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Abstract—This paper addresses the lack of cyber-physical
security in robotics systems by implementing a new layer of
security that monitors the torque values that the robot is exerting,
while in motion, for possible anomalies. A simulated compliant
robot (the Franka Panda) that used the Unity physics engine was
adapted to create and test this anomaly-detection security layer.
Anomalies observed in the torque signals are reported back to
the operators and a resilience measure is enacted to create a
layer of cyber-physical security for robotics systems. We provide
a simulation of a possible attack and demonstrate the response
of the system.

Index Terms—Cyber physical systems, robotics, resilience,
robotics security, simulating and modeling based security.

I. INTRODUCTION

Cyber-physical security is of fundamental importance to
robotic systems. Without it, cyber-attacks can cause damage or
lead to the release of proprietary information. Attacks centered
around hacking the movement of robots in a manufacturing
setting can lead to altered and possibly dangerous products or
a loss of production. Cyber-physical security protects against
possible threats to people and their information, while also
determining the next steps in the event that a security breach
occurs [1].

The problem of cyber-physical security for robots is attract-
ing more attention in the community. Previous work done in
this area includes fault detection, isolation and modeling of
robotic systems by applying dynamic models [1]-[5], [16].
Robots can also be designed to implement security from
outside threats [6]-[12]. Security systems have been built and
tested using robots to secure locations in buildings, and to pro-
vide additional protection to areas with a security architecture
already in place. All these contributions are aimed at securing
physical spaces with the use of robots. The approach of this
paper can be considered a deeper look into the security of the
robot itself as we address the importance of securing the very
machinery meant to make human lives better.

The types of security threats that are being tackled in this
paper are ones that inhibit or alter the motion of the robot.
Cyber-physical attacks that alter control parameters, tamper
with calibration, change production logic or alter personnel
signals are examples of issues to be addressed. These kinds
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of attacks are easily seen in a production setting where
robots oversee the manufacturing of products and require
maintenance by human operators.

Currently there is a lack of security in robotic systems at
the operations or GUI application level, however, a low-level
security implementation is often included by the manufacturer
to keep the robot secure [13]. This security implementation is
heavily impacted as soon as the operators try to contextualize
the robot for their needs, and there are no steps in place
to secure a robot once it is under attack. The difficulty of
implementing security on robots is that robotic programming
is often highly specialized. This makes creating something
tangible such as anti-virus software or a firewall difficult for
all robots. A course of action to resolve this issue is to create a
general approach that can be added to robots at the discretion
of the creators.

The implementation of this security feature will be up to the
robot operators to enact themselves. The middle-ware and low
level portions of any robot are handled by the manufacturer,
and because of this any security that is implemented on the
robot prior to the operator’s contextual adjustment is the
responsibility of the manufacturer [13]. In order to add security
to robotic systems this paper proposes a feature that can be
added at the top level of a robot control stack.

This security feature monitors the torque values that the
robot is exerting while in motion, and if the torque is outside
of the expectations for that robot a resilience measure begins to
move the robot to a safe position. This implementation will be
called the security trigger throughout this paper. Applications
of the security trigger may include settings where the precision
and accuracy of the robot’s movements are of vital importance
to the success of a task, or any instance of robotic movement.
Examples of these tasks would be surgical work, industrial
manufacturing, or robotic security guards.

To test the implementation of this security feature, we used
a simulation of a commercial robot platform (the Franka Panda
code found here [14]) in the Unity 2020.14b physics and
simulation environment [15]. This Unity release provides a fast
(near real-time) approximation of fully articulated connected
bodies, making it an excellent platform to use for dynamics
dependent robotic experimentation. The security trigger pro-
posed here is a general concept that is meant to be used across
many different types of robots and dynamical systems. It adds
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TABLE I: This table compares the approach of this paper to a couple of the approaches already present in the field. The
security protocol ITP can be found in [18] and the detection and mitigation approach is addressed in [17].

| Approach | Problem Addressed

| Key Feature \

Major Differences \

Securing robots from

Security Trigger (Our Approach) cyber-physical threats.

Dynamic Motion detection

by analyzing the torque

placed on each joint of a
robot to ensure robot trajectory
integrity.

This implementation is

a solution for after an

attack has been realized.

It tackles identifying that a
security threat is currently
present and enacting resilience.

Designing security for

Detection and Mitigation [18] surgical Tobots

Dynamic motion detection

using a model to analyze the types
of security attacks and their impact
on surgical robots.

This model shows the possible
types of security attacks on
surgical robots and shows what
the implications of these attacks
are.

Designing security for
telesurgery robots and
their controllers.

Security Protocol
ITP [17]

A list of protocols and
procedures suggested to
create security for
telesurgery robots.

This is a security measure to avoid

a cyber attack from happening in the

first place. This outlines how a system
should be set up to avoid as many attacks
as possible.

security by detecting anomalies in the movement of machinery.

This paper is organized as follows. First Sec. II shares
some of the work related to securing robotic systems and
the importance of doing so. Next a complete rundown of the
methods used to create the security feature is given in Sec. III.
Sec. IV talks about the application of the security feature to
our case study Panda robot. The results and algorithmic testing
is provided in Sec. V, and finally we conclude the paper in
Sec. VL.

II. RELATED WORK

This section provides a literature review related this paper.

A. Dynamic Model-based Detection

Homa Almezadeh and er. al. demonstrated targeted cyber-
physical attacks on teleoperated surgical robots in their work
in [17]. They work with teleoperated surgical robots using
dynamic model-based detection and mitigation. In their work,
the authors described the nature of cyber-attacks that are typ-
ical for surgical robots and the consequences that come from
unwanted access to critical robotic systems. They presented
a defense model for detecting and mitigating possible attacks
before the threat could compromise the integrity of the system.
This is vital as a system malfunction during a surgery could
result in injury or death of the patient. This work stresses
the importance of avoiding a denial-of-service attack in our
systems. Here a complete shutdown of the robotic system
while operation is going on can cause human harm.

B. Cyber-physical Systems Security

Gregory S. Lee and Bhavani Thuraisingham created the Se-
cure Interoperable Telesurgery Protocol (ITP) in their research
work in [18]. The secure ITP defines a security framework to
structure the communication between telesurgery robots and
the controllers for them. This work was solely for telesurgery
robots and to ensure that the strict guidelines for them are met.

They stressed the importance of security for their robotics sys-
tems while also recognizing the issue that robot manufacturing
does not have standardization that allows for a single software
suite to be created. This framework approach is very much
like the suggestion in this paper. Since the standardization of
robots is not existent, these frameworks can provide security
engineers with the tools they will need to secure robotic
systems.

C. Assessment of ROS

Sergio Sandoval and et. al. tackle the issue of the current
robot operating system that is widely used named ROS or
the Robot Operating System [19]. The preliminary design of
ROS did not have any security features to protect against
cyber attacks. The authors created a new form of operating
system (known as middleware in robots) called ROS2. This
new system is designed on standards that are provided by the
Data Distribution Service (DDS), and was designed to provide
security to the areas where the original ROS failed.

D. Argument for Security in Robots

Nico Hochgeschwender and et. al. make an argument for the
importance of security in autonomous robots [20]. They write
about the current applications of robots in a social aspect such
as being a tour guide, a receptionist or an office assistant and
how these robots with close proximity to humans need to be
secure for reasons of public safety. The authors also push for
a security engineer to be present at all development stages of
robots as the cost of implementing security after the product
has been built is high and introduces complications.

E. Security for Robotic Platforms

Dr. Akashdeep Bhardwaj and et. al. study the impact of
lacking robotics security as the world moves towards automa-
tion in the industry domains of manufacturing, agriculture,
logistics, healthcare, and transportation [21]. They address
the parallels between hardware, networking, applications and
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platforms in relationship to robots to make justification for
why robotic systems need security that is on par with larger
scaled software systems that we use today.

III. METHODOLOGY
A. The Security Trigger

The security trigger is an algorithm that runs a comparison
between expected motion and real motion while the robot is
moving. To track this motion the algorithm was created to cal-
culate the torque at each joint and compare it to the expected
torque for that joint. The expected torque is calculated using a
dynamic model of the robot. This model allows us to use the
information we know about the robot and its trajectory such
as, force due to gravity, the Coriolis forces, joint positions
and so on to create a range of expected torque values for our
robot. When the robot is in motion the torque that is observed
from the robot should be within the expected range of values.
Any deviation from this range prompts an alert that abnormal
activity is present in the robot and another algorithm forces
the robot into a safety position.

Algorithm 1 Security Trigger - Generalized

procedure DETECT THREAT AND RETURN ALERT
while robotExpectedMotion == True do
expectedTorque = value calc from eq(1)
observedTorque = torque from robot motion
for revolute joint in robot do
jointError = (tobserved - teacpected)/tea:pected
if jointError >= threshold(.05) then
// Print the error message and alert the system
Debug.log(alert)
robotExpectedMotion = False

B. Dynamic Model

To calculate the torques for a robot the symbolic inertia
matrix M (g) must be rearranged into a vector form by
exploiting its symmetry. The robot has n joints, so we obtain a
vector m(q) € R™, with m = n(n+1) components, containing
all the lower triangular elements of M (q) [22].

The simulated dynamic model of robots with elastic joints
can be derived using the procedure in [23] by separating the
torques of the motors from the link-side torques. Using these
methods, a general model for a robot of n degrees of freedom
can be written as

M(q)§+ S(q,4)q+ g(q) =T, ¢))

where ¢, ¢, § € R™ are, respectively, the joint positions,
velocities, and accelerations, M(¢q) € R™*™ is the inertia
matrix, g(q) € R™ is the gravity vector and S(q, ¢)¢ = ¢(q, §)
€ R"™ is the vector of the Coriolis and centrifugal forces
[22]. The motor torque from the inverse dynamics that are
calculated produces the value that will be used to compare
the expectations of the movement to the reality.

C. How to use the Dynamic Model for Comparison

The algorithm does a comparison of the observed torque
and the expected torque by taking the difference of the two
quantities and measuring it with respect to a margin of error
that is deemed acceptable for that robot.

|Te:1:pected - Treal‘ - Texpected > ETTOT gcceptable (2)

If the above equation becomes true while the robot is in
motion, the security trigger alerts the users of abnormal ac-
tivity and starts the resilience measure. An acceptable margin
of error needs to be determined by the users for their specific
robot, however, for the purpose of testing the functionality of
the algorithm in this paper Tezpected £5% OF Tegpected = 5%
returns a security check.

D. Resilience

To implement resilience into a robot, the control modality of
it can be switched when abnormal movement is detected. The
robot can be controlled through different modalities depending
on the user requirements. Torque mode, position mode and
velocity mode are some common examples. Torque mode
works by sending a torque vector to the robot motors, position
mode by giving the joints a desired position, and velocity mode
by sending a velocity to a joint [22]. In this paper, position
was the input which was translated to torque through the
controller. This allowed us to determine the robot’s location,
and to simulate the presence of an attack.

In our implementation when a threat is detected the control
mode switches from position control to torque control in order
to move the robot safely to its home position. By knowing the
current and safe position of the robot a joint space trajectory
can be derived. This joint space trajectory can be applied to
eq. 1, and the set of torques that will drive the system to its
desired configuration is derived. The safety position for the
robot allows the users to decide next steps to secure it. This
safety measure allows the users to still access the robot without
having to shut down the entire system. In order to enable this
switch in modes, a flag was set up to enact the switch of
modalities whenever unexpected values were detected by the
security trigger. This flag switch initializes the robot’s torque
mode to take control of how the robot moves and forces it into
a safe position. This switch between modes can be a change of
whatever modes the operators deem necessary for their specific
robot. Algorithm 2 shows the logic behind this method.

IV. THE PANDA ROBOTIC ENVIRONMENT IN UNITY

A compliant PANDA robot with 7 degrees of freedom that
was simulated in Unity was used to conduct experimentation.
The torque detection and resilience building was implemented
in the top level of the robot control. This control for our
simulated environment was a C# script that initialized the
impedance-driven robot. Figure 1 depicts the Panda robot that
was used for this study.
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Algorithm 2 Modality Switch - Boolean Flag Example

procedure SWITCH MODES WHEN THREAT DETECTED
while robotExpectedMotion == True do

positionMode = True

torqueMode = False

jointError = (tobserved - tempected)/texpected

if jointError >= threshold(.05) then
//Alert users and switch modes
Debug.log(alert)
positionMode = False
torque M ode = True
robotExpectedMotion = False

Fig. 1: The Panda robot that was simulated in Unity [15]. The
left side of the image shows the Panda before the simulation
has begun and the right-side image shows the target position
or end location once the simulation has been run.

To test the functionality of the algorithms mentioned before
the expected torque was calculated using the joint components
that Unity provided for our simulation. This includes the
velocity, joint position, forces and so on. To simulate an attack
on the robot the observed torque was an alteration of the
expected torque equation by changing the target position. This
represents an attack that has altered the target position but
leaves the controller settings and other H/W elements intact.
The equations below depict the calculations done for expected
and observed torque:

Texpected = (KAqtarget) + (DAQ) (3)

Tobserved = (KAqtargetAltered) + (DA(]) (4)

Where K is the joint stiffness, D is the joint damping,
Agiarger and Ag are the target position error and calculated
velocity error.

These torque values were compared to each other and
evaluated for the Panda robot. This evaluation was referenced
earlier in this paper under algorithm 1. After the detection
was made the Panda robot used a Boolean flag, (as shown in
algorithm 2), to switch from position mode to torque mode.
Securing the robot in our case meant increasing the joint
stiffness and joint damping while reducing the joint velocity
to keep the robot locked in one position but still running.

V. PERFORMANCE EVALUATION AND DISCUSSION
A. Testing the Alert

In order to corroborate the analysis above, we performed
the evaluation of the cyber-physical security for the robotic
system. Testing included the security trigger’s reaction when
the observed torque was outside and inside the range of the
expected torque. The implementation for our robot alerted the
users through Unity’s console log. The console log kept track
of the observed torque in the system and printed the error
messages. Figure 3 shows the output to the console when the
robot was under attack and Figure 2 shows the output that was
displayed when the robot was operating within expectations.

[14:37:57] There is no abnormal movement in the robot
UnityEngine.Debug:Log (object)

[14:37:57] DenseVector 7-Single
-0.0010277

DenseVector 7-Single
-0.0010277
1201.03
-0.000288388
-1345.88
-0.000377175
994.147
-0.0184528

Fig. 2: This is an image of the Unity console while the robot
is in motion. To keep track of the motion visually for the
users, the observed torque was printed to the console log. A
message denoting if there is abnormal behavior or not was
also included in this log.

cted Motion ha

cted Motion ha

Fig. 3: This is the console log from Unity when an unexpected
torque value has been detected in the robot. The program logs
3 different instances of this because the irregular torque was
found in the 3 joints that are moving in the Unity simulation.

Figures 5 and 6 depict the comparisons of the expected
torques to the observed torques of the Panda robot moving
over a period. Each graphical figure depicts a moving joint in
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the simulation environment and shows the differences between
an acceptable deviation from movement and an unacceptable
one.
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Fig. 4: This is a graph of Torque vs. Time when the resilience
measure is active in our robot. The torque value is kept
constant because the robot is locked into its safety position
after the modality switch occurs.

B. Testing Resilience

To display the functionality of the resilience algorithm a
similar graph of Torque vs Time was produced. This graph
shows the robot initializing and moving to its target position,
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Fig. 5: This is a graph of Torque vs. Time of one joint as the
robot is moving to its target position. This shows a case of
the observed torque within the acceptable error range. The
error bars denote +5% the value of the expected torque
at that time step. This is a small time slice of the overall
motion of the robot.

running into an unexpected torque, and then moving to its
rest position via the torque mode control that was previously
discussed in this paper.

C. Discussion

The security trigger is a feature meant to assist in the
recovery of a robot that has already been attacked. It operates
as a mechanism to give users the ability to secure the robot
without stopping it to ensure that no further damage or cost is
incurred. A complete stop in operations would make a denial-
of-service attack completely successful. The proposed method
mitigates the complete success of a denial-of-service attack by
allowing the robot to remain functional while it is under the
attack. At this point in time mitigation is the only thing that
can be done if the robot controller is attacked. This is because
the robot controller is the only way that the operators have to
communicate with the robot.

However, the security trigger as a stand-alone method of
security is not enough. This alert and resilience feature is
best suited to accompany a security protocol for robots once
an attack has been realized. Our team will be continuing
progress on the expansion of the security project to incorporate
the security trigger as just one piece of a protocol that can
be enacted to secure robots of many different types. This
expansion of work could include taking more information from
the sensing apparatus of robots to categorize the difference
between possible faults and cyber-physical threats. Information
such as the temperature and vibrations would be helpful in this
endeavor.
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Fig. 6: This is a graph of Torque vs. Time of one joint
as the robot is moving to its target position. This figure
shows the robot traveling outside of the acceptable range
of torque. The error bars denote +5% the value of the
expected torque at that time step. This is a small time
slice of the overall motion of the robot.
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VI. CONCLUSION

Cyber security is an area that needs more attention in the
robotics field. Especially as the automation of human life
progresses, cyber-physical threats and attacks could target the
very machines meant to make our lives easier. The security
trigger proposed in this paper is a contingency plan to a denial-
of-service attack that targets the motion of robots. The alert
and resilience portions of the security trigger were tested and
found to be operational for the case study Panda robot that
was simulated in Unity.

Security as it relates to robots will have to be a more
custom process for each establishment and each type of robot.
However, techniques like the security trigger that can be
implemented across a wide range of machines and products
could be what is needed to expand the toolbox of security
engineers.
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