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Abstract. A generic rectangular layout (for short, layout) is a subdivi-
sion of an axis-aligned rectangle into axis-aligned rectangles, no four of
which have a point in common. Such layouts are used in data visualiza-
tion and in cartography. The contacts between the rectangles represent
semantic or geographic relations. A layout is weakly (strongly) aspect
ratio universal if any assignment of aspect ratios to rectangles can be re-
alized by a weakly (strongly) equivalent layout. We give a combinatorial
characterization for weakly and strongly aspect ratio universal layouts,
respectively. Furthermore, we describe a quadratic-time algorithm that
decides whether a given graph G is the dual graph of a strongly aspect
ratio universal layout, and finds such a layout if one exists.

1 Introduction

A rectangular layout (a.k.a. mosaic floorplan or rectangulation) is a subdivision
of an axis-aligned rectangle into axis-aligned rectangle faces, it is generic if no
four faces have a point in common. In the dual graph G(L) of a layout L, the
nodes correspond to rectangular faces, and an edge corresponds to a pair of
rectangles whose common boundary contains a line segment [6128/29].

Two generic layouts are strongly equivalent if they have isomorphic dual
graphs, and the corresponding line segments between rectangles have the same
orientation (horizontal or vertical); see Fig. [1| for examples. Two generic lay-
outs are weakly equivalent if there is a bijection between their horizontal and
vertical segments, resp., such that the contact graphs of the segments are iso-
morphic plane graphs. Strong equivalence implies weak equivalence [9]; however,
for example the brick layouts in Figs. and are weakly equivalent, but not
strongly equivalent. The closures of weak (resp., strong) equivalence classes un-
der the uniform norm extend to nongeneric layouts, and a nongeneric layout
may belong to the closures of multiple equivalence classes.

Rectangular layouts have been studied for more than 40 years, originally
motivated by VLSI design [21123]34] and cartography [26], and more recently by
data visualization [I7]. The weak equivalence classes of layouts are in bijection
with Baxter permutations [TI27I35].
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Fig. 1: (a-b) Two equivalent layouts. (¢) Dual graph. (d) Another layout with
the same dual graph. The layout in (d) is sliceable, none of them is one-sided.

An (abstract) graph is called a proper graph if it is the dual of a generic layout.
Every proper graph is a near-triangulation (a plane graph where every bounded
face is a triangle, but the outer face need not be a triangle). But not every
near-triangulation is a proper graph [28/29]. Ungar [33] gave a combinatorial
characterization of proper graphs (see also [I6/31]); and they can be recognized
in linear time [T212224125].

In data visualization and cartography [I7J26], the rectangles correspond to
entities (e.g., countries or geographic regions); adjacency between rectangles rep-
resents semantic or geographic relations, and the “shape” of a rectangle represent
data associated with the entity. It is often desirable to use equivalent layouts to
realize different statistics associated with the same entities. A generic layout £ is
weakly (strongly) area universal if any area assignment to the rectangles can be
realized by a layout weakly (strongly) equivalent to £. Wimer et al. [34] showed
that every generic layout is weakly area universal (see also [0, Thm. 3]). Epp-
stein et al. [6] proved that a layout is strongly area universal if and only if it is
one-sided (defined below). However, no polynomial-time algorithm is known for
testing whether a given graph G is the dual of some area-universal layout.

In some applications, the aspect ratios (rather than the areas) of the rectan-
gles are specified. For example, in word clouds adapted to multiple languages,
the aspect ratio of (the bounding box of) each word depends on the particular
language. The aspect ratio of an axis-aligned rectangle r is height(r)/width(r).
A generic layout L is weakly (strongly) aspect ratio universal (ARU for short)
if any assignment of aspect ratios to the rectangles can be realized by a layout
weakly (strongly) equivalent to L.

Our Results. We characterize strongly and weakly aspect ratio universal layouts.

Theorem 1. A generic layout is weakly aspect ratio universal if and only if it
is sliceable.

Theorem 2. For a generic layout L, the following properties are equivalent:

(i) L is strongly aspect ratio universal;
(i) L is one-sided and sliceable;
(#ii) the extended dual G*(L) of L, admits a unique transversal structure.
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The terms in Theorems[IH2] are defined below. It is not difficult to show that one-
sided sliceable layouts are strongly aspect ratio universal; and admit a unique
transversal structure. Proving the converses, however, is more involved.

Algorithmic results. In some applications, the rectangular layout is not specified,
and we are only given the dual graph of a layout (i.e., a proper graph). This raises
the following problem: Given a proper graph G with n vertices, find a strongly
(resp., weakly) ARU layout £ such that G ~ G(£) or report that none exists.
Using structural properties of one-sided sliceable layouts that we develop here,
we present an algorithm for recognizing the duals of strongly ARU layouts.

Theorem 3. We can decide in O(n?) time whether a given graph G with n
vertices is the dual of a one-sided sliceable layout.

Thomassen [31] gave a linear-time algorithm to recognize proper graphs if
the nodes corresponding to corner rectangles are specified, using combinatorial
characterizations of layouts [33]. Kant and He [I3/15] described a linear-time al-
gorithm to test whether a given graph G* is the extended dual of a layout, using
transversal structures. Later, Rahman et al. [I222[24|25] showed that proper
graphs can be recognized in linear time (without specifying the corners). How-
ever, a proper graph may have exponentially many nonequivalent realizations,
and prior algorithms may not find a one-sided sliceable realization even if one ex-
ists. Currently, no polynomial-time algorithm is known for recognizing the duals
of sliceable layouts [BJI836] (i.e., weakly ARU layouts); or one-sided layouts [6].

Background and Terminology. A rectangular layout (for short, layout) is a recti-
linear graph in which each face is a rectangle, the outer face is also a rectangle,
and the vertex degree is at most 3. A sublayout of a layout L is a subgraph of £
which is a layout. A layout is irreducible if it does not contain any nontrivial
sublayout. A rectangular arrangement is a 2-connected subgraph of a layout in
which bounded faces are rectangles (the outer face need not be a rectangle).

One-Sided Layouts. A segment of a layout L is a path of collinear inner edges
of L. A segment of L that is not contained in any other segment is maximal. In
a one-sided layout, every maximal line segment s must be a side of at least one
rectangle R; in particular, any other segment orthogonal to s with an endpoint
in the interior of s lies in a halfplane bounded by s, and points away from R.

Sliceable Layouts. A maximal line segment subdividing a rectangle or a rectan-
gular union of rectangular faces is called a slice. A sliceable layout (a.k.a. slicing
floorplan or guillotine rectangulation) is one that can be obtained through re-
cursive subdivision with vertical or horizontal lines; see Fig d). The recursive
subdivision can be represented by a binary space partition tree (BSP-tree), which
is a binary tree where each vertex is associated with either a rectangle with a
slice, or just a rectangle if it is a leaf [3]. For a nonleaf vertex, the two subrectan-
gles on each side of the slice are associated with the two children. The number of
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(equivalence classes of) sliceable layouts with n rectangles is known to be the nth
Schréder number [35]. One-sided sliceable layouts are in bijection with certain
pattern-avoiding permutations, closed formulas for their number has been given
by Asinowski and Mansour [2]; see also [20] and OEIS A078482 in the on-line
encyclopedia of integer sequences (https://oeis.org/) for further references.

A windmill in a layout is a set of four pairwise noncrossing maximal line
segments, called arms, which contain the sides of a central rectangle, and each
arm has an endpoint on the interior of another (e.g., the maximal segments
around r3 or ¢ in Fig. 2| (a)). We orient each arm from the central rectangle to
the other endpoint. A windmill is either clockwise or counterclockwise. It is well
known that a layout is sliceable if and only if it does not contain a windmill [IJ.

Transversal Structure. The dual graph G(L) of a layout £ encodes adjacency
between faces, but does not specify the relative positions between faces (above-
below or left-right). The transversal structure (a.k.a. regular edge-labelling) was
introduced by He [I3I15] for the efficient recognition of proper graphs, and
later used extensively for counting and enumerating (equivalence classes of) lay-
outs [I1]. The extended dual graph G*(L) is the contact graph of the rectangular
faces and the four edges of the bounding box of £; it is a triangulation in an
outer 4-cycle without separating triangles; see Fig.
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Fig.2: (a) A layout £ bounded by ey,...,es. (b) Extended dual graph G*(L)
with an outer 4-cycle (eq,...,eq). (¢) Transversal structure.

A layout L is encoded by a transversal structure that comprises G*(£) and
an orientation and bicoloring of the inner edges of G*(L), where red (resp.,
blue) edges correspond to above-below (resp., left-to-right) relation between two
objects in contact. An (abstract) transversal structure is defined as a graph G*,
which is a 4-connected triangulation of an outer 4-cycle (S, W, N, E), together
with a bicoloring and orientation of the inner edges of G* such that all the inner
edges incident to S, W, N, and FE, respectively, are outgoing red, outgoing blue,
incoming red, and incoming blue; and at each inner vertex the counterclockwise
rotation of incident edges consists of four nonempty blocks of outgoing red,
outgoing blue, incoming red, and incoming blue edges; see Fig. c).
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Fig.3: A flip of an empty (left) and a nonempty (right) alternating cycle.

Flips and Alternating 4-Cycles. It is known that transversal structures are in
bijection with the strong equivalence classes of generic layouts [SITTT5]. Further-
more, a sequence of flip operations can transform any transversal structure with
n inner vertices into any other [7I11]. Each flip considers an alternating 4-cycle
C, which comprises red and blue edges alternatingly, and changes the color of
every edge in the interior of C'; see Fig. [3] If, in particular, there is no vertex
in the interior of C, then the flip changes the color of the inner diagonal of C.
Furthermore, every flip operation yields a valid transversal structure on G*(L£),
hence a new generic layout £ that is strongly non-equivalent to £. We can now
establish a relation between geometric and combinatorial properties.

Lemma 1. A layout L is one-sided and sliceable if and only if G*(L) admits a
unique transversal structure.

Proof. Assume that £ is a layout where G*(£) admits two or more transversal
structures. Consider a transversal structure of G*(£). Since any two transversal
structures are connected by a sequence of flips, there exists an alternating 4-
cycle. Any alternating 4-cycle with no interior vertex corresponds to a segment
in £ that is two-sided. Any alternating 4-cycle with interior vertices corresponds
to a windmill in £. Consequently, £ is not one-sided or not sliceable.
Conversely, if L is not one-sided (resp., sliceable), then the transversal struc-
ture of G*(£) contains an alternating 4-cycle with no interior vertex (resp., with
interior vertices). Consequently, we can perform a flip operation, and obtain an-
other transversal structure for G*(L). O

2 Aspect Ratio Universality

An aspect ratio assignment to a layout L is a function that maps a positive real
to each rectangle in £. An aspect ratio assignment to L is realizable if there exists
an equivalent layout £’ with the required aspect ratios (a realization). A layout
is aspect ratio universal (ARU) if every aspect ratio assignment is realizable. In
this section, we characterize weakly and strongly ARU layouts (Theorems [IH2]).
We start with an easy observation. (Omitted proofs are in the full paper [10].)

Lemma 2. Let L be a sliceable layout. If an aspect ratio assignment for L is
realizable, then there is a unique realization up to scaling and translation. Fur-
thermore, for every a > 0 there exists a realizable aspect ratio assignment for
which the bounding box of the realization has aspect ratio a.
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Corollary 1. If L is one-sided and sliceable, then it is strongly ARU.

Corollary 2. If L is sliceable, then it is weakly ARU.

2.1 Sliceable and One-Sided Layouts

Next we show that any sliceable layout that is strongly ARU must be one-sided.
We present two types of simple layouts that are not aspect ratio universal, and
then show that all other layouts that are not one-sided or not sliceable can be
reduced to these prototypes.

r T 1 79 T T2
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Fig. 4: Prototype layouts that are not aspect ratio universal: (a)—(d) brick layouts
are sliceable but not one-sided; (e)—(f) windmills are one-sided but not sliceable.

Lemma 3. The brick layouts in Figs. [[d{{d are not strongly ARU; the windmill
layouts in Figs. [[d{f] are neither strongly nor weakly ARU.

Proof. Suppose w.l.o.g. that a brick layout £y in Fig. [a] is strongly ARU.
Then there exists a strongly equivalent layout £ for the aspect ratio assignment
a(ry) = a(rs) = 1 and «a(r1) = a(ry) = 2. Since width(r1) = width(rz) and
a(ry) = 2a(rg), then height(r1) = 2height(rz), and the left horizontal slice is
below the median of 71 Ury. Similarly, width(rs) = width(ry) and a(rs) = 2a(rs)
imply that the right horizontal slice is above the median of r3Ury. Consequently,
r1 and 74 are in contact, and L is not equivalent to Ly, which is a contradiction.

Suppose w.l.o.g. that the windmill layout £; in Fig.[de]is weakly ARU. Then
there exists a weakly equivalent layout £ for the aspect ratio assignment «(c) =
a(r1) = a(re) = a(rs) = a(ry) = 1. In particular, rq,..., 74 are squares; denote
their side lengths by s;, for i = 1,...,4. Note that one side of r; strictly contains
a side of r;_1 for i = 1,...,4 (with arithmetic modulo 4). Consequently, s; <
So < S3 < 84 < S1, which is a contradiction. O

Lemma 4. If a layout is sliceable but not one-sided, then it is not strongly ARU.

Proof. To show that a layout is not strongly ARU, it is sufficient to show that
any of its sublayouts are not strongly ARU, because any nonrealizable aspect
ratio assignment for a sublayout can be expanded arbitrarily to an aspect ratio
assignment for the entire layout.
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Let £ be a sliceable but not one-sided layout. We claim that £ contains
a sublayout strongly equivalent to a layout in Figs. faHdd] Because £ is not
one-sided, it contains a maximal line segment ¢ which is not the side of any
rectangle. Because L is sliceable, every maximal line segment in it subdivides a
larger rectangle into two smaller rectangles. We may assume w.l.o.g. that £ is
vertical. Because ¢ is not the side of any rectangle, the rectangles on the left and
right of £ must be subdivided horizontally in the recursion. Let fio and frigne be
the first maximal horizontal line segments on the left and right of ¢, respectively.
Assume that they each subdivide a rectangle adjacent to ¢ into r; and ro (on the
left) and r3 and r4 on the right. These rectangles comprise a layout equivalent
to the one in Figs. but they may be further subdivided recursively. By
Lemmal3] there exists an aspect ratio assignment to £ not realizable by a strongly
equivalent layout. a

In the remainder of this section, we prove that if a layout is not sliceable, then
it contains a sublayout similar, in some sense, to a prototype in Figs. Ina
nutshell, our proof goes as follows: Consider an arbitrary windmill in a nonslica-
ble layout £. We subdivide the exterior of the windmill into four quadrants, by
extending the arms of the windmill into rays /1, ..., £, to the bounding box; see
Fig. |5l Each rectangle of L lies in a quadrant or in the union of two consecutive
quadrants. We assign aspect ratios to the rectangles based on which quadrant(s)
it lies in. If these aspect ratios can be realized by a layout £’ weakly equivalent
to L, then the rays ¢1,...,¢, will be “deformed” into z- or y-monotone paths
that subdivide £ into the center of the windmill and four arrangements of rect-
angles, each incident to a unique corner of the bounding box. We assign the
aspect ratios for the rectangles in £’ so that these arrangements can play the
same role as rectangles r1,...,7r4 in the prototype in Figs. We continue
with the details.

Ut PE
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| ) '
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(a) A nonsliceable layout, a windmill, (b) An equivalent layout, where four
where rays /1, ..., 44 define quadrants. paths define rectangular arrangements.
Fig.5: A rays {4, ..., ¢, deform into monotone paths in an equivalent layout.

We clarify what we mean by a “deformation” of a (horizontal) ray .

Lemma 5. Let a ray £ be the extension of a horizontal segment in a layout L
such that £ does mot contain any other segment and it intersects the rectangles
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T1,...,Tk in this order. Suppose that in a weakly equivalent layout L', the corre-
sponding rectangles 1, ..., r), are sliced by horizontal segments s1,...,s,. Then
there exists an x-monotone path comprised of horizontal edges si,...,SE, and

vertical edges along vertical segment of the layout L.

Proof. Assume w.l.o.g. that ¢ points to the right. Since ¢ does not contain any
other segment and it intersects the rectangles r1, ..., r in this order, then r; and
r;+1 are on opposite sides of a vertical segment for ¢ = 1,...,k — 1. The same
holds for r; and rj , as £’ is weakly equivalent to £. In particular, the right
endpoint of s; and the left endpoint of s;4;1 are on the same vertical segment in
L foralli=1,...k—1. O

The next lemma allows us to bound the aspect ratio of the bounding box of
a rectangular arrangement in terms of the aspect ratios of individual rectangles.

Lemma 6. If every rectangle in a rectangular arrangement has aspect ratio am,
where m is the number of rectangles in the arrangement, then the aspect ratio of
the bounding box of the arrangement is at least o and at most am?.

Proof. Consider an arrangement A with m rectangles and a bounding box R.
Let w be the maximum width of a rectangle in A. Then, width(R) < mw. A
rectangle of width w has height amw, and so height(R) > amw. The aspect
ratio of R is height(R)/width(R) > (amw)/(mw) = a.

Similarly, let A be the maximum height of rectangle in A. Then height(R) <
mh. A rectangle of height h has width ﬁ, and so width(R) > % The aspect
ratio of R is height(R)/width(R) < mh/(-L) = am?, as claimed. O

We can now complete the characterization of aspect ratio universal layouts.
Lemma 7. If a layout L is not sliceable, it is not weakly ARU.

Proof. Let R be a nonslicable layout of n rectangles in a bounding box of L.
We may assume that L is irreducible, otherwise we can choose a minimal non-
sliceable sublayout £* from £, and replace each maximal sublayout of £* with
a rectangle to obtain an irreducible layout. By Lemma [2] a suitable aspect ratio
assignment to each sliceable sublayout of £* can generate any aspect ratio for
the replacement rectangle.

In particular, £ thus contains no slices, as any slice would create two smaller
sublayouts. Every nonsliceable layout contains a windmill. Consider an arbitrary
windmill in £, assume w.l.o.g. that it is clockwise (cf. Fig. . and let ¢ be its
central rectangle. By extending the arms of the windmill into rays, ¢1,...,£{4, we
subdivide R \ ¢ into four quadrants, denoted by Q1,...,Q4 in counterclockwise
order starting with the top-right quadrant.

Note that at most one ray intersects the interior of a rectangle in £. Indeed,
any two points in two different rays, p; € ¢; and p; € ¢;, span an axis-parallel
rectangle that intersects the interior of c. Consequently, p; and p; cannot be in
the same rectangle in R\ c. It follows that every rectangle of £ in R\ ¢ lies in
one quadrant or in the union of two consecutive quadrants.
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We define an aspect ratio assignment « as follows: Let a(c) = 1. If r C @
or 1 C @3, let a(r) = 6n; and if r C Q2 or r C Qy, let a(r) = (6n?)~L. For a
rectangle 7 split by a ray, we set a(r) = 6n + (6n?)~! if 7 is split by a horizontal
ray {1 or £3; and a(r) = ((6n)~! + (6n?))~! if split by a vertical ray f2 or £y.

Suppose that a layout £’ weakly equivalent to £ realizes a. Split every rect-
angle of aspect ratio 6n + (6n?)~! in £’ horizontally into two rectangles of
aspect ratios 6n and (6n2)~!. Similarly, split every rectangle of aspect ratio
((6n)~1+4(6n2))~! vertically into two rectangles of aspect ratios 6n and (6n2)~!;
see Fig. By Lemmal 5] there are four z- or y-monotone paths Pi, ..., Py from
the four arms of the windwill to four distinct sides of the bounding box that
pass through the slitting segments. The paths Py, ..., Py subdivide the exterior
of the windmill into four arrangements of rectangles, A1, ..., A4 that each con-
tain a unique corner of the bounding box. By construction, every rectangle in
A; and Aj has aspect ratio 6n, and every rectangle in As and A4 has aspect
ratio (6n?)~1.

Let Ry, ..., R4 be the bounding boxes of A1, ..., A4, respectively. By Lemmal6]
both R; and R3 have aspect ratios at least 6, and both Ry and R4 have aspect
ratios at most %. By construction, the arrangements Ay, ..., A4 each contain an
arm of the windmill. This implies that width(c) < min{width(R;), width(R3)}
and height(c) < min{height(Ry), height(R4)}. Consider the arrangement com-
prised of A1, ¢, and As. It contains two opposite corners of R, and so its bounding
box is R. Furthermore, height(R) > max{height(R;), height(R3)}, and

width(R) < width(R;) + width(c) + width(R3) < 3 max{width(R;), width(R3)}
< 3 max { helgh(;c(Rl)’ hEIghg(Rg)} _ max{helght(R;Lhelght(Rg)}’

and so the aspect ratio of R is at least 2. Similarly, the bounding box of the
arrangement, comprised of As, ¢, and Ag is also R, and an analogous argument
implies that its aspect ratio must be at most % We have shown that the aspect
ratio of R is at least 2 and at most %, a contradiction. Thus the aspect ratio
assignment « is not realizable, and so £ is not weakly aspect ratio universal. O

This completes the proof of both Theorems [1]and [2} Specifically, Corollary
and Lemmal7imply Theorem[I] For Theorem 2] we need to show that properties
(i)—(iii) are equivalent: By Lemma [1} (ii) and (iii) are equivalent; Corollary
states that (ii) implies (i); and the converse follows from Lemmata [4] and [7

2.2 Unique Transversal Structure

Subdividing a square into squares has fascinated humanity for ages [4I14I32].
For example, a perfect square tiling is a tiling with squares with distinct integer
side lengths. Schramm [30] (see also [19, Chap. 6]) proved that every near tri-
angulation with an outer 4-cycle is the extended dual of a (possibly degenerate
or nongeneric) subdivision of a rectangle into squares. The result generalizes to
rectangular faces of arbitrary aspect ratios (rather than squares):
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Theorem 4. (Schramm [30, Thm. 8.1]) Let T = (V, E) be near triangulation
with an outer J-cycle, and o : V* — RV a function on the set V* of the inner
vertices of T. Then there exists a unique (but possibly degenerate or nongeneric)
layout L such that G*(L) = T, and for every v € V*, the aspect ratio of the
rectangle corresponding to v is a(v).

The caveat in Schramm’s result is that all rectangles in the interior of every
separating 3-cycle must degenerate to a point, and rectangles in the interior of
some of the separating 4-cycles may also degenerate to a point. We only use
the uniqueness claim under the assumption that a nondegenerate and generic
realization exists for a given aspect ratio assignment.

Lemma 8. If a layout L is strongly ARU, then its extended dual G*(L) admits
a unique transversal structure.

Proof. Consider the extended dual graph T' = G*(L) of a strongly ARU layout
L. As noted above, T is a 4-connected inner triangulation of a 4-cycle. If T' admits
two different transversal structures, then there are two strongly nonequivalent
layouts, £ and L', such that T = G*(£) = G*(£’), which in turn yield two
aspect ratio assignments, o and o/, on the inner vertices of T.. By Theorem
the (nondegenerate) layouts £ and £, that realize @ and o/, are unique. Conse-
quently, neither of them can be strongly aspect ratio universal. a

Lemma [§] readily shows that Theorem [2{i) implies Theorem [{(iii), and pro-
vides an alternative proof for the geometric arguments in Lemmata [4] and

3 Recognizing Duals of Aspect Ratio Universal Layouts

We describe an algorithm that, for a given graph G, either finds a one-sided
sliceable layout £ whose dual graph is G, or reports that no such layout exists.
We can decide in O(n) time whether a given graph is proper [12I22/24125]. Every
proper graph is a connected plane graph in which all bounded faces are triangles.

Problem Formulation. The input of our recursive algorithm will be an instance
I = (G,C, P), where G = (V, E) is a near-triangulation, C' : V(G) — Ny is a
corner count, and P is a set of ordered pairs (u,v) of vertices on the outer face
of G. An instance I = (G, C, P) is realizable if there exists a one-sided sliceable
layout £ such that G is the dual graph of L, every vertex v € V corresponds to
a rectangle in £ incident to at least C(v) corners of £, and every pair (a,b) € P
corresponds to a pair of rectangles in £ incident to two ccw consecutive corners.
When we have no information about corners, then C(v) =0 for all v € V, and
P = (). In the full paper [10], we establish the following structural result.

Lemma 9. Assume that (G,C, P) admits a realization L and |V (G)| > 2. Then
G contains a vertex v with one of the following (mutually exclusive) properties.

(I) Vertex v is a cut vertex in G. Then 1, is bounded by two parallel sides of R
and by two parallel slices; and C(v) = 0.
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(II) Rectangle 1, is bounded by three sides of R and a slice; and 0 < C(v) < 2.

Based on property (II), a vertex v of G is a pivot if there exists a one-sided
sliceable layout £ with G ~ G(£) in which r, is bounded three sides of R and
a slice. If we find a cut vertex or a pivot v in G, then at least one side of r, is
a slice, so we can remove v and recurse on the connected components of G — v.
We describe an analyze our algorithm for an instance I in the full paper [10].

4 Conclusions

We have shown that a layout £ is weakly (strongly) ARU if and only if £ is
sliceable (one-sided and sliceable); and we can decide in O(n?)-time whether
a given graph G on n vertices is the dual of a one-sided sliceable layout. An
immediate open problem is whether the runtime can be improved. Cut vertices
and 2-cuts play a crucial role in our algorithm. We can show (in Section 4 of the
full paper [I0]) that the duals of one-sided sliceable layouts have vertex cuts of
size at most 3. Perhaps 3-cuts can be utilized to speed up our algorithm. Recall
that no polynomial-time algorithm is currently known for recognizing the duals
of sliceable layouts [BII836] and one-sided layouts [6]. It remains an open to
settle the computational complexity of these problems.
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