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Alluvial aquifers by nature are complex caused by varied depositional environments. Developing a reliable
groundwater model to represent an alluvial aquifer is non-trivial. Also, relying on a single best calibrated model
may not be sufficient because of an inadequate choice of model parameter values. To better understand
groundwater dynamics and improve model prediction reliability, this study presents a Bayesian multi-model

Keywords: uncertainty quantification (BMMUQ) framework to account for model parameter uncertainty in complex allu-
Groundwater . . . . . . SRR
Modeling vial groundwater modeling. The methodology was applied to the agriculturally intensive Mississippi River al-

luvial aquifer (MRAA), Northeast Louisiana. An aquifer architecture was first constructed using 7,259 well logs in
the MRAA area which covers three fluvial deposits (alluvium, braided-stream terrace, and braided-stream
terrace-loess). A 12-layer MODFLOW model was then developed to address the alluvial aquifer complexity
and well calibrated through a genetic algorithm. This study quantified model parameter uncertainty in hydraulic
conductivity and specific storage of sand facies. Bayesian model averaging (BMA) with the Expectation Maxi-
mization (EM) algorithm was adopted to derive posterior model weights and head variances of 50 alternative
conceptual groundwater flow models, and thereby obtains BMA ensemble model predictions instead of only
relying on the best calibrated conceptual model. Results show that an estimated around 950 million m® of
groundwater storage loss occurs in 2015 with respect to the beginning of 2004, due to high groundwater demand
for irrigation in the MRAA area. Explicitly quantifying model uncertainty can produce more reliable groundwater
level predictions from BMA ensemble model. The presented groundwater modeling framework improves our
understanding of the MRAA and provides a valuable tool to assist agricultural water management.

Alluvial aquifer
Parameter uncertainty
Bayesian model averaging

1. Introduction Accurate prediction in groundwater levels matters to decision support in
sustainable water resources management, especially in an agriculture-

Groundwater serves as a critical source to meet water demands for dominated region. The prediction reliability of groundwater flow

different sectors, especially for agriculture in the USA (Dieter et al.,
2018). In Louisiana, an estimated 6.62 million m®/day of groundwater
was withdrawn in 2015, 41 percent of which was consumed for crop
irrigation (Collier and Sargent, 2018). Excessive groundwater pumping
can lead to various detrimental problems, such as groundwater level
decline, groundwater storage reduction and saltwater intrusion (Clark
et al., 2013; Pauloo et al., 2020; Smith et al., 2017; Yin and Tsai, 2018).

models is strongly influenced by different sources of uncertainty (IVus-
tafa et al., 2018; Tsai and Elshall, 2013). To ensure reliable predictions
and decision support, it is important to assess conceptual model uncer-
tainty related to the complexity of an aquifer system.

More than eleven (11) freshwater aquifer systems exist in Louisiana
(Stuart et al., 1994). Among them, the Mississippi River alluvial aquifer
(hereafter referred to as MRAA) is the second most pumped aquifer
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Fig. 1. Map of the study area including USGS surface-water stations, Mississippi River stations, USGS groundwater observation wells and major rivers. Different

geological formation zones are indicated with different colors.

(Collier and Sargent, 2018), which underlies the Mississippi Alluvial
Plain (MAP), from the north border between Arkansas and Louisiana to
the south-central part of Louisiana (Carlson, 2006; Stuart et al., 1994;
Whitfield, 1975). As the uppermost aquifer in this area, withdrawals of
groundwater from the MRAA are primarily used for irrigation of rice,
soybeans, and other crops. However, heavy pumping has led to sub-
stantial, widespread water-level decline in the northeastern Louisiana
(Yasarer et al., 2020). Groundwater recharge is exceeded by ground-
water pumping in some areas, and has resulted in extensive cones of
depression. Since the MRAA supplies a large quantity of water for
agriculture, understanding groundwater dynamics in the MRAA is
imperative to support sustainable agriculture. The MRAA has been
known to be highly complex in geological architecture in the Lower
Mississippi Valley (Krinitzsky and Wire, 1964). The complexity refers to
highly non-uniform sand thickness, interbedded clays, and pinch-outs,
which are revealed by a large quantity of well log data. However, the
MRAA was overly simplified in some region-scale groundwater models,

such as the Mississippi Embayment aquifer system (Clark et al., 2013).
Also, the existing groundwater studies related to the Mississippi River
Valley alluvial aquifer (MRVA) were mostly limited to Arkansas State
and Mississippi State, which include studies on (i) groundwater
modeling studies (Arthur, 2001; Gillip and Czarnecki, 2009; Reed,
2003), (ii) groundwater sustainability (Czarnecki et al., 2003), (iii)
water quality (Sharif et al., 2008; Sharif et al., 2011), and (iv) recharge
zone evaluation (Dyer et al., 2015). There is a lack of high-fidelity
groundwater models for the MRAA, which can assist proper agricul-
ture water management in the northeastern Louisiana. Nevertheless, the
development of a high-fidelity MRAA groundwater model is not trivial
given the complicated geological architecture of the alluvial aquifer
(Bowling et al., 2005; Vahdat-Aboueshagh and Tsai, 2021). Well logs are
the essential data to understand geology of the MRAA. Developing
realistic lithofacies architecture of the alluvial aquifer using a large
quantity of well logs is of great challenge (Pham and Tsai, 2017). This
study demonstrates the complexity of the alluvial aquifer by dealing
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Fig. 2. (a) Well logs used to construct the lithofacies architecture of the MRAA, and (b) map of the pumping wells in the MRAA.

with a huge number of well logs. Besides, the MRAA is hydraulically
connected to many streams, especially the Mississippi River, resulting in
considerable volumes of water being contributed to or taken from these
surface-water bodies. Pumping from the aquifer would induce ground-
water recharge from those streams and rivers. Understanding in-
teractions between the Mississippi River and the alluvial aquifer remains
in its infancy. Therefore, this study aims to fill in the gap and better
understand groundwater dynamics in the alluvial aquifer. This study
introduces an uncertainty-based modeling approach to develop a com-
plex three-dimensional groundwater model for the MRAA using a huge
amount of data sets including a large volume of well logs.

Considering one conceptual groundwater model may not adequately
sample the relevant space of plausible models (Ajami et al., 2007; Rojas
et al., 2008). Single model techniques are unable to account for errors in
model output resulting from an inadequate choice of model parameter
values (Liu and Merwade, 2019; Neuman, 2003). It has been recognized
that singling out the best concept model is not sufficient because the best
calibrated model does not necessarily guarantee better prediction. As a
consequence, a well-calibrated model does not always accurately predict
the behavior of the dynamic system. Choosing a single model out of
plausible alternative models may contribute to either type I (reject true
model) or type II (fail to reject false model) model errors (Li and Tsai,
2009; Neuman, 2003). Hence, different alternative conceptual models of
various parameter values for a hydrogeological system have been sug-
gested (Mustafa et al., 2018; Refsgaard et al., 2007; Troldborg et al.,
2007). Multi-model approaches can be used to estimate a broader un-
certainty band so that it is more likely to include unknown true pre-
dicted values. To fill in the gap, this study adopts the Bayesian model
averaging (BMA) approach (Hoeting et al., 1999) as a model averaging
technique to combine multiple model predictions and account for model
uncertainty.

The Bayesian model averaging method (Draper, 1995; Hoeting et al.,
1999; Tsai and Elshall, 2013) derives predictions from a set of alterna-
tive conceptual models to construct a predictive uncertainty distribution
using probabilistic techniques. The weights in the BMA methods are
assessed based on the relative performance of each model to reproduce
system behavior during the observation period (Draper, 1995; Vrugt and
Robinson, 2007). Recently, BMA has received attention of researchers in

diverse fields because of its more reliable and accurate predictions than
other existing model averaging methods, such as the Generalized Like-
lihood Uncertainty Estimation (Singh et al., 2010) and information
criterion averaging (Liu and Merwade, 2018; Yin and Tsai, 2020; Zhang
et al., 2009). The advantage of the BMA approach over other multi-
model combing methods is that BMA not only provides a deterministic
model weighted average prediction of the interested variable, but also
produces the forecast distribution which reflects the uncertainty asso-
ciated with the deterministic prediction (Mustafa et al., 2018; Raftery
et al., 2005). Such a multi-model approach is more likely to include
unknown true predicted values. An important challenge in implement-
ing Bayesian model averaging is to estimate posterior model weights and
prediction variances. There are different methods including the analyt-
ical techniques (Schoniger et al., 2014), the information-theoretic
criteria (Schoniger et al., 2014), and the Laplace approximation
(Singh et al., 2010). However, the analytical techniques strongly depend
on assumptions, and the information-theoretic criteria may provide
contradictory results in model weights (Poeter and Anderson, 2005; Ye
et al., 2010). In this study, a maximum-likelihood Bayesian model
averaging approach was applied to analyze predictive distribution of
alternative conceptual models because of its statistical robustness and
numerical efficiency. The study introduces a Bayesian multi-model un-
certainty quantification (BMMUQ) framework to account for model
parameter uncertainty in developing conceptual groundwater flow
models.

This work is structured as follows. The study first introduces the
MRAA model area. Second, data and procedures for the MRAA
groundwater model development are described. Third, the BMMUQ
framework is introduced. Fourth, results and discussions are described
with respect to the method demonstration to the MRAA area. Lastly,
conclusions and limitations of the study are drawn.

2. Study area

The Mississippi River alluvial aquifer (Fig. 1) is the uppermost
aquifer underneath the Mississippi Alluvial Plain that stretches from
southern Illinois to the Gulf of Mexico. The alluvium of the Mississippi
River and its tributaries formed the MRAA. As shown in Fig. 1, the study
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Fig. 3. Sand facies distributions in the MRAA model: (a) layer 2, (b) layer 5, (c) layer 8, and (d) layer 11. The cells represent sands. The elevation represents average

bottom elevation (m), NGVD 1929.

area covers approximately 18,000 km? and comprises the entire or
majority of 16 parishes in Louisiana. The freshwater extent of the MRAA
was delineated by the USGS (Smoot, 1986). The topography varies from
around 30 m (100 ft) in the north to 7 m (23 ft) above NGVD 29 (Na-
tional Geodetic Vertical Datum of 1929) in the south. The surficial ge-
ology includes Holocene Alluvium, Pleistocene Braided-stream
Terraces, and Pleistocene Braided-stream Terraces-Loess. The terraces
and terraces-loess in the north-central area belong to Macon Ridge that

has relatively high elevation compared to the Alluvium. Sand and gravel
of Pleistocene underlies fine sediments: silt and clay of Holocene that
generally confine the aquifer (Whitfield, 1975). The MRAA consists of
fining upward sequences from surface to bottom: clay, fine sand, me-
dium sand, coarse sand and gravel in a sequence (Carlson, 2006).

The model domain is hydraulically connected with its major streams
and with the Mississippi River as the eastern boundary, and is adjacent
to Quaternary-Tertiary deposits at the west. Major rivers and bayous are
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Fig. 4. Modeled sand and clay facies distribution in AA’ cross section (see Fig. 2a for location) along with nearby well logs.

included in the developed groundwater model, such as the Mississippi
River, Atchafalaya River, Red River, Black River, etc. As a primary water
source to agriculture, the MRAA provides about 795,000 m>/day of
groundwater (Collier and Sargent, 2018) for crops and has significant
contributions to Louisiana’s economy. The study investigates the impact
of irrigation pumping on groundwater dynamics through groundwater
modeling.

3. MRAA groundwater model development
3.1. Well logs

Well logs are the essential source to understand the geology of the
MRAA and construct lithofacies architecture of the MRAA. To faithfully
represent the geological architecture of MRAA, a total of 7,000 good-
quality drillers’ logs in the study area were collected from the well
registration record in the Louisiana Department of Natural Resources
(LDNR). The large amount of well logs was attributed to extensive
drilling of irrigation wells over the past decades. As shown in Fig. 2(a),
the distribution of well logs indicates extensive irrigation activities in
the central and north of the MRAA. Fig. 2(b) shows the 5,565 pumping
wells during 2004-2015. Comparing to irrigation wells that are nor-
mally shallow and do not penetrate the alluvial aquifer, drillers’ logs
contain valuable lithological information from land surface to the deep
bottom at the drilling sites. As processing lithological descriptions in
drillers’ logs is time-consuming and subjected to drillers’ in-
terpretations, this study follows methods from FElshall et al. (2013) to
categorize lithological descriptions into sand facies and clay facies.

Besides the drillers’ logs, 259 wireline electrical logs were also
collected from the LDNR. The electrical logs generally penetrate the
alluvial aquifer and provide deeper records. For the sediments in Loui-
siana, short-normal electrical resistivity of 20 ohm-m is a good threshold
to identify sand facies (Elshall et al., 2013). Spontaneous potential was
used to identify sand facies when saline water is present. The electrical
logs were hence used to estimate the aquifer thickness. The maximum
depth of the drillers’ logs can reach around 60 m, while some electrical
logs can reach more than 300 m.

3.2. Lithofacies modeling and MODFLOW grid generation

The study area was discretized into 18,045 horizontal cells with cell
size of 1 km by 1 km. According to the topography, a south dip angle of
0.0049° was applied to developing a lithofacies model. This study
adopted the indicator modeling technique by Pham and Tsai (2017) to
construct an MRAA lithofacies model by interpolating the 7,259 well log
data using the natural neighbor interpolation method (Tsai et al., 2005).
The full details of the lithofacies modeling technique can be referred to
Pham and Tsai (2017). The MODFLOW (Harbaugh, 2005) computing
grids with 12 model layers were then generated to represent the complex
sand facies structures of MRAA (shown in Fig. 3). Clay facies formed
inactive cells in MODFLOW. The bottom elevation of the model in the
south was around —58 m (-190 ft) such that the entire MRAA is included.
The MRAA structural complexity can also be illustrated in a north-south
cross section shown in Fig. 4. MRAA thickness is highly non-uniform.

Holocene clay is the relatively thinner in the north and thicker in the
south.

The total number of computational cells is 104,971. The layer
thickness varies between 1 m and 13 m. Sand distributions in all the 12
model layers can be found in supporting Fig. S1. The MRAA is generally
confined by clay deposits of varying thickness and extent at the land
surface and at the base. The major outcrops are located in the west-
central and northern areas. Sand thickness ranges from 18 m to 46 m
with an average thickness around 30 m. The averaged top clay thickness
is around 17 m. The existence of the bottom clay layer shows the sep-
aration of the MRAA from other aquifers below. The finer clay, silt and
sand sediments generally occur in the upper part of the alluvium, but
these sediments can occur to varying degrees throughout the entire
thickness of the alluvium. The outcrops provide potential rainfall and
river recharge corridors to the MRAA. Based on the bathymetric data of
Mississippi River at several locations that are available from the
geological investigations in the Lower Mississippi Valley (Saucier,
1967), the lithofacies model shows strong hydraulic connection between
the MRAA and Mississippi River at the east boundary of the model.

3.3. Groundwater use data compilation

According to the well registration record from the LDNR, the 5,565
pumping wells (see Fig. 2b) during 2004-2015 in the study area includes
5,536 active irrigation wells and 29 public and industrial wells. Monthly
irrigation pumping data were provided by the Louisiana State Univer-
sity, Agricultural Center. The irrigation season was from May to
September with peak pumpage in August. Monthly pumping data for
public and industrial wells were provided by the USGS Lower
Mississippi-Gulf Water Science Center. Monthly pumping data were
compiled to support MRAA groundwater modeling.

3.4. Groundwater recharge estimation

Groundwater recharge was estimated as a fraction of baseflow from a
hydrologic model, the Variable Infiltration Capacity (VIC) model, which
was set up by Oubeidillah et al. (2014) and Naz et al. (2016) that covers
the MRAA study area. The VIC model is a semi-distributed macroscale
hydrological model which solves the full water and energy balances (i.e.,
evapotranspiration, snowpack, runoff, and baseflow) independently at
each specified grid cell within a watershed (Liang et al., 1994). The VIC
model output used in this study was driven by the 1980-2015 Daymet
meteorologic forcings (Thornton et al., 1997) at 1/24° (~4 km) grid
resolution. As reported by Oubeidillah et al. (2014), VIC model has
overall satisfactory performance in the MRAA region with the Nash-
Sutcliffe efficiency (NSE) of monthly total runoff greater than 0.5 in
most of the hydrologic subbasins. Further modeling details can be
referred to Oubeidillah et al. (2014).

Since the VIC model does not explicitly model the process of
groundwater recharge, the amount of water flux that may contribute to
surficial recharge should still be a part of its baseflow component. This
study hence assumed that a portion of the baseflow may contribute to
the surficial recharge at the MRAA outcrop sand cells. The ratio between
baseflow and surficial recharge was further estimated during model
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calibration. This study assumed a constant ratio for the simplicity pur-
pose and to reduce overparameterization during model calibration.

3.5. Mississippi River stage for eastern boundary

Mississippi River is located at the eastern boundary of the MRAA
study area. The boundary shape was determined by the Mississippi River
flowline taken from the National Hydrography Dataset Plus (NHDPlus)
Dataset (Moore et al., 2019). NHDPlus integrates the National Hydrog-
raphy Dataset (NHD), National Elevation Dataset (NED), National
Watershed Boundary Dataset (WBD) and other national geospatial
datasets to provide in-depth information of river channels and network
(such as connectivity, channel elevation, slope, cumulative drainage
area, etc.). Mississippi River was treated as a general head boundary
(GHB) condition within the MODFLOW model, where river stage and
hydraulic conductance were needed for sand cells that contact the river.
Readers are referred to Harbaugh (2005) for the definition of hydraulic
conductance in the GHB condition. Mississippi River stages in
2004-2015 at six (6) stream gauges were collected from the U.S. Army
Corp of Engineers river gage network. Four (4) stations (Vicksburg,
Natchez, Knox Landing, and Red River Landing) are in the study area
(Fig. 1) while two (2) stations (Greenville and St. Francisville-South) are
outside of the study area. Monthly river stages for all cells on the Mis-
sissippi River flowline were derived by interpolating the gage data (see
supporting Fig. S2). The river stage is normally above flood stage at
Vicksburg between April and June and at Red River Landing between
May and June. The hydraulic conductance of the Mississippi River was
determined through the model calibration process.

3.6. Input of major streams

Ten (10) major streams including Atchafalaya River, Tensas River,
Red River, Black, Ouachita River, Little River, Boeuf Rivers, Bayou
Macon, Bayou Bonne Ide and Bayou Bartholomew were involved in the
developed groundwater model. The NHDPlus flowlines of these major
streams are shown in Fig. 1. The streams were considered as a head-
dependent flux boundary condition through the River Package in the
MODFLOW model. USGS streamflow stations (Fig. 1) were used to es-
timate stream stages for these rivers. The bottom elevations of these
rivers were determined from the available geologic maps and cross
sections (Fleetwood, 1969; Saucier, 1967). The hydraulic conductance
of the streams was estimated through the model calibration process.
Readers are referred to Harbaugh (2005) for the definition of river hy-
draulic conductance in the River Package.

3.7. Initial head and Non-River boundary conditions

The initial groundwater head distribution on January 1, 2004 was
estimated by interpolating groundwater level data from the USGS
observation wells (Fig. 1) that are in or around the study area and
screened at the MRAA. Vertical variation of groundwater head is
neglected for the initial head distribution. It is understood that the
MRAA extends northward and southward beyond the modeling domain
by the Mississippi River changing course and contacts Quaternary-
Tertiary aquifers in the west. Therefore, the northern, southern and
western non-river boundaries of the MRAA model are considered as
time-variant specified-head boundaries. Monthly boundary heads in
2004-2015 were derived by interpolating 826 groundwater level time
series data from 25 USGS observation wells.

3.8. Model calibration

In this study, model parameters to be calibrated were hydraulic
conductivity, specific storage, specific yield, hydraulic conductance of
the Mississippi River, hydraulic conductance of the major streams, and a
fraction of the VIC-modeled baseflow for groundwater recharge. A ge-
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netic algorithm (Cao and Wu, 1999) was adopted to estimate the model
parameters by minimizing the root mean square error (RMSE) between
the calculated and observed groundwater heads:

RMSE = (@]

where N is the number of groundwater head data (N = 826 in this study).
h; is the simulated groundwater head and h?* is the observed ground-
water head.

4. Bayesian Multi-model uncertainty quantification

Subjected to uncertainty arising from model parameters, singling out
the best concept model is not sufficient to account for errors in model
outputs because the best calibrated model does not necessarily guar-
antee better prediction. Instead of relying on a standalone groundwater
flow model, extracting information from an ensemble of groundwater
models is more reliable. The study presents a Bayesian multi-model
uncertainty quantification (BMMUQ) framework to account for model
parameter uncertainty and produce reliable groundwater level pre-
dictions in the MRAA. The BMA predictive mean (h) is expressed as
follows:

K
E = Z (D]J’lk (2)
k=1

where h; is the mean groundwater head simulated using the Kk
groundwater flow model. K is the number of groundwater flow models
in the ensemble members (K = 50 in this study); and wy is the model
weight for the k™ model.

4.1. Bayesian model averaging

Bayesian model averaging (BMA) is a probabilistic scheme for
combining predictions from multiple models (Hoeting et al., 1999) to
provide a more reliable description of total prediction uncertainty. The
BMA predictive probability density function (PDF) (Raftery et al., 2005)
of a variable, such as groundwater head in this study, is the weighted
average of the PDFs associated with each model member forecast in the
ensemble. In case of a groundwater level h to be predicted on the basis of
training data hr using K groundwater models, the BMA predictive PDF
is:

K

p(hlhr) = " p(Milhr)gi(h|M) 3

k=1

where M; is the k™ groundwater flow model used to simulate ground-
water head; p(hlhr) is the BMA posterior probability to predict the
quantity h on the basis of training data hr using all groundwater models
(M, ...,Mg); g (h|M) is the conditional PDF which can be interpreted as
the conditional PDF of h conditioned on My, given that My is the best
forecast model in the ensemble; and p(M |h) is the posterior probability
of model M given the training data hr, which is based on model per-
formance in the training period (T). In the BMA model, the posterior
model probability p(Mk|hr) represents the weight for each model
member in the ensemble, which is ay in equation (2). All weights add up
toone,i.e., > p(Milhr) = > ;o = 1. Estimation of the weight p(M|ht)
is described in the next subsection. Therefore, the BMA predictive mean
is:

K
h= ZP(Mk\hT)hk @)
=

where h is the BMA predictive mean of the groundwater head. The BMA
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method considers the uncertainty of each model’s forecast and is used to
develop a predictive distribution rather than only a weighted average.
So, the BMA method provides an average forecast along with an asso-
ciated posterior distribution. The forecast distribution can be used for
developing predictive confidence intervals. Based on the law of total
variance, the BMA predictive variance var(h|hr) of groundwater head is
as follows:

K K
ar(hlhr) =Y var(h|hr)p(Milhr) + > (h = hi)’p(My ) 5)
=1 =
where var(hg|hr) represents the variance of hx conditioned on
training data hy under the conceptual groundwater flow models, M, ...,
Mk. The first term in the right-hand side of Eq. (5) represents the within-
model variance, while the second term represents the between-model
variance.

4.2. Expectation Maximization (EM) method

Successful implementation of the BMA method requires estimates of
the model weights, and prediction variances, of the conditional PDFs of
the ensemble members. The values are estimated by maximum likeli-
hood on the basis of training dataset. Typically, it is assumed that the

Groundwater flow modeling (Step 1)

v

Sampling of model parameters (Step 2)

v

Monte Carlo simulation (Step 3)

v

Eq. (2) Weighted average model

Eq. (3) Predictive PDF

Eq. (4) Predictive mean |«

Eq. (5) Predictive variance

Bayesian model averaging

Eq. (6) Box-Cox power transformation

Eq. (7) Log-likelihood function

Eq. (8) Latent variable as E step

Eq. (9-10) Weight and variance as M step

EM algorithm to max Eq. (7) and derive L
model weights and variances (Step 4) |

Fig. 5. The flowchart of Bayesian multi-model uncertainty quantification
(BMMUQ) framework.
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PDF of predicted quantity approximates a Gaussian distribution. In case
of non-Gaussian data, Box-Cox power transformation is used to map the
variables from their original space into Gaussian space (Box and Cox,
1964). In this study, the observed and simulated groundwater head data
were normalized using Eq. (6).

-1
h(d) = Y
In(h),A=0

©

where 1 is the power that used to transform the data to a normal dis-
tribution, which varies from —5 to 5. Different powers were tested and
the best power that yielded the closest normal distribution of trans-
formed groundwater head data was found and applied. In order to es-
timate model weights and groundwater head standard deviations, on the
basis of training data, the log-likelihood function (7) below is
maximized.

K
= Zln( Z A 7))
=

where the summation is over locations (I) and time (¢) in the training
data set. The weight @ = {1, ..., wx}, the variance 6> = {07,...,02}.
Generally, the independence assumption is unlikely to hold, but is not
expected to have significant impact on estimates because Eq. (7) cal-
culates the conditional distribution for a scalar observation given fore-
casts, rather than for several observations simultaneously (Raftery et al.,
2005). There are no closed-form solutions that maximize Eq. (7)
analytically (Vrugt and Robinson, 2007). Expectation-maximization
(EM) algorithm is used to find the maximum likelihood for BMA
model training. The EM method is iterative and alternates between two
steps, the E (or expectation) step and the M (or maximization) step by
using a latent variable z. In the E step, z is estimated given the current
values of the BMA weights and variances. The E step is:

(hlI‘Ek/h(’]( 1))
(hzz\Ek,mGk U)

~) _ (l)k -1

Lk = 1)
Zk:l wk

®

where the superscript j refers to the jth iteration of the EM algorithm, and
the mean value Eg, is the corresponding prediction from k™ ground-
water flow model, which is same with h; in equation (2). The initial
value o is 1/K, and the initial value 62 is v/h,, where h, is the trans-

formed groundwater head observation. N(hlt\Ek_h,o,gfl)) represents a

normal density with mean Ey ;, and standard deviation ag V. The M step
then consists of estimating the weight wy and standard deviation o} with
the current estimation of 2; ;. Thus,

. 1 "
of =3 3 ©
Lt

gi(i) _ Z/ﬁggz(hlj\;) Elszlr)z7 (10)
212k

where n is the number of observations in the training data set. h;, is an
observed value. By alternating between the E step and the M step,
convergence is achieved when the changes of the latent variables 7 =
{Zk 1}, the weights @ = {w;,...,wk}, the variances 6* = {62, ..., 6%}, and
the log-likelihood are smaller than a tolerance. The study adopted a
tolerance of 10, The log likelihood is guaranteed to increase at each EM
iteration (Wu 1983) and reaches the maximum of the likelihood.

4.3. Multi-model generation and data description

Selection of alternative groundwater models is an important aspect
of Bayesian model averaging. We understand that many sources, such as
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initial conditions, boundary conditions, geological architectures and
model parameters (Li and Tsai, 2009; Mustafa et al., 2018), can
contribute uncertainty to groundwater models. Nevertheless, this study
only considered hydraulic conductivity and specific storage of sand
facies for methodology demonstration. A pre-specified fifty (50) alter-
native groundwater flow models were generated through combination
of model parameters which follow multivariate Gaussian distribution.
The mean values of model parameters (hydraulic conductivity and
specific storage of sand facies) were from the calibrated model based on
maximum-likelihood estimation. This study adopted the linear statisti-
cal approach (Bard, 1974) to determine the covariance matrix of model
parameters as follows:

1 S obs121 7T 1—1
Cov = m;[h,-—hi I, an
where Cov is the covariance matrix of model parameters. J is the N x F
Jacobian matrix of sensitivities of N data points with respect to F model
parameters.

The BMMUQ framework is implemented as the following steps:

1. Constructing a lithofacies model in the MRAA area which covers
three deposits (alluvium, braided-stream terrace, and braided-stream
terrace-loess). A 12-layer MODFLOW model was then developed and
well calibrated through a genetic algorithm.

2. Generating 50 samples of model parameters from multivariate
normal distribution with mean vector and a covariance matrix. The
mean values of hydraulic conductivity and specific storage of sands were
from the calibrated MODFLOW model. The covariance matrix was ob-
tained by calculating the Jacobian matrix in equation (11) (Bard, 1974).

3. Conducting Monte Carlo simulations (MCS). 50 sets of simulated
groundwater level outputs were obtained through running MODFLOW-
2005 models using the sampled parameter values in Step 1.

4. Deriving model weights and variances. The posterior model
weights and groundwater head variances of each ensemble model
member were calculated after convergence using the EM algorithm
based on training data.

5. Obtaining an average forecast along with an associated forecast
distribution. Finally, multi-model predictions were obtained by assess-
ing the BMA predictive mean and variance using Eq. (4) and Eq. (5).

The BMMUQ framework is illustrated in Fig. 5.

Through conducting Monte Carlo simulations, 50 sets of simulated
groundwater level outputs were obtained through running groundwater
models using the sampled parameter values. Groundwater level data
from the USGS observation wells along with simulated groundwater
levels from the 50 alternative models comprise the training and testing
datasets. 544 groundwater level data (~75% of total) in this study were
used for training, and independent 189 groundwater level data (~25%)
at four USGS observation wells (Co-215, Ma-64, Fr-1092 and Ri-124)
were used for testing. Training data were used in the study to calcu-
late model weights and groundwater head variances of 50 model
members. Independent testing data were used to validate model
performance.

5. Results and discussions
5.1. Model parameters and calibration

The simulation time of the MRAA groundwater model was 12 years
from 2004 to 2015 with 144 monthly stress periods. The USGS
groundwater level data from USGS observation wells exhibit two
distinct patterns of groundwater levels. Groundwater levels in the Al-
luvium shows much greater variation compared to those in Braided-
stream Terraces, indicating that groundwater in the Alluvium response
much fast to nearby rivers. The USGS groundwater data also show that
groundwater level behavior in the Braided-stream Terraces-Loess is
different from that in the Braided-stream Terraces although
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Table 1
Calibrated model parameters for the Mississippi River Alluvial Aquifer.
Parameter Range” Estimate
Hydraulic conductivity for Alluvium (m/day) 5-300 279.5
Hydraulic conductivity for Terrace (m/day) 5-300 76.9
Hydraulic conductivity for Terrace-Loess (m/day) 5-300 95.5
Specific storage for Zone Alluvium (1/m) 10°-10°  9.605 x 10
Specific storage for Zone Terrace (1/m) 10°-10°%  8.735 x 10°
Specific storage for Zone Terrace-Loess (1/m) 10°-10°  3.033 x 10°
Specific yield for Zone Alluvium 0.15-0.45  0.4379
Specific yield for Zone Terrace 0.15-0.45  0.3796
Specific yield for Zone Terrace-Loess 0.15-0.45  0.4457
Mississippi River conductance (m?/day) - 883
Major stream conductance per unit length (m?/day/m) - 3.564
Surficial recharge fraction - 0.0532
@ Range refers to Freeze and Cherry (1979).
35
RMSE=1.52 (m)
@ 30 F (826 data points) ]
E NSE=0.9107
=
]
>
L25F ]
=
B4
g s
S20; ]
= s
2 Y
on “4
el
S 15¢ " ]
“ *
— .
8 .
= .
< o
10t 28 ]
5 1 1 1 1 1
5 10 15 20 25 30 35

Observed groundwater levels (m)

Fig. 6. Scatter plot for observed groundwater level vs. simulated ground-
water level.

groundwater level variations are low in both formations. Therefore,
hydraulic conductivity, specific storage, specific yield of the MRAA were
parameterized into three zones: Alluvium, Braided-stream Terraces, and
Braided-stream Terraces-Loess. Other parameters are considered lum-
ped values. Totally, there are 12 parameters to be estimated (Table 1).

A genetic algorithm (Cao and Wu, 1999) was adopted to estimate the
12 model parameters by minimizing the root mean square error (RMSE)
of simulated 826 groundwater level at USGS observation wells from
January 2004 through December 2015. The estimated parameters are
listed in Table 1. Fig. 6 shows the scatter plot of calculated vs. observed
groundwater heads. The calculated RMSE is 1.52 m and the overall NSE
is 0.91, which is considered a good calibration result to the observed
USGS groundwater levels. Hydraulic conductivity of Alluvium was
estimated around three to four times higher than Braided-stream Ter-
races and Braided-stream Terraces-Loess, as shown in Table 1. The study
estimated that about 5.32% of the VIC-modeled baseflow may recharge
MRAA. Rainfall-based groundwater recharge was only given to the
outcrop sand cells. As a result, surficial recharge rates were estimated up
to 0.55 mm/day (see supporting Fig. S3). Surficial recharge is insignif-
icant to the MRAA as a source of water to the aquifer. In addition, water
budget analysis through ZONEBUDGET (Harbaugh, 1990) shows that
the aquifer started to lose groundwater since August 2005, with an es-
timate of 950 million m® of groundwater storage loss in 2015 relative to
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Fig. 7. (a) Estimated monthly storage change (million m®) and cumulative groundwater storage change (million m®) with respect to the beginning groundwater
storage of 2004, and (b) estimated monthly pumping rate (million m®/day).
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Fig. 8. Simulated groundwater level distribution and velocity field in the MRAA area: (a) July 31, 2015 (irrigation season), and (b) October 31, 2015 (post-irri-

gation season).

the beginning of 2004, as shown in Fig. 7. The storage variation exhibits
a periodic pattern that is strongly corresponding to seasonal ground-
water pumping, where groundwater loss mainly occurred from May to
September each year. This is mainly attributed to high groundwater

demand for crop irrigation in the MRAA area. The groundwater head
distribution and velocity field of the MRAA area for the irrigation season

(July 2015) and post-irrigation season (October 2015) are shown in
Fig. 8. The model found a noticeable cone of depression occurs in the
southwestern area during the irrigation season, where dense wells are
heavily pumped for irrigation. The aquifer is then replenished in the fall.



J. Yin et al.

(a)

T T

50 60

Iteration
T

40 90

0.8 T T T T

(©)

Journal of Hydrology 601 (2021) 126682

o

(b)

Max|Aln(c?)|
w £ o

[¥

i

=
=

40 50

Iteration
T

60 70 80 90 100

o)

(@

~ v

Max|Alog(likelihood)|
oW

20 30 40 50

Tteration

60 70 80 90

100

50 60 70 80
Iteration

10 20 40 90 100

Fig. 9. Convergence of four indicators after EM iterations during the training period: (a) maximum absolute change of weight (|Aw|), (b) maximum absolute change

of logarithmic variance (|Aln(s?)
hood (|Alog(likelihood)|).

Weight

20

25 30
Model index

35 40 45 50
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5.2. Convergence of Expectation Maximization algorithm and BMA
weights

After model calibration, 50 models were generated by sampling
model parameters. The Expectation Maximization algorithm alternated
between the E step in equation (8) and the M step in equations (9) and
(10) and iteratively estimated model weights and prediction variances.
As shown in Fig. 9, the four indicators converged after 100 iterations,
including the maximum absolute change of model weight |Aw| in Fig. 9a,
maximum absolute change of logarithmic variance |Aln(az)| in Fig. 9b
where variance measures how far each groundwater level in the set is
from the mean, maximum absolute change of latent variable |Az| in
Fig. 9¢, and maximum absolute change of logarithmic likelihood
|Aln(likelihood)|in Fig. 9d where likelihood represents the probablity
that predictions are close to observations. During the process, 544
groundwater level data from 15 USGS observation wells were used to
calculate posterior model weights and variances. Fig. 10 shows model
weights of the fifty (50) alternative groundwater flow models at
convergence obtained using equations (8)-(10). It shows that ten
groundwater models stand out and produce their best predictions with
relatively higher weights (greater than 0.02, the equal weight of 50
model members), while some model members have lower weights due to
relatively poor model performance.

10

), () maximum absolute change of latent variable (|Az|), and (d) maximum absolute change of logarithmic likeli-

5.3. Validation of BMA prediction performance and evaluation of
uncertainty

In this study, independent groundwater level data from four obser-
vation wells (Co-215, Ma-64, Fr-1092 and Ri-124) that are well
distributed in the domain were used for model performance validation.
The performance difference in these models is shown in Fig. 11 by
groundwater level RMSE. The BMA model predict better than ensemble
mean, except at well Co-215. The BMMUQ framework has decreased the
RMSE of head prediction compared to most model members and
ensemble mean predictions. Besides, BMA predictions are generally
found closer to those best model predictions whereas ensemble mean
predictions are generally positioned in the middle of model members, as
is shown in Fig. 11 Additionally, the difference of RMSEs among these
predictions varies from one well to another. Overall, all the models
perform better at wells Co-215, Fr-1092 and Ri-124, with the RMSE less
than 0.8 m, while the RMSE is slightly worse at well Ma-64. This is
because there is a wider range of training data from well Ma-64
compared to other well sites. From the perspective, BMA model is
more reliable and trustworthy when used for predictions at locations
other than the four validation well sites because BMA models perform
consistently well.

In addition, the BMA method provides a forecast distribution that
can be used for constructing confidence intervals using the BMA pre-
dictive mean in equation (4) and BMA predictive variance in equation
(5). Fig. 12 shows the 95% confidence interval (CI) of BMA groundwater
level predictions. It can be seen that the 95% CI of the BMA predictions
covers most of the observations. This is an indication of the improved
model predictions and accuracy of the uncertainty bounds. The band-
width (space between upper interval and lower interval) reflects un-
certainty and it is dynamic across all time periods. The results from
Fig. 12 reveal that an explicit consideration of conceptual model un-
certainty is necessary to improve accuracy of uncertainty bounds.

6. Conclusions

The study presents a Bayesian multi-model uncertainty quantifica-
tion framework to explicitly account for uncertainty originating from
errors in model parameter values of a distributed 12-layer MODFLOW
model for the Mississippi River alluvial aquifer, Northeast Louisiana.
The study focuses on two objectives: groundwater modeling and un-
certainty quantification.

A facies model was firstly constructed based on a large number of
well logs and confirmed complexity of the MRAA, which encompasses
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Pleistocene terraced braided-stream deposits and Holocene alluvium. A
distinct confining layer was found underneath the base of MRAA, indi-
cating that the alluvial aquifer has limited connection with its under-
lying aquifers. To better understand groundwater dynamics in the
agricultural area, a high-fidelity conceptual MODFLOW model was then
developed and well calibrated using a genetic algorithm. The study
found that parameterizing the model domain into the three zones was an
effective approach. The groundwater model was able to demonstrate

11

low groundwater level variability in the terraces and high groundwater
level variability in the alluvium. An estimated 950 million m® of
groundwater storage loss occurred in 2015 relative to the beginning of
2004 due to high groundwater demand for irrigation in the MRAA area.

This study further proposed a multi-model approach to quantify
model prediction uncertainty through Bayesian model averaging. Pos-
terior model weights of fifty alternative groundwater flow models were
derived to construct a BMA weighed ensemble model for groundwater
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level prediction. The result confirms that the BMA ensemble model has
decreased the RMSE of head prediction compared to most model
members. The BMMUQ framework is a useful tool to have better and
more reliable groundwater level predictions, which is important for
decision support applications. The framework is highly flexible to be
implemented as there is no limitation to the number and complexity of
alternative conceptual models. Also, future studies can consider other
sources of uncertainty beyond the current scope of the study. However,
the number and complexity of alternative conceptual models should be
considered based on the modelling objective during implementation of
the integrated uncertainty assessment approach to avoid expensive
computational burden.

CRediT authorship contribution statement

Jina Yin: Data curation, Formal analysis, Investigation, Methodol-
ogy, Validation, Visualization, Writing - original draft. Frank T.-C. Tsai:
Conceptualization, Data curation, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Supervision, Valida-
tion, Visualization, Writing - original draft. Shih-Chieh Kao: Method-
ology, Resources, Supervision, Validation, Visualization, Writing -
original draft.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This study was supported in part by the U.S. Geological Survey under
Grant/Cooperative Agreement No. G16AP00056 and the U.S. National
Science Foundation (Award No. 2019561). The authors thank the USGS
for providing the industrial and public supply pumping data and Krishna
Paudel of LSU Agricultural Center for providing agricultural pumping
data. Louisiana Department of Natural Resources is acknowledged for
granting access to well registration records.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jhydrol.2021.126682.

References

Ajami, N.K., Duan, Q., Sorooshian, S., 2007. An integrated hydrologic Bayesian
multimodel combination framework: confronting input, parameter, and model
structural uncertainty in hydrologic prediction. Water Resources Research 43 (1).
https://doi.org/10.1029/2005WR004745.

Arthur, J.K., 2001. Hydrogeology, model description, and flow analysis of the Mississippi
River alluvial aquifer in northwestern Mississippi. Water-Resources Investigations
Report 2001-4035. https://doi.org/10.3133/wri014035.

Bard, Y., 1974. Nonlinear Parameter Estimation. Academic Press, New York.

Bowling, J.C., Rodriguez, A.B., Harry, D.L., Zheng, C., 2005. Delineating alluvial aquifer
heterogeneity using resistivity and GPR data. Groundwater 43 (6), 890-903. https://
doi.org/10.1111/j.1745-6584.2005.00103.x.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological) 26 (2), 211-243. https://doi.org/
10.1111/rssb:1964.26.issue-210.1111/j.2517-6161.1964.tb00553.x.

Cao, Y.J., Wu, Q.H., 1999. Teaching Genetic Algorithm Using Matlab. The International
Journal of Electrical Engineering & Education 36 (2), 139-153. https://doi.org/
10.7227/1JEEE.36.2.4.

Carlson, D., 2006. Systematic variability of hydraulic conductivity within the Mississippi
River alluvial aquifer in northeastern Louisiana. Transactions - Gulf Coast
Association of Geological Societies 56, 121-136.

Clark, B. R., D. A. Westerman, and D. T. Fugitt., 2013. Enhancements to the Mississippi
Embayment Regional Aquifer Study (MERAS) groundwater-flow model and
simulations of sustainable water-level scenarios. U.S. Geological Survey Scientific
Investigations Report: 2013-5161, 29 p. https://pubs.usgs.gov/sir/2013/5161/.

12

Journal of Hydrology 601 (2021) 126682

Collier, A., Sargent, B. P., 2018. Water use in Louisiana, 2015. Water Resources Special
Report 18. Louisiana Department of Transportation and Development, Baton Rouge,
LA, p. 138.

Czarnecki, J.B., Clark, B.R., Stanton, G.P., 2003. Conjunctive-use optimization model of
the Mississippi River Valley alluvial aquifer of Southeastern Arkansas. U.S.
Geological Survey Water-Resources Investigations Report 03-4230. https://doi.org/
10.3133/wri034230.

Dieter, C. A., M. A. Maupin, R. R. Caldwell, M. A. Harris, T. I. Ivahnenko, J. K. Lovelace,
N. L. Barber, and K. S. Linsey., 2018. Estimated use of water in the United States in
2015: U.S. Geological Survey Circular 1441, 65 p. https://doi.org/10.3133/cir1441.

Draper, D., 1995. Assessment and propagation of model uncertainty. Journal of the Royal
Statistical Society: Series B (Methodological) 57 (1), 45-70. https://doi.org/
10.1111/rssb:1995.57.issue-110.1111/j.2517-6161.1995.tb02015.x.

Dyer, J., Mercer, A., Rigby, J.R., Grimes, A., 2015. Identification of recharge zones in the
Lower Mississippi River alluvial aquifer using high-resolution precipitation
estimates. Journal of Hydrology 531, 360-369. https://doi.org/10.1016/j.
jhydrol.2015.07.016.

Elshall, A.S., Tsai, F.T.-C., Hanor, J.S., 2013. Indicator geostatistics for reconstructing
Baton Rouge aquifer-fault hydrostratigraphy, Louisiana, USA. Hydrogeology Journal
21 (8), 1731-1747. https://doi.org/10.1007/s10040-013-1037-5.

Fleetwood, A.R., 1969. Geological investigation of the Ouachita River area, Lower
Mississippi Valley. U.S. Army Corps of Engineers. Waterways Experiment Station,
Technical Report S-69-2, 24p.

Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood, Cliffs, New
Jersey, p. 604.

Gillip, J. A., and J. B. Czarnecki., 2009. Validation of a ground-water flow model of the
Mississippi River Valley alluvial aquifer using water-level and water-use data for
1998-2005 and evaluation of water-use scenarios: U.S. Geological Survey Scientific
Investigations Report 2009-5040, 22 p. https://doi.org/10.3133/sir20095040.

Harbaugh, A.W., 1990. A computer program for calculating subregional water budgets
using results from the U.S. Geological Survey modular three-dimensional ground-
water flow model. U.S. Geological Survey Open-File Report 90-392, 46p. https://
doi.org/10.3133/0fr90392.

Harbaugh, A.W., 2005. MODFLOW-2005, the U.S. Geological Survey modular ground-
water model - the Ground-Water Flow Process: U.S. Geological Survey Techniques
and Methods 6-A16. https://doi.org/10.3133/tm6A16.

Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T., 1999. Bayesian model
averaging: a tutorial. Statistical science 382—-401. https://doi.org/10.1214/ss/
1009212519.

Krinitzsky, E.L., Wire, J.C., 1964. Groundwater in alluvium of the Lower Mississippi
Valley (upper and central areas): Vicksburg. U.S. Army Engineer Waterways
Experiment Station, U.S. Corps of Engineers, Mississippi.

Li, X., Tsai, F.T.-C., 2009. Bayesian model averaging for groundwater head prediction
and uncertainty analysis using multimodel and multimethod. Water Resources
Research 45 (9). https://doi.org/10.1029/2008 WR007488.

Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A simple hydrologically
based model of land surface water and energy fluxes for general circulation models.
Journal of Geophysical Research: Atmospheres 99 (D7), 14415-14428. https://doi.
0rg/10.1029/94JD00483.

Liu, Z., Merwade, V., 2018. Accounting for model structure, parameter and input forcing
uncertainty in flood inundation modeling using Bayesian model averaging. Journal
of Hydrology 565, 138-149. https://doi.org/10.1016/j.jhydrol.2018.08.009.

Liu, Z., Merwade, V., 2019. Separation and prioritization of uncertainty sources in a
raster based flood inundation model using hierarchical Bayesian model averaging.
Journal of Hydrology 578 (11), 124100. https://doi.org/10.1016/j.
jhydrol.2019.124100.

Moore, R.B., McKay, L.D., Rea, A.H., Bondelid, T.R., Price, C.V., Dewald, T.G.,
Johnston, C.M., 2019. User’s guide for the national hydrography dataset plus
(NHDPlus) high resolution. U.S. Geological Survey Open-File Report 2019-1096.
https://doi.org/10.3133/0fr20191096.

Mustafa, S.M.T., Nossent, J., Ghysels, G., Huysmans, M., 2018. Estimation and impact
assessment of input and parameter uncertainty in predicting groundwater flow with
a fully distributed model. Water Resources Research 54 (9), 6585-6608. https://doi.
org/10.1029/2017WR021857.

Naz, B.S., Kao, S.-C., Ashfaq, M., Rastogi, D., Mei, R., Bowling, L.C., 2016. Regional
Hydrologic Response to Climate Change in the Conterminous United States Using
High-resolution Hydroclimate Simulations, Global Planet. Change 143, 100-117.
https://doi.org/10.1016/j.gloplacha.2016.06.003.

Neuman, S.P., 2003. Maximum likelihood Bayesian averaging of uncertain model
predictions. Stochastic Environmental Research and Risk Assessment 17 (5),
291-305. https://doi.org/10.1007/s00477-003-0151-7.

Oubeidillah, A.A., Kao, S.-C., Ashfaq, M., Naz, B.S., Tootle, G., 2014. A Large-Scale, High-
Resolution Hydrological Model Parameter Data Set for Climate Change Impact
Assessment for the Conterminous US. Hydrol. Earth Syst. Sci. 18, 67-84. https://doi.
org/10.5194/hess-18-67-2014.

Pauloo, R.A., Escriva-Bou, A., Dahlke, H., Fencl, A., Guillon, H., Fogg, G.E., 2020.
Domestic well vulnerability to drought duration and unsustainable groundwater
management in California’s Central Valley. Environmental Research Letters 15 (4),
044010. https://doi.org/10.1088/1748-9326/ab6f10.

Pham, H.V., Tsai, F.T.-C., 2017. Modeling complex aquifer systems: a case study in Baton
Rouge, Louisiana (USA). Hydrogeology Journal 25 (3), 601-615. https://doi.org/
10.1007/5s10040-016-1532-6.

Poeter, E., Anderson, D., 2005. Multimodel ranking and inference in ground water
modeling. Groundwater 43 (4), 597-605. https://doi.org/10.1111/gwat.2005.43.
issue-410.1111/j.1745-6584.2005.0061.x.


https://doi.org/10.1016/j.jhydrol.2021.126682
https://doi.org/10.1016/j.jhydrol.2021.126682
https://doi.org/10.1029/2005WR004745
https://doi.org/10.3133/wri014035
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0015
https://doi.org/10.1111/j.1745-6584.2005.00103.x
https://doi.org/10.1111/j.1745-6584.2005.00103.x
https://doi.org/10.1111/rssb:1964.26.issue-210.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1111/rssb:1964.26.issue-210.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.7227/IJEEE.36.2.4
https://doi.org/10.7227/IJEEE.36.2.4
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0040
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0040
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0040
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0050
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0050
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0050
https://doi.org/10.3133/wri034230
https://doi.org/10.3133/wri034230
https://doi.org/10.1111/rssb:1995.57.issue-110.1111/j.2517-6161.1995.tb02015.x
https://doi.org/10.1111/rssb:1995.57.issue-110.1111/j.2517-6161.1995.tb02015.x
https://doi.org/10.1016/j.jhydrol.2015.07.016
https://doi.org/10.1016/j.jhydrol.2015.07.016
https://doi.org/10.1007/s10040-013-1037-5
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0080
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0080
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0080
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0085
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0085
https://doi.org/10.3133/ofr90392
https://doi.org/10.3133/ofr90392
https://doi.org/10.3133/tm6A16
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1214/ss/1009212519
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0110
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0110
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0110
https://doi.org/10.1029/2008WR007488
https://doi.org/10.1029/94JD00483
https://doi.org/10.1029/94JD00483
https://doi.org/10.1016/j.jhydrol.2018.08.009
https://doi.org/10.1016/j.jhydrol.2019.124100
https://doi.org/10.1016/j.jhydrol.2019.124100
https://doi.org/10.3133/ofr20191096
https://doi.org/10.1029/2017WR021857
https://doi.org/10.1029/2017WR021857
https://doi.org/10.1016/j.gloplacha.2016.06.003
https://doi.org/10.1007/s00477-003-0151-7
https://doi.org/10.5194/hess-18-67-2014
https://doi.org/10.5194/hess-18-67-2014
https://doi.org/10.1088/1748-9326/ab6f10
https://doi.org/10.1007/s10040-016-1532-6
https://doi.org/10.1007/s10040-016-1532-6
https://doi.org/10.1111/gwat.2005.43.issue-410.1111/j.1745-6584.2005.0061.x
https://doi.org/10.1111/gwat.2005.43.issue-410.1111/j.1745-6584.2005.0061.x

J. Yin et al.

Raftery, A.E., Gneiting, T., Balabdaoui, F., Polakowski, M., 2005. Using Bayesian model
averaging to calibrate forecast ensembles. Monthly weather review 133 (5),
1155-1174. https://doi.org/10.1175/MWR2906.1.

Reed, T.B., 2003. Recalibration of a Groundwater Flow Model of the Mississippi River
Valley Alluvial Aquifer of Northeastern Arkansas, 1918-1998, with Simulations of
Water Levels Caused by Projected Groundwater withdrawls through 2049. U.S.
Geological Survey Water-Resources Investigations Report 03—-4109. https://doi.org/
10.3133/wri034109.

Refsgaard, J.C., van der Sluijs, J.P., Hgjberg, A.L., Vanrolleghem, P.A., 2007. Uncertainty
in the environmental modelling process-a framework and guidance. Environmental
Modelling & Software 22 (11), 1543-1556. https://doi.org/10.1016/j.
envsoft.2007.02.004.

Rojas, R., Feyen, L., Dassargues, A., 2008. Conceptual model uncertainty in groundwater
modeling: combining generalized likelihood uncertainty estimation and Bayesian
model averaging. Water Resources Research 44 (12). https://doi.org/10.1029/
2008WR006908.

Saucier, R.T., 1967. Geological investigation of the Boeuf-Tensas Basin. Lower
Mississippi Valley, Waterways Experiment Station, United States Mississippi River
Commission.

Schoéniger, A., Wohling, T., Samaniego, L., Nowak, W., 2014. Model selection on solid
ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence.
Water resources research 50 (12), 9484-9513. https://doi.org/10.1002/
2014WR016062.

Sharif, M., Davis, R., Steele, K., Kim, B., Kresse, T., Fazio, J., 2008. Inverse geochemical
modeling of groundwater evolution with emphasis on arsenic in the Mississippi River
Valley alluvial aquifer, Arkansas (USA). Journal of Hydrology 350 (1/2), 41-55.
https://doi.org/10.1016/j.jhydrol.2007.11.027.

Sharif, M.S.U., Davis, R.K., Steele, K.F., Kim, B., Hays, P.D., Kresse, T.M., Fazio, J.A.,
2011. Surface complexation modeling for predicting solid phase arsenic
concentrations in the sediments of the Mississippi River Valley alluvial aquifer,
Arkansas, USA. Applied Geochemistry 26 (4), 496-504. https://doi.org/10.1016/j.
apgeochem.2011.01.008.

Singh, A., Mishra, S., Ruskauff, G., 2010. Model averaging techniques for quantifying
conceptual model uncertainty. Groundwater 48 (5), 701-715. https://doi.org/
10.1111/j.1745-6584.2009.00642.x.

Smith, R.G., Knight, R., Chen, J., Reeves, J.A., Zebker, H.A,, Farr, T., Liu, Z., 2017.
Estimating the permanent loss of groundwater storage in the southern S an J oaquin
V alley. California. Water Resources Research 53 (3), 2133-2148. https://doi.org/
10.1002/2016WR019861.

Smoot, C. W., 1986. Louisiana hydrologic atlas map no. 2: Areal extent of freshwater in
major aquifers of Louisiana: U.S. Geological Survey Water-Resources Investigations
Report 86-4150, 1 sheet. https://doi.org/10.3133/wri864150.

Stuart, C. G., D. D. Knochenmus, and B. D. McGee., 1994. Guide to Louisiana’s ground-
water resources. Water-Resources Investigations Report: 94-4085. U.S. Geological

13

Journal of Hydrology 601 (2021) 126682

Survey, USGS Earth Science Information Center, Open-File Reports Section. https://
dx.doi.org/10.3133/wri944085.

Thornton, P.E., Running, S.W., White, M.A., 1997. Generating surfaces of daily
meteorological variables over large regions of complex terrain. Journal of Hydrology
190 (3-4), 214-251. https://doi.org/10.1016/50022-1694(96)03128-9.

Troldborg, L., Refsgaard, J.C., Jensen, K.H., Engesgaard, P., 2007. Uncertainty in the
environmental modelling process—a framework and guidance. Environmental
Modelling & Software 22 (11), 1543-1556. https://doi.org/10.1007/s10040-007-
0192-y.

Tsai, F.T.-C., Elshall, A.S., 2013. Hierarchical Bayesian model averaging for
hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation.
Water Resources Research 49 (9), 5520-5536. https://doi.org/10.1002/wrcr.20428.

Tsai, F.T.-C., Sun, N.-Z., Yeh, W.-W.-G., 2005. Geophysical parameterization and
parameter structure identification using natural neighbors in groundwater inverse
problems. Journal of Hydrology 308 (1), 269-283. https://doi.org/10.1016/j.
jhydrol.2004.11.004.

Vahdat-Aboueshagh, H., Tsai, F.T.-C., 2021. Constructing large-scale complex aquifer
systems with big well log data: Louisiana model. Computers & Geosciences 148,
104687. https://doi.org/10.1016/j.cageo.2021.104687.

Vrugt, J.A., Robinson, B.A., 2007. Treatment of uncertainty using ensemble methods:
Comparison of sequential data assimilation and Bayesian model averaging. Water
Resources Research 43 (1), W01411. https://doi.org/10.1029/2005WR004838.

Whitfield, M.S., 1975. Geohydrology and water quality of the Mississippi River alluvial
aquifer, northeastern Louisiana. Water Resources Technical Report, No. 10.
Louisiana Dept. of Public Works, Baton Rouge, Louisiana.

Wu, C.J., 1983. On the convergence properties of the EM algorithm. The Annals of
statistics 11 (01), 95-103.

Yasarer, L.M., Taylor, J.M., Rigby, J.R., Locke, M.A., 2020. Trends in land use, irrigation,
and streamflow alteration in the Mississippi River Alluvial Plain. Frontiers in
Environmental Science. https://doi.org/10.3389/fenvs.2020.00066.

Ye, M., Pohlmann, K.F., Chapman, J.B., Pohll, G.M., Reeves, D.M., 2010. A model-
averaging method for assessing groundwater conceptual model uncertainty.
Groundwater 48 (5), 716-728. https://doi.org/10.1111/§.1745-6584.2009.00633.x.

Yin, J., Tsai, F.T.-C., 2018. Saltwater scavenging optimization under surrogate
uncertainty for a multi-aquifer system. Journal of Hydrology 565 (10), 698-710.
https://doi.org/10.1016/j.jhydrol.2018.08.021.

Yin, J., Tsai, F.T.-C., 2020. Bayesian set pair analysis and machine learning based
ensemble surrogates for optimal multi-aquifer system remediation design. Journal of
Hydrology 580 (1), 124280. https://doi.org/10.1016/j.jhydrol.2019.124280.

Zhang, X., Srinivasan, R., Bosch, D., 2009. Calibration and uncertainty analysis of the
SWAT model using Genetic Algorithms and Bayesian Model Averaging. Journal of
Hydrology 374 (3), 307-317. https://doi.org/10.1016/].jhydrol.2009.06.023.


https://doi.org/10.1175/MWR2906.1
https://doi.org/10.3133/wri034109
https://doi.org/10.3133/wri034109
https://doi.org/10.1016/j.envsoft.2007.02.004
https://doi.org/10.1016/j.envsoft.2007.02.004
https://doi.org/10.1029/2008WR006908
https://doi.org/10.1029/2008WR006908
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0195
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0195
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0195
https://doi.org/10.1002/2014WR016062
https://doi.org/10.1002/2014WR016062
https://doi.org/10.1016/j.jhydrol.2007.11.027
https://doi.org/10.1016/j.apgeochem.2011.01.008
https://doi.org/10.1016/j.apgeochem.2011.01.008
https://doi.org/10.1111/j.1745-6584.2009.00642.x
https://doi.org/10.1111/j.1745-6584.2009.00642.x
https://doi.org/10.1002/2016WR019861
https://doi.org/10.1002/2016WR019861
https://doi.org/10.1016/S0022-1694(96)03128-9
https://doi.org/10.1007/s10040-007-0192-y
https://doi.org/10.1007/s10040-007-0192-y
https://doi.org/10.1002/wrcr.20428
https://doi.org/10.1016/j.jhydrol.2004.11.004
https://doi.org/10.1016/j.jhydrol.2004.11.004
https://doi.org/10.1016/j.cageo.2021.104687
https://doi.org/10.1029/2005WR004838
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0275
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0275
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0275
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0280
http://refhub.elsevier.com/S0022-1694(21)00730-7/h0280
https://doi.org/10.3389/fenvs.2020.00066
https://doi.org/10.1111/j.1745-6584.2009.00633.x
https://doi.org/10.1016/j.jhydrol.2018.08.021
https://doi.org/10.1016/j.jhydrol.2019.124280
https://doi.org/10.1016/j.jhydrol.2009.06.023

	Accounting for uncertainty in complex alluvial aquifer modeling by Bayesian multi-model approach
	1 Introduction
	2 Study area
	3 MRAA groundwater model development
	3.1 Well logs
	3.2 Lithofacies modeling and MODFLOW grid generation
	3.3 Groundwater use data compilation
	3.4 Groundwater recharge estimation
	3.5 Mississippi River stage for eastern boundary
	3.6 Input of major streams
	3.7 Initial head and Non-River boundary conditions
	3.8 Model calibration

	4 Bayesian Multi-model uncertainty quantification
	4.1 Bayesian model averaging
	4.2 Expectation Maximization (EM) method
	4.3 Multi-model generation and data description

	5 Results and discussions
	5.1 Model parameters and calibration
	5.2 Convergence of Expectation Maximization algorithm and BMA weights
	5.3 Validation of BMA prediction performance and evaluation of uncertainty

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


