2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) | 978-1-7281-7204-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/BIOCAS49922.2021.9644936

Fast Calcium Trace Extraction for
Large-Field-of-View Miniscope

Hugh T. Blair Jason Cong

Computer Science Department Department of Psychology Department of Psychology Computer Science Department

Zhe Chen Garrett J. Blair
UCLA UCLA
Los Angeles, U.S. Los Angeles, U.S.
zhechen@ucla.edu gblair92 @gmail.com

Abstract—Recent advancement in miniaturized calcium imag-
ing microscope enables monitoring the cell activity from hundreds
of neurons simultaneously in vivo. However, extracting calcium
traces from a large population of cells in real time under a
strict resource and energy constraint remains a challenge. To
overcome it, we design a customized accelerator on a low-power
FPGA for fast calcium trace extraction. This enables us to
extract calcium traces from hundreds of cells in real time with a
short and deterministic latency. In addition, we propose a series
of techniques, including the region segmentation, the double
buffering and the fast forward mechanisms, to further reduce the
latency with minimal overhead. Applying these techniques, our
implementation can achieve real-time calcium trace extraction
for a maximum of 1024 cells from a 512x512 calcium video with
sub-ms latency, which is promising in support of closed loop
neurofeedback applications.

Index Terms—Calcium image, FPGA, latency, trace extraction

I. INTRODUCTION

The miniaturized calcium imaging microscope is one of
the most exciting advancements in the neural recording field
during the past decade [1], [2]. It can be head-mounted on
a freely behaving rodent and record spike-related calcium
fluorescence from hundreds of cells at a certain brain region
in real time. Fig. 1(a) shows the experimental setup of a
rat wearing a head-mounted miniaturized microscope (also
”Miniscope” in Fig. 1(b), http://www.miniscope.org). Fig. 1(c)
presents a cropped 512x512 field-of-view (FOV) calcium
image captured by the Miniscope with 760 detected and
superimposed cell contours. Miniaturized microscopes with
ever increasing spatial resolution and imaging quality are
widely used in different neuroscience research fields, including
memory, navigation, and social behavior, to name a few.

Several real-time calcium image processing pipelines have
been proposed [3]-[5]. [3] used the constrained non-negative
matrix factorization (CNMF) approach to perform accurate
and simultaneous cell contour and trace extractions. [4] es-
tablished a dataflow based system to realize efficient online
neuron detection and signal extraction in real time. [S5] com-
bined the CNMF and the recurrent neural network (RNN)
inference to carry out neural signal extraction from noisy
calcium images. These pipelines mainly target offline calcium
image analysis and are usually developed on general-purpose

978-1-7281-7204-0/21/$31.00 ©2021 IEEE

UCLA UCLA
Los Angeles, U.S. Los Angeles, U.S.
tadblair@ucla.edu cong@cs.ucla.edu

(b)

Fig. 1. Miniaturized microscope enables in vivo calcium imaging at a certain
brain region. a) A freely behaving rat wearing a head-mounted Miniscope. b)
The Miniscope device. ¢) Calcium image frame with 760 superimposed cell
contours detected from a 6-min recording session.

CPUs or GPUs. Most of these implementations take a batch of
images as input, which prevents them from achieving a short
latency for each frame. Considering the millisecond timing
precision of the cell firing and the optogenetic intervention
[6], the challenge to implement an efficient calcium trace
extraction for a large population of cells under a strict latency
requirement for closed-loop applications remains.

In this paper, we design a customized accelerator on a
field-programmable gate array (FPGA) for fast and efficient
trace extraction from calcium images. We summarize our main
contributions as:

o We introduce a tracing accelerator and a dedicated cell
mapping algorithm for frame-based real-time calcium
trace extraction on an FPGA.

« We propose the region segmentation, double buffering
and fast forward mechanisms to reduce the the calcium
trace extraction latency with minimal overhead.

o We implement the first FPGA-based system that can take
input from the Miniscope and extract calcium traces from
1024 cells in a 512x512 FOV with sub-ms latency.

FPGA-.
Enhancement |—> Calcium Trace Extraction [«4--
ﬁ t t S A OV NN W1 O ;
_l_l Motion 0
Correction 2
I 71 E
o s
N ARM S
2|8 T 5
|3
58 —1
| Interface PCB l— PC

Fig. 2. FPGA-based real-time calcium image processing system.

II. REAL-TIME TRACE EXTRACTION
A. Real-Time Calcium Image Processing

We develop a customized calcium image processing pipeline
on a system on chip (SoC) device that integrates the FPGA
and the ARM processor as shown in Fig. 2. The FPGA takes
the input image from the data acquisition (DAQ) board and the
ARM processor sends the processing results to a host computer
over the Ethernet. Our customized pipeline is composed of 3
steps: 1) The rigid motion correction stabilizes the images
based on template matching [8]. 2) The image enhancement
improves the signal-to-noise ratio by eliminating the estimated
background [5]. 3) The calcium trace extraction obtains traces
based on N binary N¢ X N¢ cell contours with corresponding
centers (R;,C;), i€[1,N]. It calculates the trace value by
accumulating pixel values under a binary mask for each cell
at every frame. The cell contours are detected by the offline
CNMF analysis [3]. We focus on 3) as the runtime of the 1)
and 2) can largely overlap with the image sensor readout.

B. Tracing Accelerator

The tracing accelerator is composed of a chain of J tracing
elements (TEs) as illustrated in Fig. 3. Each TE contains
registers for 9-bit row and column indices (7;,c;), an 8-bit pixel
value v; and a 16-bit trace value f;, a local memory for storing
K cell contours, and the computation logic for calculating the
trace values from the image stream and cell contours:

N¢

>

drijk,dc;j,=0

Jik = v; - Qj 1 (drijk, deijr), 1)
where f; 1, is the trace value for the kth cell mapped to the jth
TE, and Q; , represents the cell contour corresponding to this

specific cell. dr;;; and dc;;;, are derived indices calculated by:
Rj+ Nc/2

{drijk =r;

dcijk =c; Cng + NC/2 ’
The row and column indices, and the pixel and trace values

stream down the TE chain at 1 load and store per clock cycle

throughput. The tracing accelerator operates in 3 steps. 1)

Load: Cell centers and contours are preloaded through the

tracing chain to local indices registers and contour memory.

2

row index.

column index:

pixel value

store\ trace value

Fig. 3. Microarchitecture of the proposed tracing accelerator.

2) Compute: The image data flows through the tracing chain
row by row at 1 pixel/cycle throughput. The distributed TEs
perform the trace value calculation by accessing the local
indices and pixel registers and the local contour memory in a
massive parallel fashion. 3) Store: The calculated trace value
at each TE shifts back through the tracing chain in a streaming
fashion. The tracing accelerator reuses the index registers for
the Load and Compute steps.

C. Cell Mapping

As we implement the local contour memory as a simple
dual-port BRAM on the FPGA, each TE can fetch only one
contour value from the local memory at a single clock cycle.
This means that cells with overlapping contours cannot be
mapped onto the same TE because of the memory access
conflict. We propose an algorithm to guarantee that the cells
mapped to the same TE do not have overlapping contours:

First, we allocate each cell contour with a specific location
(j,k) on the J x K map and perform a conflict screening which
identifies those cells that have overlapping contours with other
cells within their allocated TEs, as seen in Fig. 4(a). Second,
we loop through all the conflict cells on the map in the order
of the TEs. For each conflict cell p mapped to a TE,,, we
randomly pick up another cell g currently mapped to another
TE, (m # n) to form a pair (p,q). Third, we swap cells p
and ¢ and check for any conflicts between the cell p and the
rest of mapped cells in TE,, as well as between the cell ¢ and
the rest of mapped cells in TE,,,. If there is no conflict, then
the algorithm executes this swap, updates the map accordingly
and goes on to address the next conflict cell. Otherwise, the
algorithm gives up this swap trial and returns to the second
step to randomly pick up another cell.

We tested the mapping algorithm with a 1024-cell dataset in
which each cell had 8 duplicands. It finished remapping with
702 swap steps in 0.55 s on a single thread CPU.

D. Performance Analysis

If we suppose all cell contours can be stored in the tracing
accelerator, then the trace extraction can finish within a single

] Cell in conflict with others within same TE

[Cell not in conflict with others within same TE [] Picked up cell for swapping

Conflict Screening Random Pick-Up .. __Swap and Check

X X , AT .
= 3 = . Zliost 1.
% :2) 1 i % =T s
z, z H [T I I i Hle}
b, o He w'[IECT s
Z S g % |HEO |3
= = = A

= 7 wvil b L

" TE_NUM: J TE_NUM: J " TE_NUM: J

(2)

(b) ()

Fig. 4. The cell mapping operations ensure that there is no conflict in memory access of contours among cells allocated to the same TE.

TABLE I
FPGA RESOURCE UTILIZATION FOR THE TRACING ACCELERATOR
J K | LUT FF BRAM
No Reuse | 128 | 8 | 83743 | 56516 86
4x Reuse 32 8 | 21180 | 14280 38

pixel-scan round. However, this oftentimes requires too much
of the hardware resources. In order to fit the design onto an
FPGA with limited resources, we reduce the number of TEs in
the tracing accelerator and reuse the accelerator for multiple
rounds of pixel scans. Table I shows the FPGA resource
utilizations for a 128-TE full-mapping design and a 32-TE
quarter-mapping design of the tracing accelerators. We can
reuse the 32-TE design 4 times to complete the same 1024-
cell trace extraction task as the 128-TE design.

Considering a reuse time of R, we estimate the clock cycle
count for the trace extraction with the following formula:

Cycle = (N2 /8+2) N+ L* R, (3)

where L denotes the image size. The load of the cell centers
and the store of the calcium traces cost N cycles each. The
load of the cell contours costs N - NZ /8 cycles as 8 binary
contour values are coalesced into one 8-bit value during the
loading. The tracing computation takes L2 - R cycles. In a
typical case, if L=512, R=4 and No=25, then the tracing com-
putation dominates the cycle count, and increasing the number
of cells N does not quite affect the overall runtime. According
to a cycle-accurate simulation, the FPGA accelerator finishes
the trace extraction and all pre-processing steps with 4.66 ms
latency at 300 MHz clock frequency.

III. LATENCY OPTIMIZATION

In this section, we introduce three mechanisms that can
further reduce the latency for the proposed tracing accelerator.

A. Region Segmentation

The first mechanism is segmenting the FOV of the image
into R regions, as shown in Fig. 5. Without the region
segmentation (RS), each round of trace extraction requires the
entire FOV image to be scanned, because the cell contours
distribute evenly across the FOV. With the RS, we constrain

(b)

Fig. 5. Contour distributions before (a) and (b) after the region segmentation.

the cell locations within 1/R of the full FOV region under
each segment. So each round of scan concentrates on a single
subregion, reducing the runtime of the tracing by (R-1)/R.
Note that it requires a few rows of overlap between subregions
to cover the cells at the boundaries.

We implement the RS by sorting and segmenting the
contours before mapping. First, we sort all of the contours by
their center locations and divide them equally into R segments.
Then, we apply the algorithm introduced in Section 2.3 to map
the contours to the tracing accelerator for each segment. The
sorting and segmentation are performed offline, and they cause
no additional overhead on the hardware implementation.

B. Double Buffering

As the Compute step is optimized by the RS, we can no
longer ignore the Store and Load time. Double buffering (DB)
is a common technique for overlapping the computation with
the communication. For our tracing accelerator, as the Store
and Load time is shorter than the Compute time, we apply the
DB to completely hide the communication time.

In order to realize the DB, we divide the single chain of TEs
into two separate chains. As one chain enters the Store and
Load process, the other chain starts the Compute process. The
DB design removes the first term from the latency estimation
in Eq. 3 whereas it does not significantly increase overhead
as the number of TEs remains unchanged.

Scan Order Motion Tracing
Vector
(FognCot) Accelerator
1 T

| Addr Gen |->| Image Buffer
B

/!

BRAM

Target-Forward
Pair

/...0001000... ————

c—

Fast Forward ————
Enable

Fast Forward

0: Normal 1: Fast Forward
Play

Fig. 6. The fast forward mechanism skips over pixels in the background.

C. Fast Forward

We observe that the contour distribution is very sparse at
the boundary of the calcium image captured by the Minis-
cope. Scanning over background pixels with no cell contour
coverage makes no effect and wastes computation time and
resources. As a result, we come up with a fast forward (FF)
mechanism that skips over background pixels at the beginning
and the end of each row. We define background pixels as those
without the cell contour coverage.

Fig. 6 shows the hardware implementation of the FF mech-
anism. R and C pointer registers keep track of the row and
column indices of pixels during the scan process. Multiplexers
ahead of the R and C' pointer registers can switch between
the normal and FF modes. Under the normal mode, the C
pointer increments by 1 at every clock cycle and the R pointer
increments by 1 only at the end of a row. Under the FF mode,
the C pointer updates its value with the forward C index,
and the R pointer increments by 1 jumping to the next row.
A comparator takes both the current C' pointer value and the
target C' index as inputs. When the C' pointer value equals
the target C' index, it triggers a fast forward event. It enables
an update of the forward and target C' indices and triggers a
new pair of forward and target indices to be fetched from a
local BRAM. An address generator calculates the pixel indices
from the R and C pointer values (r;, ¢;) and the motion
vector (Toff, Copf) [8]). Pixel values are streamed to the
tracing accelerator based on the calculated pixel indices at
1 pixel/cycle throughput.

In the L=512 case, we only need to store 512 entries in
the local BRAM. Each entry is an 18-bit value, combining
the 9-bit target and forward indices. It requires 1.15 kB
memory, which can be implemented by a single BRAM block
on the FPGA. It is worth mentioning that the proposed FF
implementation can also benefit other stencil computation
problems where the input data has a similar sparse feature.

D. Evaluation

We evaluated our proposed latency optimization mecha-
nisms and implementations with a 760-cell calcium image
dataset recorded from a real rat by the Miniscope. Fig. 7 shows

1 2 3 4
Design Choices

1 mmwr
354 1.05 =
5] 2 EE BRAM
3
2.59 8
3 3
8157 g
3 - 1-ms- 30.95-
1 f
==
0.5 ﬂ
1 2 3 4

Design Choices

Fig. 7. Latency and hardware cost comparison among design choices: (1) the
baseline, (2) the RS, (3) the RS+DB and (4) the RS+DB+FF optimizations.

the comparison results on the overall latency and the hardware
cost for the tracing accelerator across different combinations
of the optimization mechanisms. As the results show, we can
reduce the overall latency to <1 ms by taking full advantage of
the proposed latency optimizations while keeping the hardware
cost overhead minimal.

IV. SYSTEM AND IMPLEMENTATION
A. Real-Time Processing System

We implemented the proposed calcium image processing
pipeline on the Ultra96 FPGA at 300 MHz. Based on that,
we developed a real-time processing system as presented in
Fig. 8. We built a customized interface PCB for connecting
the Miniscope DAQ board and a host computer to the Ultra96
FPGA. The image sensor data is transferred over the PCB
to the FPGA through the general I/O pins at 66.67 MHz.
512512 images are processed at a 22.8-fps frame rate. The
system can stream both the image and extracted traces to the
host computer over the Ethernet on the PCB in real time. We
also developed a graphical user interface on the host com-
puter for sending commands to the FPGA, receiving motion
corrected calcium images and displaying calcium images and
extracted traces in real time.

Table II summarizes the FPGA resource utilization. This
includes the tracing accelerator, the rest of the processing
modules in the pipeline and a virtual image sensor for the
debugging purpose. The measured power consumption of our
real-time system is 5.3 W, with a standby power of 2.2 W.

B. Performance

The implemented accelerator achieves 589 us latency on
extracting calcium traces from 760 cells from a 512x512

TABLE 11
FPGA RESOURCE UTILIZATION FOR THE REAL-TIME CALCIUM TRACE
EXTRACTION ON ULTRA96

LUT FF BRAM | DSP
Available 70560 | 141120 216 360
Utilization 47199 | 52985 201 111
Utilization % 66.9 37.6 93.1 30.8

calcium video when applying all latency optimizations. It can
maintain the sub-ms latency when the number of traced cells
reaches 1024. We demonstrated the real-time calcium image
trace extraction for 1024 cells by using the virtual sensor,
which replayed 1000 frames of recorded calcium images in
real time. The relative error of our trace extraction among all
cells on the FPGA is less than 0.04% compared to the offline
simulation. Our trace extraction implementation on the FPGA
achieves 2.9x and 132x speedup against a high-end multi-core
CPU using 4 threads and the embedded ARM processor on
the Ultra96, respectively.

We can extend our proposed FF mechanism to skip over
all background pixels instead of just those at both ends of the
rows. In order to achieve this goal, the BRAM needs to store
more indices, which increase the hardware cost. We evaluated
the benefit and cost of using such an aggressive FF compared
to the FF introduced in Section 3.3 across datasets collected
from 6 different rats. Fig. 9 shows the comparison results.
The aggressive FF contributes to 21.3% latency reduction
on average, but it requires 7.2x the memory for storing the
indices. We took the reduced cycle count per index (RCPI)
as a metric for the trace extraction. The FF outperforms the
aggressive FF consistently by a mean RCPI of 105 over 21.
Although the aggressive FF causes more memory overhead, it
can be useful for applications where the latency requirement
is high and the extra hardware cost is affordable.

C. Discussion

Unlike prior works that mainly focused on getting real-time
throughput on general purpose platforms [3]-[5], we leveraged
customized hardware acceleration to achieve deterministic and
short latency for the calcium trace extraction, which offers
unique advantage to neurofeedback closed-loop applications.
Considering the voltage imaging can reach lk fps frame
rate [7], our proposed customized calcium image processing
can be a promising solution for closed loop neurofeedback
applications that require millisecond response time.

DC 12v \

Miniscope

Fig. 8. Real-Time calcium image processing hardware setup (flexible instead
of rigid coaxial cable is used for real experiments with rats).

1,000 w/o FF w/ FF Aggressive FF --e-- Cell Count 1,000
g 8001 e
2> 6004 600 2
c 3
2 4004 400 =~
© e . @-----------=-1- S s
= 2001 200
0- T T T T T T 0
Rat-1 Rat-2 Rat-3 Rat-4 Rat-5 Rat-6
a
12,000 7) 200 2
» i @
210,000 . Bl FF [Aggressive l—?F g_
5 -e-- FF -#®- Aggressive FF |50 §
£ 8,0001 g-
° (2]
© 6,000 e > [100
= g
g 4,000 7 »
& 2,000 F o0 E
8 > a
0- 0 X
Rat-1 Rat-2 Rat-3 Rat-4 Rat-5 Rat-6

Fig. 9. Experimental analysis on the tradeoff between the latency and the
memory cost for the FF.

V. CONCLUSION

In this paper, we propose a tracing accelerator design, a
corresponding cell mapping algorithm, and dedicated latency
optimizations that can extract calcium traces from a large pop-
ulation of cells in calcium image video with sub-ms latency.
Our implementation has the potential to enable a variety of
closed-loop feedback experiments based on the Miniscopes
and other high temporal resolution in vivo neuron imaging
techniques for brain research.

ACKNOWLEDGMENT

This work is supported by the NSF under Grant No.: CCF-
1436827 and No.: DBI-1707408. The authors would like to
thank Prof. Peyman Golshani, Prof. Daniel Aharoni and Dr.
Changliang Guo for their support on the Miniscope device.

REFERENCES

[11 K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv,
A. El Gamal, and et al., “Miniaturized integration of a fluorescence
microscope,” Nature Methods, vol. 8, p. 871, 2011.

[2] D. Aharoni, B. S. Khakh, A. J. Silva, and P. Golshani, “All the light
that we can see: a new era in miniaturized microscopy,” Nature Methods,
vol. 16(1), pp. 11-13, 2019.

[3] J. Friedrich, A. Giovannucci, and E. A. Pnevmatikakis, “Online analysis
of microendoscopic 1-photon calcium imaging data streams,” PLoS
Computational Biology, vol. 17(1), no. e1008565, 2021.

[4] Y. Lee, J. Xie, E. Lee, S. Sudarsanan, D.-T. Lin, R. Chen, and et al.,
“Real-time neuron detection and neural signal extraction platform for
miniature calcium imaging,” Frontiers in Computational Neuroscience,
vol. 14, p. 43, 2020.

[5] J. Lu, C. Li, J. Singh-Alvarado, Z. C. Zhou, F. Frohlich, R. Mooney,
and et al., “MINIPIPE: a miniscope 1-photon-based calcium imaging
signal extraction pipeline,” Cell Reports, vol. 23(12), pp. 3673--3684,
2018.

[6] M. Hiusser, “Optogenetics: the age of light,” Nature Methods, vol.
11(10), pp. 1012--1014, 2014.

[71 A. Kazemipour, O. Novak, D. Flickinger, J. S. Marvin, A. S. Abdelfattah,
J. King, and et al.,, “Kilohertz frame-rate two-photon tomography,”
Nature Methods, vol. 16(8), pp. 778-—786, 2019.

[8] Z. Chen, H. T. Blair, and J. Cong, “LANMC: LSTM-assisted non-rigid
motion correction on FPGA for calcium image stabilization,” Proc. of the
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays (FPGA),
pp- 104--109, 2019.

