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Abstract Let M be an irreducible 3-manifold M with empty or toroidal boundary which has at least one
hyperbolic piece in its geometric decomposition, and let A be a finite abelian group. Generalizing work
of Sun [20] and of Friedl-Herrmann [7], we prove that there exists a finite cover M’ — M so that A is a
direct factor in Hy(M',Z).

1. Introduction

In [20], Sun showed that any closed hyperbolic 3-manifold virtually contains any
prescribed finite subgroup in homological torsion. Sun used the immersed almost-Fuchsian
surfaces of Kahn and Markovic [14] to construct immersed m1-injective 2-complexes. By
using Agol’s result that the fundamental groups of closed hyperbolic 3-manifolds are
virtually compact special [2] and the implications on virtual retractions to quasi-convex
subgroups, Sun finds for any closed hyperbolic 3-manifold a finite cover containing the
prescribed finite abelian group as a direct factor in homology [20, Theorem 1.5].

Since the Kahn—-Markovic construction requires that the manifolds be closed, Sun’s
results do not apply to hyperbolic 3-manifolds with cusps. Indeed, Sun asked whether his
result applied also to finite-volume hyperbolic 3-manifolds with cusps. In this paper, we
extend the results of Sun to a larger class of 3-manifolds which includes all finite-volume
hyperbolic 3-manifolds, giving a positive answer to [20, Question 1.8].

Theorem 1.1. Suppose that M is an irreducible 3-manifold with empty or toroidal
boundary which has at least one hyperbolic piece in its geometric decomposition and that
A is a finite abelian group. There is a finite cover N — M so that Hy1(N;Z) has a direct
factor isomorphic to A.

Prior to Theorem 1.1, Friedl and Herrmann used [20] and a result of Hadari [10] to show
that for any such M and any k > 0 there is finite cover N — M with |TorH(N;Z)| > k [7,
Theorem 1.3]. Independently, Liu showed that any such M admits a finite cover N’ — M
with |TorH;(N';Z)| # 0 [16, Corollary 1.4].
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The key case in the proof of Theorem 1.1 is the case of finite-volume hyperbolic
3-manifolds. We follow the strategy of [20] but give an independent proof which simplifies
and generalizes Sun’s results. We replace Sun’s use of the results of Kahn and Markovic
[14] with those of Kahn and Wright [15] and replace some arguments of Sun with
an elementary argument using coverings of surfaces. We then apply virtual retraction
properties of relatively quasi-convex subgroups in relatively hyperbolic groups to deduce
both the case where M is finite-volume hyperbolic and also to reduce the general case to
this one. Cooper and Futer [6] independently obtained similar results to those of [15] on
constructing many closed immersed 7-injective quasi-Fuchsian surfaces in finite-volume
hyperbolic 3-manifolds with cusps. However, our arguments rely on the additional control
on the quasi-conformal constants and the holonomies in the Kahn—Wright constructions.

A hybrid hyperbolic manifold is constructed either by inbreeding (c.f. [1, 4]) or
interbreeding (c.f. [8]) arithmetic hyperbolic manifolds. For n > 3 every arithmetic
hyperbolic n-manifold N of simplest type contains a totally geodesic arithmetic hyperbolic
3-manifold M (coming from restrictions of the associated quadratic form). By [3, §9], we
get the following corollary (some of these cases follow from [20]).

Corollary 1.2. Suppose that n >3 and N is a finite-volume hyperbolic n-manifold which
18 either arithmetic of simplest type or a hybrid. Then if A is a finite abelian group, there
is a finite cover Ny — N so that Hi(N1;7Z) has a direct factor isomorphic to A.

2. Quasi-isometric embeddings

Our first goal is to prove Theorem 1.1 in the case of a noncompact finite-volume hyperbolic
3-manifold. In Section 6, we deduce the general case from this case. In this section, we
record some elementary facts about quasi-isometries and hyperbolic spaces.

Definition 2.1. Let k, )\, k be constants, and let X,Y be metric spaces. Amap f: X Y
is a k—local (A k)-quasi-isometric embedding if for all € X the map

is a (A, k)-quasi-isometric embedding.
The following is essentially [15, Theorem A.20].

Proposition 2.2. For all §, for all K >0 and all A > 1, there exist k,X,k’ so that if YV
is a 0—hyperbolic metric space and X is a geodesic metric space, then any k-local (A k)-
quasi-isometric embedding f: X =Y is a (N,Kk')-quasi-isometric embedding.

Proof. Since X and Y are geodesic metric spaces, distances in X and Y are calculated by
geodesics. Therefore, we can apply the standard local-to-global result for quasi-geodesics
(see, for example, [5, Theorem 3.1.4, p.25]). O

2.1. Half-planes

Let 6 € (0,7]. The space Py is the subspace of H? obtained from gluing two totally geodesic
half-planes together along their boundary geodesic, meeting at angle #. There is a natural
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Figure 1. The proof of Lemma 2.3

embedding pg: H? — H? given by mapping the positive y-axis to the boundary geodesic
of the two half-planes (we consider H? in the upper half-space model as a subset of R?).
The image of these boundary geodesics is the pleating locus for py.

Lemma 2.3. Given 0 € (0,7, there exists kg > 0 so that for all Oy € [0,7] the map py, is
a (1,k9)-quasi-isometric embedding.

Proof. We show that it suffices to take

1
Ko = 2 -arccosh (sm@)) .

Indeed, suppose that a,b € H?, let @ = pg(a) and b= py(b) and consider the image of the
geodesic segment [a,b] in pp(H?). If the sign of the z-coordinates of a and b are the same,
then [a,b] maps to a geodesic segment in H?® and dgs (@,b) = dgz2(a,b) in this case.

Suppose then that the signs of the z-coordinates of a and b are different, and let ¢ € [a,b]
have z-coordinate 0. Let ¢ = py(c). Then py([a,b]) consists of two geodesic segments [a,c]
and [¢,b] meeting at some angle 1 > 6.

Consider the geodesic triangle A in H? with vertices @,b,¢, and let e be the distance from
¢ to the geodesic [@,b]. The shortest geodesic from € to [@,b] cuts A into two right-angled
hyperbolic triangles, one of which has angle at ¢ at least g. We thus have a hyperbolic
triangle with side lengths ey, ez, e3, say, where the angle opposite ez is 7, and the angle
opposite e, is at ¢ and is Fy > g. Let FE7 be the angle opposite the side of length e;.

The second hyperbolic law of cosines says

cos(E1) = —cos(Es) cos (g) +sin(Es) sin (g) cosh(ey),
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SO

cos(F1) 1

- < .
sin(Fz) ~ sin (%)

Let dy = dys(a,¢) and dy = dgs (¢,b). Observe that dy:(a,b) = dy +ds. It is clear that

cosh(ey) =

dy +dy — 2arccosh ( > < dgs(a,b) < dy +dy,

and the result follows. O

3. Kahn—Wright surfaces

From this section until the end of Section 5, let N be a (noncompact) finite-volume
hyperbolic 3-manifold. We remark that our proof of Theorem 1.1 works in the compact
hyperbolic setting also without changes and is simpler in some ways than Sun’s in this
case.

The set of closed geodesics in N = H?/T" is in 1-to-1 correspondence with the set
of conjugacy classes of loxodromic elements in I". For a closed geodesic o in N (with
corresponding conjugacy class [y] CT"), let £(a) denote the length of v (the translation
length of ) and () the holonomy class of « (the rotation angle of v around its axis).

3.1. Pre-good curves

Later in the section, we give a brief discussion of the construction of surfaces due to Kahn
and Wright in [15]. However, we first give a lemma which proves the existence of certain
well-behaved geodesics whose n'® powers will become part of the Kahn-Wright surface.
In the next section, we take a cover of the Kahn—Wright surface, cut along a lift of this
n*™ power, and then quotient by the n'! root of the two resulting boundary curves, to
form a complex X,,. This construction is similar to Sun’s in [20] and forms the basis of the
proof of Theorem 1.1 in the finite-volume hyperbolic case. The following is an analogue
in the finite-volume case of Sun’s [20, Lemma 2.9]. In order to use this geodesic in Kahn
and Wright’s construction, it is important to control its height, a measure of how far it
goes into a cusp neighborhood. See [15, §3] for the definition of height in the following
statement.

Lemma 3.1. ForneNje>0, u> %, there exists Ry so that for all R > Ry there exists a
geodesic ag in N of height at most ulog R such that |€(o¢0) — %| < and |9(a0) — %’T} <=

Proof. For a closed subset Q of SO(2) and T > 0, let
G(T,QY) ={a: «ais a closed geodesic in N, £(a) <T,0(a) € Q}.

As noted in [15, §3.1], an application of the Margulis argument shows that

€2T
#G(T,Q) ~ = (|2 as T — o0 (1)
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which in this case follows, for example, from [18, Theorem 1.1] by setting ¢ := 1 the
indicator function on SO(2) (see also [9]).

Considering geodesics a € G(2R/n+¢/n,Q)\ G(2R/n —€/n,Q), where Q is the interval
(22 — £ 2% 4 <) e have

n n’n

2R € 2T € eth/n
#{a.‘é(ao)—n‘<n and ‘0(0(0)—71 <n}N'u64R' (2)

The arguments in the proof of [15, Lemma 3.1] apply to show that, as R grows, the
proportion of those a with height larger than plog R shrinks since p > % In particular,
for sufficiently large R, one can find o as needed. O

Note that ap may be chosen to be primitive. In the language of Kahn and Wright, af
is an (R,€)-good curve.

Definition 3.2. Fix n € N and also R,e. An (R,e,n)-pre-good curve in N is a geodesic
g satisfying the conclusion of Lemma 3.1 for p=1.

We remark that Kahn and Wright allow curves to have height at most 50log(R) before
needing to be ‘cut-off’, so certainly curves of height at most log R are fine. Lemma 3.1
asserts that, for fixed n and e, for large enough R, there exists an (R,e,n)-pre-good curve
(in fact there are many).

3.2. The construction of Kahn and Wright

In [15], Kahn and Wright build certain quasi-Fuchsian immersed surfaces in N out of
pieces called good pants and good hamster wheels. Each good pant and good hamster
wheel is immersed in N and has geodesic boundary components, which are referred to as
cuffs.

The construction in [15] depends on choices of parameters R (sufficiently large) and
e > 0 (sufficiently small). A pant is a sphere with three holes, and a hamster wheel is a
sphere with R+ 2 holes, 2 of which are special. Pants and hamster wheels are good if all
cuffs have complex length within € of 2R and perfect if they are exactly 2R.

We postpone for now the choice of the parameters R and € in order to discuss the
construction. Kahn and Wright also specify another pair of parameters called ‘cutoff
heights’, and the purpose of Lemma 3.1 above is to ensure that we can find an oy whose
height stays below the cutoff heights and whose n'" power is a good curve.

Suppose that we find a curve ag as in Lemma 3.1 so that o = ) is an (R,€)-good curve
and so that the height of ag (and hence «) is at most log R. Then Kahn and Wright build
a surface S out of good pants and good hamster wheels, and « appears as a cuff on at
least one (in fact many) of these pieces.

Let Hr = {(z,y) € H? |z > 0} and Hy, = {(z,y) € H? | x <0}, and let m = {(z,y) € H? |
xr = 0} =HrNHp.

Consider ag: S' — N as a map from the circle to N parametrized proportional to arc
length, and let u = ag(1). Let ¢, : S' — S! be the connected n-fold covering map, and
let a: S' — N be the composition ag o ¢,,. Suppose f: Sy ¢ N is a Kahn-Wright surface
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and that there is a map C: S' — Sy so a = foC. Let ¢, (u) = {uy,...,u,}, and note
that there are n different points {as,...,a,} on Sy, so f(a;) = a(u;) for each i.

Choose a basepoint b € H?, and let 7: (H?,b) — (N,u) be the based universal covering
map. Fix a basepoint ¢ € H2, and for each i, let 7;: (H?2,c) — (Sp,a;) be a based universal
cover so that 7;(m) = C(S?).

The map f elevates to n distinct (based) maps:

fir (H2,c) — (H3,b)

so that for each ¢ we have WOE = for;.

Now, for a pair i # j from {1,...,n}, we have f;(m) = f](m) Thus, we can take the
two maps f;| 1y, and fj |z, and glue them together via an orientation-preserving isometry
along the boundary to get a continuous map EHJR H? — H3, and similarly for the two

maps restricted to Hy, to get a continuous map fZH]L

Kahn and Wright prove that, for appropriate choices of parameters, their surface, built
as an assembly of good pants and good hamster wheels, is close to an assembly of perfect
pants and perfect hamster wheels and that the map which takes the ‘good’ assembly to
the ‘perfect’ assembly is compliant (see [15, §A.5]), which in particular means that it
takes cuffs to cuffs. For a perfect assembly with cuff «, the construction analogous to
the f; ; leads to pairs of totally geodesic half-planes glued along their boundary geodesic,
namely to a map py for some 6. Thus, the map that takes the good assembly to the
perfect assembly induces a map between ff;R: H? — H3 and some map py: H? — H?,
and this map takes m to the pleating locus for py.

Our first task is to bound 6 away from 0, and our second is to show that the two
maps are close. The sense in which they are close will be that of [15, p. 554]—being of
€g-bounded distortion to distance D for appropriate choice of ¢y and D.

Denote the angles of the maps py induced by i, j and Hg by 6(i,5,Hr) and for 4, j and
HL by 0(27],HL)

The following is a summary of the above discussion and also of [15, Theorem A.18].
In the following statement, R is the constant from the statement of Lemma 3.1 (with
values n, €g and p =1, respectively).

Theorem 3.3. Fizn € N. For all D there exist C, eg and Ry > Ry so that for all e € (0,¢p)
and all R > Ry and any (n,R,e)-pre-good curve aq there exists a Kahn—Wright surface
f: So+ N containing o = af) as a cuff, constructed as an (R,€)-good assembly.

For each i,j € {1,...,n} with i # j, we have the following:

(1) For any point v which lies within D of m in H?, we have

A (7 @) ot () o (T ©)pogi ) (0)) < Ce

and

(2) For any point z € H? lying at distance at least D from m, the maps ﬁf‘;L and ]?zbgR
restricted to the ball of radius D about z are (1+ Ce,Ce)-quasi-isometric embeddings.
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Moreover, we have
0(i,j. Hr),0(,j.Hy) € (=)

The following is an easy consequence of Theorem 3.3 and Lemma 2.3. In the following
statement ep is the constant from Theorem 3.3 applied to n and D, Ry is the constant
from Lemma 3.1 applied with choices n, ep and g =1, and R; is the constant then
obtained from Theorem 3.3.

Corollary 3.4. Fiz n € N. There exist \,x so that for any D there exist Rp > Ri1,Ry
and €p >0 so that for any oo and f: So % N as in Theorem 3.3 with R> Rp and any
e € (0,ep) the maps fﬁR and f{? are D-local (M k)-quasi-isometric embedding.

Now, choose D, A1,k so that any D-local (\,x)-quasi-isometric embedding from H? to
H? is a global (\1,k1)-quasi-isometric embedding (see Proposition 2.2). This D then gives
Rp and ep as above.

Lemma 3.1 proves that there is an (n,Rp,ep)-pre-good curve oy, and the construction
from [15] proves that thereis an f: Sy — N with a = «of as a cuff satisfying the conclusions
of Theorem 3.3 and Corollary 3.4, with R = Rp.

We fix this map f: So % N, along with n, D, Rp, €p, o, o = o, k and € as chosen
above for the next two sections.

4. The space X,

By standard separability properties of surface groups, we may find a cover S — Sy to
which « lifts as a nonseparating simple closed curve and so that:

(1) The injectivity radius of S is at least max{2D,\1k1}, and

(2) The lift of a to S is contained in an embedded collar of width at least
max{QD,)\lnl}.

Given the surface S, we build a space X,, which immerses into N, exactly as in [20].
Passing from Sy to S before constructing X,, makes the proof that X, is mi-injective
with quasi-convex image much simpler than Sun’s proof from [20, §4]. Let C' denote the
image of o in S, and let ¢%: C — S! be an n-to-1 covering map, and let 7c: C' — C be
a deck transformation. We may choose ¢¢ so that 7 is an isometry.

Definition 4.1. The space X,,(S,C) is defined by cutting S along C to get a surface S;
with two boundary components, denoted C; and Cs, and taking the quotient of S; by
the relation generated by ¢~ 7¢,(c) for c € C; and i =1,2.

Suppose that S is equipped with a hyperbolic metric, and consider the induced metric
on Sp. Since the maps 7¢, are isometries, there is a natural induced quotient metric on
X,,(S,C), which is locally isometric to H? away from the images of the C;.

The following result is clear from the construction of S from Sjy.

Lemma 4.2. The injectivity radius of X,, is at least max{2D,\1x1}.
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Let S1 be the surface obtained from S by cutting along C, and let C7,C5 be the boundary
components of S;. Let ¢: S; — X,, be the defining quotient map, and let C; = ¢(C;) for
i=1,2.

Because in S the curve C has an embedded collar of width at least 2D, for any i,j €
{1,2}, any two distinct elevations of C; and C; to X,, are at distance at least 4D from
each other.

Definition 4.3. Suppose that A={Z1,...,Z,,} is a finite collection of metric spaces and
that k > 0. A metric space Z is k-modeled on A if for every z € Z there is an ¢ so that
the ball of radius k& about z is isometric to a ball in Z;.

Recall Hg = {(z,y) | z > 0,y > 0} is the (closed) half-hyperbolic plane (in the upper
half-space model). Let W,, be the space obtained from n copies of Hr glued along the
boundary geodesics (by an isometry).

Lemma 4.4. The space 5(\; is D-modeled on W,,.

Proof. Let x € ),(vn, and consider the covering map 7: ),(vn — Xn.

Case 1: d(r(x),{C1,C2}) < D.

In this case, in )f(\; there is a unique elevation of some C; which lies within D of z.
Let y be a point in this elevation so d(z,y) < D. Then Bp(z) C Bap(y), and Bap(y) is
isometric to a ball of radius 2D in W,.

Case 2: d(n(x),{C1,C2}) > D.

In this case, there is no elevation of either C; which lies within D of z, and Bp(x) is
isometric to a ball of radius D in H? (and so in W,,). O

By construction, the immersion f;: S — N obtained from composing the covering map
S — Sy with f: Sy N yields an immersion g: X,, & N. Let §: X,, — H3 be the induced
map on universal covers.

Two points z,y in X, at distance at most D either lie in an isometrically embedded
copy of a half-space from H?,= or else in two different ‘sheets’ of a copy of W,,. In either
case, it follows immediately from Corollary 3.4 that g is a D-local (A, k)-quasi-isometric
embedding. Thus,

Theorem 4.5. The map g: 5(71 — H? is a D-local (\k)-quasi-isometric embedding and
hence is a (global) (A1,k1)-quasi-isometric embedding.

In particular, since the injectivity radius of X, is at least A1k, the map g is m-
injective, and g.(m1(X,,)) is relatively quasi-convez in w1 (N). Moreover, g.(m1 (X)) does
not intersect any (conjugate of ) the cusp subgroups of w1 (N).

5. Virtual retractions and the proof of Theorem 1.1 in the hyperbolic case

In this section, we prove Theorem 1.1 in case of a (noncompact) finite-volume hyperbolic
3-manifold N. Let T' =71 (N). By [22, Theorem 17.14], 71 (N) is the fundamental group of
a compact virtually special cube complex X. Let IV < T be a finite-index subgroup so that
the cover of X corresponding to I' is special, and let N; be the cover of N corresponding

https://doi.org/10.1017/51474748022000329 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000329

Prescribed Virtual Homological Torsion of 3-Manifolds 9

to I'. As in Section 4, construct an immersion g: X,, — N;. Note that (I, P) is relatively
hyperbolic, where P consists of the (abelian) cusp subgroups.

Let H = g, (m1(X,,)) <71(Np) =T'. The subgroup H is relatively quasi-convex in I",
and so by [12, Corollary 6.7] (we use the formulation as in [19, Theorem 6.3]) that H is
a virtual retract of I. Let I'” be a finite-index subgroup of IV which retracts onto H. Let
N3 be the finite cover of Ny corresponding to I'. As in [20, Proposition 3.7], we have the
induced maps on homology:

Hy(X0;2) 2% Hi(No; Z) = Hy (X3 Z).

Therefore, since ro g, = idy, Hi(X,;Z) = 22"+ g 7/n7 is a direct factor of
Hy(N2;Z). In particular, Z/nZ is a direct factor of Hj(N3;Z), and this proves the
hyperbolic case of Theorem 1.1 in the case that A is finite cyclic.

Given a finite abelian group A, induction on the rank & of A also works as in [20,
Proposition 3.9] as follows. Let A = A; ©7Z/ny417Z, where A} = ©F_,Z/n;Z. Suppose by
induction that Hy <T” is a relatively quasi-convex free product of images of m; (X,,,) (for
i=1,...,k) and that Hz = (gr11)s (m1(Xn,,,)) <TI". Choose any v € I whose fixed points
in OH? are disjoint from both limit sets A(H;) and A(Hz). Then after conjugating Ho by
some sufficiently high power v™, the first Klein—-Maskit combination theorem [17] applies
(note that by [11, Corollary 1.3] a subgroup is relatively quasi-convex if and only if it is
geometrically finite). Since Hs is relatively quasi-convex, the free product Hy xy™ Hoy™™
is also a relatively quasi-convex subgroup of IV isomorphic to the abstract group Hy * Hs.
The proof of the hyperbolic case of Theorem 1.1 for a general finite abelian A then follows
exactly as in the case of a finite cyclic A above.

6. Nonhyperbolic manifolds

We now prove Theorem 1.1 in general. To that end, suppose that M is an irreducible
3-manifold which has at least one hyperbolic piece in its geometric decomposition and
that A is a finite abelian group. By [19, Theorem 1.1], there exists a CAT(0) cube complex
X equipped with a free 7 (M )—action so that there are finitely many orbits of hyperplanes

and so that 7, ( M)\X has a finite special cover. Let I'y < (M) be a finite-index subgroup

corresponding to the finite special cover of 7 ( M)\X , and let M, be the finite cover of M
corresponding to I';. Let M}, be a hyperbolic piece in the geometric decomposition of M,
and let Ty, :=m (M) < m1(M;) (basepoints/conjugacy classes are not important here).
According to the construction in the previous sections, there is a relatively quasi-convex
subgroup H of T'j, so that A is a direct factor of Hy(H;Z). Theorem 1.1 then follows
immediately from the following result. This result is presumably known to the experts,
but we were unable to find it in the literature.

Proposition 6.1. There is a finite-index subgroup 'y < w1 (M7) so that H <Ty and H
s a retract of T'y.

Proof. Let /M; < M be the (T'p—invariant) universal cover of M), inside the universal
cover of M. The space X is built via a wallspace construction on M as in [13]. As in [13,
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§3.4], we can associate to /J\ivh a hemiwallspace consisting of those half-spaces in M which
intersect M), (see [13, Example 3.20]. This builds a I'j-invariant convex subcomplex X},
of X by [13, Lemma 3.24].

By [19, Theorem 2.1], the surfaces of the cubulation intersecting M}, all intersect Mp,
in a geometrically finite surface. Therefore, by [13, Theorem 7.10], the I',—action on Xp,
is (free and) co-sparse (see [21, Definition 7.1]).

According to [21, Theorem 7.2] inside of X}, there is an H-invariant convex subcomplex
Z upon which H acts co-sparsely. In fact, since H does not intersect any of the parabolic
subgroups of I'y,, the subcomplex Z found in [21, Theorem 7.2] is H-cocompact (this
follow immediately from the proof).

Since Fl\X is special, it follows from [12, Corollary 6.7] (we use the formulation as in
[19, Theorem 6.3]) that H is a virtual retract of T';. O
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