n ) (ko @) <m() md/> (lcm(mo,no) lcm(md/,n0)>
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d—1
+ —(Zho —h1) — —(hdo +) —(ht hig1)-

=1 M

Using the factthat hp = hand mo = 1 by construction, the above expression simplifies
to the one given in the statement of the corollary. O

6.2 Ramified Witt vectors

We give a brief summary of ramified Witt vectors, following [5, Section 3.1]. In this
section, we assume k has characteristic 0. We first define a “simplified version” of the
ramified Witt ring W.

Definition 6.2.1 For any [F,-algebra A, let W(A) be the set AN endowed with the
following coordinatewise addition and multiplication rule:
laili=0 +w [bili=0 = [ai + bili>o0,
[az]z>0 *Ww bl]l>0— |:Za i—j]
i>0

It is a straightforward check that W is a commutative ring scheme over F,. It comes
with Frobenius and Verschiebung morphisms ¢ and V.

The relationship between the ring scheme W and the ring scheme W of ramified
Witt vectors is captured by the following lemma. The key point here is the notion of
“major contribution” and “minor contribution”; this will appear in Lemma 6.3.3 and
(implicitly) in Proposition 6.4.4.

Lemma6.2.2 Let A be an F-algebra.

(a) Foranylai],...,[as] € AN where la;] = laj,ili>o,

[T taji=1] J] laj1 | +w L.

I<j<n I<j=n
w.rt. W wrt. W
where [c] = [c;]i>0 for some c; € A[aflil ---a’i”in it Fip<i,er,...,e €
Zxo).
(b) Forany[ail, ..., [a,] € AN where [a;] = [a; i1i>0,

D odajl=| Y laj) | +wie

1<j<n 1<j<n
wrt. W wrt. W

where [c] = [c;li>0 for some ¢; € Alay j,...,anj:j <i].
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We call the portion coming from W the “major contribution” and [c] the “minor
contribution.”

6.3 Normed indexing sets

The group G}l is an affine space of dimension n?(h — 1). To prove Theorem 6.1.1, we
will need to coordinatize G,ll, and we do this here by defining an indexing set A" of
triples (i, j, [). Our strategy for approaching Theorem 6.1.1 is to perform an inductive

calculation based on a Howe factorization of the character y : T}l (Fy) — @; . In this
section, we will also define a filtration of A" corresponding to the two sequences
{m;}, {h;} associated with x.

The algebraic group (G,]l can be described very explicitly: it consists of matrices
(A, j)1<i,j<n Where

[1, AGj1) AGj2)s - A jr-nl € WEifi = j,
Aij = 1[AG ;000 AGj s A j =] € Wiy it [ilng > [l
[0, AG,j.1), A, j2)s s Al j -] € Wy if [i],y < [jlny and i £ .

Here, we recall that for x € Z, we write [x],, to denote the unique representative
of xZ/noZ in the set of coset representatives {1, ...,n9}. We have a well-defined
determinant map

det: G}l — W}l

In the way described above, G}l can be coordinatized by the indexing set

1<i,j<n
At = 3G.j. ) eZ® 1 0 <1 <h—2if[ilyy > [jlno
1<l <h—1if[ilyy < [jln
We also define:

A={G,j. D) e A" i #j},
A" ={G,j,heA:j=1}

The indexing set A corresponds to the elements of (G,ll with 1’s along the diagonal,
and A~ remembers only the first column of elements of (G,ll with (1, 1)-entry 1.

Definition 6.3.1 Define a norm on A™*:

A+—>Rzo,
@ j, DG, j,Dl=i—j+nl

Definition 6.3.2 For A = (i, j,I) € At, define

A= (,i,h—1=1D.



The Drinfeld stratification for GL, Page310of54 50

The following seemingly innocuous lemma is in some sense the key reason that
the indexing sets above allow us to carry over the calculations in [5, Section 5] from
n’ = 1 setting to the present general n’ setting with very few modifications.

Lemma 6.3.3 Following the conventions as set up above, write A = (A; j)1<i,j<n €
G}l, where

(L AG 1), AGj-n] €W, ifi=j,
Aij = V[AG, 00,5 A =21 € Wit if [ilag > [nes
[0,AG, 0,y A jn-] € Wi if[ilng < Ljlny and i # j.

Assume that for A1, Ay € AT, the variables A, and A;, appear in the same monomial
in det(A) € Wy, for some h’ < h.

(@) Then |A1| + |A2| < n(h' —1).

(®) If |x1] + |A2l = n(h' — 1), then Ay = 1Y, where " is taken relative to I.

Proof By definition,

det(A) = > ] Aiywy € W (Fy).

yeS, 1<i<n

Let! < i’/ — 1. If K has characteristic p, then the contributions to the ! -coefficient
coming from y € S, are of the form

n
[TAc o
i=1

where (11, ..., [,) is a partition of /. Then

n

DGy @ =) i—y@) +nli =Y nli=nl <n( —1).  (6.1)
i=1 i=1

i=1

If K has characteristic 0, then the major contributions to the w'-coefficient coming
from y are of the form
n
i
[TAG 60
i=1

where the e; are some nonnegative integers and where (/1, ..., [,) is a partition of /.
Hence

n
> 1y @), ) =nl < n(h’ —1). 6:2)
i=1

The minor contributions to the w'-coefficient coming from y are polynomials in

[T, Af;,y(i),zi) where /1 + --- 41, < [ and the ¢] are some nonnegative integers.
Hence Y '_, |G, (i), ;)| < n(h' —1).
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Suppose now that Ay = (i1, j1, 1), A2 = (i2, j2,l2) € AT are such that Ay, and
A, contribute to the same monomial indet(M) € W}l,. Then there exists some y € S,
such that y (i1) = j1 and y (i2) = j2, and by Egs. (6.1) and (6.2),

[hil+ 122l < n(h" = 1).

Observe that if K has characteristic 0 and A; and A, occur in a minor contribution,
then |A1| + |A2| < n(h’). This proves (a), and furthermore, we see that if |A1| + |A2]| =
n(h’ — 1), then the simultaneous contribution of A, and A,, comes from a major
contribution. But now (b) follows: since the image of G}, under the determinant is
W}l, if |A1] + |A2] = n(h’ — 1), then necessarily the contribution of A; and A, to the
(h' — 1)th coordinate of the determinant must come from a transposition. O

Given two sequences of integers

l="mog<my <mp<---<mg <mgy <M44] :=n

h::hoZ/’n>h2>-~->/’ld/>hd/+1=hd+1 =1

satisfying m; | m;41 for 0 < i < d, we can define the following subsets of A for
0<s,t<d:

Ase:={0, j, 1) e A:i=j (mod my), i # j (mod mgy1), I < hy — 1},
A=A NA™.

We will need to understand which A € A are such that x; contributes nontrivially
to the determinant. We denote the set of all such A by A™". We may describe this
explicitly:

AN — e A0 e A
0<l=<h-—=2if[ilsy > [jlno
=qG, j,)eA: 1<l <h—=1if[ilyy <[l - (6.3)
1<l <h—=2if[ilsg = [jlno

For 0 < s,t < r, by considering ¥ relative to h;, we may similarly define

Afsl?il“ ={re A, AV oe As.1}
0 <1< h—2if[ilng > Ll
=G, j.D €Ay 11 = h = 1if il < [l
1<l<h —Zif[i]no = []]no
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Define A, ;™" := A~ NAM" = AT N A™", Define the following decomposition of
AS—’}min:

oo o= G 1D €A™ 1[G LD] > n(he = 1)/2),

oo i =1{G, 1L,D) € AG™ 1[G, 1, D] < n(hy — 1)/2).

For any real number v, define
,
min .__ min —,min __ 4— min
sz,t T I_l As,t ’ sz,t - -A ﬁ-Azu,t’
s=[v]

and observe that for 0 < s < r an integer,

j =i (mod my)
0 =< l =< ht - 21f [i]no > [j]no
1 <l <h —1if[ilyy < [jlno
1 <l <h=2if[ilyy = [Jlno

ATin = L, j D) e A

Lemma 6.3.4 There is an order-reversing injection Ls ; — Jy; that is a bijection if
and only if A;;mm is even. Explicitly, it is given by

IS,I(_)\]Y,la (lslvl)'_)([n_l—i_z]nslvhl_z_l)
Note that #.A;;min is even unless n and h; are both even.
Proof If (i, 1,1) € A;;min, then by definition i = 1 modulo m, and i # 1 modulo
ms41. Thus [n — i + 2], = 1 modulo m and [n — i + 2], # 1 modulo m,1, which

shows that (i, 1,1) € A;}mi“ implies ([n —i + 2],,1,1) € A;;™". Since i > 2 by
assumption, we have i +[n —i + 2], =n + 2 and

G LD+ (n—i+2]n, 1, h =2 =D =nh — 1).
Hence if (i, 1,1) € Z;;, then ([n — i + 2],, 1,1) € Js ;. It is clear that the map is a
bijection if and only if J; ; does not contain an element of norm n(h; — 1) /2. Such an

element must necessarily be of the form ((n + 2/2), 1, (h; — 2)/2), which is integral
if and only if n and A, are both even. O

1
6.4 The cohomology of X;
The purpose of this section is to establish the following result:

Theorem 6.4.1 For any character y : T}l Fy) — @EX
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H md% 0 o Hi(x) D)) = " @ (=gt ifi=1,,
Mgl (F,) nTL(JFW(X)’ f( h’@l) "o otherwise.

Moreover, Frgn acts on H. (X}, Q) by multiplication by the scalar (—1)'q"/%.

This is a technical calculation which follows the strategy developed in [5] (in
particular, see Sections 4 and 5 of op. cit.). We first rephrase space of homomorphisms
in the statement of Theorem 6.4.1 in terms of the cohomology of a related variety.
Every coset of G}l / ’]I‘}ll has a unique coset representative g whose diagonal entries are
identically 1. Over F,, we may identify G} /T} with the affine space A[A] (the affine
space of dimension #.4 with coordinates indexed by the set A of Sect. 6.3). Then the
quotient morphism G,ﬁ — G}1 / ’]I‘}l has a section given by

s:G)/Th — G, (G j0).jned > (i Dij=1,.ns
where
1ew) iti =,
Xij =3 [xG,j,00, %G j 055 X6 j =) € Wrr if [i]ng > [l
[0, X, j, 1) XG,j,2) -+ X(i,jh=1)] € W if [i]ng < [j]Ino and i 5 j.

As in [5, Section 5.1.1], there exists a closed IF,»-subscheme Y, hl of G}l such that

X, = L;I(th) which satisfies the condition that Fr;(th) N Fré(th) = {1} for all

i # j. We are therefore in a setting where we can invoke [5, Proposition 4.1.1].
Define

B: (G/T}) x T} — G, (x,8) = s(Frg(x)) - g - s(x).
The affine [F;n-scheme ,B_l(Y}}) C (G}l/'ﬂ‘}l) X 11’}[ comes with two maps:
pri: B (%) > Gy/T) = ALAL - pry: B71(Y,) = T,
Recall from [5, Lemma 4.1.2] that since the Lang morphism L, is surjective,
x.g) ep'(Y)) <<= sk -yeXp (6.4)

where y € ']I‘}ll is any element such that L,(y) = g.

Proposition 6.4.2 For any character x : T}1 Fy = W;l; (Fgn) — @; let Ly denote
the corresponding Q,-local system on W}l Fori > 0, we have Fryn-compatible
isomorphisms

Gi (@)

Homgy s, (Indy ") (0. H (X3, o)) = HIALATL PLy).
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where P: A[A7] — W}L is the morphism (X 1,0) . 1,)eA- >
Lg(det(g54(1, xa, ..., xa)) ™! for xi i= [X(i,1,0), X, 1,1)s - -+ » X, 1,71 )-

Proof By [5, Proposition 4.1.1],

G}, (Fy) j AN ~ gifa—1(v]
Hom((;,llq(]yq) (IndT,f(F:) 00, HC’ (Xn, Qe)) = ch (IB (Yh), Pr§ ‘7:)(),

where F, is the rank-1 local system on T}l corresponding to x. By the same proof
as [5, Lemma 5.1.1], ,3_1 (th) is the graph of the morphism Py: A[A] — W;l; given
by x = L4 (det(s(x)))~!. Furthermore, as morphisms on ,B’I(Y;:), we have pr, =
i o Pyopry, wherei: W}l — ']I‘,ll, x +> diag(x, 1, ..., 1). Therefore, as sheaves on
pri(B~1(Y))), we have prj Fy = PFi*Fy = PiLy, s0

HA(B~' (%)), b3 Fy) = Hi(pry (B (V). PoLy)-

Next we claim that the projection A[A] — A[A™] induces an isomorphism
pri(B~1(Y})) — A[AT]. Injectivity is clear: using (6.4), we know that x €
pri(B~L(Y))if s(x)-y € X} for some y € T}. Since s(x) - y is uniquely determined
by its first column, then s(x) is uniquely determined by its first column, which is
precisely the projection of x to A[.A™]. To see surjectivity, we need to show that for
any x € A[A_](Fq), there existsa y € ']I‘}l (Fq) such that glrf’d x)-yeX }l Pick any
y = diag(y1, o (1), ..., 0(y)) € Th(F,) such that det(y) = det(gi*d(x))~!. Then
gri(x) -y € Xp since gpd(x) - y = gi(xy1) and det(gf(x) - y) = 1 € W} (Fy).
Under the isomorphism pr By, ;:)) = A[A7], the sheaf PjL, is identified with
P*L,, and the proposition now follows. O

Note that the last paragraph of the above proof is a simpler and more conceptual
proof of [5, Lemma 5.1.6]. To calculate H! (A[A~], P*L,), we will use an inductive
argument on affine fibrations that relies on iteratively applying the next two proposi-
tions:

Proposition 6.4.3 For 0 <t < d’, we have Fryn-compatible isomorphisms

Hcl (A[A;?in]’ P*‘C)(zt) = Hcl: (A[A;Tfl]’ P*£X2t+1)[zel] ® (( - qn/2)2€z)deg’

where e; = #(A;;Tin ~ A;;fﬁl_]]).

Proof The proofis the same as the proof of [5, Proposition 5.3.1]. We give a sketch here.
By definition, x>; = x: - x>r+1 and yx; factors through the norm map W}Ll (Fgn) —
W}lt (Fgm:). Let pr: W}lt — W}”H. Since P: A[ ;;Tm] — W}lt factors through
L gm: , this implies that

P*Ly., = P*Ly, @ P*pr* Ly, = QK P*L

X>t+1 X>t+1°
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min mm

AV 1 and PLy_ ., is the pull-

back along P: A[ th‘;f]] — W}lm . The conclusion then follows from the Kiinneth

formula. O

where Q, is the constant sheaf on A[AS;

Proposition 6.4.4 For0 <t <d' — 1, we have Fryn-compatible isomorphisms

_ ~ _ nft/2
( [A>znflill] P*‘C’Xzfﬂ) = ( [A>rj—n]nz+l] P*£X31+I)®q [fl] ® ((_qn/Z)f/)deg’

—,min —,min _ —,min
where fi = #(A_} L N AL ) = #A L

Proof By replacing [5, Lemmas 3.2.3, 3.2.6] with Lemmas 6.3.3 and 6.3.4, the proof
of [5, Proposition 5.3.2] applies. (The proof is quite technical; simpler incarnations of
this idea have appeared in [1,3,4].) O

Proof of Theorem 6.4.1 By Proposition 6.4.2, we need to calcqlate Hci (A[AT], P*Ly).
Since P(A[A~ N~ A™™M)) = {1} € W}l and #(A~ ~ A7™M) = n/ — 1, we see that

HI(ALAT], P*Ly) = Hi(ALA™™M], P*LORG — D] ® ((— ¢"?)* " V)%,

Using Propositions 6.4.3 and 6.4.4 iteratively, we have

= H(A[AZGG"] P L) (by def)

~ gi —,min /2200 92

= H(A[AZ"), PrLar)2e0l @ ((— 4"%)) (Prop 6.4.3)

= H (AL, Pz o 4 2e0 @ (- g72) 0 120) (Prop 6.4.4)
. . n ' d

= HI(ALAZ], PL22) ™ o + 260 + el ® (= g"2) PO 0) ™ (Prop6.4.3)

and so forth until

~ 77i — mi N >

= Hcl‘ (A[Azdl/rjldnl-Fl]’ P*szd/+l) q [f)( +26X] ® (( _ qn/Z)fX 5)(>’
where

fx=ftfit-F S, epi=eotert--tea.

Since As 4 441 = &, now we have shown

/ —.mi = @2 \deg
HU(A[AT™], P*Ly) = Hl(x, Q)% [ fy +2¢,1® (( _ qn/2)fx+2LX) .
(6.5)
Setry :=2(n' — 1) + fy + 2ey. By Proposition 6.4.2, we now have

nfy /2
GL@®,) ) ~ ] Q ifi =ry,
Homg (Indnrl & X Ho(Xi Qo)) = {0 otherwise.
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Moreover, since Fryn acts trivially on H (A[A;ﬁlj,ﬂ], P*Ly ) = HO(x, Qy),
then Fr,» acts by multiplication by (—1)"xg""« /2 on the above space of homomor-
phisms.

To finish the proof of Theorem 6.4.1, we need only calculate ey, fy, . Unwinding

the definitions of indexing sets given in Sect. 6.3, we have, for0 <t < d’,

2<i<n,i=1 (mod m;)
S = G, 1,0 €ZP s 0 <l <hy —2if [ily # 1
1<l <h —2if[ily, =1
) 2<i<n,i=1 (mod m;)
ST =G LD €Z 10 < hyyy = 2if [l # 1
1<l < gy = 2if [ilyy = 1

’

Therefore, we have

¢ = (l - 1)(h, —hs)  if0<t<d —1,

m;
n n
ew = (== =1)tha =D = (o~ 1).
mg lem(mg, no)
For0 <t <d — 1, we have
) 2<i<n,i=1 (mod m;),i #1 (mod m;4+1)
=) e 2 0 <1 <hgp—2if[ily #1
1<l <hpr —2if[i]y, =1

so that

n n n n
=(—— hiy1 —1) — - .o
Ji (mt mz+1)( a ) (lcm(mz,no) lcm(mt+1,no))

6.5 The nonvanishing cohomological degree

In this section, we use the results of the preceding sections to finish the proof of
Theorem 6.1.1. Observe that from Theorem 6.4.1 together with Corollary 5.2.2, we
have the following:

Corollary 6.5.1 Let  be an irreducible constituent of H! (z}, @Z)for some r. Then
HomG},(qu) (n, Hci (X,i, @5)) =0 foralli #r.
In particular, for any x : ’I['}ll Fy)) — @Z , there exists a positive integer s, such that

irreducible  ifi = sy,

HZ(X;I,,@D[X] = !O ifi #s
5



50 Page 38of54 C. Chan, A. B. lvanov

Proof This is the same as the proof of [5, Corollary 5.1.3]. The irreducible (G,]I Fy)-
G}, (Fy)

/ /
TI(F,) (x") for some x’. Hence

representation 7 C H/ (X L @g) is a summand of Ind

Gy, , 17
Homg (IndT}f(F:) O He (X3 Q) ) 0.

Theorem 6.4.1 implies that r = r,/ and that there are no G}l (IF4)-equivariant homo-
morphisms from 7 to Hci (X}, Q) fori # ry. This proves the first assertion.

To see the second assertion, first recall from Corollary 5.2.2 that H} (X 1 @g)[ x1
is (up to sign) an irreducible G}, (IFy)-representation. Therefore, we may apply the
above argument to H} (xh @e)[X] and we see that if HC*(X}l, @5)[)(] is a summand

G, Fq) .,
of IndT}l(Fq) (x”), then

ol = irreducible  ifi =r,/,
H (Xh, Qz)[X] = 0 otherwise

Since the number r,, only depends on x, we final assertion of the corollary holds
taking s, =r,/. O

We see now that the upshot of Theorem 6.4.1 is that we already know that
Hci (X 1,@4)[)(] is concentrated in a single degree s,. However, it would be much
more satisfying—for many reasons, computational, conceptual, idealogical—if we
could pinpoint this nonvanishing cohomological degree. Taking a hint from the proof
of Corollary 6.5.1, one strategy to prove that s, = r, is to prove that H X (XE, Qpx]
Gy, (Fy)

is a summand of IndT 1(F,)

(x). This is our next result.

Theorem 6.5.2 For any x : T}l Fy) — @ZX,

G}, (Fy) : a
Homg i ) <IndT,{,(JFZ) (x), H (Z}, QK)[X]) # 0.

In particular, s, = ry.

The proof of Theorem 6.5.2 is essentially the same proof as [5, Theorem 6.2.4]. By
Frobenius reciprocity, it is enough to show

Homoy e, (1. He (X4, 0)161) #0. 6.6)
We will sometimes write T} = ’]I‘}l’n’q and G} = G}l’n’q, X} = X}l’n’q, gy, and

sy = sy'! toemphasize the dependence onn, g. Itis clear that once (6.6) is established,
then by Theorem 6.4.1, it follows that s, = r,. We first establish two lemmas. Just

for these two lemmas, we write Hci (X) to mean Hé (X, @5) for notational brevity.
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Lemma 6.5.3 For any ¢ € ]qu,, with trivial Gal(IFyn /F,)-stabilizer and any g €
T (F,),
Te (@ 1 ) B (X])IX]) = (<D x (@),

Proof Recall that the action of (¢, 1, 1) € I'y, is given by conjugation. Observe that if
X € (X,ll)(g’l*l), then x = g5(v1, 0, ..., 0). Furthermore, this forces v; € W}I(Fq»z).
Therefore (X }1,)(5 4D = T}l (Fy). By the Deligne-Lusztig fixed point formula,

1

<(§ g D" H (Xh)[X]) m

> a0 (@ g 0% H (X))

1€T) (Fy)
:+ 3 ox)” 1Tr((l g )% HX((X) )‘““))
#,(Fq) 1€T) (Fy)
1
= x T (1, g, 0% H (TH(F,))
#T) (B, )IGTZ(%F(]) ( h\"a )
1
= D oo™ Y X @x®) = x(@.
R4 e @y X' ThF)—>TQ
The conclusion of the lemma now follows from Corollary 6.5.1. O

Lemma 6.5.4 Let py be a prime dividing n. For any { € ]quo \qu and any g €
Th(IFq))

1/ pg.qP0

n.q P 1 n/po qP0 .
DT (@ 1@ B (X )ixd) = D% T (100 B (XD )1

Proof Recall that the action of (¢, 1, 1) € I'y, is given by conjugation. Observe that if
x € (XHELD then x = gp(vi, ..., vy) where v; = 0 forall i # 1 modulo po. The
map

. (vl @10 1
f' (Xh‘n,q) - Xh ,n/po,qPo

n/po,qro (v1
9

n.q
8p (v1,v2, ..., ) > 8p Upo+15 V2po+15 « -+ 5 vn—po-i-l)

defines an isomorphism equivariant under the action of Th " q(IFq) X ’]I‘}l) . q(Fq) =

Tl hon) po.q P (Fy) x Tl hon) po.q P (Fy). (Note that the determinant condition on the image

can be seen by observing that the rows and columns of x := gZ’q (v1,...,vy) can be
rearranged so that the matrix becomes block-diagonal of the form
diag(f(x), o L(f(x)), ..., olltPo=Dln(£(x))). Hence the determinant of x is fixed by

o if and only if the determmant of f(x) is fixed by o70.)
By the Deligne—Lusztig fixed-point formula,

T ((6800% H (L)) = Te (0% B2 (Kh) )
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so that

T (g 0 B (XL, ) = o 3 x0T (g0 HE (X, )

- 1
#T,(Eg) 1€T}(Fy)
1 _ 1,1
= o X0 VT (1 g 0% B (X)) 10))
W47 yeT) (@)
1 —1 ——
- e Z X () Tr((l,g,t),HC(Xh’n/pO’qpo))
teT} (F,)

="Tr (1, g % HE(X) o gr0)X).
The conclusion of the lemma now holds by Corollary 6.5.1. O

Lemma 6.5.5 Let y: "JI‘}’ Fy) — @; Assume that we are in one of the following
cases:

(1) n > 1isodd and pg is a prime divisor of n.
(2) n > 1isevenand pg = 2.

Fixa¢ € ]F;po such that (¢) = IF;,,O and consider the extension of x defined by

x(8) if q is even,

n/po.aP0 i

X xTh(E) — Q. (¢ g) " i
g0 X trhq ¢ (=15 "+ ) - x(g) ifq isodd.

Then
Y. X@ b
xEF;pO ~Fy
Proof This is the same proof as [5, Lemma 6.2.6]. O

Proof of Theorem 6.5.2 The proof is exactly as in [5, Theorem 6.2.4]. We give a sketch
here. Since X}Ll’q = ’]1‘}[ (F,) and hence for any y : ’JI‘}l Fy) — @Z, we have

lg
Sx

H* (X) 1 )x] = HY (T} (Fy))[x] = x.

so Eq. (6.6) holds for n = 1 and q arbitrary. We induct on the number of prime divisors
of n: assume that for a fixed integer/ > 0, Eq. (6.6) holds for any ]_[f: | pi and arbitrary
q, where the p; are (possibly non-distinct) primes. We will show that Eq. (6.6) holds
for any Hf:o p; and arbitrary g. If n is even, let py = 2; otherwise, po can be taken
to be anything. Let X be as in Lemma 6.5.5. Then
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~ _ sl
3 o7 T (0 L HY (X, o) X))
. Q)€F g xT} (Fq)

n.q
1 ‘ o 1
= #(F; x T} () - dim Homp 1 (X, HoX (thn’q)[x])
~ _ n.q , n/pg.gP0 §1/poa”0
Y R DT T (L B (X0 ar0) X))
(x,g)eF;po xT} (Fq)

X X
xe]quO ~Fg

By the inductive hypothesis together with Lemma 6.5.5, the second summand is a
nonzero number, and hence necessarily either the left-hand side is positive or the first
summand is positive. In either case, Eq. (6.6) must hold. O

For the reader’s benefit, we summarize the discussion of this section to prove
Theorem 6.1.1.

Proof of Theorem 6.1.1 By Corollary 5.2.2, we know that H*(X}, Q,)[x] is (up to
sign) an irreducible G ,ll (IF4)-representation. By Theorem 6.4.1, for any character x’,

GI(F ) , . 1 = .
HomGL(Fq) (Ind'ﬂ‘f(]p:) Vo2 Hcl (th QE)) #0 — L=Ty.

As explained in Corollary 6.5.1, this implies that if H*(X ' Qpx]is a summand of

Gl(F
Ind 1 Ea)

/! /!
Tl ) (x”) for some x’, then

H(X}. Q)Ix1#0 <<= i=ry=s,.
By Theorem 6.5.2, we see that in fact we can take x’' = x, and therefore the nonvan-
ishing cohomological degree of H (X}, Qp)[x]isin fact i = ry . The final assertion

about the action of Fry» on HZX (X}]l, @l)[e] = (=D)'xH} (xt @l)[e] now follows
from Theorem 6.4.1. O

6.6 Dimension formula

We use Theorem 6.1.1 to give an explicit dimension formula for the G,11(1Fq)-
representation H (X)L, Qpxl.

Corollary 6.6.1 If x : ']I‘}l (Fy) = W}, Fyn) — @Z is any character, then

dim H (X}, Qo)[x] = g 00D /2,
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In particular, if x has trivial Gal(L /k)-stabilizer, then

- d-1
log, (dim H” (X}, Q)x1) = 5 (n(n=D=(ha=D='=D= T - (hi=hes)).

t=1

Proof By applying [1, Lemma 2.12] to calculate the character of HCrX (X L @5)[ x] at
the identity, we have

. = (=D
dim H" (X3, Q) x] = ———— Y x()-#S1,,
A-#T)(F,)
teT) [Fy)

where §1; = {x € X}l(Fq) : 0(Fryn(x)) = x - t} and A is the scalar by which Fryn
acts on Hcrx (X},, @@)[X]. Suppose that x € S ;. Then by the same argument as [9,
Lemma 9.3], det(bo (gp(x))) = ¢t - det(b) det(gp(x)), which then forces + = 1. By
construction, S1,1 = G}q (IFy), so therefore

— #GL(F,) 2

dim Hr;( Xl , — h\"4q — (n —n)(h—l)—an/Z,
c ( h QK)[X] anx/z #’]T}ll(]Fq)

where we also use the fact that A = (—1)"x¢""x/2 from Theorem 6.1.1. The assertion

in the case that x has trivial Gal(L /k)-stabilizer follows from Corollary 6.1.2. O

7 Conjectures
7.1 Concentration in a single degree

Recall that from Corollary 5.2.2, we know that if 6: T, ([F,) = W;l‘ Fgn) —
@Z is a character with trivial Gal(Fyn /F nor )-stabilizer, then the alternating sum
H}(X), DL;:)GI , @Z)[G] is (up to sign) an irreducible ]L;lr) (Fq)G}l (IF,)-representation.
We conjecture that in fact these cohomology groups should be concentrated in a single
degree.

Conjecture 7.1.1 Let r | n’ and let 0: T)(Fy) = W}f Fgn) — @Z be a character
with trivial Gal(IF4n /I ynor)-stabilizer. Then there exists an integer ig » such that

HI(XyNLYGL Q)01 £0 =  i=ig,.

In this paper, we proved this conjecture in the case r = n’” and in fact pinpointed the
nonvanishing cohomological degree ig , (Theorem 6.1.1). We expect that a similar
formula for ig , is obtainable, where the methods in this paper can be used to reduce
the determination of ig , to a “depth-zero” setting. The hypotheses of Conjecture 7.1.1
should be equivalent to saying that the consequent depth-zero input comes from the 6y-
isotypic part of the cohomology of a classical Deligne—Lusztig variety (of dimension
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r — 1) for the twisted Levi L, in Gy, where 6 is a character of T;(IF;) = qu,. in
general position.

7.2 Relation to loop Deligne-Lusztig varieties

The varieties X, are closely related to a conjectural construction of Deligne—Lusztig
varieties for p-adic groups initiated by Lusztig [15]. We call these sets loop Deligne—
Lusztig varieties, although the algebro-geometric structure is still unknown in general.

In [9], we studied this question for a certain class of these sets attached to inner
forms of GL,,. We prove (see also [8, Proposition 2.6]) that the fpqc-sheafification X
of the presheaf on category Perqu of perfect IF;-schemes

X: R {xeLGR) :x 'F(x) e LUR)}/LWUNF~'U)

is representable by a perfect Fq-scheme and that X is the perfection of

|_| g - lim X.
%
8€G()/Gro(O)  h

We see that an intermediate step to understanding the cohomology of loop Deligne—
Lusztig is to calculate the cohomology of Xj,.

However, for various reasons, it is often easier to calculate the cohomology of the
Drinfeld stratification. For example, in [8], to prove cuspidality of H, (X, @5)[9] for
a broad class of characters 0: T (k) — @gx , we calculate the formal degree of this

representation, which we achieve by calculating the dimension of H (X}(l”/), @0[9]
from the Frobenius eigenvalues (see Corollary 6.6.1). In this setting, we can prove
a comparison formula between the cohomology of X ;(l”/) and the cohomology of X}
(see Section 7.2.1.2).

We conjecture the following comparison theorem between the cohomology of X,
and its Drinfeld stratification. In Sect. 7.2.1, we present evidence supporting the truth
of this conjecture.

Conjecture 7.2.1 Letr | n' andlet0: Ty, Fy = W; (Fgn) — @; be a character with
trivial Gal(L /k)-stabilizer. Let x := 0|W;l Fn) and assume that the stabilizer of x in
q

Gal(L /k) is equal to the unique index-nor subgroup. Then we have an isomorphism
of virtual Gy (F)-representations

HE (X5, Q0] = HX (X, Q,)16].
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Combining Conjectures 7.1.1 and 7.2.1 with Corollary 5.2.2, the above conjecture
asserts that as elements of the Grothendieck group of G (IF),

HX(Xn, Q6] = (—1)or HE (X7, Q,)16]

ior 1. 1Gn(Fy) io.r Nl T
= (=1 Indﬂu;ﬁ”(;q)GiGFq) (Hc" (Xh mL,h’ Gy, @z)[@]).

7.2.1 Evidence

At present, we can prove Conjecture 7.2.1 in some special cases. We discuss these
various cases, their context, and the ideas involved in the proof.
7.2.1.1. The most degenerate setting of Conjecture 7.2.1 is when G is a division

algebraover k. Thenn’ = 1 and so the closed Drinfeld stratum X }(l"/) =X ;ll) is the only

Drinfeld stratum. Additionally, we have that X }(l"/) is adisjoint union of #Gy, (I, ) copies
of X }11 = X ﬂG}l. In[5], all the technical calculations happen at the level of X }l (though
in different notation in op. cit.), and using the new methgds developed there, one knows
nearly everything about the representations H/ (X 1 Qp)[x] for arbitrary characters
X: ’JI‘}[ (Fy) — @Z However, the expected generalization of these techniques extend
not to H! (Xp, Q,)[x], but to HL‘:(X}(,”, Qy)[x1—hence one is really forced to work
on the stratum in order to approach X, (at least with the current state of technology).
7.2.1.2. Now let G be any inner form of GL,, (as it has been this entire paper, outside
Sect. 3). We are close to establishing Conjecture 7.2.1 when x = 6 |Wfl: (F ) has
q

trivial Gal(L /k)-stabilizer. In this case, Conjecture 7.2.1 says that H*(Xp, @@)[9] =
HX(X }(l"/) , @g )[0] as virtual Gy, (F, )-representations. In [8, Theorem 4.1], we prove this
isomorphism holds under the additional assumption that p > n. The idea here is to use
a highly nontrivial generalization of a method of Lusztig to calculate the inner product
(HC*(X Iy @L;)[@], H}(X }(l"/) , @5)[0]) in the space of conjugation-invariant functions on
Gr(Fy).

In “Appendix A”, we present a possible geometric approach to Conjecture 7.2.1
which has its roots in the GL; setting of the proof of [14, Theorem 3.5]. The idea
is to study the fibers of the natural projection” 7 : X;, — Xj,_1. We can show that
the behavior of 7~!(x) depends only on the location of x relative to the Drinfeld
stratification of Xj,: If r is the smallest divisor of n’ such that x € X,(Zr) (i.e. x is in the
rth Drinfeld stratum X}, , of X},), then there exists a morphism

7' x) > I_l Al

Wy~ (F nor)

which is a composition of isomorphisms and purely inseparable morphisms. Moreover,
the action of ker(V\VZ_l (Fygn) — WZ_I (Fgnor)) on 7~ (x) fixes the set of connected

2 When G = GL,, then this is literally what we do in “Appendix A”. When G is a nonsplit inner form
of GL,, in order to get a shape analogous to the split case, we work with an auxiliary scheme which is an
affine fibration over Xj,.
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components. The crucial point here is that the fibers of the natural map
Xh’r/ ker (WI],:71 (Fqn) —> Wzil (Fqn/(nor))) — Xh_l’r

are again isomorphic to Uwh— A""1 and therefore ker(WZ_l(Fqn) —
h

1
(F nor)
WZ_I (F jn/mor))) acts trivially on the cohomology of X,

— .~ =~ ker(Whil(]F 'l)—)Whil(]F n/(ngr)))
HY (X, Qg) = HY (Xpp, Q)< D7 Wgnltnon,

Using open/closed decompositions of X, via Drinfeld strata, we have that if 6 is trivial
on ker(WZ_l (Fyn) — WZ_I(]Fqn/(nor))), then

HX(Xn, Q0] = HX (X", Q6]

as virtual Gy, (IF, )-representations. It seems reasonable to guess that if one can general-
ize “Appendix A” to study the fibers of X;, — X1, then one could establish Conjecture
7.2.1 using a similar reasoning as above.

Acknowledgements We would like to thank Masao Oi and Michael Rapoport for enlightening conversa-
tions. Additionally we’d like to thank the anonymous referees for their comments and advice which have
greatly improved the exposition of this paper. The first author was partially supported by the DFG via the
Leibniz Prize of Peter Scholze and an NSF Postdoctoral Research Fellowship, Award No. 1802905. The
second author was supported by the DFG via the Leibniz Preis of Peter Scholze.

Appendix A. The geometry of the fibers of projection maps

In this section, we study the fibers of the projection maps X, — Xj_1. This is
a technical computation which we perform by first using the isomorphism X; =
X (b, box) for aparticular choice of b which we call the special representative. This
is the first time in this paper that we see the convenience of having the alternative
presentations of X discussed in Sects. 3.2 and 4.5.

A.1The special representative

We first recall the content of Sect. 4.5 in the context of a particular representative of
the o -conjugacy class corresponding to the fixed integer «.

Definition A.1.1 The special representative b, attached to « is the block-diagonal

K
matrix of size n x n with (ng x ng)-blocks of the form (1 0 z(z)r) .
no—1

By [9, Lemma 5.6], there exists a gg € GX,O(O,;) such that b, = gobcoxo(go)’l.

Observe further that since bp, bcox are o-fixed and b, = b = arkn,

" (g0) = go.
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Therefore by, satisfies the conditions of Lemma 4.5.3. Recall from Sect. 4.5 that we
have

X Z X (bps beoy) = (v € Z 1 0(det gy, (v) = (=1)" " det g, (v) € W),

(A1)
where
B = (W), @ (VW)@ 1)@ yyen
8oy (@) = (vi [v2|vs |-+ |wn)
where v; = g L= Dko/mol (bspa)i_l(v) forl<i<n-—1.
In this section, we will work with
Xy ={ve o(detgp,w) = detgp,(v) € Wy} (A.2)

where Zf is now the subquotient of W;?frl 1

L = (Wy © (VW)@ )

and gp, (v) is defined as before. Note that (A.1) differs from (A.2) in that the former
takes place in G 0/ Gy, 1)+ and the latter takes place in G o/Gyx ». A straightfor-
ward computation shows that the defining equation of X;r does not depend on the
quotient .i”}f /L = A"

Observe that det gbsp(gv) = Nm(¢) - det 8bs, (¢v) where Nm(¢) = ¢ - o(Z) -

02(¢)---o""1(¢). Picking any ¢ such that o (Nm(¢)) = (—1)""! Nm(¢) allows us
to undo the (—1)"~! factor in the defining equation in (A.1). In particular, this means

HI(X; T, Q) = HP?" (X, Qp), foralli > 0.

For each divisor r | n/, we define the rth Drinfeld stratum X;{r of X;{ to be the
preimage of X , under the natural surjection X ;:’ — Xp.

A.2 Fibers ofX;:' - X
N h—1,r

For notational convenience, we write b = bg,. We may identify .i”th = AMh=D

with coordinates x = {x; j}1<i<n,0<j<n—1 Which we typically write as x =
(X, X1 h—1 X2 h—1s - > Xn.h—1) € thl x A"; here, an element v = (v, ..., v,) €
$h+ is such that v; = [xj0,%i1,...,%Xi,] if i = 1 (mod ng) and v; =

[0, Xi0s Xi1yeees xi,n] if i §é 1 (mod n()).
In this section, fix a divisor r | n’. From the definitions, X;[r can be viewed as the
subvariety of X 2’_1 » < A" cut out by the equation

0= Py(x)? — Py(x),
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where Py is the coefficient of @”~! in the expression det g,rfd(v). Let ¢ denote the
polynomial consisting of the terms of Py(x) which only depend on X. An explicit
calculation shows that there exists a polynomial P in x such that

no—1 )
Po() = (@ + ) P (A3)

i=0

Therefore X ,';r is the subvariety of X,il’r x A" cut out by

P ()" = Pi(x) = ¢(R) — c(®).

One can calculate P; explicitly (see [9, Proposition 7.5]):

Lemma A.2.1 Explicitly, the polynomial P is

G=Dmg
— e
Pi(x) = Z M Xy poG=1),h—1°
I<i,j<n’
where m := (mj;); ; is the adjoint matrix of g,(x) and x denotes the image of x in

V = %/ %" Explicitly, m-g5(x) = det g5(%) and the (j, i)th entry of m is (—1)I ]
times the determinant of the (n' — 1) x (n’ — 1) matrix obtained from gp(X) by deleting
the ith row and jth column.

The main result of this section is:

Proposition A.2.2 There exists an X ;:'_1 ,-morphism

.yt n +
Mr.Xh_erA = X,

x A"
(the left A" in terms of the coordinates {x; ,—1};_, and the right A" in terms of new

coordinates {z;}'_, ) satisfying the following properties:

i=1

(i) M, is a composition of X;{_ |.-isomorphisms and purely inseparable Xh+—1,r_
morphisms.
(i) M, (X,tr) is the closed subscheme defined by the equation

nor ~ ~
A7 -z =e®) - (D)1,

where c is as in (A.3).
(iii) M, is WI—L(F n)-equivariant after equipping the left X;" . x A" with the
h q h—1,r
V/VZ*1 (Fyn)-action

h—1

l+o@" "a: xip—1 = Xip—1+xi0a, foralll<i<n,
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and the right X,T_Lr x A" with the WZ_I (Fyn)-action

21+ Trpu/F e (@) ifi =1,
l+o" a:zi—> {z0+a ifr #n andi =2,

Z; otherwise.

In the rest of this section we prove Proposition A.2.2. To simplify the notation we
will first establish the proposition in the case k = 0 (i.e. G = GL,), and at the end
generalize it to all . The first part of the proof of Proposition A.2.2 is given by the
lemma below. Before stating it, we establish some notation. For an ordered basis % of
V and v € V, let vgz denote the coordinate vector of v in the basis . For two ordered
bases #, ¢ = {c;}_, of V, let My « denote the base change matrix between them,
that is, the ith column vector of Mg « is ¢; . Itis clear that

~1
* My =My
o foranyv € V, Mg wvy = vy,
e for a third ordered basis & of V, one has Mgz oMy 9 = Mg 9.

For a linear map f: V — V, let Mgy «(f) denote the matrix representation of f;
thatis, Mg «(f) - v¢ = f(v). In V we have the two ordered bases:

&
B, = {o ’_l(x)},’-’zl, attached to the given x € X

the standard basis of V, arising from the basis{e;} of the lattice %,

We identify V with FZ via the standard basis & and write v = vg forallv € V.

LemmaA.2.3 Assume k = 0. There exists an X;Ll -isomorphism X;Ll . X A" —
X; L X A" given by a linear change of variables x; j—1 ~> x,f n_1» Such that Py in
the new coordinates x. , _, takes the form

s lj+l
1
) /,.q
Pr=xjp +x 1+ -+ 1h1+§: 2: x3+2 =1
J=02xr=i;+1

and the action of 1 + w"~'a e W]j’fl(IFqn) on the coordinates xl.”h_l is given by

.—k\

=
_|_
Q
s
[

Xipoy > (A4)

=
=
|
A%
[\

Proof of Lemma A.2.3 We have to find a morphism C := (c;;): Xh .r — GL(V) =
GLn,Fq (this identification uses the standard basis & of V') such that the corresponding
linear change of coordinates

Xih—1 = Ci1X] g FCioXs g+ CinXy g, foralll <i<n.  (A5)
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brings Pj to the requested form. Moreover, it suffices to do this fiber-wise by first
determining C(x) for any point x € X ;{_Lr and then seeing that X — C(X) is in fact
an algebraic morphism.

Fix x € X}T—],r with image x € X fL, and write C instead of C(X) to simplify
notation. Let C; denote the ith column of C. Our coordinate change replaces P; by
the polynomial (after dividing by the irrelevant non-zero constant det g5 (x) € IF;)

/ 1,92 7.g"! —
Py =x),_(m-Cy) +x1’f2,1(mz -0p(C1)) +x1’f2,1(m3 P (C)) + - +x1’f§1,1 (my - o~ (C1))
, 2 n—1 _
x5 (my - Co) 4+ x50 (ma - 0p(C2)) + X539 (m3 - 07(C2) + -+ + 339 (myy - 071 (C2))
+---+

102 n—1 _
X0 g (- Co) +x0% (ma - 0, (C)) + X% (3 - 0 (Co)) + -+ + x4 (my - 0 1(C))

(A.6)

in the indeterminates {x; n_1)i—,- Here, we write m; to mean the ith row of the matrix
m (adjoint to g, (x)) from Lemma A.2.1. For z € V, we put

mxz = Z(mi (o) 1 (2))e;. (A7)

i=1

The intermediate goal is to describe the map m*: V — V in terms of a coordinate
matrix. Of course, m* is not linear, but its composition with the projection on the ith
component (corresponding to the ith standard basis vector) is o/ ~!-linear. Thus we
instead will describe the linear map (mx)": V — V, which is the composition of mx*
and the map Y ; vie; = Y_; 0~V (v;)e;. This is done by the following lemma.

LemmaA.2.4 Assume k = 0. We have

1 0 0 0 0
1 0 0 . 0 o '(yn)
, o)
Mg p ((mx)) = . )
1 0 0 . *
1 0 0’7(”72)()7}1—2)
L o= D) * SR

where the y;’s are defined by the equation

n—1

(bo)"(0) = v+ Y _ yi(bo) (v).

i=1
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More precisely, if u; j denotes the (i, j)th entry Ofdet(gb()z))ilMg’“@x ((mx)"), then
for1 <i,j < nwe have

1 ifj=1
- _]o ifi+j<n+landj>1
Hol = o= ) fitj=n+2

piot,j + 0o Vi) D (i) ifi+j >n+3andi > 3.

In particular, ifi + j > n+3and yi_1 =0, then p; j = pi—1,j.

Proofof lemmaA.2.4 Let z = > '_, z;(bo)'~1(x) be a generic element of V, writ-
ten in % -coordinates, that is zg, is the n-tuple (z;)!_,. The (i, j)th entry of
Mg 5 ((mx)") is equal to o=~ applied to the coefficient of oi’l(zj-) in the ith
entry of (bo)'~1(z) , (= the ith entry of m x z).

The coordinate matrix of the o -linear operator bo : V — V in the basis %,

o 0 --- 0 1
1 0 -..0 Vi
Mg, z,(bo)=10 1 " 1 'y
Do 0
0 - 0 1 y,
That is, forany z € V,
bo(2)p, = My, 5,.(bo)-0(z4,), (A.8)

where the last o is applied entry-wise. Explicitly, the first entry of bo (z) . is 0 (z4),
and for 2 < i < n the ith entry of bo (z) g, is 0(zi—1) + yi—10(z,). This allows to
iteratively compute bo (z) for all i, which we do to finish the proof.
First, we see that z; can occur in the nth (i.e. last) entry of (bo)*~!(2) 2, only if
A > n; hence its contribution to the ith entry of (bo)'(2) #, fori < n is simply
o~1(z). This shows that the first column of Mg gz, ((m=)") consists of 1’s. Assume
now j > 2. Then there is a smallest (if any) i¢ , such that z; occurs in the igth entry of
(bo)io—! (z) 2, . Note that as j > 2, one has ip > 2. Then z; must have been occurred
in the nth entry of (ba)i°_2(z)<%. As z;j occurs in 7, in exactly the jth entry, and it
needs (n — j) times to apply bo to get it to the nth entry, we must have ig —2 > n — j.
This shows that the (i, j)th entry of Mg g ((m%)')is 0, unless i > n +2 — j. The
same consideration shows thatifi = n+42 — j, then il (z;) has the coefficient y; 1
in aé_l (2) , - This gives the entries of M g ((m=)’) on the diagonal i =n +2— j.
It remains to compute the entries below it, so assume i > n + 2 — j. Again, by
the characterization of the entries of Mg g ((m*)’) in the beginning of the proof
and by the explicit description of how o}, acts (in the %, -coordinates), it is clear
that the (i, j)th entry of Mg g ((mx)’) is just the sum of the (i — 1, j)th entry and
o~ D (y;_)e™ =D ((n, j — 1)th entry). This finishes the proof of Lemma A.2.4.
|
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Now we continue the proof of Lemma A.2.3. Let 4" denote the ordered basis of V
consisting of columns Cy, Ca, ..., C, of C. We have M»_ 4 = (det gb(x))’lm -C.
In particular, to give the invertible matrix C itis equivalent to give the invertible matrix
Mg, . But the ith column of Mg _< is the coordinate vector of C; in the basis %,
i.e., what we denoted C; g . We now show that one can find an invertible M»_«,
such that for its columns C; g _we have

n
m*Cyp, =) e

A=1
Lj
mx*xCsio_jp = ) e fors > j >0,
T =i+l
mxCj g =0 if j/>s4+2. (A.9)

Taking into account Eq. (A.6) and the definition of m* in (A.7), this (plus the fact that
X + Mg 4 will in fact an algebraic morphism) finishes the proof of Lemma A.2.3,
except for the claim regarding the W,:'_l (IF4n)-action.

To find M g, « satisfying (A.9), first observe that by Lemma A.2.4, there is some
invertible matrix S depending on X € X;—l,r (in fact, only on its image x € X f‘),
such that Mg g ((mx)') - S has the following form: its first column consists of 1’s; its
ith column is 0, unless i = n + 1 —i; for some s > j > 0; fors > j > 0, the Ath
entry of its (n + 1 —ij)th columnis 1ifi; +1 < A <1i;41 (We puti;z41 := n here)
and zero otherwise. (To show this, use the general shape of Mg ((mx)") provided
by Lemma A.2.4, and then consecutively apply row operations to it and use the last
statement of Lemma A.2.4). Moreover, it is also clear from Lemma A.2.4 that S will
be upper triangular with the upper left entry = 1.

Secondly, let T be a matrix such that: the first row has 1 in the first position and zeros
otherwise; all except for the first entry of the first column are 0; for s > j > 0, the
(n+1—i;)throw has 1 in the (s +2 — j)th position and 0’s otherwise; the remaining
rows can be chosen arbitrarily. Obviously, 7' can be chosen to be a permutation matrix
with entries only O or 1, and in particular invertible and independent of x. Finally, put
Mgy ¢ =S - T.Explicitly the columns of the matrix

Mg . (m%)) - Mg, ¢ = (Mg 5, ((m%)) - S) - T (A.10)

are as follows: the first column consist of 1’s; for s > j > 0, the the Ath entry of
the (s +2 — j)th columnis 1ifi; +1 < A < ij41, and zero otherwise; all other
columns consist of 0’s. On the other side, the jth column of of M gz ((m%)")-M g, &
is precisely m * C; 5 (up to the unessential o~ *-twist in each entry). This justifies
(A9).

The action of 1+ "a € W,}l’_l (IFgn) on the coordinates x; j, is givenby (x; 5)!_; >
(xi,n + ax;j 0)?_,. We determine the action 1 + @"a in the coordinates xlf’ »- Indeed,
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let C~! = (d; j)1<i,j<n- Then 1 + " a acts on x; , by

n n n
! !
Xip = Zdi,jxj,h > Zdi,j(xjnh +axjo) =x;,+a Zdi,jxj,()~
j=1 j=1 j=1

Organizing the x; , for 1 <i < n in one (column) vector, we can rewrite this as
h . 1 / —1
l+@a: (x] )iz = (x )i +aC™" - x

We determine C~!-x. As My, ¢ = det(g,(x))"'mC = gp(x) "1 C (asdet(gy(x)) " 'm
= gb(x)’l), we have C~! = M% %gb(x)’l.Butx is the first column of g, (x), thus

Chx =My Lep(0) - x =My ,-(1,0,...,0)T,

so C~! . x is the first column of M(%l v = (ST)™' = T~'s~!. But S is upper
triangular with upper left entry = 1, so the first column of Mggl’ o 1s the first column

of T—!, whichis (1,0, ..., 0)T. This finishes the proof of the lemma. O
The second part of the proof is given by the following lemma.

LemmaA.2.5 Assume k = 0. There exists a X;{_Lr—morphism X;_l’r x A" —
XZ' L X A" such that if {z;} denotes the coordinates on A" on the target A", then
the image of Xh . in le;]’r x A" and the action of WZ_I(]Fqn) on z; are given
by Proposition A2. 2(ii),(iii). Moreover, such a morphism is given by the composi-
tion of the change-of-variables xlf’ » and purely inseparable morphisms of the form

1,7 . .o
xl.”h_l — xh’il for appropriate i, j.

Proof If r = n, this i 1s hterally Lemma A.2.3. Assume r < n. First, fors > j > 0,

replace x/ by x . Then, by applying a series of iterated changes of variables

s+2—j s+2 J°

of the form x. =: x/ + x dq for appropriate 2 < ¢,d < s + 2 and A (essentially
following the Euclidean algorithm to find the gcd of the integers (i;+1 —i;) (this gcd
is equal to 7)), we transform P; from Lemma A.2.3 to the form

n—1 ) r—1
_ rq' 1q'
=D + )
i=0 i=0

As these operations does not involve x| ,, the formulas (A.4) remain true. Now make
. . By i .
the change of variables glven by z1 = xé T Z’_O x;(fl and 77 := xi,h—l' In this

coordinates, P = Zr é z; and the action is as claimed. O

We are now ready to complete the proof of Proposition A.2.2.
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Proof of Proposition A.2.2 Combining Lemmas A.2.3 and A.2.5 we obtain Proposition
A.2.2inthe case k = 0. Now let k be arbitrary. Itis clear that the proof of Lemma A.2.3
can be applied to this more general situation. One then obtains the same statement,
with the only difference being that now our change of variables does not affect the
variables x; ,—1 for i # 1 mod ng (these are exactly the variables which do not
show up in Pp). That is, the right-hand side X;{_l’r x A" will have the coordinates

{x{hfl:izl mod ng, 1 <i <n}U{x;p—1:i #1 modng,1 <i < n}and the

polynomial defining X;r as a relative X ;{_1 . hypersurface in X ;{_1 , < A is

s dj+l

/
. 1,4"0 1,"0 =D .q"0*
Pr=xjp g +x+ X, + Z Z Xst2—jh—1°
=0 2=i;+1
and the WZ_I (Fyn)-action is given by
X, +a ifi =1
1+ ta:x], | — X ifi=1 mod npandi > 1

Xi h—1 + X 0a ifi #1 mod ny.

We now apply the change of variables replacing x; — by x{)hfl = Xp_1— x,‘,ox{ el
for all i £ 1 mod ng. This exactly gives us Lemma A.2.3 for arbitrary « (the only
difference being the ¢"°-powers occurring in P;). Now Lemma A.2.5 can be applied
as in the case « = 0, and this finishes the proof of Proposition A.2.2. O
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