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Abstract: Intrinsically disordered proteins (IDPs) are highly prevalent and play important roles in biology and human diseases. It 11 
is now also recognized that many IDPs remain dynamic even in specific complexes and functional assemblies. Computer simula- 12 
tions are essential for deriving a molecular description of the disordered protein ensembles and dynamic interactions for mecha- 13 
nistic understanding of IDPs in biology, diseases, and therapeutics. Here, we provide an in-depth review of recent advances in 14 
multi-scale simulation of disordered protein states, with a particular emphasis on the development and application of advanced 15 
sampling techniques for studying IDPs. These techniques are critical for adequate sampling of the broad manifold of functionally 16 
relevant conformational space of IDPs. Together with dramatically improved protein force fields, these advanced simulation ap- 17 
proaches have achieved substantial success and demonstrate significant promise towards quantitative and predictive modeling of 18 
IDPs and their dynamic interactions. We will also discuss important remaining challenges in atomistic simulation of larger systems 19 
and how various coarse-grained approaches may help to bridge the remaining gaps in the accessible time- and length-scales of 20 
IDP simulations. 21 
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 24 

1. Introduction 25 
Intrinsically disordered proteins (IDPs) or regions (IDRs), compared to well-structured proteins, do not have sta- 26 

ble tertiary structures under physiological conditions. Nevertheless, IDPs or IDRs can be found in nearly a third of 27 
proteins encoded in the human proteome [1], and they play key roles in a variety of biological processes that underlie 28 
vital cellular functions ranging from signaling, regulation to transport [2,3]. The inherent thermodynamic instability of 29 
an IDP’s conformation allows it to respond sensitively to numerous stimuli, including binding, changes in cellular en- 30 
vironments (e.g., pH), and post-translational modifications [4-8]. Such conformational plasticity arguably enables IDPs 31 
to interact with multiple signaling pathways and serve as scaffolds to form multi-protein complexes [9]. Importantly, 32 
IDPs and IDRs house around 25% of disease-associated missense mutations [10]. They have been considered promising 33 
therapeutic targets for treating various diseases (such as chronic diseases) [11-13]. While many IDPs have been shown 34 
to undergo binding-induced folding transitions upon specific binding [3], many examples are also emerging to demon- 35 
strate that IDPs can remain unstructured even in specific complexes and functional assemblies [14-20]. Such a dynamic 36 
mode of specific protein interactions seems much more prevalent than previously thought [21-23].  37 

Reliable description of the conformational ensembles of IDPs and IDRs have proven very challenging. A disor- 38 
dered state does not lend itself to traditional structural determination methods that are geared toward describing a 39 
coherent set of similar structures. Biophysical techniques such as NMR, SAXS and FRET can provide complementary 40 
information on various local and long-range structural organizations [7]. However, these ensemble-averaged measure- 41 
ments alone are not sufficient to unambiguously define the heterogeneous ensemble, due to the severely underdeter- 42 
mined nature of the structure calculation problem [8,24,25]. As a result, studies of IDPs have relied heavily in the tradi- 43 
tional structure-function paradigm, by solving the folded structure of the bound state, analyzing coupled binding and 44 
folding mechanisms, or identifying putative pre-existing functional structures in the unbound state [3]. However, the 45 
disordered ensemble itself is arguably the central conduit of cellular signaling. The functional mechanism of an IDP is 46 



Biomolecules 2021, 11, x FOR PEER REVIEW 2 of 23 
 

encoded in how the disordered ensemble as a whole responds to various stimuli, may it be cooperative binding-induced 47 
folding or redistribution of conformational sub-states in dynamic interactions. Multiple cellular signals can be naturally 48 
integrated through cooperative responses of the whole dynamic ensemble [26-28]. Therefore, there is a critical need for 49 
reliable characterization of disordered protein conformation ensembles, in both bound and unbound states, in order to 50 
establish the molecular basis of IDPs and IDRs in various physiological and pathophysiological processes. 51 
 Given the fundamental challenges of characterizing disordered protein states based on ensemble-averaged meas- 52 
urements alone, molecular modeling and simulations have a crucial and unique role to play in mechanistic studies of 53 
IDPs and IDRs [29-33]. This is reflected in continuously increasing numbers of research articles that contain keywords 54 
“intrinsically disordered” and “molecular dynamics” published in the last 10 years (Figure 1). A particularly attractive 55 
approach is to first generate the disordered ensemble using transferable, physics-based force fields without any exper- 56 
imental restraints and then use the later for independent validation [7]. Such de novo simulations of disordered protein 57 
ensembles require both high force field accuracy and adequate sampling of relevant conformational space, pushing the 58 
limit of these two central ingredients of molecular dynamics (MD) and Monte Carlo (MC) simulations. The challenges 59 
of simulating disordered proteins have driven significant interest in developing better protein force fields and advanced 60 
sampling methods (Figure 1). In particular, important advances have been made in the state-of-the-art atomistic force 61 
fields for describing the conformational equilibria of ordered and disordered proteins [13]. Enhanced sampling tech- 62 
niques have played crucial roles in both the development and application of atomistic force fields, by allowing one to 63 
cross energy barriers faster and accelerate the conformational sampling of IDPs [34-41]. Nonetheless, atomistic simula- 64 
tions still have limited capability for describing large systems such as biological condensates[42]. For this, the multi- 65 
scale approaches are necessary to bridge the gaps in experimental and computational time- and length-scales, including 66 
implicit solvent models, which removes the solvent degrees of freedom [8], and various coarse-grained models, which 67 
significantly reduce both proteins and solvent degrees of freedom [43].  68 

 69 
Figure 1. Number of articles identified with three different search keywords published from 2011 to 2021 based 70 
on a Web of Science core collection source (as of August 15, 2021). 71 

 In this review, we will start by highlighting the challenges of sampling IDP conformational ensembles and provide 72 
a summary on the state-of-the-art force fields available to describe the IDP conformations. It is noted that several excel- 73 
lent review papers have published recently that cover general theoretical and computational approaches for studying 74 
IDPs, in particular regarding protein-protein interactions and biological condensates [44-47]. This review will therefore 75 
focus on recent development of advanced sampling methods for simulating disordered conformational ensembles and 76 
dynamic interactions of IDPs. We will also discuss some of the key advances in multi-scale modeling of IDPs that greatly 77 
extend the accessible length- and time-scales of molecular simulations. Finally, we discuss future directions in develop- 78 
ing a robust computational framework for simulating IDP conformational equilibria and interactions. 79 
  80 
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2. Challenges of simulating IDP conformational equilibria 81 
 Compared to the globular proteins that have one or a few well-defined global energy minima, the energy land- 82 
scape of an IDP is more flat and generally includes many local energy minima separated by modest energy barriers [48]. 83 
IDPs and IDRs typically have fewer hydrophobic residues, but a larger number of polar or charged as well as disorder- 84 
promoting residues (such as glycine and proline) [44]. These sequence features hamper the formation of hydrophobic 85 
cores that drive protein folding and thus prevent the formation of stable tertiary structures. Instead, IDPs and IDRs 86 
favor forming an ensemble of unfolded or partially folded states. This presents a major challenge for simulation and 87 
depends critically on the ability of the force fields to accurately describe the energetics of relevant conformational states, 88 
especially for capturing both folded and unfolded states of an IDP. For example, one recent study tested atomistic sim- 89 
ulations of IDPs for eight force fields and found marked differences in the describing the conformational ensembles of 90 
IDPs, in particular the secondary structure content [49]. Similar observations have also been made in other benchmark 91 
studies, consistently showing that protein force fields previously optimized for folded proteins are not suitable for sim- 92 
ulating disordered protein states, largely due to over-stabilization of protein-protein interactions [50]. These benchmark 93 
studies also suggested that the key towards better protein force field was to rebalance protein-protein, protein-water, 94 
and water-water interactions. 95 
 Besides accurate force fields, reliable simulation of IDPs also hinges on sufficient sampling of many relevant con- 96 
formation states within a reasonable simulation time. Standard MD simulations are generally insufficient to generate 97 
representative conformational ensembles, even using the most accurate protein force fields coupled with advance of 98 
GPU computing or specialized hardware such as ANTON supercomputer [51]. For example, a recent reanalysis of 30- 99 
µs ANTON trajectory of 40-residue Aβ40 peptide in explicit solvent revealed very limited convergence even at the 100 
secondary structure level [13]. This can be attributed to the diverse and large accessible conformational space of an IDP 101 
and the potentially high free energy barriers separating various sub-states that require exponentially longer time to 102 
cross. Note that typical simulation times on conventional hardware (such as GPUs) are at least one-order of magnitude 103 
shorter. There is thus great danger in relying on standard MD to calculate disordered protein conformational ensembles 104 
at the atomistic level. There is critical need to develop and leverage so-called enhanced sampling techniques, which aim 105 
to generate statistically meaningful conformational ensembles with dramatically less computation.  106 
 Computational studies of IDP interaction and assembly are even more demanding. The conformational equilib- 107 
rium of an IDP can respond sensitively to specific and nonspecific binding, potentially shifting from a disordered to 108 
somewhat ordered state or fully folded state. In principle, simulations could provide the much-needed spatial and time 109 
resolutions to elucidate the kinetics and thermodynamics of coupled folding and binding processes and characterize 110 
the mechanistic features. However, the challenge is that this coupled process of folding and binding is a complex reac- 111 
tion involving the formation of many noncovalent interactions, which requires extremely long simulations generally 112 
beyond the current capabilities at the atomistic level. As such, coarse-grained models are generally required for com- 113 
putational studies of IDP interaction and assembly. 114 

3. The state-of-the-art protein force fields for describing IDP conformations 115 
 Empirical protein force fields are potential energy functions that typically include physics-motivated bonded and 116 
non-bonded terms carefully parameterized based on a wide range of theoretical and experimental data [52]. These force 117 
fields can in principle be transferable between folded proteins and IDPs. To achieve this, it is also critical to develop 118 
suitable water models and better describe the water-protein interactions [53,54]. Two recent review articles have already 119 
provided comprehensive descriptions on the latest development of better protein force fields [52,55]. We therefore 120 
briefly summarize the status of the state-of-the-art nonpolarizable and polarizable force fields for IDP dynamics and 121 
interactions. 122 

3.1. Nonpolarizable protein force fields 123 
 Many previous nonpolarizable force fields have significant shortcomings for describing the unfolded or disor- 124 
dered proteins. For example, they typically provide a poor description of the secondary structure content for IDPs and 125 
have a preference to give too compact conformations with respect to the experimentally measured dimension of IDPs 126 
[49,56]. These problems were likely attributed to the unbalanced parameterization of dihedral torsion space and de- 127 
scription of protein-protein and protein-water interactions [57]. As a result, most of improved force fields managed to 128 
give more accurate secondary structure propensities by adjusting dihedral parameters or adding grid-based energy 129 
correction map (CMAP) parameters [55]. The over-compactness of disordered proteins can be alleviated by modifying 130 
protein-water van der Waals interactions or combining with refined water models [53]. Representative state-of-the-art 131 
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force fields includes the latest CHARMM36m/TIP3P* [58], ff19SB/OPC [59]and a99SB-disp/TIP4P-D [51]. Many bench- 132 
mark studies have consistently demonstrated that these refined force fields do provide significant improvements in 133 
describing not only single folded and disordered proteins, but also the multiprotein systems that are either soluble or 134 
aggregate in the solution [56,60-63]. At the same time, these studies also identified significant remaining limitations in 135 
description of the noncovalent interactions in the multiprotein systems [61]. Recognizing limitations in the ability of 136 
a99SB-disp/TIP4P-D force field to accurately describe the protein-protein interactions, a new force field, DES-Amber, 137 
was recently developed to provide more accurate simulations of protein-protein complexes while maintaining reliable 138 
descriptions of both ordered and disordered single-chain proteins [62]. However, DES-Amber is still limited in repro- 139 
ducing the experimental protein-protein association free energies of some protein complexes, in particular for the sys- 140 
tems with highly polar interfaces [62]. In the latter case, it was found that the charged sidechains were buried at the 141 
protein-protein interface instead of being solvent-exposed. It was further suggested that nonpolarizable force fields 142 
were fundamentally limited in achieving a balanced description of charged groups that were solvent-exposed or buried 143 
at a protein-protein interface.   144 

3.2. Polarizable protein force fields 145 
 Polarizable force fields explicitly consider the electronic polarization using various empirical models to provide 146 
better description of charged and polar protein motifs in heterogeneous biomolecular environments [64]. Exciting pro- 147 
gresses have been made in the last few years and several polarizable force fields are now available for stable simulation 148 
of proteins in both aqueous and membrane environments [65,66]. Simulations using the latest polarizable force fields 149 
have also showed a high level of consistency with experimental observations, particularly the ion solvation and binding 150 
thermodynamics, permeation free energy of ions or small charged molecules into the cell membrane, and protein-ligand 151 
binding [64]. For example, the Drude-2013 polarizable force field, compared to CHARMM36 force field, is more accurate 152 
to describe folding cooperativity of (AAQAA)3 peptide, which can be attributed to enhanced backbone dipole moments 153 
in the helix state [67]. Additional studies are still needed to show the necessity of considering polarizable force fields in 154 
IDP simulations, where the significantly higher computational cost adds to the challenge of generating converged en- 155 
sembles [64]. Existing comparisons suggest that polarizable force fields, including AMOEBA and Drude models, still 156 
frequently have problems in reproducing the nature structures and folding of proteins [68-70]. For example, stronger 157 
protein-water interactions in polarizable force fields can destabilize the native protein structure, opposite to the obser- 158 
vations from nonpolarizable force fields where protein-water interactions have traditionally been underestimated [42]. 159 
Nonetheless, it can be anticipated that polarizable force fields will continue to improve and become increasingly im- 160 
portant for simulating IDP structure and interactions.  161 

4. Enhanced sampling methods for sampling IDP conformational ensembles 162 
 Enhanced sampling techniques generally accelerate the crossing of energy barriers to achieve better sampling 163 
efficiency, such as by introducing bias potentials, modifying the potential energy itself, and changing the effective tem- 164 
perature. These techniques have proven essential in atomistic simulations of IDPs [71,72], yielding levels of convergence 165 
that could not be achieved even with drastically longer standard constant-temperature MD simulations [13]. The central 166 
idea of biased MD simulations is similar to importance sampling in MC simulations, where a biased potential is intro- 167 
duced to construct a flat free energy landscape along single or multiple collective variables of interest, such that many 168 
states can be readily sampled due to the removal of free energy barriers. The replica-exchange (REX) class of sampling 169 
methods, in particular, replica exchange molecular dynamics (REMD), has been one of the most popular methods for 170 
simulating protein conformations. Figure 2 shows the general scheme of REMD simulations, where the key point is to 171 
first set up multiple replicas with different unitless unbiased or biased potentials, given as the energy over kBT (T is the 172 
temperature), and then use the Metropolis rule to allow MC to exchange the replicas and maintain the detailed balance. 173 
A key advantage of using multiple replicas and maintaining detailed balance is avoiding the reweighting problem gen- 174 
erally required for biased simulations. Note that virtually all biased sampling strategies can be readily incorporated 175 
within the REX framework to benefit from both classes of enhanced sampling, including metadynamics (MTD) [73,74], 176 
accelerated MD (aMD) [75], umbrella sampling (US) [76,77], integrated tempering sampling [78]. In practice, effective 177 
REMD protocols require proper choices of 1) the optimal number of replicas and proper distributions of conditions, to 178 
ensure a uniform exchange acceptance rate and efficient random walk in the condition space, and 2) the choice of those 179 
unitless (biased) potentials for effective conformational diffusion at each condition [79]. Here, we divide various en- 180 
hanced sampling strategies into two general groups depending on the need for collective variables and summarize their 181 
recent applications to IDP conformational sampling. 182 
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 183 
Figure 2. The generalized replica exchange molecular dynamics protocol based on unitless potentials, where 184 
the initial condition of each replica could have a varied temperature or scaled potential. βm is the inverse of 185 
temperature, Em(X) is the potential energy of mth condition for given a configuration X. 186 

4.1. Collective variables-based sampling methods and optimization 187 
 MTD and its variants have been considered one of the most important collective variables (CV)-based sampling 188 
methods for protein simulations [80]. MTD uses a history-dependent bias potential, which is generally a sum of Gauss- 189 
ians, to eventually construct a flat free energy landscape along the predetermined CV(s). Furthermore, the parallel tem- 190 
pering MTD (PT-WTD) and the combinations with other biased sampling methods have been also developed to increase 191 
the sampling efficiency and convergence of free energy calculations [81,82]. For example, the PT-WTD and bias-ex- 192 
change MTD has been employed to obtain the conformational ensembles and coupled binding and folding of disordered 193 
pKID and KID proteins, using the α-score of helical structures as CVs [83]. It has also shown that the REMD-based 194 
MTD, compared to conventional MTD or T-REMD, can enhance the conformational sampling of N-Glycans using dihe- 195 
dral angles as CVs to characterize the global motions [84]. The binding mechanism of two disordered peptides, NRF2 196 
and PTMA, were simulated by the well-tempered MTD (WT-MTD), and the results showed that the WT-MTD method 197 
could provide converged free energy profiles with 1.5 µs sampling time [85]. Together, these applications have shown 198 
that MTD-class of sampling methods can be effectively applied to IDP simulations. Beside MTD, another important 199 
class of CV-based sampling strategy is the US method [77]. US is not strictly an enhanced sampling method like MTD. 200 
It typically uses multiple harmonic potentials to focus sampling various states along the collective variables of interest. 201 
US is often combined with REMD in studies of IDPs, as illustrated in a recent 2D window-exchange US simulation of 202 
the coupled folding and binding mechanism of HdeA homodimer [86]. The simulation was able to capture rare unfold- 203 
ing transitions of the dimer at neutral pH and provided detailed description of the transition pathways. 204 
 A central limitation of CV-based sampling methods is the efficiency strongly depends on the quality of selected 205 
CV(s). For diffusion processes such as protein conformational fluctuation, it is often not clear that which CV(s) can best 206 
capture large-scale transitions or even if these transitions could be effectively described using one or a few CV(s) [87- 207 
89]. Another practical limitation is that the computational cost of MTD and US grows exponentially as a function of the 208 
number of CVs, generally limiting the maximum to 3. Parallel bias metadynamics (PBMetD) approaches have been 209 
proposed to overcome this limitation, by applying multiple low-dimension bias potentials in parallel [90,91]. Nonethe- 210 
less, the efficacy of PBMetD for sampling complex (disordered) protein conformational space is yet to be demonstrated. 211 
Another recent work presented a temperature accelerated sliced sampling method to explore the high dimensional free 212 
energy landscape by combining TAMD/d-AFED, MTD and US methods to sample many CVs simultaneously [92]. 213 
However, the approach shares the limitation of PBMetD where the underlying bias potentials remain low dimensional 214 
in nature. To address the problem of determining the best CVs for a particular problem of interest, machine learning 215 
algorithms and deep learning network have been recently proposed analyze information from many candidate CVs, 216 
and construct the free energy landscape using low-dimensional representations [93,94]. On-the-fly discovery of optimal 217 
CV was also demonstrated using the artificial neural networks that has a strong capacity of learning and optimization 218 
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for given linear or nonlinear CVs [95]. In another recent study, an 8-dimensional optimal biased potential was con- 219 
structed and applied to the free energy calculations of polypeptides using two machine learning algorithms, namely, 220 
nearest neighbor density estimator and artificial neural network [96]. Similar deep neural networks have also shown to 221 
be capable of constructing nontrivial biased potentials, for deep enhanced sampling of protein conformational space 222 
and overcoming so-called hidden barriers [97,98]. These are exciting developments that may greatly expand the ap- 223 
plicability of MTD, US and other CV-based sampling techniques to problems of increasing complexity, including sim- 224 
ulations of IDPs and their dynamic interactions, especially when combined with REX.  225 

4.2. Collective variables-free sampling methods and optimziation 226 
CV-free sampling avoids the need to identify a set of optimal CVs and can be highly desirable for simulating high- 227 

dimensional conformational fluctuation of IDPs. Many CV-free sampling methods have been also developed, including 228 
the tempering-based and energy-scaled biased methods. Tempering-based sampling methods rely on increasing the 229 
effective simulation temperature (i.e., tempering) to accelerate barrier crossing. Examples include the temperature cool 230 
walking [99], annealed importance sampling [100], simulated tempering [101], and temperature-based REMD [36]. T- 231 
REMD, in particular, has proven highly effective for protein folding and studies of IDP conformation ensembles, where 232 
multiple replicas are simulated at different temperatures in parallel to promote barrier crossing as the system undergo 233 
random walk in the temperature space (Figure 2). Nevertheless, one potential limitation is that the number of replicas 234 
required for T-REMD scales as the squared root of the number of degree of freedoms (DOFs) of whole system to main- 235 
tain a reasonable exchange acceptance probability. This can dramatically increase the computational cost of the explicit 236 
solvent T-REMD simulations. Several methods have been proposed to overcome this limitation of T-REMD, such as 237 
adding energy-related terms (such as accelerated-MD or Gaussian accelerated MD, named GaMD) or scaling the poten- 238 
tial energy function (including the scaled MD that scaled all energy terms and replica exchange solute tempering (REST) 239 
methods that scaled part of energy terms) [84,102-104]. 240 

aMD adds boost potentials to reduce the energy barriers and accelerate sampling [75]. However, it suffers from a 241 
serious energetic noise when reweighting [105]. The GaMD has been thus developed to reduce noise by introducing a 242 
new harmonic boost potential, to allow a new reweighting technique that could accurately recover the free energy land- 243 
scape using a cumulant expansion to the second order [106]. GaMD has achieved some success in studying protein 244 
folding, protein-ligand binding, and protein-protein interactions [105]. In particular, specifically developed Ligand 245 
GaMD [107] and Peptide GaMD [108] can capture the binding and dissociation of molecular ligands and highly disor- 246 
dered peptides within microsecond simulations. Recently, this GaMD method has also been combined with the REMD 247 
protocol, which can avoid the energy reweighting problem [103]. A combination of replica-exchange umbrella sampling 248 
(REUS) and GaMD has also been designed for the conformational sampling and free energy calculations [104]. It is 249 
noted that the CVs-free enhanced sampling methods are more generally more suitable for simulating IDP conformations 250 
and dynamics, because the specific CVs are often unclear.  251 

REST is a special variant of T-REMD designed specifically to reduce the number of DOFs that contribute to the 252 
Metropolis criteria of replica exchange, such that smaller number of replicas are needed [37,109]. The basic idea of REST 253 
is to separate the system into two ‘hot solute’ and ‘cold solvent’ regions. The ‘solvent’ could be actual water molecules 254 
but could also be any region of the system where no tempering is to be applied. This offers great flexibility in tailoring 255 
REST for a specific system of interest. Even more generally, the ‘solute’ region can be defined to include only a subset 256 
of interaction terms within the ‘solute’ region, such as dihedral-angle energy or Lennard-Jones energy term in the gen- 257 
eralized REST (gREST) method [110]. Temperature-dependent factors are used to scale the ‘solute’-‘solute’ and ‘solute’- 258 
‘solvent’ interactions, while keeping the ‘solvent’-‘solvent’ interactions intact:  259 

 

(1) 

 

where X is the conformational coordinates and βm is the inverse of kBTm. The scaling of ‘solute’-‘solute’ interactions 260 
allows the ‘solute’ to be simulated with an effective temperature of Tm while maintaining the ‘solvent’ temperature at 261 
T0. As a result, the exchange acceptance probability will be independent of ‘solvent’-‘solvent’ interactions, which 262 
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reduces the effective system size and requires fewer replicas to cover the same temperature range. A key open choice 263 
in REST is how the ‘solute’-‘solvent’ term is scaled (Equation 1). Different solute-solute and solute-solvent scaling factors 264 
can strongly affect the ability of driving conformational transitions of the selected ‘solute’ region. A strong solute-solute 265 
interaction favors to compact the protein conformations, whereas a strong solute-solvent interaction prefers the disor- 266 
dered, solvent-exposed conformations. Different scaling schemes lead to very different characteristics of REST1 (origi- 267 
nal) and REST2 (revised) protocols (Equation 1). High temperature conditions favor the unfolded conformations in 268 
REST1, while both folded and unfolded conformations were observed in REST2 model for the condition with the same 269 
effective ‘solute’ temperature. The reason is that REST2 was designed to have a weaker solute-solvent interactions to 270 
promote the sampling of folded conformations even at high temperatures [109]. While this could allow the sampling of 271 
reversible folding transitions at all temperatures in REST2, it could lead to conformational trapping and hampering the 272 
sampling of disordered conformations of IDPs. One important implication is that the performance of REST can be sen- 273 
sitive the balance of protein-protein and protein-water interactions of a given protein force field. For example, Liu et al. 274 
showed that, while REST2 was highly effective in generating converged ensembles of 61-residue p53 N-terminal trans- 275 
activation domain (TAD) using a99sb-disp, it completely failed to converge even with ~1 µs/replica in CHARMM36m 276 
and CHARMM36mw force fields [111]. Separate standard MD simulations reveal that p53-TAD can readily escape the 277 
apparent trapped conformations observed during REST2, suggesting that these traps arise due to the imbalance of 278 
scaled protein-protein, protein-water and water-water interactions [111].  279 

REST has proven to be one of the most reliable choices for enhanced sampling of protein folding and particularly 280 
disordered conformational ensembles [112,113]. Sugita and co-workers leveraged gREST to target the dihedral-angle 281 
energy term and successfully sampled folding transitions of beta-hairpins and Trp-cage in explicit water, using fewer 282 
replicas but cover wider conformational space compared to REST2 [110]. Walsh et al. applied REST to investigate n16N 283 
disordered peptide conformational ensembles [114]. The conformations obtained via REST methods showed a high 284 
consistency with NMR experimental data. Furthermore, REST are specifically appropriate in simulating IDRs as the 285 
disordered region can be targeted in REST without tempering the well-structured region (or water). Zhou and co-work- 286 
ers studied the disordered loop of Staphylococcus aureus sortase A (SrtA) to order transition upon binding to calcium 287 
[115]. Chen and Liu characterized Bcl-xL interfacial conformational dynamics in explicit solvent [116]. Both works di- 288 
rectly showed that REST covered broader conformational spaces for intrinsically disordered regions and led to faster 289 
convergence compared to either standard MD or T-REMD simulations. REST simulations have also been successfully 290 
integrated with experiment to study how cancer-associated mutations and drug molecules may modulate the disor- 291 
dered ensembles of p53-TAD and Aβ peptides in recent years [117-120].   292 

Despite the success of REST for CV-free enhanced sampling, it does not benefit from targeted acceleration along 293 
specific CVs that are known to be rate limiting. For this, REST (or REX in general) has been combined with CV-based 294 
enhanced sampling to maximize the efficiency of sampling complex, high dimensional conformational space of pro- 295 
teins. Some of the examples are discussed in the sections above. Here we note a couple additional recent examples. By 296 
integrating free energy perturbation (FEP) and REST methods, Abel et al. obtained more thorough samplings of differ- 297 
ent ligand conformations around the active site and realized relative binding affinity predictions [121]. Okamoto and 298 
co-workers have applied REUS/REST two-dimensional replica-exchange method to predict two protein-ligand complex 299 
systems with the help of REST to weaken the solute-solvent interactions but improve the binding events and REUS to 300 
enhance the sampling along with the reaction coordinates [122].  301 

Multiscale enhanced sampling (MSES) is yet another fascinating example of CV-free enhanced sampling strategy. 302 
Protein folding and other cooperative transitions such as self-assembly are known to be dominated by entropy barriers, 303 
which renders tempering ineffective for driving faster transitions. Coupled with a lack of obvious CVs, sampling com- 304 
plex conformational transitions of IDPs and their interactions is challenging for both CV-based and REX-based CV-free 305 
methods. For this, an effective solution is to couple atomistic simulations with a coarse-grain (CG) model, such that one 306 
could benefit from both faster transitions of CG modeling and accuracy of atomistic force field [123]. A particularly 307 
attractive approach was first introduced by Kidera and coworkers, where restraint potentials were used to couple CG 308 
and atomistic conformational dynamics along “essential” DOFs shared by the two models [35]. The bias introduced by 309 
the coupling potential is removed using Hamiltonian REX (H-REX). Chen and coworkers further adapt the method to 310 
utilize topology-based CG models (see below), better coupling potential and advanced Hamiltonian/temperature REX 311 
(H/T REX) [124-126]. Coupling the CG and atomistic models using restraints is a key strength of these MSES protocols. 312 
It allows full control of the energetic impact of diverged structures at different resolutions, which improves exchange 313 
efficiency and provides superior scalability to large systems. MSES coupling also provides robust tolerance of CG de- 314 
fects by preventing the CG model from dictating the conformational dynamics. The efficacy of MSES has been illustrated 315 
using several systems. It was highly effective in simulate reversible transitions of small β-hairpins and helical IDPs [124- 316 
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126] and proved instrumental in further refinement of a GBMV2 implicit solvent protein force field for both ordered 317 
and disordered peptides [127]. Very recently, MSES was also observed to be effective in sampling the cis–trans transi- 318 
tions of lutein by coupling the atomistic model with the Martini CG model [128]. Nonetheless, the application of MSES 319 
to larger and more complex proteins has proven more challenging than originally expected, apparently due to difficulty 320 
in effective coupling of CG and atomistic conformational fluctuations of a larger protein. 321 

Other tempering methods including integrated tempering and simulated tempering have also been combined 322 
with different biased potentials to enhance sampling [129,130]. For example, an integrated accelerated MD method has 323 
recently used to sample the conformations of pepX peptides, and it was shown that this method can improve the sam- 324 
pling efficiency and provide a good strategy for simulating IDPs [70,129]. The combination with the metadynamics has 325 
also been presented to sample the conformational space of silica, and the acceleration was increased by over one order 326 
of magnitude [130]. One significant benefit is that only a single replica is required and could be suitable for Anton 327 
specialized hardware [51]. However, one drawback is that we have to estimate the relative free energies of all conditions 328 
(or equivalently the density of states), which require recursive simulations and can be difficult to converge for complex 329 
systems such as large IDPs and complexes.  330 

4.3. Reweighting techniques for generating unbiased ensembles 331 
When bias potentials are used to enhance sampling, reweighting is often required to obtain the unbiased samples 332 

and construct statistically optimal unbiased free energy surfaces. Two reweighting methods are widely used for this, 333 
including the weighted histogram analysis method (WHAM) for the biased simulations with specific CVs and a more 334 
general multistate Bennett acceptance ratio (MBAR) approach [131,132]. Stability of both WHAM and MBAR can be 335 
susceptible to large energetic fluctuations due to exponential dependence of weights on the value of the unitless poten- 336 
tials. Large energy fluctuations among sampled conformations can lead to large uncertainties during reweighting and 337 
thus final unbiased distributions. Another population based reweighting method has been used for unbiasing the scaled 338 
MD simulations by making a multidimensional histogram of all sampled configurations [133]. However, the dimen- 339 
sionality of configurational space is usually very huge and thus be hardly completely described by some dimensionality 340 
reduction techniques (such as the principal component analysis). Recently, it was proposed that this energetic noise can 341 
be alleviated by truncating the cumulant expansion of the exponential average [106], which has been originally used in 342 
the accelerated molecular dynamics. It has shown that it can accurately recover the free energy profiles within an ac- 343 
ceptable error (~kBT), especially for the near-Gaussian biased unitless potentials [106]. This approximated reweighting 344 
methods have therefore been successfully used for reweighting several biased simulations [104]. It should be mentioned 345 
that those reweighting techniques can be used for reweighting any biased simulation, even for the REMD simulations. 346 
Nonetheless, all reweighting methods including MBAR relies on good overlap between the true conformational space 347 
and the region sampled by biased simulations. When the overlap is limited, the reweighted distributions will remain 348 
significantly different from the true result. Conformational space of even very short IDPs (e.g., ~10 residues or longer) 349 
can be complex enough to present formidable challenges for recovering the true disordered ensemble from a biased 350 
trajectory, generated either at high temperatures or with modified Hamiltonian. Instead of analyzing self-convergence 351 
(as a function of simulation time), a more rigorous test of convergence is to analyze results obtained from simulations 352 
initiated from distinct and distal initial states (such as highly structured and fully disordered conformations [7]). 353 

5. Multi-scale approaches for overcoming sampling problems of large systems 354 
As discussed above, dramatic improvement in atomistic protein force fields coupled with enhanced samplings 355 

and GPU computing have now enabled us to generate the disordered conformational ensembles of increasingly com- 356 
plex IDPs in both bound and unbound states. Many important phenomena related to IDPs remain largely out of the 357 
reach of physics-based atomistic simulations, such as aggregation [134-136] and biological condensates [137-140]. Here, 358 
we review two of the key multi-scale approaches that allow one to simulate longer time-scale bioprocesses and more 359 
complex systems within current computational capability, namely, implicit solvent and coarse-grained (CG) models. 360 
Both approaches have been extensively studied and applied to globular proteins as well as IDPs.  361 

5.1. Implicit solvent models for removing solvent DOFs  362 
Implicit treatment of solvent is an effective approach to reduce the computational cost of atomistic IDP simula- 363 

tions. The basic idea is to directly estimate the solvation free energy to capture the mean effect of solvent on the ther- 364 
modynamic properties of the solute [141]. Implicit solvent is essentially a multi-scale model, where the solvent is rep- 365 
resented using certain physical model while keeping atomistic details of the solute. These models have emerged as 366 
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attractive alternatives for simulations of IDPs and their interactions compared to explicit solvent. In particular, many 367 
generalized Born (GB) based implicit solvent models have been developed, including the fast analytical continuum 368 
treatment of solvation (FACTS) [142], Amber GB models (such as GB-HCT[143], GB-OBC[144], and GB-Neck[145,146]), 369 
analytical generalized Born plus nonpolar (AGBNP) [147,148], and GB models implemented in CHARMM program 370 
(such as GBSW [149] and GBMV[150,151]). Several of these GB models can be optimized to provide a balance between 371 
computational efficiency and accuracy desired for IDP simulations [127,152,153], by systematic optimization of key 372 
physical parameters such as atomic radii to balance solvation and intramolecular interactions. Applied to various model 373 
IDPs with extensive experimental data, implicit solvent simulations have provided important insights on detailed con- 374 
formational properties of the unbound state and how these properties may support function [32,33,154-156].  375 

Despite many successes, implicit solvent models have not widely tested and applied to the studies of larger IDPs. 376 
Several factors likely contribute to this. Most implicit solvent models are built upon existing protein force fields, which 377 
until recent years have significant limitations in describing disordered protein conformations. Implicit treatment of 378 
solvent also relies on various approximations for computational efficiency, such as treating water as a continuous die- 379 
lectric medium in GB models, limiting the ability of implicit solvent to accurately capture the conformational depend- 380 
ence of solvation free energy. A particular limitation is the common use of surface area (SA)-based model for describing 381 
nonpolar solvation energy, which has known limitations in describing the length-scale dependence as well as solvent 382 
screening of dispersion interactions [153]. These limitations can result in a systematic bias towards overly compact con- 383 
formational ensemble, which is more pronounced for larger IDPs. 384 

Several recent efforts have been made to further improve implicit solvent models for IDP simulations. The GB- 385 
Neck2 model has been optimized to reproduce solvation energies for a variety of protein systems [146]. Recent bench- 386 
mark studies have shown that the GB-Neck2 model can reasonably discriminate folded and disordered peptides and 387 
could be used for quantitative protein folding simulations up to millisecond time scales [157-159]. Recently, the GBMV2 388 
model, which includes an analytical approximation of molecular volume and is arguably one of the best GB models,  389 
has been implemented on the CUDA platform using the CHARMM/OpenMM interface [160]. The ~2 order of magni- 390 
tude GPU acceleration greatly enables GBMV2 to simulate the conformation and interaction of larger IDPs. The AB- 391 
SINTH implicit solvent model focuses on recapitulating the polymer properties of peptides and has been successfully 392 
used for a variety of IDP simulations, including Aβ peptides and aggregation of phenylalanine [161,162] and sequence- 393 
conformation relationship of IDPs in general [8,163]. Recently, an ABSINTH-C model was developed to address the 394 
problem of overly shallow Ramachandran distributions of ABSINTH, by adding residue-specific correction terms [164]. 395 
The new model not only has a capacity to maintain stable native structures of α-/β-folded proteins, but also increase the 396 
reversible folding of β-hairpin peptides. 397 

5.2. Coarse-grain models for reducing the DOFs of proteins 398 
Notwithstanding the ever-improving atomistic modeling, coarse-graining has remained an attractive and often 399 

effective strategy for extending the accessible time and length-scales of MD simulations. By grouping multiple (protein) 400 
atoms into CG beads and using simplified potential energy functions, CG modeling does not only reduce the system 401 
size, often by ~10-fold, but also allows much larger MD integration time steps up to 10s of fs. Together, many CG models 402 
can be several orders of magnitude more efficient than atomistic ones. Numerous CG models have achieved varying 403 
levels of success in studies of protein folding, binding, and assembly [165,166]. Nonetheless, there are important dis- 404 
tinctions between the conformational properties between globular proteins and IDPs, as well as the relative importance 405 
of electrostatic, hydrophobic, and hydrogen-bonding interactions in governing their conformational equilibria. There- 406 
fore, CG models optimized for the folded proteins are generally not suitable for the IDP simulations. It is often necessary 407 
to readjust the parameters of protein-protein and protein-solvent interactions or add new terms for more accurate de- 408 
scription of IDP conformations (Figure 3). Here, we summarize several of these refined CG models for more efficient 409 
sampling of IDP conformation and interactions as well as their successes and limitations. 410 

Gō/Gō-like models, also known as topology-based models, are based on the funneled energy landscape theory 411 
[167] and have been highly successful in describing the folding mechanism and pathway of structured proteins [168]. 412 
Somewhat surprisingly, Gō-like models have also proven effective for determining the mechanism and kinetics of IDP 413 
interactions, particularly the coupled binding and folding process [169-174]. The implication is that the binding and 414 
folding are governed by similar principles that require minimal frustration for efficiency. Note that Gō-like models 415 
generally require additional calibrations to provide a more quantitative description of the balance between intermolec- 416 
ular interactions and intrinsic conformational propensities [175]. A key limitation of topology-based modeling of IDPs 417 
is lack of the ability to capture the impacts of non-“native” structural features and nonspecific interactions, which could 418 
play important roles in IDP structure and function. This may be partially overcome by including new energy terms 419 
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(Figure 3) such as explicit charge-charge interactions, inert crowder molecules and confinement potentials. A particu- 420 
larly interesting discovery from these extended topology-based modeling of IDPs is the role long-range electrostatic 421 
interactions in promoting efficient coupled binding and folding, allowing IDPs to fold at timescales beyond the µs 422 
“folding speed limit” to avoid a potential kinetic bottleneck in specific recognition [171,172,176]. IDP-binding proteins 423 
have evolved to contain charges near the binding interface to complement those highly conserved ones on IDPs. Long- 424 
range electrostatic interactions between these charges do not only accelerate the encountering of IDPs but also promote 425 
the efficiency of IDP folding upon nonspecific encounter. 426 

 427 
Figure 3. Coarse-grain modeling for addressing various IDPs-related challenges. These models can have a 428 
range of spatial resolutions and may be refined by introducing various effective potentials and/or re-calibrating 429 
the parameters of these energy terms. 430 

 Several higher resolution coarse-grained models have been also developed specifically for modeling IDPs. 431 
Thirumalai and co-workers reparametrize the two-bead self-organized polymer coarse-grained model (SOP-CG) to re- 432 
produce Rg values of a set of diverse IDPs with 20 to 441 residues [177]. The resulting SOP-IDP also accurately repro- 433 
duce the small-angle X-ray scattering profiles for these IDPs. Nonetheless, SOP-IDP is designed for IDPs solely and lack 434 
the transferability and compatibility in describing even small globular proteins under the physiological conditions. 435 
Recognizing the limitation of C⍺-only backbone representation in capturing the intrinsic conformational propensities 436 
of IDPs, Chen and Liu developed a hybrid resolution (HyRes) model that contains an atomistic description of the back- 437 
bone, to provide a semi-qualitative description of the secondary structure propensities, and intermediate resolution 438 
side chains, to allow qualitative description of the overall peptide chain dimension and transient long-range interactions 439 
[178]. While HyRes was originally designed for driving faster atomistic sampling for MSES simulations, applications 440 
to a set of small and large IDPs including p53-TAD suggest that HyRes may be appropriate for simulating IDP structure 441 
and interactions by itself [178]. Papoian and co-workers have developed the AWSEM-IDP model that can be used to 442 
efficiently sample the large conformational space of IDPs and at the same time can distinguish the levels of peptide 443 
chain expansion of globular proteins and IDPs [179]. AWSEM-IDP includes only C⍺, Cβ and O atoms, and has been 444 
reparametrized for IDPs by adjusting the secondary structure-related potential energy terms as well as introducing a 445 
new parameter, VRg term, for controlling the collapse and size fluctuation of the protein.  446 

An important application for CG models is to study liquid-liquid phase transitions (LLPS) that are frequently me- 447 
diated by IDPs [44-47]. Dignon et al, proposed a residue-based C⍺-only CG model to represent the disordered low 448 
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complexity domain of the RNA-binding protein FUS-LCD and the DEAD-box helicase protein LAF-1 in the formation 449 
of LLPS [179]. The model uses the Debye-Hückel approximation for long-range electrostatic interactions and the hydro- 450 
phobicity scale model [180] or the Kim-Hummer model [181] to short-range residue-residue interactions. The results 451 
indicated that both two approaches could reproduce the experimentally observed phase behaviors and changes in phase 452 
diagrams caused by mutation. Although they mentioned that the temperature-dependent phase behaviors were not 453 
compatible with the experimental absolute temperature and the ionic strength dependence was not fully tested due to 454 
the breakdown of the Debye-Hückel electrostatic energy potentials. The model could be further refined. For example, 455 
more residue-type parameters were considered to account for phosphorylation and acetylation effects [182], which al- 456 
lows in-depth investigation of how post-translational modifications may control LLPS behaviors. Recently, Latham and 457 
Zhang re-tuned Dignon et al’s model to better reproduce the Rg distributions of a set of folded and disordered proteins 458 
[183]. The resulting Maximum entropy Optimized force field (MOFF) includes a new residue-residue interaction matrix 459 
and is more transferable for modeling both globular proteins and IDPs. Hummer and co-workers modified the MARTINI 460 
model via re-scaling the solute-solute non-bonded Lennard-Jones potentials to reproduce the experimental transfer free 461 
energies of phase separation among dilute and dense liquid phases and proposed a more general approach in tuning 462 
CG models with MD for LLPS related studies by optimizing and balancing the solute-solute and solute-solvent interac- 463 
tions then matching the CG data to the atomistic simulation or experimental results. [180]. The resulting MARTINI-IDP 464 
model was shown to successfully simulate the droplet formation and capture reversible phase transformations. These 465 
are exciting progresses that highlights the strong potential for simple C⍺-only CG models in molecular simulations of 466 
LLPS involving IDPs. Nonetheless, difficulty in describing local structure propensities (such as transient helices) with 467 
the C⍺-only representation may be an important limitation for studying certain specific effects of IDPs in LLPS.   468 

6. Concluding remarks 469 
 Effective and reliable molecular simulations are crucial for characterizing the details of disordered conformational 470 
ensembles of IDPs in isolation, dynamic complexes or biological condensates. Such computational capability, integrated 471 
with experimental studies, makes it possible to determine how the dynamic protein states may respond various cellular 472 
stimuli in signaling and regulation and more rigorously establish the (dynamic) structure-function relationship of IDPs 473 
and IDRs. In this review, we highlight recent advances in meeting two central requirements for reliable IDP simulations, 474 
namely, accurate force fields, for describing the energetics of protein conformations, and efficient MD simulation meth- 475 
ods, for adequate sampling of relevant conformational space. The need to simulate disordered protein ensembles has 476 
played a key role in driving significant improvements in empirical protein force fields in recent years. Many of these 477 
force fields are now well balanced for both folded and disordered proteins. The force field development itself has di- 478 
rectly benefited from many advanced sampling methods that allow accurate calculation of the conformational equilibria 479 
of model peptides and proteins during force field recalibration. These enhanced sampling techniques rely on carefully 480 
designed biasing potentials, modification to the original Hamiltonian and/or tempering to accelerate barrier crossing 481 
and generate statistically meaningful ensembles with far less computation. Many of the enhanced sampling strategies 482 
are complementary with each other, and can be readily integrated together to further improve the efficiency. Together, 483 
the improved protein force fields and powerful sampling techniques now allow realistic simulations of the confor- 484 
mation and interaction of at least modest-sized IDPs at atomistic level. Nonetheless, the high dimensionality and com- 485 
plex nature of disordered protein conformation continues to push the limits of the force field and sampling capability.  486 
Many proteins models with various levels of resolution are being developed and fine-tuned for IDP simulations, par- 487 
ticularly for studying biological condensates. These models ranging from C⍺-only single-bead protein models to implicit 488 
solvent ones with atomistic proteins. Many of the current models are geared towards modeling systems with minimal 489 
residual structures. A key challenge in these multi-scale modeling and simulation of IDPs is finding the optimal com- 490 
promise between resolution, accuracy and efficiency for the particular problem of interest. Nonetheless, it can be ex- 491 
pected that multi-scale simulations will continue to play a central role in studying IDPs and dynamic interactions. 492 
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