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if every part induces a connected subgraph. In many applications, it is desirable to obtain
parts of roughly the same size, possibly with some slack s. A Balanced Connected k-
Partition with slack s, denoted (k, s)-BCP, is a partition of V(G) into k nonempty subsets,

of sizes ny,...,n, with [n; —n/k| <s, each of which induces a connected subgraph (when
Keywords: s =0, the k parts are perfectly balanced, and we call it k-BCP for short).
Balanced partition A recombination is an operation that takes a (k, s)-BCP of a graph G and produces another
Connected graph partition by merging two adjacent subgraphs and repartitioning them. Given two k-BCPs, A and
Recombination B, of G and a slack s > 0, we wish to determine whether there exists a sequence of
Configuration space recombinations that transform A into B via (k, s)-BCPs. We obtain four results related to

this problem: (1) When s is unbounded, the transformation is always possible using at
most 6(k — 1) recombinations. (2) If G is Hamiltonian, the transformation is possible using
0 (kn) recombinations for any s > n/k, (3) there exist negative instances for s <n/(3k), and
(4) we show that determining whether a sequence of recombination that connects two
(k, 5)-BCP of a graph G exists is PSPACE-complete when k € O (nf) and s € 0 (n'~¢), for any
constant 0 < € < 1. This statement holds even for restricted settings such as when G is an

edge-maximal planar graph or when k >3 and G is planar.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Partitioning the vertex set of a graph G = (V, E) into k nonempty subsets V = UL1 Vi that each induces a connected
graph G[V;] is a classical problem, known as the Connected Graph Partition problem [9,16]. Motivated by fault-tolerant
network design and facility location problems, it is part of a broader family of problems where each induced graph G[V;]
must have a certain graph property (e.g., £-connected or H-minor-free). In some instances, it is desirable that the parts

* A preliminary version of this paper appeared in the Proceedings of the 12th International Conference on Algorithms and Complexity (CIAC 2021), LNCS 12701,
Springer, pp. 61-74. Research supported in part by NSF awards CCF-1422311, CCF-1423615, OIA-1937095, DMS-1800734, and by NSERC.
* Corresponding author.
E-mail address: cdtoth@acm.org (C.D. Téth).

https://doi.org/10.1016/j.tcs.2022.04.049
0304-3975/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.tcs.2022.04.049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.04.049&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cdtoth@acm.org
https://doi.org/10.1016/j.tcs.2022.04.049
http://creativecommons.org/licenses/by/4.0/

H.A. Akitaya, M. Korman, O. Korten et al. Theoretical Computer Science 923 (2022) 13-26

V1,..., Vi have approximately the same size (depending on some pre-established threshold). A Balanced Connected k-
Partition (for short, k-BCP) is a connected partition requiring that |V;| =n/k, for i € {1,...,k} where n =|V(G)| is the total
number of vertices. Dyer and Frieze [7] proved that finding a k-BCP is NP-hard for all 2 <k <n/3. For k=2, 3 the problem
can be solved efficiently when G is bi- or triconnected, respectively [19,22], and is equivalent to the perfect matching
problem for k =n/2. Later Chlebikova [4] and Chataigner et al. [3] obtained approximation and inapproximability results for
maximizing the “balance” ratio max; |V;|/min; |V | over all connected k-partitions. See also [12,14,18,23] for variants under
different optimization criteria.

In this paper our basic element is a connected k-partition of a graph G = (V, E) that is balanced up to some additive
threshold that we call a slack s > 0, denoted (k, s)-BCP. We explore the space of all (k, s)-BCPs of the graph G = (V, E).
Note that the total number of (k, s)-BCPs for all s > 0, is bounded above by the number of k-partitions of V, which is the
Stirling number of the second kind S(n, k), and asymptotically equals (1 + o(1))k™/k! for constant k. This bound is the best
possible for the complete graph G = Kj,.

In a recent application [1,6,17], G = (V, E) represents the adjacency graph of precincts in an electoral map, which
should be partitioned into k districts V1,..., V, where each district will elect one representative. Motivated by the design
and evaluation of electoral maps under optimization criteria designed to promote electoral fairness, practitioners developed
empirical methods to sample the configuration space of potential district maps by a random walk on the graph where
each step corresponds to some elementary reconfiguration move [8]. From a theoretical perspective, the stochastic process
converges to uniform sampling [13,15]. However, the move should be local, i.e., it must affect a constant number of districts,
to allow efficient computation of each move, and it should support rapid mixing (i.e., the random walk should converge,
in total variation distance, to its steady state distribution in time polynomial in n). Crucially, the space of (approximately
balanced) k-partitions of G must be connected under the proposed move. Previous research considered the single switch
move, in which a single vertex v € V switches from one set V; to another set V; (assuming that both G[V;] and G[V;]
remain connected). Akitaya et al. [2] proved that the configuration space is connected under single switch moves if G is
biconnected, but in general it is NP-hard both to decide whether the space is connected and to find a shortest path between
two valid k-partitions. While the single switch is local, both worst-case constructions and empirical evidence [5,17] indicate
that it does not support rapid mixing.

In this paper we consider a different move. Specifically, we consider the configuration space of k-partitions under the
recombination move, proposed by DeFord et al. [5], in which the vertices in V; UV}, for some i, j € {1,...,k}, are re-
partitioned into V{ U V} such that both G[V{] and G[V}] are connected. We also study variants restricted to balanced or

near-balanced partitions, that is, when |V;| =n/k for all i € {1,...,k}, or when ]|V,~| — n/k’ <s for a given slack s > 0.
In application domains mentioned above, the underlying graph G is often planar or near-planar, and in some cases it is
a triangulation (i.e., an edge-maximal planar graph). Results pertaining to these special cases are of particular interest.
Our results lay down theoretical foundations for this model in graph theory and computational tractability. Although our
results imply lower bounds in the mixing time of worst-case instances, they have no direct implication for the average-case
analysis.

Definitions Let G = (V,E) be a graph with n = |V (G)|. For a positive integer k, a connected k-partition IT of G is a
partition of V(G) into disjoint nonempty subsets {Vq,..., Vi} such that the induced subgraph G[V;] is connected for all
i€{1,...,k}. Each subgraph induced by V; is called a district. We write I1(v) for the subset in IT that contains vertex v.

Denote by Part(G, k) the set of connected k-partitions on G. We also consider subsets of Part(G, k) in which all districts
have the same or almost the same number of vertices. A connected k-partition of G is balanced (k-BCP) if every district
has precisely n/k vertices (which implies that n is a multiple of k); and it is balanced with slack s > 0 ((k, s)-BCP), if
}|U| — n/k| <s for every district U C V. Let Bals(G, k) denote the set of connected k-partitions on G that are balanced with
slack s, i.e., the set of all (k,s)-BCPs. The set of balanced k-partitions is denoted Bal(G, k) = Balg(G, k); and Part(G, k) =
Baly (G, k).

We now formally define a recombination move as a binary relation on Bals(G, k). Two non-identical (k, s)-BCPs, T =
{V1,...,Vi} and TIp = {Wq,..., W}, are related by a recombination move if there exist i, j € {1,...,k}, and a permutation
7 oon {1,...,k} such that ViU V=W 3 UWg) and Vy =Wy forall £ e {1,...,k}\ {i, j}. We say that IT; and IT, are
a recombination of each other. This binary relation is symmetric and defines a graph on Bals(G, k) for all s > 0. This graph
is the configuration space of Bal;(G, k) under recombination, denoted by Rs(G, k).

Balanced recombination problem BR(G,k,s) Given a graph G = (V, E) with |V| =n vertices and two (k,s)-BCPs A and B,
decide whether there exists a path between A and B in Rs(G, k), i.e., whether there is a sequence of recombination moves
that carries A to B such that every intermediate partition is a (k, s)-BCP.

Our results We prove, in Section 2, that the configuration space R~ (G, k) is connected whenever the underlying graph
G is connected and the size of the districts is unrestricted. It is easy, however, to construct a graph G where Rq(G, k) is
disconnected. We study what is the minimum slack s, as a function of n and k, that guarantees that Rs(G, k) is connected
for all connected (or possibly biconnected) graphs G with n vertices. We prove that Rs(G, k) is connected and its diameter
is O(nk) for s=n/k when G is a Hamiltonian graph (Section 3). As a counterpart, we construct a family of Hamiltonian
planar graphs G such that R(G, k) is disconnected for s <n/(3k) (Section 4).
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We prove in Section 5 that BR(G, k, s) is PSPACE-complete even for the special case when G is a triangulation (i.e., an
edge-maximal planar graph), k is O (nf) and s is O(n'~¢) for constant 0 < & < 1. As a consequence we show that finding
a (k, s)-BCP of G is NP-hard in the same setting. Note that the previously known hardness proofs for finding k-BCPs either
require that G is weighted and nonplanar [3] or G contains cut vertices [7]. In contrast, if G is planar and 4-connected,
then G admits a Hamilton cycle [20] and, therefore, a (k, s)-BCP is easily obtained by partitioning a Hamilton cycle into the
desired pieces. Finally, we modify our construction to also show that BR(G, k, s) is PSPACE-complete even for the special
case when G is planar, k > 3, and s is bounded above by 0(n'~—¢) for constant 0 < & <1.

2. Recombination with unbounded slack

In this section, we show that the configuration space R~ (G, k) is connected under recombination moves if G is con-
nected (cf. Theorem 3). The proof proceeds by induction on k, where the induction step depends on Lemma 2 below.

We briefly review some standard graph terminology. A block of a graph G is a maximal biconnected component of G.
A vertex v € V(G) is a cut vertex if it lies in two or more blocks of G, otherwise it is a block vertex. In particular, if v is
a block vertex, then G — v is connected. If G is a connected graph with two or more vertices, then every block has at least
two vertices. A block is a leaf-block if it contains precisely one cut vertex of G. Every connected graph either is biconnected
or has at least two leaf blocks. The arbericity of a graph G is the minimum number of forests that cover all edges in E(G).
The degeneracy of G is the largest minimum vertex degree over all induced subgraphs of G. It is well known that if the
arboricity of a graph is a, then its degeneracy is between a and 2a — 1.

Lemma 1. If the arboricity of a graph is a, then it contains a block vertex of degree at most 2a — 1.

Proof. It is enough to prove the claim for a connected component of G, so we may assume that G is connected. First
assume that G is biconnected. Then every vertex is a block vertex. Since the degeneracy of G is at most 2a — 1, there exists
a vertex of degree at most 2a — 1, as required. Next assume that G is not biconnected. Let G[U] be a leaf-block of G, and
let u € U be the unique cut-vertex of G in U. Since the degeneracy of G is at most 2a — 1, there exists a vertex in U whose
degree in G[U] is at most 2a — 1. If a block vertex v € U \ {u} has degree at most 2a — 1, our proof is complete. Suppose, to
the contrary, that the degree of every block vertex in U is at least 2a (and the degree of the unique cut vertex in G[U] is
at least 1). By the handshake lemma, the number of edges in G[U] is at least %(2a(|U| —1)+1)>a(JU| —1). However, the
arboricity of G[U] is at most a, and a forests on the vertex set U jointly contain at most a(|U| — 1) edges, which provides a
contradiction. O

The heart of the induction step of our main result hinges on the following lemma.

Lemma 2. Let G be a connected graph, k > 2 an integer, and 14, I, € Part(G, k) be two k-partitions of G. Then there exists a block
vertex v € V(G) such that up to three recombination moves can transform I1; and I1, each to two new k-partitions in which {v} is a
singleton distinct.

Proof. Let I1{ = {V1,..., V}} and I1; = {Wq, ..., Wi}. We construct two spanning trees, T and T, for G that each contain
k — 1 edges between the districts of I1; and I, respectively. Specifically, for i € {1,...,k}, let T(V;) be a spanning tree of
G[Vil, T(W;) a spanning tree of G[W;]. As G is connected, we can augment the forest Uile T(V;) to a spanning tree T of

G, using k — 1 new edges, which connect vertices in distinct districts. Similarly, we can augment Uf-‘:] T(W;) to a spanning
tree T, of G. Now, let G’ = T1 U T,. By definition, the arboricity of G’ is at most 2. By Lemma 1, G’ contains a block vertex
v with degg/(v) <3.

We show that we can modify IT; (resp., I12) to create a singleton district {v} in at most three moves. Assume without
loss of generality that v € V; and v € Wy. Since deg¢:(v) < 3, we have degry,)(v) <3 and degry,,(v) < 3. Consequently,
T(V1) — v (resp., T(W1) — v) has at most three components, each of which is adjacent to some other district, since G’ — v
is connected. Up to three successive recombinations can decrease the district V1 with the components of T(V1) — v, and
reduce Vq to {v}. Similarly, at most three successive recombinations can reduce Wy to {v}. O

Theorem 3. Let G be a connected graph and k > 1 a positive integer. For all 11, I1, € Part(G, k), there exists a sequence of at most
6(k — 1) recombination moves that transforms I1; to IT,.

Proof. We proceed by induction on k. In the base case, k =1, and IT{ = I1,. Assume that k > 1 and claim holds for k — 1. By
Lemma 2, we can find a block vertex v € V(G) and up to six recombination moves transform IT; and IT, into IT} and IT)
such that both contain {v} as a singleton district. Since v is a block vertex, G — v is connected; and since {v} is a singleton
district in both TT} and IT, we have Ty — {v}, IT; — {v} € Part(G — v,k — 1). By induction, a sequence of up to 6(k — 2)
recombination moves in G — v can transform I1; — {v} into IT, — {v}. These moves remain valid recombination moves in G if
we add singleton district {v}. Overall, the combination of these sequences yields a sequence of up to 6 +6(k —2) =6(k — 1)
recombination moves that transforms IT; to IT,. This completes the induction step. O
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3. Recombination with slack

In this section, we prove that the configuration space R(G, k) is connected if the slack is greater or equal to the average
district size, that is, s > n/k, and the underlying graph G is Hamiltonian (Theorem 9).

Let G be a graph with n vertices that contains a Hamilton cycle C. Assume that n is a multiple of k. A k-partition in
Bals(G, k) is canonical if each district consists of consecutive vertices along C. Using a slack of s > n/k, we can transform
any canonical k-partition to any other using O (k%) reconfigurations.

Lemma 4. Let G be a graph with n vertices and a Hamilton cycle C, assume that k > 1 is a divisor of n, and s > n/k. Then the subgraph
of Rs(G, k) induced by canonical k-partitions is connected and its diameter is at most k + 1.

Proof. Let IT={Vyq,..., V,} be a canonical k-partition with slack s, where districts V;, i € {1,...,k}, are labeled in cyclic
order along C. We call a district V; large if |V;| > n/k. We first show that at most (’2‘) moves are enough to bring any
canonical k-partition into a balanced canonical partition, i.e., none of its districts is large. Then we show that any pair of
balanced canonical k-partitions is within k+1 moves apart. Overall the diameter of Rs(G, k) is at most 2(’;) +k+1=k*+1.

We prove the first claim by induction on k —m, where the first m blocks are balanced (i.e., |Vi| =n/k for all i <m). In
the base case, k —m =0, and all districts are balanced. In the induction step, assume that 0 <m < k. Since the average size
of the districts Viy1,..., Vi is n/k, but |Vip1| #n/k, then there exist districts both below and above the average. Let j > m
be the first index such that V; <n/k and V1 > n/k or vice versa. We recombine V; and V; into V} and V}H such that
|V]’.| =n/k. By assumption, 2n/k —s <|Vj| + V1] <2n/k+s, thus n/k —s < |V}+]| <n/k + s, hence the new k-partition
is a (k, s)-BCP. We then successively recombine V; and V;_q1 for i=j,j—1,...,m+ 1. In each of these recombinations,
we set |V/_,|=n/k and |V]| = |Vi_1 U V| —n/k, thus n/k —s < |V{| <n/k +s. After j —m —1 <k —m — 1 moves, we
obtain a (k,s)-BCP IT” with |V/T’]+1| =n/k, and we can increment m. The number of recombination moves is bounded by
Shok—m =1 =T i = (j).

It remains to show that any two balanced canonical partitions in Rs(G, k) are within k + 1 moves apart. Note that if
My ={V1,...,Vi} and Iy = {Wq, ..., W} are two balanced canonical partitions, then IT; is a cyclic shift of IT; along C.
Without loss of generality, assume that V1 N W1 # @ and W C V1 U V;. We describe a sequence of k+ 1 moves that brings
11 to IT;. First, recombine V¢ and V, making V1’ =V; — W5y and V] =V, U W,>. As a result, the border between the new
districts V1 and V!, coincides with the border between Wy and W».

We can now start an induction on k—m similar to previous one. Assume that [Ty = {V1,..., Vi} and [T, = {W1,..., W},
where IT, is a balanced canonical partition, V; = W; for all i <m, and |V;| =n/k for all i ¢ {m + 1, k}. In particular, the
border between V,; and V41 coincides with the border between W, and Wp4q. For m = 0, the statement holds after
the recombination described above. In the base case, m =k, and we have IT; = IT,. In the induction step, assume that
0 <m < k. Then, we recombine V and Vpyq so that V), = Wy, and V{nH = Vi1 — Wi, After the recombination, the
induction hypothesis holds for m + 1. Overall, we need at most k recombinations until all districts are equal. O

In the remainder of this section, we show that every k-partition in Bals(G, k) can be brought into canonical form by a
sequence of O(nk) recombinations.

Preliminaries We introduce some terminology. Let IT = {V,..., V}} € Balg(G, k) with a slack of s > n/k. For every i
{1,...,k}, a fragment of G[V;] is a maximum set F C V; of vertices that are contiguous along C. Every set V; is the disjoint
union of one or more fragments. The k-partition IT is canonical if and only if every district has precisely one fragment. Our
strategy is to “defragment” IT if it is not canonical; that is, we reduce the number of fragments using recombination moves.

We distinguish between two types of districts in IT: A district V; is small if |V;| < n/k, otherwise it is large. Every edge
in E(G) is either an edge or a chord of the cycle C. For every i € {1,...,k}, let f; be the number of fragments of V;. Let T;
be a spanning tree of G[V;] that contains the minimum number of chords. The edges of G[V;] along C form a forest of f;
paths; we can construct T; by augmenting this forest to a spanning tree of G[V;] using f; — 1 chords.

The center of a tree T is a vertex v € V(T) such that each component of T — v has up to |V (T)|/2 vertices. It is well
known that every tree has a center. For i € {1,...,k}, let ¢c; be a center of the spanning tree T; of G[V;]. Let the fragment
of V; be heavy if it contains ¢;; and light otherwise. We also define a parent-child relation between the fragments of V;.
Fragments A and B are in a parent-child relation if they are adjacent in T; and if c¢; is closer to A than to B in T;. Note that
a light fragment and its descendants jointly contain less than |V;|/2 < (n/k + s)/2 vertices; see Fig. 1.

The following four lemmas show that we can decrease the number of fragments under some conditions. In all four
lemmas, we assume that G is a graph with a Hamiltonian cycle C, and IT is a noncanonical (k, s)-BCP with s >n/k.

Lemma 5. If a light fragment of a large district is adjacent to a small district along C, then a recombination move can decrease the
number of fragments.

Proof. Assume without loss of generality that vqv; is an edge of C, where vy € F1 C V1, va € F; C V3, Fy is a light
fragment of a large district V1, and F, is some fragment of a small district V. Let F1 be the union of fragment F; and all
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Fig. 1. Left: A distinct V; with 26 vertices (hollow dots) in six fragments (bold arcs) along C. The spanning tree T; of G[V;] contains five edges, with a
center at c¢;. Right: The parent-child relationship between fragments is defined by the tree rooted at the fragment containing c;.

its descendants. By the definition of the center cy, we have |Fq| < |V1|/2. Apply a recombination replacing V¢ and V, with
W=V, \Fl and Wy =V, UFL

We show that the resulting partition is a (k, s)-BCP. Note also that both G[F1] and G[V; \ F1] = G[W/] are connected.
Since vivy € E(G), then G[V, U F1] = G[W>] is also connected. As W1 contains the center of V4, we have |W;| > 1 and
IW1l < |V1| <n/k+s. As Vy is small, have |W3| =|V,| + [Fq] < n/k +n/k <2n/k <n/k + s. Finally, note that F{ UF; is a
single fragment in the resulting k-partition, hence the number of fragments decreased by at least 1. O

Lemma 6. If no light fragment of a large district is adjacent to any small district along C, then there exists two adjacent districts along
C whose combined size is at most 2n/k.

Proof. Suppose, to the contrary, that every small district is adjacent only to heavy fragments along C, and the combined
size of every pair of adjacent districts along C is greater than 27” meaning that at least one district is large. We assign every
small district to an adjacent large district as follows. For every small district V;, let F; be one of its arbitrary fragments.
We assign V; to the large district whose heavy fragment is adjacent to F; in the clockwise direction along C. Since every
large district has a unique heavy fragment, and at most one district precedes it in clockwise order along C, the assignment
is a matching of the small districts to large districts. Denote this matching by M. Every district that is not part of a pair in
M must be large. By assumption, every pair in M has combined size greater than 2,—<" so the average district size over the

districts in M is greater than % The districts not in M are large so their average size also exceeds % Overall the average

district size exceeds % But IT is a k-partition of n vertices, hence the average district size is exactly %, a contradiction. O

Lemma 7. If districts V1 and V, are adjacent along C and |V1U V3| < n/k+s, then there is a recombination move that either decreases
the number of fragments, or maintains the same number of fragments and creates a singleton district.

Proof. Assume, w.l.o.g.,, that v{ € F{ C V4, v, € F, C V;, where vyv; is an edge of C, and F{ and F, are fragments of V
and V5, respectively. The induced graph G[V U V3] is connected, and T{ U T, U vV, is one of its spanning trees. If T{ or
T, contains a chord, say e, then (T1 U T, U{v1v2}) — e has two components, T3 and T4, each of size at most n/k+s—1. A
recombination move can replace V1 and V, with V(T3) and V(T4). Since fragments F; and F, merge into one fragment,
the number of fragments decreases by at least one. Otherwise, neither T; nor T, contains a chord. Then V{ and V; each
has a single fragment, so V1 U V> is a chain of vertices along C. Let v be the first vertex in this chain. A recombination move
can replace V1 and V; with Wy ={v} and W, = (V1 U V3) \ {v}. By construction both G[W;] and G[W;] are connected,
Wi =1, |W3|=|V1UV3|—1=<n/k+s—1, and the number of fragments does not change. O

Lemma 8. If there exists a singleton district, then there exists a sequence of at most k — 1 recombination moves that decreases the
number of fragments.

Proof. Let C = (vq,..., vy). Assume without loss of generality that V{ = {vq} is a singleton district, and vy € F, C V3,
where F, is a fragment of district V. Since not all districts are singletons, we may further assume that |V3| > 2. We
distinguish between two cases.

Case 1: F, # V; (i.e,, V3 has two or more fragments). Let e be an arbitrary chord in T,, and denote the two subtrees
of Tp—e by T, and T;r such that v, is T, . Since |V3| <n/k + s, the subtrees T, and T; each have at most n/k+s—1
vertices. We can recombine Vq and V; into Wy =V, UV(T;) and W; = V(T2+). Then (Wq| <14+ n/k+s—1)=n/k+s
and |W,| <n/k+ s — 1; they both induce a connected subgraph of G. As the singleton fragment V1 and F, merge into one
fragment of W1, the number of fragments decreases by at least one.

Case 2: F, =V, (i.e, district V5 has only one fragment). Let t > 2 be the smallest index such that v is in a district
that has two or more fragments (such district exists since IT is not canonical). Then the chain (vq,..., v(—1) is covered by
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s+ [s/2]

Fig. 2. Problem instance showing that R(G, k) is not always connected (for k=4, n=56 and s=4 = % —0()).

single-fragment districts that we denote by Vq,..., V, along C. By recombining V; and V;;q fori=1,...,2 — 1, we create
new single-fragment districts Wy, ..., W, such that |W;| =|V;4q| fori=1,...,£+ 1 and |W¢| =|V | =1. Now we can
apply Case 1 for the singleton district W,. 0O

We are now ready to prove the main result of this section.
Theorem 9. If G is a Hamiltonian graph on n vertices and s > n/k, then Rs(G, k) is connected and its diameter is O (nk).

Proof. Based on Lemmas 5-8, the following algorithm successively reduces the number of fragments to k, thereby trans-
forming any balanced k-partition to a canonical partition. While the number of fragments is more than k, do:

1. If a fragment of a small district is adjacent to a light fragment of a large district along C, then apply the recombination
move in Lemma 5, which decreases the number of fragments.

2. Else, by Lemma 6, there are two adjacent districts along C whose combined size is at most 2n/k. Apply a recombination
move in Lemma 7. If this move does not decrease the number of fragments, it creates a singleton district, and then up
to k — 1 recombination moves in Lemma 8 decrease the number of fragments by at least one.

There can be at most n different fragments in a k-partition of a set of n vertices. We can reduce the number of fragments
using up to k recombination moves. Overall, O (nk) recombination moves can bring any two (k, s)-BCPs to canonical form,
which are within k? + 1 moves apart by Lemma 4. O

4. Disconnected configuration space

In this section we show that the configuration space is not always connected, even in Hamiltonian graphs. Specifically,
we show the following result:

Theorem 10. For any k > 4 and s > 0 there exists a Hamiltonian planar graph G of n = k(3s + 2) vertices such that Rs(G, k) is
disconnected.

Proof. For simplicity, we first argue about the construction for k = s =4 and thus n =56 (an extension to larger values of
k is given afterwards). Our instance consists of a cycle (shown as an octagon in Fig. 2) and four additional edges e, ..., e4
called chords. Note that G is planar despite the non-planar drawing in Fig. 2 (we may draw e; and e3 in the outer face).
All four districts initially have n/4 = 14 vertices.

Note that, if we were to remove any of the chords, the corresponding district would be split into two connected com-
ponents. The removal of the chords e, ...,es would split two of the districts (marked with circles in Fig. 2) into two
components of sizes 1+s and 1+ 2s, resp., and it would split the other two districts into two components of the same size
within a vertex difference.

When a chord e is critical for the connectivity of the induced graph G[V;] of a district V;, we say that V; is split (by e).
As noted above, all four districts are split in the initial partition. We claim that no sequence of recombinations can change
this fact. Assume, for the sake of contradiction, that after a sequence of recombinations, one of the districts D is not split.
Consider the last recombination before this happens.
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This recombination involves two districts V; and V; that are split via edges e; and ej, respectively. The union of the two
districts would have three components (after removing e; and e;). Thus, at least one of the two districts must remain split
after the recombination (that is, we cannot “unsplit” both districts in one recombination).

Next, we show that not even one district can become unsplit. We distinguish between four cases depending on the edge
that initially split a district, but it no longer does so after the recombination:

e We first argue that this edge can be neither e; nor e,. We first argue for e1. By the assumption that D is the first unsplit
district, the other chords (ey, e3, and e4) each split other districts. In particular, D is contained in a contiguous arc of C
that does not include an endpoint of any other chord. Since e; was involved in the recombination, we may assume that
D is contained in the lower right or lower left portion of Fig. 2, between the edges of e3 and e4 or e; and e4. In either
case, D can contain at most 2s + 1 vertices. Since n/k = 3s + 2, this is not possible unless the slack was at least s + 1.
Edge e, can be ruled out with an symmetric argument.

e Edge e3 is ruled out using a similar argument. Assume again that D is the first unsplit district, and the other three chords
each split other districts. Then D is contained in a contiguous arc of C between endpoints of ey, ey, or e4, and this arc
contains an endpoint of e3. Assume first that D is in an arc containing the left endpoint of e3. Then the right endpoint
of e3 is in a district D’ that contains both endpoints of e;. However, D’ contains an arc of C between the endpoints of
ey, and e, does not split any district, a contradiction. Next assume that D is in the arc containing the right endpoint
of e3. Then D is contained in an arc between two endpoints of ey, and so D is adjacent to the district split by e. The
union of these two districts lies in a continuous arc of 4s + 3 vertices. However, the minimum size of two districts is
2(n/k — s) = 2(2s + 2); a contradiction. By symmetry, we also rule out e4, and thus we obtain that all districts must be
split at all times.

Finally, it remains to show how to extend the proof for larger values of k. Observe that in the proof we never looked at
the upper left side of the octagon (where we have a cluster of 2s vertices of one district followed by 2s vertices of another
district). For each additional district we need, we can simply place 2 + 3s consecutive vertices. Those districts can do local
recombinations, but they will not prevent the initial four districts from being split. O

5. Hardness results

This section presents our hardness results. Our reductions are from Nondeterministic Constrained Logic (NCL) reconfigu-
ration which is PSPACE-complete [10,11]. An instance of NCL is given by a planar cubic undirected graph Gyc; where each
edge is colored either red or blue. Each vertex is either incident to three blue edges or incident to two red and one blue
edges. We respectively call such vertices OR and AND vertices. An orientation of Gyc; must satisfy the constraint that at
every vertex v € V(Gycy), at least one blue edge or at least two red edges are oriented towards v. A move is an operation
that transforms a satisfying orientation to another by reversing the orientation of a single edge. The problem gives two
satisfying orientations A and B of Gyc; and asks for a sequence of moves to transform A into B. As in [2], we subdivide
each edge in Gyc; obtaining a bipartite graph G}, with one part formed by original vertices in V(Gncy) and another
part formed by degree-2 vertices. We require that an orientation must additionally satisfy the constraint that each degree-2
vertex v must have an edge oriented towards v. The question of whether there exists a sequence of moves transforming
orientation A’ into B’ of G}, remains PSPACE-complete. We follow the framework in [2] with a few crucial differences.
The main technical challenge is dealing with the slack constraints while maintaining the desired behavior for the gadgets.
We first describe the reduction to instances with slack equals zero. We then generalize the proofs.

5.1. Zero slack

In the following reduction, we are given a bipartite instance of NCL given by (G\¢;, A’, B'), and we produce an instance
of BR(G, k, s) of the balanced recombination problem consisting of two (k, s)-BCP of a planar graph G, IT4 and Il, with
k= 0(|V(Gncr)|) districts, and slack s = 0.

Construction We first describe a building block used in our gadgets, called heavy vertices, represented by green dots in
Fig. 3. Each heavy vertex q is associated with a positive integer weight w(q) and represents a vertex that we also call g,
slightly abusing notation, attached to w(q) — 1 degree-1 vertices. The property that we exploit is that whichever district that
contains vertex ¢ must also contain all (w(q) — 1) degree-1 vertices attached to it or else the district containing one of such
vertices would be disconnected. Then, in practice we can consider the w(q) vertices represented by the heavy vertex q as a
single vertex q with weight w(q) towards the size of the district containing it. The ordinary vertices (i.e., vertices of weight
1) are called light. We now define the AND and OR gadgets corresponding to the vertices of Gyc; and the degree-2 gadget
corresponding to the degree-2 vertices of Gy, . Let o be a positive integer to be determined. The AND gadget is shown in
Fig. 3 (a) made of 6 light vertices and 3 heavy vertices. We set w(vy) = w(vp) =« and w(v.) = 8« — 3. The OR gadget is
shown in Fig. 3 (b) made of 6 light vertices and 7 heavy vertices. We set w(vq) = w(vp) = w(vy) = w(vy) =w(vy) =0,
w(v¢) =6a — 3, and w(v’) =9«. The degree-2 gadget is shown in Fig. 3 (c) made of 4 light vertices and 2 heavy vertices.
We set w(vq) = w(vp) =5 — 1. Each edge e of G}, is represented by two vertices, e~ and et, that are shared by the two
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Fig. 3. Gadgets for the reduction from NCL to BR(G, k, 0). (For interpretation of the colors in the figures, refer to the web version of this article.)
(a)
v
a b
(c)

Fig. 4. Equivalence between a satisfying orientation of Gy, and a k-BCP of G.

gadgets corresponding to the vertices incident to e, as shown in Fig. 3 (d). For each vertex of G}, create a corresponding

gadget identifying the vertex pairs e~ and e as shown in the figure. This concludes the construction of G. We set o =5 so
that the maximum weight of heavy vertices in AND/OR gadgets is greater than 5« — 1.

We now define T4 and ITp based on A’ and B’ respectively. We describe the construction of a set My of (k, 0)-BCPs
of G for an arbitrary satisfying orientation X of G}, . Every district will have 10 vertices. Refer to Fig. 4. For every vertex
v € Gy, create a district D, containing v, for every edge e incident to v. Add et (e7) to Dy if e is directed towards (away
from) v in X. That concludes the description for AND and degree-2 gadgets. If v is an OR vertex, let a, b and c be the
edges incident to v. Since X satisfies the NCL constraints, at least one edge is directed towards v. Without loss of generality,
let a be directed towards v in X. Let v be an arbitrary vertex in {vj, vg}. Then, add the vertices in {vy, v;J, v\ {v1}
to D, and create a district D,» = {v’, v{}. Note that if there are multiple edges directed towards v in X, then there are
multiple options of edges to be labeled “a”, and that v is chosen arbitrarily. Let My be the set of all k-partitions that can
be constructed from X with the procedure above. Lemma 11 will show that the members of My are indeed (k, 0)-BCPs.
We choose T4 € My and I1p € My arbitrarily. By construction, k = |V (Gy,)| + nor, where ngg is the number of OR
vertices. This concludes the construction. Note that given a k-partition IT € M, the above description implies a method to
obtain a corresponding orientation X of G ,. Namely, for every degree-2 (AND or OR) gadget, if there is a district Dy in II
containing both {vg, vp} (all vertices in {vg, vy, v¢}) orient e towards v if and only if e™ € D, e € {a, b} (e € {a, b, c}).

Correctness  We show that there exist a correspondence between a move in an orientation of Gy, and a recombination in
a (k, 0)-BCP of G.

Lemma 11. A k-partition I1 € M is a (k, 0)-BCP if and only if X satisfies the NCL constraints.

Proof. Consider an AND vertex v incident to edges a, b, and c as in Fig. 3 (a). By definition D, contains v, and exactly one
of {et,e~} for e € {a, b, c}. If G[D,] is connected, then D, must contain either c¢*, or a* and b~. Then, either c is directed
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towards v or both a and b are directed towards v in X. Thus the NCL constraint for v is satisfied. The other direction is
analogous.

Similarly, we can show the equivalence for degree-2 vertices. Consider an OR vertex v incident to edges a, b, and c as
in Fig. 3 (b). Recall that D,/ contains v’ and exactly one heavy vertex in {vg, v}, v¢}. Then, G[Dy] contains a single path
between two vertices in {vq, vp, Vc} using vertices in {v}, v;, v}, i.e, Dy induces two components in {vq, Vp, Ve, Vj, v;,, v}
Since {vq, Vp, V¢} C Dy by definition, D, must contain at least one vertex in {a*, b™, c*}. Thus the NCL constraint for v is
satisfied. The other direction is analogous. 0O

The following lemma shows that the subgraph of the configuration space R (G, k) induced by My is connected if X
satisfies the NCL constraints.

Lemma 12. Given a satisfying orientation X of G, and two k-partitions Ty, IT; € My, then there is a sequence of at most nog
recombinations that takes I1q to IT5.

Proof. By construction, IT; and I, are identical except at gadgets of OR vertices. Let v be an OR vertex where IT{(v') #
IT1(v"). Then recombine I (v’) and I1;(v,) into IT5(v") and I1y(vg). The resulting k-partition is in My and by Lemma 11
its districts induce connected subgraphs. By repeating this procedure at all OR gadgets whose districts differ from the ones
in I, we eventually get IT,. There can be at most npg recombinations since this is the number of OR gadgets. O

The following lemma establishes the equivalence between a recombination move in G and an edge reversal move in
Ghyer-
NCL

Lemma 13. For every (k, 0)-BCP 1y € My, obtained from a satisfying orientation X1 on G}y, every recombination on Iy yields a
(k, 0)-BCP I such that T, € M, where X is an orientation on G}y, that differs from X1 by the orientation of at most a single
edge. Similarly, for an orientation X, on G}, obtained from X by reversing the orientation of a single edge, there is a sequence of
one or two recombinations that takes any ITy € My, to some 1 € My,.

Proof. We begin with proving the first claim. Let D, and Dq be two districts in ITy that are recombined into districts V
and W of ITy. First assume that p = v is an OR vertex of G}, Dy is the district containing {vq, v, v¢}, and g =V’ Let
W Dbe the district containing v’. Since w(v') =9« and n/k = 10c, then W must contain exactly v/ and one heavy vertex
in {vy, v;J, v.}. Then D, and V induces the same graph on {vg, vp, v¢,a®,bt, cT}. Thus, we can read a graph orientation
X = Xy from Iy, i.e, both ITy and I, are in My,. Now, assume that p is an AND/OR vertex of Gy, adjacent to edges
a, b, and c, Dy is the district containing {pq, pp. pc}, and q is a degree-2 vertex of G}, adjacent to edges c and d with
Dq being the district containing {pc, pq}. Let V be the district containing the heavier vertex in {pq, py, pc}. By construction,
the weight of such vertex is greater than 5« — 1. Then V cannot contain {p¢, pg} and {p¢, pg} C W. Due to size constraints,
W cannot contain any other heavy vertex and {pq, pp, pc} C V. Note that D, and V (Dq and W) differ only by a vertex in
{c™, cT}. We can then read an orientation X; off of IT, that differs from X; only by the orientation of c.

We proceed to prove the second claim. Let ¢ = pq € E(Gy,) be the edge whose orientation differs between X; and X».
Let p be an AND/OR vertex incident to a,b,c € E(G}VCL), and q be a degree-2 vertex incident to c,d € E(G}VCL). Let I1; be
an arbitrary (k, 0)-BCP in My, . First, assume that p is an AND vertex. Recombine Dy, Dq € Iy, into D;, =D, \{c IU{ct}
and D(’I =Dg\ {ct}U {c™} obtaining I1,. By Lemma 11, the districts in IT, are connected and by construction IT, € Mx,.
Now assume that p is an OR vertex. If ¢ is directed towards g in X;, the same proof as above holds. Else, c is directed
towards p in X7 and since X; satisfies the NCL constraints there is an edge e € {a, b} directed towards p. If D, € ITx, does
not contain v, we can perform one recombination so that it does as in Lemma 12. The remainder of the proof is the same
as for the case when p is an AND vertex. O

The combination of Lemmas 11, 12, and 13 yield the following lemma.
Lemma 14. BR(G, k, 0) is PSPACE-complete even for a planar graph G with constant maximum degree.
5.2. Generalizations

This section presents three generalizations of Lemma 14. The second generalization subsumes the first as well as
Lemma 14. However we present all three in this order for ease of exposition.

Larger slack By simply adjusting the value of & =5 + s, we can generalize Lemma 14 to larger slacks s = O (n'~¢) for any
constant 0 < ¢ < 1. Indeed, any value o > 4 + s would work. There is a trade-off between the size of the slack and the
maximum degree of G as the maximum degree is ©(«). Note the orientation of an edge e is encoded by the membership
of the corresponding vertex e™ in the (k, s)-BCP of G. In Section 5.1, e~ was used to balance the size of the districts; and
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e~ and e’ were necessarily in a different districts. When the slack s is positive, this will no longer be the case, but as long
as the districts in each gadget contain the same heavy vertices as in Section 5.1, we can use membership of et to encode
the orientation of e. The key properties that we have to maintain for all (k, s)-BCPs IT are the following:

v

a

Fig. 5. Construction of the filler gadget.

(i) for all v e V(Gy,) of degree-2 incident to edges a and b, T1(vq) = IT1(v});
(i) for v € V(Gy,) of all degree-3 incident to edges a, b, and c, [T(vq) = I1(vp) = I1(v,); and
(i) for all OR vertices v € V(Gy¢;), TI(v') contains exactly one heavy vertex other than v’.

Property (iii) is clearly satisfied because n/k remains 10 and IT(v’) cannot contain only v’ or else it would contain less
than n/k —s =9« + 5 vertices, and it also cannot contain 3 heavy vertices or it would contain more than n/k+s=11a¢ —5
vertices. Consider Property (ii). Recall that w(v.) > 6a — 3. Then, II(v.;) cannot contain any heavy vertices of adjacent
gadgets (of weight 5o — 1) or it would be larger than the maximum allowed size. Then IT(v.) must contain only heavy
vertices in the gadget. Indeed, all other available heavy vertices have weight «. Then, IT(v.) must contain all other available
heavy vertices in the gadget (excluding v’ and one other in case v is an OR vertex because of (iii)) or it would contain less
than the minimum allowed number of vertices. Then, Property (i) becomes trivial given (ii) and (iii). Note that this approach
does not allow the slack to be linear in n. By construction, the size of the instance becomes n = |V (G)| = O(s|V (Gncr)|)-
We allow s to be any polynomial in |V (Gncr)| as long as the size of the output instance of the reduction is polynomial.
Note that k is fixed for a given Gnci. Then k is bounded by O (n/s).

Corollary 15. BR(G, k, s) is PSPACE-complete even if G is planar, k € O (nf), and s € O (n'~¢) for any constant 0 < & < 1.

Bounded-degree triangulation G We now generalize Corollary 15 restricting G to be a planar triangulation of constant max-
imum degree. As a consequence, our reduction proves that BCP is also NP-hard for this class of graphs generalizing the
results in [3]. The main technical ingredient of this section is the gadget shown in Fig. 5 (b) called filler gadget. It consists
of 5 vertices labeled “red” inducing a maximal planar subgraph. Each internal face f of this induced subgraph is called
a heavy face, and is assigned a positive integer weight w(f). We assume that w(f) is a multiple of 3. Each heavy face
represents a subgraph Gy with w(f) + 3 vertices whose outer face is f. Fig. 5 (a) shows the recursive construction of Gy.
Then Gy is the 4-connected maximal planar graph with 6 vertices (including the 3 vertices of f) containing a heavy face
f’. The face f’ is chosen so that it is vertex-disjoint from f and w(f’) = w(f) — 3. The base case, a heavy face with zero
weight, is simply an ordinary face.

We now describe how to modify G produced in the reduction in Section 5.1. We will add filler gadgets to the faces
of G and triangulate the resulting plane graph as follows. We set the weight of every heavy face in the filler gadgets to
100 — s — 1. We proceed with the details; refer to Fig. 5 (c). First, assign each heavy vertex to a face of G. For each face
f assigned with one or more heavy vertices, add one copy of the filler gadget to the interior of f for each heavy vertex.
Triangulate f so that there is no new edge between vertices of f, i.e., all new edges have at least one endpoint at a filler
gadget. We also require that for each heavy vertex v there is a face f, containing v and one edge of the outer face of
its corresponding filler gadget F,. We transfer the weight from v to f, by making v a light vertex and f, a heavy face,
and setting w(fy,) = 5s + w(v) — 1. For remaining faces f of G, if f is not a triangle and has not been assigned any
heavy vertex, add a copy of the filler gadget in f triangulating it as before, i.e.,, no new edge should be between vertices
of f. Choose a neighboring face f’ (sharing an edge with the gadget) to make if heavy with w(f’) = 5s. The resulting
graph G’ is an edge-maximal planar graph. Finally, set @ = 11s + 5 and increase k by 5 for each copy of the filler gadget
used.

It remains to define the initial and target (k,s)-BCPs IT4 and ITp defining an instance of BR(G,k,s). We construct
such (k, s)-BCPs with 0 slack. For that, we show that we can find a balanced connected partition of the filler gadget and
5s vertices in the neighbor heavy face into 5 connected districts. We construct a Hamiltonian path of the gadget and its
neighboring heavy face as follows. The main structure of the Hamiltonian path is shown in Fig. 6 (a). For each heavy face we
need to find a path that visits all internal vertices and starts and ends with a vertex on its outer face. We accomplish this
with the recursive construction shown in Fig. 6 (b). Considering that the path starts in the filler gadget, we ignore the first
edge to obtain the desired Hamiltonian path. It is now easy to partition the 10«-long prefix of the path into 5 connected
components. The remainder of the construction follows Section 5.1.
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Fig. 6. Inductive construction of the Hamiltonian path used to partition the filler gadget.

Lemma 16. In every (k, s)-BCP I1 of G/, for every filler gadget F, exactly five districts of T1 intersect F and the number of vertices in
the union of these five districts outside of F is at most 10s.

Proof. First note that n/k remains 10«. The number of vertices in F is 5(10« — s), thus it must intersect at least 5 districts
of I1. Each district that intersects F must contain a red vertex since each heavy face has less than the minimum capacity of
a district. Since F has only 5 red vertices, there must be exactly 5 districts intersecting F, each containing exactly one red
vertex. The maximum number of vertices of these districts outside of F is 5(10c +s) — 5(10« —s) =10s. O

Lemma 16 allows us to mostly ignore filler gadgets. We refer to the districts that intersect a filler gadget as a filler
district. Recall that every heavy vertex v in G is now adjacent to a heavy face f, in G’. Since 10s < w(fy) < 10« — s,
if a filler district contains v then it would disconnect vertices of f, that cannot be in any district. Then, the district that
contains v is not filler and it must also contain the w(v) &= 5s — 1 vertices in f, that are not in filler districts. That mimics
the weights of heavy vertices in G such as v in a 3-connected graph G’ within a £5s accuracy. One can check that the
new choice of o accommodates these variations guaranteeing properties (i)-(iii). We omit the details since the argument is
fairly similar as before. The situation in which filler districts contain normal vertices of G would then be equivalent to the
reduction in Section 5.1 where some of the non-heavy vertices are deleted. Intuitively, deleting vertices only makes it more
difficult to satisfy the connectivity constraints. We need to extend the equivalence to the NCL orientation to allow for when
vertices et corresponding to an edge e are taken by filler districts. That would correspond to a partial orientation where
e is not directed, i.e., it does not count for satisfying the constraints of neither its endpoints. It is clear that such a variant
of NCL remains PSPACE-complete since we still require that the constraints are satisfied at each vertex ignoring undirected
edges and a sequence of operations in this setting can be converted by a sequence in the normal NCL setting and vice versa
by assigning an arbitrary direction for an undirected edge. For more details see an asynchronous version of NCL [21]. Then,
Lemmas 11-13 hold for this variant. The construction distributes the weights of heavy vertices of G into heavy faces of G'.
By the recursive construction, the degree of each vertex increases by at most 2. Then, the filler gadget has constant degree.
Note that k remains O (n/s).

Theorem 17. BR(G, k, s) is PSPACE-complete even if G is maximal planar of constant maximum degree, k € O (nf), and s € O (n'~%)
for0<e<1.

Finding balanced connected partitions The NCL orientation problem is defined by an input undirected graph Gyc; edge
colored as before, and asks whether there exist an orientation of Gyc; that satisfies the NCL constraints. This problem is
NP-complete [11]. We remark that our construction implies the following theorem.

Theorem 18. It is NP-complete to decide whether there exist a (k, s)-BCP of a graph G, even if G is maximal planar of constant
maximum degree, k € O(nf), ands € O(n'~¢) for0 <& < 1.

Constant number of districts Note that, in the previous hardness proofs, k cannot be a constant. We now build on Lemma 14
to prove PSPACE-hardness for instances of BR(G, 3, s). Note that with k =2 the configuration space is the complete graph
by definition. Also note that this result does not subsume Theorem 17 since the graph produced has cut-vertices as we will
see in the remainder of this section. We now show how to modify the graph G produced in the reduction of Section 5.1.
We modify the gadgets as follows. The AND gadget remains unchanged while the OR gadget adjacent to edges a, b and ¢
as in Fig. 7 (a) is changed by adding the edges a*vg, a*v;, btv}, bTv[, ctv;, and ctv,. The vertices vj, v, and v, are
no longer heavy vertices. The main difference is in the degree-2 gadgets which are shown in Fig. 7 (b). They now have six
heavy vertices each, vq, Vg, Vap, Vi, Vb, V. Refer to Fig. 7 (c)-(d). For each face f of Gyci we create a new heavy vertex
vy in G which concludes the description of V(G). We now describe how to complete E(G). For that we have to describe
two spanning trees of a new graph Gy, described as follows. We build G, from Gycy by adding vy to the face f,
triangulating the result by adding edges incident to vy, and deleting every original edge of Gnc;. Refer to Fig. 7 (c). Note
that Gy, is bipartite, there is a one-to-one correspondence between degree-2 vertices of G}, and faces of G}, and that
such faces are quadrilaterals. Let Ty be a spanning tree of Gy, and T be an interdigitating spanning tree of the dual of
Ghcp» 1-e., spanning all degree-2 vertices of G}y, so that T; and T do not both use the primal or dual of the same edge. For
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Fig. 7. Construction of the reduction with k = 3. The three districts vq, v2, and V3 are colored magenta, cyan, and orange respectively. (a) New OR gadget.
(b) New degree-2 gadget. (c) Gy, overlapped with G}, . The edges of Gy, are shown in gray and its vertices are shown as squares. (d) The corespondent
part of G.

every edge uvy in Ty, add an edge uqvy, where a is an edge incident to u in G}, and a appears before u in a clockwise
traversal of f. For every edge uv in T, add the edge u/,vq or ugv,; where a and b (resp., ¢ and d) are the edges incident
to u (resp., v) and the addition of the edge does not introduce a crossing in G. Then, for every pair of vertices of the form
vq or v, where a is an edge incident to a degree-2 vertex v in G\, that are currently in the same face of G, add an edge
between them excluding edges of the form v,v}, i.e, an edge inside a face of a degree-2 vertex. Note that the new edges
could be of the form v4vy, i.e., connecting two vertices in the same degree-2 vertex but corresponding to a different edge
of Gy, as shown in Fig. 7 (d) by curved edges. Finally, delete one of the edges added in the last step.

We now give some informal intuition about the construction. We will set up the weights so that heavy vertices can only
be part of the same districts which we label V¢, V, and V3 in any (k, s)-BCP of G. The following is the key property that
we exploit.

(x) District V1 must contain every vertex vy created from a face f of Gncy as well as every vq, vy and v of a gadget
corresponding to a degree-3 vertex v of Gy, . District V, must contain all vertices of degree-2 gadgets of the form vg
or vi,. District V3 must contain all remaining heavy vertices, i.e., heavy vertices of degree-2 gadgets of the form v, and
heavy vertices v’ of gadgets corresponding to OR vertices v.

The connectivity of V; (V3) will mimic, in broad terms, the spanning tree T (T3). District V3 will separate V; and V;
also containing the heavy vertex v’ of OR gadgets. We now encode the direction of an edge e in G}, by whether V1 or V3
contain e* respectively meaning that e points to its degree-3 or degree-2 end.

We now adjust the weights of the heavy vertices of G in order to obtain Property (x). Let ny, ngr and nayp be the
number of degree-2, OR and AND vertices in Gj, respectively. Set the weights of V1’s heavy vertices to w{ = &, which
we will set later. Choose one of the heavy vertices assigned to V, and set its weight to n/3 + s — w1, and set the weights
of its remaining heavy vertices to wy = (wy —s —ny)/(2np — 1). Choose one of the heavy vertices assigned to V3 and
set its weight to n/3 +s — w2, and set the weights of its remaining heavy vertices to w3 = (W, —s — 3ny —nog)/(4ny +
nor — 1). We set o so that ws = s + n, where n, is the number of light vertices in G. Then o € O(n%s) and |V(G)| €
O(a|V(Gnco)D)-

Theorem 19. BR(G, 3, s) is PSPACE-complete even if G is planar with constant maximum degree, and s € O (n'~%) for0 < & < 1.
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Proof. As before, each individual weight of a heavy vertex is smaller than the minimum threshold for a district and thus
a district must contain all vertices in the heavy vertex. We can implement the weights of a heavy vertex v with a path
of length w(v) with an endpoint at v in order to keep the maximum degree of G upper bounded by a constant. We can
assume that Gycy has constant face degree, or else one can use techniques by Hearn and Demaine [11] to split large faces
using their “red-blue conversion” gadget. Thus, we keep the maximum degree of G upper bounded by a constant. We first
show that Property () holds in any (k, s)-BCP IT on G. By construction, we have that wi > wj > ws. We first show the
claim for V3. Assume that V3 is the district containing the heavy vertex of weight n/3 + s — w2. For contradiction assume
that it also contain a heavy vertex whose weight is not ws. Then such vertex must have a weight larger than w;, which
makes the size of V3 greater than n/3 + s, a contradiction. Now assume for contradiction that V3 does not contain all of
the heavy vertices with weight ws. Then the maximum size of V3 is n/3 — ws +n, =n/3 — s even if V3 contains all light
vertices, a contradiction since Vq{ and V;, need to contain light vertices to be connected. We conclude that V3 must satisfy
(*). The arguments for V, are similar once (x) is established for V3, and thus V; also satisfies (x).

We now show that Lemma 11 holds in this context. By (x), V1 must connect all vq, v, and v, in every AND and OR
gadget. Moreover, apart from such vertices, V¢ can only contain light vertices and heavy vertices of the form vy that came
from a face f of Gycr. Thus the only paths that connect vq, v and v in a given gadget are contained in the gadget itself.
Therefore, the NCL constraints at degree-3 gadgets must be satisfied as before. Note that the new edges in the OR gadget
do not change its behavior. It remains to show the same for degree-2 gadgets. By (), V> must connect all vg, and v/, in
every degree-2 gadget. By construction and Property (%), all paths that connect such vertices must be contained in the same
gadget. Similarly, V3 must connect v, and v, (v, and v;) by a path contained in the degree-2 gadget. Then, at least one
vertex in {a™,b™} must be in V3 to allow space for V, to connect vy, and Vi

To conclude the proof it is enough to show that Lemma 13 holds in this context. By the way we encode the orientation
of edges, only a recombination between V; and V3 can change the orientation of an edge. The potential worry is that, now
that V1 and V3 are adjacent at every gadget, one recombination could alter the orientation so that we can’t transform it
into a sequence of single orientation reversals in Gyci. However, the presence of V; in every degree-2 vertex prevents that
the orientation of two edges incident to the same degree-2 vertex flip simultaneously. Then the set of edges that flip in one
recombination induces paths of at most two edges having a degree-3 vertex as a middle vertex. Then we can represent the
simultaneous flips with a sequence of flips having first all flips that point an edge towards a degree-3 vertex followed by all
flips that point an edge towards a degree-2 vertex. Each flip in the two subsequences is independent of other flips in the
same subsequence. As proved by Viglietta [21], even though one operation can flip many independent edges simultaneously,
the problem is still equivalent to regular NCL. In the other direction, we can show that an edge flip can always be obtained
by at most 2 recombinations. The first recombination is between V, and V3 so that V, contains only the appropriate path
between each vg, and v(,. The second recombination is between V¢ and V3, exchanging the membership of at and a~
representing the reversal of an edge a. O

6. Conclusion and open problems

We have shown that the configuration space R(G, k) of (k,s)-BCPs is connected when G is connected and s = oo, or
when G is Hamiltonian and s > n/k. We hope that our results inform future research on the properties of G, k, and s that
are sufficient to obtain an efficient sampling of Bals(G, k). We also leave it as an open problem whether our results in
Section 3 generalize to other classes of graphs. We conjecture that the configuration space Rs(n, k) is connected for every
biconnected graph G on n vertices when s > n/k. However, our techniques do not directly generalize; it is unclear how to
extend the notion of canonical k-partitions in the absence of a Hamilton cycle.

We have shown that BR(G, k, s) is PSPACE-complete even in specific settings that are of interest in applications such as
sampling electoral maps. Our results imply that the configuration space R (G, k) has diameter exponential in n, establishing
as well an exponential lower bound on the mixing time of a Markov chain on Rs(G, k) for these settings. We note that
Theorems 17 and 19 do not include other settings of interest such as when G is maximal planar (or even 3-connected) and
k is a constant. We leave these as open problems.
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