This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Effectively Leveraging Attributes for Visual Similarity

Samarth Mishra*!

'Boston University

Abstract

Measuring similarity between two images often requires
performing complex reasoning along different axes (e.g.,
color; texture, or shape). Insights into what might be im-
portant for measuring similarity can can be provided by
annotated attributes. Prior work tends to view these an-
notations as complete, resulting in them using a simplistic
approach of predicting attributes on single images, which
are, in turn, used to measure similarity. However, it is im-
practical for a dataset to fully annotate every attribute that
may be important. Thus, only representing images based
on these incomplete annotations may miss out on key in-
formation. To address this issue, we propose the Pairwise
Attribute-informed similarity Network (PAN), which breaks
similarity learning into capturing similarity conditions and
relevance scores from a joint representation of two images.
This enables our model to identify that two images contain
the same attribute, but can have it deemed irrelevant (e.g.,
due to fine-grained differences between them) and ignored
for measuring similarity between the two images. Notably,
while prior methods of using attribute annotations are often
unable to outperform prior art, PAN obtains a 4-9% improve-
ment on compatibility prediction between clothing items on
Polyvore Outfits, a 5% gain on few shot classification of im-
ages using Caltech-UCSD Birds (CUB), and over 1% boost
to Recall@ [ on In-Shop Clothes Retrieval. Implementation
available at https://github.com/samarth4149/PAN

1. Introduction

Learning similarity metrics between images is a cen-
tral problem in computer vision with wide-ranging appli-
cations such as face recognition [21, 35], image retrieval
[9, 25, 49], prototype based few shot image classification
[16, 36, 39, 44], continual learning of image classifica-
tion [2, 32, 37], and fashion compatibility or recommen-
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Figure 1: In prior work (e.g. [17, 28, 41, 50]), shown in (a),
attributes used for image similarity are predicted for each im-
age and then are used as input to the image similarity model.
However, this can result in loss of important information
about how attributes are expressed (e.g., different shades of
the attribute yellow breast). Thus, in our work, shown in (b),
we avoid this loss of information by using a joint represen-
tation of the two images to compute multiple disentangled
similarity scores, each corresponding to an attribute, and
relevances of each similarity score in the final similarity pre-
diction. This allows for more fine-grained reasoning about
different attribute manifestations, boosting performance.

dation [0, 40, 41, 42, 43, 52]. There has been a recent
trend of learning these metrics by decomposing the prob-
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Figure 2: PAN overview. Given a pair of images, the goal of PAN is produce its similarity score. We begin by using the
image encoder to generate feature vectors for input images. The image features are then fed into the Concept-conditioned
Similarity Module (CSM) that uses these features to generate a set of similarity scores with corresponding relevance weights.
This enables PAN to identify that two images do contain the same attribute, but that they are not relevant to the similarity
score since they are different manifestations of the attribute (see Fig 1 for an example). The final similarity score p € [0, 1] is
produced using a weighted combination of the similarity conditions and their relevance. Note that the different colored lines
(blue, pink) represent information flow pertaining to individual images.

lem into multiple axes of similarity or similarity condi-
tions, which has improved performance on a variety of
tasks [12, 20, 26, 27, 28, 40, 41, 42]. Generally speaking,
methods that automatically learn what these conditions rep-
resent [27, 40] have reported better performance than those
that predefine this knowledge using information like labeled
image attributes and item categories [20, 42, 41, 28]. We
argue this is primarily due to prior work using attributes to
predict their presence on single images (e.g. [17, 50, 41, 28]),
and subsequently using these predictions for predicting sim-
ilarity (Fig 1 (a)). This incurs a loss in information about
the different manifestations of an attribute, differences that
could affect similarity prediction, but may not be distinguish-
able in attribute annotations. While this could be addressed
by collecting a complete set of annotations of every possible
attribute and their different manifestations that could affect
similarity, such a collection would be expensive. In addition,
it is often impossible to articulate every fine-grained attribute
that may affect similarity.

In this paper, we introduce a Pairwise Attribute-informed
similarity Network (PAN) that effectively learns to use su-
pervisory information in the form of attribute labels, avoid-
ing information loss, to create a powerful image similar-
ity model that performs well on a range of diverse tasks.
To illustrate how we do this we refer to the example in
Fig 1(b). The figure shows two birds (of different cate-
gories) from the Caltech-UCSD Birds (CUB) dataset [45],

where they are both labeled positively for the binary at-
tribute has breast_color: :yellow, indicating that
they have yellow breasts. Prior work (e.g. [17, 28, 41, 50])
directly predicts attributes for each image, which tends to
lose information about subtle differences in the manifesta-
tions of the attributes, like the shades of the color yellow.
Our PAN model avoids this issue by first comparing images
in a feature space rather than attribute space, as illustrated in
Fig 1(b). Using the joint image features it then predicts both
a similarity score and a relevance for different similarity con-
ditions defined by the attributes. Even when the similarity
score may coarsely indicate that the two images are similar
since they have the same attribute, the model can pick up
on finer attribute differences and decide that the mere pres-
ence of the same attribute is of low relevance to a positive
similarity prediction. As our experiments will show, this
difference can make a dramatic impact on the performance
of the learned image similarity model.

One major challenge we face is the considerable differ-
ence in how attributes relate to the similarity functions that
arise in different tasks. For example, in few-shot classifica-
tion, where we use the labeled support images in a nearest-
neighbors classifier, the goal of a visual similarity classifier
would be to simply measure similarity by matching attributes
between the test and support images. In contrast, for tasks
like fashion compatibility, where two images are deemed
similar if they complement each other when worn together
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in an outfit, image pairs with different attributes (e.g., black
and orange) can indicate they are highly compatible. Fur-
thermore, simply modeling which attribute pairs indicate
compatibility is insufficient, since two attributes which often
result in compatible pairs could be deemed incompatible
depending on the other attributes that are present. For ex-
ample, black and orange items are often compatible, except
when some other attributes like red are also present. Thus,
visual similarity models must learn a far more complex set of
relationships between attributes when learning fashion com-
patibility. These differences mean that methods that do well
on few-shot classification often perform poorly on fashion
compatibly and vice-versa. PAN, however, can take this into
account via the method we use to convert the incomplete
attribute labels for single images into supervisory signals for
image pairs and improve performance across diverse tasks.
As we will discuss in Sec 3 (and illustrated in Fig 2), PAN
naturally allows for training and automatically learning simi-
larity conditions in the absence of any additional data like
attributes. We also find that PAN can improve performance
even in cases where only sparse attribute labels are available.
Summarizing our contributions:

e We propose a Pairwise Attribute-informed similarity
Network (PAN), which incorporates fine-grained at-
tribute information during training based on a joint
representation of two images enabling us to avoid the
loss of information suffered by prior work.

e While prior methods of incorporating attribute informa-
tion under-perform prior art, PAN outperforms them
on three diverse tasks—by 4-9% on fashion item com-
patibility prediction on Polyvore Outfits [41], 5% on
few shot classification on CUB [45] and over 1% Re-
call@1 on In-Shop Clothing Retrieval [22], demon-
strating PAN’s generality. In comparison to prior ap-
proaches of incorporating attribute supervision, PAN is
better by a wider margin, e.g., it outperforms them by a
sizeable 6-17 % on Polyvore Outfits.

e We propose different methods of using attributes for su-
pervising predictions along similarity conditions, delv-
ing into the interpretations of each, providing insights
for their applicability in different tasks.

e Our analysis also outlines the contributions of the train-
ing procedures, specifically training batch-size. This
has commonly been overlooked in prior work, but could
have significant impact on final model performance. In
doing so, we factor out contribution of the training
procedure in demonstrating PAN’s benefits.

2. Related Work

Visual Similarity Learning. Learning visual similarity can
be used for a wide range of visual tasks. A couple widely

used evaluation tasks for similarity learning are face recogni-
tion [5, 21, 24, 35] and image retrieval [25, 9, 49], the latter
itself subcategorized multiple ways depending on type of
images involved, e.g. fashion images, natural images. Image
retrieval has a fairly direct application in e-commerce. A
major portion of this industry consists of websites selling
clothing and accessories, giving rise to the challenging task
of predicting fashion compatibility [43, 14, 41], which, as
discussed in the introduction, is a form of visual similarity
different from the conventional notion. However, we use
similarity and fashion compatibility interchangeably as they
are addressed in the same manner in our paper.

Some prior visual similarity learning approaches focused
on learning a single similarity space [43, 14, 10]. More re-
cent work [42, 26, 41, 40, 20] found that learning multiple
similarity conditions, each capturing a different concept, per-
forms better. Concurrent to some of these, the role of using
contextual information in image encodings was discussed by
Cucurull et al. [6]. They used a graph convolutional network
(GCN) on images, with similarity links defining the graph
structure, to achieve state of the art performance in fashion
compatibility prediction.

Up until now, methods using predefined similarity con-
ditions [26, 42, 41] have underperformed methods that au-
tomatically learned these conditions [40, 20]. Via PAN, we
show a method of incorporating additional attribute anno-
tations to supervised similarity conditions while improving
final task performance, breaking this trend.

Few Shot Learning. Given the cost associated with acquir-
ing human-annotated labels, learning with few labelled ex-
amples is well sought after in computed vision, with a range
of prior work exploring possible solutions [23, 19, 18, 16].
Given a few examples with labeled classes, [44] classified
novel examples using attention weights to compute a proba-
bility distribution over known classes. They introduced an
episodic training paradigm, later also adopted by [31, 36].
Each episode in an N-way K-shot classification task is a sam-
ple of N classes, with K images from each class available to
the learning algorithm as “labeled” or “support” examples
for learning few shot classification. Each episode is also
accompanied by some query examples which the learner is
supposed to predict class labels for. For training, the learning
algorithm is provided episodes sampled from a base training
dataset, and it is typically evaluated on test episodes sam-
pled from a novel split of the dataset, containing classes
different from those appearing in the base split. Both [44]
and [36] adopted a strategy of minimizing a distance metric
in feature space between query images and a prototypical
support vector for training. Subsequent work [39] improved
few shot classification performance by learning a paramet-
ric distance measure rather than using a closed-form metric
without learnable parameters.

Another body of work uses meta-learning [8, 30, 38] to
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initialize a classification model’s parameters allowing for
fast adaptation to a new few-shot task using just a few pa-
rameter updates. [3] performed a thorough study of several
recent few-shot learning methods and proposed a strong
baseline classifier using cosine similarity and data augmenta-
tion. Some recent methods have also employed graph neural
networks for few shot classification [33, 15, 34].

Like [42, 41, 40], PAN lies in the space of decomposing
similarity prediction into multiple similarity conditions, but
unlike them, PAN can use attribute supervision when avail-
able to supervise these conditions and improve performance.
PAN is a general similarity learning approach and its bene-
fits with multiple similarity condition spaces and attribute
supervision can be seen with different image encoders, be it
a simple CNN or a contextual GCN encoder similar to that
used by [0], and on different tasks, like fashion compatibility
and few shot classification.

3. Pairwise Attribute-informed similarity Net-
work (PAN)

Given two images 1 and -, the goal of our PAN model
is to output a score in [0, 1] representing the probability that
the two images are similar. The primary contribution of our
approach lies in its Concept-conditioned Similarity Module
(Sec 3.1), which takes features h;, ho € R? representing
the input images (computed using an image encoder from
Sec 3.2), and predicts their similarity p using a weighted
combination of predictions along multiple axes of similarity
p and their relevance w. As discussed in the introduction,
learning relevance weights over the attribute defined similar-
ity conditions can help us selectively ignore them when said
attributes are present, but are not quite relevant in determin-
ing similarity between the images.

As our experiments demonstrate, the similarity conditions
can be unsupervised as in prior work [27, 40], but the aim of
PAN is to learn to supervise these conditions so they repre-
sent a particular concept (i.e., a particular attribute). These
attributes can represent any concept that has been annotated
in a dataset. For example, for CUB [45] these represent parts
of birds (i.e., the type of beak or tail features). In Polyvore
Outfits [41] and InShop Retrieval [22] these attributes can
contain low-level concepts like colors and textures as well
as high-level concepts like “formal” and “fashionable”. We
discuss how we convert the attributes/concepts, which are
annotated per image, into labels for image pairs in Sec 3.1.1.
Fig 2 provides an overview of our approach.

3.1. Concept-conditioned Similarity Module (CSM)

Given features h;, h; € R of two images, our Concept-
conditioned Similarity Module (CSM) generates a set of M
similarity scores p = [p1,. .., par] € RM and correspond-
ing relevance weights w = [wi,...,wy] € RM which

represent the importance of each similarity condition to the
final similarity score:

p=o (WIlhi—hjl+ b)) (1)
w = softmax (W;r|hl - h]| + bg) 2)

where M is the number of distinct similarity conditions,
| - | represents an element-wise absolute value, and o(-)
an element-wise sigmoid function. W, W, € R*M,
and by, by € RM are learnable parameters. Note that p
is supervised using attribute labels, but the relevance scores
w are treated as a latent variable and automatically learned.
The final similarity score p € [0, 1] is calculated as the sum
of similarity conditions weighed by their relevance, i.e.,

M
b= Z PmWm = pTw- 3)

m=1

Note that prior work that predicted multiple similar-
ity conditions in both the supervised and unsupervised
setting did so based off the features of a single image
(e.g., [20, 26, 41, 42]). In contrast, CSM predicts these
conditions off a joint representation of both images. As we
show in the supplementary, this results in a significant boost
to performance when combined with relevance scores. We
believe this is due, in part, to the fact that this joint repre-
sentation makes it easier to identify differences in attribute
manifestations (due to taking the difference of features for
the two images). Thus, our approach can more accurately
identify when to ignore attribute predictions.

3.1.1 Defining Similarity Conditions

Depending on the availability of labelled attributes for the
images, we can choose to supervise similarity conditions
to give them semantic meaning. This choice results in two
kinds of similarity conditions as described below:

Unsupervised similarity conditions. Similarity conditions
are treated as latent variables as done in [40]. The benefit
of this approach is that it requires no additional annotations.
Note that all the conditions we predict are based on a joint
representation of the two images, unlike in [40] where they
were computed per-image.

Supervised similarity conditions. Unsupervised similar-
ity conditions need no attribute annotations. However, we
would expect that with some expert knowledge of what might
be important in the image, as provided with attributes, we
can improve performance using these attributes effectively.
Hence, rather than treating each similarity condition as a
latent variable, supervised similarity conditions are trained
to reflect a specific concept. Since attribute annotations are
defined per image, and we predict attributes based off a joint
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representation, we convert these labels to represent both
images, as described next.

Suppose the images have M labeled binary attributes.
Each image ¢ is then accompanied with an M dimensional
vector a; € {0,1}M. For a pair of images i and j, we can
use a function f, : {0,1} x {0,1} — [0,1] to get an M
dimensional vector a; ; = f, (a;,a;). Elements of a; ;
can then be used as labels for supervising the similarity
conditions in the model output scores p. Note that if there
are missing entries in a; ; because of missing attribute labels,
these can be handled by zeroing out the loss resulting from
them using a binary mask over the indices of a; ;.

In Section 5.3, we experiment with common logical func-
tions as f,, which map to clear semantic meanings. For
instance, using f, = logical AN D, with the similarity
score p, the model is asked to predict whether a given at-
tribute appears in both images. Similarly with O R, model
predicts whether the attribute is in either image, with XOR
it predicts whether it is exclusively in one image, and with
X NOR it predicts whether the attribute is in both images or
in neither. A more detailed discussion of opting for these 4
choices for f, is in the supplementary. In practice for a given
dataset, a logical function can be selected using some prior
knowledge about how the attributes relate to the similarity
score, or can be selected empirically using held-out data.

3.2. Types of Image Encoder

As mentioned previously, the image encoder generates a
lower dimensional feature representation h for an image .
We experiment with three different image encoders.

Convolutional Network. Unless specified otherwise, we
use a simple convolutional neural network (CNN), specifi-
cally a ResNet [ 1] to obtain our image feature representa-
tion (details in the supplementary).

Graph Encoder (GE) [6]. For some image similarity tasks
like fashion compatibility, context can be an important cue
in determining how similar two items are. Thus, the sec-
ond encoder we explore is a graph convolutional network
(GCN) that operates on features extracted by a CNN. The
GE (composed of the CNN and GCN) takes in as input both
images from a dataset and an adjacency matrix over them
and simultaneously generates features for all images. This
encoder was also used by Cucurull et al. [6] and we refer
readers to Section 3.1 of their paper for complete details.

ProxyNCA++ [48]. Many tasks may also find context un-
helpful or that GCNs may be too computationally expensive
to use [20]. For example, in retrieval tasks a particular em-
phasis is placed on speed as methods may have to search
through millions of images in order to locate the desired
item. As such, for our last encoder we use a state-of-the-art
retrieval method when evaluating on the In-Shop Retrieval
task [22]. ProxyNCA++ at its core learns a distance metric

between images based on learning proxy feature represen-
tations for each class. Consequently, it relies on annotated
categories for images, and cannot directly be applied for sim-
ilarity metric learning where no such annotation is available.
We refer readers to [48] for complete details of this encoder.

3.3. Model Objective and Training

The final objective function on a pair of images x; and
x; is then defined as:

Lz, xj eij,a;;) =L (e;5,p) + MEF(aij,p).

“)

where ) is a tunable hyperparameter, e; ; € {0,1} is the
ground truth similarity label between images x; and x;,
LBCE is the binary cross-entropy loss and LE¢F is the
mean element-wise binary cross-entropy. Note that when
there are no supervision attributes, the second term in Equa-
tion 4 is 0. For training, an equal number of positive and
negative pairs are sampled randomly from the training split
and the model is trained to predict similarity between them.
Details regarding the exact process for each encoder are in
the supplementary.

4. Datasets and Tasks

Polyvore Outfits [41] contains 53K outfits (sets of fashion
items) for training, 5K for validation and 10K for testing.
It also provides fine-grained category information and text
descriptions of items. We use the 205 sparsely annotated
attributes from [29] as labels for supervising similarity condi-
tions. Evaluation involves two tasks. First, in the fill-in-the-
blank (FITB) outfit completion task a model is given a partial
outfit and has to select from four possible answers what item
would best complete it. Performance is measured by how of-
ten the answer was correct. Second, in outfit compatibility a
model is asked to discriminate between good and bad outfits.
Performance is measured using area under a receiver oper-
ating characteristic curve (AUC). Following [41, 6], outfit
compatibility scores are computed by averaging the simi-
larity prediction over all pairs of items in the outfit. There
are 10K FITB questions and 10K each positive and negative
samples for outfit compatibility (20K total) in the test split.

Since current methods get almost perfect performance
on the original outfit compatibility task, we created a more
challenging testing set of the same size by modifying the
procedure outlined in [41], that we refer to as the resampled
set. For outfit compatibility we collected new negative outfits
by replacing only part of a ground truth outfit, unlike the
original split which replaced all items. We randomly selected
the number of items to replace, and each item is replaced
with another of the same type in the same split (i.e., a top
could only be replaced with another top). Similarly, we made
a more challenging FITB task, where a model must select
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between 10 candidate answers (the original test had 4). As
with the original sampling, we ensured any replaced items
and candidate answers were of the same type.

CUB-200-2011 [45] consists of 200 classes and a total of
11,768 images of birds. We use the split provided by [3]
for our experiments, which contains 100 base classes, 50
validation and 50 novel classes. The CUB dataset also has
312 fine-grained binary attributes labeled for each image,
with an accompanying score on a 4 point scale indicating the
confidence of the assigned label. We drop all attribute labels
that have a confidence score less than or equal to 2.

We use the 5-way 5-shot classification task for evalua-
tion. Reported accuracies are averaged over 3 training runs
from different random initializations accompanied by 95%
confidence intervals. A test episode consists of a random
sample of 5 classes and 5 support images from the 50 classes
in the novel split of the dataset. 16 query images, distinct
from support images, are also sampled for each of these 5
classes. The accuracy for an episode is the 5-way accuracy
of a classifier over the 16 x 5 = 80 query images. A few shot
learning model is evaluated using its average classification
accuracy over 600 randomly generated test episodes.

In-Shop Retrieval [22] contains 52,712 images of clothes
from 11,967 classes. There are 14,218 query images and
12,612 gallery images for testing. Given a query image, the
task is to retrieve an image of the same item from the gallery
set. Note that the query and gallery sets do not overlap with
the training set. There are 463 attributes of clothes in total,
we use these attribute labels for our PAN-Supervised model.
Methods are ranked based on Recall@1.

5. Results
5.1. Comparison with prior work

Table 1, Table 2, and Table 3 compare the best settings
(encoder, number of unsupervised similarity conditions, efc.)
used by our model to representative state-of-the-art results
reported in prior work on Polyvore Outfits, CUB, and In-
Shop Retrieval, respectively. As shown in Table 1 we obtain
a 4% better FITB accuracy and 9% AUC boost over the
state-of-the-art on the fashion compatibility task using our
more challenging resampled test set for both tasks, while
also increasing FITB accuracy by 8% on the original split.
Similarly, in Table 2 and Table 3 we observe a 5% and
1% performance improvement over the state-of-the-art on
fine-grained few shot classification and In-Shop Retrieval, re-
spectively. Improvement over the diverse set of tasks demon-
strates PAN’s ability to generalize. Our PAN model can
also be useful when no supervision is provided, as our PAN-
Unsupervised model obtains a 3-4% gain over prior work
on Polyvore Outfits and CUB, while also boosting perfor-
mance on In-Shop Retrieval. Note that fashion compatibility
benefited from using a graph image encoder (GE), while few-

Original Resampled

Method FITB AUC | FITB AUC

(a) | TAN [41] 576 0.88 | 38.1 0.66
SCE-Net [40] 61.6 091 | 434 0.68
CSA-Net [20] 63.7 091 - -
CGAE [6] 74.1 099 | 608 0.67

(b) | X+ Attr. Multitask-GE | 73.8 099 | 57.6  0.65
Attr. Similarity-GE 69.5 098 | 529 0.65
PAN-Unsupervised-GE | 784 099 | 64.1  0.70
PAN-Supervised-GE 823 099 | 69.7 0.71

Table 1: Comparison of PAN on fashion compatibility on
Polyvore Outfits to (a) results reported in prior work or
reproduced with the author’s code and (b) other PAN and
attribute supervision approaches.

shot classification reported best performance with a CNN
encoder, which we shall discuss further in Section 5.2.

In addition to comparison with prior work, Table 1, Ta-
ble 2, and Table 3 also provide two alternative methods
of using attributes in an image similarity model. In “X +
Attr. Multitask™ we use a hard parameter sharing multitask
approach [ 1], where we share an image encoder, but have
separate output heads for each of the two tasks (one of them
being attribute classification, the other similarity link pre-
diction). In “Attr. Similarity” we use a standard framework
where we predict attributes for each image and then learn a
classifier implemented as a fully connected layer that takes
both attributes as input and predicts similarity (the general
framework used by [7]). Notably, both baseline methods
that use attributes only improve performance on few-shot
classification, but either make no difference, or are even
harmful to performance on the other two datasets (e.g., Attr.
Similarity reduces FITB performance by 5-8% compared
with the CGAE baseline). In contrast, our PAN-supervised
model outperforms all other methods, including on the fash-
ion compatibility task where we report a staggering 6-17%
boost over the attribute baselines on the resampled test set.

5.2. Choice of image encoder and batch size

Prior work has been inconsistent in its training methods
and controlling for hyperparameters like batch size, which
can significantly affect performance. Table 4 remedies this
by comparing training with the whole training split vs. using
minibatches. It also compares the effect of using a graph
encoder (GE) instead of a simple CNN. We see comparing
the numbers of row 3 of Table 4 to those of prior methods in
Tables | and 2 that training with the whole training set can
significantly improve performance, making even a simple
Siamese network trained using a triplet loss outperform most
recent methods on both tasks. We note here that in our
experiments with single batch training, we use a pre-trained
CNN to extract image features, and do not finetune it.
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Method Accuracy
(a) | Baseline++ [3] 83.58
ProtoNet [36] 87.42
TriNet [4] 84.10
TEAM [30] 87.17
CGAE [6] 88.00 + 1.13
(b) | X + Attr. Multitask-GE | 89.29 4+ 0.57
Attr. Similarity 92.21 +0.21
PAN-Unsupervised 92.60 + 0.10
PAN-Supervised 92.77 + 0.30

Table 2: Comparison of PAN on 5-way 5-shot classifica-
tion on CUB-200-2011 to (a) results reported in prior work
or reproduced with the author’s code and (b) other PAN
and attribute supervision approaches. Intervals provided are
95% confidence intervals over 3 different runs with different
random model initializations

Method Recall@1
(a) | MS [46] 89.7
NormSoftMax[51] 894
HORDE [13] 90.4
Cont. w/M [47] 91.3
ProxyNCA++[48] 90.9
(b) | ProxyNCA++ & Attr. Multitask 90.8
ProxyNCA++ & Attr. Similarity 86.4
ProxyNCA++ & PAN-Unsupervised| 91.4
ProxyNCA++ & PAN-Supervised 92.1

Table 3: Comparison of PAN on In-Shop Clothing Retrieval
to (a) results reported in prior work and (b) other PAN and
attribute supervision approaches.

It is also notable that using GE performs worse than
the simpler Siamese Network baseline on CUB, which we
believe is due to differences between tasks. Specifically, in
fashion compatibility links exist between items that may be
very different from each other. Thus, the additional context
provided through the GE may be more important than in
CUB, which has less variation between linked items since
they all contain the same bird.

5.3. Choice of attribute combination f,

As discussed in Section 3.1.1, choosing f,, as one of com-
mon logical functions can lead to different interpretations of
the attribute supervision provided. Table 5 compares these
functions that convert image attribute labels to pairwise la-
bels for use in our PAN model.

At first glance, predicting 1 when either both images
have an attribute or neither of them does (i.e. using X NOR)
seems like an intuitive choice. This would indicate how many
attributes match between two images. However, some func-
tions like fashion compatibility, where images may match
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Figure 3: Sensitivity to A from Eq. (4).

because they contain different attributes, X NOR would
not be appropriate since any non-shared attributes would
be ignored (i.e. have a supervision label 0). AN D, which
encourages models to predict 1 only when both images have
the attribute has same issue. However O R would not face
the issue since it can be 1 when either of the images has an
attribute, allowing the model to use its relevance weights
to decide whether a combination of attributes is relevant
for similarity. In Table 5, we see OR perform the best on
fashion compatibility on Polyvore Outfits.

Notably, we also see that OR is still competitive with
X NOR on the CUB dataset, where the goal is to determine
similarity in the more conventional sense, i.e., similar images
should have matching attributes. This task seems like a good
fit for X NOR. However, on CUB, many of the attributes
are mutually exclusive (e.g., a bird either has a “red beak”
or a “black beak”, but not both). If a model can reason
jointly about dissimilar attributes inferring that they should
not coexist, it can correctly function on this task. Relevance
weights in our model allow for this joint reasoning over
different attributes. Thus, training the model to predict 1
when either image has an attribute (OR supervision), can
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Single Batch | Polyvore Outfits-Resampled CUB-200-2011
Method Training M FITB AUC M Accuracy
Siamese Network - - 36.4 0.63 - 76.87+0.72
X + Attr. Multitask - - 37.2 0.63 - 8196+ 1.01
Siamese Network v - 44.7 0.69 - 89.01+£0.25
X + Attr. Multitask v - 46.1 0.69 - 75.82+042
Attr. Similarity v - 31.1 0.63 - 9221+0.21
PAN-Unsupervised v 50 27.3 0.62 200 92.60 £ 0.10
PAN-Supervised v 206 28.2 0.62 312 92.77 £ 0.30
X + Attr. Multitask-GE v - 57.6 0.65 - 89.29 +0.57
Attr. Similarity-GE v - 52.9 0.65 - 87.02x1.27
PAN-Unsupervised-GE v 50 64.1 0.70 200 89.55 +0.48
PAN-Supervised-GE v 206 69.7 0.71 312 90.16 + 0.51

Table 4: Effect of batch size and image encoder on performance on the fashion compatibility and few-shot tasks. GE refers to

the graph image encoder. Refer to Section 5.2 for discussion.

Polyvore Outfits CUB-200-2011 | In-Shop
Original Resampled
Attribute supervision label (f,) FITB AUC | FITB AUC Accuracy R@1
Present in either (OR) 824 099 | 69.7 0.71 92.77 + 0.27 91.5
Present in both (AN D) 76.3 098 | 624 0.62 92.61 £ 0.36 91.6
Present in both or neither (X NOR) | 76.1 0.99 | 60.8  0.66 92.60 + 0.41 92.1
Present exclusively in one (XOR) 69.0 098 | 51.8 0.65 92.61 £+ 0.20 91.6
AND concat XOR * 789 099 | 647 0.71 92.39 £0.13 91.9

Table 5: Effect of different kinds of attribute supervision resulting from different functions f,. *includes twice the number of

similarity conditions as others

also perform well on this task, and from the empirical results
in Table 5, we see that it does.

Providing both the AN D and XOR outputs (as a con-
catenation) seems lucrative since it seems more informative
than OR, but we found that the model uses its additional
capacity to overfit to training data. This is also challenging to
use since attribute predictions are noisy (see supplementary
for attribute recognition performance).

The In-Shop retrieval task involves fetching matches from
a gallery of different views of an object. X NOR is ideal
for matching different views in this case, since matching
attributes can be directly translated to the inference that two
views belong to the same object, therefore, are similar.

5.4. PAN sensitivity to \

Figure 3 shows PAN’s sensitivity to different weights (\)
of the attribute supervision loss. Performance is plotted for
both the testing and validation sets. On Polyvore Outfits, we
see that the PAN-Supervised-GE model performs well when
attribute supervision weight is relatively high (best accuracy
at A = 10). Model performance decreases on either side of
this, with a heavier decrease when A is increased significantly
(to 100). On the CUB dataset, we see a somewhat different
behavior where the best model performance is achieved at
A = 102, which is much lower, indicating relatively lower

attribute supervision is optimal for the task. Note that on the
In-Shop task we set A = 1 and did not tune it on that task,
demonstrating that PAN can be readily adapted to improve
performance on other tasks/models.

6. Conclusion

We presented PAN, a method of incorporating additional
attribute annotations in image datasets to learn a better simi-
larity predictor. We saw that PAN’s method of decomposing
similarity prediction into multiple conditions is general, func-
tions with a range of different image encoders and is flexible
in using attribute annotation, possibly sparse, when avail-
able. PAN outperformed state of the art on a diverse set of
three tasks—by 4-9% on fashion item compatibility predic-
tion on Polyvore Outfits, 5% on few shot classification on
CUB and over 1% Recall@1 on In-Shop Clothing Retrieval—
contrary to prior approaches of using attribute supervision,
which were unable to outperform methods that automatically
learned concepts in different similarity conditions. In show-
ing these benefits of PAN we factored out contributions from
training parameters like batch-sizes, hopefully informing
future work with our analysis.
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