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1 | INTRODUCTION
Computational fluid dynamics (CFD) provides a numerical approximation
to the conservation of mass, momentum and energy Navier-Stokes
equations) that govem the fluid flow behavior. Although experimentally
quantifying fundamental mechanisms of a process is often insightful,
CFD modeling can provide an altemative approach for better under-
standing of the underlying physics in a less resource-intensive manrer.!
With continued growth of computational power and advances in CFD
techniques, even complex models can be done on commodity hardware.
Thus, CFD modeling is routinely applied in severl fields of science and
engineering such as chemistry,”? materials,® fluid flow and heat
transfer,s'é biology,? drug delivery,ﬂ s.emiccrnductcrrs,9 environmentz|
engineering,w'“ biomedical engineering,12 and aeronautics.!”

Parametric analysis has been widely used in process modeling and
fully-automated

workflows.'*1¢ However, running the entire CFD calculations on all

design optimization using a semi-automated or

possible design parameters can be computationally expensive, especially
for complex CFD models. Thus, there is & need to identify which feature
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Computational fluid dynamics {CFD) analysis is widely used in chemical engineering.
Although CFD calculations are accurate, the computational cost associated with
complex systems makes it difficult to obtain empirical eguations between systemn
variables. Here, we combine active learning {AL) and symbolic regression (SR) to get a
syimbolic eguation for system variables from CFD simulations. Gaussian process
regression-based AL allows for autormated selection of variables by selecting the
most instructive points from the available range of possible parameters. The results
from these experiments are then passed to SR to find empirical symbolic eguations for
CFD models. This approach is scalable and applicable for any desired number of CFD
design parameters. To demonstrate the effectiveness, we use this method with two
model systermns. We recover an empirical eguation for the pressure drop in a bent pipe

and a new equation for predicting backflow in a heart valve under aortic insufficiency.

artificial intelligence, computational fluid dynamics, fluid mechanics

points are most important in experiment design, and allow for system
analysis with fewer CFD simulstions. Ancther challenge in the men-
tioned settings is the lack of quantitative general equations that can be
applied to different systems. This includes different geometrical
designs, as well as having different operating conditions such as tem-
perature, pressure, velocity or fluid properties. These system variables
that can be inputs to CFD models are referred to as feature points in
this work.

Here, we apply active learning (AL} to CFD modeling experiment
design and then use symbolic regression (SR} to find empirical sym-
bolic equations for these CFD models. AL is an iterative supervised
learning technique that attempts to learn a good model from a few
data points, by allowing the model to pick which data points it trains
from.!” In other words, AL is the process of choosing the next experi-
ment or feature point optimally using less resources and adding this
new point to the training data. In this article, we use AL with Gaussian
process regression (GPR) to choose the next optimal CFD feature
points. GPR is often associated with Bayesian optimization, where the
goal is to optimize an expensive black box function. However, our goal
is to find a symbolic equation across all feature values rather than a

single optimum with as few CFD simulations as possible.
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FIGURE 1

Overview of the workflow. A fully automated parameterized computational fluid dynamics (CFD) model is coupled with pool-

based active learning (AL) and symbolic regression (SR). The CFD model is used to generate the labeled training data. The AL model is used to
predict the next optimal feature point for CFD simulations and obtain a balance between exploration and exploitation of the parametric space. An
iteration of AL consists of learning the available data using Gaussian process regression and then using uncertainty sampling to find the next
feature point to label using a CFD simulation. The labeled data is then used as training data for SR to find the empirical symbolic equation for
CFD feature inputs and outputs. SISSO, sure-independence screening and sparsifying operator

SR is a machine learning approach used to systematically determine
symbolic equations that fit certain data with an unknown underlying
function.*®2° Unlike regression, where data is fit to a pre-defined func-
tion, SR attempts to find both the model and model parameters simulta-
neously. Neural networks (NN) are a popular choice for learning from
data. However, even though they can approximate any function, the out-
put from NN is difficult to interpret and cannot be converted to an ana-
lytical function. SR gives interpretable symbolic equations from data,
which makes this approach appealing. Here, “interpretable”” means that
the exact relationship between input features and outputs is known in
equation form. There are limited studies that explore SR to find general
relationships from CFD simulations.?*?2 In this study, we demonstrate
the use of AL for design of CFD experiments, and then apply the SISSO
SR method to determine the physics of fluid systems. Figure 1 provides
an overview of this method. A fully-automated workflow is combined
with AL to generate CFD data, which is then used to get an empirical
symbolic equation using SR. To avoid non-physical symbolic equations,
we include known asymptotic points using prior understanding of phys-
ics of the fluid systems being studied. These asymptotic points are
included in the SR training data. This forces SR to return equations have
the correct asymptotic behavior at extreme geometries and velocities.
The AL and SR methods are described in detail in sections that follow.

2 | COMPARISON TO RELATED WORK

Previous studies have implemented AL to accelerate simulation-driven
design optimization. Owoyele et al.2® used AL to perform simulation-
based data generation, ML learning and surrogate optimization to
refine solution in the vicinity of predicted optimum parameters for design

|24

of a compression ignition engine. Gongcalves et al.“* studied the generation

of simulation-based surrogate models with the task of parameter domain

exploration using various sampling and regression-based AL strategies. In

a similar study, Pan et al.?

used AL for developing surrogate models for
industrial fluid flow case studies under a constraint of a limited function
evaluations. AL has also been implemented in specific experiment design
to deploy efficient design space exploration to enhance model quality.24%”
Over the past few decades, multiple methods to solve the SR problem
have been developed. Traditional deterministic algorithms assume a
predefined mathematical function and attempt to find parameters with
the best fit to the data, whereas, evolutionary algorithms try to find
parameters and learn the best-fit function, simultaneously. Some prevalent

methods are genetic programming algorithms,22~3* sparse regression,2°2>-%”

pareto-optimal regression,383”

and the sure-independence screening and
sparsifying operator (SISSO) method.*%*! Most SR frameworks implement
the popular Genetic programming,*? which is an improved version of
Genetic Algorithms (GA),*>** inspired by Darwin's theory of natural selec-
tion. Genetic programming has also been used to identify hidden physical
laws from the input-output response prior.1?#>4¢ We use SISSO because
it has been shown to be robust with small amounts of data.*®*”® This is
advantageous for analysis of CFD systems where the computational cost
of simulations increases with increasing number of variables and complex-
ity of the system. Compared to existing work, our approach is novel in the
sense of combining AL and SR to optimize training efficiency and output a

general equation for any fluid system of interest.

3 | THEORY

3.1 | Governing equations
The governing equations are the conservation of mass, momentum
and energy. With the assumption of steady state, incompressible flow

and constant temperature, we have the continuity equation:
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V.v=0 (1)
and the momentum equation can be simplified to

,,(V.v)v = —VP+uV?V, 2)

where, V is the velocity vector, P is pressure and p and u denote the
fluid density and viscosity, respectively. A Dirichlet boundary condition
is imposed at the inlet, with a parabolic velocity profile normal to the
boundary for all cases. This assumption allows the analysis for a fully-
developed flow without the need for unnecessary geometry exten-
sions, which results in extra mesh elements. The no-slip boundary
condition imposed at the wall ensures a zero velocity relative to the
pipe surface. Given the unknown pressure at the outlet, the outflow
boundary condition is imposed. A convergence criterion is defined

based on the conservation of mass at the inlet and outlet boundaries.

3.1.1 | Pressure drop in a bent pipe
The laminar fluid flow in circular pipes is a classical problem in fluid
mechanics, and it has been analyzed by the means of momentum

balance, resulting in the famous Hagen-Poiseuille (HP) equation”?:

g
:ﬂ(Po P)d P @)
32ul

where the mass flow rate w is the product of cross-sectional area,
density, and average velocity {v). Here d and L are the pipe diameter
and length, respectively, and Py and P denote the pressure at the inlet
and outlet of the pipe. Note that Equation (3) is only valid for continuous,
laminar, incompressible, steady, Newtonian flow that is fully developed.
Given the pipe dimensions, fluid properties and average inlet velocity,
one can easily obtain the pressure drop using Equation (3). Our goal here
is to find an empirical equation for the pressure drop in a bent circular
pipe as a function of the average inlet velocity ({v}), pipe diameter (d),
and bend angle (0). The fluid is considered to be water at 25°C with
constant properties. This setting is implemented to limit the number
of feature points to three. However, more complicated models involv-
ing chemical reactions and convective heat transfer can be analyzed
with more feature points. The geometry has been parameterized and
meshed with hexahedral elements, as represented in Figure 2. More
details on model parameterization can be found in Section S1.1.

Using Equation (3), the model is validated based on five different
inputs with a bend angle of 1°, which is approximately equivalent to a
straight pipe. The mean error for the unit length pressure drop with
respect to the HP equation is about 2%.

3.1.2 | Backflow at an expansion joint

We can consider the human heart to operate as two pumps in series.

The right heart pumps blood to the pulmonic circulation and the left

AI?BIl:'J R NALJSLf10

heart to the systemic circulation.’® The valves in the human heart
open and close efficiently, allowing the blood flow in the forward
direction and minimizing the regurgitation of flood to the chamber it
came from. Aortic insufficiency is a condition in which the heart valve
fails to tightly close, allowing blood to flow backwards into the heart

instead of pumping out.>*

We have considered an expansion joint to
simulate this condition in a simplified geometry and quantify the back-
flow volume. The fluid is blood with constant properties with density
and viscosity set to 1060 kg/m® and 0.004 Pa's at 37°C. A fully-
developed flow is defined at the inlet boundary, no-slip velocity at
wall and outflow boundary condition at the outlet. The inlet pressure
is set to 120 mmHg absolute. Once again, the geometry and the hex-
ahedral mesh are constrained to avoid invalid models given different
inputs (Figure 3). Blood dominantly flows in the z direction, thus the z
component of the velocity is used as our metric for defining the back-
flow. The backflow volume is calculated by summing over the volume
of mesh with negative velocity in z direction (Section $1.2). The inputs
to the model in this setting are the average inlet velocity ({(v)), inlet
diameter (d), and expansion angle (9). The model outputs the percent-
age backflow (f) by finding the ratio of Vi to the total system volume.

3.2 | AL model

The goal of AL algorithms is to increase accuracy of a machine learn-
ing model, while minimizing the training data required to train the
model. It is often formulated as an optimization problem.” Here, we
use a pool-based AL setting. Pool-based AL assumes that the model
has access to a large set of unlabeled samples. Consider a dataset
DD {Z,U} comprised of a small set of labeled data & = { (Y;,y,») }:1:1
with features x; (n-dimensional vector) and corresponding labels y;,
and a large pool of unlabeled data U/ = {}j}z containing only fea-
tures Yj. ne and ny are the number of samples in the labeled and
unlabeled dataset, respectively, and ny < ny. A model @ is initially
trained using the labeled data &. Next, an unlabeled data sample,
called a query, Y,-H is selected from the unlabeled data pool &/ using a
query strategy. The selected query is then labeled by using an “ora-
cle.” An oracle is a human expert, or an experiment, but in this work, it
is a CFD simulation. The label y;, 4 is found by conducting a CFD simu-
lation for the flow conditions and geometry specified by X, 1. This
new observation (?,-H,y,ﬂ) is added to labeled data ¥ and the
model ® is retrained based on this updated value. The process of
query-label-retrain is iteratively repeated until the labeling budget is
exhausted.

In this study, we use GPR>2 as our predictive model ® and uncer-
tainty sampling® as the query strategy. The uncertainty sampling
strategy selects the feature point whose prediction is most uncertain.
The model has the least information in the vicinity of the most uncer-
tain prediction, and it is relatively more confident about other predic-
tions. Hence, labeling the most uncertain point is most informative for
the model.}”>* GPR is a probabilistic estimation method and has the
ability to provide uncertainty measurement because it provides confi-

dence intervals for predictions at each feature point. The goal of any
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regression model is to fit a function to datapoints. There are infinitely
many functions that can possible fit a set of points. GPR assigns a
probability to each of these functions.>®> Once the GPR model @ is
trained, the uncertainty in predictions and next feature point choice

are calculated using Equations (4) and (5):

u(i) - [1 - max(% (yR))] (4)

Xip1= argmax U (Y) ) (5)

X

To ensure the method is robust to label noise, U(Y) is itself made a

probability and x;,; is sampled rather than computing the argmax.

077 Mesh element size: d/8

0.00 Mesh max size: d/8

(B) FIGURE 2 Bent pipe.

(A) Parameterized geometry with
inlet, wall, symmetry, and outflow
boundary conditions. A parabolic
velocity profile is defined normal to
the inlet boundary to satisfy the
assumption of fully-developed flow.
The geometric constraints allow
having different inputs for d and 6
and ensure valid geometries. (B)
Parameterized hexahedral mesh with
element size and max element size of
d/20, which allows for adjustable
meshing given different geometric
inputs for d and 6

(B) FIGURE 3 Expansion joint.

(A) Parameterized geometry with
inlet, wall, and outflow boundary
conditions. A parabolic velocity
profile is defined normal to the inlet
boundary to satisfy the assumption
of fully-developed flow. The
geometric constraints allow having
different inputs for d, 8 and ensure
valid geometries. (B) Parameterized
hexahedral mesh with element size
and max element size of d/8, which
allows for adjustable meshing given
different geometric inputs for d
and 6

This is accomplished by computing the softmax of the predicted
uncertainty, U<Y) 56 Thus, our AL equation is

P(Ym) = softmax {u(;)] _ Zi"ueluu(y()f?)
N j

Readers are referred to Section S2 for further details.

3.3 | SR model

To learn an interpretable model from CFD simulations, we use SISSO,

developed by Ouyang et al.*® SISSO aims to construct a symbolic
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equation between primary features x and labels y. Given M samples,
SISSO assumes that the labels can be expressed as a linear combina-
tion of non-linear functions of primary features. So, y =f(¥) where
¥ ={yy,ps,...1, } is a set of secondary features. The secondary fea-
tures y; are non-linear, closed form functions of primary features. If
X = [X1,X2,X3,..,X] are primary features, then examples of secondary
features are {x1/x3, X3 —X1X2, XaX5/X1,...}. These secondary features
are obtained by recursively applying a set of user-defined operators
on the primary features and creating a set of potential secondary fea-
tures. The operator set can be any combination of unary and binary
operators. The number of potential secondary features is proportional
to the number of primary features used, the number of operators
used, and the level of recursion. At each iteration, SISSO selects the
subsets of secondary features that have the largest linear correlations
with y. The number of terms in the linear expansion f(¥) (called
descriptors) are controlled by a sparsifying Iy regularization. Note,
here the number of descriptors refers to the number of terms in the
output equation. For each iteration g, SISSO constructs multiple
models for f(¥) using the secondary features and selects the one with
the largest correlation with the target property. More details on this
procedure can be found in Ouyang et al.*°

In SISSO, dimensional analysis is performed to retain only valid
combinations of primary features. This ensures that secondary fea-
tures do not have unphysical units (e.g., force + time). To achieve this,
there is an option in SISSO to group primary features that have the

same derived units. We modified this option so that the primary fea-
tures are expressed in terms of fundamental units of measurement
(mass, length, time, angle) and grouped based on these fundamental

units instead of derived units.

4 | METHODS

In this section, the fully-automated CFD workflow, AL, and SR proce-
dures are explained. As seen in Figure 1, we first use AL to get labeled
data from the CFD model and then perform SR using that as training
data, to obtain an empirical symbolic equation between features and
labels.

Our fully-automated workflow has been used on two different
fluid flow problems, as described in previous sections. These problems
are not necessarily complex, and the main goal here is to demonstrate
a more robust approach that can also be applied to complex problems.
In this study, we have coupled ANSYS Workbench with python. The
parameterized CFD models are developed by defining input feature
points. These inputs can include geometric features, operating condi-
tions, and fluid flow properties. They are easily adjustable in a python
script and the outputs are updated accordingly.

For both the systems described preciously, we have three-
dimensional (3D) features, meaning we vary are three input parame-
ters for the CFD simulations. For the bent pipe system, these features

TABLE 1 Feature ranges and test data split for the two systems
Features
System d (m) 0 (°) {(Vin) (m/s) Labels Test data Data split (train:test counts)
Bent pipe 0.005-0.1 1-180 0.005-0.02 AP/L d > 0.07mand 6 > 120° 3696:400
Expansion joint 0.0005 —0.005 0.002-0.5 f d > 0.0025m and 6 > 50° 1764:589
100 100
20
1
80 / 80
@ // si| o 9 @10
i 60 / g 60
< / 0 ° a < . (Raalr;dom
40 20 40 60 ® Gri
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# training data points

# training data points

FIGURE 4 Root mean squared errors (RMSE) as a function of number of training data points. The SR equations obtained from different
models for varying number of training data points are evaluated for test data, and the RMSE in predictions is plotted. Error bars on these points
indicate the 50th quantile for RMSEs on test data. It is observed that active learning (AL) model for experiment design has the best performance
followed by grid search for the bent pipe, and random selection of experiment points for the expansion joint. RMSE distributions for AL and
random selection are significantly different, as shown by an independent sample t-test with p = 8.8 x 10723 and p =0.0125, respectively, for bent

pipe and expansion joint systems
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Method Training points Mean test RMSE Equation TABLE 2 Equatl(?ns obtained from
SISSO for the bent pipe system
AL 5 0.143 Cav+d(Cavsin(6)+Cabcos(9))
d2

Random 5 349.42 ClC}S(d) +% +C3ZV2
Grid 8 4.32 %Jrczgzv —Cze’ +Cze?
AL 60 0.072 (C1-+Co0+Codtv)

d
Random 60 10.29 (C14Co0+Coddv)

d
Grid 64 0.246 GV GO o0

d
Full set 3696 0.085 (C1+Co0+Codov)

Abbreviations: AL, active learning; RMSE, root mean squared errors; SISSO, sure
and sparsifying operator.

d"

-independence screening

Method Training points Mean test RMSE Equation TABLE 3 Equatlo.ns 9b'ta|ned from
SISSO for the expansion joint
Random 5 86.42 Cyvsin(9) + Co0ved + Cade?
AL 5 107.13 C15in(6) + 2l + Casin(§)
Grid 8 4955.92 0((Cavsin(6) + Cadov + S5
AL 60 8.25 0(Cydvcos(0)+Co+C30)
dv
Random 60 13.30 Cre=% 4 Cpe? + Cre=? + Cadve™
Grid 64 79.35 C1d6e~4 + Cod®v+ Cysin(6)
Full set 1764 12.65 C40dvcos(0)+Capdvsin(dd)+Cs

Abbreviations: AL, active learning; RMSE, root mean squared errors; SISSO, sure
and sparsifying operator.

are pipe diameter (d), bend angle (6), and average inlet velocity ({vin)).
For the expansion joint, features are inlet pipe diameter (d), expansion
angle (6), and average inlet velocity ((vi,)). The target property y for
bent pipe is pressure drop AP/L and for the expansion joint, it is the
backflow volume percentage f. To start with, a range of acceptable
values for the input parameters is chosen to ensure laminar fluid flow
and the 3D feature space is divided into training data and testing data.
The ranges for features and test/train split criteria are shown in
Table 1. Since we are not tuning hyperparameters, we do not use a
validation split. To make sure that physics of the system are obeyed,
we define asymptotes based on prior system knowledge. In the bent
pipe system, d = 0 will result infinite pressure drop (Liﬂg%"(d, 0,v) = o0),
which is a valid asymptote as per the HP equation (Equation 3).
Parameter @ is set to be bounded between 15° and 60° in the expan-
sion joint system. The rationale behind this choice comes from the
fact that no backflow is formed at smaller expansion angles, which
results in zero variance in the labels for all possible variations of the
other two features (f(d,0,v)|y.q5- =0;Vd,v). On the other hand, at
larger angles beyond this limit, the size of the system increases signifi-
cantly as a result of geometrical constraint set for the length of the expan-
sion section (Figure 3). Specifically, for the case of §=90°, the system
size becomes infinite as a result of having an infinite outlet diameter.
For AL, three random points x from the training data are sampled,

and CFD simulations are generated to find corresponding labels y.

dv

-independence screening

This is our initial training data () for our pool-based AL and the rest
of the feature points form the unlabeled data pool 4. CFD simulations
are used to label data for feature points obtained from Equation (6).
After N such queries, feature-label pairs in & are used as training data
for the SISSO algorithm. We then add asymptotic points to this train-
ing data. The number of asymptotic points added depends on the
number of training data points N in . We add greater of 3 or 10% of
N points to # and make sure that all asymptotic conditions are repre-
sented. To create asymptotic data points, the primary features apart
from the variable for which the asymptote is defined are sampled
randomly from the regime defined for that feature. So, for the bent
pipe system, when (IjiL%ATP(d,e,v) =00, 6 and (vi,) are randomly sam-
pled from the bounds defined in Table 1. Density and viscosity are
also added as features for SISSO. We use the operator set
{+, —, X, +,exp, 7exp,()’1,()2,sin,cos} with our features for both
systems and set the number of descriptors to 3. The symbolic equa-
tion obtained from SISSO is used to predict labels for the test fea-
tures. This method is compared against random search and grid search
experiment design algorithms. Random search is random selection of
feature points with uniform sampling probability from the data pool.
Grid search is when a hypercube of points from the 3D feature grid
are selected. Grid is equivalent to a factorial design if we view our
levels as discretization of our features. SISSO is used to find equations

for both these methods so they can be compared against our AL
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FIGURE 5 Comparison of active learning (AL) + sure-independence screening and sparsifying operator (SISSO) results with baseline models.

The baseline model for bent pipe is the Hagen-Poiseuille (HP) equation, which gives AP/L for a laminar fluid in a straight pipe (i.e., § =0). AL
+ SISSO equations show perfect agreement with the HP equation for different geometries. The baseline model for expansion joint is derived by
performing SISSO on the entire feature pool. AL+ SISSO equations mimic the baseline model's behavior exactly, with an offset along the y axis

+ SISSO method. The difference in these methods is reported using
significance statistics obtained from an independent samples t-test.
The independent samples t-test is a parametric test that compares the
means of two independent distributions and gives statistics to confirm
the hypothesis that the two populations are significantly different.>”

5 | RESULTS AND DISCUSSION

The method described above, AL + SISSO, is tested and compared
with baseline methods used for experiment design like random search
and grid search. The objective was to obtain a symbolic relationship
between inputs/features and outputs/labels, given data.

In Figure 4, we compare the root mean squared error (RMSE) on
test data from SR equations for AL, random search and grid search.
The symbolic relationships obtained from SISSO for AL, random sea-
rch and grid search are evaluated on the test data points and respec-
tive RMSEs are calculated between these values and actual CFD
values. Test data were withheld from the training data pool for both
systems, as shown in Table 1. In Figure 4, each data point for AL and
random search represents the mean value for RMSE from 100 inde-
pendent iterations of training data sampling followed by SISSO. The
uncertainty in AL comes from the randomly sampled initial training
points and is in the coefficients C; of SISSO equations. For bent pipe,
we observe that AL converges quickly and requires fewer training
points to get an accurate symbolic equation between features and
labels. RMSEs for random search and AL are significantly different
(p=28.8 x 10723, via independent samples t-test). Grid search outper-
forms random search and requires 27 training points to converge.
Table 2 shows some equations obtained from SISSO for AL, random
search, grid search, and the full training set. The complete list of equa-
tions obtained for different methods, as a function of training data

points, is reported in Table S1. The equations reported are those that

are observed maximum times (mode of the distribution) for a given
value of training points. AL combined with SISSO provides an accurate
equation with as low as 10 training data points, and the general form of
the equation remains the same with increasing training data points.
Random search requires 15 training points to obtain a similar equation.
The equation obtained for grid search varies with increasing training
points. Although, random search obtains the correct general equation
with few points, the variance in the coefficients for these equations is
high and hence, have a high RMSE in their approximation of pressure
drop in the system. For the expansion joint, AL outperforms random
search and grid search. The difference in RMSE between AL and ran-
dom search increases as the number of training points increases
(p=0.0125, via independent samples t-test). Equations obtained from
SISSO for this system are reported in Table 3 and the complete list as
a function of training data points can be found in Table S2. The gen-
eral equation for AL, random search and grid search remains the same
after 30, 60, and 512 training points, respectively.

We also compare the performance of AL + SISSO models with
baseline models. Figure 5 shows how AL + SISSO compares to the
respective baseline models. At §=0°, the bent pipe becomes a
straight pipe, for which AP/L can be calculated using the HP equation
(Equation 3) and is considered the baseline. AL+ SISSO equation
results fit the HP equation. For backflow in the expansion joint, there
is no such theory-derived equation to compare against. So, we
perform SISSO on the entire feature pool and consider that as the
baseline model. AL + SISSO predictions for # = 60° underestimate the
backflow percentage compared to the baseline. However, the curves
for AL+ SISSO follow the same form as the baseline and there is an
offset along the y axis. SISSO equations obtained for AL and the base-
line are the same, and the difference in predicted labels comes from
the coefficients C1, C2, C3 for the two equations. This is reasonable
since our goal is to find a symbolic equation to understand the system

and not to minimize the regression error.
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In the final analysis, it is important to consider how well the
results of AL + SISSO can be used to describe flow and how well they
compare to known equations when they exist. In the case of the bent
pipe, the data in Figure 5 confirm that the AL + SISSO matches nearly
exactly with the HP Equation. Note that all symbolic equations
beyond 10 training points shown in Table S1 are consistent with
theory-driven HP equation (Equation 3) for §=0 and accurately
describe the pressure drop in the system. When known equations do
not exist, which is the case for most complex flow scenarios, the abil-
ity of AL+ SISSO to describe flow needs to be carefully interpreted
and compared to best known approximations. For the expansion joint,
there are no accepted equations for the backflow volume percentage
to compare against for any geometry, so comparisons are made with
the entire feature pool referred to as the full set in the figure. The
data in Figure 5 do show a difference between the AL+ SISSO and
the full set. The important observation is that the shape of the graph
for the volume percentage versus velocity are quite similar, rising and
then leveling off with velocity as one would expect. The observed dif-
ference is the result of the coefficients in the equations as mentioned

above and not an incorrect symbolic equation.

6 | CONCLUSIONS

We introduce an AL approach combined with SR for obtaining an empiri-
cal symbolic relationship between system variables for CFD simulations.
This framework eliminates the need for the conventional trial-and-error
or grid search methods for picking feature points since we let AL pick
these points based on prior information available. We demonstrate the
use of this method for two CFD systems and compare them against con-
ventional methods. The results obtained from SISSO are more interpret-
able than those obtained from black box functions, and can be directly
used. This method also greatly reduces the amount of data needed to
get meaningful insights about a CFD system. One limitation of this
method is that the obtained symbolic relationships are only valid for fluid
flow regimes described by the feature domain considered for the training
data pool (i.e., laminar flow regime for the two examples illustrated).
Adding training data with asymptotic points from prior scientific knowl-

edge helps ensure that the equations obey the physics of the system.
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