


SR is a machine learning approach used to systematically determine

symbolic equations that fit certain data with an unknown underlying

function.18–20 Unlike regression, where data is fit to a pre-defined func-

tion, SR attempts to find both the model and model parameters simulta-

neously. Neural networks (NN) are a popular choice for learning from

data. However, even though they can approximate any function, the out-

put from NN is difficult to interpret and cannot be converted to an ana-

lytical function. SR gives interpretable symbolic equations from data,

which makes this approach appealing. Here, “interpretable” means that

the exact relationship between input features and outputs is known in

equation form. There are limited studies that explore SR to find general

relationships from CFD simulations.21,22 In this study, we demonstrate

the use of AL for design of CFD experiments, and then apply the SISSO

SR method to determine the physics of fluid systems. Figure 1 provides

an overview of this method. A fully-automated workflow is combined

with AL to generate CFD data, which is then used to get an empirical

symbolic equation using SR. To avoid non-physical symbolic equations,

we include known asymptotic points using prior understanding of phys-

ics of the fluid systems being studied. These asymptotic points are

included in the SR training data. This forces SR to return equations have

the correct asymptotic behavior at extreme geometries and velocities.

The AL and SR methods are described in detail in sections that follow.

2 | COMPARISON TO RELATED WORK

Previous studies have implemented AL to accelerate simulation-driven

design optimization. Owoyele et al.23 used AL to perform simulation-

based data generation, ML learning and surrogate optimization to

refine solution in the vicinity of predicted optimum parameters for design

of a compression ignition engine. Gonçalves et al.24 studied the generation

of simulation-based surrogate models with the task of parameter domain

exploration using various sampling and regression-based AL strategies. In

a similar study, Pan et al.25 used AL for developing surrogate models for

industrial fluid flow case studies under a constraint of a limited function

evaluations. AL has also been implemented in specific experiment design

to deploy efficient design space exploration to enhance model quality.26,27

Over the past few decades, multiple methods to solve the SR problem

have been developed. Traditional deterministic algorithms assume a

predefined mathematical function and attempt to find parameters with

the best fit to the data, whereas, evolutionary algorithms try to find

parameters and learn the best-fit function, simultaneously. Some prevalent

methods are genetic programming algorithms,28–34 sparse regression,20,35–37

pareto-optimal regression,38,39 and the sure-independence screening and

sparsifying operator (SISSO)method.40,41Most SR frameworks implement

the popular Genetic programming,42 which is an improved version of

Genetic Algorithms (GA),43,44 inspired by Darwin's theory of natural selec-

tion. Genetic programming has also been used to identify hidden physical

laws from the input–output response prior.19,45,46We use SISSO because

it has been shown to be robust with small amounts of data.40,47,48 This is

advantageous for analysis of CFD systems where the computational cost

of simulations increases with increasing number of variables and complex-

ity of the system. Compared to existing work, our approach is novel in the

sense of combining AL and SR to optimize training efficiency and output a

general equation for any fluid system of interest.

3 | THEORY

3.1 | Governing equations

The governing equations are the conservation of mass, momentum

and energy. With the assumption of steady state, incompressible flow

and constant temperature, we have the continuity equation:

F IGURE 1 Overview of the workflow. A fully automated parameterized computational fluid dynamics (CFD) model is coupled with pool-

based active learning (AL) and symbolic regression (SR). The CFD model is used to generate the labeled training data. The AL model is used to

predict the next optimal feature point for CFD simulations and obtain a balance between exploration and exploitation of the parametric space. An

iteration of AL consists of learning the available data using Gaussian process regression and then using uncertainty sampling to find the next

feature point to label using a CFD simulation. The labeled data is then used as training data for SR to find the empirical symbolic equation for

CFD feature inputs and outputs. SISSO, sure-independence screening and sparsifying operator
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r:v
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and the momentum equation can be simplified to

ρ v
!
:r

� �

v
!
¼�rPþμr2 v

!
, ð2Þ

where, v
!

is the velocity vector, P is pressure and ρ and μ denote the

fluid density and viscosity, respectively. A Dirichlet boundary condition

is imposed at the inlet, with a parabolic velocity profile normal to the

boundary for all cases. This assumption allows the analysis for a fully-

developed flow without the need for unnecessary geometry exten-

sions, which results in extra mesh elements. The no-slip boundary

condition imposed at the wall ensures a zero velocity relative to the

pipe surface. Given the unknown pressure at the outlet, the outflow

boundary condition is imposed. A convergence criterion is defined

based on the conservation of mass at the inlet and outlet boundaries.

3.1.1 | Pressure drop in a bent pipe

The laminar fluid flow in circular pipes is a classical problem in fluid

mechanics, and it has been analyzed by the means of momentum

balance, resulting in the famous Hagen-Poiseuille (HP) equation49:

w¼
π P0�Pð Þd4ρ

32μL
, ð3Þ

where the mass flow rate w is the product of cross-sectional area,

density, and average velocity ⟨v⟩. Here d and L are the pipe diameter

and length, respectively, and P0 and P denote the pressure at the inlet

and outlet of the pipe. Note that Equation (3) is only valid for continuous,

laminar, incompressible, steady, Newtonian flow that is fully developed.

Given the pipe dimensions, fluid properties and average inlet velocity,

one can easily obtain the pressure drop using Equation (3). Our goal here

is to find an empirical equation for the pressure drop in a bent circular

pipe as a function of the average inlet velocity (⟨v⟩), pipe diameter (d),

and bend angle (θ). The fluid is considered to be water at 25�C with

constant properties. This setting is implemented to limit the number

of feature points to three. However, more complicated models involv-

ing chemical reactions and convective heat transfer can be analyzed

with more feature points. The geometry has been parameterized and

meshed with hexahedral elements, as represented in Figure 2. More

details on model parameterization can be found in Section S1.1.

Using Equation (3), the model is validated based on five different

inputs with a bend angle of 1�, which is approximately equivalent to a

straight pipe. The mean error for the unit length pressure drop with

respect to the HP equation is about 2%.

3.1.2 | Backflow at an expansion joint

We can consider the human heart to operate as two pumps in series.

The right heart pumps blood to the pulmonic circulation and the left

heart to the systemic circulation.50 The valves in the human heart

open and close efficiently, allowing the blood flow in the forward

direction and minimizing the regurgitation of flood to the chamber it

came from. Aortic insufficiency is a condition in which the heart valve

fails to tightly close, allowing blood to flow backwards into the heart

instead of pumping out.51 We have considered an expansion joint to

simulate this condition in a simplified geometry and quantify the back-

flow volume. The fluid is blood with constant properties with density

and viscosity set to 1060 kg/m3 and 0.004 Pa s at 37�C. A fully-

developed flow is defined at the inlet boundary, no-slip velocity at

wall and outflow boundary condition at the outlet. The inlet pressure

is set to 120 mmHg absolute. Once again, the geometry and the hex-

ahedral mesh are constrained to avoid invalid models given different

inputs (Figure 3). Blood dominantly flows in the z direction, thus the z

component of the velocity is used as our metric for defining the back-

flow. The backflow volume is calculated by summing over the volume

of mesh with negative velocity in z direction (Section S1.2). The inputs

to the model in this setting are the average inlet velocity (⟨v⟩), inlet

diameter (d), and expansion angle (θ). The model outputs the percent-

age backflow (f) by finding the ratio of Vbf to the total system volume.

3.2 | AL model

The goal of AL algorithms is to increase accuracy of a machine learn-

ing model, while minimizing the training data required to train the

model. It is often formulated as an optimization problem.17 Here, we

use a pool-based AL setting. Pool-based AL assumes that the model

has access to a large set of unlabeled samples. Consider a dataset

D� ℒ,Uf g comprised of a small set of labeled data ℒ¼ x
!

i,yi

� �n onℒ

i¼1

with features x
!

i (n-dimensional vector) and corresponding labels yi,

and a large pool of unlabeled data U ¼ x
!
j

n onU

j¼1
containing only fea-

tures x
!
j. nℒ and nU are the number of samples in the labeled and

unlabeled dataset, respectively, and nℒ � nU . A model Φ is initially

trained using the labeled data ℒ. Next, an unlabeled data sample,

called a query, x
!
iþ1 is selected from the unlabeled data pool U using a

query strategy. The selected query is then labeled by using an “ora-

cle.” An oracle is a human expert, or an experiment, but in this work, it

is a CFD simulation. The label yiþ1 is found by conducting a CFD simu-

lation for the flow conditions and geometry specified by x
!
iþ1. This

new observation x
!

iþ1,yiþ1

� �

is added to labeled data ℒ and the

model Φ is retrained based on this updated value. The process of

query-label-retrain is iteratively repeated until the labeling budget is

exhausted.

In this study, we use GPR52 as our predictive model Φ and uncer-

tainty sampling53 as the query strategy. The uncertainty sampling

strategy selects the feature point whose prediction is most uncertain.

The model has the least information in the vicinity of the most uncer-

tain prediction, and it is relatively more confident about other predic-

tions. Hence, labeling the most uncertain point is most informative for

the model.17,54 GPR is a probabilistic estimation method and has the

ability to provide uncertainty measurement because it provides confi-

dence intervals for predictions at each feature point. The goal of any
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regression model is to fit a function to datapoints. There are infinitely

many functions that can possible fit a set of points. GPR assigns a

probability to each of these functions.55 Once the GPR model Φ is

trained, the uncertainty in predictions and next feature point choice

are calculated using Equations (4) and (5):

U x
!

� �

¼ 1�max Pi
Φ

yjx
!

� �� �h i

ð4Þ

x
!
iþ1 ¼ argmax

x
!

U x
!

� �

: ð5Þ

To ensure the method is robust to label noise, U x
!

� �

is itself made a

probability and x
!

iþ1 is sampled rather than computing the argmax.

This is accomplished by computing the softmax of the predicted

uncertainty, U x
!

� �

.56 Thus, our AL equation is

P x
!
iþ1

� �

¼ softmax U x
!

� �h i

¼
e
U x

!
ð Þ

j

Σ
nU
j¼1U x

!
� �

j

ð6Þ

Readers are referred to Section S2 for further details.

3.3 | SR model

To learn an interpretable model from CFD simulations, we use SISSO,

developed by Ouyang et al.40 SISSO aims to construct a symbolic

F IGURE 2 Bent pipe.

(A) Parameterized geometry with

inlet, wall, symmetry, and outflow

boundary conditions. A parabolic

velocity profile is defined normal to

the inlet boundary to satisfy the

assumption of fully-developed flow.

The geometric constraints allow

having different inputs for d and θ

and ensure valid geometries. (B)

Parameterized hexahedral mesh with

element size and max element size of

d/20, which allows for adjustable

meshing given different geometric

inputs for d and θ

F IGURE 3 Expansion joint.

(A) Parameterized geometry with

inlet, wall, and outflow boundary

conditions. A parabolic velocity

profile is defined normal to the inlet

boundary to satisfy the assumption

of fully-developed flow. The

geometric constraints allow having

different inputs for d, θ and ensure

valid geometries. (B) Parameterized

hexahedral mesh with element size

and max element size of d/8, which

allows for adjustable meshing given

different geometric inputs for d

and θ
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equation between primary features x
!

and labels y. Given M samples,

SISSO assumes that the labels can be expressed as a linear combina-

tion of non-linear functions of primary features. So, y¼ f Ψð Þ where

Ψ¼ ψ1,ψ2 ,…,ψ rf g is a set of secondary features. The secondary fea-

tures ψ i are non-linear, closed form functions of primary features. If

x
!
¼ x1 ,x2,x3,…,xn½ � are primary features, then examples of secondary

features are x1=x3, x3�x1x2, x4x5=x1,…f g. These secondary features

are obtained by recursively applying a set of user-defined operators

on the primary features and creating a set of potential secondary fea-

tures. The operator set can be any combination of unary and binary

operators. The number of potential secondary features is proportional

to the number of primary features used, the number of operators

used, and the level of recursion. At each iteration, SISSO selects the

subsets of secondary features that have the largest linear correlations

with y. The number of terms in the linear expansion f Ψð Þ (called

descriptors) are controlled by a sparsifying l0 regularization. Note,

here the number of descriptors refers to the number of terms in the

output equation. For each iteration q, SISSO constructs multiple

models for f Ψð Þ using the secondary features and selects the one with

the largest correlation with the target property. More details on this

procedure can be found in Ouyang et al.40

In SISSO, dimensional analysis is performed to retain only valid

combinations of primary features. This ensures that secondary fea-

tures do not have unphysical units (e.g., force + time). To achieve this,

there is an option in SISSO to group primary features that have the

same derived units. We modified this option so that the primary fea-

tures are expressed in terms of fundamental units of measurement

(mass, length, time, angle) and grouped based on these fundamental

units instead of derived units.

4 | METHODS

In this section, the fully-automated CFD workflow, AL, and SR proce-

dures are explained. As seen in Figure 1, we first use AL to get labeled

data from the CFD model and then perform SR using that as training

data, to obtain an empirical symbolic equation between features and

labels.

Our fully-automated workflow has been used on two different

fluid flow problems, as described in previous sections. These problems

are not necessarily complex, and the main goal here is to demonstrate

a more robust approach that can also be applied to complex problems.

In this study, we have coupled ANSYS Workbench with python. The

parameterized CFD models are developed by defining input feature

points. These inputs can include geometric features, operating condi-

tions, and fluid flow properties. They are easily adjustable in a python

script and the outputs are updated accordingly.

For both the systems described preciously, we have three-

dimensional (3D) features, meaning we vary are three input parame-

ters for the CFD simulations. For the bent pipe system, these features

TABLE 1 Feature ranges and test data split for the two systems

System

Features

Labels Test data Data split (train:test counts)d (m) θ (�) ⟨vin⟩ (m/s)

Bent pipe 0:005�0:1 1�180 0:005�0:02 ΔP=L d > 0.07m and θ >120� 3696:400

Expansion joint 0:0005�0:005 0:002�0:5 f d > 0.0025m and θ >50� 1764:589

F IGURE 4 Root mean squared errors (RMSE) as a function of number of training data points. The SR equations obtained from different

models for varying number of training data points are evaluated for test data, and the RMSE in predictions is plotted. Error bars on these points

indicate the 50th quantile for RMSEs on test data. It is observed that active learning (AL) model for experiment design has the best performance

followed by grid search for the bent pipe, and random selection of experiment points for the expansion joint. RMSE distributions for AL and

random selection are significantly different, as shown by an independent sample t-test with p¼8:8�10�23 and p¼0:0125, respectively, for bent

pipe and expansion joint systems
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are pipe diameter (d), bend angle (θ), and average inlet velocity (⟨vin⟩).

For the expansion joint, features are inlet pipe diameter (d), expansion

angle (θ), and average inlet velocity (⟨vin⟩). The target property y for

bent pipe is pressure drop ΔP=L and for the expansion joint, it is the

backflow volume percentage f. To start with, a range of acceptable

values for the input parameters is chosen to ensure laminar fluid flow

and the 3D feature space is divided into training data and testing data.

The ranges for features and test/train split criteria are shown in

Table 1. Since we are not tuning hyperparameters, we do not use a

validation split. To make sure that physics of the system are obeyed,

we define asymptotes based on prior system knowledge. In the bent

pipe system, d¼0 will result infinite pressure drop ( lim
d!0

ΔP
L

d,θ,vð Þ¼∞),

which is a valid asymptote as per the HP equation (Equation 3).

Parameter θ is set to be bounded between 15� and 60� in the expan-

sion joint system. The rationale behind this choice comes from the

fact that no backflow is formed at smaller expansion angles, which

results in zero variance in the labels for all possible variations of the

other two features (f d,θ,vð Þjθ <15 ∘ ¼0; 8d,v). On the other hand, at

larger angles beyond this limit, the size of the system increases signifi-

cantly as a result of geometrical constraint set for the length of the expan-

sion section (Figure 3). Specifically, for the case of θ¼90�, the system

size becomes infinite as a result of having an infinite outlet diameter.

For AL, three random points x
!
from the training data are sampled,

and CFD simulations are generated to find corresponding labels y.

This is our initial training data (ℒ) for our pool-based AL and the rest

of the feature points form the unlabeled data pool U . CFD simulations

are used to label data for feature points obtained from Equation (6).

After N such queries, feature-label pairs in ℒ are used as training data

for the SISSO algorithm. We then add asymptotic points to this train-

ing data. The number of asymptotic points added depends on the

number of training data points N in ℒ. We add greater of 3 or 10% of

N points to ℒ and make sure that all asymptotic conditions are repre-

sented. To create asymptotic data points, the primary features apart

from the variable for which the asymptote is defined are sampled

randomly from the regime defined for that feature. So, for the bent

pipe system, when lim
d!0

ΔP
L

d,θ,vð Þ¼∞, θ and ⟨vin⟩ are randomly sam-

pled from the bounds defined in Table 1. Density and viscosity are

also added as features for SISSO. We use the operator set

þ, � , � , � ,exp,�exp,ðÞ�1,ðÞ2, sin,cos
n o

with our features for both

systems and set the number of descriptors to 3. The symbolic equa-

tion obtained from SISSO is used to predict labels for the test fea-

tures. This method is compared against random search and grid search

experiment design algorithms. Random search is random selection of

feature points with uniform sampling probability from the data pool.

Grid search is when a hypercube of points from the 3D feature grid

are selected. Grid is equivalent to a factorial design if we view our

levels as discretization of our features. SISSO is used to find equations

for both these methods so they can be compared against our AL

TABLE 2 Equations obtained from

SISSO for the bent pipe system
Method Training points Mean test RMSE Equation

AL 5 0.143 C1vþd C2vsin θð ÞþC3θcos θð Þð Þ

d2

Random 5 349.42 C1cos dð Þ

d2
þ C2e

�v

d2
þ C3θv

2

d

Grid 8 4.32 C1v

d2
þ C2θ

2v
d

�C3e
v þC3e

�θ

AL 60 0.072 v C1þC2θþC3dθvð Þ

d2

Random 60 10.29 v C1þC2θþC3dθvð Þ

d2

Grid 64 0.246 C1vþC2dθv
2þC3θ

2

d2

Full set 3696 0.085 v C1þC2θþC3dθvð Þ

d2

Abbreviations: AL, active learning; RMSE, root mean squared errors; SISSO, sure-independence screening

and sparsifying operator.

TABLE 3 Equations obtained from

SISSO for the expansion joint
Method Training points Mean test RMSE Equation

Random 5 86.42 C1vsin θð ÞþC2θve
dþC3de

d

AL 5 107.13 C1sin θð Þþ C2θ
vsin dð ÞþC3sin

θ
d

� �

Grid 8 4955.92 θ C1vsin θð ÞþC2dθvþ
C3d

cos dð Þ

� �

AL 60 8.25 θ C1dvcos θð ÞþC2þC3θð Þ
dv

Random 60 13.30 C1e
�dθ þC2e

θ þC2e
�θþC3dve

�d

Grid 64 79.35 C1dθe
�dþC2d

3vþC3sin θð Þ

Full set 1764 12.65 C1θdvcos θð ÞþC2dvsin dθð ÞþC3

dv

Abbreviations: AL, active learning; RMSE, root mean squared errors; SISSO, sure-independence screening

and sparsifying operator.
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+ SISSO method. The difference in these methods is reported using

significance statistics obtained from an independent samples t-test.

The independent samples t-test is a parametric test that compares the

means of two independent distributions and gives statistics to confirm

the hypothesis that the two populations are significantly different.57

5 | RESULTS AND DISCUSSION

The method described above, AL + SISSO, is tested and compared

with baseline methods used for experiment design like random search

and grid search. The objective was to obtain a symbolic relationship

between inputs/features and outputs/labels, given data.

In Figure 4, we compare the root mean squared error (RMSE) on

test data from SR equations for AL, random search and grid search.

The symbolic relationships obtained from SISSO for AL, random sea-

rch and grid search are evaluated on the test data points and respec-

tive RMSEs are calculated between these values and actual CFD

values. Test data were withheld from the training data pool for both

systems, as shown in Table 1. In Figure 4, each data point for AL and

random search represents the mean value for RMSE from 100 inde-

pendent iterations of training data sampling followed by SISSO. The

uncertainty in AL comes from the randomly sampled initial training

points and is in the coefficients Ci of SISSO equations. For bent pipe,

we observe that AL converges quickly and requires fewer training

points to get an accurate symbolic equation between features and

labels. RMSEs for random search and AL are significantly different

(p¼8:8�10�23, via independent samples t-test). Grid search outper-

forms random search and requires 27 training points to converge.

Table 2 shows some equations obtained from SISSO for AL, random

search, grid search, and the full training set. The complete list of equa-

tions obtained for different methods, as a function of training data

points, is reported in Table S1. The equations reported are those that

are observed maximum times (mode of the distribution) for a given

value of training points. AL combined with SISSO provides an accurate

equation with as low as 10 training data points, and the general form of

the equation remains the same with increasing training data points.

Random search requires 15 training points to obtain a similar equation.

The equation obtained for grid search varies with increasing training

points. Although, random search obtains the correct general equation

with few points, the variance in the coefficients for these equations is

high and hence, have a high RMSE in their approximation of pressure

drop in the system. For the expansion joint, AL outperforms random

search and grid search. The difference in RMSE between AL and ran-

dom search increases as the number of training points increases

(p¼0:0125, via independent samples t-test). Equations obtained from

SISSO for this system are reported in Table 3 and the complete list as

a function of training data points can be found in Table S2. The gen-

eral equation for AL, random search and grid search remains the same

after 30, 60, and 512 training points, respectively.

We also compare the performance of AL + SISSO models with

baseline models. Figure 5 shows how AL + SISSO compares to the

respective baseline models. At θ¼0�, the bent pipe becomes a

straight pipe, for which ΔP=L can be calculated using the HP equation

(Equation 3) and is considered the baseline. AL+ SISSO equation

results fit the HP equation. For backflow in the expansion joint, there

is no such theory-derived equation to compare against. So, we

perform SISSO on the entire feature pool and consider that as the

baseline model. AL+ SISSO predictions for θ¼60� underestimate the

backflow percentage compared to the baseline. However, the curves

for AL+ SISSO follow the same form as the baseline and there is an

offset along the y axis. SISSO equations obtained for AL and the base-

line are the same, and the difference in predicted labels comes from

the coefficients C1, C2, C3 for the two equations. This is reasonable

since our goal is to find a symbolic equation to understand the system

and not to minimize the regression error.

F IGURE 5 Comparison of active learning (AL) + sure-independence screening and sparsifying operator (SISSO) results with baseline models.

The baseline model for bent pipe is the Hagen-Poiseuille (HP) equation, which gives ΔP=L for a laminar fluid in a straight pipe (i.e., θ¼0). AL

+ SISSO equations show perfect agreement with the HP equation for different geometries. The baseline model for expansion joint is derived by

performing SISSO on the entire feature pool. AL+ SISSO equations mimic the baseline model's behavior exactly, with an offset along the y axis
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In the final analysis, it is important to consider how well the

results of AL + SISSO can be used to describe flow and how well they

compare to known equations when they exist. In the case of the bent

pipe, the data in Figure 5 confirm that the AL + SISSO matches nearly

exactly with the HP Equation. Note that all symbolic equations

beyond 10 training points shown in Table S1 are consistent with

theory-driven HP equation (Equation 3) for θ¼0 and accurately

describe the pressure drop in the system. When known equations do

not exist, which is the case for most complex flow scenarios, the abil-

ity of AL+ SISSO to describe flow needs to be carefully interpreted

and compared to best known approximations. For the expansion joint,

there are no accepted equations for the backflow volume percentage

to compare against for any geometry, so comparisons are made with

the entire feature pool referred to as the full set in the figure. The

data in Figure 5 do show a difference between the AL+ SISSO and

the full set. The important observation is that the shape of the graph

for the volume percentage versus velocity are quite similar, rising and

then leveling off with velocity as one would expect. The observed dif-

ference is the result of the coefficients in the equations as mentioned

above and not an incorrect symbolic equation.

6 | CONCLUSIONS

We introduce an AL approach combined with SR for obtaining an empiri-

cal symbolic relationship between system variables for CFD simulations.

This framework eliminates the need for the conventional trial-and-error

or grid search methods for picking feature points since we let AL pick

these points based on prior information available. We demonstrate the

use of this method for two CFD systems and compare them against con-

ventional methods. The results obtained from SISSO are more interpret-

able than those obtained from black box functions, and can be directly

used. This method also greatly reduces the amount of data needed to

get meaningful insights about a CFD system. One limitation of this

method is that the obtained symbolic relationships are only valid for fluid

flow regimes described by the feature domain considered for the training

data pool (i.e., laminar flow regime for the two examples illustrated).

Adding training data with asymptotic points from prior scientific knowl-

edge helps ensure that the equations obey the physics of the system.
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