
44

Energy-Efficient LSTM Inference Accelerator for Real-Time

Causal Prediction

ZHE CHEN, Computer Science Department, UCLA

HUGH T. BLAIR, Department of Psychology, UCLA

JASON CONG, Computer Science Department, UCLA

Ever-growing edge applications often require short processing latency and high energy efficiency to meet

strict timing and power budget. In this work, we propose that the compact long short-term memory (LSTM)

model can approximate conventional acausal algorithms with reduced latency and improved efficiency for

real-time causal prediction, especially for the neural signal processing in closed-loop feedback applications.

We design an LSTM inference accelerator by taking advantage of the fine-grained parallelism and pipelined

feedforward and recurrent updates. We also propose a bit-sparse quantization method that can reduce the

circuit area and power consumption by replacing the multipliers with the bit-shift operators. We explore

different combinations of pruning and quantization methods for energy-efficient LSTM inference on datasets

collected from the electroencephalogram (EEG) and calcium image processing applications. Evaluation results

show that our proposed LSTM inference accelerator can achieve 1.19 GOPS/mW energy efficiency. The LSTM

accelerator with 2-sbit/16-bit sparse quantization and 60% sparsity can reduce the circuit area and power

consumption by 54.1% and 56.3%, respectively, compared with a 16-bit baseline implementation.

CCS Concepts: • Hardware→ Logic circuits; • Computing methodologies→ Neural networks;

Additional Key Words and Phrases: Calcium imaging, EEG, energy efficiency, long short-term memory

(LSTM), quantization

ACM Reference format:

Zhe Chen, Hugh T. Blair, and Jason Cong. 2022. Energy-Efficient LSTM Inference Accelerator for Real-Time

Causal Prediction. ACM Trans. Des. Autom. Electron. Syst. 27, 5, Article 44 (June 2022), 19 pages.

https://doi.org/10.1145/3495006

1 INTRODUCTION

Near-sensor edge computing often requires short processing latency and high energy efficiency,
which are important for a broad range of emerging applications, including brain-machine in-
terfaces, autonomous driving, robotics and drones, and more, especially when the closed-loop
feedback control is in demand. In this article, we introduce our approaches that can achieve
short-latency and energy-efficient neural signal processing for implantable electrophysiology and
calcium-imaging sensors.

This work is supported by the National Science Foundation under Grant No. DBI-1707408.

Authors’ addresses: Z. Chen, Computer Science Department, UCLA, Engineering VI, 405 Hilgard Avenue, Los Angeles, CA,

90095, USA; email: zhechen@ucla.edu; H. T. Blair, Department of Psychology, UCLA, Pritzker Hall, 405 Hilgard Avenue,

Los Angeles, CA, 90095, USA; email: tadblair@ucla.edu; J. Cong, Computer Science Department, UCLA, Engineering VI,

405 Hilgard Avenue, Los Angeles, CA, 90095, USA; email: cong@cs.ucla.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-4309/2022/06-ART44 $15.00

https://doi.org/10.1145/3495006

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

https://orcid.org/0000-0002-5371-2058
https://doi.org/10.1145/3495006
mailto:permissions@acm.org
https://doi.org/10.1145/3495006

44:2 Z. Chen et al.

Fig. 1. (a) 128-channel electrophysiological signal-recording sensor [29]. (b) Miniaturized calcium imaging

device [1]. (c) Closed-loop neurofeedback control based on real-time EEG and calcium image processing.

Recent advancements in neural recording technology have unprecedentedly enabledmonitoring
of cell activity from hundreds to thousands of neurons in vivo from rats or mice [1, 11]. Figure 1(a)
shows an assembly of tetrodes [29] that can sample 128 channels of electroencephalogram (EEG)
signals at a 32-kHz rate. Figure 1(b) presents a miniaturized calcium-imaging device (Miniscope)
[1] that can monitor dynamic fluorescence changes coupled with cell firings from hundreds of
neurons in real time. Extensive neuroscientific research has taken place by leveraging these two
types of neural recording techniques. However, most of the existing works rely on offline data
analysis, and the closed-loop feedback for the EEG and/or the calcium imaging as illustrated in
Figure 1(c) remains a challenge.
There are two main obstacles preventing a computing device from working effectively in a

closed loop. First, the EEG and calcium-image processing require short and deterministic latency
for the closed-loop feedback, especially considering the spike timing precision of 1 ms [24]. Second,
the processing demands high energy efficiency, because the device needs to be worn or surgically
implanted into the experimental subject and it must support long battery life when frequent charg-
ing is impossible. Moreover, the heat generated by the processor should not cause a temperature
increase surpassing 2◦C , which is a limit for general neural implants [25].

Many neural signal processing algorithms have been proposed. However, they mainly target
offline data analysis. For the EEG signal processing, the conventional flow is based on finite im-
pulse response (FIR) or infinite impulse response (IIR) digital filters. Such FIR/IIR filters have an
acausal nature; thus, it will cause an undesirable delay when deployed for real-time EEG phase
detection. For calcium-image processing, several offline analysis pipelines have been proposed
[12, 13, 28, 38]. The most popular one is based on the iterative constrained nonnegative matrix fac-
torization (CNMF) method [38], which extracts cell contours and traces simultaneously. However,
since it requires batch processing, it is hard to achieve a short latency for closed-loop feedback
applications.
In this work, we take inspiration from the recurrent nature of the brain, and come up with a

solution based on the compact long short-term memory (LSTM) model. We first introduce the
algorithm and the evaluation. Then, we design a customized accelerator for it. We consider both
the quantization and the pruning methods that can further improve the energy efficiency of the
accelerator while not degrading the accuracy.
This article is an extension of our previous works [5–7]. We propose a combination of the bit-

sparse quantization and pruning methods for the energy-efficient LSTM inference, and evaluate
the accuracy across the EEG and the calcium-imaging datasets. We also compare the energy and

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:3

area efficiency of the LSTM accelerator under various pruning and quantization optimizations. We
summarize the contributions of this article as follows.

• We propose that the compact LSTM inference can approximate conventional acausal algo-
rithms for both EEG and calcium-image processing and largely reduce the latency and im-
prove the efficiency.
• We design an LSTM inference accelerator that takes advantage of the fine-grained paral-
lelism and pipelined feedforward and recurrent updates inherent in the compact LSTM
model.
• We combine bit-sparse quantization with pruning to reduce the circuit area and improve
the energy efficiency of the LSTM accelerator by 54.1% and 56.3%, respectively, while not
degrading the accuracy.

This article is organized as follows. Section 2 presents the background on neural signal pro-
cessing. Sections 3 and 4 introduce the LSTM-based methods and the corresponding accelerator
design, respectively. Section 5 discusses the hardware-friendly quantization and pruning methods.
Section 6 shows the evaluation and experimental results. Section 7 summarizes related works and
Section 8 draws conclusions.

2 RESEARCH BACKGROUND

2.1 EEG Signal Processing

EEG is a widely used technique for sensing the electrical activity generated by the brain at sub-
millisecond time resolution, either invasively from electrodes implanted in the brain or non-
invasively from scalp electrodes. In humans and other mammals, the brain generates rhythmic
oscillations that can be detected in the EEG across a range of different frequencies. Major EEG
frequency bands include Delta rhythm (δ ; <4 Hz), Theta rhythm (θ ; 4−10 Hz), Alpha rhythm
(α ; 10−15 Hz), Beta rhythm (β ; 15−30 Hz) and Gamma rhythm (γ ; >30 Hz). In addition to these
oscillatory rhythms, transient EEG signals such as K-complexes, P-300 waves, and sharp-wave rip-
ple (SWR) events are also known to occur in specific brain regions [2]. Research has shown that
certain brain rhythms and transient EEG events can be used as biomarkers of abnormal brain activ-
ity, such as seizures or anxiety attacks [2]. We focused on a processing flow that can be generally
used to detect such EEG rhythms or transient signals and deliver closed-loop stimulation that is
precisely synchronized to the detected signals.
A typical closed-loop neurofeedback stimulation case with conventional EEG signal processing

flow is illustrated in Figure 2. EEG signals are typically sampled at a high sampling rate, such as
32 kHz. To analyze a specific frequency band, raw EEG data are often downsampled to the lowest
allowable rate correspondingly. For example, to analyze the Theta rhythm, the raw EEG data need
to be downsampled to 160 Hz, which is about ten times the upper cutoff frequency of the bandpass.
A bandpass filter is then applied to this downsampled signal, and a standard method for extracting
the phase information to synchronize the neurofeedback stimulation involves taking the Hilbert
transform, which shifts the phase of the bandpass filtered signal by 90◦ [22].

The bandpass and Hilbert transform filters can be implemented by FIR or IIR digital filters. How-
ever, these filters are acausal and can incur unacceptably long delay; thus, they are more useful
for offline analysis. In real-time applications, FIR or IIR implementations can impose an unwanted
delay longer than 10 ms in a neurofeedback closed loop, which can cause the stimulation to not
work properly.

The last step in the EEG signal processing flow is the phase and envelope calculation. We denote
the real and imaginary components of the analytic signal as theur and theui , which are computed

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:4 Z. Chen et al.

Fig. 2. (a) EEG neurofeedback application on a freely behaving rat and (b) a conventional flow for EEG signal

processing for neurofeedback stimulation.

from the bandpass filter and Hilbert transform, respectively. Finally, the phase and envelope are
calculated by the following equations:

ϕ (n) = arctan(ui (n)/ur (n))

uA (n) =
√
u2
r (n) + u

2
i (n)

(1)

where ϕ (n) and uA (n) represent the calculated phase and envelope for the timestep n, respectively.
The phase and envelope can be used to detect specified events in the EEG, and the event detection
can be used to trigger closed-loop neurofeedback stimulation to accomplish therapies or research
tasks.

2.2 Calcium-Image Processing

In vivo calcium imaging is an emerging technique formonitoring activity from large populations of
neurons in the brain of a freely behaving animal, such as a mouse or rat. One common approach
for using this technique is to mount a miniaturized fluorescence microscope, for example, the
Miniscope, onto the animal’s head to obtain video recordings of calcium activity in the brain. In
such recordings, a punctate flash of fluorescence is observed at a specific location in the video
when a particular neuron becomes active. The Miniscope can record the activity from hundreds of
neurons simultaneously over weeks or months as the animal engages in various behavioral tasks.
Several offline calcium-image analysis pipelines are currently in wide use by research labs, in-

cluding the CNMF and theMIN1PIPE [12, 13, 28, 38]. These algorithms share similar analysis flows.
As Figure 3(a) shows, the first step is motion correction, which is necessary because as the brain
moves around inside the skull of a freely behaving animal, it produces motion artifacts that must
be canceled out to stabilize the images for further analysis. Second, the motion-corrected image
is enhanced for a higher signal-to-noise ratio (SNR), and locations of individual neurons are iden-
tified from the enhanced image, as illustrated in Figure 3(b). Third, calcium fluorescence traces
need to be disentangled and extracted from the individual neurons, as shown in Figure 3(c). Hun-
dreds or even thousands of different neurons can reside within the Miniscope’s field of view. Thus,
extracting traces for each neuron can be a computationally intensive task.

2.3 LSTM Model

LSTM [21] is a type of recurrent neural network (RNN) that has been successfully used for many
temporal signal prediction tasks, such as handwriting recognition [15] and speech recognition [16].

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:5

Fig. 3. Conventional calcium image analysis flow includes (a) motion correction, (b) image enhancement

and cell detection and (c) fluorescence trace extraction.

A typical LSTM network architecture is made up of a hidden layer and an output layer, as Figure 4
shows. The hidden layer consists of four types of gates: the input gate I , the forget gate F , the cell
gateG, and the output gateO ; and two types of nodes: the cell nodeC and the hidden nodeH . For
each time step n, the LSTM takes the input In(n), updates the values of all of the gates and nodes,
and then generates the output Out(n) based on the value of hidden nodes. The LSTM inference is
defined by:

I (n) = σ (In(n)WI i +H (n − 1)WIH + BI)

F (n) = σ (In(n)WF i +H (n − 1)WFH + BF)

G (n) = tanh (In(n)WGi +H (n − 1)WGH + BG)

O (n) = σ (In(n)WOi +H (n − 1)WOH + BO)

(2)

C (n) = F (n) � C (n − 1) +G (n) � I (n)
H (n) = O (n) � tanh (C (n))

Out (n) = H (n)WOUT + BOUT

(3)

It describes the update of the four types of gates based on the input from the current timestep n
and the value of hidden nodes from the previous timestepn−1, and the update of all cell and hidden
nodes based on the updated value of gates and the value of cell nodes from the previous timestep
n−1 through the recurrent connection, as shown in Figure 4. The outputOut (n) is computed from
the updated value of the hidden nodes. In Equations (2) and (3), σ and tanh are non-linear sigmoid

and hyperbolic tangent functions, and � represents the dot product operation. Supposing that a
simple LSTMmodel with one single layer has NH hidden nodes, the input weights {WI i ,WF i ,WGi ,
WOi } and the hidden layer biases {BI , BF , BG , BO } are NH -dimensional vectors, and the internal
weights {WIH , WFH , WGH , WOH } are NH × NH matrices. The output weight WOUT is an NH -
dimensional vector and the output layer bias BOUT is a scalar value. The computation complexity
measured in the number of operations for an NH -node LSTM model is

C (NH) = 8N 2
H + 14NH . (4)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:6 Z. Chen et al.

Fig. 4. Typical LSTM network architecture with single hidden layer.

The number of operations on the feedforward path is

Cf orward (NH) = 8N 2
H + 8NH . (5)

Considering that NH = 5, the operations executed on the feedforward path occupy 89% of the
total operations.

3 LSTM-BASED METHOD

As both the EEG and the calcium images have rich temporal features, they provide good opportu-
nities for using the LSTM to approximate acausal offline algorithms for efficient real-time causal
prediction. In this section, we introduce three case studies demonstrating the LSTM advantage in
real-time neural signal processing. Section 3.1 describes its usage for EEG phase detection; Sec-
tions 3.2 and 3.3 show its application in calcium-image motion correction and trace extraction.

3.1 LSTM-Based EEG Signal Processing

Weproposed using LSTM inference to reduce both computation cost and processing latency for the
EEG signal processing. As shown in Figure 5, we trained a pair of LSTMs to generate predictions
of the uR and uI described in Section 2.1. Each LSTM network has one single hidden layer, which
contains 5 nodes. During offline training, both LSTMs take the same downsampled and direct
current offset (DCO) filtered EEG signal as the training input, and they take the bandpass-filtered
signaluR and the phase-shifted signaluI as the training targets. Once the training is accomplished,
the well-trained LSTMs are used to generate predictions on the test input data and approximate
to the learned bandpass filter and Hilbert transform functions. In the final step, the phase and
envelope are computed based on the inference results and used for event detection.
After the training converges, we used the inference results on the test set to compute the phase

and the envelope according to Equation (1). The mean phase error is within ±3◦ of zero after cali-
bration, which is accepted as an accurate result for real-time neurofeedback stimulation. The main
benefit of the method is that the LSTM inference largely reduces processing latency by getting rid
of the acausal delay caused by conventional FIR/IIR digital filters. Table 1 shows the difference in
processing latency between a 5-node LSTM and a 5-tap IIR filter, which suffers from a long acausal
delay considering a downsampled rate of 200. As Figure 5 shows, the LSTM inference bypasses the
low pass filter, which operates at a high sampling rate and contributes to the main portion of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:7

Fig. 5. EEG signal processing flow based on compact LSTM inference [7].

Table 1. Comparison of the EEG Signal

Processing Methods

Methods LSTM [7] IIR

Implementation 5-node 5-tap

Latency@100 MHz 2.09 μs 12.5 ms

Overall # op/sample 860 4,094

computation. Considering the filtering for the Theta rhythm, the LSTM inference saves 79% of
operations while maintaining acceptable accuracy.

3.2 LSTM-Based Non-rigid Motion Correction

Motion correction is a critical processing step in a variety of calcium-image analysis algorithms
[13, 28, 30]. Recent work shows that piecewise rigid motion correction can effectively reduce non-
rigid motion artifacts and outperforms other methods for calcium-image stabilization [30]. Piece-
wise rigid motion correction divides the field of view of the image into overlapping patches and
performs rigid motion correction for each patch.
We propose an LSTM-based non-rigid motion correction algorithm to improve efficiency. As

Figure 6(a) shows, instead of performing heavy motion calculation for each image patch, we evalu-
ate motion only at a central region. Then, we use the calculation result to predict non-rigid motions
of all image patches based on the LSTM inference. Figure 6(b) shows the motion extraction from
the central region and all image patches throughout the calcium-image video session. The displace-
ment of each patch is represented by a motion vector containing two values, which represent the
rigid motion against the template along the horizontal and vertical axes with sub-pixel precision.
For the motion extraction at the central region, a fixed-point rigid motion correction is per-

formed to reduce the computation cost. To estimatemotion vectors at all image patches, a non-rigid
motion correction algorithm NoRMCorre [30] is used. Figure 6(c) illustrates the LSTM-assisted
method. During the offline training, the motion vector time series extracted at the central region
is used as input, and the motion vector time series extracted at a specific patch f (i0, j0) is used as

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:8 Z. Chen et al.

Fig. 6. (a) Proposed LSTM-assisted non-rigid motion correction. (b) Motion vector extraction for the central

region and all image patches. (c) LSTM inference on one image patch.

Table 2. Performance of the LSTM Method Compared with

Conventional Motion Correction Algorithms

ROF(pixel) diff (x) diff (y) diff (a)
NoRMCorre [30] 0.19 ± 0.11 0 0 0

Rigid method 0.60 ± 0.45 0.879 0.658 1.248

LSTM [6] 0.31 ± 0.22 0.621 0.362 0.804

the training target. For one specific mouse or rat, a pair of compact LSTM networks is trained to
adapt the motion vector components of the central region to those of the patch f (i0, j0) through-
out a training video session along the horizontal and vertical axes, respectively. After the LSTM
pairs are well trained, they are deployed for online inference to approximate the performance of
the computationally intensive offline algorithm with much shortened latency and reduced cost.
Table 2 summarizes the evaluated residual of optical flow (ROF) [30] for non-rigid, rigid, and

LSTM-based methods on a 1,000-frame calcium imaging test session. Evaluation results show that
the LSTM-based method on average reduces 48% of ROF compared with the rigid method, and the
accuracy performance is comparable with the NoRMCorre. We also compared the horizontal com-
ponent mean absolute difference (MAD) diff (x), vertical component MAD diff (y), and amplitude
MAD diff (a) between the rigid, proposed methods and the NoRMCorre, respectively. Comparison
results in Table 2 again show that the LSTM-based method achieves a higher accuracy than the
rigid method in approximating the non-rigid motion correction.

3.3 LSTM-Based Trace Extraction

We also propose using LSTM inference for efficient online trace extraction from calcium images,
as shown in Figure 7. The processing flow consists of the motion correction, image enhancement,
fluorescence tracing, and LSTM inference steps. We apply template-based rigid motion correction

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:9

Fig. 7. Proposed LSTM-based calcium-image processing flow [5].

and perform image enhancement by subtracting the background image estimated by the morpho-
logical opening operation [28].
Fluorescence tracing relies on the cell contours extracted offline by the CNMF algorithm. The

cell contours are applied on the motion-corrected and enhanced images to extract the fluorescence
traces. Although this naïve method is efficient in extracting traces, the drawback is a drop in its
accuracy when the SNR is low.
We use the LSTM inference to improve trace extraction accuracy for the contour-based method.

During offline training, online traces are used as input and traces extracted from the CNMF al-
gorithm are used as the training target. We carried out a separate LSTM training for each cell.
After the LSTMs are well trained, they are deployed for online inference and run sequentially to
extract traces from cells. Here, LSTM inference is used to approximate the outcome of the accurate
but time-consuming offline algorithm, and the causality of the LSTM-based method helps reduce
processing latency.
We adopted cross correlation as a measurement to evaluate the similarity between the online

and offline traces quantitatively. Evaluation results show that 90.3% of cells have shown an in-
crease in cross correlation after employing LSTM inference, which indicates improvement in trace
extraction accuracy.

4 LSTM ACCELERATOR DESIGN

In order to realize an efficient implementation of the LSTM inference method, we designed a cus-
tomized accelerator, shown in Figure 8. The architecture consists of an array of LSTM inference
processing elements (PEs) and a controller. The PE consists of matrix-vector multiplication (MVM)
and recurrent state update (REC) modules, weight buffers for the MVM and the REC modules, and
the controller. The non-linear sigmoid and tanh operations are realized by a piecewise linear ap-
proximation [14]. TheMVMweight buffer stores input and hidden layer weights, whereas the REC
weight buffer stores output weights. The MVM and the REC modules operate in pipelines under
the controller.

4.1 MVM Design

Figure 9(a) shows the circuit design of the MVM. According to Equation (2), the matrix consists
of weights of the LSTM input and hidden layers, and the vector corresponds to the input and
hidden states. The matrix has a dimension of (4×NH)× (NH +1), whereas the vector has (NH +1)
elements. TheMVM is composed of a 1-Dmultiplier bank and an adder tree. In each clock cycle, the
MVM receives one 16-bit input sample, fetches NH 16-bit weights from the MVM weight buffer
and performs NH + 1 multiplication operations, where NH is the number of hidden nodes. The
multiplication results are right shifted by 12 bits and the adder tree calculates the sum of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:10 Z. Chen et al.

Fig. 8. General architecture of the LSTM inference accelerator.

Fig. 9. Schematic diagrams of the (a) MVM and (b) REC modules.

shifted values. The sum is shifted again by 4 bits and a 2-bit sign is calculated for piecewise linear
approximation. The MVM operates in NH iterations for each inference. In each iteration, the input
gate, cell gate, forget gate, and output gate are updated in full pipeline since there is no data
dependency between two consecutive updates. For the update of the cell gate, the MVM performs
an additional 1-bit shift on the result, because the tanh and the siдmoid operations can be unified
by Equation (6). Finally, the hidden node values are updated at the end of each inference by the
REC module.

tanh(x) = 2siдmoid (2x) − 1 (6)

4.2 REC Design

Figure 9(b) shows the REC circuit. The REC consists of a temporary buffer Pre_MUL_Buf, cell and
hidden node buffers, a cell value accumulator Cell_State_Acc, an output accumulator Output_Acc,
and weight buffers composed ofWeight_Buf and Bias_Buf. Two multiplexers are used to reconfig-
ure data paths for the multiplication operations. A dedicated circuit is designed to detect the 2-bit
sign from the accumulated cell valueC and perform post-processing on the fetched data from the
look-up table to get the non-linear operation results. The idea of the REC circuit design is to re-
configure the data path to reuse the multiplier and fully pipeline the update of the cell and hidden
nodes and the computation of the LSTM inference output defined in Equation (3).
Figure 10 shows the timing diagram of the MVM and REC. Each iteration of the REC update is

pipelined into five consecutive cycles, in which the input data is updated by the piecewise linear

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:11

Fig. 10. Timing diagram of the fine-grained pipelines within and between the MVM and REC modules.

approximation corresponding to siдmoid (I), tanh(G), siдmoid (F), siдmoid (O), and tanh(C), re-
spectively. In the first cycle, the approximation value is post-processed to compute the siдmoid (I)
according to Equation (2) and the computation result is transferred to the buffer Pre_MUL_Buf.
Then, the selected weight in the Weight_Buf is multiplied by the corresponding hidden node
value to update the Output_Acc. In the second step, the siдmoid (I) stored in the Pre_MUL_Buf is
multiplied by the tanh(G) stored in the input buffer. The multiplication result is transferred to the
Cell_State_Acc. In the third step, the siдmoid (F) from the input buffer is multiplied by the selected
cell value and the result is accumulated to the Cell_State_Acc to update the cell value. In the next
step, the siдmoid (O) is stored in the Pre_MUL_Buf. In the last step, the tanh(C) from the input
buffer is multiplied by the siдmoid (O) stored in the Pre_MUL_Buf to update the corresponding
hidden node value. Once all of the NH iterations are finished, the hidden node values are used to
update the hidden node buffer in the MVM.

5 LSTM MODEL COMPRESSION

Quantization and pruning are common neural network compression techniques. The advantage
of either one or a combination of both is that it reduces the model size and, thus, improves the
inference performance and efficiency without sacrificing much accuracy. In this section, we intro-
duce a different quantization method that can be used for the LSTM inference. We also discuss
the pruning that can be combined with this quantization for further improvement on the energy
efficiency of the LSTM inference.

5.1 Bit-SparseQuantization

The quantization method we proposed is based on a number representation that limits the count of
1s in a fixed-length sequence of binary digits, called the bit-sparse representation. It is a hardware-
friendly representation because it can turn expensive multiplications into simple steps of bit-shifts
with/without additions.

The bit-sparse representation is arranged in an n-sbit/M format, in which the n is set far less
than the M to satisfy the “sparse” claim. In such a format, no more than n digits are set to 1 while
the remaining digits are 0s in an M-digit sequence. For example, the “00010000_00010000” and
the “00100000_00000000” can be considered as 2-sbit/16 numbers, whereas the latter but not the
former can be viewed as a 1-sbit/16 number.
There are several differences between the bit-sparse and fixed-point representations: (1) The

count of 1s in an n-sbit/M bit-sparse number never exceeds n, which is far less than the bit-width
M. In contrast, an M-bit fixed-point number can be densely packed with 1s. (2) The bit-sparse

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:12 Z. Chen et al.

Fig. 11. Pseudocode for the bit-sparse quantization.

representation tends to require fewer binary bits to encode the number. For example, it requires
only 5 bits to encode the position of the 1 in a 1-sbit/16 number. (3) The bit-sparse representation
can expand the dynamic range of data representation. Comparing a 1-sbit/16 with a 5-bit fixed-
point number, the dynamic range difference is 215/24 = 2,048x, which surpasses three orders of
magnitude. The enlarged dynamic range expands the exploration space of an accuracy–efficiency
trade-off for the LSTM inference.
We apply bit-sparse quantization on the LSTM weights inside the hidden layer through

quantization-aware training. In the training process, we quantize the weights into the bit-sparse
format for feedforward inference and keep them in floating point for the error backpropagation
and weights update. As the training progresses, the weights converge into the bit-sparse format
and become ready to be deployed for inference. Figure 11 shows the pseudocode of the detailed
bit-sparse quantization process. In this process, we first extract the sign from the weights, and
then quantize the weight amplitude into an M-bit fixed-point wint . We count the number of 1s
from the most significant bit (MSB) to the least significant bit (LSB) of thewint . When the number
reaches n, we round up thewint by setting the rest of bits 0, and attach the sign back. The rounding
process causes no increase in the number of 1s, and the final converted number complies with the
n-sbit/M format.
Figure 12 shows the circuits design for the bit-sparse LSTM inference kernel. The circuits

feature a 1D array of bit-shift operators with the size (NH+1), which corresponds to 1 input and
NH hidden nodes. In this design, we use the bit-shift operation to replace the conventional fixed-
point multiplication, as we have quantized the LSTM weights on the feedforward path into the
1-sbit/16 representation. As the bit-shift operator takes much less circuit area than the multiplier,
this design largely reduces the MVM area. In addition, the weights quantized in 1-sbit/16 width
can be encoded in 5 bits, which helps reduce the local weight memory compared with 8-bit and
16-bit representations. Since the bit-shift operation neither increases the cycle count nor degrades
the clock frequency, the inference latency remains unchanged. Under the same inference perfor-
mance, the reduced circuit area contributes to reduced power consumption and improved energy
efficiency.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:13

Fig. 12. Circuits design for the bit-sparse LSTM inference kernel.

5.2 Weight Pruning

We apply the pruning in addition to the bit-sparse quantization to improve the energy efficiency
of the LSTM inference further. Our pruning method aims at reducing the number of bit-shift op-
erators (under bit-sparse quantization) for the MVM module of the LSTM inference accelerator.
Our original NH -node LSTM accelerator design requires NH bit-shift operators for the MVM

module, as Figure 13(a) shows. By removing a portion of recurrent connections in the LSTM layer,
the number of bit-shift operations required at each clock cycle can be reduced. For example, con-
sider that we set the weights on the recurrent connections from all of the hidden nodes to the
hidden node H1 to 0, as illustrated in Figure 13(b). In this case, the update of I , F ,G, O states does
not depend on the H1 state according to Equation (2). Thus, we can save 1 bit-shift operator and
simplify the adder tree in the MVM design. Considering that NH = 5, removing connections from
a single hidden node leads to a 20% increase on sparsity. In another case, if we eliminate recurrent
connections from all of the hidden nodes except for the H5 as displayed in Figure 13(c), the update
of the gates will depend only on the H5 state and the MVM module can be realized by a single
bit-shift operator. As we prune away connections from 4 out of 5 hidden nodes, the sparsity of the
hidden layer becomes 80%.
We integrated pruning with bit-sparse quantization into a holistic LSTM training process. Dur-

ing the feedforward inference of the training, we applied pruning followed by bit-sparse quan-
tization. The error backpropagation took place at all connection paths in the floating point. We
evaluated the performance of the LSTM inference accelerator under a variety of data representa-
tions with or without quantization: floating point (fp), 16-bit, 12-bit, 8-bit, 4-bit, 1-sbit/16 (1sb) and
2-sbit/16 (2sb), in combination with pruning at different levels by getting rid of connections from
0∼5 hidden nodes in a 5-node LSTM. Detailed experimental results and analysis are discussed in
the next section.

6 EXPERIMENTS

6.1 Accuracy under Quantization and Pruning

We evaluated the accuracy performance of LSTM inference under the proposed bit-sparse
quantization and pruning optimizations with 8 test cases. The test cases were extracted from
in-vivo EEG and calcium-imaging applications: EEG analytical processing for Theta and Gamma
bands [7], non-rigid motion vector prediction [6], and enhanced cell fluorescence trace extraction
[5] from calcium images. We summarize the number of samples in the test cases in Table 3. We

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:14 Z. Chen et al.

Fig. 13. (a) Pruning of connections from hidden nodes in the LSTM model and (b) its benefits on reducing

computation logic in the circuit design.

Table 3. Number of Samples in the Training and Test Sequences in Different Test Cases

Samples in Samples in
Training Seq. Test Seq.

EEG processing for the Theta band 20,000 57,600

EEG processing for the Gamma band 36,000 460,800

Non-rigid motion vector prediction 25,000 1,000

Enhanced cell fluorescence trace extraction 3,300 6,600

used a common LSTM inference model with a signal layer and 5 hidden nodes (NH = 5) for the
targeted EEG and calcium-imaging applications, considering the trade-off between accuracy and
efficiency [7]. Our accelerator is scalable and can support LSTM inference with more hidden nodes
by increasing the number of multiplication/bit-shift operators in the MVM module described in
Sections 4.1 and 5.1.
We evaluated a combination of pruning and quantization optimizations for LSTM inference on

the selected test cases. We measured LSTM inference accuracy by calculating the normalized cross
correlation ρ between the inferenced and targeted sequences X and Y on the test set:

ρ =
E
[
(X − μX) · (Y − μY)

]
σXσY

, (7)

where E is the expected value operator and μX (μY) and σX (σY) represent the mean and standard
deviations of the sequence X (Y), respectively.
In order to increase repeatability, we trained each LSTM independently 5 times and recorded the

maximum ρ among the trials. Figure 14 shows heat maps of normalized cross correlation values
under different combinations of quantization and pruning strategies for all selected datasets. Each
row (column) of the heat map corresponds to a specific quantization (pruning) condition for the
inference. A larger normalized cross correlation value labeled in a darker color indicates a higher
LSTM inference accuracy.
We can make several observations from the evaluation. (1) The accuracy performance is very

data dependent, but a general trend is that the accuracy tends to get worse as the quantization
and pruning become more aggressive, which means shorter bit-width and more pruned weights.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:15

Fig. 14. Accuracy measured in normalized cross correlation after pruning and quantization.

Table 4. Circuit Area and Power Consumption Saving in Using Customized Bit Quantization

Quantization 16 bit 1-sbit/16 2-sbit/16 2-sbit/16 2-sbit/16 2-sbit/16 2-sbit/16

Pruning strategy - - - Prune-20% Prune-40% Prune-60% Prune-80%

MVM area (μm2) 4,339 1,781 3,893 3,287 2,656 2,034 1,359

Reduction - 59.0% 10.3% 24.2% 38.8% 53.1% 68.7%

PE area (μm2) 17,119 7,704 12,312 10,837 9,345 7,865 6,328

Reduction - 55.0% 28.1% 36.7% 45.4% 54.1% 63.0%

PE power (mW) 10.01 4.58 6.62 5.87 5.12 4.37 3.57

Reduction - 54.2% 33.9% 41.4% 48.9% 56.3% 64.3%

(2) The 1-sbit/16 quantization constantly outperforms the 4-bit fixed-point on inference accuracy.
This can be explained by a wide dynamic range provided by the bit-sparse data representation com-
pared with the fixed-point. (3) The 2-sbit/16 quantization always works better than the 1-sbit/16,
and its performance can match 12-bit or even 16-bit when applied with a 3-node pruning. These
experimental results prove that it is promising to combine bit-sparse quantization with pruning
for more efficient LSTM inference with no accuracy loss.

6.2 Area and Energy Efficiency

We designed the proposed LSTM inference accelerator in a 28-nm process using the Synopsys
Design Compiler. We estimated the circuit area and power consumption of the accelerator under
a typical process corner and 600-MHz clock frequency, which is adjustable according to specific
application requirements. Table 4 shows the evaluation results on the circuit area and the power
reduction under various combinations of pruning and quantization strategies. As the comparison
result shows, the proposed 1-sbit/16 quantization achieves a significant amount of saving on the
circuit area and power consumption, 55.0% and 54.2%, respectively. Under the 2-sbit/16 quantiza-
tion, as we increase the level of sparsity by applying pruning, we gain more saving on the circuit
area and power consumption. The area and power saving benefit from the reduction of both the
MVM module and the LSTM model footprint.
We evaluated the achievable accuracy and energy efficiency under various pruning and

quantization combinations across datasets, as Figure 15 shows. We can make several observations
on the evaluation results: (1) In most cases except for the band pass filtering for the real part of the
Theta signal, the LSTMs optimized by the proposed bit-sparse quantization can achieve similar

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:16 Z. Chen et al.

Fig. 15. Trade-off and Pareto frontiers between the energy efficiency and accuracy under different combina-

tions of pruning and quantization strategies across datasets.

accuracy as those implemented in 8-bit or 16-bit. (2) As the required energy efficiency increases,
the bit-sparse quantization tends to outperform the conventional fixed-point quantization in
terms of accuracy. (3) As the Pareto frontiers shown in Figure 15, the bit-sparse quantization
method dominates the optimized solutions with both higher accuracy and better energy efficiency.
We scaled out our LSTM inference accelerator design with 32 PEs. Under the 2-sbit/16 quantiza-

tion and 3-node pruning, which corresponds to a 60% sparsity on a 5-node LSTM, the accelerator
achieves 1.19 GOPS/mW energy efficiency and 439 GOPS/mm2 area efficiency. In addition, it can
reduce the circuit area and power consumption by 54.1% and 56.3%, respectively, compared with
the baseline 16-bit implementation. Table 5 summarizes the characteristics of these two designs in
comparison with recent LSTM accelerators. Our design achieves comparable energy efficiency and
higher area efficiency against prior state-of-the-art. The reason for the high area efficiency is three-
fold. First, we adopted a compact LSTM model and optimized it with a combination of hardware-
friendly bit-sparse quantization and pruning, and we stored the compressed LSTM model inside
the local memory of the PE. Second, our accelerator fully utilizes the hardware resource by com-
pletely pipelining the computational operations on the feedforward and recurrent paths. Third, we
carried out the circuit area estimation in a more advanced technology process.
Our LSTM accelerator features high scalability, because there is little communication overhead

among PEs during inference and the computation is carried out locally at each PE. This can ben-
efit some emerging applications, such as brain–machine inference, considering that the count for
simultaneous recording sites and/or channels can reach hundreds or even thousands.

7 RELATEDWORKS

High-performance RNN inference accelerators have been designed for a variety of temporal pre-
diction tasks, including speech recognition [10, 19, 35], optical character recognition [33], keyword
spotting systems [14], video content recognition [26, 34, 37] and text generation [3].

State-of-the-art RNN processors have realized high-performance energy-efficient RNN infer-
ence for a variety of time series prediction tasks based on different design techniques. The authors
of [26, 34] presented high-performance and highly energy-efficient CNN/RNN accelerators based
on weight clustering and low-bit-width quantization. The authors of [14] presented a low-power
LSTM processor for keyword spotting under 5 μW and achieved 60 nJ/inference energy efficiency.
The authors of [4] proposed a gated recurrent unit processor with online incremental learning

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:17

Table 5. Characteristic Comparison with Other LSTM Accelerator Designs for Edge Applications

This Work This Work [36] [8] [27] [23]

Design Tape-In Tape-In Tape-In Tape-Out Tape-Out Tape-Out

Technology 28 nm 28 nm 90 nm 65 nm 65 nm 65 nm

Clock (MHz) 600 600 600 20 200 8/80

Voltage (V) 0.9 0.9 1 1.24/0.75 1.1 0.68/1.1

Num. Hidden Nodes (NH) 5 5 512 421 - 512 × 2

Quantization 16 bit 2-sbit/16 8 bit 8-16 bit 4-16 bit 6 bit

Compression - Prune-60% Circulant - - Structure-16×
Area (mm2) 0.781 0.381 30.77 0.93 1.84 7.74

Power (mW) 320 140 1,010 29.03/1.24 21 1.85/67.3

Energy efficiency (GOPS/mW) 0.52 1.19 2.44 1.11/3.08 1.1 8.93/2.45

Area efficiency (GOPS/mm2) 214 439 79.9 34.4 12.6 21.3

capability. The authors of [20] presented a highly efficient CNN/RNN accelerator for neural
networks compressed by pruning.
LSTM inference accelerator designs have also been extensively studied on FPGA platforms. The

authors of [19] propose a load-balance pruning to reduce a large LSTM model size by 10x to high
throughput on an XCKU060 FPGA. The authors of [35] propose structured compression to further
reduce the storage requirement and computation complexity for even higher performance and en-
ergy efficiency. The authors of [10] and [9] leverage temporal redundancy and spatio-temporal
sparsity to achieve high throughput and high energy efficiency LSTM inference on the Zynq plat-
forms for real-time speech recognition. The authors of [17, 18] propose a framework to automate
the LSTM accelerator design on an FPGA by optimizing computation and communication. The
authors of [31] propose a multi-thread RNN/LSTM inference accelerator on a Stratix 10 PFGA for
cloud-based applications. The authors of [32, 37] employ 12-bit or even shorter bit width for an
LSTM inference accelerator design.
Compared with these previous works, we target specific application domains in which compact

LSTMmodels can play an important role. Our proposed LSTM inference accelerator achieves short
latency and high energy efficiency in EEG signal and calcium-image processing and is suitable to
be integrated in a closed-loop neurofeedback device under stringent timing and energy constraints.

8 CONCLUSION

In this article, we present three different case studies to show that the compact LSTM model has
the potential to replace quite a few conventional acausal algorithms by making causal and ac-
curate predictions for many real-time applications, especially for those ones that undergo strict
latency and energy cost requirements. In addition, we design an LSTM inference accelerator and
optimize it with hardware friendly pruning and quantization to improve energy efficiency. We
think that the combination of our proposed method and design can expand the solution field to
include a wide range of emerging edge applications, including and beyond closed-loop feedback
for brain–machine interfaces.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Daniel Aharoni and Dr. Changliang Guo for their support
on the Miniscope, thank Dr. Andrew Howe and Garrett J. Blair for help on the data collection from
rats and Prof. Peyman Golshani for leading the collaborative project across departments at UCLA.

1Estimated by the reported cell area with a 50% place and route overhead.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

44:18 Z. Chen et al.

REFERENCES

[1] Daniel Aharoni, Baljit S. Khakh, Alcino J. Silva, and Peyman Golshani. 2019. All the light that we can see: A new era

in miniaturized microscopy. Nat. Methods 16, 1 (2019), 11–13.

[2] György Buzsaki. 2006. Rhythms of the Brain. Oxford University Press.

[3] Andre Xian Ming Chang and Eugenio Culurciello. 2017. Hardware accelerators for recurrent neural networks on

FPGA. In IEEE Int. Symp. Circuits Syst. (ISCAS). 1–4.

[4] Chixiao Chen, Hongwei Dong, Huwan Peng, Haozhe Zhu, Rui Ma, Peiyong Zhang, Xiaolang Yan, Yu Wang, Mingyu

Wang, HaoMin, and Richard C.-J. Shi. 2017. OCEAN: An on-chip incremental-learning enhanced processor with gated

recurrent neural network accelerators. In IEEE Eur. Solid State Circuits Conf. (ESSCC). 259–262.

[5] Zhe Chen, Garrett J. Blair, Hugh T. Blair, and Jason Cong. 2020. BLINK: Bit-sparse LSTM inference kernel enabling

efficient calcium trace extraction for neurofeedback devices. In Proc. Int. Symp. Low Power Electron. Des. (ISLPED).

217–222.

[6] Zhe Chen, Hugh T. Blair, and Jason Cong. 2019. LANMC: LSTM-assisted non-rigid motion correction on FPGA for

calcium image stabilization. In Proc. Int. Symp. Field-Programmable Gate Arrays (FPGA). ACM, 104–109.

[7] Zhe Chen, Andrew Howe, Hugh T. Blair, and Jason Cong. 2018. CLINK: Compact LSTM inference kernel for energy

efficient neurofeedback devices. In Proc. Int. Symp. Low Power Electron. Des. (ISLPED). 2:1–2:6.

[8] Francesco Conti, Lukas Cavigelli, Gianna Paulin, Igor Susmelj, and Luca Benini. 2018. CHIPMUNK: A systolically

scalable 0.9 mm2, 3.08Gop/s/mW@ 1.2 mW accelerator for near-sensor recurrent neural network inference. In IEEE

Custom Integrated Circuits Conf. (CICC’18). 1–4.

[9] Chang Gao, Tobi Delbruck, and Shih-Chii Liu. 2021. Spartus: A 9.4 TOp/s FPGA-based LSTM accelerator exploiting

spatio-temporal sparsity. (2021). arXiv:2108.02297.

[10] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbruck. 2018. DeltaRNN: A power-efficient recurrent

neural network accelerator. In Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA). ACM, 21–30.

[11] Kunal K. Ghosh, Laurie D. Burns, Eric D. Cocker, Axel Nimmerjahn, Yaniv Ziv, Abbas El. Gamal, and Mark J. Schnitzer.

2011. Miniaturized integration of a fluorescence microscope. Nat. Methods 8 (2011), 871.

[12] Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jérémie Kalfon, Brandon L. Brown, Sue Ann Koay, Jiannis Taxidis,

Farzaneh Najafi, Jeffrey L. Gauthier, Pengcheng Zhou, Baljit S. Khakh, David W. Tank, Dmitri B. Chklovskii, and

Eftychios A. Pnevmatikakis. 2019. CaImAn an open source tool for scalable calcium imaging data analysis. eLife 8

(2019), e38173.

[13] AndreaGiovannucci, Johannes Friedrich,MatthewKaufman, Anne K. Churchland, Dmitri Chklovskii, and LiamPanin-

ski. 2017. OnACID: Online analysis of calcium imaging data in real time. In Adv. Neural Inf. Process. Syst. (NIPS).

2378–2388.

[14] J. S. P. Giraldo and Marian Verhelst. 2018. Laika: A 5uW programmable LSTM accelerator for always-on keyword

spotting in 65 nm CMOS. In IEEE Eur. Solid State Circuits Conf. (ESSCIRC). 166–169.

[15] Alex Graves, Marcus Liwicki, Santiago Fernandez, Roman Bertolami, Horst Bunke, and Jürgen Schmidhuber. 2009. A

novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 5

(2009), 855–868.

[16] Alex Graves, Abdel Rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent neural

networks. In IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP). 6645–6649.

[17] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi, Xi Chen, Guangyu Sun, Wei Zhang, and Jason

Cong. 2017. FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid

templates. In IEEE 25th Annu. Int. Symp. Field-Programmable Cust. Comput. Mach. (FCCM). 152–159.

[18] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. 2017. FPGA-based accelerator for long short-term memory

recurrent neural networks. In 22nd Asia South Pacific Des. Autom. Conf. (ASP-DAC). 629–634.

[19] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang,

Huazhong Yang, and William J. Dally. 2017. ESE: Efficient speech recognition engine with sparse LSTM on FPGA. In

Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA). 75–84.

[20] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE:

Efficient inference engine on compressed deep neural network. In Proc. Int. Symp. Comput. Archit. (ISCA). 243–254.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735–1780.

[22] Forester W. Isen. 2009. DSP for MATLAB and LabVIEW III: Digital Filter Design. Morgan and Claypool Publishers.

[23] Deepak Kadetotad, Shihui Yin, Visar Berisha, Chaitali Chakrabarti, and Jae sun Seo. 2020. An 8.93 TOPS/W LSTM

recurrent neural network accelerator featuring hierarchical coarse-grain sparsity for on-device speech recognition.

IEEE J. Solid-State Circuits 55, 7 (2020), 1877–1887.

[24] Abbas Kazemipour, Ondrej Novak, Daniel Flickinger, Jonathan S.Marvin, Ahmed S. Abdelfattah, Jonathan King, Philip

M. Borden, Jeong Jun Kim, Sarah H. Al-Abdullatif, Parker E. Deal, EvanW. Miller, Eric R. Schreiter, Shaul Druckmann,

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

http://arxiv.org/abs/2108.02297

Energy-Efficient LSTM Inference Accelerator for Real-Time Causal Prediction 44:19

Karel Svoboda, Loren L. Looger, and Kaspar Podgorski. 2019. Kilohertz frame-rate two-photon tomography.Nat. Meth-

ods 16, 8 (2019), 778–786.

[25] G. Lazzi. 2005. Thermal effects of bioimplants. IEEE Eng. Med. Biol. Mag. 24, 5 (2005), 75–81.

[26] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim, and Hoi-Jun Yoo. 2018. UNPU: A

50.6TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision. In IEEE Int.

Solid-State Circuits Conf. (ISSCC). 218–220.

[27] Jinmook Lee, Dongjoo Shin, and Hoi-Jun Yoo. 2017. A 21mW low-power recurrent neural network accelerator with

quantization tables for embedded deep learning applications. In IEEE Asian Solid-State Circuits Conf. (ASSCC). 237–240.

[28] Jinghao Lu, Chunyuan Li, Jonnathan Singh-Alvarado, Zhe Charles Zhou, Flavio Fröhlich, Richard Mooney, and Fan

Wang. 2018.MIN1PIPE: Aminiscope 1-photon-based calcium imaging signal extraction pipeline.Cell Rep. 23, 12 (2018),

3673–3684.

[29] David P. Nguyen, Stuart P. Layton, Gregory Hale, Stephen N. Gomperts, Thomas J. Davidson, Fabian Kloosterman,

and Matthew A. Wilson. 2009. Micro-drive array for chronic in vivo recording: Tetrode assembly. J. Vis. Exp. 26 (2009),

e1098.

[30] Eftychios A. Pnevmatikakis and Andrea Giovannucci. 2017. NoRMCorre: An online algorithm for piecewise rigid

motion correction of calcium imaging data. J. Neurosci. Methods 291 (2017), 83–94.

[31] Zhiqiang Que, Hiroki Nakahara, Hongxiang Fan, Jiuxi Meng, Kuen Huang Tsoi, Xinyu Niu, Eriko Nurvitadhi, and

Wayne Luk. 2020. A reconfigurable multithreaded accelerator for recurrent neural networks. In Int. Conf. Field-

Programmable Technol. (FPT). 20–28.

[32] Vladimir Rybalkin, Alessandro Pappalardo, Muhammad Mohsin Ghaffar, Giulio Gambardella, Norbert Wehn, and

Michaela Blott. 2018. FINN-L: Library extensions and design trade-off analysis for variable precision LSTM networks

on FPGAs. In Int. Conf. Field-Programmable Log. Appl. (FPL). 890–897.

[33] Vladimir Rybalkin, Norbert Wehn, Mohammad Reza Yousefi, and Didier Stricker. 2017. Hardware architecture of

bidirectional long short-term memory neural network for optical character recognition. In Des. Autom. Test Eur. Conf.

Exhib. (DATE). 1390–1395.

[34] Dongjoo Shin, Jinmook Lee, Jinsu Lee, and Hoi-Jun Yoo. 2017. DNPU: An 8.1TOPS/W reconfigurable CNN-RNN pro-

cessor for general-purpose deep neural networks. In IEEE Int. Solid-State Circuits Conf. (ISSCC). 240–241.

[35] ShuoWang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, YanzhiWang, and Yun Liang. 2018. C-LSTM: Enabling efficient

LSTM using structured compression techniques on FPGAs. In Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate

Arrays (FPGA). 11–20.

[36] Zhisheng Wang, Jun Lin, and Zhongfeng Wang. 2017. Accelerating recurrent neural networks: A memory-efficient

approach. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 25, 10 (2017), 2763–2775.

[37] Xiaofan Zhang, Xinheng Liu, Anand Ramachandran, Chuanhao Zhuge, Shibin Tang, Peng Ouyang, Zuofu Cheng,

Kyle Rupnow, and Deming Chen. 2017. High-performance video content recognition with long-term recurrent con-

volutional network for FPGA. In Int. Conf. Field-Programable Log. Appl. (FPL). 1–4.

[38] Pengcheng Zhou, Shanna L. Resendez, Jose Rodriguez-Romaguera, Jessica C. Jimenez, Shay Q. Neufeld, Andrea

Giovannucci, Johannes Friedrich, Eftychios A. Pnevmatikakis, Garret D. Stuber, Rene Hen, Mazen A. Kheirbek,

Bernardo L. Sabatini, Robert E. Kass, and Liam Paninski. 2018. Efficient and accurate extraction of in vivo calcium

signals from microendoscopic video data. eLife 7 (2018), e28728.

Received July 2021; revised October 2021; accepted October 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 44. Pub. date: June 2022.

