
Time Adaptive Recurrent Neural Network

Anil Kag, Venkatesh Saligrama

Department of Electrical and Computer Engineering, Boston University

{anilkag, srv}@bu.edu

Abstract

We propose a learning method that, dynamically modi-

fies the time-constants of the continuous-time counterpart

of a vanilla RNN. The time-constants are modified based

on the current observation and hidden state. Our proposal

overcomes the issues of RNN trainability, by mitigating ex-

ploding and vanishing gradient phenomena based on placing

novel constraints on the parameter space, and by suppress-

ing noise in inputs based on pondering over informative

inputs to strengthen their contribution in the hidden state. As

a result, our method is computationally efficient overcoming

overheads of many existing methods that also attempt to

improve RNN training. Our RNNs, despite being simpler

and having light memory footprint, shows competitive per-

formance against standard LSTMs and baseline RNN models

on many benchmark datasets including those that require

long-term memory.

1. Introduction

We focus on trainability of vanilla Recurrent Neural Net-

works1 (RNN). Improving vanilla RNN performance is im-

portant since they are deployed in a number of IoT appli-

cations [15] due to their light memory footprint. A funda-

mental challenge is that, during training, the gradient of loss

back-propagated in time could suffer from exponential de-

cay/explosion resulting in poor generalization for processes

exhibiting long-term dependencies (LTD).

There has been a long-line of work such as [12, 21, 2,

31, 10] that propose matrix designs, gating and novel archi-

tectures, to mitigate gradient explosion/decay, and improve

handling of state-transition. Different from these are works,

which go back to [45, 18] that draw inspiration from ordi-

nary differential equations (ODEs). [10] leverages stability

theory of ODEs, to identify new transition matrices, and

proposes discretization of ODEs, to improve trainability.

While we also draw upon ODEs to propose solutions to

1By vanilla RNNs we refer to networks that sequentially update their

hidden state by means of a simple linear transformation of the previous

state and current input, followed by non-linear activation.

improve vanilla RNN trainability, our proposal differs from

existing works in fundamental ways. To build intuition, first

consider the ODE, with λ ∈ R
+, U ∈ R

D×D,W ∈ R
D×d,

and A ∈ R
D×D Hurwitz stable [28]:

λż(t) = Az(t) + φ(Uz(t) +Wxm) (1)

where, φ(·) is the conventional non-linear RNN activation

function such as a ReLU; This particular form, serving as an

analogue2 of vanilla RNNs, is quite old [45]. In each round,

m, we start from an initial state, z(t0) = sm−1, which

corresponds to the current hidden state, and input, xm, and

evolve the ODE for a unit period of time. Subsequently, the

hidden state is updated by setting sm = z(t0 + 1), and in

this way, mapping inputs to the hidden state sequence.

What is new? We introduce two novel aspects within

this context. First, we allow for λ to be time-varying, and in

particular, a function of previous hidden state and input. Our

reasoning is that λ serves as a time-constant, and inherently

accounts for how long we evolve the ODE in response to the

current input. To see this, let us write the ODE in integral

form for a fixed λ:

sm , z(t0 + 1) = exp

(

A
1

λ

)

sm−1+

1

λ

∫ 1

0

exp

(

A
1− t

λ

)

φ(Uz(t) +Wxm)dt (2)

Then, with λ → ∞, we deduce that, z(t0 + 1) → sm−1.

Namely, when time constant is large relative to integration

time, we barely process the new input, remaining essen-

tially at our previous solution. Alternatively, if λ → 0,

namely, when the integration time is large relative to the

time-constant, we reach equilibrium, and in this process

strengthen influence of the current input. Moreover, by

letting the time-constant be a function, of sm−1,xm, we

selectively adapt the amount of “pondering” that we need

on each new input. Finally, we let λ(·) take values in RD,

and thus allow for element-wise dependence for each hidden

state, leading to selective updates of hidden state compo-

nents. These ideas result in a time-adaptive RNN (TARNN).

2Vanilla RNNs and residual variants amount to a suitable Euler dis-

cretization (see Appendix).

115149

Next, we augment the current input with the hidden state,

and consider um = [xm, sm−1]
⊤ as a composite input in

our ODE with initial condition, z(t0) = sm−1:

λ(um) ◦ ż(t) = Az(t) +Bum + φ(Uz(t) +Wum) (3)

where ◦ represents the element-wise (Hadamard) product.

To build intuition into our ODE choice, observe from the first

term in Eq. 2 that for A stable, the contribution of the hidden

state, sm−1 decays exponentially in time, and as such, the

discrete transition process, s1, . . . , sT rapidly de-correlates.

We can overcome this effect by a persistent presence of the

hidden state in the ODE. We also add the linear term, Bum,

as it turns out to be important for improving partial gradient

properties for hidden state sequence. As such our choice

does not significantly increase model complexity of vanilla

RNN.

Our proposed ODE is sufficiently rich admitting param-

eter settings that completely eliminate gradient decay and

explosion, which is desirable for LTD tasks. In addition, our

method is capable of enhancing contribution from informa-

tive inputs, while suppressing noisy segments through the

pondering mechanism described above. This aspect is useful

in IoT applications [31, 15] such as keyword detection and

wearable sensing devices.

Discretization: For simplicity we discretize our ODEs

with Euler discretization to realize vanilla RNNs. Methods

that seek computational and memory efficiency in this con-

text [11, 46] are entirely complementary to our method. Our

novelty is in the design of state-transition with the goal of

realizing desirable ODE solutions3.

Contributions: The main contributions of this work are

• TARNN learns to modulate time constants of transition

function, allowing for selectively pondering on informative

inputs to strengthen their contribution, and ignoring noisy

inputs. This modification along with designing suitable

transition matrices yield lossless information propagation.

• TARNN improves trainability leading to better handling

of LTD tasks with a lighter memory footprint, and as such

our proposed method can be leveraged for IoT tasks.

• Our pseudo code is an RNN cell that is readily deployable

in any deep learning library. We provide a simple imple-

mentation at https://github.com/anilkagak2/TARNN.

• We conduct extensive experiments on benchmark datasets,

and show that we improve upon standard LSTM perfor-

mance as well as other recently proposed works. We also

demonstrate robustness to time-series distortions such as

noise paddings.

3[11, 46], also propose recurrent models to handle non-uniform input

sampling. While this is interesting, their proposals are unrelated to our goal

of improving RNN trainability.

2. Related Work

There is a rich literature on deep RNNs [54, 6, 43], which

incorporate deep non-linear transition functions for complex

and richer representation, and is outside the scope of our

work. Indeed, our work is complementary, and we seek

to improve vanilla RNN trainability. More loosely related

are a growing number of works that propose to improve

RNN trainability through mitigation of vanishing and ex-

ploding gradients. First, there are works that propose im-

proving state-transitions, based on unitary transition matri-

ces [2, 25, 53, 42, 27, 34], residual connections [23, 6, 31]

or gating [21, 12]. While these methods provide some evi-

dence of mitigating gradient decay, in practice, and in theory,

vanishing gradients are not eliminated (see Appendix). Dif-

ferent from these works, our method is more closely related

to works that draw insights from ODEs.

ODE inspired RNNs. [10, 16] and [48] draw upon insights

from linear system theory to guide transition matrix designs

for the discrete-time RNN. Ideally, in the regime where

non-linear activation is essentially linear, explosion/decay

can be eliminated, but outside this regime we can expect

gradient degradation. [26] propose Incremental-RNNs, a

novel architecture, where like us they evolve the system until

equilibrium, and show mitigation of vanishing/exploding

gradients.

Different from these efforts, we are motivated by the

observation that mitigating gradient degradation while im-

portant, is by no means sufficient (see Fig. 1). This is often

the case in many IoT applications where the signal can be

bursty and there are segments that can be purely noisy. We

propose methods to suppress noisy segments in addition to

improving gradient explosion/decay.

Conditional Computation and Attention. Our pondering

perspective can be viewed as a form of conditional compu-

tation in time. Nevertheless, much of the conditional com-

putation work is aimed at gradually scaling model capacity

without suffering proportional increases in computational

(inference) cost (see [19, 13, 52, 24, 20]). Different from

these works, our focus is on improving RNN trainability

by suppressing noisy observations, so that long-term de-

pendencies can be handled by ignoring uninformative input

segments. Within this context, only [9] is closely related

to our viewpoint. Like us, [9] also proposes to skip input

segment to improve RNN training, but unlike us, since their

state-transition designs are conventional, they still suffer

vanishing and exploding gradients on segments that are not

skipped, and as a result suffer performance degradation on

benchmark datasets. Also, as [9] points out, our work can

also be viewed as a temporal version of hard attention mecha-

nisms for selecting image regions. These works (see [9]) that

deal with visually-based sequential tasks, have high model-

complexity, and are difficult to train on long input sequences.

Others [49] leverage attention to bypass RNNs. In contrast,

215150

we offer an approach that is lightweight and improves RNN

trainability on long-sequences.

There have been attempts at improving the computational

cost of the sequential models by introducing lighter recurrent

connections. [33, 4] replace the hidden-to-hidden interac-

tions in the LSTMs with linear connections in the hope of

parallelism. [7] performs similar linear interactions along

with the increased receptive field from the inputs, i.e. instead

of just using the current observation, it uses previous few in-

puts as well to compensate for the lost non-linear interaction

between the hidden states. Similar to these works, [36, 35]

introduce linear connection in vanilla RNNs and compensate

the loss of performance by allowing various architectures on

top of this light recurrent unit. These architectures include

stacked encoders, residual, and dense connections between

multiple layers. It should be noted that although being light,

the loss of non-linear interaction does result in a significant

setback and as a result these works have to rely on more than

one RNN layer to gain anything reasonable in comparison

to traditional variants. These multi-layered models will be

prohibitive for IoT devices as inference time would be larger

than vanilla RNNs. Besides, we can extend our work by

allowing only linear connections and apply their orthogonal

ideas for better parallelism and computational speed.

3. Learning Time Adaptive Recurrent Neural

Network (TARNN)

In this section we further present our objective, ODE

discretization and algorithmic details.

Notation. {(u(i),y(i))}, i ∈ [N] denotes training data.

Each u(i) is a T−length d−dimensional sequential input.

For classification problems, y(i) is a terminal label y
(i)
T ,

taking values in a discrete set of C classes. For lan-

guage modeling tasks, we let the true label be a process,

(y
(i)
1 , . . . , y

(i)
T). The predictions (ŷ

(i)
1 , . . . , ŷ

(i)
T) for each in-

put u(i) can be computed from the D−dimensional hidden

states (s
(i)
1 , . . . , s

(i)
T) obtained by solving the ODE Eq. 3.

When clear from the context we omit superscripts. Unless

stated otherwise, σ(·) denotes the sigmoid activation; φ(·)
refers to any non-linear activation such as a ReLU. We col-

lect all model parameters in θ.

Empirical Risk Minimization. Let ℓ(ŷ, y) be the func-

tion measuring loss incurred for predicting value ŷ on the

true value y. Our objective is to minimize the regularized em-

pirical loss, through back-propagation in any deep learning

framework. We specify the regularizer Ω(θ) later.

L({u(i),y(i)}Ni=1) =
1

N

1

T

∑N

i=1

∑T

m=1
ℓ(ŷim, yim) + Ω(θ)

(4)

Time-constants. We re-write the ODE Eq. 3 in terms of

β(·), the inverse of λ(·), since it is convenient for describ-

ing our discretization steps. We parameterize β(um) =

σ(Ussm−1 +Wxxm), where Us ∈ R
D×D,Wx ∈ R

D×d

are parameters to be learnt. For a component j where βj ≈
1, then (ż(t))j ≈ (Az(t) + Bum + φ(Uz(t) + Wum))j ,

and the system responds to the input um and reaches equi-

librium. On the other hand, when βj ≈ 0, then (ż(t))j ≈ 0,

and the corresponding state is frozen, with the input at time

m completely skipped. In this paper we limit ourselves to a

binary behavior, i.e. whether to ponder over the input obser-

vation for a long time or not ponder at all. For this reason, it

suffices to limit the range in [0, 1] with sigmoid activation.

This also avoids numerical instabilities with unbounded non-

linearities.

Setting up the ODE. To obtain a discrete implementa-

tion, first, we update the ODE Eq. 3 with the change of

variables for time-constants, resulting in the ODE:

ż(t) =β ⊙ (Az(t) +Bum + φ(Uz(t) +Wum))

, F (z(t),um); z(t0) = sm−1 (5)

where, ⊙ represents the Hadamard product. Next, we instan-

tiate the specific parameterization for transition matrices. Fi-

nally, an ODE solver is invoked, over a time-horizon [t0, t1]
to update the state:

sm = z(t1); z(t1) = ODESolve(sm−1,um, F (·), t0, t1)

We predict the output ŷm = σ(w⊤sm + b) using a sig-

moid activation on top of a linear layer parameterized as

(w, b). Since, we need A to be Hurwitz-stable, and we im-

pose equilibrium, when a component is active, we a priori

fix A as negative identity. Other TARNN model parame-

ters (B,U,W,w, b,Us,Wx) are learnt during training by

minimizing the empirical loss in Eq. 4.

The ODE solver. A number of methods exists to numeri-

cally solve the ODE of Eq. 5 including black-box solvers

such as Neural ODEs[11] or advanced root-finding methods

such as the Broyden’s method [8]. While these methods

could be further employed to improve computational effi-

ciency, for exposition we limit ourselves to Euler-recursion

with K = 3 steps, since computational efficiency as such

is not the focus of our paper. We let η denote the step-size,

with zkm denoting the recursion steps:

zkm =

{

sm−1 if k = 1
zk−1
m + η(F (zk−1

m ,um)) if 1 < k < K

sm = zKm (6)

As shown in the Sec. 3.1, for suitable choice of the activation

function, φ(·), (includes popular activations such as ReLU,

tanh, sigmoid, etc.), these recursions in the limit, for (β)j >
0, z∗m = limk→∞ zkm is an equilibrium solution to the ODE

of Eq. 5. We provide the pseudo code in Algorithm 1, which

generates the hidden states for a sequential input {xm}Tm=1.

315151

Algorithm 1 TARNN hidden states computation

Input : Sequence {xm}T
m=1

Model :
(

A,U,W,Us,Ws,B
)

Initialize hidden state s0 = 0
for m = 1 to T do

β = σ(Ussm−1 +Wxxm)
F (·) = β ⊙ (Az(t) +Bum + φ(Uz(t) +Wum))
z(t1) = ODESolve(sm−1,xm, F (·), t0, t1)

sm = z(t1)
end for

3.1. Analysis

In this section, we show that our setup benefits from sev-

eral properties, and as a result, our proposed method leads

to a theoretically sound approach for an adaptive recurrent

system that is capable of focusing attention on informative

inputs and rejecting uninformative inputs. The first few

propositions establish properties of TARNN with the pro-

posed parameterization. We then describe a result to assert

that our adaptively recurrent system preserves information

by showing that the partial gradients of hidden states have

unit norm.

The following proposition shows that equilibrium points

for the ODE of Eq. 5 exist and are unique. Although, we a

priori fix A to be negative identity, we present a more general

result for the sake of completion. We impose the following

conditions, (i) there is a η0 > 0 such that for all η ∈ [0, η0],
there is some α ∈ (0, 1] such that σmax(I + ηA) ≤ 1− αη.

(ii) λmax(A + A⊤) < −1. It is easily verified that these

conditions are satisfied in a number of cases including A

-identity, A block triangular with negative identity blocks.

Proposition 1. Consider the ODE in Eq. 5 and assumptions

on A described above. Suppose we have ‖U‖ < α, and

φ(·) is 1-Lipshitz function, it follows that, for any given,

β, um, an equilibrium point exists and is unique.

Remark. Note that, we impose conditions on U to derive

our result. In experiments we do not impose this condition,

since for our choices for A, α ≈ 1, and as such, initializing

U to a Gaussian zero-mean, unit covariance often takes

care of this requirement during training, since we generally

operate with a small learning rate.

Proof Sketch. To show this we must find a solution to

the non-linear equation Az+Bum − φ(Uz+Wum) = 0
and show that it is unique. We do this by constructing a

fixed-point iterate, and show that the iteration is contrac-

tive. The result then follows by invoking the Banach fixed

point theorem (contraction-mapping theorem). The proof is

presented in the appendix 3.

Proposition 2. With the setup in Proposition 1, and regard-

less of β, the equilibrium point is globally asymptotically

stable, and the discrete Euler recursion converges to the

equilibrium solution at a linear rate.

We discuss the main idea and present the proof in the

appendix. Let z∗ be the equilibrium solution. We consider

the Lyapunov function V (z(t)) = ‖z(t) − z∗‖2 and show

that it is monotonically decreasing along the ODE system

trajectories. Observe that, as per our setup, components

where (β)j = 0 does not pose a problem, because those

states remain frozen, and serve as an additional exogenous

input in our ODE.

Lossless Information Propagation. Our goal is to show

that there exist parameter constraints in Eq. 5 that can result

in identity partial gradients of the hidden states. This will

in turn inform our regularization objective, Ω(θ) later. With

the constraint in place, for arbitrary values, m, n ∈ Z
+, we

will show that,
∂sn(j)
∂sm(j) = 1. For ease of analysis we replace

binary-valued β with a continuous function and let the output

be a ReLU non-linearity. Partition W = [W1,W2], B =
[B1,B2], where W2,B2 ∈ RD×D are associated with the

hidden state components. To realize identity gradients for

a specific component i we need to constrain the parame-

ter space. While there are many possibilities, we consider

following constraints, because they lead to concrete regu-

larization objectives, and generalize the specific A matrices

we have in mind (identity, and upper-triangular). We con-

strain ‖U‖ < 1 ≤ ‖A‖, and consider the following case:

A±B2 = 0, U±W2 = 0.

Theorem 1. Under the above setup, as K → ∞ in Eq. 6,

for any m,n ∈ Z
+, |∂sn(i)/∂sm(i)| → 1.

Proof Sketch (see Appendix for proof). Note that, when

βj = 0, the jth component sm(j) = sm−1(j) and the result

follows trivially. Suppose now the jth component (β)j >
0, we will show that, ∂sm(j)/∂sm−1(j) = 1, which then

establishes the result through chain rule.

Theorem 1 shows that there is a configuration with loss-

less propagation. Thus, if it is necessary, the training algo-

rithm will find a solution, that results in lossless propagation,

even without imposing parameter constraints stated in the

theorem. However, Theorem 1 suggests a natural regularizer,

with γ1 and γ2 serving as hyperparameters. As a case in

point, we could encourage parameters to subscribe to con-

straints of theorem if we consider the following regularizer

for Eq. 4:

Ω(θ) , Ω([A,B,U,W]) = γ1‖A+B2‖
2
2+γ2‖U+W2‖

2
2

An interesting case is when B2 row-wise sparse. In this case,

states corresponding to zero rows operate as standard RNN

(no linear term). We can ensure identity gradient holds in

this case with block-wise parametric constraints, leading to

more structured regularization penalty.

4. Experiments

Toy Example. For a sneak preview of our results, we il-

lustrate the importance of both time-constants and gradient

415152

0 2 4 6 8 10 12 14
Time Steps : m

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

St
at

e
Di

ff
No

rm
 o

r I
np

ut
 V

al
ue

Class: (t=4)=1, (t=12)=1)

Input
TARNN
SkipLSTM

(a)

0 200 400 600 800 1000 1200 1400 1600
Training Steps

10 3

10 2

10 1

100

101

lo
g

of
 ra

tio
 o

f |
s T s 1

| &
 |

s T
s T

1
|

Sequence length = 16
LSTM
FastRNN
Antisymmetric
SkipLSTM
TARNN

(b)

Algorithm Accuracy

Random Guess 25
FastRNN 45
LSTM 45

Antisymmetric 37
SkipLSTM 60

TARNN (Ours) 100

(c)

Figure 1: Example illustrates importance of mitigating gradient explosion/decay as well as ignoring noisy observations. Table lists test performance of

baselines focused on improving RNN training. Fig. (a) plots the noisy input, and sequential changes in hidden state norms for SkipLSTM[9] and proposed

TARNN . Only ours responds to informative locations. Fig. (b) plots the norm of partials of hidden states. Only AntisymmetricRNN[10] and ours TARNN

exhibit near identity gradients. However, only ours is effective as seen from the table. As such we infer TARNN (a) realizes near identity gradients for partials

of hidden states, thus mitigating gradient explosion/decay, (b) zooms in on informative inputs and ignores noisy observations, and (c) By jointly ensuring (a)

and (b), it improves RNN trainability, providing good generalization.

mitigation on a toy example. We construct a 16-length input

sequence with 4 class labels. Information is placed in the

form of binary {0, 1} values at locations 4, 12, correspond-

ing to the four classes, and for all other locations we assign

values from a uniform distribution in the unit interval. RNNs

with a 2-dimensional state-space are trained on 50K time-

traces. Due to low-dimension, the (terminal) state cannot

replicate the entire trace, requiring generalization. On one

hand, techniques that mitigate gradient explosion/decay like

Antisymmetric [10], do so across all input locations, but fail

to output meaningful results as seen from Figure 1(c). Thus

focusing solely on vanishing/exploding gradients is not suf-

ficient, since noise gets amplified in latent state updates. On

the other hand, SkipLSTM [9], which is capable of ponder-

ing at informative inputs and skipping uninformative inputs,

is also ineffective. SkipLSTM [9] suffers severe gradient

degradation, leading to poor control over which locations to

ponder. In contrast, TARNN exhibits near identity gradients,

skips all but locations 4, 12, and achieves 100% accuracy.

Similar trend holds for larger state space (see Appendix).

4.1. Experimental Setup and Baselines

4.1.1 Datasets

We follow earlier works [10, 26, 31] in order to setup exper-

iments. Datasets used in this work are publicly available,

except NTU RGB+d[47] (skeleton modality is available for

academic usage). We use 10% of the training data as valida-

tion set for tuning the hyper-parameters through grid search.

The grid for each method is setup as per their experimental

section. Finally, the entire training set is used to train the

model. The performance is reported on the publicly available

test set. We briefly describe each dataset here and refer the

reader to [26](Appendix:A.4) for detailed description.

1. Add & Copy tasks [22] probe the LTD capabilities of any

RNN architecture. Add task presents two input sequences,

one draws points uniformly from [0, 1], and second is a

binary sequence with exactly two entries as 1. The target

is the sum of entries in the first sequence with index same

as the two 1s in the second sequence. Copy tasks contains

sequences that embeds a random message drawn from

an alphabet, followed by many ‘blank‘ character and a

delimiter. The goal is to remember the original signal

across the timesteps.

2. Pixel & Permute MNIST [32] are sequential variants

of the popular MNIST dataset, used for evaluating the

generalization performance of RNNs. Pixel-MNIST is

generated by flattening the 28×28 input image into a long

784 length sequence. Permute-MNIST is generated by

applying a fixed permutation on the images generated by

the Pixel-MNIST task.

3. Noisy-MNIST & Noisy-CIFAR [10, 26] evaluate the

noise resiliency of RNNs. Popular MNIST/CIFAR images

are converted into 1000 length sequences. Each row of the

image is embedded at initial timesteps and the remaining

ones contain noise.

4. Penn Tree Bank (PTB)-300 [31, 53] is a popular word

level language modelling dataset. We use the small config-

uration proposed in [39] that uses one layer for modelling,

but with harder sequences of length 300.

5. Penn Tree Bank (PTB-w, PTB-c) [39] are two popular

datasets widely used for word level and character level lan-

guage modelling. This uses the traditional sequence length

of 70 and 150 for word and character level respectively.

Current state-of-the-art results utilize more than one layer.

We follow [51] in order to setup the word level task while

we utilize [40] to setup the character level task. We use

three layers for modelling as recommended.

6. Skeleton based Action Recognition [47] is performed on

the NTU RGB-d dataset with 60 action classes. We follow

[35, 36] in order to create the cross-subject (CS) and cross-

view (CV) datasets. After eliminating the spurious entries,

CS dataset contains 40,091 train and 16,487 test samples,

while CV dataset contains 37, 646 train and 18,932 test

515153

(a)
0 2000 4000 6000 8000 10000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

sE
nt

ro
py

Sequence length = 200
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(b)
0 1000 2000 3000 4000 5000 6000 7000 8000

Training Steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

sE
nt

ro
py

Sequence length = 500
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(c)
0 200 400 600 800 1000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 200
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(d)
0 250 500 750 1000 1250 1500 1750 2000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 750
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

Figure 2: We evaluate TARNN on synthetic LTD tasks: Copy task with sequence lengths : (a) 200, (b) 500, and Add task with sequence lengths: (c) 200,

(d) 750. Note that many methods perform similar to a simple fixed baselines described in [26](Appendix:A.4), while TARNN achieves significantly better

solution in fewer training steps.

samples. In this dataset, 5% of the train data is used for

hyper-parameter selection.

4.1.2 Baselines

We use various state-of-the-art methods for evaluating

TARNN ’s performance, including popular RNNs such

as: gating methods(LSTM[22], FastGRNN[31]), ODE

inspired(iRNN [26], AntisymmetricRNN [10]), condi-

tional computation (SkipRNN [9]), as well as recent Uni-

tary/Orthogonal (nnRNN[27] & expRNN[34]). For base-

lines with gated/ungated variants, we report results for the

best of the two. We also tried to incorporate SkipRNNs [9]

in our baselines, but for many of our tasks, its performance

remained similar to the corresponding RNN variant. Hence,

we do not list SkipRNNs on all our experiments. Further-

more, adaptive computation time (ACT) [19] is not tabulated

as we found that performance of SkipLSTM is significantly

better. This has also been observed in [17], who shows

repeat-RNNs, a variant of iRNN outperforms ACT. Note that

we do not report baselines [33, 7, 36] which trade-off non-

linear hidden-to-hidden connections with linear connections,

since these interactions are complementary to our method

and can be incorporated in TARNN for computational ad-

vantages. Note that the datasets 5 and 6 (PTB-w, PTB-c

and Action recognition) are computationally expensive and

take days for a single run with standard baselines, hence we

do not run baselines on these datasets and simply cite the

current best known results. These datasets demonstrate that,

(a) TARNN can outperform baselines with smaller models,

and (b) since these datasets require stacked or other com-

plex architectures, our experiments show that multi-layered

TARNN can be trained with similar ease.

4.1.3 Code & Evaluation Metrics.

We implement TARNN in the tensorflow framework using

the pseudo code. Most of the baselines are publicly available

except Antisymmetric and Incremental RNNs which provide

pseudo code for implementation. For all the methods, we

report the accuracy, training time and the model parame-

ters. Unfortunately, we do not report train times for nnRNN

and expRNN as their code is written in PyTorch. We use

Adam([29]) for minimizing the loss function in Eq. 4. We

provide the final hyper-parameters along with the grid values

for our experiments in the appendix A.2. Our inference time

is comparable to FastRNNs and iRNNs, in contrast LSTMs

take 4x longer for inference (see Appendix A.9).

4.2. Results and Discussion

Figure 2 shows the results on Copy and Add tasks. Table 1

reports the performance on Pixel-MNIST, Permute-MNIST,

615154

Table 1: Results for Pixel MNIST, Permuted MNIST, Noise Padded CIFAR-10 and MNIST datasets. Since TARNN effectively focuses on informative

segments, it achieves better performance with faster convergence. Note that we only keep baselines which report results with single RNN layer and no batch

normalization (this excludes baselines such as [36], [14]).

Dataset Pixel-MNIST Permute-MNIST

Hidden

Dimension

Accuracy

(%)

Train

Time (hr)
#Params

Hidden

Dimension

Accuracy

(%)

Train

Time (hr)
#Params

FastRNN 128 97.71 16.10 18K 128 92.68 9.32 18K

LSTM 128 97.81 26.57 68K 128 92.61 19.31 68K

SkipLSTM 128 97.31 - 68K 128 93.72 23.31 68K

Antisymmetric 128 98.81 10.34 18K 128 93.59 4.75 18K

expRNN 128 97.35 - 34K 128 94.01 - 34K

nnRNN 128 97.81 - 51K 128 94.29 - 51K

iRNN 128 98.13 2.93 4K 128 95.62 2.41 8K

TARNN 32 98.43 2.13 10K 32 96.21 1.71 10K

TARNN 128 98.93 3.42 68K 128 97.13 2.96 68K

Dataset Noisy-MNIST Noisy-CIFAR

FastRNN 128 98.12 8.93 11K 128 45.76 11.61 16K

(Skip)LSTM 128 10.21 19.43 82K 128 10.41 13.31 114K

Antisymmetric 128 97.76 5.21 10K 128 54.70 7.48 41K

expRNN 128 97.92 - 37K 128 48.97 - 47K

nnRNN 128 98.06 - 54K 128 49.28 - 63K

iRNN 128 98.48 2.14 6K 128 54.50 2.47 12K

TARNN 32 98.78 1.31 8K 32 57.42 2.01 14K

TARNN 128 99.03 1.71 78K 128 59.06 1.05 100K

Noisy-MNIST and Noisy-CIFAR datasets. These results

show that TARNN outperforms various methods on many

benchmark LTD tasks, which can be attributed to its near

lossless gradient propagation between informative segments.

Additionally, tables 2 and 3 report TARNN ’s performance

on various PTB datasets, and table 4 lists accuracies of all

the methods on CS and CV variants of the Skeleton based

Action recognition task. These experiments demonstrate

that TARNN outperforms many baselines in learning short-

term dependencies on language modelling tasks and terminal

short term dependency task. Below we present TARNN ’s

useful properties backed by empirical evaluations.

Table 2: PTB Language Modeling: 1 Layer (standard small config except

the sequence length is 300 as per [31] as opposed to 70 in the conventional

PTB). TARNN achieves significantly better performance than the baselines

on this task (even with half the hidden dimensions than the baselines). Note

that embedding size is same as hidden dimension in these experiments, thus

smaller hidden dimensions result in smaller embedding storage as well.

Algorithm
Hidden

Dimension

Test

Perplexity

Train

Time (min)
#Params

FastRNN 256 115.92 40.33 131K

LSTM 256 116.86 56.52 524K

SkipLSTM 256 114.23 63.52 524K

iRNN 256 113.38 34.11 100K

TARNN 128 102.42 40.23 114K

TARNN 256 94.62 53.16 524K

(A) Fast convergence. Figure 2 shows the convergence

plots for various methods on the Add & Copy tasks. It

should be observed that TARNN solves both of these tasks

significantly faster than the baselines. Due to poor gradient

propagation, LSTMs only achieve the performance of fixed

strategies. While iRNN solves these two tasks, it requires

more training steps to reach the desired target error. Note

that we do not show Unitary RNNs on these tasks, as they

take significantly longer number of training steps to solve the

Addition task, and benefit from the modReLU activation on

the copy tasks [26]. Similarly, TARNN trains significantly

faster on LTD tasks presented in the Table 1 (at least 8×
faster than LSTMs and at least 1.3× faster than the best).

(B) Better generalization. Table 1 shows that TARNN

outperforms the baselines resulting in better accuracies on

all the terminal prediction tasks. On Noisy-CIFAR dataset,

TARNN achieves more than four points increase in accuracy,

while on the 300-length PTB language modelling task, we

get nearly 20 points better in perplexity than the best method.

(C) Noise resiliency. In order to evaluate TARNN’s

noise resilience, we conduct experiments on the Noisy-

MNIST and Noisy-CIFAR datasets [10, 26] which intro-

duces the informative segments in the first few timesteps

and embeds every other segment with noise. These datasets

requires both lossless gradient propagation along with the

ability to suppress noisy segments and only focus on infor-

mative segments. Intuitively we expect to perform better

on this task since TARNN selectively ponders on informa-

tive segments to strengthen their contribution and allows the

state transition to achieve near lossless gradient propagation.

Table 1 shows that TARNN achieves much better perfor-

mance than iRNNs/AntisymmetricRNNs which in turn beat

the remaining methods by significant margins.

(D) Adapts well on short-term dependency tasks. We

benchmark TARNN on PTB-300 dataset. We do not report

expRNN and nnRNN results as they perform poorly in com-

parison to LSTM [27]. Table 2 reports all the evaluation

metrics for the PTB Language modelling task with 1 layer

as setup by [31]. It can be clearly seen that TARNN out-

performs the baselines by roughly ≈ 10 point difference

715155

Table 3: Results for Penn Tree Bank Character and Word level language modelling tasks. These use shorter sequence length (typically 50-150) and use more

than one RNN layer for modelling. For the PTB-w dataset, where ever applicable, all the baselines report the results with dynamiceval[30]. Our model uses 3
layer composition. It can be seen that we report reasonable performance with much smaller models than other methods. With comparable model sizes as the

baselines we report higher performance.

Dataset PTB-c PTB-w

Hidden

Dimension
BPC #Params

Hidden

Dimension
Perplexity #Params

(GAM) RHN[54, 38] 600 1.147 16M 830 66.0 24M

Trellis-Net [3] 1000 1.158 13.4M 1000 54.19 34M

AWD-LSTM [41, 30] 1000 1.175 13.8M 1150 51.1 24M

Neural Architectural Search [55] 800 1.21 16.3M 800 62.4 54M

IndRNN [36] 2000 1.21 22M 2000 60.21 28M

Residual IndRNN [35] 2000 1.19 50.7M 2000 58.99 57M

Dense IndRNN [35] 2000 1.18 45.7M 2000 50.97 52M

TARNN 500 1.29 7M 500 60.90 11M

TARNN 1400 1.19 42M 1200 53.21 56M

in the test perplexity for similar model complexity while it

achieves ≈ 20 points for a larger model. Likewise, TARNN

adapts well to other short-term dependency tasks as observed

by Table 3 and Table 4.

(E) Low model complexity. Table 1, 2 show TARNN

performance with two different hidden state dimensions,

namely one configuration with similar model size as iRNN

and other one with similar model size as larger RNNs. With

model complexity similar to iRNNs, which are much com-

pact than the other baselines, we achieve better performance

than iRNNs. With larger model complexity, we achieve

much better performance on Permute-MNIST, Noisy-CIFAR

and PTB datasets. The other tasks are relatively saturated

as almost all the methods are near optimal. We point out

that the number of parameters reported in the Table 2 only

count the RNN parameters and omit the embeddings. We

achieve 102 perplexity with lower hidden dimension, i.e.

128. This means we require less number of parameters for

the embedding representation. Similarly, Table 3, 4 compare

TARNN’s performance on larger multi-layered RNN tasks,

namely PTB-c, PTB-w, and Action recognition. It can be

seen that TARNN achieves similar performance as known

baselines with much smaller model.

Table 4: Results for NTU RGB-d dataset (Skeleton based action recogni-

tion). We do not use augmentation on top of the Skeleton data. We point

out that TARNN achieves competitive performance with much lower com-

plexity model. We also ran a dense variant of TARNN similar to IndRNN

that results in better performance.

Dataset NTU RGB-d

Accuracy

CS (%)

Accuracy

CV (%)
#Params

2-Layer LSTM [47] 60.09 67.29 >1M

2-Layer PLSTM [47] 62.93 70.27 >1M

Enhanced Visualization+CNN [37] 80.03 87.21 -

Pose Conditioned STA-LSTM [5] 77.10 84.50 -

6-Layer IndRNN [36] 81.80 87.97 2M

Dense IndRNN [35] 84.88 90.43 2.3M

3-Layer TARNN 80.52 87.54 180K

Dense TARNN 82.31 90.86 5.6M

RNN Trainability. TARNN exhibits substantial improve-

ment with respect to (a) size of memory footprint, (b) com-

putational efficiency (faster convergence, training and infer-

ence times), and (c) generalization (test performance). As

evident from the Tables 1, 2, 3, and 4, TARNN is consistently

among the models with lowest number of model parameters.

It enjoys faster convergence rate as evident from the conver-

gence plots for addition and copying tasks (Figure 2) and toy

example (Appendix A.5). Thus improving the training time.

It should also be noted that TARNN has similar inference

time as vanilla RNNs. It also generalizes well as evident

from the test accuracy on multiple synthetic and real-world

tasks. This is attributed to the ability to achieve near identity

gradients and effectively skipping uninformative input seg-

ments. This leads to the conclusion that TARNN improves

vanilla RNN training. Due to the light footprint TARNN is

suitable for IoT tasks. We tabulate results for IoT datasets

where TARNN outperforms baselines (see Appendix 7).

5. Conclusion

We proposed a time adaptive RNN method for learning

complex patterns in sequential data. Our method, based

on modifying the time-constants of an ODE-RNN, the

continuous-counterpart of the vanilla RNN, learns to skip

uninformative inputs, while focusing on informative input

segments. Additionally, we develop parameter constraints,

which leads to lossless information propagation from infor-

mative inputs, by mitigating gradient explosion or decay.

A number of experiments on benchmark datasets validates

our approach against competitors with similar complexity.

Indeed, we realize competitive performance with a lighter

memory footprint, faster training time, without suffering

performance degradation or increased inference time.

Acknowledgement

This research was supported by National Science Foun-

dation grants CCF-2007350 (VS), CCF-2022446(VS), CCF-

1955981 (VS), the Data Science Faculty and Student Fellow-

ship from the Rafik B. Hariri Institute, the Office of Naval

Research Grant N0014-18-1-2257 and by a gift from the

ARM corporation.

815156

References

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier

Parra, and Jorge L. Reyes-Ortiz. Human activity recogni-

tion on smartphones using a multiclass hardware-friendly

support vector machine. In Proceedings of the 4th Inter-

national Conference on Ambient Assisted Living and Home

Care, IWAAL’12, pages 216–223, Berlin, Heidelberg, 2012.

Springer-Verlag. 15

[2] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary

evolution recurrent neural networks. In International Con-

ference on Machine Learning, pages 1120–1128, 2016. 1, 2,

13

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Trellis

networks for sequence modeling. In International Conference

on Learning Representations, 2019. 8

[4] David Balduzzi and Muhammad Ghifary. Strongly-typed

recurrent neural networks. In Proceedings of The 33rd Inter-

national Conference on Machine Learning, pages 1292–1300,

2016. 3

[5] Fabien Baradel, Christian Wolf, and Julien Mille. Pose-

conditioned spatio-temporal attention for human action recog-

nition, 2017. 8

[6] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Raz-

van Pascanu. Advances in optimizing recurrent networks.

2013 IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 8624–8628, 2013. 2

[7] James Bradbury, Stephen Merity, Caiming Xiong, and

Richard Socher. Quasi-recurrent neural networks. arXiv

preprint arXiv:1611.01576, 2016. 3, 6

[8] C. G. Broyden. A class of methods for solving nonlinear

simultaneous equations. Journal of Mathematics and Compu-

tation, 1965. 3

[9] Vı́ctor Campos, Brendan Jou, Xavier Giró i Nieto, Jordi Tor-

res, and Shih-Fu Chang. Skip RNN: Learning to skip state

updates in recurrent neural networks. In International Con-

ference on Learning Representations, 2018. 2, 5, 6

[10] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. An-

tisymmetricRNN: A dynamical system view on recurrent

neural networks. In International Conference on Learning

Representations, 2019. 1, 2, 5, 6, 7, 12, 13

[11] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and

David K Duvenaud. Neural ordinary differential equations. In

Advances in Neural Information Processing Systems, pages

6571–6583, 2018. 2, 3

[12] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using rnn

encoder–decoder for statistical machine translation. In Pro-

ceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 1724–1734,

2014. 1, 2

[13] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hi-

erarchical multiscale recurrent neural networks. CoRR,

abs/1609.01704, 2016. 2

[14] Tim Cooijmans, Nicolas Ballas, César Laurent, Çaxglar

Gülçehre, and Aaron Courville. Recurrent batch normal-

ization. arXiv preprint arXiv:1603.09025, 2016. 7

[15] Don Dennis, Durmus Alp Emre Acar, Vikram Mandikal,

Vinu Sankar Sadasivan, Venkatesh Saligrama, Harsha Vard-

han Simhadri, and Prateek Jain. Shallow rnn: Accurate time-

series classification on resource constrained devices. In Ad-

vances in Neural Information Processing Systems 32, pages

12916–12926. Curran Associates, Inc., 2019. 1, 2

[16] N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga,

Liam Hodgkinson, and Michael W. Mahoney. Lipschitz re-

current neural networks. In International Conference on

Learning Representations, 2021. 2

[17] Daniel Fojo, Vı́ctor Campos, and Xavier Giró i Nieto. Com-

paring fixed and adaptive computation time for recurrent neu-

ral networks, 2018. 6

[18] Kenichi Funahashi and Yuichi Nakamura. Approximation

of dynamical systems by continuous time recurrent neural

networks. Neural Networks, 6(6):801 – 806, 1993. 1

[19] Alex Graves. Adaptive computation time for recurrent neural

networks. CoRR, abs/1603.08983, 2016. 2, 6

[20] Christian Hansen, Casper Hansen, Stephen Alstrup,

Jakob Grue Simonsen, and Christina Lioma. Neural speed

reading with structural-jump-LSTM. In International Confer-

ence on Learning Representations, 2019. 2

[21] Josef Hochreiter. Untersuchungen zu dynamischen neu-

ronalen netzen. 1991. 1, 2

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 5, 6

[23] Herbert Jaeger, Mantas Lukosevicius, Dan Popovici, and Udo

Siewert. Optimization and applications of echo state networks

with leaky-integrator neurons. Neural networks : the official

journal of the International Neural Network Society, 20:335–

52, 05 2007. 2

[24] Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas

Mikolov. Variable computation in recurrent neural networks.

In International Conference on Learning Representations,

2017. 2

[25] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott

Skirlo, Yann LeCun, Max Tegmark, and Marin Soljačić. Tun-

able efficient unitary neural networks (eunn) and their ap-

plication to rnns. In International Conference on Machine

Learning, pages 1733–1741, 2017. 2

[26] Anil Kag, Ziming Zhang, and Venkatesh Saligrama. Incre-

mental {rnn}: A dynamical view. In International Conference

on Learning Representations, 2020. 2, 5, 6, 7, 12, 13, 16

[27] Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel,

Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, and Guil-

laume Lajoie. Non-normal recurrent neural network (nnrnn):

learning long time dependencies while improving expressiv-

ity with transient dynamics. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems

32, pages 13613–13623. Curran Associates, Inc., 2019. 2, 6,

7, 12, 13

[28] H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice

Hall, 2002. 1

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICML, 2015. 6

915157

[30] Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve

Renals. Dynamic evaluation of neural sequence models. vol-

ume 80 of Proceedings of Machine Learning Research, pages

2766–2775, Stockholmsmässan, Stockholm Sweden, 10–15

Jul 2018. PMLR. 8

[31] Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar,

Prateek Jain, and Manik Varma. Fastgrnn: A fast, accurate,

stable and tiny kilobyte sized gated recurrent neural network.

In Advances in Neural Information Processing Systems, 2018.

1, 2, 5, 6, 7, 12, 13, 15

[32] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. In Proceedings of the IEEE, pages 2278–2324, 1998.

5

[33] Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav

Artzi. Simple recurrent units for highly parallelizable recur-

rence. In Empirical Methods in Natural Language Processing

(EMNLP), 2018. 3, 6

[34] Mario Lezcano-Casado and David Martı́nez-Rubio. Cheap

orthogonal constraints in neural networks: A simple

parametrization of the orthogonal and unitary group. In In-

ternational Conference on Machine Learning (ICML), pages

3794–3803, 2019. 2, 6, 12, 13

[35] Shuai Li, Wanqing Li, Chris Cook, Yanbo Gao, and Ce Zhu.

Deep independently recurrent neural network (indrnn), 2019.

3, 5, 8

[36] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao.

Independently recurrent neural network (indrnn): Building a

longer and deeper rnn. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018. 3, 5, 6, 7, 8

[37] Mengyuan Liu, Hong Liu, and Chen Chen. Enhanced skeleton

visualization for view invariant human action recognition.

Pattern Recognition, 68:346 – 362, 2017. 8

[38] W. Luo and F. Yu. Recurrent highway networks with grouped

auxiliary memory. IEEE Access, 7:182037–182049, 2019. 8

[39] Julian McAuley and Jure Leskovec. Hidden factors and hid-

den topics: Understanding rating dimensions with review text.

In Proceedings of the 7th ACM Conference on Recommender

Systems, RecSys ’13, pages 165–172, New York, NY, USA,

2013. ACM. 5

[40] Stephen Merity, Nitish Shirish Keskar, and Richard Socher.

Regularizing and Optimizing LSTM Language Models. arXiv

preprint arXiv:1708.02182, 2017. 5

[41] Stephen Merity, Nitish Shirish Keskar, and Richard Socher.

Regularizing and optimizing LSTM language models. In

International Conference on Learning Representations, 2018.

8

[42] Zakaria Mhammedi, Andrew D. Hellicar, Ashfaqur Rahman,

and James Bailey. Efficient orthogonal parametrisation of re-

current neural networks using householder reflections. CoRR,

abs/1612.00188, 2016. 2

[43] Asier Mujika, Florian Meier, and Angelika Steger. Fast-slow

recurrent neural networks. In Advances in Neural Information

Processing Systems, pages 5915–5924, 2017. 2

[44] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli.

Resurrecting the sigmoid in deep learning through dynamical

isometry: theory and practice. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.

Garnett, editors, Advances in Neural Information Processing

Systems 30, pages 4785–4795. 2017. 13

[45] F. Rosenblatt. Principles of neurodynamics. Spartan Books,

Washington, D.C., 1962. 1

[46] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud.

Latent odes for irregularly-sampled time series. CoRR,

abs/1907.03907, 2019. 2

[47] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.

Ntu rgb+d: A large scale dataset for 3d human activity anal-

ysis. In IEEE Conference on Computer Vision and Pattern

Recognition, June 2016. 5, 8

[48] Sachin S Talathi and Aniket Vartak. Improving performance

of recurrent neural network with relu nonlinearity. arXiv

preprint arXiv:1511.03771, 2015. 2

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-

eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, 2017. 2

[50] Pete Warden. Speech Commands: A Dataset for Limited-

Vocabulary Speech Recognition. arXiv e-prints, page

arXiv:1804.03209, Apr. 2018. 15

[51] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and

William W. Cohen. Breaking the softmax bottleneck: A

high-rank rnn language model, 2018. 5

[52] Adams Wei Yu, Hongrae Lee, and Quoc V. Le. Learning to

skim text. CoRR, abs/1704.06877, 2017. 2

[53] Jiong Zhang, Qi Lei, and Inderjit S. Dhillon. Stabilizing

gradients for deep neural networks via efficient svd parame-

terization. In ICML, 2018. 2, 5, 13

[54] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k,

and Jürgen Schmidhuber. Recurrent highway networks. In

ICML, pages 4189–4198. JMLR. org, 2017. 2, 8

[55] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning, 2017. 8

1015158

