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ABSTRACT

Machine learning is vulnerable to adversarial examples—inputs de-
signed to cause models to perform poorly. However, it is unclear
if adversarial examples represent realistic inputs in the modeled
domains. Diverse domains such as networks and phishing have
domain constraints-complex relationships between features that an
adversary must satisfy for an attack to be realized (in addition to
any adversary-specific goals). In this paper, we explore how domain
constraints limit adversarial capabilities and how adversaries can
adapt their strategies to create realistic (constraint-compliant) ex-
amples. In this, we develop techniques to learn domain constraints
from data, and show how the learned constraints can be integrated
into the adversarial crafting process. We evaluate the efficacy of our
approach in network intrusion and phishing datasets and find: (1)
up to 82% of adversarial examples produced by state-of-the-art craft-
ing algorithms violate domain constraints, (2) domain constraints
are robust to adversarial examples; enforcing constraints yields an
increase in model accuracy by up to 34%. We observe not only that
adversaries must alter inputs to satisfy domain constraints, but that
these constraints make the generation of valid adversarial examples
far more challenging.
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1 INTRODUCTION

Machine learning has demonstrated exceptional problem-solving
capabilities; it has become the tool to learn, tune, and deploy for
many important domains, including healthcare, finance, education,
and security [10, 19, 29, 51]. However, machine learning is not
without its own limitations: countless works have demonstrated
the fragility of models when in the presence of an adversary [12, 26,
36, 42, 48]. Across a variety of threat models, research has shown
how adversaries fully control model outputs, by classifying school
buses as ostriches [62], students as celebrities [56], or generating
photos of synthetic, yet unsettlingly realistic, people [25].

This field of adversarial machine learning is rich with research
into the exploitation of these models. While alarming to domains
that have observed significant advancements as a result of ma-
chine learning (i.e., network intrusion detection, spam, malware,
etc.), it is not clear yet whether these domains are as vulnerable as
posited. This observation is rooted in the domain which exempli-
fies the end-to-end capability of deep learning: images. Influential
works often use images as an empirical demonstration of their find-
ings [12, 26, 36, 42, 48]. This has an implicit assumption on the
underlying threat models; adversaries can manipulate features arbi-
trarily and independently. In other words, adversaries are assumed
to have full control over the feature space and, more importantly, all
input manipulations are equally permissible in the domain under in-
vestigation. While often bound (exclusively) by some self-imposed
£,,-norm (canonically used as a surrogate for human perception),
there are constructs, rules, and other forms of domain constraints
that many domains contain which images do not.

Domain constraints! describe relationships between features. For
example, in network flow data, TCP flags can only be set for TCP
flows in networks—having these flags for UDP would violate the
semantics of the underlying phenomenon (network protocols). Con-
straints encode the maneuvers (i.e., perturbations) that are possible
for an adversary when crafting adversarial examples. Yet, existing
threat models broadly ignore this requirement, serving to generate
examples that may or may not represent legitimate examples of
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the domain. Thus, any vigilant system could simply discard non-
compliant samples because they are manifestly adversarial—they
do not represent a sample that could benignly exist. Such detectable
adversarial examples, thus, pose no risk.

We argue in this paper that to properly assess the practical vul-
nerability of machine learning in a domain, the constraints that
characterize the domain must be learned, incorporated, and demon-
strated in attacks. Naturally, some domains contain incredibly rigid
structures (e.g., binaries or networks) that could offer robustness
against adversaries (that is, an inability to craft realizable adversar-
ial examples), which is one of the central questions we investigate
in this paper. By learning domain constraints, those who use ma-
chine learning can build accurate threat models and thus, properly
assess realistic attack vectors.

Learning what the constraints are in arbitrary domains is a non-
trivial process; domains can contain multiple layers of complex ab-
stractions, frustrating any manual constraint identification through
expertise. Fortunately, there are data-driven approaches for learn-
ing and encoding useful representations of constraints from areas
within formal logic. One such method comes from the seminal work
of Leslie Valiant on PAC learning (probably approximately correct
learning) [67]. In this work, Valiant described a setting for learning
boolean constraints (specifically, k-conjunctive normal form (CNF))
theories from data. Valiant’s constraint theory formulation and
paired learning protocol provides a simple, yet exhaustive, mech-
anism for identifying constraints and, coincidentally, an elegant
representation for integration into adversarial crafting algorithms.

In order to understand the robustness provided by domain con-
straints, we characterize the worst-case adversary. Specifically, the
worst-case adversary is defined as one who is least constrained. Said
formally, the number of possible observations rejected by a con-
straint theory is minimal. We describe the worst-case adversary by
exploiting a theoretical property in our setting; a constraint theory
is sound if the observations it certifies comply with the domain
constraints. From this property, we show that sound constraint
theories reduce to memorization of the training data, and how eas-
ing soundness yields generalization, with the worst-case adversary
occurring under the most general (i.e., least constrained) constraint
theory that can be learned.

In this paper, we explore adversarial examples with domain con-
straints by answering two fundamental questions: (1) How would
adversaries launch attacks in constrained domains?, and (2) Are con-
strained domains robust against adversarial examples? We design
our approach by leveraging frameworks within formal logic to
learn constraints from data. Then, we modify an algorithm for con-
straint satisfaction, Davis-Putnam-Logemann-Loveland (DPLL), to
project adversarial examples onto a constraint-compliant space.
Finally, we introduce a new adversarial crafting algorithm, the
Constrained Saliency Projection (CSP): a blend of two pop-
ular adversarial crafting algorithms that, by design, aids DPLL in
projection. We evaluate the efficacy of our approach on network
intrusion detection and phishing datasets. From our investigation,
we argue that incorporating domain constraints into threat models
is necessary to produce realistic adversarial examples, and more

!Note that the constraints discussed in this paper are different from adversarial con-
straints, which describe what an adversary seeks to achieve (commonly, a classification
mismatch between model and human).
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Figure 1: An Overview of Our Approach—Our approach con-
sists of three steps: (1) learning the domain constraints, (2)
crafting adversarial examples, and (3) projecting adversarial
examples onto a constraint-compliant space.

importantly, constrained domains are naturally more robust to
adversarial examples than unconstrained domains (e.g., images).

We contribute the following:

(1) We formalize domain constraints in machine learning.

(2) We prove theoretical guarantees for learning domain con-
straints in our setting. We describe when and why constraint
theories are sound and complete, demonstrating an inherent
trade-off between generalization and soundness.

We satisfy domain constraints by projecting non-realizable
adversarial examples onto the space of valid inputs. We also
introduce the Constrained Saliency Projection (CSP).
We demonstrate the robustness produced by domain con-
straints against worst-case adversaries in two diverse datasets.
We observe that enforcing domain constraints can improve
the robustness of a model substantially; in one experiment
constraint enforcement restored model accuracy by 34%.

2 OVERVIEW

In order to measure the robustness of constrained domains against
adversarial examples, we must build a new set of techniques. We
can envision this process in three parts: (1) learning the domain
constraints, (2) crafting adversarial examples, and (3) projecting
adversarial examples onto a constraint-compliant space. A visual-
ization of this approach is described in Figure 1.

Learning Constraints. In many domains, there are regions for
which samples do not exist (e.g., UDP flows in the network domain
do not have TCP flags). The structures and rules that define these
regions may be complex and thus, we need a general approach to
learn how domains are partitioned into valid and invalid regions.
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We leverage an algorithm from PAC learning, Valiant’s algorithm,
to learn these domain constraints in Section 4.2.

Crafting Adversarial Examples. After domain constraints have
been learned, our approach can leverage any adversarial crafting
algorithm. While there are many [12, 26, 42, 48] attacks in literature,
we focus on PGD in Section 4.4 as it is considered to be the state-of-
the-art for first-order adversaries. We will also consider a constraint-
specific approach in Section 4.6.

Projecting Adversarial Examples. With the learned domain con-
straints and a set of adversarial examples, we must now enforce
the constraints on the crafted adversarial examples. We do this by
projecting the adversarial examples onto the constraint-compliant
space (defined within some budget, as to preserve the goals of
the adversary). Specifically, we manipulate features in constraint-
noncompliant adversarial examples until they either satisfy the do-
main constraints or exceed the allotted budget. We augment a sem-
inal solver for constraint satisfaction, DAvIS-PUTNAM-LOGEMAN-
LovELAND, to perform this projection in Section 4.5.

3 BACKGROUND
3.1 Threat Model

Adversarial Goals. Adversaries can have a variety of objectives,
from reducing model confidence to misclassifying a sample as a
particular target. Here, we focus on the former, that is, given a victim
model fy with parameters 0, a sample e, label y, a self-imposed
budget ¢ measured under some £,,-norm, and a domain-dictated
constraint theory T (which is our contribution), an adversary aims
to solve the following optimization objective:

arg min llexll
a

subjectto fy(e+a) # vy, (1)

e+a€B¢(e)ﬂT

Conceptually, the adversary searches within some norm-ball 8 of
radius ¢ around a sample e for a “small” change « to apply to e that
yields the desirable model behavior (i.e., an adversarial example). In
the context of computer security, this could translate to bypassing
a network intrusion detection system.

“White-box” settings represent the strongest adversaries and
characterize worst-case scenarios. Akin to insider threats, these
adversaries have unfettered queries to the model, can observe its
parameters, and can use its training data. From Equation 1, suppose
fo describes the model of the defender, then white-box adversaries
either have direct access to model parameters of fy or the training
data used to learn fy. Practically speaking, such adversaries can
produce adversarial examples with the tightest £,,-norm constraints
(i.e., the smallest budgets). “Gray-" and “Black-box” threat models
are two other popular threat models that remove the degree to
which an adversary has access to model parameters or training
data. These limited adversaries usually require unique techniques
for attacks to be successful [41, 46, 65].

In our work, we explore the efficacy of white-box adversaries
when domain constraints are enforced. Specifically, the adversary
seeks to minimize model accuracy (that is, the number of samples
correctly classified over the total number of samples). Referring
to Equation 1, the adversary computes samples classified as any
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class § # y (where 7 is the prediction). Under this objective, the
adversary attempts to reduce the confidence an operator has in the
predictions of a model.

3.2 Adversarial Machine Learning

We describe the two algorithms that serve as the basis for the
algorithm used in our approach discussed later in Section 4.4.

Jacobian-based Saliency Map Approach (JSMA). The JSMA [48]
is an iterative approach leveraging saliency maps: a heuristic applied
to the Jacobian matrix of the model. For our work, the insightful
component of the JSMA is that it selects a single feature to perturb
per iteration (i.e., it optimizes over #-norms). This is especially
important for security-critical domains as other £,,#0-norms are
largely driven as surrogates for human perception, and do not apply
to the studied domains.

Projected Gradient Descent (PGD). PGD?, by Madry et al., is con-
sidered to be the state-of-the-art for first-order adversaries [42].
Similar to the Fast Gradient Sign Method [26], PGD iteratively
multiplies a step-size a by the sign of the gradient of the loss to
perturb the sample. As PGD has been proposed as a “universal ad-
versary (among first-order approaches),” [42] we use it to evaluate
the robustness of constraints against adversarial examples.

4 APPROACH

4.1 Preliminaries

We overview constraint learning and define the three algorithms
we leverage for constraint learning, projection, and clustering.

Problem Statement. [52] provided one formulation for framing
constraint learning as a concept-learning problem. We restate the
relevant parts of the formalization for our work. Namely, we are
given a domain X = (Xj,...,X,), where X; C Z (i.e., we have n
features where X, denotes the unique values feature n can take),
a space C of possible constraints (represented as k-CNF Boolean
formulae defined over X), and a set E of collected observations.
Our objective is to find a constraint theory T (T C C) such that T
certifies all observations e € E. We say T certifies e when all clauses
t € T are satisfied by e. We say a clause ¢ is satisfied when at least
one literal in ¢ is TRUE (where the features in e assign values to the
literals in t). Conceptually, the collected observations E encode the
structures or rules of the domain (i.e., T), that we seek to learn.

Valiant’s Algorithm. Valiant’s algorithm (Algorithm 1) is a gen-
eral, exhaustive, generate-and-test algorithm for constraint learn-
ing [67]. The algorithm is initialized with a constraint theory T
of all possible constraints over X (i.e., T = C). Then, for each ob-
servation e € E, clauses that are not satisfied by e are removed
from T. The algorithm terminates when E has been exhaustively
processed. Valiant’s algorithm will converge to the correct solution,
assuming E sufficiently represents the domain and is free of noise.
Moreover, Valiant’s algorithm does not require any negative exam-
ples (that is, known observations that violate domain constraints,
which are absent from popular machine learning datasets), which
some constraint learning approaches require [23, 74]. Conceptu-
ally, T initially describes the space of possible constraints and, after

2The “projection” in PGD is unlike the “projection” used in this work through DPLL.
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Input: observations E, boolean clauses T
Output: a conjunction of the remaining clauses T
fore € E do
forceT do
‘ remove ¢ from T if e ¥ ¢

[ I CRE

4 end
5 end
return T

=Y

Algorithm 1: Valiant’s Algorithm

Input: a domain X

Output: the space of possible constraints C
P —{2X)\ {2 Xi} | Xi € X}

2 Ce—{PyX---XP,},PieP

3 C « RelaxToCNF(C)

return C

[

'S

Algorithm 2: Generating the Space of Possible Constraints

applying T and the set, E, of collected observations to Valiant’s
algorithm, T will contain the set of constraints that are satisfied by
all observations in E (in other words, the intersection of satisfied
constraints across the observations in E).

To illustrate how Valiant’s algorithm operates, consider an ex-
ample where a dataset contains samples with two binary features,
X1 = {x1, —x1} and X3 = {x2, ~x3}. Then, C, the space of possible
constraints is:

C=(x1 Vx2) A(x1V—x2) A(=x1 Vx2) A (=x1 V —x2)

If we initialize T (our target constraint theory) to C, and suppose E
(our set of collected observations) consists of two observations e; =
(FALsE, FALSE) and ez = (TRUE, TRUE), then Valiant’s algorithm
first removes (x1 V x32), and then removes (—x1 V —x3) (as they are
not satisfied by e; and ey, respectively). Our final constraint theory
T is then (x1 V =x2) A (=x1 V x2). This example shows the thesis
behind Valiant’s algorithm: only constraints that have support from
all observations are permissible.

DPLL. For adversarial examples that do not comply with domain
constraints, we use an algorithm from the constraint satisfaction
community, DAVIS-PUTNAM-LOGEMAN-LOVELAND (DPLL) [17], to
project adversarial examples onto the learned constraint theory
returned by Valiant’s Algorithm. DPLL has some characteristics that
make it ideal for our task, namely: (1) it accepts boolean formulae
in CNF (which is the native form of the constraint theories learned
by Valiant’s Algorithm), and (2) it is a backtracking-based search
algorithm: DPLL iteratively builds candidate solutions for a given ex-
pression, which is a property we exploit, detailed later in Section 4.5.
Further details about DPLL can be found in Appendix C.4

OPTICS. Later, we show how we model arbitrary data types as
domain constraints. To support this generalization, we leverage
a clustering algorithm, ORDERING POINTS TO IDENTIFY THE CLUS-
TERING STRUCTURE (OPTICS) [4]. OPTICS has two advantages over
other clustering algorithms for our application, namely: (1) it scales
to large sample sizes, and (2) it is not parameterized on specifying
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the number of clusters. The second property is particularly im-
portant as parameterizing the number of clusters assumes a priori
knowledge of the constraints before learning them in the first place.

4.2 Learning Constraints

Recall our problem statement: given a domain X, we first generate
the space C of possible constraints, then, with a dataset E of samples,
we use Valiant’s algorithm to prune constraints that do not comply
with samples in our dataset (i.e., T C C). Valiant’s algorithm is ele-
gant for binary features and the fact that it produces “hard” boolean
constraints makes it attractive for encoding rigorous structures of
domains. However, novel applications of machine learning seldom
use binary features exclusively; categorical and continuous features
(e.g., packet rates or word counts) are used in nearly every modern
application of machine learning.

To address this limitation, there are two modifications that must
be made: (1) how the space of possible constraints is generated,
and (2) how to determine if a particular sample is certified by a
constraint theory. We discuss these two modifications below.

The Space of Possible Constraints. For boolean-only constraint
theories, the space of possible constraints is on the order of O(2"),
where n is the number of features. To account for categorical fea-
tures, we can further generalize this bound to O(2™%) by consider-
ing a one-hot encoding, where i represents the largest cardinality
of possible values among n features. This guides us on not only
how to generate the space of constraints, but also how to modify
Valiant’s algorithm to accept a richer representation of constraints.

Our approach, shown in Algorithm 2, is as follows: first, given a
domain X, we compute a pseudo-power set P; from the set X; of
unique values for feature i. P; is a pseudo-power set as we remove
the empty set (i.e., no value is valid for the feature) and X; (which
would allow the constraint to be trivially satisfied by any sample).
We then perform the Cartesian product over P, which returns the
set of all possible combinations of constraints; this is the input
to Valiant’s algorithm (C). At this stage, C contains sets P; of sets
pi, and so, we transform this representation to CNF (RelaxToCNF)
by adding disjunctions between each p; € P; and, finally adding
conjunctions between each P; € C.

To adapt Valiant’s algorithm to perform on a set-based represen-
tation of constraints (i.e., boolean and categorical variables), we
redefine the - operator (i.e., logical entailment); instead of evaluat-
ing whether or not a feature value causes a boolean assignment to
be satisfied, we instead evaluate if it is a member of the set (i.e., ¥
now operates as ¢, set membership, in Algorithm 1).

Consider the following example: suppose two features, X; and
Xy. Let X7 be a boolean variable (encoded as x; € {0,1}) and let
X be a categorical variable that can take on one of three values
(encoded as x2 € {A, B, C}). With our approach above, the space of
possible constraints is then:

C=(x1 €{0}Vxy e {A}) A(x1 € {0}V xy € {B})

Ax1 € {1} Vxz € {A,C}) A (x1 € {1} V xz € {B,C})

If we initialize our target constraint theory T to C, and let E (our
training data) consists of four samples e; = (0,A), ez = (0, B),
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e3 = (1,B), and e4 = (1, C), then our objective is to guide Valiant’s
algorithm to learn the following:
(x1 € {0} Axz € {A,B}) V (x1 € {1} Axz € {B,C})
Conceptually, we can imagine a case where X; describes a pro-
tocol (e.g., TCP or UDP), while X3 describes a service (e.g., SSH, DNS,
or NTP). Then, our target constraint theory T would be to learn
that SSH can only be used with TCP, NTP can only be used with UDP,
while DNS can be used with either TCP or UDP.
After running Valiant’s algorithm on this example, our final
constraint theory T will be:
(x1 € {0} Vx2 € {B,C}) A (x1 € {1} Vx3 € {A B})
Using the distributive law, we see that this is precisely what we
sought to learn. As a sanity check, we can see that the observations
(0,C) and (1, A) violate T, which was our desired result.

Discretizing R. While the framework above can express a richer
expression of constraints than boolean theories, it cannot model
variables that live within the domain of real numbers R. However,
modeling constraints that have inequalities such as {x | 0.25 <
x < 0.80} is non-trivial, as inferring the proper ranges for a given
variable has no straightforward answer.

We are motivated to extend our set-based formulation of con-
straints to model continuous variables, as our generalization from
the boolean domain B to the domain of integers Z has some ideal
properties: (1) the set-based formulation can model constraints
that are readily interpretable, (2) constraint-certification reduces
to simple membership tests, (3) elegant integration into constraint
learning algorithms, and, (4) gives a simple asymptotic bound to
conceptualize the space of possible constraints. These properties
are attractive and later we will show how our formulation can be
integrated into adversarial crafting algorithms.

We leverage OPTICS to enable encoding of continuous features
as discrete values. Here we express constraints with sets of ranges
(e.g., {x | (0.25 < x; < 0.50) V (0.75 < x; < 1.00)}). Specifically,
continuous features in samples are mapped to the bins and there-
after the associated constraints are learned as any other discrete
feature. Later, when we project adversarial examples (discussed in
Section 4.5), continuous features have their values set to the edge
value closest to the origin of the perturbed value (i.e., a value that
is projected from a higher number is set to the top of the bin range,
and a lower number is set to the bottom of the range).

4.3 Theoretical Guarantees

In this section we define the properties that the learning process
described above guarantees. When the full space of possible con-
straints is considered, our approach learns a constraint theory that is
sound with respect to observations and domain constraints. Sound-
ness guarantees that if a sample is certified by the constraint the-
ory, then the sample complies with the domain constraints. The
approach yields a sound constraint theory through Algorithm 2,
generating the space of possible constraints (specifically the genera-
tion of the pseudo-power set). We first briefly describe our principal
findings and later discuss formally when a constraint theory learned
with our approach is sound and why.

Without loss of generality, consider that for all X; € X, |X;| = n,
that is, the number of unique values for all features is n. Then, the
pseudo-power set® contains sets of cardinality 1,...,k, ..., (n — 1).
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The clauses learned from sets of cardinality 1 (i.e., the cardinality of
the literals in the clause is 1) represent the most general constraints,
while clauses learned from sets of cardinality n — 1 represent the
least general constraints (we show later that they represent rote
memorization of the training data).

Let k bound the maximum cardinality considered when generat-
ing the pseudo-power set. Then, from our observations we gather
that: (1) if k = n — 1 (i.e,, the clauses generated contain literals of
cardinality at most n — 1), the learned constraint theory is guar-
anteed to be sound, (2) if k = 1, the learned constraint theory is
maximally general, and (3) for some k in-between 1 and n, there
is a trade-off between the degree to which the learned constraint
theory is sound (with respect to domain constraints at cardinality k)
and how well it generalizes to unseen observations. Thus, k allows
us to ease soundness and gain generalization, which we exploit
in characterizing the worst-case adversary. In this way, k is the
parameter that is used to tune the learned constraint theory from
general to sound.

Next, we formally define the theoretical properties of our ap-
proach and show when and why they hold. Consider the following
properties with respect to a constraint theory T and observations e:

(1) sound: if T certifies e, then e complies with the domain
constraints.

(2) complete: for all possible observations e that comply with
the domain constraints, T certifies e.

Recall (Section 4.1) that T certifies e when all clauses t € T are satis-
fied by e. A clause ¢ is satisfied when at least one literal in ¢ is TRUE
(where the features in e assign values to the literals in t). Now, let =
represent the space of all possible observations. We can partition =
into two subspaces, A (the space of observations that comply with
the domain constraints) and ¥ (the space of observations that do
not comply with the domain constraints). Clearly, AU ¥ = = and
ANY =0.T is sound if it does not certify any observations from
¥ and T is complete if it certifies all observations from A.

When is T Complete? From the definition of complete, we can
gather that T is axiomatically complete when T arbitrarily certifies
any observation. Said alternatively, given that T is not complete if
it does not certify all observations from A, T can be axiomatically
complete when it certifies all observations, regardless if they come
from A or ¥. For example, the empty constraint theory T = 0 is
complete, as it will certify all possible observations e € A that
comply with the domain constraints (as well as those that do not,
ie,e€V¥).

When is T Sound? From the definition of sound, we can gather that
T is axiomatically sound when T does not certify any observations.
Said differently, given that T is not sound if T certifies a single
observation from ¥, T can be axiomatically sound when it refuses
to certify any observation. For example, when T equals the space
of possible constraints C, T is axiomatically sound, as it will reject
all possible observations e € ¥ that do not comply with the true
domain constraints (as well as those that do comply, i.e., e € A).

Properties of Our Approach. With the two settings for when
T is sound or complete, we now turn to the setting investigated

3Recall that we generate a pseudo-power set by excluding the empty set 0 and the
feature space itself, which correspond to sets of cardinality 0 and n, respectively.
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in this paper. Specifically, we highlight some facts: (1) we have a
set of observations E for which we know comply with the domain
constraints (i.e., E C A), (2) we have no observations that do not
comply with the domain constraints (i.e., EN¥ = 0), (3) Valiant’s
algorithm can be initialized with the space of possible constraints
(i.e.,, T = C), which entails: T initially contains a superset of the
domain constraints. From (1), (3), and the fact that Valiant’s algo-
rithm returns the intersection of satisfied constraints across the
observations in E, we can derive the following: when T is initialized
to C, the learned constraint theory returned by Valiant’s algorithm is
a superset of the domain constraints.

Notably, the degree to which T remains a superset (and not
equal to) of the domain constraints is a function of the quality of
E in characterizing the underlying phenomena; as E approaches
A, T converges on the domain constraints. In this way, Valiant’s
algorithm prioritizes being sound over being complete.

Concretely, for any amount of observations in E, if T certifies
a new observation, then it complies with the domain constraints
(as T contains a superset of the domain constraints). However, if T
does not certify a new observation that does, in fact, comply with
the domain constraints, it is because this new observation failed
to satisfy a clause t* € T that should have been removed. Valiant’s
algorithm would fail to remove the erroneous clause ¢* if E did not
contain a counter-example for t* when learning T. Thus, unless
E = A, T will not be complete (but T will always be sound).

Why is T Sound? The final piece in characterizing the worst-
case adversary in our setting is rooted in analyzing what makes T
sound. Specifically, T is sound through Algorithm 2: Generating
the Space of Possible Constraints. Recall, we compute the Cartesian
product of the pseudo-power set of unique values observed across
all features. For each feature, the generated pseudo-power set can
be decomposed as the union of the unique combinations of sets
with cardinality 1,...,k, ..., (n—1), where n represents the number
of unique values observed for some feature i (i.e., |X;| = n). For
simplicity, consider only the clauses whose sets have cardinality
n — 1. Trivially, this means that such clauses include all values
for a given attribute, except one. Call this set of clauses C*. In this
setting, when E and C* are passed into Valiant’s algorithm, Valiant’s
algorithm will return a learned theory T* that is an exclusive encoding
of E . In other words, T* will only certify E and nothing else (we
formally prove this in Appendix A).

Note that, this is a useful fact as if E = A, then it would be
desirable to learn a constraint theory that certified E and only E.
However, when E C A (as ostensibly all practical applications of ma-
chine learning do), then this reduces learning to memorization (this
is analogous to overfitting in machine learning). From a learning
perspective, this encourages us to bound the cardinality of pseudo-
power set to be no greater than k, such that the learned constraint
theory generalizes. Moreover, from an adversarial perspective, a
constraint theory that memorizes the training data would require
the adversary to craft adversarial examples that are precisely the
training data itself. For any well-trained model, this means we
already know where “adversarial examples” can exist: where the
model produces errors on the training set. In other words, this
characterizes the best-case adversary.
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The Worst-Case Adversary. With these facts, we now character-
ize the worst-case adversary. Above, we observed how computing
clauses with cardinalities of n — 1 results in constraint theories that
certify the training data exclusively (that is, the total number of
possible observations certified is at most |E[), which characterizes
the best-case adversary. Thus, the worst-case adversary in our setting
is one where the learned constraint theory is most general, in other
words, certifies the maximal number of observations (which subse-
quently translates to certifying the maximal number of adversarial
examples). To learn a theory that certifies the maximal number of
observations, we set k = 1 when generating the pseudo-power set,
which then results in clauses whose literals have cardinality 1 (we
formally prove such constraint theories certify a maximal number
of observations in Appendix A).

4.4 Crafting Adversarial Examples

On ¢,,. £,-norms have been adopted by the academic community
as the de facto standard for measuring a form of “adversarial con-
straints” That is, it serves as a measurement of detectability as a
surrogate for human perception (for image applications) or some
arbitrary limitation on adversarial capabilities. For the former, it
has been generally agreed upon that £ or ¢w serve as better esti-
mates of human perception. For the latter, adversarial capabilities
are usually argued from a domain-specific perspective. For non-
visual domains, we argue that the ¢ norm is most representative
of adversarial capabilities for two reasons: (1) distance across fea-
tures in non-image data is not uniform; £,0-norms on varying
data types and semantics bear no meaningful interpretation, and
(2) for non-image domains, the degree to which an adversary can
manipulate every feature yields little insight versus what features
an adversary can manipulate.

Adversarial Constraints. Yet another important topic of discus-
sion for applications of adversarial machine learning outside of
images is: what is the adversary trying to accomplish? For images,
this has been rooted in the use of £,,-norms: there should be a
misclassification between human and machine. For other domains,
each have their own answer, e.g., consumer reviews should be read
as containing positive sentiment by humans, yet classified as neg-
ative sentiment by machine (or vice-versa) [49]; malware should
maintain its malicious behavior, post-perturbation [28, 35]; speech
recognition systems should incorrectly map audio to commands
versus what a human would hear [13], among other objectives.
For our work, we follow similar intuitive objectives, that is, post-
perturbation: malicious network flows must maintain their attack
goals and phishing websites must mimic victim websites.

After defining what the goals of an adversary are, the next ques-
tion is: how do we know the adversary has met those goals? For
images and text, it has assumed to be self-evident; peers can inspect
images produced by a crafting algorithm or read the altered text
of a consumer review. While human-based verification is possible
in some domains, in others (particularly those that are security-
critical) it is not. For example, to validate that a network flow or a
malware executable is malicious, then it must be replayed and its
behavior observed in its respective domain. However, this may not
always be possible; mapping back from a feature vector of an adver-
sarial example to its original form may be non-trivial or outright
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Figure 2: Encoding Adversarial Constraints — Distribution
for normalized, per-flow PACKET RATEs with classes from
the NSL-KDD dataset. The region for the adversary attempting
to classify DDoS traffic as BENIGN traffic, while maintaining
the semantics of the attack, is shown in the rectangle.

impossible (network intrusion detection datasets may not always
provide the packet captures used to build the dataset). Therefore,
we need an approach that preserves the goals of an adversary when
the original form of a sample cannot be rebuilt.

To address this limitation, we formulate and add an additional
layer of “adversarial constraints” that encode class-specific behav-
iors. Specifically, we capture class-specific feature bounds, which
are either: (1) the set of observations for categorical variables, or (2)
the minima and maxima for continuous variables. We argue that
the underlying behavior of a sample is preserved if it does not step
outside of its bounds (which we hand validate). The intuition is
straightforward: by staying within these bounds, then we produce
adversarial examples with behaviors (as defined by feature values)
that have already been observed for a particular class.

To illustrate this approach, consider Figure 2. Shown in this
network intrusion detection example, there are four classes, DDoS,
Benign, Probe, and Insider and each class has unique range of
values for the Packet Rates feature. Suppose an adversary begins
with a malicious DDoS sample and wishes to have it misclassified as
Benign. Then, to preserve the underlying behavior of the sample,
any perturbation to the DDoS sample must be between ~ 0.75 and ~
1.0 Naturally, the target region for the adversary is shown in the
box, where the packet rates for DDoS and Benign overlap. We en-
force adversarial constraints while generating adversarial examples
as well as projecting them.

4.5 Projecting Adversarial Examples

The final step in our approach is to project some adversarial example
e* onto the constraint-compliant space described by the learned
constraint theory T, as, if T does not certify e*, then e* is not
adversarial at all, as it would not be realizable (as T encodes what
is valid for a domain). This projection is non-trivial as there could
be multiple features that do not comply with T and so, deciding
which features to modify in e* so that T certifies e* could induce
other features to become non-compliant, etc. Therefore, we need a
mechanism that can efficiently project e* as to comply with T.
This problem is isomorphic to constraint satisfaction problems;
given a boolean expression T with some number of clauses t € T,
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we seek to find an assignment {TRUE, FALSE} to each literal in ¢
such that T is TRUE. For our work, we use the Davis-Putnam--
Logemann-Loveland (DPLL) algorithm [17]. As discussed earlier in
Section 4.1, DPLL has some properties that make it ideal for our
task, particularly that it is a backtracking-based search algorithm.

DPLL is parameterized on H (shown in Algorithm 3 in Appen-
dix C.4), a boolean theory with partial literal assignments (adapted
to accept our set-based constraint representation, discussed in Sec-
tion 4.2). We can exploit this fact by projecting an adversarial ex-
ample e* onto the space described by the learned constraint theory
T. Specifically, for each clause t in T, we determine which clauses
are satisfied with respect to value of features in e*. If all clauses
t € T are satisfied, then we simply return the adversarial example
(as T certifies e*). Otherwise, for each feature i in e*, we record the
number of clauses ¢ € T satisfied by e}

Finally, we build H by allowing the bottom ¢% of literals to
be unassigned while we assign the top 100 — ¢% of literals to the
corresponding feature values in e*. Here, ¢ parameterizes: (1) the
depth of the tree produced by DPLL (and thus its runtime), and (2)
indirectly controls the likelihood e* will still be misclassified (and
thus, an adversarial example) after the assignment returned by DPLL
is applied to e*. To achieve (2), ¢ should be small to maintain the
misclassification of e*, yet large enough that DPLL has a sufficiently-
sized search space to successfully project e* onto T.

4.6 Improving Projection

In our evaluation, we find that adversarial examples produced by
PGD often fail to be projected onto the constraint-compliant space
described by T (within the allotted ¢ budget). Our hypothesis on
why these projections failed stems from the fact that PGD optimizes
over the £ norm, while the structure of the constraints and the
budget used by DPLL may favor adversarial crafting algorithms
that optimize over the £ norm. With this hypothesis, we introduce
our own #y-based adversarial crafting algorithm that blends the
iterative optimization of PGD with saliency maps from the JSMA.

The Constrained-Saliency Projection (CSP). The CSP is our
approach. Like PGD, we consider a powerful adversary who can
take multiple steps on the sign of the gradient of some loss function
(or, in our case, the Jacobian of the model) and like the JSMA, the
adversary computes saliency maps to determine the single most
influential feature (and thus the feature to perturb), and unlike
either, we project back onto a constraint-compliant space (described
by T, our extracted constraint theory). Formally, we define the CSP
as:

S = SaliencyMap (4, (¢"))

i = arg max |S|

J

r+1

€

— o .
=e; +a-sgns;

where § is the saliency map for a target? class g, J is the Jacobian
of a model with respect to the k-th perturbation of a sample e, i is
a feature index, and « is the perturbation magnitude. We slightly
tweak the definition for SaliencyMap that is originally proposed
in [48]:

4We also consider an untargeted variant of the CSP where we set { to the label y for
sample e and use the negative of the Jacobian.
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Dataset # Samples  # Features # Classes
NSL-KDD ~ 10° 11 5
Phishing ~ 10* 10 2

Table 1: Summary of Dataset Statistics

0 ifsgn J; = sgn( 2 Jj.i)

SaliencyMap; (7,)) = 7#Y

yMap; (3.J) ]g,i -1 X Jjil otherwise
Jj£y

where J; ; refers to the jth class and ith feature in the model Jaco-
bian. This approach yields a subtle improvement; the formulation
of the JSMA in [48] required a perturbation parameter that could be
either positive or negative (which determined the heuristic used
to build the saliency maps). However, our formulation for saliency
maps allows the CSP to iteratively add or subtract from a feature i,
depending on whichever is more advantageous for the adversary.

5 EVALUATION

With our techniques to learn and integrate domain constraints into
the adversarial crafting process, we evaluate our approach on two
diverse datasets. We ask the following:

(1) Do known crafting algorithms violate domain constraints?
(2) Do domain constraints provide robustness?

5.1 Experimental Setup & Datasets

Our experiments were performed on a Dell Precision T7600 with
an Intel Xeon E5-2630 and a NVIDIA Geforce TITAN X. We used
Cleverhans [45] for adversarial attacks and PyTorch [50] for build-
ing models. We defer to Appendix C for hyperparameters, archi-
tectures, and other miscellanea concerning our models. The experi-
mental datasets are summarized in Table 1 and described below.
In the following figures, CSP and PGD refer to the attacks pre-
projection, while the Constrained-- variants show the results,
post-projection, with DPLL and the learned domain constraints. We
report the rate of invalid samples as the number of adversarial
examples that do not comply with domain constraints over the
total number of adversarial examples crafted. Model accuracy is
measured as the number of adversarial examples classified correctly
by the model over the total number of adversarial examples crafted.
For constrained variants, samples that do not comply with domain
constraints after projection are counted as correctly classified.

NSL-KDD. The NSL-KDD [63] is a subset of the seminal KDD Cup ’99
network intrusion detection dataset, dating back to 1999. While the
NIDS data is somewhat dated, the breath and depth of the NSL-KDD
makes it ideal for studying the effect of domain constraints. The
dataset contains 125,973 samples for training and 22,544 for testing,
representing four attacks and benign traffic.

As [1] demonstrates, many features in the NSL-KDD describe
redundant information. Thus, we apply the same feature reduction
techniques to the data to bring the feature space from 41 features
down to 11. This had a minor impact on the accuracy of our models
(i.e., from 77% down to 70%), yet drastically improved the scalability
of learning domain constraints from the data.
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Phishing. Phishing [16] is a dataset for identifying website phish-
ing. The dataset contains internal and external features of a website,
e.g., HTML versus WHOIS records. The features were extracted from
5,000 popular phishing websites and 5,000 legitimate webpages.
Moreover, [16] demonstrates that, among the original 48 features,
only ten were necessary to maximize model accuracy. We use these
ten suggested features to apply our constraint learning algorithms
on and build our models from. As [16] claimed, we were able to
achieve maximal model accuracy (i.e., above 94%) with ten features.

5.2 Learning Domain Constraints

Constraint Representation. Modern machine learning datasets
often contain tens of thousands of samples and learned constraint
theories can be equally as large (or even greater for some domains).
Thus the runtime performance of the constraint generation and
evaluation algorithms is important; we use a representation of
domain constraints so that evaluation is efficient. Details on these
optimizations are in Appendix C.5.

The Space of Constraints. Motivated by our theoretical analysis
in Section 4.3, our evaluation characterizes the worst-case adversary.
That is, our learned constraint theory T is maximally general in
that it certifies the maximal number of observations (i.e., the threat
surface of potential adversarial examples is maximal). To this end,
we bound the pseudo-power set P, and therefore the literals in each
clause, to have cardinality k = 1.

Constraints Learned From Our Datasets. After having gener-
ated clauses whose literals have cardinality k = 1, we pass C and the
full datasets into Valiant’s algorithm. We find that the NSL-KDD, the
network intrusion detection dataset, contained the most constraints
at 5,330, while only 1,995 constraints were learned from Phishing,
the phishing websites dataset. We will provide some introspection
on the constraints learned from the NSL-KDD later in Section 6.

5.3 Crafting Adversarial Examples

For each dataset, we generate adversarial examples through both
PGD and the CSP. Both algorithms apply a 0.01 £ perturbation at
each iteration (e.g., 35 iterations corresponds to a perturbation mag-
nitude no greater than 0.35, roughly a third of the feature space) to
continuous features. Perturbations to binary or categorical features
are enforced to be -1 or 1 through one-hot encoding (as adversarial
examples that report using 0.5 TCP for a Protocol feature are non-
sensical). We compute results by generating adversarial examples
over the test set and measure robustness through model accuracy.

5.4 Projecting Adversarial Examples

Selecting Features for DPLL to Perturb. Recall from Section 4.5,
we first identify the feature values of adversarial examples that
satisfy the fewest constraints (therein identifying the features that
are most constrained by the domain). Intuitively, the heuristic we
describe below is based on the following insight: if the most con-
strained features are perturbed, then the resultant adversarial exam-
ple is likely to be rejected by the constraint theory. Thus, for each
adversarial example, we identify the most constrained features and
use DPLL to modify these features so that the sample is likely to be
certified by the learned constraint theory.
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Figure 3 shows clause satisfaction bar charts for Phishing and
the NSL-KDD after 35 iterations of perturbations by the CSP and PGD.
Recall that to use DPLL effectively, we wish to project constraint-
noncompliant samples onto the constraint-compliant space with
minimal sample modification under a ¢ budget. Additional infor-
mation on the features can be found in Appendix C.3.

As the charts show, there are some features that satisfy signif-
icantly more clauses than others across the majority of samples.
Because DPLL is parameterized on some allotted ¢, this discrepancy
suggests that we might use clause satisfaction as a heuristic to select
features for DPLL to prioritize. In other words, we configure DPLL to
prioritize projecting features whose values satisfy few clauses (as
opposed to features whose values readily satisfy many clauses). We
parameterize DPLL with an additional ¢ budget of 20% (i.e., DPLL
will select no greater than the bottom 20% of features, as determined
by the clause satisfaction bar charts, to project adversarial examples
onto the learned constraint theory).

While this clause satisfaction heuristic is effective, other heuris-
tics may improve DPLL success further. For instance, high variance
in number of clauses satisfied by a feature across many samples
could imply that the feature is highly salient towards constraints.
We defer investigation of additional heuristics for future work.

Measuring the Efficacy of Constraints. Figure 4 illustrates the
rate of invalid samples (that is, the number of constraint non-
compliant adversarial examples over the total number crafted) and
model accuracy as a function of the number of iterations used to
craft adversarial examples.

The rate of invalid samples (Figures 4a and 4b) answers our
first evaluation question: do the known crafting algorithms violate
domain constraints? Across both the NSL-KDD and Phishing, we
observe that at least 60% of all adversarial examples produced by
PGD violate the domain constraints when the number of iterations
exceeds 10. In cases where domain constraints are violated, the
adversarial examples produced are not realizable.

For our second evaluation question: Do constraints add robust-
ness? The results suggest that domain constraints add robustness
against adversarial examples. For example, we observe that even
though DPLL was largely able to successfully project the adver-
sarial examples produced by PGD when the number of iterations
was small, many of the resultant constraint-compliant adversar-
ial (i.e., CONSTRAINED-PGD) examples were correctly classified by
the model. Notably, we observe how 34% of model accuracy is re-
stored in the Phishing dataset (Figure 4d) once invalid examples
produced by PGD are projected back onto a constraint-compliant
space. On the NSL-KDD dataset, running PGD with many iterations
produced additional examples that could not be projected into the
constraint-compliant space, increasing the accuracy of the model.

Finally, we examine the applicability of CSP to crafting valid
adversarial examples. The conservative nature of the CSP lends itself
to producing adversarial examples that readily comply with domain
constraints: at 10 iterations, only 10% of the examples produced by
the CSP violated domain constraints in the worst case (compared to
nearly 60% for PGD). Additionally, while many examples produced
by PGD cannot be projected onto the constraint-compliant space
(about 40% for the Phishing dataset), examples produced by CSP
were successfully projected nearly 100% of the time. This suggests
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Figure 3: Clause Satisfaction Bar Chart—The mean number
of clauses satisfied from the learned constraint theories on a
per-feature basis for the adversarial examples produced by
CSP and PGD. Error bars represent 95% C.I.

that saliency-based algorithms, as well as algorithms targeting an £
norm, may be more readily applicable to constrained domains than
gradient-based algorithms or those targeting f. This is consistent
with the structure of constraints and budget used by DPLL; PGD
causes larger perturbations over £, which will likely violate more
constraint clauses and frustrate projection.

Takeaway. From our investigation, we highlight key takeaways: (A)
Crafting constraint-compliant adversarial examples is a necessarily
different process than traditional crafting approaches. Up to 82% of
adversarial examples produced by PGD violated domain constraints.
(B) Constraints add robustness. In the worst case, 34% of model
accuracy was restored after projecting adversarial examples onto
the learned constraint theory.
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Figure 4: Crafting Adversarial Examples with Domain Constraints—Rate of invalid samples and model accuracy as a function
of attack iterations (iterations add +0.01 to continuous features and *1 to categorical features). CSP and PGD refer to the attacks
pre-projection, while Constrained variants demonstrate results post-projection with DPLL. Shaded regions represent 95% C.I.

The results demonstrate that crafting adversarial examples in
constrained domains is a necessarily different process than those
of unconstrained domains. Domain constraints have a tangible
impact on the underlying threat surface as many of the threats
produced by known crafting algorithms are not realizable. Perhaps
most importantly, the relationships between features serve as a
form of robustness to the known crafting algorithms.

5.5 Scalability

We next consider the scalability of our approach. Recall that Valiant’s
Algorithm (Algorithm 1) checks each constraint against each ob-
servation, returning only constraints that certify all observations.
Valiant’s algorithm, therefore, has time complexity O(|E| - |T|)
(Note that |T| = O(|C])). For clauses of cardinality k = 1, |C| =
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Datasets |E| IT1X;] d m

NSL-KDD 1.5%x10° 1.0x10* 180s 1.2x107's

Phishing 1.0 x 10* 8.4 x103 7s 83x107 85

CICDD0S2019 25%x10° 13x10* 4560s 1.4x1077s

DREBIN [5] (est) 1.2X10° 5.6x10° 80465 —

a%a [34] (est) 4.6x10* 7.6x10° 39500s —
Mean 1.1x1077s

Table 2: Measured and estimated time to learn constraints

[1x,ex |Xil, and the algorithm takes time O(]T |X;|). Thus the com-
bined runtime is O([] |X;| + |E| - |T|) = O(|E| - 1 |Xil)-

Next, we explore how the approach scales with real datasets.
Table 2 shows, for each dataset, the number of unique samples |E|,
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Figure 5: Scalability of constraint learning. Contours show
time to learn constraints based on samples and features. Fea-
ture counts have been normalized (log, [] |X;|) to approxi-
mate equivalent binary features. For comparison we super-
impose actual and estimated runtimes of various datasets

the size of the power set and the total run time to execute the learn-
ing process. In addition to the NSL-KDD and Phishing datasets and
to observe performance under large |E|, we measure performance
on the large CICDD0S2019 dataset [55] which contains 2.5 million
unique samples, after applying feature reduction techniques, as
shown in [39], from a complex network environment. We also pro-
vide estimated performance on two additional datasets after feature
reduction techniques inspired by literature.

Figure 5 visualizes the performance of the learning process over
measured and estimated datasets. Here we show (1) the number
of samples in the training data, and (2) the number of features.
To allow comparison between datasets with differing classes per
feature, we use a normalized feature count, which is the equiva-
lent number of binary features which would yield the same [] |Xj].
We superimpose actual and estimated performance numbers for
comparison. From this, it can be seen that compute time scales
linearly with the number of samples, but exponentially with the
number of features. Because the number of samples in a training
dataset should generally increase exponentially with the number of
features (i.e., the curse of dimensionality [6]: the number of features
should be O(log |E|)), the complexity of learning constraints on
well-formed datasets can be roughly modeled as O(|E[%). As previ-
ously noted, feature reduction techniques can further increase the
tractability of high-dimensionality datasets without significantly
lowering model accuracy. Additionally, further optimizations in the
constraint learning routine might greatly improve throughput.

As afinal note, recall our use of OPTICS for clustering continuous
variables; we observed significant performance bottlenecks here.
OPTICS computes pairwise distances between points that are within
a parameterized e neighborhood distance. For completeness, we set
€ to co, which yields a runtime of O (n?). Depending on the number
of samples, this can take days to determine the clusters alone (for
comparison, once the clusters are identified, constraint learning
can be done on the order of minutes). Supplementary experiments
did show that OPTICS could approximate clusters fairly well with
1% randomly sampled subsets of the training data (e.g., for the
NSL-KDD, out of the 18 clusters identified across features with the
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Dataset # Clauses # Violations % Violations
NSL-KDD 5,874 401 1.7%
Phishing 2,143 14 0.45%

Table 3: Constraint Violations from Test Set Observations

full training set, 16 clusters were consistently correctly identified
with 1% randomly sampled subsets of the training set).

6 DISCUSSION

Projecting vs. Enforcing Constraints. One of the core compo-
nents of the CSP is using DPLL to project adversarial examples onto
the constraint compliant space, characterized by T. In preliminary
experiments, we enforced T throughout the crafting process, that is,
at any arbitrary iteration r, e” was always a realizable adversarial
example. However, we observed that, in some cases, the domain
constraints would create “archipelagos” around inputs; any per-
turbations to an input were bound to small regions of the input
space. Unconstrained domains, however, have input spaces that are
more akin to supercontinents. This suggests that, for many domains
deploying machine learning, the threat surface exposed by vanilla
applications of adversarial machine learning is an overestimation
(sometimes a large one) of the true, practical threat surface.

Robustness U Constraints. [53, 71] show two techniques for pro-
viding formal guarantees on model robustness (i.e., homogeneous
predictions in a f-norm ball). While these approaches have (at
present) limitations that discourage practical deployment, they con-
vincingly suggest that a model robust to adversaries is attainable.
We note that there were no algorithms applied to our models to
“secure” them, yet we observed tangible gains in model robustness
from domain constraints. This suggests that the pairing of some
form of model robustness with domain constraints may produce
models that are highly challenging for an adversary to exploit. We
present this as an opportunity for future work.

Addressing Concept Drift. Many applications of machine learn-
ing involve non-stationary phenomena; as the underlying phenom-
ena changes over time, so does the space of observations that com-
ply with the domain constraints. As a natural consequence of learn-
ing constraints from data, learning relevant constraint theories may
necessitate: (1) identifying when concept drift has occurred, and (2)
rectifying its effects on the learned constraint theory. We describe
below several experiments that characterize the effects of concept
drift on constraint learning.

Identifying concept drift is an unavoidable problem in machine
learning, and there are approaches that can dynamically recognize
concept drift and react to mitigate its effects (such as moving win-
dows or detection thresholds) [22, 68, 69]. As a measurement of
detecting concept drift, we investigated whether constraint theories
learned exclusively from the training set would reject observations
from the test set. Intuitively, this exercise is useful for two reasons:
(1) it informs us if our approach overfits to a set of collected data
(i.e., does Valiant’s algorithm generalize?), and (2) emulates what
practical deployments of constraint learning would observe, given
that datasets with a dedicated test set include new observations to
approximate excepted performance when deployed.
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Our results, shown in Table 3 show a stark contrast in the vi-
olation rate between inputs from the test set and the adversarial
examples crafted in our evaluation. These results confirm that: (1)
Valiant’s algorithm does learn constraint theories that generalize
well on unseen data, and, more importantly, (2) constraint viola-
tions can serve as an indicator of concept drift. For example, in a
practical setting, network operators could use constraint violations
as a “filter” for traffic flows that deserve attention and if the viola-
tion rate were to exceed some threshold, an indicator of concept
drift through changes in the underlying traffic patterns.

Once concept drift has been identified, rectifying its effects can
be challenging. Under the framework evaluated in this work, there
are two facts on the effects of concept drift to a learned constraint
theory: (1) new observations remove clauses that encode dated
constraints, and (2) old observations could have removed clauses
that encode constraints irrelevant at that time, but could be appli-
cable at present (for example, a service could drop support for a
particular protocol in future versions). In our setting, addressing
dated constraints is straightforward: new observations could be
used to remove the irrelevant constraints in a linear pass. However,
re-adding constraints that were irrelevant in the past requires a
more nuanced approach.

The naive approach would simply be to re-generate the universe
of constraints and repeat the learning process in its entirety. How-
ever, this can be time-prohibitive for some domains, and so we are
keen to use an approach were complete re-learning is not necessary.
To this end, we are inspired by specific approach used in [69] to
mitigate the effects of concept drift. Specifically, [69] stores concept
descriptions and reuses them when a particular context appears.
Thematically similar, we could first record the clauses removed for
all observations in a training set. Then, if an observation is consid-
ered to be a dated representation of the domain (we could leverage
domain expertise to identify such observations), we could simply
re-add the removed clauses (insofar as no other observations would
also remove those clauses). In this way, we can trade off repeating
the learning process versus maintaining a record for the clauses
removed for all samples.

The Quality of Learned Constraints. Ultimately the goal of this
work is to develop constraints that reflect the true limitations of the
domain. Historically, this has been the purview of domain experts.
For example, Stolfo et al. developed a comprehensive constraints for
network traffic [60]. Below, we show that by example the constraint
theory learns constraints identified by humans (including those by
Stolfo et al. and a number developed from our own experience with
IP network protocols). We are exploring a more exhaustive analysis
that systematically compares the specifications of IP protocols to
the learned constraints.

To compare learned and human cultivated constraints, we for-
mulate queries in the form of inputs that demonstrate constraints
we would expect the constraint theory to learn. From our queries,
we verified both obvious and subtle constraints, namely (1) if a TCP
flow was terminated with REJ flag (i.e., through the source sending
an initial SYN packet with the RST bit set), then the number of bytes
sent in the flow must be 0 as, for the NSL-KDD, bytes measured in
a flow was done post-handshake), and (2) SYN packets that have
the same IP and port numbers for the source and destination fields,
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flagged as “land” in the NSL-KDD, are never responded to. While
the two above serve as examples of constraints from the TCP/IP
protocol and domain experts respectively, the constraint theory
also learned some attack-specific constraints, such as flows that had
errors at some stage of the TCP handshake towards a specific ser-
vice were distributed across destinations. After analyzing the kinds
of flows that exhibited this property in the dataset, we observed
that this was almost exclusively associated with probe attacks—this
agrees with our understanding of probe attacks in that an adversary
seeks to collect information of the services available in a network
across destination hosts through a “heartbeat” mechanism, such as
initiating connections to observe any form of response.

7 RELATED WORK

Learning in the Presence of Adversaries. The origins of ad-
versarial machine learning are not explicitly known and are often
disputed [7]. From our perspective, exploring the degree to which
adversaries can influence learning algorithms begins in 1993 with
Kearns et al. who formalize a worst-case data poisoning attack for
any learning algorithm [32]. In 1997, [66] explores the efficacy of re-
inforcement algorithms in adversarial environments, with MINIMAX
tables driving agent (and adversary) decisions.

The Rise of Deep Learning. With the rise in popularity in deep
learning, adversarial scenarios were revisited [12, 26, 48, 62]. Many
early works explored white-box, inference-time attacks via gradient-
based algorithms. Shortly after, adversarial methods were trans-
lated from conceptual to practical, as works demonstrated how to
produce adversarial examples in physical spaces, using stickers,
glasses, and graffiti [9, 20, 36, 57]. Subsequently, adversarial ma-
chine learning was no longer exclusive to academia; it began to
enter popular culture with discussions of fooling Al in magazine
articles [24, 33, 43], demonstrating “DeepFakes” on television [38],
and even displaying adversarial examples in museums [30].

In 2017 and 2018, there was a burst of adversarial machine learn-
ing research; transfer attacks (i.e., grey-box) [18, 37], black-box at-
tacks on machine-learning-as-a-service platforms [8, 31, 46, 47], at-
tacks by altering a single feature [61], data poisoning attacks (i.e., at
training time) [2, 15], adversarial example detectors [11, 21, 27, 72],
adversarially robust models through adversarial training [42], lin-
ear programming [71], and semidefinite relaxations [53, 59], among
many other works. Seemingly every corner of machine learning
involving some form of an adversary was explored.

Images and Beyond. As we motivated in Section 1, the major-
ity of applications in adversarial machine learning have been in
images. Recently, we have started to see applications in security
domains, including malware [3, 28, 35], and network intrusion de-
tection [40, 54, 58, 73]. These works all describe similar motivations:
domains concerned with adversarial machine learning will likely
not be exclusive to images. As canonical representatives of security,
malicious software and network traffic are relevant phenomena to
study. However, there are commonalities among the works that
limit the applicability of the findings to practical deployments.
When perturbing inputs, these works exploit domain “safe-spaces”.
For malware applications, the authors acknowledge that perturb-
ing malware directly is incredibly challenging (without breaking
it or removing its malicious purpose), therefore, perturbations are
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limited to either appending bytes at the end of the binary [35] or
only adding permissions to the list of required permissions for an
application, in the context of Android malware [28]. These are two
examples of “safe-space” perturbations: such manipulations guar-
antee that malicious behavior is preserved (and that the malware is
still functional) by identifying regions that explicitly avoid domain
constraints. This effectively reduces to manipulating image-like
inputs, in that perturbations can be applied arbitrarily and indepen-
dently.

For the works in network intrusion detection, some either ignore
domain constraints [54, 73], or rely on domain expertise to identify
what can and what cannot be perturbed [40, 58]. Specifically, [40]
argues that insofar as the identified features are not perturbed, then
the malicious behavior is preserved. Not unlike the malware sce-
narios, this models adversaries as being able to perturb arbitrarily
and independently (just with a reduction to the allowable perturba-
tion space, much like the one-pixel attack in [61]). However, [58]
provides a method where all features can be perturbed with a sub-
routine to enforce the domain constraints. The approach suffers
from relying on expertise to identify the constraints correctly and
is largely formulated for network intrusion detection systems.

While in this work we use images as a motivating example of an
unconstrained domain, domain constraints can exist in images, de-
pending on the subject of the image. Specifically, Chandrasekaran
et al. identify domain constraints in images with domain expertise
(as well as a data-driven approach via embeddings at intermediary
layers of the model) [14]. They perform a complementary observa-
tion that adversarial crafting algorithms violate domain constraints,
and, when domain constraints are enforced, model robustness is
improved.

Where To? While we are moving closer to accurate threat models
for diverse domains, we may ask, “What if such safe-spaces do not
exist? What if the adversary is required to perturb in regions that
may have effects on other features? Can such adversarial examples
be realized?” We argue that these are fundamental questions for
any domain that is keen to deploy machine learning.

8 CONCLUSION

This paper explored adversarial examples with domain constraints:
relationships between features that encode the rules or structures
of the underlying phenomena. We develop algorithms to learn con-
straint theories for given data distributions and integrate domain
constraints into adversarial crafting processes. By representing do-
main constraints as logic clauses, we design a data-driven approach
to learn the domain constraints across network intrusion detection
and phishing datasets. We find that: (1) crafting adversarial exam-
ples in constrained domains is a necessarily different process than
unconstrained domains; up to 82% of adversarial examples produced
by PGD violated domain constraints, and (2) constrained domains
are inherently more robust against adversarial examples; in one
domain, 34% of model accuracy was restored after projecting adver-
sarial examples onto the learned constraint theory. These findings
suggest that the exploitable threat surface of models in constrained
domains is likely narrower than previously understood.
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A THE WORST-CASE ADVERSARY

We call a constraint theory T strict when T only certifies the obser-
vations E from which T was learned; any other observation e* that
is not a member of E is rejected. Secondly, we call T general when
it certifies a maximum number of observations (while containing a
non-zero number of clauses).

We will now show that, in the setting described in this paper,
the most strict constraint theories are those whose clauses have
literals of cardinality n — 1 (recall, literals in our setting are sets),
where n describes the number of unique values observed for a given
attribute in the set of collected observations E. Such constraint
theories describe the best-case adversary, as the adversary must
produce adversarial examples that are precise copies of collected
observations E.

Conversely, the most general constraint theories are those whose
clauses have literals of cardinality 1. These constraint theories
characterize the worst-case adversary, as such constraint theories
certify the maximum number of observations among all constraint
theories learned by considering literals with cardinalities from 1
to n — 1. Let ;. be the set of observations rejected by constraint
theories Ty whose clauses contain literals with cardinality k. We
will now show: i1 C--- Cfg C--- Y1
An Illustrative Domain. Consider the visualization in Figure 6 of
some set of collected observations E (shaded in gray).

O00O0
2 O00O0

O00O0
O0O0OO0

Figure 6: Domain and collected observations E—In the con-
sidered domain, there are two features x; and x2 whose obser-
vations can take values {A, B,C, D} and {1, 2, 3, 4}, respectively.
The grey circles represent the set of collected observations E.

D

In this domain, there are two features: x1, which can take values
{A, B, C, D}, and x,, which can take values {1, 2, 3, 4}. From E, we
observe that if some observation e has value x; = D, then x5 = 1,
otherwise if x; # D, then x5 = 4.

Next, we will consider the output of Algorithm 2, generating
the space of possible of constraints, for literals of cardinality k =
1,2, and n — 1 = 3. For clarity, a single clause will be written as
({a} Vv {B}), where « represents at least one and at most three
elements from x1 (i.e., {A, B,C, D}), and f represents at least one
and at most three elements from x; (i.e., {1, 2,3, 4}).
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k = 1. Let us consider the space of possible constraints for clauses
generated with literals of cardinality k = 1:

({A} v {1h A ({A v {2}) A ({A} v {3) A ({A} V {4D)A
({Byv{1h A({B} v {2h) A ({B} v {3H) A ({B} Vv {4D)A
({Ccv{ih A({Chv{2h A({C}V 3D A ({C}V {4h)A
({D} v{1}) A ({D} v {2}) A ({D} v {3}) A ({D} v {4})

After applying Valiant’s algorithm to these constraints with our
set of collected observations E, the resultant learned constraint
theory is then:

T=({D}V {4}

As we described above, our worst-case adversary is one who
crafts adversarial examples for a constraint theory that is most
general, among all possible learned constraint theories in our set-
ting. Consider the learned constraint theory T = ({D} V {4}); this
constraint theory will certify any observation e whose values are
either (D, -) or (-, 4) (where - denotes any value from the domain of
the respective attribute). From Figure 6, we can see that, out of the
16 possible instances in our exemplar domain, seven are accepted
and nine are rejected, that is, |i/1| = 9. Now, we draw a “reject” box
in red, respectively, shown in Figure 7.

OO0
2 1 OO0O0

OO0 00O
OO00OO

Figure 7: Reject space for k = 1—For literals whose cardinality
k is 1, the learned constraint theory T = ({D} V {4}) rejects
any observation from the red box.

D

Reject boxes can be derived by inverting each individual clause
and applying De Morgan’s law. For example, the reject box associ-
ated with clause ({D} Vv {4}) wouldbe ({D} v {4}) = ({D}A{4}) =
({A,B,C} A {1,2,3}). We can interpret this reject box as: T will re-
Jject any observation with x; € {A, B,C} and x3 € {1, 2, 3}; otherwise,
T will certify it.

As another important remark, beyond the observations in E used
to learn T, T will also certify the unseen observations (D, 2), (D, 3)
and (D, 4). This is an example of the generalization provided by
encoding constraints of cardinality k = 1.

k = 2. We now continue with learning a constraint theory with
cardinality k = 2. Again, consider the space of possible constraints
whose literals have cardinalities k = 2:
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({4, B} v{1,2H) A ({A, B} v {1,3}) A ({A, B} v {L,4})A
({A,B} v {2,3}) A ({A, B} v {2,4}) A ({A, B} V {3,4)A
H{ACrvA{L2) A({ACHV{L3}) A({ACYV {1,4DA
H{ACIVA{23H A({ACHV{2,4}) A {ACHV{3,4})A
({A,D} v {1.2}) A({A D} v {1,3}) A ({A, D} v {1,4hA
({A,D} v {2,3}) A({A, D} v {2,4}) A ({A, D} v {3,4PhA
({B,C}v{1,2}) A({B,C} V{1,3}) A ({B,C} V {1,4}D)A
{B.CYVA{23) A({B.C}V{24}) A({B.C}V{34HA
({B.D} v{1,2}) A ({B,D} v {1,3}) A ({B.D} Vv {1,4})A
({B.D} v{2,3}) A ({B,D} v {2,4}) A ({B.D} V {3,4})A
({C,Dyv{1,2) A({C.D} v{1,3}) A ({C,D} vV {1,4})A
({C.D} v {2,3}) A ({C,D} v {2,4}) A ({C. D}V {3,4})
After applying Valiant’s algorithm to this batch of clauses with
E, the learned constraint theory is then:
T=(AB}V{1,4}) A ({AC}V{L4}) A({A D}V {1,4H)A
({A,D}vA{2,4}) A({A D}V {3,4}) A({B,C} V{L4}HA
({B.D} v{1,4}) A ({B.D} v {2,4}) A ({B.D} V {3,4})A
({C.D} v {1,4}) A({C.D} v {2,4}) A ({C. D} v {3,4})
Here, we observe that the union of the reject boxes produced by
clauses that contain D is exactly identical to the reject box produced by
clause ({D} V {4}). Any observation will only satisfy those clauses
in T if the observation has x; = D or x5 = 4. However, we do note
that there are some unique clauses that produce reject boxes that are
not a direct subset of the reject box produced by clause ({D} Vv {4}).
Namely, ({A, B} Vv {1,4}), ({A,C} vV {1,4}), and ({B,C} V {1,4}).
Of these unique clauses, without loss of generality, consider the
reject box produced by ({A, B} V {1,4}), that is: ({C, D} A {2,3}).

Now, we draw a reject box for this clause in orange and the
union of the reject boxes for clauses containing D in red, shown
in Figure 8. In this setting, we can see that the learned constraint

theory is less general: T certifies five observations and rejects eleven
(i.e., [¢2| = 11). Thus far, we have shown |¢1]| < |¢2].

21000
5 1000
c QOO
o QOO

Figure 8: Reject space for k = 2—In addition to the observa-
tions rejected for k = 1 (shown in red), observations (D, 2)
and (D, 3) are also rejected when k = 2 (shown in orange).

000 -

From this, we make two important observations: (1) the size of
the reject boxes are inversely proportional to the cardinality of

the literals (i.e., the constraints are becoming more granular and
less general), and (2) in addition to the observations rejected when
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k = 1, observations (D, 2) and (D, 3) are now also rejected by T.
In the context of generalization, beyond the observations used to
learn T, only the unseen observation (D, 4) will be certified by T
when k = 2.

k = n -1 = 3. We now finish with learning a constraint theory
with cardinality k = 3 (note that, for this domain, n = 4, and thus,
any clause with literals of cardinality four will be axiomatically
satisfied, and so the maximum cardinality we consider is n — 1 = 3).
We compute the last batch of the space of possible of constraints
for k = 3:

({AB,CYV{1,2,3}) A({A,B,C} V{1,2,4}) A {A,B,C} vV {1,3,4})A
({A,B,C} v {2,3,4}) A({A,B,D} vV {1,2,3}) A ({A,B,D} Vv {1,2,4})A
({A,B,D} v {1,3,4}) A({A,B,D} vV {2,3,4}) A ({A,C,D} V {1,2,3})A
({A,C,D} v {1,2,4})) A({AC,D} VvV {1,3,4}) A ({A, C,D} Vv {2,3,4})A
({B,C,D} v {1,2,3}) A ({B,C,D} v {1,2,4}) A ({B,C,D} Vv {1,3,4})A
({B,C,D} v {2,3,4})

Here, it is worth noting an important observation: each of these
clauses will fail to be satisfied by one and only one observation (i.e.,
the size of the reject boxes for each clause at k = 3 is one-by-one).

After applying Valiant’s algorithm with E, the following constraint
theory is learned:

T={ABC}V{1,23}) A({ABC}V{1,24})A
({A,B,C} v {1,3,4}) A ({A,B,D} vV {1,2,4})A
({A,B,D} v {1,3,4}) A ({A,B,D} V {2,3,4})A
({A, C,D}v{1,2,4}) A ({A C,D} vV {1,3,4})A
({A,C,D} v {2,3,4})) A({B.C,D} Vv {1,2,4})A
({B.C,D} v{1,3,4}) A ({B,C,D} v {2,3,4})

Our observation that the reject boxes for k = 3 is one-by-one is

further evidence by the fact that the learned constrained theory T is
missing exactly four clauses, one clause for each observation in E.

Figure 9: Reject space for k = 3—In addition to the obser-
vations rejected for k = 1 (shown in red) and k = 2 (shown
in orange), observations (D, 4) is also rejected when k = 3
(shown in yellow).

In this setting, only one clause produces a reject box for a new
observation beyond the reject boxes produced by clauses at k = 2:
({A, B,C} v {1,2,3}), with inverse ({D} A {4}), as shown in yellow
in Figure 9. In this setting, k = n — 1 results in a learned theory that
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“overfits” to the training set E: T certifies only observations from
E an rejects all other observations. Thus, T is rigid, i.e., it is least
general. Finally, we observe that T certifies four samples and rejects
twelve, i.e., |y3| = 12.

Given a domain X, which contains X;, the set containing all
possible values for feature i, and a set of observations ¥, that
are rejected by a constraint theory T, which is a conjunction of
clauses t, where t is a disjunction of literals /; ;, which contain k
values of feature i, we provide a general proof that ¥ C Y5, (ie.,
Ve,e € Y. = € € Ypy1)-

Proor. Consider any e € ¥, 1 < k < n— 1, n > 3. Without
loss of generality we assume that every feature space X; is of size
n. There must be some clause t € Ty that e does not satisfy of the
form:

t= \/ lk,i
i
With

lk,i CXi N |lk,i| =kAei ¢ lk,i
Where ¢ describes the disjunction of literals [ ; of size k that, for
every feature i, contain a set of values that are within X;, but do
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not contain the value e;. Now, we can build ¢’, which is the clause
t with an additional value, v} ;, in each literal:

=\ by U {oes)
i
With

Ok i ¢ lk,i A Ui C XiNej # Uk i

Where t’ is now clause ¢ with an additional value vy ; in each
literal, where vy ; is within the set of all values for the feature i, but
is not equal to e;.

Now, by construction, we have ¢’ € Ty, because literals are of
size k + 1 and the clause is strictly less constrained than ¢, since the
literals of ¢’ can be satisfied by more samples than the literals of ¢.
Since t’ € Tj.1, and we know that ¢’ rejects e because Vi, e; ¢ i ;
(i-e., t rejects e) and Vi, e; # vy ;, which gives us Vi, e; ¢ I, ; where
li+1,i = Ik i U {o ;}. Therefore, we have that e € ;. By induction,
it can then be shown that:

Y1 Sk SYar S0 S P
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Exclusive
X1
X2

Inclusive
X3
X4

Prohibitive
X5
X6
Xa Xp Xc

D VALID 1 INVALID

Figure 10: Constraint Types — An example visualization of
three kinds of learned constraints between network proto-
cols (e.g., x1,x2, ..., x¢) and services (e.g., xq, Xp, & X¢)

B RATIONALIZING DOMAIN CONSTRAINTS

Here, we provide supplementary material on a conceptual model
characterizing the learned constraints by Valiant’s algorithm into
one of three types, as shown in Figure 10. Valiant’s algorithm learns
these three types of constraints simultaneously; we found this
conceptual model helping in rationalizing the learned constraints.

Exclusive Constraints. Exclusive constraints are perhaps the most
intuitive types of relationships; they describe one-to-one mappings
between two variables. A constraint ¢ between X, and X, p is said
to be exclusive, if:

dx, € Xﬂ,‘v’(xl,xg) € XOZ(, G (x1,xq) N C(x2,x5) = x1=x
where € (x, y) is an indicator function that a constraint exists be-
tween two variables x and y. Thematically similar to definitions for
injective functions, exclusive constraints encode that if a constraint
exists between variables x, and x1, then x,; does not have a con-
straint for any other variable in the domain for which x; belongs to.
Conceptually, we can imagine such constraints between network
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services and protocols. As an example, we can expect that some
services, such as SSH, can only be used with TCP.

Inclusive Constraints. Unlike exclusive, inclusive constraints
describe one-to-many mappings. Again, a constraint € between
Xq and Xp is said to be inclusive, if:

Txg € Xp, V(x1,%2) € X5, 6 (x1,%0) A G (x2,%a) = X1 =12
In other words, it is not necessary for x; and x; to be the same
variable if there exists constraints & (x1, x4) and € (x2, x5). We can
again imagine a scenario where a service, for example NTP, can be
used with multiple protocols, such as TCP and UDP.

Prohibitive Constraints. We call the final constraint type pro-
hibitive constraints. These constraints describe regions for which
no observation can exist®. We formalize a prohibitive constraint &
between X, and Xp as:

SThere are constraint learning approaches that leverage negative examples, which are
realizations of inputs that cannot exist. Practical datasets used for machine learning
Vx1 € Xq, Bxq € Xg such that € (x1,%q) = 1
Prohibitive constraints are especially interesting. At first, they seem
redundant (one could consider invalid regions to simply be the dual
of valid regions) or non-informative (a variable in a dataset that has
no observation surely cannot be useful to any learning algorithm).
The necessity of prohibitive constraints is rooted in learning rela-
tionships with variables that live in a continuous domain. While such
variables can take any real value in theory, there exists real-world
phenomena for which continuous variables instead take values
that can be approximated as discrete clusters of values. Prohibitive

constraints grant us the flexibility to learn such phenomena.

As an example from networks, consider packet sizes; it is a well-
known phenomena that packet sizes on the Internet closely follow a
bimodal distribution [64, 70] (i.e., packet lengths are either small or
large). Consider this observation at the extreme, that is, let the two
modes be non-overlapping. In a practical setting, this means that
the largest packet from the “small” distribution is smaller than the
smallest packet from the “large” distribution. Variables that describe
continuous phenomena can exhibit these regions and prohibitive
constraints are necessary to model these contexts.

do not provide such examples, and thus prohibitive constraints give us the flexibility
to infer negative examples from gaps between values in positive examples.
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Symbol Meaning

Universal
e sample or observation
E dataset or collection of observations

Machine Learning

e* adversarial example

sample label

model parameters

model with parameters 6
Jacobian of a model

Saliency Map

model prediction

perturbation magnitude
parameter for some £,,-norm
budget (measured as a distance)
norm-ball of radius ¢

> o=

BN ]S »—

<

Formal Logic

logical entailment

set membership

domain

ith feature (or variable) space
some value for feature i

possible constraints from a domain
a clause in a constraint theory

a constraint theory

Pseudo-power set
set within some pseudo-power set
space of possible observations

SIS TSN H T OR Xxan T

a constraint theory with partial assignments
set of observations rejected by a constraint theory

constraint-compliant set of observations
constraint-noncompliant set of observations

Table 6: Symbols used in this paper

C MISCELLANY

Dataset Features
NSL-KDD 1.Flag
2.Src Bytes
3.Dst Bytes
4.Land

5.Num Compromised

6.Srv Serror Rate

7.Rerror Rate

8.Diff Srv Rate

9.Srv Diff Host Rate

10.Dst Host Srv Serror Rate
11.Dst Host Rerror Rate

Phishing 1.UrlLength
2.NumNumericChars
3.NumSensitiveWords
4.PctExtHyperlinks

5.PctNullSelfRedirectHyperlinks

6.FrequentDomainNameMismatch
7.SubmitInfoToEmail
8.PctExtResourceUrlsRT
9.ExtMetaScriptLinkRT

10.PctExtNullSelfRedirectHyperlinksRT

Table 4: Features
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C.1 Hyperparameters

Dataset # Neurons per Hidden Layer Learning Rate Iterations
NSL-KDD 60, 32 1073 16
Phishing 20 1072 15

Table 5: Hyperparameters

For our models, we use multilayer-perceptrons using ADAM
optimizer. Hyperparameters are shown in Table 5.

C.2 Table of Symbols
C.3 Dataset Details

Table 4 shows the features used in our datasets after feature re-
duction. Details on the meaning behind the features can be found
in [63] for the NSL-KDD and in [16] for Phishing.

C.4 DPLL

Constraint learning is a historical problem in computer science and
shares many parallels with satisfiability problems. While constraint
learning tries to learn what the constraints are, satisfiability at-
tempts, as the name suggests, to return an assignment that satisfies
a set of boolean expressions.

For constraint satisfaction, we use DAVIS-PUTNAM-LOGEMAN-
LovELAND (DPLL) [17], shown in Algorithm 3. DPLL has some char-

acteristics that make it ideal for our task, namely: (1) it accepts
boolean formulae in CNF, which is the native form of the constraint

theories learned by Valiant’s Algorithm, and (2) it is a backtracking-
based search algorithm. DPLL iteratively builds candidate solutions
for a given expression, which is a property we exploit, detailed in
Section 4.5.

DPLL frames constraint satisfaction as a search problem; first ini-
tialized with a set of boolean clauses H containing unassigned liter-
als, the algorithm first assigns a literal [ to either TRUE or FALSE, and
recursively calls itself with the new assignment for I. DPLL returns
FaLsk if a contradiction is reached or TRUE if all literals are assigned.
DPLL has a runtime advantage over other backtracking algorithms
as it performs two simplifications to H at each call: UnitPropagate
and PureLiteralElimination. UnitPropagate assigns values to
literals who are the only members of their clauses (as only one
assignment makes such clauses true). PureLiteralElimination
assigns the necessary value to literals who are pure, that is, a literal
| is either [ or I for all clauses in H. Therefore, such literals can be
assigned so that all clauses containing them are true.
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[

(LIS

® N

10
11
12
13
14
15
16
17
18

19

Input: set of boolean clauses H
Output: a truth value
if H contains a contradiction then
‘ return FALSE
end
if H contains an assignment for every variable then
‘ return TRUE
end
forC* e {C|CeHA|C|=1}do
‘ H « UnitPropagate(C, H)
end
for[* € {l| 1 € HAPure(l)} do
‘ H « PurelLiteralElimination(l*, H)
end
| « arbitrarily select an unassigned literal
if DPLL(H U {l « TruEt}) = TRUE then
‘ return TRUE
end
else
‘ return DPLL(H U {l < FALsSE})
end

Algorithm 3: Davis-Putnam-Logemann-Loveland
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C.5 Constraint Representation

Recall Valiant’s algorithm,; it determines if an observation e com-
plies with a constraint theory T by iterating over all clauses t € T
and evaluating if at least one literal in t is satisfied by the feature val-
ues of e. Depending on the cardinality of each literal, determining
if a clause is satisfied through a linear search could be intractable.
Instead, we use a set-based representation for literals as this reduces
clause satisfaction to be on the order of the number of literals in
the clause (since set-membership queries can be done in constant
time).

While this optimization is appropriate for boolean and cate-
gorical features, continuous features require a different represen-
tation to be efficient. Recall that we leverage OPTICS to cluster
feature values into discrete bins representing sets of ranges (e.g.,
{x | (0.25 < x < 0.50) V (0.75 < x < 1.00)}). Thus, checking
if clauses are satisfied with continuous features can be done in
O(log(n)) time with binary search, where n describes the number
of bins.

In practice these optimizations yielded a tractable constraint
learning process. The NSL-KDD constraint generation process ex-
ecuted in just over 3 days, and the phishing dataset completed in
about 1 day (with OPTICS consuming the vast majority of time,
detailed in Section 5.5). Note that learning need only be executed
once for a set of training data. Moreover, there are algorithmic
optimizations that could enable the integration of new data in an
incremental way [44]. We will explore these techniques in future
work.
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