

Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex

Salah E. Abdel-Ghany¹ · Lisa M. LaManna² · Haleakala T. Harroun¹ · Pal Maliga^{2,3} · Daniel B. Sloan¹

Received: 28 September 2021 / Accepted: 23 December 2021 / Published online: 17 January 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Key message Replacing the native *clpP1* gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution.

Abstract The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native *clpP1* gene in tobacco (*Nicotiana tabacum*) with counterparts from another angiosperm genus (*Silene*) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic *clpP1* replacement from a slowly evolving donor species (*S. latifolia*) to homoplasmy but that *clpP1* copies from *Silene* species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco *clpP1* gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.

 $\textbf{Keywords} \ \ \textit{clpP} \cdot \text{Cytonuclear coevolution} \cdot \text{Epistasis} \cdot \textit{Nicotiana} \cdot \text{Plastome editing} \cdot \textit{Silene}$

Introduction

Owing to the endosymbiotic origins of mitochondria and plastids (chloroplasts) and the subsequent history of cytonuclear integration in eukaryotes, many of the key enzyme complexes in these organelles are assembled from a mix of subunits encoded in both nuclear and cytoplasmic genomes (Rand et al. 2004; Gould et al. 2008; Gray 2012; Roger et al. 2017; Sloan et al. 2018). As such, core eukaryotic functions

- Salah E. Abdel-Ghany salah.abdel-ghany@colostate.edu
- □ Daniel B. Sloan dan.sloan@colostate.edu
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA

require coordinated regulation and coevolution between genomes that differ in nearly every respect, including their modes of transmission, mutation rates, copy numbers, and mechanisms of replication and expression.

The plastid caseinolytic protease (Clp) is one example of a cytonuclear enzyme complex. In the model angiosperm Arabidopsis thaliana, the proteolytic core of this complex consists of 14 subunits in two heptameric rings encoded by nine different genes, including eight nuclear loci and a single gene (clpP1) in the plastid genome (plastome). The complete Clp complex also contains a number of associated chaperones and adapters that are all nuclear-encoded (Nishimura et al. 2015; Nishimura and van Wijk 2015). The *clpP1* gene appears to be essential based on studies that have modified the plastome to knockout this gene in the angiosperm *Nicotiana tabacum* (Shikanai et al. 2001; Kuroda and Maliga 2003) and the green alga Chlamydomonas reinhardtii (Huang et al. 1994). Likewise, disruption of nuclear genes that encode core Clp subunits also produces severe phenotypic effects (Sjögren et al. 2006; Zheng et al. 2006;

Koussevitzky et al. 2007; Kim et al. 2009, 2013; Moreno et al. 2017). The Clp complex plays a central role in protein quality control and homeostasis in plastids, and many potential proteolytic targets have now been identified (Majeran et al. 2000; Nishimura et al. 2013; Tapken et al. 2015; Apitz et al. 2016; Pulido et al. 2016; Moreno, et al. 2018; Welsch et al. 2018; Wu et al. 2018; Montandon et al. 2019; Liao et al. 2022).

In accordance with the key functions of the Clp complex, the clpP1 gene is almost universally retained in the plastomes of green plants and is highly conserved in sequence in most species (Williams et al. 2019). For example, angiosperm ClpP1 protein sequences often share ~ 60% amino acid identity with their counterparts in cyanobacteria despite more than a billion years of evolutionary divergence. However, a number of independent angiosperm lineages exhibit massive increases in rates of sequence divergence in this protein (Erixon and Oxelman 2008; Williams et al. 2019). In extreme cases, ClpP1 sequences have been found to retain less than 35% amino acid identity even between closely related species in the same genus (Rockenbach et al. 2016). The level of sequence divergence can be so extensive that the *clpP1* gene is often overlooked in plastome annotations (Haberle et al. 2008; Straub et al. 2011; Fajardo et al. 2013; Yao et al. 2015) or predicted to be a nonfunctional pseudogene (Hirao et al. 2008; Zhang et al. 2014). However, in the limited number of cases that have been investigated to date, these highly divergent clpP1 gene copies appear to be functional, with evidence of transcription and proper splicing (Williams et al. 2015) or even translation and likely assembly into the core Clp complex (Williams et al. 2019). Although the relative contributions of mutation and selection to these changes in rates of clpP1 evolution remain unclear, there is evidence that the gene may be subject to extensive positive selection for amino-acid substitutions in some species (Erixon and Oxelman 2008).

In angiosperms with highly divergent copies of clpP1, there are also correlated increases in the rate of protein sequence evolution in nuclear-encoded Clp subunits (Williams et al. 2019; Forsythe et al. 2021) and signatures of positive selection on these nuclear genes based on both population genetic and phylogenetic data (Rockenbach et al. 2016). The apparent action of positive selection on interacting proteins encoded in two different genomes is reminiscent of antagonistic molecular coevolution that can occur between hosts and pathogens (Hughes and Nei 1988; Aguileta et al. 2009). As such, it has been hypothesized that the examples of extreme protein sequence divergence in the Clp complex could be driven by selfish plastid-nuclear interactions (Rockenbach et al. 2016). Although the origins of mitochondria and plastids represent some of the most intimate and important mutualisms in the history of life, they can still be involved in antagonistic interactions with the nucleus, including selfish over-replication within cells and conflict over allocation to female vs. male reproduction (Havird et al. 2019). Although these types of conflicts have been more extensively documented in mitochondria, plastids may also be involved in selfish interactions with the nucleus. For example, the proliferation of genetically incompatible plastids within heteroplasmic *Oenothera* lines has been associated with variation in plastid-encoded components of fatty acid biosynthesis pathways and intracellular competition (Sobanski et al. 2019). Plastid-nuclear incompatibilities have also been implicated in male sterility (Bogdanova et al. 2015; Nováková et al. 2019), which is a classic source of cytonuclear conflict (Touzet and Budar 2004; Fujii et al. 2011).

Alternatively, positive selection could be indicative of some combination of adaptation, mutation accumulation, and compensatory coevolution rather than an antagonistic interaction. For example, in some systems, cytoplasmic genomes may accumulate disruptive sequence changes that require compensatory changes in nuclear genes to maintain function (Osada and Akashi 2012; Sloan et al. 2017). Generation of "mismatched" combinations of plastid and nuclear genotypes through crossing designs or protoplast fusion have often identified plastid-nuclear incompatibilities (Greiner et al. 2011; Barnard-Kubow et al. 2016), and in rare cases those incompatibilities have been traced to specific loci (Schmitz-Linneweber et al. 2005; Bogdanova et al. 2015; Zupok et al. 2020). A more targeted approach to probing plastid-nuclear incompatibilities involves genome editing to manipulate or replace individual genes. For example, plastome transformation in tobacco (N. tabacum) to replace its copy of rbcL with the orthologous sequence from sunflower (Helianthus annuus) successfully generated a hybrid tobacco-sunflower Rubisco complex, which contains plastidencoded RbcL subunits and nuclear-encoded RbcS subunits (Kanevski et al. 1999). Although catalytically active, this hybrid complex exhibited reduced function and evidence of incompatibilities between RbcL and RbcS subunits derived from different angiosperm lineages.

Here, we apply a plastome editing approach to replace tobacco *clpP1* with copies from other angiosperms with highly divergent rates of *clpP1* sequence evolution. For donor species, we take advantage of the extreme rate variation within the angiosperm genus *Silene* (Caryophyllaceae). Some species within this genus, including *S. latifolia*, have retained the typically low rates of ClpP1 protein sequence evolution found in most angiosperms, whereas others such as *S. conica* and *S. noctiflora* exhibit massive rate accelerations (Erixon and Oxelman 2008; Sloan et al. 2014a, b; Rockenbach et al. 2016). These *Silene* species are separated from tobacco by the same amount of divergence in time but differ radically in levels of ClpP1 protein sequence divergence (Figs. 1, S1). If the high levels of ClpP1 divergence

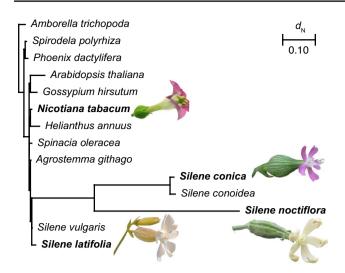
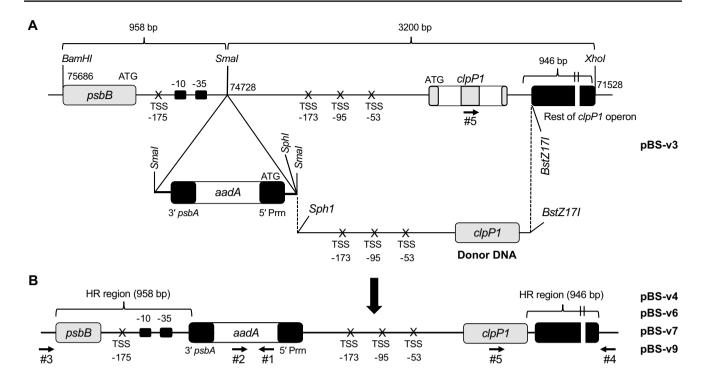


Fig. 1 Variation in clpP1 nonsynonymous substitution rate in Silene species compared to a sample of diverse angiosperms with relatively conserved copies of clpP1. Branch lengths were estimated with codeml within the PAML v4.9j package (Yang 2007), using a codon-based nucleotide alignment and a constrained tree topology. Branch lengths are scaled to the number of nonsynonymous nucleotide substitutions per site (d_N) . $Silene\ noctiflora$ was constrained to be sister to the $S.\ conicalconoidea$ lineage, although support for this relationship has been weak or inconsistent in previous studies (Rautenberg et al. 2012; Havird et al. 2017; Jafari et al. 2020). The species used in this study are highlighted in bold text and accompanied by a flower image

in species such as *S. conica* and *S. noctiflora* reflect the role of this protein in some type of selfish plastid phenotype, introducing their gene sequences into tobacco would be akin to exposing a naïve host to a pathogen. Under this model, we would predict that these transgenic genotypes would exhibit signs of selfish conflict such as over-replication of the plastome within cells or induction of male sterility phenotypes. On the other hand, if the rapid sequence changes in Clp subunits solely reflect mutualistic cytonuclear coevolution to maintain compatibility, then increasing levels of sequence divergence should be associated with greater levels of epistatic incompatibilities and loss of Clp function when transformed into tobacco.

Materials and methods

Construction of plastid transformation vectors for replacement of *clpP1* in tobacco


To replace the native *clpP1* gene in the tobacco plastome with orthologous sequences from donor species, we relied on particle bombardment of leaf tissue and the natural homologous recombination activity within plastids (Svab and Maliga 1993). This strategy involved combining the desired

donor clpP1 sequence with a selectable marker and flanking sequences from tobacco plastome that would serve as substrate for homologous recombination (Fig. 2). A region of the plastome containing 958 bp of the psbB gene and intergenic region between clpP1 and psbB (corresponding to plastome positions 74,728–75,686; GenBank accession KU199713.1) was amplified by PCR as a BamHI/SmaI fragment using psbBHR-S and psbBHR-AS primers (Table S1). The PCR product was cloned in a BamHI/SmaI-linearized pBluescript KS (+) phagemid (Stratagene) producing pBSv1 (Fig. 2). Also, a 3200-bp plastome fragment containing the clpP1 operon and intergenic region of clpP1 and psbB (corresponding to plastome position 71,528–74,728) was amplified as a XhoI/SmaI fragment using ClpP1HR-S and ClpP1HR-AS primers (Table S1) and cloned in pBS-v1 to produce pBS-v2. The chimeric spectinomycin resistance (aadA) construct with 16S rRNA promoter (Prrn) and psbA 3' regulatory regions (Svab and Maliga 1993) was synthesized and cloned into the Smal site in pBS-v2 to produce pBS-v3. The orientation of the insert was selected such that the transcription of aadA is in the opposite direction of the clpP1 operon. A SphI restriction site was introduced behind Smal at the 5' end of the aadA construct for exchange of the native tobacco clpP1 with counterparts from donor species using a unique BstZ17I restriction site in the clpP1 operon. Coding sequences from *clpP1* cDNA from donor species (tobacco, S. conica, S. latifolia, and S. noctiflora) were commercially synthesized (GenScript, Piscataway, NJ) with the native tobacco regulatory elements and an introduced SphI restriction site and then cloned into pBS-v3, yielding pBSv4, pBS-v6, pBS-v7 and pBS-v9, respectively, using SphI and BstZ17I cloning sites (Fig. 2). Note that most angiosperms have two introns in *clpP1*, so the absence of these introns in the cDNA donors represented a difference relative to the genomic sequence (although the introns have already been lost from the plastomes of S. conica and S. noctiflora). In addition, S. latifolia has a C-to-U RNA editing site in codon 187 that is widespread in angiosperms but has been lost in S. conica, S. noctiflora, and Nicotiana (Williams, et al. 2019). Therefore, for the S. latifolia cDNA construct, we used a T at this position to mimic the edited state. Plasmids were transformed into DH5α E. coli, propagated, extracted by QIAGEN Plasmid Midi kit, and used for plastome transformation.

Plastid transformation and selection of transplastomic tobacco lines

Tobacco (*N. tabacum* cv. Petit Havana) plants were grown in a controlled growth chamber at 250 μmol photons m⁻² s⁻¹ light intensity (16 h day, 25–27 °C). Plastid transformation was performed according to (Svab and Maliga 1993), using the biolistic PDS-1000/He particle bombardment system

Fig. 2 Targeted replacement of *clpP1* in the tobacco plastome with cDNA counterparts from different *Silene* species. **A** Physical map of the targeting region in the plastome of wild type tobacco cloned in pBluescript KS (+) plasmid (pBS-v3, see text for details). The chimeric selectable marker gene *aadA* conferring resistance to spectinomycin and streptomycin is driven by the rRNA operon promoter (5' *Prrn*). The 3' untranslated region of the *psbA* gene (3' *psbA*) was added to stabilize the mRNA (Svab and Maliga 1993). **B** Plastid-targeting region with flanking homologous recombination sequences

(HR regions), donor *clpP1* coding sequences, and *aadA* cassette. The *aadA* cassette was introduced in antisense direction relative to the *clpP1* operon. Restriction sites used for cloning and replacement are indicated. Numbered horizontal arrows represent primers used in PCR validation of insertion and orientation (Table S1). Transcription start sites (TSSs) are indicated in the intergenic regions between the *psbB* gene and *clpP1* operon (Hajdukiewicz et al. 1997). Certain regions of the map are expanded and not drawn to scale for the sake of clarity

(Bio-Rad). Young leaves of aseptically grown tobacco plants were bombarded with plasmid-DNA-coated 0.6 μm gold particles (Bio-Rad) and selected on RMOP media with 500 μg ml⁻¹ spectinomycin (Svab and Maliga 1993). The primary spectinomycin-resistant shoots were confirmed by testing for double resistance on RMOP medium containing spectinomycin and streptomycin (500 μg ml⁻¹ each) (Svab and Maliga 1993; Bock 2001). Transplastomic plants were subjected to 4 or 5 additional rounds of regeneration (Table S2) in the presence of spectinomycin to enrich the transgenic plastome and to select against the wild type genome copies. Correct transgene insertion and orientation were confirmed by PCR, and relative abundance of wild type and modified plastomes was assessed by quantitative PCR (qPCR) and DNA gel (Southern) blotting (see below).

Following the antibiotic-selection regime described above, we removed a subset of the transplastomic lines from selection to assess the stable maintenance of the edited plastomes. Using at least three biological replicates for each of the *Silene* or tobacco control *clpP1* replacements, we maintained parallel cultures both with and without

spectinomycin through two additional rounds of subculture and regeneration.

PCR and qPCR assays of modified plastomes

Total cellular DNA was prepared from regenerated leaves by the method of Doyle and Doyle (1990) and quantified by Qubit 2.0 Fluorometer (Invitrogen), using the dsDNA HS kit. PCR amplification was carried out using EmeraldAmp GT PCR Master Mix (Clontech, Takara) according to the manufacturer's protocol and the primers shown in Table S1 and Fig. 2. PCR conditions included 2 min at 98 °C followed by 35 cycles of 98 °C for 10 s, 60 °C for 30 s and 72 °C for a time period that depended on the length of the target PCR product. PCR amplicons were electrophoresed on 1% (w/v) agarose gels. For testing the heteroplasmic levels of wild type and transgenic clpP1 copies by qPCR, 0.1 ng total cellular DNA and 0.25 µM sense and antisense primers were used in a 10 µl reaction with iTaq Universal SYBR Green Supermix (Bio-Rad). The reaction volumes were heated at 95 °C for 3 min, followed by 40 cycles of 95 °C for 10 s and 60 °C for 30 s and a subsequent melt curve analysis on a

Bio-Rad CFX96 Touch thermal cycler and real-time PCR detection system. QClpP1-F and QClpP1-R primers (Supplementary Table S1) located in exon 2 and intron 1, respectively, were used in qPCR to estimate the copy number of wild type tobacco genomic *clpP1* (hereafter referred to as the exon/intron marker). The *aadA* transgene and the single-copy *psbA* gene were used as references for normalization. The amplification efficiency was calculated from the slope of a standard curve obtained from twofold serial dilution of genomic DNA ranging from 5 to 0.078 ng.

For each of the four cDNA constructs (tobacco, $S.\ conica$, $S.\ latifolia$, and $S.\ noctiflora$), six biological replicates were analyzed for each qPCR marker. Where possible, we chose independent transformants for these replicates. However, in some cases there were fewer than six independent transformant lines with the correct insert (five for $N.\ tabacum$, four for $S.\ conica$, and three for $S.\ latifolia$). In these cases, we included two subcultures from the same primary transformant to obtain the desired number of biological replicates. Each reaction was run in duplicate (technical replicates), and the threshold cycle (C_t) values for these two replicates were averaged for further analysis. After removing lines from selection (see above), these qPCR assays were then repeated on parallel cultures growing with and without spectinomycin.

We used a ΔC_t approach to estimate the relative abundance of wild type vs. transgenic plastome copies by comparing the C_t value for the exon/intron marker to the C_t values of each of the two aforementioned reference markers (aadA and psbA). Because the exon/intron maker should only amplify in wild type copies and the aadA markers should only amplify in transgenic copies, a ΔC_t value (i.e., $C_{t[exon/intron]} - C_{t[aadA]}$) of 0 would indicate 50/50 heteroplasmy, whereas positive ΔC_t values for this comparison would indicate an excess of transgenic copies and negative values would indicate an excess of wild type copies. The interpretation of comparisons to the psbA reference marker (i.e., $\Delta C_t = C_{t \text{ [exon/intron]}} - C_{t \text{ [psbA]}}$) is similar except that the psbA marker should amplify in both wild type and transgenic plastomes. Therefore, for this comparison the 50/50 heteroplasmy point should correspond to a C_t value of 1 rather than 0. To test for significant difference among the four transgenic lines, a one-way ANOVA was performed with the aov function in R v3.6.3, followed by post hoc pairwise comparisons with the TukeyHSD function.

Southern blotting

Total genomic DNA extracted from wild type and regenerated leaves of transplastomic lines was digested with *NruI* and *NarI* restriction enzymes, electrophoresed in a 0.8% (w/v) agarose gel, transferred to a nylon membrane by capillary transfer, and UV cross-linked to the membrane

(Stratagene). Restriction enzymes were selected to produce two fragments (5211 and 2132 bp) from the wild type plastome and one fragment (~7 kb) from transplastomes (with slight differences in length depending on the length of the donor *clpP1* transgene), as the *NarI* restriction site is located inside the second intron of clpP1 genomic sequence but not present in any of the cDNA transgenes. Two probes (probe 1 and 2) from wild type tobacco plastome sequence flanking NarI restriction site were amplified by PCR using primers described in Table S1 and labeled with Biotin DecaLabel DNA Labeling Kit (Thermo Scientific). Therefore, while wild type samples are expected to show two bands (~2 and ~5 kb), only one band (~7 kb) is expected in homoplasmic transplastomic lines, and heteroplasmic lines should have all three bands $(\sim 7, \sim 5, \text{ and } \sim 2 \text{ kb})$. Membranes containing digested DNA from transplastomic plants and wild type tobacco were hybridized with denatured probes for 18 h at 42 °C, washed, and incubated with a streptavidin HRP-conjugated antibody following the protocol in the Thermo Scientific Pierce Chemiluminescent Nucleic Acid Detection kit.

Assay of antibiotic resistance in progeny and seedling growth comparisons

To test whether putatively homoplasmic clpP1 replacement lines stably maintained and transmitted their transgenes, we analyzed seeds collected from regenerated plants. After two rounds of subculturing and regeneration on RM medium without spectinomycin, wild type and transplastomic plants were transferred from magenta boxes to soil and allowed to grow until flowering in a growth room at 120 µmol photons m⁻² s⁻¹ light intensity (16 h day, 22 °C). For crossing, flowers of transplastomic plants were emasculated one day before anthesis and pollinated with wild type plants. Seeds were collected, sterilized with 10 × diluted commercial sodium hypochlorite (0.6% final concentration) for 15 min, and washed with sterilized water five times. The sterilized seeds were sown in RM medium with and without spectinomycin (500 µg/ ml) and grown side by side with the wild type seedlings for 3 weeks to test for visible growth phenotypes and uniform retention of antibiotic resistance.

Materials availability

The constructs used for plastome transformation have been deposited to Addgene and are available under accessions 173,794–173,797.

Results and discussion

Editing of tobacco plastome to replace native *clpP1* sequence with *Silene* counterparts

Using antibiotic selection, we confirmed that biolistic delivery was successful in introducing the *aadA* marker into the tobacco plastome as part of each of the four *clpP1* donor constructs (Fig. 2). Growth on spectinomycin plates identified numerous potential transformants. Because spectinomycin resistance can arise by spontaneous mutations in plastid rRNA sequence (Svab and Maliga 1993), dual selection with spectinomycin and streptomycin was conducted to distinguish spontaneous mutants from lines with true transgene-mediated resistance (Svab et al. 1990). On selection media, the calli of the resistant clones are green, while the sensitive ones are white (Maliga et al. 1990).

PCR screening with multiple primers pairs (Fig. 2; Table S1) was used to confirm that double-resistant lines contained the full transgenic construct inserted in the expected location. The presence of the full-length transgene was also confirmed by Southern blot analysis for select lines (Figure S2). In some cases, lines carried the *aadA* selectable marker but exhibited evidence of rearrangements or internal recombination events (examples shown in Fig. S3), which is not surprising given the

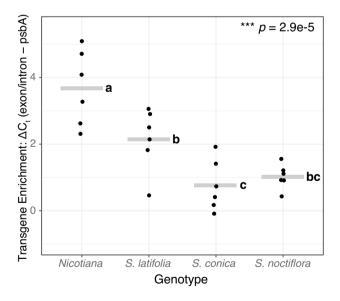
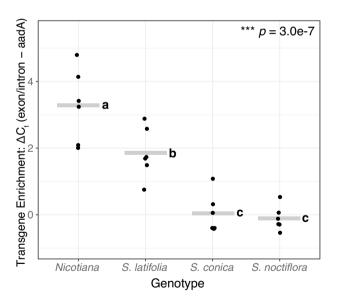



Fig. 3 Varying levels of heteroplasmy obtained for different replacements of the native clpP1 sequence in tobacco. Levels of enrichment by antibiotic selection for the transgenic plastomes were inferred by qPCR analysis, comparing a wild type marker (spanning an exon/intron junction in the native clpP1) against a shared reference gene (psbA; left) or the antibiotic resistance maker in the transgenic cassette (aadA; right). Higher ΔC_t values are indicative of reduced abun-

highly recombinational nature of plastomes. We restricted our analysis to lines that produced PCR products with expected lengths for markers spanning the boundary between the insert and flanking sequences on each side (Fig. S4). Using this approach, we identified lines derived from at least three independent transformation events for each of the four *clpP1* donor constructs (tobacco, *S. conica*, *S. latifolia*, and *S. noctiflora* cDNAs). Where necessary, we propagated lines such that we had at least six biological replicates for each construct (Table S2).

More divergent *clpP1* donor sequences were restricted to lower heteroplasmic frequencies

Typically, homoplasmic shoots are obtained after 3–5 months during the second or third cycle of regeneration in the presence of antibiotic (Svab and Maliga 1993). However, even after five cycles of regeneration, the frequency of wild type plastome copies detectable by qPCR was higher in the lines carrying *Silene clpP1* replacement constructs than in the control lines carry tobacco cDNA replacements, indicating that these *Silene* replacement lines had generally not reached homoplasmy (Fig. 3). The measured primer efficiencies for all qPCR markers were very close to 100% (exon/intron: 102.0%; *aadA*: 97.9%; *psbA*: 98.0%). Therefore, ΔC_t comparisons should provide an accurate estimate of the relative abundance of modified vs. wild type plastome copies. Using tobacco *clpP1* cDNA itself to replace

dance of the wild type maker and greater enrichment of transgenic plastomes. Each black point represents a biological replicate (averaged from two technical replicates), and gray bars indicate the mean value for that donor sequence. Statistical significance was assessed with a one-way ANOVA. Lowercase letters indicate significant pairwise differences as identified by post hoc Tukey's HSD tests

the corresponding tobacco genomic sequence was most successful, but even for this control construct, there was a wide range among lines for the estimated heteroplasmy levels (Table S3). The ΔC_t values for the tobacco cDNA lines imply that biological replicates ranged anywhere from a ~ fourfold to ~ 30-fold excess of modified plastomes compared to wild-type, with the mean ΔC_t values indicating a~tenfold excess. The three Silene donor sequences all exhibited significantly lower levels of transgene enrichment than the tobacco cDNA control (Fig. 3). However, there was a clear distinction between the more conserved clpP1 sequence of S. latifolia and its highly divergent congeners, as the former obtained higher levels of transgene enrichment than either S. conica or S. noctiflora. The mean ΔC_t values for S. latifolia implied a ~ 3.5-fold excess of the modified plastomes, whereas the S. conica and S. noctiflora lines both only appeared to reach roughly 50/50 heteroplasmy levels on average (Fig. 3).

Like most plants, tobacco is known to harbor numerous insertions of plastid DNA in its nuclear genome, which are known as "nupts" (Rousseau-Gueutin et al. 2011). Therefore, it is likely that some of the wild-type signal detected by qPCR actually results from amplifying nupts rather than true plastome copies. Unfortunately, a complete accounting of nupts is not available for N. tabacum, as insertions of organellar DNA can be very difficult to accurately identify even for some of the highest quality nuclear genome assemblies (Stupar et al. 2001). However, because plastomes typically occur in hundreds to thousands of copies per cell (Greiner et al. 2020), the signal from nupts should be relatively weak compared to true plastid DNA. Moreover, the same nuclear background was used for all lines, so any contribution from nupts should be roughly equal across all samples. Nevertheless, the presence of nupts can make for an ambiguous distinction between homoplasmy and heteroplasmy in qPCR data. Therefore, we subjected transgenic lines to further subculturing and took additional steps to test for homoplasmy as described below.

Homoplasmic replacement of native *clpP1* obtained for tobacco cDNA control and *S. latifolia clpP1* but not for *S. noctiflora* and *S. conica* donors

Using a subset of the transgenic lines described above, we established parallel cultures both with and without antibiotic selection and assayed the relative abundance of transgene (aadA) and wild-type (exon/intron) markers by qPCR (Fig. 4; Table S4). Lines harboring tobacco and S. latifolia cDNA constructs maintained high transgene frequencies both with and without selection (Fig. 4), raising the possibility that they had reached homoplasmy. In the absence of antibiotic selection, we would expect transgenes that were still heteroplasmic to reduce in frequency, especially if aadA

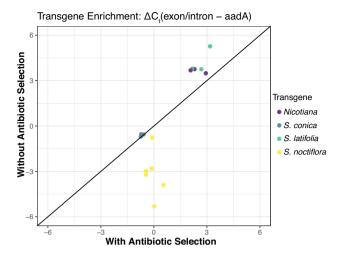
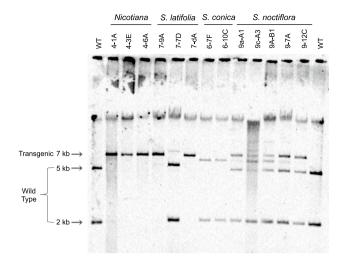



Fig. 4 qPCR analysis of transplastomic lines grown in parallel cultures either with or without antibiotic selection. Each point represents a transplastomic line and the corresponding transgene enrichment values under the two selection regimes. qPCR analysis compared a wild type marker (spanning an exon/intron junction in the native clpP1) against the antibiotic resistance maker in the transgenic cassette (aadA). Higher ΔC_t values are indicative of reduced abundance of the wild type maker and greater enrichment of transgenic plastomes. The black diagonal line represents the 1:1 line. Points falling below that line indicate that the transgene dropped in frequency in the culture propagated without antibiotic selection

expression is costly or the *clpP1* replacement is not fully functional in a tobacco genetic background. In contrast to the tobacco and *S. latifolia* cDNA constructs, the lines containing *S. noctiflora* and *S. conica* donor sequences exhibited much lower transgene frequencies, indicative of heteroplasmy. As expected, the *S. noctiflora* lines generally showed a further reduction in transgene frequency when removed from antibiotic selection. Surprisingly, this was not the case for the *S. conica* lines, which remained at approximately the same frequencies regardless of whether they were cultured with or without antibiotics (Fig. 4).

A Southern blot analysis helped explain this surprising qPCR result for the S. conica lines (Fig. 5). Although they were originally confirmed to contain the full transgenic construct (Fig. S4), we found that these S. conica lines had since undergone a recombination event between wild type and transgenic plastomes. Therefore, rather than being heteroplasmic, they were homoplasmic for a recombinant plastome that appeared to contain both the aadA selection marker and the wild type genomic *clpP1* sequence (resulting in the false appearance of a ~ 50/50 heteroplasmy in qPCR data). In contrast, the S. noctiflora lines still exhibited heteroplasmy for the wild type and transgenic plastomes, but most of these lines also showed evidence of recombinant haplotypes as well (Fig. 5). Therefore, it appears that persistent heteroplasmy resulting from transgenic clpP1 donor sequences that cannot replace the functionality of the native

Fig. 5 Southern blot analysis in which transplastomes should produce a single 7-kb band while wild type plastomes should produce both 5 and 2-kb bands as indicated. All three tobacco cDNA lines and the *S. latifolia* 7-dA line appear to be homoplasmic for the transplastome based on the absence of other detectable bands. All other lines are heteroplasmic for wild type and transgenic plastome, contain a recombinant haplotype, or both. The analysis was performed on samples maintained on antibiotic selection after parallel cultures were set up both with and without antibiotics (see main text)

clpP1 gene provides an ongoing opportunity for recombination between wild type and transgenic plastomes that can resolve the conflicting selection pressures for *clpP1* function and antibiotic resistance.

The Southern blot analysis supported the inference that all three analyzed lines carrying the tobacco cDNA transgene were homoplasmic (Fig. 5). In contrast, only one of the three analyzed *S. latifolia* lines (7-dA) appeared homoplasmic for the full transgenic construct in the Southern blot analysis. We confirmed with Sanger sequencing that this line retained the full-length *S. latifolia clpP1* coding sequence. Another *S. latifolia* line (7-7D) appeared homoplasmic for a haplotype with an internal recombination event, whereas a third line (7-9A) appeared nearly homoplasmic for the full transgene but also contained a faintly detectable recombinant haplotype.

To further assess our interpretation that 7-dA was a successful homoplasmic replacement but that 7-9A was still heteroplasmic, we performed an additional Southern blot (Fig. S5) using DNA samples from these lines grown both with and without antibiotic selection (i.e., those used in the qPCR analysis in Fig. 4). The 7-dA samples only exhibited the transgene band regardless of antibiotic treatment, consistent with that line being homoplasmic for the replacement. In contrast, 7-9A showed faint bands consistent with a heteroplasmic recombinant haplotype in the sample on selection and a further accumulation of alternative structures when removed from antibiotic selection. We also collected

seeds from plants regenerated (in the absence of antibiotics) from the putatively homoplasmic tobacco cDNA and *S. latifolia* (7-dA) transgenic lines and tested them for antibiotic resistance. We observed 100% retention of antibiotic resistance in these seed collections, providing further support for homoplasmy. The fact that only one of the analyzed *S. latifolia* lines appears to have reached homoplasmy is consistent with the qPCR results showing that the tobacco cDNA transgenes are generally easier to drive to high frequency than the foreign *S. latifolia* transgene (Fig. 3).

Rapid *clpP1* evolution and the generation of epistatic plastid-nuclear incompatibilities

Our results support a model in which plastid-nuclear coevolution results in "matched" genotypes that are sensitive to disruption when novel genetic combinations are generated. Under the same selection conditions, Silene-derived clpP1 transgenes were limited to lower heteroplasmic levels than the tobacco cDNA control, and this gap was more pronounced for Silene donors with histories of accelerated *clpP1* sequence evolution (Fig. 3). Accordingly, additional antibiotic selection failed to drive the divergent S. conica and S. noctiflora transgenes to homoplasmy, but we were able to generate homoplasmic replacements for multiple tobacco cDNA control lines and a single S. latifolia line (Fig. 5). Although the S. latifolia ClpP1 protein has retained a slow rate of sequence evolution, it still exhibits 5.1% divergence in amino-acid sequence identity compared to tobacco ClpP1, which may explain why it performed worse than the tobacco cDNA control as a functional replacement (Fig. 3). By contrast, the S. conica and S. noctiflora ClpP1 sequences are 54.6 and 63.0% divergent from tobacco in amino acid identity, rendering them apparently incapable of any functional replacement.

Previous analysis of chloroplast stromal protein fractions for Silene species with native gels and mass spectrometry has confirmed that the ClpP1 protein is still translated and appears to assemble with other subunits in the Clp proteolytic core (Williams et al. 2019). In addition, the rates of ClpP1 evolution strongly correlate with amino-acid sequence divergence in interacting nuclearencoded Clp subunits within Silene and more generally across angiosperms (Rockenbach et al. 2016; Williams et al. 2019). Notably, the degree of acceleration in nuclearencoded Clp subunits appears to reflect how closely they interact with the plastid-encoded ClpP1 subunits, as the largest rate increases are found in the ClpR subunits, which co-assemble with ClpP1 as part of the R-ring (Forsythe et al. 2021). Taken together, these observations suggest that the lower relative abundance of the Silene clpP1 transgenes (and especially those from S. conica and S. noctiflora; Fig. 3) is caused by incompatibilities with the

nuclear-encoded Clp subunits in tobacco. The apparent emergence of incompatibilities based on *clpP1* divergence among such close relatives is striking, especially given the observation that human (mitochondrial-targeted) *clpP* can partially substitute for the loss of its bacterial counterpart in *Bacillus subtilis* (Dittmar et al. 2020) despite billions of years of evolutionary divergence. In that case, however, it should be noted that the Clp proteolytic core is homomeric (14 copies of the same subunit), in contrast to the highly heteromeric core of plastid Clp (Nishimura and van Wijk 2015).

Numerous studies have identified correlated rates of sequence evolution between genes in cytoplasmic and nuclear genomes and interpreted those as evidence of coevolution to maintain functional interactions (Osada and Akashi 2012; Sloan et al. 2014a, b; Pett and Lavrov 2015; Zhang et al. 2015, 2016; Adrion et al. 2016; Rockenbach et al. 2016; Weng et al. 2016; Havird et al. 2017; Yan et al. 2019; Forsythe et al. 2021). Rarely, however, have such phylogenetic studies been coupled with functional tests for genetic incompatibilities. More generally, despite extensive evidence that hybridization can cause plastid-nuclear incompatibilities (Greiner et al. 2011), the specific loci involved in those incompatibilities remain unclear except for a small number of cases (Schmitz-Linneweber et al. 2005; Sobanski et al. 2019; Zupok et al. 2020). Our approach used here and previously (Kanevski et al. 1999) to generate hybrid plastid-nuclear enzyme complexes with subunits derived from different species should be effective for testing for specific genetic incompatibilities.

We previously hypothesized that the rapid evolution and evidence for positive selection in Silene Clp complexes could reflect selfish dynamics and antagonistic coevolution between the plastome and nuclear genome (Rockenbach et al. 2016). Under this hypothesis, we would predict that the divergent *clpP1* genes are acting as selfish elements that increase their own transmission at the expense of organismal fitness. Potential mechanisms could include intracellular advantages, such as preferential rates of replication/ division of plastomes or plastids carrying certain clpP1 variants, or organismal phenotypes such as male sterility that can boost transmission of maternally inherited organelle genomes (Havird et al. 2019). We did not find any evidence for such a selfish advantage given the S. conica and S. noctiflora clpP1 transgenes were unable to reach homoplasmy and were limited to lower heteroplasmic levels than other constructs. These findings do not rule out the possibility that some form of selfish dynamics contributed to accelerated Clp evolution in these lineages. However, they suggest that if any selfish benefit did exist, it is greatly outweighed by incompatibilities that accumulated over the history of sequence divergence and coevolution that is disrupted by putting these genes in a tobacco background.

One avenue for future investigation would be to compare the levels of heteroplasmy obtained for the S. conica and S. noctiflora transgenes to simple transgenic knockouts of clpP1. Because clpP1 is essential, knockouts do not reach homoplasmy in tobacco (Shikanai et al. 2001). However, if they were able to reach higher heteroplasmic frequencies than the Silene replacements, it would indicate that the sequence divergence in Silene does not only lead to loss of function in a tobacco background but is actively harmful through dominant negative effects. A previous analysis found that loss of clpP1 function can affect leaf morphology and chloroplast ultrastructure even when knockout alleles are only present in a heteroplasmic state (Shikanai et al. 2001). We did not observe obvious differences in growth phenotype among the transgenic lines with different clpP1 donor sequences (Figs. S6, S7), though we have not performed a detailed phenotypic characterization of these lines. Future experimental characterization of chloroplast structure and physiology in clpP1 replacement lines, simple knockout lines, and control lines may help identify the barriers to functional replacement. In addition, the ability to introduce targeted modifications through sitedirected mutagenesis creates the opportunity to dissect the specific changes within clpP1 that are responsible for the observed incompatibilities. Such techniques are promising for unraveling the history of cytonuclear coevolution at a detailed molecular scale.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11103-022-01241-4.

Acknowledgements We thank Alissa Williams and two anonymous reviewers for comments on an earlier version of this manuscript and Zora Svab, Amber Torres and Matheus Fernandes Gyorfy for lab assistance. This work was supported by a Grant from the National Science Foundation (MCB-1733227).

Author contributions Conceptualization: DBS; Experimental Design: SEAG, PM, DBS; Data Generation: SEAG, LMLM, HTH; Writing—original draft preparation: DBS; Writing—review and editing: SEAG, PM.

Funding National Science Foundation (MCB-1733227).

Data availability Data are included as supplementary material, and transformation constructs are available via Addgene accessions 173,794–173,797.

Code availability Not applicable.

Declarations

Conflict of interest Not applicable.

References

- Adrion JR, White PS, Montooth KL (2016) The roles of compensatory evolution and constraint in aminoacyl tRNA synthetase evolution. Mol Biol Evol 33:152
- Aguileta G, Refregier G, Yockteng R, Fournier E, Giraud T (2009) Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. Infect Genet Evol 9:656–670
- Apitz J, Nishimura K, Schmied J, Wolf A, Hedtke B, van Wijk KJ, Grimm B (2016) Posttranslational control of ALA synthesis includes GluTR degradation by Clp protease and stabilization by GluTR-binding protein. Plant Physiol 170:2040–2051
- Barnard-Kubow KB, So N, Galloway LF (2016) Cytonuclear incompatibility contributes to the early stages of speciation. Evolution 70:2752–2766
- Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438
- Bogdanova VS, Zaytseva OO, Mglinets AV, Shatskaya NV, Kosterin OE, Vasiliev GV (2015) Nuclear-cytoplasmic conflict in pea (*Pisum sativum* L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits. PLoS ONE 10:e0119835
- Dittmar D, Reder A, Schlüter R, Riedel K, Hecker M, Gerth U (2020) Complementation studies with human ClpP in *Bacillus subtilis*. Biochim Biophys Acta 1867:118744
- Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:39–40
- Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE 3:e1386
- Fajardo D, Senalik D, Ames M, Zhu H, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K (2013) Complete plastid genome sequence of *Vaccinium macrocarpon*: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Genomes 9:489–498
- Forsythe ES, Williams AM, Sloan DB (2021) Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. Plant Cell 33:980
- Fujii S, Bond CS, Small ID (2011) Selection patterns on restorerlike genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc Natl Acad Sci USA 108:1723–1728
- Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517
- Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403
- Greiner S, Rauwolf U, Meurer J, Herrmann RG (2011) The role of plastids in plant speciation. Mol Ecol 20:671–691
- Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R, Börner T, Herrmann RG (2020) Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. Plant J 102:730–746
- Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of *Trachelium caeruleum* are associated with repeats and tRNA genes. J Mol Evol 66:350–361
- Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048
- Havird JC, Trapp P, Miller C, Bazos I, Sloan DB (2017) Causes and consequences of rapidly evolving mtDNA in a plant lineage. Genome Biol Evol 9:323–336

- Havird JC, Forsythe ES, Williams AM, Werren JH, Dowling DK, Sloan DB (2019) Selfish mitonuclear conflict. Curr Biol 29:R496–R511
- Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2008) Complete nucleotide sequence of the *Cryptomeria japonica* D. Don chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8:70
- Huang C, Wang S, Chen L, Lemieux C, Otis C, Turmel M, Liu X-Q (1994) The *Chlamydomonas* chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet 244:151–159
- Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170
- Jafari F, Zarre S, Gholipour A, Eggens F, Rabeler RK, Oxelman B (2020) A new taxonomic backbone for the infrageneric classification of the species-rich genus *Silene* (Caryophyllaceae). Taxon 69:337–368
- Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1, 5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119:133–142
- Kim J, Rudella A, Rodriguez VR, Zybailov B, Olinares PDB, van Wijk KJ (2009) Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in *Arabidopsis*. Plant Cell 21:1669–1692
- Kim J, Olinares PD, Oh S-h, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ (2013) Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in *Arabidopsis*. Plant Physiol 162:157–179
- Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjögren LL, Zhao Y, Clarke AK, Chory J (2007) An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol 63:85–96
- Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89
- Liao JYR, Friso G, Forsythe ES, Williams AM, Michel EJS,
 Buraraev SS, Ponnala L, Sloan DB, van Wijk KJ (2022)
 Proteomics, phylogenetics, and co-expression analyses indicate novel interactions in the plastid CLP chaperone-protease system.
 J Biol Chem (In press)
- Majeran W, Wollman F-A, Vallon O (2000) Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b6f complex. Plant Cell 12:137–149
- Maliga P, Moll B, Svab Z (1990) Toward manipulation of plastid genes in higher plants. In: Zelitch I (ed) Perspectives in genetic and biochemical regulation of photosynthesis. Wiley, New York, pp 133–143
- Montandon C, Friso G, Liao J-YR, Choi J, van Wijk KJ (2019) In vivo trapping of proteins interacting with the chloroplast CLPC1 chaperone: potential substrates and adaptors. J Proteome Res 18:2585–2600
- Moreno JC, Tiller N, Diez M, Karcher D, Tillich M, Schöttler MA, Bock R (2017) Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. J Exp Bot 68:2199–2218
- Moreno JC, Martínez-Jaime S, Schwartzmann J, Karcher D, Tillich M, Graf A, Bock R (2018) Temporal proteomics of inducible RNAi lines of Clp protease subunits identifies putative protease substrates. Plant Physiol 176:1485–1508
- Nishimura K, van Wijk KJ (2015) Organization, function and substrates of the essential Clp protease system in plastids. BBA-Bioenergetics 1847:915–930
- Nishimura K, Asakura Y, Friso G, Kim J, Oh S-h, Rutschow H, Ponnala L, van Wijk KJ (2013) ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Plant Cell 25:2276–2301

- Nishimura K, Apitz J, Friso G, Kim J, Ponnala L, Grimm B, van Wijk KJ (2015) Discovery of a unique Clp component, ClpF, in chloroplasts: a proposed binary ClpF-ClpS1 adaptor complex functions in substrate recognition and delivery. Plant Cell 27:2677–2691
- Nováková E, Zablatzká L, Brus J, Nesrstová V, Hanáček P, Kalendar R, Cvrčková F, Majeský Ľ, Smýkal P (2019) Allelic diversity of acetyl coenzyme A carboxylase accD/bccp genes implicated in nuclear-cytoplasmic conflict in the wild and domesticated pea (*Pisum* sp.). Int J Mol Sci 20:1773
- Osada N, Akashi H (2012) Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex. Mol Biol Evol 29:337
- Pett W, Lavrov DV (2015) Cytonuclear interactions in the evolution of animal mitochondrial tRNA metabolism. Genome Biol Evol 7:2089–2101
- Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodríguez-Concepción M (2016) Specific Hsp100 chaperones determine the fate of the first enzyme of the plastidial isoprenoid pathway for either refolding or degradation by the stromal Clp protease in Arabidopsis. PLoS Genet 12:e1005824
- Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653
- Rautenberg A, Sloan DB, Aldén V, Oxelman B (2012) Phylogenetic relationships of *Silene multinervia* and Silene section *Conoimorpha* (Caryophyllaceae). Syst Bot 37:226–237
- Rockenbach KD, Havird JC, Monroe JG, Triant DA, Taylor DR, Sloan DB (2016) Positive selection in rapidly evolving plastid-nuclear enzyme complexes. Genetics 204:1507–1522
- Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192
- Rousseau-Gueutin M, Ayliffe MA, Timmis JN (2011) Conservation of plastid sequences in the plant nuclear genome for millions of years facilitates endosymbiotic evolution. Plant Physiol 157:2181–2193
- Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann RG, Maier RM (2005) Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alphasubunit mRNA. Plant Cell 17:1815–1828
- Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273
- Sjögren LL, Stanne TM, Zheng B, Sutinen S, Clarke AK (2006) Structural and functional insights into the chloroplast ATP-dependent Clp protease in *Arabidopsis*. Plant Cell 18:2635–2649
- Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR (2014a) A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe *Sileneae* (Caryophyllaceae). Mol Phylogenet Evol 72:82–89
- Sloan DB, Triant DA, Wu M, Taylor DR (2014b) Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes. Mol Biol Evol 31:673–682
- Sloan DB, Havird JC, Sharbrough J (2017) The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 26:2212–2236
- Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC (2018) Cytonuclear integration and co-evolution. Nat Rev Genet 19:635–648
- Sobanski J, Giavalisco P, Fischer A, Kreiner JM, Walther D, Schöttler MA, Pellizzer T, Golczyk H, Obata T, Bock R (2019) Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proc Natl Acad Sci USA 116:5665–5674
- Straub SC, Fishbein M, Livshultz T, Foster Z, Parks M, Weitemier K, Cronn RC, Liston A (2011) Building a model: developing genomic resources for common milkweed (*Asclepias syriaca*) with low coverage genome sequencing. BMC Genomics 12:211

- Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103
- Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917
- Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530
- Tapken W, Kim J, Nishimura K, van Wijk KJ, Pilon M (2015) The Clp protease system is required for copper ion-dependent turnover of the PAA 2/HMA 8 copper transporter in chloroplasts. New Phytol 205:511–517
- Touzet P, Budar F (2004) Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci 9:568–570
- Welsch R, Zhou X, Yuan H, Álvarez D, Sun T, Schlossarek D, Yang Y, Shen G, Zhang H, Rodriguez-Concepcion M (2018) Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in *Arabidopsis*. Mol Plant 11:149–162
- Weng ML, Ruhlman TA, Jansen RK (2016) Plastid-nuclear interaction and accelerated coevolution in plastid ribosomal genes in Geraniaceae. Genome Biol Evol 8:1824–1838
- Williams AV, Boykin LM, Howell KA, Nevill PG, Small I (2015) The complete sequence of the *Acacia ligulata* chloroplast genome reveals a highly divergent *clpP1* gene. PLoS ONE 10:e0125768
- Williams AM, Friso G, van Wijk KJ, Sloan DB (2019) Extreme variation in rates of evolution in the plastid Clp protease complex. Plant J 98:243–259
- Wu G-Z, Chalvin C, Hoelscher M, Meyer EH, Wu XN, Bock R (2018) Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol 176:2472–2495
- Yan Z, Ye G, Werren J (2019) Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclearencoded proteins in insects. Mol Biol Evol 36:1022–1036
- Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591
- Yao X, Tang P, Li Z, Li D, Liu Y, Huang H (2015) The first complete chloroplast genome sequences in Actinidiaceae: genome structure and comparative analysis. PLoS ONE 10:e0129347
- Zhang Y, Ma J, Yang B, Li R, Zhu W, Sun L, Tian J, Zhang L (2014) The complete chloroplast genome sequence of *Taxus chinensis* var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species. Gene 540:201–209
- Zhang J, Ruhlman TA, Sabir J, Blazier JC, Jansen RK (2015) Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae. Plant Cell 27:563–573
- Zhang J, Ruhlman TA, Sabir JS, Blazier JC, Weng ML, Park S, Jansen RK (2016) Coevolution between nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity. Genome Biol Evol 8:622–634
- Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK (2006) A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in *Arabidopsis* thaliana. Planta 224:1103–1115
- Zupok A, Kozul D, Schöttler MA, Niehörster J, Garbsch F, Liere K, Malinova I, Bock R, Greiner S (2020) A photosynthesis operon in the chloroplast genome drives speciation in evening primroses. Plant Cell 33:2583

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

