
Theoretical Computer Science 923 (2022) 13–26
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Reconfiguration of connected graph partitions via 

recombination ✩

Hugo A. Akitaya a, Matias Korman b, Oliver Korten c, Diane L. Souvaine d, 
Csaba D. Tóth e,d,∗
a Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA
b Siemens Electronic Design Automation, Wilsonville, OR, USA
c Department of Computer Science, Columbia University, New York, NY, USA
d Department of Computer Science, Tufts University, Medford, MA, USA
e Department of Mathematics, California State University Northridge, Los Angeles, CA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 November 2021
Received in revised form 8 April 2022
Accepted 25 April 2022
Available online 29 April 2022
Communicated by T. Calamoneri

Keywords:
Balanced partition
Connected graph partition
Recombination
Configuration space

Motivated by applications in gerrymandering detection, we study a reconfiguration 
problem on connected partitions of a connected graph G . A partition of V (G) is connected
if every part induces a connected subgraph. In many applications, it is desirable to obtain 
parts of roughly the same size, possibly with some slack s. A Balanced Connected k-
Partition with slack s, denoted (k, s)-BCP, is a partition of V (G) into k nonempty subsets, 
of sizes n1, . . . , nk with |ni − n/k| ≤ s, each of which induces a connected subgraph (when 
s = 0, the k parts are perfectly balanced, and we call it k-BCP for short).
A recombination is an operation that takes a (k, s)-BCP of a graph G and produces another 
by merging two adjacent subgraphs and repartitioning them. Given two k-BCPs, A and 
B , of G and a slack s ≥ 0, we wish to determine whether there exists a sequence of 
recombinations that transform A into B via (k, s)-BCPs. We obtain four results related to 
this problem: (1) When s is unbounded, the transformation is always possible using at 
most 6(k − 1) recombinations. (2) If G is Hamiltonian, the transformation is possible using 
O (kn) recombinations for any s ≥ n/k, (3) there exist negative instances for s ≤ n/(3k), and 
(4) we show that determining whether a sequence of recombination that connects two 
(k, s)-BCP of a graph G exists is PSPACE-complete when k ∈ O (nε) and s ∈ O (n1−ε), for any 
constant 0 < ε ≤ 1. This statement holds even for restricted settings such as when G is an 
edge-maximal planar graph or when k ≥ 3 and G is planar.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Partitioning the vertex set of a graph G = (V , E) into k nonempty subsets V = ⋃k
i=1 V i that each induces a connected 

graph G[V i] is a classical problem, known as the Connected Graph Partition problem [9,16]. Motivated by fault-tolerant 
network design and facility location problems, it is part of a broader family of problems where each induced graph G[V i ]
must have a certain graph property (e.g., �-connected or H-minor-free). In some instances, it is desirable that the parts 
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V 1, . . . , Vk have approximately the same size (depending on some pre-established threshold). A Balanced Connected k-
Partition (for short, k-BCP) is a connected partition requiring that |V i | = n/k, for i ∈ {1, . . . , k} where n = |V (G)| is the total 
number of vertices. Dyer and Frieze [7] proved that finding a k-BCP is NP-hard for all 2 ≤ k ≤ n/3. For k = 2, 3 the problem 
can be solved efficiently when G is bi- or triconnected, respectively [19,22], and is equivalent to the perfect matching 
problem for k = n/2. Later Chlebíková [4] and Chataigner et al. [3] obtained approximation and inapproximability results for 
maximizing the “balance” ratio maxi |V i|/ min j |V j| over all connected k-partitions. See also [12,14,18,23] for variants under 
different optimization criteria.

In this paper our basic element is a connected k-partition of a graph G = (V , E) that is balanced up to some additive 
threshold that we call a slack s ≥ 0, denoted (k, s)-BCP. We explore the space of all (k, s)-BCPs of the graph G = (V , E). 
Note that the total number of (k, s)-BCPs for all s ≥ 0, is bounded above by the number of k-partitions of V , which is the 
Stirling number of the second kind S(n, k), and asymptotically equals (1 + o(1))kn/k! for constant k. This bound is the best 
possible for the complete graph G = Kn .

In a recent application [1,6,17], G = (V , E) represents the adjacency graph of precincts in an electoral map, which 
should be partitioned into k districts V 1, . . . , Vk where each district will elect one representative. Motivated by the design 
and evaluation of electoral maps under optimization criteria designed to promote electoral fairness, practitioners developed 
empirical methods to sample the configuration space of potential district maps by a random walk on the graph where 
each step corresponds to some elementary reconfiguration move [8]. From a theoretical perspective, the stochastic process 
converges to uniform sampling [13,15]. However, the move should be local, i.e., it must affect a constant number of districts, 
to allow efficient computation of each move, and it should support rapid mixing (i.e., the random walk should converge, 
in total variation distance, to its steady state distribution in time polynomial in n). Crucially, the space of (approximately 
balanced) k-partitions of G must be connected under the proposed move. Previous research considered the single switch
move, in which a single vertex v ∈ V switches from one set V i to another set V j (assuming that both G[V i] and G[V j]
remain connected). Akitaya et al. [2] proved that the configuration space is connected under single switch moves if G is 
biconnected, but in general it is NP-hard both to decide whether the space is connected and to find a shortest path between 
two valid k-partitions. While the single switch is local, both worst-case constructions and empirical evidence [5,17] indicate 
that it does not support rapid mixing.

In this paper we consider a different move. Specifically, we consider the configuration space of k-partitions under the
recombination move, proposed by DeFord et al. [5], in which the vertices in V i ∪ V j , for some i, j ∈ {1, . . . , k}, are re-
partitioned into V ′

i ∪ V ′
j such that both G[V ′

i ] and G[V ′
j] are connected. We also study variants restricted to balanced or 

near-balanced partitions, that is, when |V i | = n/k for all i ∈ {1, . . . , k}, or when 
∣
∣|V i| − n/k

∣
∣ ≤ s for a given slack s ≥ 0. 

In application domains mentioned above, the underlying graph G is often planar or near-planar, and in some cases it is 
a triangulation (i.e., an edge-maximal planar graph). Results pertaining to these special cases are of particular interest. 
Our results lay down theoretical foundations for this model in graph theory and computational tractability. Although our 
results imply lower bounds in the mixing time of worst-case instances, they have no direct implication for the average-case 
analysis.

Definitions Let G = (V , E) be a graph with n = |V (G)|. For a positive integer k, a connected k-partition � of G is a 
partition of V (G) into disjoint nonempty subsets {V 1, . . . , Vk} such that the induced subgraph G[V i] is connected for all 
i ∈ {1, . . . , k}. Each subgraph induced by V i is called a district. We write �(v) for the subset in � that contains vertex v .

Denote by Part(G, k) the set of connected k-partitions on G . We also consider subsets of Part(G, k) in which all districts 
have the same or almost the same number of vertices. A connected k-partition of G is balanced (k-BCP) if every district 
has precisely n/k vertices (which implies that n is a multiple of k); and it is balanced with slack s ≥ 0 ((k, s)-BCP), if ∣
∣|U | − n/k

∣
∣ ≤ s for every district U ⊂ V . Let Bals(G, k) denote the set of connected k-partitions on G that are balanced with 

slack s, i.e., the set of all (k, s)-BCPs. The set of balanced k-partitions is denoted Bal(G, k) = Bal0(G, k); and Part(G, k) =
Bal∞(G, k).

We now formally define a recombination move as a binary relation on Bals(G, k). Two non-identical (k, s)-BCPs, �1 =
{V 1, . . . , Vk} and �2 = {W1, . . . , Wk}, are related by a recombination move if there exist i, j ∈ {1, . . . , k}, and a permutation 
π on {1, . . . , k} such that V i ∪ V j = Wπ(i) ∪ Wπ( j) and V� = Wπ(�) for all � ∈ {1, . . . , k} \ {i, j}. We say that �1 and �2 are 
a recombination of each other. This binary relation is symmetric and defines a graph on Bals(G, k) for all s ≥ 0. This graph 
is the configuration space of Bals(G, k) under recombination, denoted by Rs(G, k).

Balanced recombination problem BR(G, k, s) Given a graph G = (V , E) with |V | = n vertices and two (k, s)-BCPs A and B , 
decide whether there exists a path between A and B in Rs(G, k), i.e., whether there is a sequence of recombination moves 
that carries A to B such that every intermediate partition is a (k, s)-BCP.

Our results We prove, in Section 2, that the configuration space R∞(G, k) is connected whenever the underlying graph 
G is connected and the size of the districts is unrestricted. It is easy, however, to construct a graph G where R0(G, k) is 
disconnected. We study what is the minimum slack s, as a function of n and k, that guarantees that Rs(G, k) is connected 
for all connected (or possibly biconnected) graphs G with n vertices. We prove that Rs(G, k) is connected and its diameter 
is O (nk) for s = n/k when G is a Hamiltonian graph (Section 3). As a counterpart, we construct a family of Hamiltonian 
planar graphs G such that Rs(G, k) is disconnected for s < n/(3k) (Section 4).
14
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We prove in Section 5 that BR(G, k, s) is PSPACE-complete even for the special case when G is a triangulation (i.e., an 
edge-maximal planar graph), k is O (nε) and s is O (n1−ε) for constant 0 < ε ≤ 1. As a consequence we show that finding 
a (k, s)-BCP of G is NP-hard in the same setting. Note that the previously known hardness proofs for finding k-BCPs either 
require that G is weighted and nonplanar [3] or G contains cut vertices [7]. In contrast, if G is planar and 4-connected, 
then G admits a Hamilton cycle [20] and, therefore, a (k, s)-BCP is easily obtained by partitioning a Hamilton cycle into the 
desired pieces. Finally, we modify our construction to also show that BR(G, k, s) is PSPACE-complete even for the special 
case when G is planar, k ≥ 3, and s is bounded above by O (n1−ε) for constant 0 < ε ≤ 1.

2. Recombination with unbounded slack

In this section, we show that the configuration space R∞(G, k) is connected under recombination moves if G is con-
nected (cf. Theorem 3). The proof proceeds by induction on k, where the induction step depends on Lemma 2 below.

We briefly review some standard graph terminology. A block of a graph G is a maximal biconnected component of G . 
A vertex v ∈ V (G) is a cut vertex if it lies in two or more blocks of G , otherwise it is a block vertex. In particular, if v is 
a block vertex, then G − v is connected. If G is a connected graph with two or more vertices, then every block has at least 
two vertices. A block is a leaf-block if it contains precisely one cut vertex of G . Every connected graph either is biconnected 
or has at least two leaf blocks. The arboricity of a graph G is the minimum number of forests that cover all edges in E(G). 
The degeneracy of G is the largest minimum vertex degree over all induced subgraphs of G . It is well known that if the 
arboricity of a graph is a, then its degeneracy is between a and 2a − 1.

Lemma 1. If the arboricity of a graph is a, then it contains a block vertex of degree at most 2a − 1.

Proof. It is enough to prove the claim for a connected component of G , so we may assume that G is connected. First 
assume that G is biconnected. Then every vertex is a block vertex. Since the degeneracy of G is at most 2a − 1, there exists 
a vertex of degree at most 2a − 1, as required. Next assume that G is not biconnected. Let G[U ] be a leaf-block of G , and 
let u ∈ U be the unique cut-vertex of G in U . Since the degeneracy of G is at most 2a − 1, there exists a vertex in U whose 
degree in G[U ] is at most 2a − 1. If a block vertex v ∈ U \ {u} has degree at most 2a − 1, our proof is complete. Suppose, to 
the contrary, that the degree of every block vertex in U is at least 2a (and the degree of the unique cut vertex in G[U ] is 
at least 1). By the handshake lemma, the number of edges in G[U ] is at least 1

2 (2a(|U | − 1) + 1) > a(|U | − 1). However, the 
arboricity of G[U ] is at most a, and a forests on the vertex set U jointly contain at most a(|U | − 1) edges, which provides a 
contradiction. �

The heart of the induction step of our main result hinges on the following lemma.

Lemma 2. Let G be a connected graph, k ≥ 2 an integer, and �1, �2 ∈ Part(G, k) be two k-partitions of G. Then there exists a block 
vertex v ∈ V (G) such that up to three recombination moves can transform �1 and �2 each to two new k-partitions in which {v} is a 
singleton distinct.

Proof. Let �1 = {V 1, . . . , Vk} and �2 = {W1, . . . , Wk}. We construct two spanning trees, T1 and T2, for G that each contain 
k − 1 edges between the districts of �1 and �2, respectively. Specifically, for i ∈ {1, . . . , k}, let T (V i) be a spanning tree of 
G[V i], T (W i) a spanning tree of G[W i]. As G is connected, we can augment the forest 

⋃k
i=1 T (V i) to a spanning tree T1 of 

G , using k − 1 new edges, which connect vertices in distinct districts. Similarly, we can augment 
⋃k

i=1 T (W i) to a spanning 
tree T2 of G . Now, let G ′ = T1 ∪ T2. By definition, the arboricity of G ′ is at most 2. By Lemma 1, G ′ contains a block vertex 
v with degG ′ (v) ≤ 3.

We show that we can modify �1 (resp., �2) to create a singleton district {v} in at most three moves. Assume without 
loss of generality that v ∈ V 1 and v ∈ W1. Since degG ′ (v) ≤ 3, we have degT (V 1)(v) ≤ 3 and degT (W1)(v) ≤ 3. Consequently, 
T (V 1) − v (resp., T (W1) − v) has at most three components, each of which is adjacent to some other district, since G ′ − v
is connected. Up to three successive recombinations can decrease the district V 1 with the components of T (V 1) − v , and 
reduce V 1 to {v}. Similarly, at most three successive recombinations can reduce W1 to {v}. �
Theorem 3. Let G be a connected graph and k ≥ 1 a positive integer. For all �1, �2 ∈ Part(G, k), there exists a sequence of at most 
6(k − 1) recombination moves that transforms �1 to �2 .

Proof. We proceed by induction on k. In the base case, k = 1, and �1 = �2. Assume that k > 1 and claim holds for k −1. By 
Lemma 2, we can find a block vertex v ∈ V (G) and up to six recombination moves transform �1 and �2 into �′

1 and �′
2

such that both contain {v} as a singleton district. Since v is a block vertex, G − v is connected; and since {v} is a singleton 
district in both �′

1 and �′
2, we have �1 − {v}, �2 − {v} ∈ Part(G − v, k − 1). By induction, a sequence of up to 6(k − 2)

recombination moves in G − v can transform �1 −{v} into �2 −{v}. These moves remain valid recombination moves in G if 
we add singleton district {v}. Overall, the combination of these sequences yields a sequence of up to 6 + 6(k − 2) = 6(k − 1)

recombination moves that transforms �1 to �2. This completes the induction step. �
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3. Recombination with slack

In this section, we prove that the configuration space Rs(G, k) is connected if the slack is greater or equal to the average 
district size, that is, s ≥ n/k, and the underlying graph G is Hamiltonian (Theorem 9).

Let G be a graph with n vertices that contains a Hamilton cycle C . Assume that n is a multiple of k. A k-partition in 
Bals(G, k) is canonical if each district consists of consecutive vertices along C . Using a slack of s ≥ n/k, we can transform 
any canonical k-partition to any other using O (k2) reconfigurations.

Lemma 4. Let G be a graph with n vertices and a Hamilton cycle C , assume that k ≥ 1 is a divisor of n, and s ≥ n/k. Then the subgraph 
of Rs(G, k) induced by canonical k-partitions is connected and its diameter is at most k2 + 1.

Proof. Let � = {V 1, . . . , Vk} be a canonical k-partition with slack s, where districts V i , i ∈ {1, . . . , k}, are labeled in cyclic 
order along C . We call a district V i large if |V i| > n/k. We first show that at most 

(k
2

)
moves are enough to bring any 

canonical k-partition into a balanced canonical partition, i.e., none of its districts is large. Then we show that any pair of 
balanced canonical k-partitions is within k +1 moves apart. Overall the diameter of Rs(G, k) is at most 2

(k
2

)+k +1 = k2 +1.
We prove the first claim by induction on k − m, where the first m blocks are balanced (i.e., |V i | = n/k for all i ≤ m). In 

the base case, k − m = 0, and all districts are balanced. In the induction step, assume that 0 ≤ m < k. Since the average size 
of the districts Vm+1, . . . , Vk is n/k, but |Vm+1| 
= n/k, then there exist districts both below and above the average. Let j > m
be the first index such that V j ≤ n/k and V j+1 ≥ n/k or vice versa. We recombine V j and V j+1 into V ′

j and V ′
j+1 such that 

|V ′
j| = n/k. By assumption, 2n/k − s ≤ |V j | + |V j+1| ≤ 2n/k + s, thus n/k − s ≤ |V ′

j+1| ≤ n/k + s, hence the new k-partition 
is a (k, s)-BCP. We then successively recombine V i and V i−1 for i = j, j − 1, . . . , m + 1. In each of these recombinations, 
we set |V ′

i−1| = n/k and |V ′
i | = |V i−1 ∪ V i | − n/k, thus n/k − s ≤ |V ′

i | ≤ n/k + s. After j − m − 1 ≤ k − m − 1 moves, we 
obtain a (k, s)-BCP �′′ with |V ′′

m+1| = n/k, and we can increment m. The number of recombination moves is bounded by 
∑k−2

m=0(k − m − 1) = ∑k−1
i=1 i = (k

2

)
.

It remains to show that any two balanced canonical partitions in Rs(G, k) are within k + 1 moves apart. Note that if 
�1 = {V 1, . . . , Vk} and �2 = {W1, . . . , Wk} are two balanced canonical partitions, then �2 is a cyclic shift of �1 along C . 
Without loss of generality, assume that V 1 ∩ W1 
= ∅ and W1 ⊂ V 1 ∪ V 2. We describe a sequence of k + 1 moves that brings 
�1 to �2. First, recombine V 1 and V 2 making V ′

1 = V 1 − W2 and V ′
2 = V 2 ∪ W2. As a result, the border between the new 

districts V ′
1 and V ′

2 coincides with the border between W1 and W2.
We can now start an induction on k −m similar to previous one. Assume that �1 = {V 1, . . . , Vk} and �2 = {W1, . . . , Wk}, 

where �2 is a balanced canonical partition, V i = W i for all i ≤ m, and |V i| = n/k for all i /∈ {m + 1, k}. In particular, the 
border between Vm and Vm+1 coincides with the border between Wm and Wm+1. For m = 0, the statement holds after 
the recombination described above. In the base case, m = k, and we have �1 = �2. In the induction step, assume that 
0 ≤ m < k. Then, we recombine Vm and Vm+1 so that V ′

m = Wm and V ′
m+1 = Vm+1 − Wm . After the recombination, the 

induction hypothesis holds for m + 1. Overall, we need at most k recombinations until all districts are equal. �
In the remainder of this section, we show that every k-partition in Bals(G, k) can be brought into canonical form by a 

sequence of O (nk) recombinations.

Preliminaries We introduce some terminology. Let � = {V 1, . . . , Vk} ∈ Bals(G, k) with a slack of s ≥ n/k. For every i ∈
{1, . . . , k}, a fragment of G[V i] is a maximum set F ⊂ V i of vertices that are contiguous along C . Every set V i is the disjoint 
union of one or more fragments. The k-partition � is canonical if and only if every district has precisely one fragment. Our 
strategy is to “defragment” � if it is not canonical; that is, we reduce the number of fragments using recombination moves.

We distinguish between two types of districts in �: A district V i is small if |V i | ≤ n/k, otherwise it is large. Every edge 
in E(G) is either an edge or a chord of the cycle C . For every i ∈ {1, . . . , k}, let f i be the number of fragments of V i . Let Ti
be a spanning tree of G[V i] that contains the minimum number of chords. The edges of G[V i] along C form a forest of f i
paths; we can construct Ti by augmenting this forest to a spanning tree of G[V i] using f i − 1 chords.

The center of a tree T is a vertex v ∈ V (T ) such that each component of T − v has up to |V (T )|/2 vertices. It is well 
known that every tree has a center. For i ∈ {1, . . . , k}, let ci be a center of the spanning tree Ti of G[V i]. Let the fragment 
of V i be heavy if it contains ci ; and light otherwise. We also define a parent-child relation between the fragments of V i . 
Fragments A and B are in a parent-child relation if they are adjacent in Ti and if ci is closer to A than to B in Ti . Note that 
a light fragment and its descendants jointly contain less than |V i |/2 ≤ (n/k + s)/2 vertices; see Fig. 1.

The following four lemmas show that we can decrease the number of fragments under some conditions. In all four 
lemmas, we assume that G is a graph with a Hamiltonian cycle C , and � is a noncanonical (k, s)-BCP with s ≥ n/k.

Lemma 5. If a light fragment of a large district is adjacent to a small district along C , then a recombination move can decrease the 
number of fragments.

Proof. Assume without loss of generality that v1 v2 is an edge of C , where v1 ∈ F1 ⊂ V 1, v2 ∈ F2 ⊆ V 2, F1 is a light 
fragment of a large district V 1, and F2 is some fragment of a small district V 2. Let F 1 be the union of fragment F1 and all 
16
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Fig. 1. Left: A distinct V i with 26 vertices (hollow dots) in six fragments (bold arcs) along C . The spanning tree Ti of G[V i ] contains five edges, with a 
center at ci . Right: The parent-child relationship between fragments is defined by the tree rooted at the fragment containing ci .

its descendants. By the definition of the center c1, we have |F 1| < |V 1|/2. Apply a recombination replacing V 1 and V 2 with 
W1 = V 1 \ F 1 and W2 = V 2 ∪ F 1.

We show that the resulting partition is a (k, s)-BCP. Note also that both G[F 1] and G[V 1 \ F 1] = G[W1] are connected. 
Since v1 v2 ∈ E(G), then G[V 2 ∪ F 1] = G[W2] is also connected. As W1 contains the center of V 1, we have |W1| ≥ 1 and 
|W1| < |V 1| ≤ n/k + s. As V 2 is small, have |W2| = |V 2| + |F 1| < n/k + n/k ≤ 2n/k ≤ n/k + s. Finally, note that F1 ∪ F2 is a 
single fragment in the resulting k-partition, hence the number of fragments decreased by at least 1. �
Lemma 6. If no light fragment of a large district is adjacent to any small district along C , then there exists two adjacent districts along 
C whose combined size is at most 2n/k.

Proof. Suppose, to the contrary, that every small district is adjacent only to heavy fragments along C , and the combined 
size of every pair of adjacent districts along C is greater than 2n

k , meaning that at least one district is large. We assign every 
small district to an adjacent large district as follows. For every small district V i , let Fi be one of its arbitrary fragments. 
We assign V i to the large district whose heavy fragment is adjacent to Fi in the clockwise direction along C . Since every 
large district has a unique heavy fragment, and at most one district precedes it in clockwise order along C , the assignment 
is a matching of the small districts to large districts. Denote this matching by M . Every district that is not part of a pair in 
M must be large. By assumption, every pair in M has combined size greater than 2n

k , so the average district size over the 
districts in M is greater than n

k . The districts not in M are large so their average size also exceeds n
k . Overall the average 

district size exceeds n
k . But � is a k-partition of n vertices, hence the average district size is exactly n

k , a contradiction. �
Lemma 7. If districts V 1 and V 2 are adjacent along C and |V 1 ∪ V 2| ≤ n/k + s, then there is a recombination move that either decreases 
the number of fragments, or maintains the same number of fragments and creates a singleton district.

Proof. Assume, w.l.o.g., that v1 ∈ F1 ⊆ V 1, v2 ∈ F2 ⊆ V 2, where v1 v2 is an edge of C , and F1 and F2 are fragments of V 1
and V 2, respectively. The induced graph G[V 1 ∪ V 2] is connected, and T1 ∪ T2 ∪ v1 v2 is one of its spanning trees. If T1 or 
T2 contains a chord, say e, then (T1 ∪ T2 ∪ {v1 v2}) − e has two components, T3 and T4, each of size at most n/k + s − 1. A 
recombination move can replace V 1 and V 2 with V (T3) and V (T4). Since fragments F1 and F2 merge into one fragment, 
the number of fragments decreases by at least one. Otherwise, neither T1 nor T2 contains a chord. Then V 1 and V 2 each 
has a single fragment, so V 1 ∪ V 2 is a chain of vertices along C . Let v be the first vertex in this chain. A recombination move 
can replace V 1 and V 2 with W1 = {v} and W2 = (V 1 ∪ V 2) \ {v}. By construction both G[W1] and G[W2] are connected, 
|W1| = 1, |W2| = |V 1 ∪ V 2| − 1 ≤ n/k + s − 1, and the number of fragments does not change. �
Lemma 8. If there exists a singleton district, then there exists a sequence of at most k − 1 recombination moves that decreases the 
number of fragments.

Proof. Let C = (v1, . . . , vn). Assume without loss of generality that V 1 = {v1} is a singleton district, and v2 ∈ F2 ⊆ V 2, 
where F2 is a fragment of district V 2. Since not all districts are singletons, we may further assume that |V 2| ≥ 2. We 
distinguish between two cases.

Case 1: F2 
= V 2 (i.e., V 2 has two or more fragments). Let e be an arbitrary chord in T2, and denote the two subtrees 
of T2 − e by T −

2 and T +
2 such that v2 is T −

2 . Since |V 2| ≤ n/k + s, the subtrees T −
2 and T +

2 each have at most n/k + s − 1
vertices. We can recombine V 1 and V 2 into W1 = V 1 ∪ V (T −

2 ) and W2 = V (T +
2 ). Then |W1| ≤ 1 + (n/k + s − 1) = n/k + s

and |W2| ≤ n/k + s − 1; they both induce a connected subgraph of G . As the singleton fragment V 1 and F2 merge into one 
fragment of W1, the number of fragments decreases by at least one.

Case 2: F2 = V 2 (i.e., district V 2 has only one fragment). Let t > 2 be the smallest index such that vt is in a district 
that has two or more fragments (such district exists since � is not canonical). Then the chain (v1, . . . , vt−1) is covered by 
17
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Fig. 2. Problem instance showing that Rs(G,k) is not always connected (for k = 4, n = 56 and s = 4 = n
3k − O (1)).

single-fragment districts that we denote by V 1, . . . , V� along C . By recombining V i and V i+1 for i = 1, . . . , � − 1, we create 
new single-fragment districts W1, . . . , W� such that |W i | = |V i+1| for i = 1, . . . , � + 1 and |W�| = |V 1| = 1. Now we can 
apply Case 1 for the singleton district W� . �

We are now ready to prove the main result of this section.

Theorem 9. If G is a Hamiltonian graph on n vertices and s ≥ n/k, then Rs(G, k) is connected and its diameter is O (nk).

Proof. Based on Lemmas 5–8, the following algorithm successively reduces the number of fragments to k, thereby trans-
forming any balanced k-partition to a canonical partition. While the number of fragments is more than k, do:

1. If a fragment of a small district is adjacent to a light fragment of a large district along C , then apply the recombination 
move in Lemma 5, which decreases the number of fragments.

2. Else, by Lemma 6, there are two adjacent districts along C whose combined size is at most 2n/k. Apply a recombination 
move in Lemma 7. If this move does not decrease the number of fragments, it creates a singleton district, and then up 
to k − 1 recombination moves in Lemma 8 decrease the number of fragments by at least one.

There can be at most n different fragments in a k-partition of a set of n vertices. We can reduce the number of fragments 
using up to k recombination moves. Overall, O (nk) recombination moves can bring any two (k, s)-BCPs to canonical form, 
which are within k2 + 1 moves apart by Lemma 4. �
4. Disconnected configuration space

In this section we show that the configuration space is not always connected, even in Hamiltonian graphs. Specifically, 
we show the following result:

Theorem 10. For any k ≥ 4 and s > 0 there exists a Hamiltonian planar graph G of n = k(3s + 2) vertices such that Rs(G, k) is 
disconnected.

Proof. For simplicity, we first argue about the construction for k = s = 4 and thus n = 56 (an extension to larger values of 
k is given afterwards). Our instance consists of a cycle (shown as an octagon in Fig. 2) and four additional edges e1, . . . , e4
called chords. Note that G is planar despite the non-planar drawing in Fig. 2 (we may draw e1 and e3 in the outer face). 
All four districts initially have n/4 = 14 vertices.

Note that, if we were to remove any of the chords, the corresponding district would be split into two connected com-
ponents. The removal of the chords e1, . . . , e4 would split two of the districts (marked with circles in Fig. 2) into two 
components of sizes 1 + s and 1 + 2s, resp., and it would split the other two districts into two components of the same size 
within a vertex difference.

When a chord e is critical for the connectivity of the induced graph G[V i ] of a district V i , we say that V i is split (by e). 
As noted above, all four districts are split in the initial partition. We claim that no sequence of recombinations can change 
this fact. Assume, for the sake of contradiction, that after a sequence of recombinations, one of the districts D is not split. 
Consider the last recombination before this happens.
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This recombination involves two districts V i and V j that are split via edges ei and e j , respectively. The union of the two 
districts would have three components (after removing ei and e j). Thus, at least one of the two districts must remain split 
after the recombination (that is, we cannot “unsplit” both districts in one recombination).

Next, we show that not even one district can become unsplit. We distinguish between four cases depending on the edge 
that initially split a district, but it no longer does so after the recombination:

• We first argue that this edge can be neither e1 nor e2. We first argue for e1. By the assumption that D is the first unsplit 
district, the other chords (e2, e3, and e4) each split other districts. In particular, D is contained in a contiguous arc of C
that does not include an endpoint of any other chord. Since e1 was involved in the recombination, we may assume that 
D is contained in the lower right or lower left portion of Fig. 2, between the edges of e3 and e4 or e2 and e4. In either 
case, D can contain at most 2s + 1 vertices. Since n/k = 3s + 2, this is not possible unless the slack was at least s + 1. 
Edge e2 can be ruled out with an symmetric argument.

• Edge e3 is ruled out using a similar argument. Assume again that D is the first unsplit district, and the other three chords 
each split other districts. Then D is contained in a contiguous arc of C between endpoints of e1, e2, or e4, and this arc 
contains an endpoint of e3. Assume first that D is in an arc containing the left endpoint of e3. Then the right endpoint 
of e3 is in a district D ′ that contains both endpoints of e2. However, D ′ contains an arc of C between the endpoints of 
e2, and e2 does not split any district, a contradiction. Next assume that D is in the arc containing the right endpoint 
of e3. Then D is contained in an arc between two endpoints of e2, and so D is adjacent to the district split by e2. The 
union of these two districts lies in a continuous arc of 4s + 3 vertices. However, the minimum size of two districts is 
2(n/k − s) = 2(2s + 2); a contradiction. By symmetry, we also rule out e4, and thus we obtain that all districts must be 
split at all times.

Finally, it remains to show how to extend the proof for larger values of k. Observe that in the proof we never looked at 
the upper left side of the octagon (where we have a cluster of 2s vertices of one district followed by 2s vertices of another 
district). For each additional district we need, we can simply place 2 + 3s consecutive vertices. Those districts can do local 
recombinations, but they will not prevent the initial four districts from being split. �
5. Hardness results

This section presents our hardness results. Our reductions are from Nondeterministic Constrained Logic (NCL) reconfigu-
ration which is PSPACE-complete [10,11]. An instance of NCL is given by a planar cubic undirected graph G NC L where each 
edge is colored either red or blue. Each vertex is either incident to three blue edges or incident to two red and one blue 
edges. We respectively call such vertices OR and AND vertices. An orientation of G NC L must satisfy the constraint that at 
every vertex v ∈ V (G NC L), at least one blue edge or at least two red edges are oriented towards v . A move is an operation 
that transforms a satisfying orientation to another by reversing the orientation of a single edge. The problem gives two 
satisfying orientations A and B of G NC L and asks for a sequence of moves to transform A into B . As in [2], we subdivide 
each edge in G NC L obtaining a bipartite graph G ′

NC L with one part formed by original vertices in V (G NC L) and another 
part formed by degree-2 vertices. We require that an orientation must additionally satisfy the constraint that each degree-2 
vertex v must have an edge oriented towards v . The question of whether there exists a sequence of moves transforming 
orientation A′ into B ′ of G ′

NC L remains PSPACE-complete. We follow the framework in [2] with a few crucial differences. 
The main technical challenge is dealing with the slack constraints while maintaining the desired behavior for the gadgets. 
We first describe the reduction to instances with slack equals zero. We then generalize the proofs.

5.1. Zero slack

In the following reduction, we are given a bipartite instance of NCL given by (G ′
NC L , A

′, B ′), and we produce an instance 
of BR(G, k, s) of the balanced recombination problem consisting of two (k, s)-BCP of a planar graph G , �A and �B , with 
k = O (|V (G NC L)|) districts, and slack s = 0.

Construction We first describe a building block used in our gadgets, called heavy vertices, represented by green dots in 
Fig. 3. Each heavy vertex q is associated with a positive integer weight w(q) and represents a vertex that we also call q, 
slightly abusing notation, attached to w(q) −1 degree-1 vertices. The property that we exploit is that whichever district that 
contains vertex q must also contain all (w(q) − 1) degree-1 vertices attached to it or else the district containing one of such 
vertices would be disconnected. Then, in practice we can consider the w(q) vertices represented by the heavy vertex q as a 
single vertex q with weight w(q) towards the size of the district containing it. The ordinary vertices (i.e., vertices of weight 
1) are called light. We now define the AND and OR gadgets corresponding to the vertices of G NC L and the degree-2 gadget 
corresponding to the degree-2 vertices of G ′

NC L . Let α be a positive integer to be determined. The AND gadget is shown in 
Fig. 3 (a) made of 6 light vertices and 3 heavy vertices. We set w(va) = w(vb) = α and w(vc) = 8α − 3. The OR gadget is 
shown in Fig. 3 (b) made of 6 light vertices and 7 heavy vertices. We set w(va) = w(vb) = w(v ′

a) = w(v ′
b) = w(v ′

c) = α, 
w(vc) = 6α − 3, and w(v ′) = 9α. The degree-2 gadget is shown in Fig. 3 (c) made of 4 light vertices and 2 heavy vertices. 
We set w(va) = w(vb) = 5α − 1. Each edge e of G ′ is represented by two vertices, e− and e+ , that are shared by the two 
NC L
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Fig. 3. Gadgets for the reduction from NCL to BR(G,k,0). (For interpretation of the colors in the figures, refer to the web version of this article.)

Fig. 4. Equivalence between a satisfying orientation of G ′
NC L and a k-BCP of G .

gadgets corresponding to the vertices incident to e, as shown in Fig. 3 (d). For each vertex of G ′
NC L , create a corresponding 

gadget identifying the vertex pairs e− and e+ as shown in the figure. This concludes the construction of G . We set α = 5 so 
that the maximum weight of heavy vertices in AND/OR gadgets is greater than 5α − 1.

We now define �A and �B based on A′ and B ′ respectively. We describe the construction of a set MX of (k, 0)-BCPs 
of G for an arbitrary satisfying orientation X of G ′

NC L . Every district will have 10α vertices. Refer to Fig. 4. For every vertex 
v ∈ G ′

NC L create a district D v containing ve for every edge e incident to v . Add e+ (e−) to D v if e is directed towards (away 
from) v in X . That concludes the description for AND and degree-2 gadgets. If v is an OR vertex, let a, b and c be the 
edges incident to v . Since X satisfies the NCL constraints, at least one edge is directed towards v . Without loss of generality, 
let a be directed towards v in X . Let v1 be an arbitrary vertex in {v ′

a, v ′
b}. Then, add the vertices in {v ′

a, v ′
b, v

′
c} \ {v1}

to D v and create a district D v ′ = {v ′, v1}. Note that if there are multiple edges directed towards v in X , then there are 
multiple options of edges to be labeled “a”, and that v1 is chosen arbitrarily. Let MX be the set of all k-partitions that can 
be constructed from X with the procedure above. Lemma 11 will show that the members of MX are indeed (k, 0)-BCPs. 
We choose �A ∈ MA′ and �B ∈ MB ′ arbitrarily. By construction, k = |V (G ′

NC L)| + nO R , where nO R is the number of OR 
vertices. This concludes the construction. Note that given a k-partition � ∈ MX , the above description implies a method to 
obtain a corresponding orientation X of G ′

NC L . Namely, for every degree-2 (AND or OR) gadget, if there is a district D v in �
containing both {va, vb} (all vertices in {va, vb, vc}) orient e towards v if and only if e+ ∈ D v , e ∈ {a, b} (e ∈ {a, b, c}).

Correctness We show that there exist a correspondence between a move in an orientation of G ′
NC L and a recombination in 

a (k, 0)-BCP of G .

Lemma 11. A k-partition � ∈MX is a (k, 0)-BCP if and only if X satisfies the NCL constraints.

Proof. Consider an AND vertex v incident to edges a, b, and c as in Fig. 3 (a). By definition D v contains ve and exactly one 
of {e+, e−} for e ∈ {a, b, c}. If G[D v ] is connected, then D v must contain either c+ , or a+ and b− . Then, either c is directed 
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towards v or both a and b are directed towards v in X . Thus the NCL constraint for v is satisfied. The other direction is 
analogous.

Similarly, we can show the equivalence for degree-2 vertices. Consider an OR vertex v incident to edges a, b, and c as 
in Fig. 3 (b). Recall that D v ′ contains v ′ and exactly one heavy vertex in {v ′

a, v ′
b, v

′
c}. Then, G[D v ] contains a single path 

between two vertices in {va, vb, vc} using vertices in {v ′
a, v ′

b, v
′
c}, i.e., D v induces two components in {va, vb, vc, v ′

a, v ′
b, v

′
c}. 

Since {va, vb, vc} ⊂ D v by definition, D v must contain at least one vertex in {a+, b+, c+}. Thus the NCL constraint for v is 
satisfied. The other direction is analogous. �

The following lemma shows that the subgraph of the configuration space R0(G, k) induced by MX is connected if X
satisfies the NCL constraints.

Lemma 12. Given a satisfying orientation X of G ′
NC L and two k-partitions �1, �2 ∈ MX , then there is a sequence of at most nO R

recombinations that takes �1 to �2 .

Proof. By construction, �1 and �2 are identical except at gadgets of OR vertices. Let v be an OR vertex where �1(v ′) 
=
�2(v ′). Then recombine �1(v ′) and �1(va) into �2(v ′) and �2(va). The resulting k-partition is in MX and by Lemma 11
its districts induce connected subgraphs. By repeating this procedure at all OR gadgets whose districts differ from the ones 
in �2 we eventually get �2. There can be at most nO R recombinations since this is the number of OR gadgets. �

The following lemma establishes the equivalence between a recombination move in G and an edge reversal move in 
G ′

NC L .

Lemma 13. For every (k, 0)-BCP �1 ∈ MX1 obtained from a satisfying orientation X1 on G ′
NC L , every recombination on �1 yields a 

(k, 0)-BCP �2 such that �2 ∈ MX2 where X2 is an orientation on G ′
NC L that differs from X1 by the orientation of at most a single 

edge. Similarly, for an orientation X2 on G ′
NC L obtained from X1 by reversing the orientation of a single edge, there is a sequence of 

one or two recombinations that takes any �1 ∈MX1 to some �2 ∈MX2 .

Proof. We begin with proving the first claim. Let D p and Dq be two districts in �1 that are recombined into districts V
and W of �2. First assume that p = v is an OR vertex of G ′

NC L , D v is the district containing {va, vb, vc}, and q = v ′ . Let 
W be the district containing v ′ . Since w(v ′) = 9α and n/k = 10α, then W must contain exactly v ′ and one heavy vertex 
in {v ′

a, v ′
b, v

′
c}. Then D p and V induces the same graph on {va, vb, vc, a+, b+, c+}. Thus, we can read a graph orientation 

X2 = X1 from �2, i.e., both �1 and �2 are in MX1 . Now, assume that p is an AND/OR vertex of G ′
NC L adjacent to edges 

a, b, and c, D p is the district containing {pa, pb, pc}, and q is a degree-2 vertex of G ′
NC L adjacent to edges c and d with 

Dq being the district containing {pc, pd}. Let V be the district containing the heavier vertex in {pa, pb, pc}. By construction, 
the weight of such vertex is greater than 5α − 1. Then V cannot contain {pc, pd} and {pc, pd} ⊂ W . Due to size constraints, 
W cannot contain any other heavy vertex and {pa, pb, pc} ⊂ V . Note that D p and V (Dq and W ) differ only by a vertex in 
{c−, c+}. We can then read an orientation X2 off of �2 that differs from X1 only by the orientation of c.

We proceed to prove the second claim. Let c = pq ∈ E(G ′
NC L) be the edge whose orientation differs between X1 and X2. 

Let p be an AND/OR vertex incident to a, b, c ∈ E(G ′
NC L), and q be a degree-2 vertex incident to c, d ∈ E(G ′

NC L). Let �1 be 
an arbitrary (k, 0)-BCP in MX1 . First, assume that p is an AND vertex. Recombine D p, Dq ∈ �X1 into D ′

p = D p \ {c−} ∪ {c+}
and D ′

q = Dq \ {c+} ∪ {c−} obtaining �2. By Lemma 11, the districts in �2 are connected and by construction �2 ∈ MX2 . 
Now assume that p is an OR vertex. If c is directed towards q in X1, the same proof as above holds. Else, c is directed 
towards p in X1 and since X2 satisfies the NCL constraints there is an edge e ∈ {a, b} directed towards p. If D p′ ∈ �X1 does 
not contain v ′

e , we can perform one recombination so that it does as in Lemma 12. The remainder of the proof is the same 
as for the case when p is an AND vertex. �

The combination of Lemmas 11, 12, and 13 yield the following lemma.

Lemma 14. BR(G, k, 0) is PSPACE-complete even for a planar graph G with constant maximum degree.

5.2. Generalizations

This section presents three generalizations of Lemma 14. The second generalization subsumes the first as well as 
Lemma 14. However we present all three in this order for ease of exposition.

Larger slack By simply adjusting the value of α = 5 + s, we can generalize Lemma 14 to larger slacks s = O (n1−ε) for any 
constant 0 < ε ≤ 1. Indeed, any value α > 4 + s would work. There is a trade-off between the size of the slack and the 
maximum degree of G as the maximum degree is �(α). Note the orientation of an edge e is encoded by the membership 
of the corresponding vertex e+ in the (k, s)-BCP of G . In Section 5.1, e− was used to balance the size of the districts; and 
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Fig. 5. Construction of the filler gadget.

e− and e+ were necessarily in a different districts. When the slack s is positive, this will no longer be the case, but as long 
as the districts in each gadget contain the same heavy vertices as in Section 5.1, we can use membership of e+ to encode 
the orientation of e. The key properties that we have to maintain for all (k, s)-BCPs � are the following:

(i) for all v ∈ V (G ′
NC L) of degree-2 incident to edges a and b, �(va) = �(vb);

(ii) for v ∈ V (G ′
NC L) of all degree-3 incident to edges a, b, and c, �(va) = �(vb) = �(vc); and

(iii) for all OR vertices v ∈ V (G ′
NC L), �(v ′) contains exactly one heavy vertex other than v ′ .

Property (iii) is clearly satisfied because n/k remains 10α and �(v ′) cannot contain only v ′ or else it would contain less 
than n/k − s = 9α + 5 vertices, and it also cannot contain 3 heavy vertices or it would contain more than n/k + s = 11α − 5
vertices. Consider Property (ii). Recall that w(vc) ≥ 6α − 3. Then, �(vc) cannot contain any heavy vertices of adjacent 
gadgets (of weight 5α − 1) or it would be larger than the maximum allowed size. Then �(vc) must contain only heavy 
vertices in the gadget. Indeed, all other available heavy vertices have weight α. Then, �(vc) must contain all other available 
heavy vertices in the gadget (excluding v ′ and one other in case v is an OR vertex because of (iii)) or it would contain less 
than the minimum allowed number of vertices. Then, Property (i) becomes trivial given (ii) and (iii). Note that this approach 
does not allow the slack to be linear in n. By construction, the size of the instance becomes n = |V (G)| = �(s|V (G NC L)|). 
We allow s to be any polynomial in |V (G NC L)| as long as the size of the output instance of the reduction is polynomial. 
Note that k is fixed for a given G NC L . Then k is bounded by O (n/s).

Corollary 15. BR(G, k, s) is PSPACE-complete even if G is planar, k ∈ O (nε), and s ∈ O (n1−ε) for any constant 0 < ε ≤ 1.

Bounded-degree triangulation G We now generalize Corollary 15 restricting G to be a planar triangulation of constant max-
imum degree. As a consequence, our reduction proves that BCP is also NP-hard for this class of graphs generalizing the 
results in [3]. The main technical ingredient of this section is the gadget shown in Fig. 5 (b) called filler gadget. It consists 
of 5 vertices labeled “red” inducing a maximal planar subgraph. Each internal face f of this induced subgraph is called 
a heavy face, and is assigned a positive integer weight w( f ). We assume that w( f ) is a multiple of 3. Each heavy face 
represents a subgraph G f with w( f ) + 3 vertices whose outer face is f . Fig. 5 (a) shows the recursive construction of G f . 
Then G f is the 4-connected maximal planar graph with 6 vertices (including the 3 vertices of f ) containing a heavy face 
f ′ . The face f ′ is chosen so that it is vertex-disjoint from f and w( f ′) = w( f ) − 3. The base case, a heavy face with zero 
weight, is simply an ordinary face.

We now describe how to modify G produced in the reduction in Section 5.1. We will add filler gadgets to the faces 
of G and triangulate the resulting plane graph as follows. We set the weight of every heavy face in the filler gadgets to 
10α − s − 1. We proceed with the details; refer to Fig. 5 (c). First, assign each heavy vertex to a face of G . For each face 
f assigned with one or more heavy vertices, add one copy of the filler gadget to the interior of f for each heavy vertex. 
Triangulate f so that there is no new edge between vertices of f , i.e., all new edges have at least one endpoint at a filler 
gadget. We also require that for each heavy vertex v there is a face f v containing v and one edge of the outer face of 
its corresponding filler gadget F v . We transfer the weight from v to f v by making v a light vertex and f v a heavy face, 
and setting w( f v) = 5s + w(v) − 1. For remaining faces f of G , if f is not a triangle and has not been assigned any 
heavy vertex, add a copy of the filler gadget in f triangulating it as before, i.e., no new edge should be between vertices 
of f . Choose a neighboring face f ′ (sharing an edge with the gadget) to make if heavy with w( f ′) = 5s. The resulting 
graph G ′ is an edge-maximal planar graph. Finally, set α = 11s + 5 and increase k by 5 for each copy of the filler gadget 
used.

It remains to define the initial and target (k, s)-BCPs �A and �B defining an instance of BR(G, k, s). We construct 
such (k, s)-BCPs with 0 slack. For that, we show that we can find a balanced connected partition of the filler gadget and 
5s vertices in the neighbor heavy face into 5 connected districts. We construct a Hamiltonian path of the gadget and its 
neighboring heavy face as follows. The main structure of the Hamiltonian path is shown in Fig. 6 (a). For each heavy face we 
need to find a path that visits all internal vertices and starts and ends with a vertex on its outer face. We accomplish this 
with the recursive construction shown in Fig. 6 (b). Considering that the path starts in the filler gadget, we ignore the first 
edge to obtain the desired Hamiltonian path. It is now easy to partition the 10α-long prefix of the path into 5 connected 
components. The remainder of the construction follows Section 5.1.
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Fig. 6. Inductive construction of the Hamiltonian path used to partition the filler gadget.

Lemma 16. In every (k, s)-BCP � of G ′ , for every filler gadget F , exactly five districts of � intersect F and the number of vertices in 
the union of these five districts outside of F is at most 10s.

Proof. First note that n/k remains 10α. The number of vertices in F is 5(10α − s), thus it must intersect at least 5 districts 
of �. Each district that intersects F must contain a red vertex since each heavy face has less than the minimum capacity of 
a district. Since F has only 5 red vertices, there must be exactly 5 districts intersecting F , each containing exactly one red 
vertex. The maximum number of vertices of these districts outside of F is 5(10α + s) − 5(10α − s) = 10s. �

Lemma 16 allows us to mostly ignore filler gadgets. We refer to the districts that intersect a filler gadget as a filler 
district. Recall that every heavy vertex v in G is now adjacent to a heavy face f v in G ′ . Since 10s < w( f v) < 10α − s, 
if a filler district contains v then it would disconnect vertices of f v that cannot be in any district. Then, the district that 
contains v is not filler and it must also contain the w(v) ± 5s − 1 vertices in f v that are not in filler districts. That mimics 
the weights of heavy vertices in G such as v in a 3-connected graph G ′ within a ±5s accuracy. One can check that the 
new choice of α accommodates these variations guaranteeing properties (i)–(iii). We omit the details since the argument is 
fairly similar as before. The situation in which filler districts contain normal vertices of G would then be equivalent to the 
reduction in Section 5.1 where some of the non-heavy vertices are deleted. Intuitively, deleting vertices only makes it more 
difficult to satisfy the connectivity constraints. We need to extend the equivalence to the NCL orientation to allow for when 
vertices e+ corresponding to an edge e are taken by filler districts. That would correspond to a partial orientation where 
e is not directed, i.e., it does not count for satisfying the constraints of neither its endpoints. It is clear that such a variant 
of NCL remains PSPACE-complete since we still require that the constraints are satisfied at each vertex ignoring undirected 
edges and a sequence of operations in this setting can be converted by a sequence in the normal NCL setting and vice versa 
by assigning an arbitrary direction for an undirected edge. For more details see an asynchronous version of NCL [21]. Then, 
Lemmas 11–13 hold for this variant. The construction distributes the weights of heavy vertices of G into heavy faces of G ′ . 
By the recursive construction, the degree of each vertex increases by at most 2. Then, the filler gadget has constant degree. 
Note that k remains O (n/s).

Theorem 17. BR(G, k, s) is PSPACE-complete even if G is maximal planar of constant maximum degree, k ∈ O (nε), and s ∈ O (n1−ε)

for 0 < ε ≤ 1.

Finding balanced connected partitions The NCL orientation problem is defined by an input undirected graph G NC L edge 
colored as before, and asks whether there exist an orientation of G NC L that satisfies the NCL constraints. This problem is 
NP-complete [11]. We remark that our construction implies the following theorem.

Theorem 18. It is NP-complete to decide whether there exist a (k, s)-BCP of a graph G, even if G is maximal planar of constant 
maximum degree, k ∈ O (nε), and s ∈ O (n1−ε) for 0 < ε ≤ 1.

Constant number of districts Note that, in the previous hardness proofs, k cannot be a constant. We now build on Lemma 14
to prove PSPACE-hardness for instances of BR(G, 3, s). Note that with k = 2 the configuration space is the complete graph 
by definition. Also note that this result does not subsume Theorem 17 since the graph produced has cut-vertices as we will 
see in the remainder of this section. We now show how to modify the graph G produced in the reduction of Section 5.1. 
We modify the gadgets as follows. The AND gadget remains unchanged while the OR gadget adjacent to edges a, b and c
as in Fig. 7 (a) is changed by adding the edges a+v ′

a , a+v ′
b , b+v ′

b , b+v ′
c , c+v ′

a , and c+v ′
c . The vertices v ′

a , v ′
b and v ′

c are 
no longer heavy vertices. The main difference is in the degree-2 gadgets which are shown in Fig. 7 (b). They now have six 
heavy vertices each, va , v ′

a , vab , v ′
ab , vb , v ′

b . Refer to Fig. 7 (c)–(d). For each face f of G NC L we create a new heavy vertex 
v f in G which concludes the description of V (G). We now describe how to complete E(G). For that we have to describe 
two spanning trees of a new graph G∗

NC L described as follows. We build G∗
NC L from G NC L by adding v f to the face f , 

triangulating the result by adding edges incident to v f , and deleting every original edge of G NC L . Refer to Fig. 7 (c). Note 
that G∗

NC L is bipartite, there is a one-to-one correspondence between degree-2 vertices of G ′
NC L and faces of G∗

NC L , and that 
such faces are quadrilaterals. Let T1 be a spanning tree of G∗

NC L and T2 be an interdigitating spanning tree of the dual of 
G∗ , i.e., spanning all degree-2 vertices of G ′ so that T1 and T2 do not both use the primal or dual of the same edge. For 
NC L NC L
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Fig. 7. Construction of the reduction with k = 3. The three districts v1, v2, and V 3 are colored magenta, cyan, and orange respectively. (a) New OR gadget. 
(b) New degree-2 gadget. (c) G∗

NC L overlapped with G ′
NC L . The edges of G∗

NC L are shown in gray and its vertices are shown as squares. (d) The corespondent 
part of G .

every edge uv f in T1, add an edge ua v f , where a is an edge incident to u in G ′
NC L and a appears before u in a clockwise 

traversal of f . For every edge uv in T2, add the edge u′
ab vcd or uab v ′

cd where a and b (resp., c and d) are the edges incident 
to u (resp., v) and the addition of the edge does not introduce a crossing in G . Then, for every pair of vertices of the form 
va or v ′

a where a is an edge incident to a degree-2 vertex v in G ′
NC L that are currently in the same face of G , add an edge 

between them excluding edges of the form va v ′
a , i.e., an edge inside a face of a degree-2 vertex. Note that the new edges 

could be of the form va vb , i.e., connecting two vertices in the same degree-2 vertex but corresponding to a different edge 
of G ′

NC L as shown in Fig. 7 (d) by curved edges. Finally, delete one of the edges added in the last step.
We now give some informal intuition about the construction. We will set up the weights so that heavy vertices can only 

be part of the same districts which we label V 1, V 2 and V 3 in any (k, s)-BCP of G . The following is the key property that 
we exploit.

(�) District V 1 must contain every vertex v f created from a face f of G NC L as well as every va , vb and vc of a gadget 
corresponding to a degree-3 vertex v of G ′

NC L . District V 2 must contain all vertices of degree-2 gadgets of the form vab
or v ′

ab . District V 3 must contain all remaining heavy vertices, i.e., heavy vertices of degree-2 gadgets of the form va and 
heavy vertices v ′ of gadgets corresponding to OR vertices v .

The connectivity of V 1 (V 2) will mimic, in broad terms, the spanning tree T1 (T2). District V 3 will separate V 1 and V 2
also containing the heavy vertex v ′ of OR gadgets. We now encode the direction of an edge e in G ′

NC L by whether V 1 or V 3
contain e+ respectively meaning that e points to its degree-3 or degree-2 end.

We now adjust the weights of the heavy vertices of G in order to obtain Property (�). Let n2, nO R and nAN D be the 
number of degree-2, OR and AND vertices in G ′

NC L respectively. Set the weights of V 1’s heavy vertices to w1 = α, which 
we will set later. Choose one of the heavy vertices assigned to V 2 and set its weight to n/3 + s − w1, and set the weights 
of its remaining heavy vertices to w2 = (w1 − s − n2)/(2n2 − 1). Choose one of the heavy vertices assigned to V 3 and 
set its weight to n/3 + s − w2, and set the weights of its remaining heavy vertices to w3 = (w2 − s − 3n2 − nO R)/(4n2 +
nO R − 1). We set α so that w3 = s + n� where n� is the number of light vertices in G . Then α ∈ O (n2

2s) and |V (G)| ∈
O (α|V (G NC L)|).

Theorem 19. BR(G, 3, s) is PSPACE-complete even if G is planar with constant maximum degree, and s ∈ O (n1−ε) for 0 < ε ≤ 1.
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Proof. As before, each individual weight of a heavy vertex is smaller than the minimum threshold for a district and thus 
a district must contain all vertices in the heavy vertex. We can implement the weights of a heavy vertex v with a path 
of length w(v) with an endpoint at v in order to keep the maximum degree of G upper bounded by a constant. We can 
assume that G NC L has constant face degree, or else one can use techniques by Hearn and Demaine [11] to split large faces 
using their “red-blue conversion” gadget. Thus, we keep the maximum degree of G upper bounded by a constant. We first 
show that Property (�) holds in any (k, s)-BCP � on G . By construction, we have that w1 > w2 > w3. We first show the 
claim for V 3. Assume that V 3 is the district containing the heavy vertex of weight n/3 + s − w2. For contradiction assume 
that it also contain a heavy vertex whose weight is not w3. Then such vertex must have a weight larger than w2 which 
makes the size of V 3 greater than n/3 + s, a contradiction. Now assume for contradiction that V 3 does not contain all of 
the heavy vertices with weight w3. Then the maximum size of V 3 is n/3 − w3 + n� = n/3 − s even if V 3 contains all light 
vertices, a contradiction since V 1 and V 2 need to contain light vertices to be connected. We conclude that V 3 must satisfy 
(�). The arguments for V 2 are similar once (�) is established for V 3, and thus V 1 also satisfies (�).

We now show that Lemma 11 holds in this context. By (�), V 1 must connect all va , vb and vc in every AND and OR 
gadget. Moreover, apart from such vertices, V 1 can only contain light vertices and heavy vertices of the form v f that came 
from a face f of G NC L . Thus the only paths that connect va , vb and vc in a given gadget are contained in the gadget itself. 
Therefore, the NCL constraints at degree-3 gadgets must be satisfied as before. Note that the new edges in the OR gadget 
do not change its behavior. It remains to show the same for degree-2 gadgets. By (�), V 2 must connect all vab and v ′

ab in 
every degree-2 gadget. By construction and Property (�), all paths that connect such vertices must be contained in the same 
gadget. Similarly, V 3 must connect va and v ′

a (vb and v ′
b) by a path contained in the degree-2 gadget. Then, at least one 

vertex in {a+, b+} must be in V 3 to allow space for V 2 to connect vab and v ′
ab .

To conclude the proof it is enough to show that Lemma 13 holds in this context. By the way we encode the orientation 
of edges, only a recombination between V 1 and V 3 can change the orientation of an edge. The potential worry is that, now 
that V 1 and V 3 are adjacent at every gadget, one recombination could alter the orientation so that we can’t transform it 
into a sequence of single orientation reversals in G NC L . However, the presence of V 2 in every degree-2 vertex prevents that 
the orientation of two edges incident to the same degree-2 vertex flip simultaneously. Then the set of edges that flip in one 
recombination induces paths of at most two edges having a degree-3 vertex as a middle vertex. Then we can represent the 
simultaneous flips with a sequence of flips having first all flips that point an edge towards a degree-3 vertex followed by all 
flips that point an edge towards a degree-2 vertex. Each flip in the two subsequences is independent of other flips in the 
same subsequence. As proved by Viglietta [21], even though one operation can flip many independent edges simultaneously, 
the problem is still equivalent to regular NCL. In the other direction, we can show that an edge flip can always be obtained 
by at most 2 recombinations. The first recombination is between V 2 and V 3 so that V 2 contains only the appropriate path 
between each vab and v ′

ab . The second recombination is between V 1 and V 3, exchanging the membership of a+ and a−
representing the reversal of an edge a. �
6. Conclusion and open problems

We have shown that the configuration space Rs(G, k) of (k, s)-BCPs is connected when G is connected and s = ∞, or 
when G is Hamiltonian and s ≥ n/k. We hope that our results inform future research on the properties of G , k, and s that 
are sufficient to obtain an efficient sampling of Bals(G, k). We also leave it as an open problem whether our results in 
Section 3 generalize to other classes of graphs. We conjecture that the configuration space Rs(n, k) is connected for every
biconnected graph G on n vertices when s ≥ n/k. However, our techniques do not directly generalize; it is unclear how to 
extend the notion of canonical k-partitions in the absence of a Hamilton cycle.

We have shown that BR(G, k, s) is PSPACE-complete even in specific settings that are of interest in applications such as 
sampling electoral maps. Our results imply that the configuration space Rs(G, k) has diameter exponential in n, establishing 
as well an exponential lower bound on the mixing time of a Markov chain on Rs(G, k) for these settings. We note that 
Theorems 17 and 19 do not include other settings of interest such as when G is maximal planar (or even 3-connected) and 
k is a constant. We leave these as open problems.
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