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1. Introduction
1.1. Data assimilation

The insertion of coarse grain observational measurements into a mathematical model is called continuous
data assimilation. This can provide a more accurate forecast in applications ranging from the medical,
environmental and biological sciences, [1,2], to imaging, traffic control, finance and oil exploration [3].
Bayesian and variational approaches (Kalman filters, 3DVar and 4DVar) are based on discrete observations
in time and often used to treat errors in both observed data and model itself [4-11]. They are widely used
in practice, but difficult to analyze mathematically, especially for physical models governed by nonlinear
differential equations [12-14].

Nudging is a straightforward, deterministic approach to data assimilation. While its origin can be traced
back to [15], it has been more recently applied in the context of synchronizing chaotic dynamical systems.

* Corresponding author.
E-mail addresses: ycao2@fsu.edu (Y. Cao), a.giorgini@imperial.ac.uk (A. Giorgini), msjolly@indiana.edu (M. Jolly),
apakzad@iu.edu (A. Pakzad).

https://doi.org/10.1016/j.nonrwa.2022.103659
1468-1218/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.nonrwa.2022.103659
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2022.103659&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ycao2@fsu.edu
mailto:a.giorgini@imperial.ac.uk
mailto:msjolly@indiana.edu
mailto:apakzad@iu.edu
https://doi.org/10.1016/j.nonrwa.2022.103659
http://creativecommons.org/licenses/by/4.0/

Y. Cao, A. Giorgini, M. Jolly et al. Nonlinear Analysis: Real World Applications 68 (2022) 103659

See [16,17] for a more complete history, and [18] for a comparison with Kalman filtering. In essence, this
method assumes that an accurate initial condition u(0) is not known for a particular model

du

— =F(u 1.1
= F(u), (1)
but data from a reference solution, interpolated at spatial resolution h is available, denoted as Iu(t). Those
observations are used in an auxiliary system

i—‘tf =Fwv)—plp(v—u), v(0)=0 (1.2)
to drive ||v — u|| — 0 at an exponential rate, provided p is sufficiently large and h is sufficiently small.
Since derivatives are not required of the data in the approach, it can be used with more common types of
observations, such as nodal values.

Rigorous analysis of the nudging algorithm for partial differential equations in fluid mechanics began with
the work of Azouani, Olson and Titi. They estimated threshold values for the relaxation parameter p and
data resolution h for the 2D NSE [19]. Since then, nudging has been rigorously shown to synchronize with
reference solutions in a variety of applications, including the 2D Rayleigh-Bénard problem [20-22], surface
quasigeostrophic equation [23,24], Korteweg—de Vries equation [25], 2D magnetohydrodynamic system [26],
3D Brinkman-Forchheimer-extended Darcy model [27], 3D primitive equations [28], 3D Leray-a model [29],
and Voigt-relaxation of the 2D NSE [30].

In each case, threshold values for p and h had to be established for both the well-posedness of the
corresponding system (1.2) as well as for synchronization. In some works it has been shown that it is sufficient
to nudge with data in only a subset of the system variables [20-22,31,32]. While the nudging algorithm does
not lend itself to directly treat error in the model, the effect of error in the observed data has been studied
in [24,33].

1.2. The Ladyzhenskaya model

The motion of an homogeneous, incompressible, viscous fluid in a domain 2 C R? is classically described
by the momentum equation and the incompressibility constraint, that read as

Ju+(u-V)u—V.-T(Du) + VP =H{,

in 2 x (0,00), 1.3
o ouc (0,50) (1)

where u is the fluid velocity, P is the fluid pressure, f is the forcing term. Here, Du denotes the symmetric
part of the gradient of u. In particular, the Navier—Stokes model corresponds to the case of Newtonian fluids
characterized by the (linear) Stokes’ law T(Du) = yyDu. The lack of a global regularity result makes the
analysis of the nudging algorithm problematic for the 3D NSE, though a recent work provides a condition
on observed data which deals with this issue [34]. In this work we consider a family of 3D globally well-
posed modified Navier—Stokes equations, namely the Ladyzhenskaya model. In the mid-1960s, a number of
modifications to the Navier—Stokes equations were suggested by Ladyzhenskaya for the description of the
dynamics of viscous fluids when velocity gradients are large [35-37]. These equations form an important
mathematical model describing the flow behavior of a wide class of non-Newtonian fluids [38-40]. In this
work we consider one particular model (see Eq. (3.1)), where the Cauchy tensor in (1.3) takes the following
nonlinear form

T(Du) = (QVQ + 2u1|Du|fj;2) Du, (1.4)

where Du = 1 [(Vu) + (Vu)"| and the Frobenius norm [Du|, = (Du: Du)%. The above relation is

commonly used for non-Newtonian fluids with shear dependent viscosity, i.e. the dynamic viscosity depends
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on \Du\%. The model corresponding to p = 2 reduces to the Navier—Stokes equations (NSE) with kinematic
viscosity equal to (v9 + v1). For p = 3, it is mathematically equivalent to the Smagorinsky model [41] and
the NSE with the von Neumann Richtmyer artificial viscosity for shocks [42].

There are various reasons to consider the Ladyzhenskaya models instead of the Navier—Stokes equations.
In the first place, the laws of conservation of mass and momentum provide an undetermined system of partial
differential equations for the velocity, pressure, and stress tensor. In general, this system of equations is not
closed until the stress tensor, which represents all the internal forces, is related to the fluid velocity. Internal
forces, and therefore also the stress tensor, must depend on local velocity differences and some combination
of derivatives of velocity, i.e., the deformation tensor. The simplest relation is a linear law between stress and
deformation, which leads to the Navier—Stokes equations, see [43] for details. This linear relation is only an
approximation for a real fluid and schematically the stress and deformation are related nonlinearly, especially
for large deformations. A specific nonlinear mathematical relationship between the stress and deformation
can be derived from Stokes’ hypotheses.! If one retains some of these nonlinear terms, we arrive at the
Ladyzhenskaya model considered here. We refer the interested reader to [38—40] for more details.

Secondly and more from a practical engineering point of view, the study of the Ladyzhenskaya equations
is related to the field of turbulence modeling. For some values of p, such as p = 3,4, the Ladyzhenskaya model
considered here is equivalent to those of popular turbulence models, such as large eddy simulation (LES) and
zero-equation models. In both applications and turbulence modeling, the behavior of averaged quantities are
most important and often simulated. To do so, the quantities describing the flow are decomposed into its
averaged and fluctuating quantities. However, averaging the NSE yields a non-closed system; to close the
system, one must provide the relationship between the fluctuating and the averaged quantities. There are a
wide range of closure assumptions which are known collectively as turbulence closure models. Two examples
that are widely used are the zero equation model (or algebraic model) and large eddy simulation, for more
details see e.g., [44,45]. The main feature of these models is that the non-closed part (known as the Reynolds
stresses), which represents the contribution of small scales in the system, is related to the derivatives of the
averaged quantities. See [46,47] for more details on the mathematics of large eddy simulation.

Finally, from the theoretical point of view, while the well-posedness has not been proven for the Navier—
Stokes equations in three space dimensions, several results of existence, uniqueness and regularity of
global-in-time solutions of the Ladyzhenskaya model have been proved in the last decades [35-38,40,48-53].
This provides a firm mathematical foundation for the study of (3.1).

1.3. Results in this paper

In this paper we develop a comprehensive study based on the theoretical analysis and large eddy
simulation of the nudged system (1.2) corresponding to the Ladyzhenskaya model (1.3)—(1.4) (see (4.1))
with both no-slip and periodic boundary conditions.

In the no-slip case, we first use the Schauder fixed point theorem to prove that the nudged system has a
unique global weak solution with ug € L2(§2) provided p > 5/2 (see Theorem 4.1). To prove the existence of
the solution, unlike some treatments of the nudged system for other models (e.g. [19,54]), this approach does
not require u to be large, nor h to be small. Then, we find a threshold value p* in terms of p, vy, v1, domain
size and the Grashof number (see (3.5)), such that for 4 > p* and h correspondingly small, synchronization
is guaranteed. That is, the nudged solution v converges exponentially fast to the reference solution u after
a transient (see Theorem 4.2). In the case of periodic boundary conditions, the existence of global weak
solutions to the Ladyzhenskaya model over the wider range p > 11/5, originating from ug € L2(2), has
been established in [38]. These weak solutions are not known to be unique, unless the initial condition is

! Stokes introduced a series of requirements which together serves to define a ordinary fluid such as water and air [43].
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more regular (see [38, Theorem 4.37] for ug € HL(£2), and also [48] for ug € W2 P(£2) in the no-slip case).
Nonetheless, any one such weak solution becomes more regular after some time. Following the strategy
devised in [38,50], we prove, for the endpoint case p = 11/5, a time averaged bound in Ls (t, o0; wLE (2))
for the solution u to the Ladyzhenskaya model in terms of the parameters of the system, where t is suitably
chosen (see Theorem 5.1). This bound is then used to prove the synchronization of the nudged solution to
the solutions of the Ladyzhenskaya model (see Theorem 5.3). In contrast to the previous cases studied in
literature when uniqueness of the reference solution holds, the novelty of our result is that synchronization
takes place even without uniqueness of the reference solution for 11/5 < p < 5/2. More precisely, for each
reference solution u corresponding to an initial datum ug € L2(£2), the nudged solution v, converges to u
at an exponential rate for large time. As a consequence of our analysis, it is worth concluding that if two
reference solutions u and U are such that I, (u)(t) = I;,(0)(¢t) as t — oo, then [jlu—u|| — 0 as ¢t — oo,
i.e., the model has a finite number of determining modes for p > 11/5.

We demonstrate the efficacy of the algorithm by extensive computational studies. Numerical work with
other fluid systems has shown that the nudging algorithm achieves synchronization with data that is
much more coarse than required by the rigorous estimates [55-58]. We find this is also the case for the
Ladyzhenskaya model with periodic boundary conditions, for which we achieve exponential convergence to
machine precision with i =~ 0.1. Most of our computations are done for the case where p = 3 (Smagorinsky
model), corresponding to large eddy simulation [41]. Though for periodic boundary conditions we present
the analysis for a threshold value of  only in the endpoint case p = 11/5, our numerical computations, show
virtually no sensitivity to p for two choices of . Finally we test an abridged nudging scheme which uses data
only for the horizontal components of velocity. We present evidence that synchronization still holds for that
scheme, though at a slower rate for the third component of velocity and pressure.

Organization of this paper

In Section 2, we introduce the inequalities and preliminary results used in the analysis. Section 3 provides
background on the Ladyzhenskaya model. Later, in Sections 4 and 5, we state and prove our main results,
in which we give conditions under which the approximate solutions, obtained by the data assimilation
algorithm, converge to the solution of the Ladyzhenskaya equations. Numerical experiments, demonstrating
and extending beyond the analytical results, are described in Section 6.

2. Notation and preliminaries

Let 2 € RY d = 2,3, be a bounded open Lipschitz domain with volume |£2| and let p € [1,00]. The
Lebesgue space LP({2) is the space of all measurable functions v on {2 for which

1
p
M= ([ woorax)” <oo it pe o),
0]

[|V||Loo == esssup |v(x)| < oo if p=oc.
xen

The L? norm and inner product will be denoted by || - || and (-, -), respectively. Let V be a Banach space
of functions defined on {2 with the associated norm || - |[v. We denote by L”(a,b; V), the Bochner space of
measurable functions v : (a,b) — V such that

1
b P
VIl e (a,05v) = (/ V()15 dt) < o0 if pe(l,00),
a

VI Loo (a,p;v) = esssup [[v(t)[|v < oo if p=o0.
t

€(ab)
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The space W,"*(£2) consists of all functions in W'(2) that vanish on the boundary 82 (in the sense of
traces)
Wy P(2)={v: ve W(2) and v|pe = 0}.

We introduce the Banach spaces of solenoidal functions

L2(R)={v: veL*(), V-v=0 and v-nly, =0},
WiP(2)={v: ve W'?(2), V-v=0 and v|gpe =0},

which are equipped with the same norms as L?(£2) and W,"*(£2), respectively. The spaces L2(£2), L2(12),
HL(Q), WhP(2) will consist of the subsets of L?(£2),L2(2), H:(22) and WLP(R2), respectively, whose
functions have zero spatial average, i.e. [, udx = 0. We denote by (W;’p(ﬂ))/ the dual space of W1P(£2).
We recall the following inclusions for p > 2

2d
Wer(2) € 15(2) € (We(2))' i == <p<oo,

where these injections are continuous, dense and compact. For matrix A = (a;;)? the Frobenius norm

ij=1>
of the matrix A is given by
3 3
1
Alp=| ()| =(4: )%

i,j=1
The data assimilation method requires that the observational measurements I, (u), with h > 0, be given as
linear interpolant observables satisfying I : L2(£2) — L?(§2) such that

[Hnell < erliell, Ve L),

(2.1)
I = Inll < cohllell aia), VoeH' ().

One example of such interpolation operators includes projection onto Fourier modes with wave numbers
|k| < 1/h. Somewhat more physical are the volume elements and constant finite element interpolation [59,60].

Inequalities in Banach and Hilbert spaces

We recall here some well-known inequalities in Banach and Hilbert spaces which can be found in the
classical literature (see, e.g., [61,62]). Let 1 < p < oo, we denote by p’ the conjugate exponent, ]l) + i =1.
Assume that f € L? and g € ¥ with 1 < p < oo. Then

I fallzr < I fllze gl - (Holder inequality)

Moreover, for any a,b > 0 and A > 0 we have

/

bP . (Young inequality)

21
ab < Xa’ 4+ (pA) P o
Suppose 1 < p < oo, there exist two constants cp and ck such that for any f € VVO1 P(02)

Ifllr < cpl|VE|Le, (Poincaré inequality)

and
|VE|| < V2||Df|| if p=2, IVE|lr < ck||Df|e  if p # 2, (Korn inequality)
5
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where Df = % [(Vf) + (Vf)T] The constants cp and ¢k depend only on p and 2. In the sequel, we will
make use of the classical embedding theorems for Sobolev spaces

Wh2(02) — L(2),
W3(Q) — LP(R2), Vpe[l, ).

We recall the interpolation inequalities for Lebesgue and Sobolev spaces. Let f € LPN LY, with 1 < p, ¢ < oo.
Then, for all r such that

(Sobolev embedding)

1 60 1-6
S=24 2 0<6<1,
r . p q
it follows that f € L™ and
Il < IE11%, [1£]1557. (Lebesgue interpolation inequality)

In addition, for any £ € W,*(£2), we have
€]l o < CL||E||T (|VE]|T. (Ladyzhenskaya’s inequality)

We need the following fundamental results (see, e.g., [61,63]).

Theorem 2.1 (Schauder Fized-point Theorem). Let X be a Banach space, and let A be a nonempty closed
convex set in X. Let F : A — A be a continuous map such that F(A) C K, where K is a compact subset of
A. Then F has a fized point in K.

Theorem 2.2 (Aubin—Lions—Simon). Let By C By C Bs be three Banach spaces. We assume that the
embedding of By in Bs is continuous and that the embedding of By in By is compact. For 1 < p,r < 400 and
T > 0, we define

Epr={veLP(0,T;By), v € L"(0,T;B2)}.

Then, we have

(1) If p < 400, the embedding of E, . in LP (0,T;B1) is compact.
(2) If p=+o00 and r > 1, the embedding of E, , in C (0,T;B1) is compact.

Lastly, we report the following Gronwall lemmas which will play a crucial role in our analysis (see,
e.g., [64]).

Lemma 2.3 (Gronwall’s Lemma in Differential Form). Let T € RT, f € W4Y(0,T) and g, A € L*(0,T).
Then
P SAO O +gt) e in[0,T]
implies for almost all t € [0,T]
t t t
£ < 10 h 2O [l X0 s

0

Lemma 2.4 (Uniform Gronwall Lemma - 1). Let T € RT, f € Whl(tg,00) and g, A € L}, (to,0) which
satisfy

f1) < A@) £(t) + g(t) a.e. in (to,0),
and t+r t+r t+r
/t A(T)dr < ay, /t 9(7)dr < as, /t f(r)dr < as, Yt > to,

forr, a1, as and as positive. Then, for r > 0, we have

f(t)§<@+az)e‘”, ViE>to+r
'

6



Y. Cao, A. Giorgini, M. Jolly et al. Nonlinear Analysis: Real World Applications 68 (2022) 103659

Lemma 2.5 (Uniform Gronwall Lemma - 2). Let Y € Wh1(0,00), a € L},.(0,00), and T > 0 be fized.
Suppose that

d
th( )+ al)Y(t) <0 a.e. in (0,00),
where
t+T t+T
/ a(s)ds > B >0, / a”(s)ds < M < oo, Vit > to,
t t

with o~ (s) = max{—«(s),0}, and ty > 0. Then, we have
t—t
Y () < Y(to)e#tMe (7r%)8, Vi >t

Proof. An application of Lemma 2.3 gives

t
— a(s)ds
Y(t) <Y(to)e ffo (=) , Yt > to.

For any t > tg, there exists K € N such that tg + KT <t <ty + (K 4+ 1)T. Then, we have

~ s d to+T to+KT
o fto o(s) ds ~exp _/ a(s)ds | -+ -exp _/ exp a(s)ds)
to to+(K—1)T to+KT

to+(K+1D)T (50 (5 )5
< e KPexp / a (s)ds| <e \'T M < B+M
to+KT

The proof is complete. [

3. The Ladyzhenskaya model

The phenomenon that we consider in this section is the motion of an incompressible viscous fluid in a
bounded Lipschitz domain £2 ¢ R%, d € {2,3} with no-slip boundary conditions. Let u denote the velocity
field, P the pressure, and f the body force per unit mass. In [35], Ladyzhenskaya proposed the following
mathematical model

ou+(u-V)u—V . -T(Du) + VP =f{,
V-u=0, (3.1)
uloe =0,
where T denotes the Cauchy stress of an incompressible and homogeneous fluid whose constitutive relation
is given by
T(Du) =2 (1/0 + V1|Du\%_2) Du, p>2, (3.2)

with initial condition u(-,0) = ug(-). Here, Du = [(Vu) + (Vu)T} , and vy and v; are positive parameters.

(length)2
(time)

some works have been devoted to the case with T = T(Vu), namely Du is replaced by the full velocity

It is worth mentioning that vy scales as , and 11 has dimension (time)?~3x (length)?2. In the literature,

gradient Vu in (3.2). However, in such a case the model does not comply with the principle of frame
indifference (see, e.g., [38,39]).

Before stating the well-posedness result, we report the following property of the constitutive relation (3.2),
which will be of key usefulness in the sequel. In particular, we will exploit the factor ry. We refer the reader
to [38,49] for the proof.



Y. Cao, A. Giorgini, M. Jolly et al. Nonlinear Analysis: Real World Applications 68 (2022) 103659

Proposition 3.1. Let T be as given in (3.2). For all A, B € R2*3  we have

sym?’

(T(A) —T(B)) : (A— B) = 25 |A— BJ%. (3.3)

Taking advantage of the enhanced regularity due to (3.2), Ladyzhenskaya showed in [35,49] that the
weak solutions to (3.1) are global in time and unique for any Reynolds number and any exponent p > g
For an overview, we refer the reader to [36] and [37, Theorem 7.2], and to [37,65,66] for the existence of
compact finite dimensional global attractor. Later on, many contributions have been devoted to the analysis
of the case 1 < p < % Without any claim to give an exhaustive survey, we mention the existence of global
measure-valued solutions for g <p< %, global weak solutions for p > % and global strong solutions for
p > % obtained in [38,52,53]. For the periodic case, enhanced results in terms of p have been achieved as
reported in [39,40]. In particular, the existence, but not uniqueness, of global weak solutions fulfilling the
energy equality holds for p > 15—1 Moreover, under additional assumptions on the initial datum and the
forcing term, global in time and unique strong solutions also exist. The asymptotic behavior in the same
range of p has been studied in [51,67].

We now state the well-posedness result for the model (3.1) proved in [35] (see also [38]).

Theorem 3.2 (Euzistence and Uniqueness of Weak Solutions). Assume thatp > 32, f € L*(0,T; L*(12)) and
ug € L2(2). Problem (3.1) has a unique weak solution on (0,00) satisfying for all T > 0

u € C([0,T); L2(2)) N LP(0, T; WhP(2)),  dpu € L (0, T; (WhP(2)))),
where p' is the conjugate exponent of p, and
(Oa, w) + ((u- V)u,w) + (T(Du), Vw) = (f,w), Ywe W;P($2),

for almost allt € [0, T]. Moreover, the energy equality holds

IO+ [ lDu()l? + 2 Du()If,) dr = Sluolf + [ () uyar, ez (34)

Let A1 be the smallest eigenvalue of the Stokes operator. Assume that f is time independent. We denote
by G the Grashof number in three-dimensions defined as

1]

G = .
A

(3.5)
We now give bounds on the solution u of (3.1) that will be used in our analysis.

Proposition 3.3. Fiz T > 0, and let f € L*(12). Suppose that u is a weak solution of (3.1), then we have

f 2
lu(t)||> < [Jugl[2e=1v0t + ”2i2 (1 —e 1wl Vit > 0. (3.6)
AT
As a consequence, there exists a time tg > 0 such that for all t > tg we have
2G?
[u(®)|* < 2= (3.7)
A
and T 2CR
/ (ol Du(r) 2 + m|Du(r)|[L,) dr < 2(1+ v\ T) 25 (3.8)
t A2

The proof of Proposition 3.3 is standard and thus omitted here. For the readers’ convenience, we observe
that (3.6) follows from Lemma 2.3 after dropping the v4 term in (3.4). In addition, (3.8) is a consequence
of (3.4) and (3.7).
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4. The case p > g with no-slip boundary conditions

In this section, we first analyze the nudging algorithm for the Ladyzhenskaya model with no-slip boundary
conditions for p > % After proving the global well-posedness of the week solution in Theorem 4.1, we proceed
to the task of finding conditions on h and p under which the approximate solution obtained by this algorithm
converges to the reference solution over time, summarized in Theorem 4.2.

Let I, (u(t)) represent the observational measurements at a spatial resolution of size h for ¢ > 0 satisfying
(2.1). The approximating solution v with initial condition v(-,0) = vq(-), chosen arbitrarily, shall be given
by

v+ (v-V)v—=V -T(Dv) +VQ =1f — ulp(v—u),
V-v=0, (4.1)
V|ag =0.
The first result of this manuscript concerns the global well-posedness of weak solutions for the Data
Assimilation algorithm.

Theorem 4.1. Assume that p > 5, £ € L?(0,T; L*(2)) and vo € L2(£2). Let u be the solution to problem
(3.1) from Theorem 3.2. The continuous data assimilation Eqs. (4.1) has a unique global weak solution that
satisfies for all T > 0

v € C([0,T); L2(2)) N LP(0,T; WE(2)) N W' (0,T; (WEP(£2)))

where p’ = and

P
p—1’

(0pv, W) + (v V)v,w) + (T(Dv),Vw) = (f,w) — u(In(v —u),w), YweWlr(2), (4.2)

for almost allt € [0,T].

Proof. The strategy is to reformulate (4.1) as a fixed-point problem. For any fixed T > 0, define
F+ L2(0,T; L2(£2)) — C(10,T); L2(2)) N LP(0, T WEP (1)) 0 W' (0, T3 (W2 (82))) (4.3)

by
F(w) =v,
where v is a weak solution to the problem

v+ (v-V)v—V.T(Dv) +Vqg=1, — pulpw,

V.-v=0,
om0 (4.4)
V('7O) = VO(')’

for a given w € L?(0,T; L2(12)), with f, = £ + pIpu. It is easy to verify that f, € L*(0,T; L*({2)) since
I, is a continuous and bounded linear operator. The above map F is well-defined since the existence and

uniqueness of a weak solution v for any given initial condition vy € L2(§2) follows directly from Theorem 3.2.
Now, define

t
A= {W € L*(0,T; L2()) : / |w(T)||?dr < cre®?t, Vte [O,T]} , (4.5)
0
with . 5
cp =2T <||V0|L%, +/ [[£. () dT) , =22 T.
0

9
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To apply the Schauder fixed-point theorem (see Theorem 2.1) to the above problem, we will verify the
theorem’s assumptions in the next five steps.

Step I. We claim that F: A — A, ie. F(A) C A.
From the energy equality (2.1) and (3.4), we have

V@I < Ivoll + / g (s)l ds + / " Zaw(s) ds

] ] (4.6)
< Ivoll + / ()]l ds + pes / [w(s)]| ds
for all 7 € [0, T]. By using Young’s inequality and the Holder’s inequality, we obtain
Iv)I? <2 <||V0| +/ 16.05)] ds> Loule (/ Iw(s)] ds)
, (4.7)
<2 (||vo| n / 1£.()] ds) L223T ( / ||w<s>||2ds) .
Since w € A, we infer that
t t T 2 t T
/ Iv(r)|? dr < 2 / Ivoll + / IEu(s)llds | dr 42423 T / / [w(s)|2 ds dr
0 0 0 o Jo (4.8)

¢
<c + 62/ (c1€27) dr = cre??
0

which, in turn, entails v = F(w) € A.

Step IL. A is a closed set in L? (0,T; L2(12)).
Assume that {w,}5, C A is such that w,, — w in L? (0, T; L2(£2)). It follows that A is closed from the
following argument

t t
/ [w(r)||?dr = lim / [Wn(T)||?dr < lim c1e®?" = cie®?t, Vit € [0,T).
0 n—o0 0 n—oo

Step IIL. A is convex set in L? (0,T; L(12)).
Let wi, ws € A, then Awy + (1 — A\)wo € L2 (0,7 L2(2)) for any A € [0,1]. We compute

/ s (7) + (1= Myws ()2 dr
_ )\2/ lws (7 ||2d7-+2)\(1—)\)/ (w1 (7), wa(r)) dr + (1— A / wa(r)|2 dr

2 [l a3 -3 ([ e ||2d7) (f ||wQ<T>||2dT)
(1-2 / o) dr

()\2 ( 24201 = N)) e’

= 816

IN

which means Aw; + (1 — A)wy € A, proving the convexity.

10
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Step IV. F: A — A is continuous.
Consider {w,,}22,; C A such that w,, — w in L? (0,T;L2(2)). We are required to show that v, =
F(wy) = F(w) =vin L? (0,T; L2(12)). First, define the difference v, = v,, — v, which solves

(O, ) + (Vi - Vi, 0) = (v- Vv, 0) + (T(Dvy,) = T(DV), Vo) = —pu (In(Wn — W), ¢)

for all p € W13(02), for almost all ¢ € [0, T]. Thanks to [38, Lemma 2.45], the incompressibility condition
and the regularity (4.3), choosing ¢ = 1, in the above equation, we obtain

L a2 4 (- V¥, 260) + (T(Dv,) = TDV), DV, = DV) = — (I (W, — ), )

2dt
By exploiting (3.3), the Korn inequality, the (Hélder inequality) with p’ = p’%l and the (Lebesgue
interpolation inequality) in LP-spaces with § = 1 — 2, we find

1d

5 qelenll® + 0l Veull® < (Wn - Vv, 0n)| + | (L (wn = W), )|

< Nl o 1VVIILe + | In(wo = w) |9

3
23 3
[nll™ ol 76 IV VIILe + per [[Wn — Wi ll¢nll
eslltnl [99nll? [VVllzo + e [[wa — wl] |4

2p 2p

o . 3, — =
DUl + (367 FITAT + 3 ) Il 47w — P

IN

IN

IN

where ¢ only depends on p. In the above estimate, the constant cg denotes the (Sobolev embedding)
HY(02) — L°(02). Therefore, we obtain

2p

1 — 53
D < ( ey P |y ||2PJ)Hwnnuﬁc%uwn—wn?.

Applying the Gronwall lemma (see Lemma 2.3) to the above inequality, we get

¢ AT)dT t t)\ T)dT
192 < [gn (02 elo XTI 4 2 2 / [Was) — w(s)]|? els X747 g,

for all t € [0, T, where

3 = 721),
+evy T e V(T )IIQ" .

M) =
<

Note that having p > % yields 2§f 3 thereby the regularity v € LP(0,T;WLP(£2)) entails that
A(7) € L0, T). In light of ¢,,(0) = 0, we are led to

1
gl
H¢n||Loo(o,T;L,2,(9)) <pepe? TEIOD) [lwy, — WHL2(0,T;L?,(Q))-
Since the right-hand side converges to 0 as n — oo, this implies the continuity of F.

Step V. We construct a compact subset K of A such that F(A) C K. From the energy equality (3.4) written
for the solution to (4.4), and after using the (Holder inequality), the Korn inequality and (2.1), we have

V(D)2 + / <2V0||VV(T)||2+4V1||V (r >|fzp) dr < [[vol? +2 / U, ()| + ll w1 [v ()] dr
< Ivol* + % / () + allTew (D)) IV v(7) | dr

/0 U, (1) + plInw(r))? dr

t
2 2
< Ivoll? + %o / V()P dr + 3o

t 1 t
<lvoll + [ 19V ar+ = [ RO + edlw()]?) dr
11
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for all t € [0, T]. Thus, we arrive at

2 ! 2, 4 p 2 1 2 M202 T . =
V()" + ; ol VV(n)I” + = IVv()llzs | dr < [lvoll” + pve 1EullZ2 0,722 (2)) + VA2 c1e®” = o,
K
With ¢y defined as above, we deduce that
— - Cock \?
IVl 0.m22(2)) = Vo= Vil (0.1:W5 7 (2)) < <2VI:> = Ca- (4.9)

Then, we infer that

F(A) cB= {v eA: ||V||L<>0(0T LQ(Q)) ¢ and ||v||Lp(O7T;W;,p(Q)) < 62} .
Next we investigate the time derivative d;v. We recall the weak formulation of (4.4)

((’“)tv7cp)+/ v-Vv- <pdx—|—/ 2vgDv : Dy + 21 |DV|:;:2DV:DQDdX
Q Q

:/fu-cpdx—u/lhwwpdx
Q Q

for all ¢ € WLP(£2), for almost all ¢ € [0,T]. Due to the incompressibility condition, the nonlinear term can
be written as v- Vv = V- (v ® v). Then, we have

[(Orv, )| < ’/ vev:Vedx|+
Q

+ ’/ f, - pdx

Let p' = , and note that p’ < p for p > 5 . Using the (Holder inequality) along with (2.1) yields

209DV : Voo + 201 [Dv[Z > Dv : Vpdx
o

+u‘/ Inw - odx|.

|<<9tv7<P>| < VI o IVllze + 200|DVI| pr V0l + 201 [DVIIT [Vl o + Bl o]l + wer [Iwll o]l

L2P
By taking supremum of the above inequality over all ¢ € W1P(£2) such that ||<pHW1,p(Q) = 1, and using the
(Lebesgue interpolation inequality), we obtain

-1
||3tVH(W;p(Q))' < HVHLQPI + 2VoIIDVIILp/ +2u1|Dvlfp + C[full + per Cllwl|
< v ™ ClVVlg2 +m CIIVVIEE" + Cllfull + per C wl|
<Clv|* + 1 CIVV]o + 11 C Vv + ClIfu]l + per O lwl,

where C' only depends on p and (2. Hence,

T

OV :/ v ,dT

o a——— lvv(r >||( sy
T

<C/ VB (9@ 5T dr + o2 C/ IV (r)IZT dr + o7 0/ V()L dr
0

+0/ 16, ()P dr + c/ lw(r) |7 dt

- N

<Clvl /. + v oTs ||V||p

L°°(0 T;L2 (n) ° (o WP (2)) v (0,15Wg P (2))
+ Vf C”VHp (0 T~W1”’(Q))
+ CTW ||f ||L2(OTL2(_Q)) + Cp C T“f ||WHL2(0TL2(Q))
=

12
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where a, § and + are the conjugate exponents to (p — 1)p/3,p — 1 and 2/p’, respectively, and the constant
/
C depends only on p and 2. Given & as above, we have

19Vl < é. (4.10)

» (o,:r; (W;’p(ﬁ))/)

Finally, with ¢, ¢, é3 given in (4.9) and (4.10), respectively, we infer that
F(A) CK, (4.11)

where

K=JveA: ||V||L°0(0,T;L§(Q)) <ér, vl < &y and ||8tVHL < C3

Lp (O,T;W;’p(ﬂ))

v’ (o,T; (Wi”’(ﬁ))')

We are left to show that K is a compact subset of A. Since W2?(2) c L2(2) ¢ (W2P(2))', thanks to
Theorem 2.2, we deduce that K is compactly embedded in LP? (0, T, Li(())), and, in turn, in L2 (O, T, Li(()))
since p > % Therefore, to summarize it is proved that

FAcCKkS A

where K is a compact subset of A with respect to the norm L2 (0,7,L2(£2)). As a consequence of
Theorem 2.1, F : A — A has a fixed point in K, which implies the existence result in Theorem 4.1. Lastly,
the uniqueness of the weak solution to problem (4.1) is obtained from the same argument of Step IV by
replacing v,, and v with two solutions v; and vg, respectively, originating from the same initial datum
Vo. O

Next, we prove the convergence result.

Theorem 4.2. Forp > 2, letf € L?(12) and let u be a weak solution of (3.1) with no-slip Dirichlet boundary
conditions departing from ug € L2(£2). Let v be the solution to the data assimilation algorithm given by (4.1).
Then, for i large enough such that

—2_ 1
1> T VTN o
and h > 0 small enough such that
g h? < vy,

where ¢ is a dimensionless number depending only on p and 2, while ¢y is dimensionless constant given in
(2.1), we have

la(t) = (D)l < u(to) = v(to)||e® FHolemror P (t=t0), Vit > to,

where the positive parameters * and My are defined in (4.19) and (4.21), respectively, and to is given in
Proposition 3.3.

Proof. Subtracting (3.1) and (4.1), the difference e = u — v satisfies the following error equation
(Ore,w) + ((u-V)u,w) — ((v-V)v,w) + (T(Du) — T(Dv),Dw) = —pu (Ire, w). (4.12)

Since
(u-Viu— (v-V)v=(e-V)u+ (v-V)e,

13
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taking w = e and using [38, Lemma 2.45], the Korn inequality and (3.3), we obtain

2 dtllell2 +w| Vel < —((e- V)u, e) — (ule, e). (4.13)
In light of (2.1) and the assumption pc3 h? < v, one can estimate the nudging term in (4.13) as
—p(Ine €)= —p(lhe —e+e,e)
= (e~ Ine,e) — plle]”
7 1
< 5lle = Inel” + S llel|* — plelf”

= (4.14)
< *Co o h?(IVell* — *He||2
<o 2 Dlel®.
< 2 |vel? - Eel
Thus, we have
Vo p
|| I+ S Ivel” < [((e- V)u.e)| = Slel (4.15)

2dt

Take p and p’ to be conjugate numbers, i.e., p’ = and apply the (Lebesgue interpolation inequality),

p— 1’
(Sobolev embedding) and (Young inequality) to estimate the above nonlinear term as

2_,
[((e-V)u,e)l <[], [IVullze = [lell} o, [[Vulzr < ||e|| ||e||L6 ||VU||LP
3o s o P (4.16)
< chlle|* Vel ? [Vl < *IIVell *Vo " IVallzp A el
for some ¢ depending only on p and 2. Inserting (4.16) in (4.15), we get
d
Fllell + (n—ervg™ & Vu ”2,, *) llell* < 0. (4.17)
With Lemma 2.5 in mind, denote
3
a(t) =p—cyy 7 [Vt )||2p v
Applying Hélder’s inequality, and choosing T = (v A1)~ " in (3.8), we obtain for p > s
t+T 3 t+T 2p
[ ads=ur—ai® [ vae)E ds
t t ,
3 _s t+T -3
> T — ey 7 T (/ IV u(s)]1%, ds)
t
2
3 2p—5 2p=3
>ul —cvy™ % 723 (QCP (L+voMT) gt AL 2G2)
2p 6—2p —2 4—2p
- uou)q a 22;17735012(1773 N S Ve G3,
1 4 2p _3 _ —2 1 4
Thus, from above and with g > 2' 723 ¢c? 7%y~ P2 AP~ G%-3, we have
t+T
/ a(s)ds > p* >0, Vi > to, (4.18)
¢
where 2p—4
4 2p 6—2p —2 1 2p—3 4
B* =223 6612(1)73 R Ve ()\) G2r-3, (4.19)
1
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Similarly, by setting o~ (s) = max{—a(s),0}, we have
t+T
/ a~(s)ds < My, Vit > to, (4.20)
t

Where 2p 6—2p —2 4—2p

4 ——n . A7 4
— 2p—3 _ 2p—3 2p—3 \2p—3
7” — 92p—3 p— pP— v P 2p—3
0= 22p CCK l/o 121 )\1 G P

(4.21)

Finally, by applying Lemma 2.5 to (4.17), we conclude that

le@) = [a(t) — v(®)] < ko) — vito)lel M)~ (T v > 4.

That is, the error converges exponentially fast to 0 as ¢t — co. [

5. The case p = 1% with periodic boundary conditions

In this section we study the dynamics of the solutions u for the Ladyzhenskaya model (3.1);_2 and v for
the corresponding data assimilation algorithm (4.1);_o in £ = [0, 27]® completed with periodic boundary
conditions.

Since the average velocity T(t) = [, u(x,t)dx is an invariant of the flow provided that [, f(x,t)dx =0
and the interpolant operators (Volume elements or Fourier modes) have zero spatial average, we consider
without loss of generality that u(t) = 0 and v(t) = 0 for all ¢ > 0.

Theorem 5.1 (Existence of Weak Solutions and their Propagation of Regularity). Let p = %, f e
L2(0,T; L?(R2)) and ug € L2(R). Then, there exists a weak solution u to (3.1);_o on (0,00) with periodic
boundary conditions such that

-
=

. 5 1
we (0. THL2()NLE (0.Ts W5 (2), Sue LT (OT:(We > (R))),  VT20,  (5.1)
and -
(Opu,w) + ((u- V)u,w) + (T(Du), Vw) = (f,w), Vwe W;’?(.Q), (5.2)
for almost all t € [0, T]. Moreover, the energy equality holds

1l,l 2 t 14 u7'2 1% HT% ’7'—*1,12 tTllT T
@+ [ (2alDueP + 2Dl %y ) dr = Jwl + [ Eouan  vezo 63

11
L5

In particular, if f € LQ(Q), there exists a time tg > 0 such that for allt > ty we have

G2
Ju()? < 225 (5-4)
%
and e " 2G2
[ (wlputl +mipu(i % ) dr < 204 mar) 25 55)
t L5 /\2
where G is defined as in (3.5). In addition, there exists t € [to,to + 1] such that
ue (1, T; HA(2)) N LA(ET; H2 (@) N LB 1, T; W (02)), VT > 1, (5.6)
and
t+r 11 1
/ [Vu(r)|| %y dr < el <R3 + KoRoRs + K3Ry + yva?) Vit >t (5.7)
t L5 1

where r = (voA1) "1, t1 =t +r. The constants K1, Ko, K3 are defined in (5.19), and Ry, Re, R3 are given in
(5.21)~(5.22).

15
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Proof. The first part of Theorem 5.1 is proved in [38, Section 5] (see also [39] Theorem 3.1). Let us now
consider a generic® weak solution u to (3.1)1_2 on (0,00) satisfying (5.1), (5.2), (5.3), (5.4) and (5.5). It
follows from (5.5) that there exists ¢ € [tg,to + 1] such that

2

V0G2

1

Al

[Du@ < | 2(1+r0A)

Since u(t) € H:(£2), we infer from [38, Theorem 3.4, Theorem 4.5 and Remark 4.6] (see also [39, Theorem
4.1]) that there exists a unique strong solution U on [¢, 00) originating from u such that

de LeE T HY(2) N PET HA(Q) N LS G T;whE (), VT =1,

In addition, in light of the weak—strong uniqueness principle proved in [39, Theorem 5.2], we infer that
u(t) = u(t) for any t € [, 00). This, in turn, gives (5.6).

We now perform some formal Sobolev estimates whose rigorous justification can be performed through
the Galerkin scheme. By definition of the Stokes operator in the periodic setting, multiplying (4.1); by —Au
and integrating over {2, we obtain

1d

1
2SIVl + ol dul? + 2y / V- (|IDu/bDu) - Audx
t Q

:—/ f~Audx+/(u-V)u~Audx.
Q Q

Here we have used that V- ((Vu)?) = V(V - u) =0 by (4.1),. A direct calculation shows that
9% (IDu|%) = n/Dul} *Du: D(pu), Vn > 0. (5.9)
Using integration by parts and (5.9) with n = p — 2, we have for p > 2
/ V- (|Du|’;2Du) - Audx = / 9; (|Du\§7;2(Du)ij) Ok u; dx
Q 2
= —/ |Du|1}*2(Du)ij8kk8jui dX
Q
- / Or (|Duly* (Du),; ) B (Du),; dx
Q (5.10)
- / Ok (1Dl ) (Du)i; 0 (Du)y; dx + / IDul% 20, (Du),; 05 (D) dx
Q Q
= /Q (p — 2)|Dul%* (D) (DI )i, (D) (Dyu);; dx + /Q IDuf%?|V(Du)|* dx
= /Q(p —2)[Dul% *|Du : D(Vu)|* dx + /Q |Dul??|V/(Du) | dx.
Exploiting again (5.9) with n = £, we observe that

p 2 2
/Q|V|Du|;\ ax = (2) /Q|Du|1;—4|Du:D(vu)|2dx.

As a consequence, it follows for p = 15—1 that

1 1 /10\° 1
/v- Du/}Du) - Audx > ~. (2 /|V|Du|;0|2dx
2 5 \ 11 Q

2 Indeed, in the case p € [1L, 2), the weak solutions are not known to be unique (cf. [39]).

16
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2 2

\|D B

]D b

121 ‘ T 121 ’
2

1
H

-

1

11 -
L5

of

| \/

SHHh”?

Using the embedding H'(£2) — L(£2) and the Korn inequality, we infer that

Lo B Lo
2 L6
11
1Cs u BE g
- _ D 5
> gz Il "y — g IDull 7y
11
1 Cs et 1
> 2—7 IVul[ °s — = [[Duf| °1
8 5 s 6 LS
CsCx

In order to handle the convective term, we observe that
/ (u-V)u- Audx = / u;0;u;0kku; dx
o) Q

_—/ 8kuj8jui6kuidx—/ Ujajakuiakuidx
i) 0

(5.11)
7/ Oru;0;u;0ku; dx 7/ u,;0; ( 3ku25‘kul> dx < ||Vu||ig
Q Q
=0
Thus, collecting the above terms together, we find the differential inequality
1d 9 2, i 1
IVu||* + vol| Aul|* + ||V || 55 < HVuHLg + ||Du|| 2t —/ f- Audx. (5.12)
2dt LS L5 Q
~ 1
Here, we have set C' = € 1 , which depends only on {2 and the value p = 1—51 We now proceed with the
02 c 5
5K

estimate of the terms on the right-hand side of (5.12). We exploit the splitting method devised in [38] for
the L3-norm of Vu which follows from the Lebesgue interpolation. We recall that for p € [2, 3]

2p—2

p—1 3—p
IVullzs < [[Vall 5 [[Vall 3, , IVull s < [[Vull 57|V ||2§p2-

For o € (0,1), which will be chosen later, exploiting the above interpolation inequalities, we obtain

1 «
[Vul?s < [|Vull? ||Vu||L )

)22 3(1—a) 32y

< [Vl a2, 2 vt T ), (5.13)
p—1 2 3252 43(1—
< [Vl vtV g, O
In particular, for p = 31 we have
1— 33 _ 27
ulffa < 19u)*5, Va2 v 201,
Setting
22 5 , 5
a=—, $=5, § =
45’ 3’ 2’
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and using the Young inequality, it follows that for any € > 0

IVul7s < IIVul u IIVHIILQIIVHI

11 71
s—nv 1%+ Z10ul %y 17l
Choosing € = %Vlé, we are led to
u 2/ 24 \? 1
19uls < 26 v, + (~) vl ¥y [vul
L5 50,C 5

Also, we have )
Yo 2 2
— [ f-Audx < A f)|“.
/Q wdx < 2 dul + 5]

Combining (5.12) with (5.15) and (5.16), we end up with

1d - u
z Aull? + 5
Sl + 2 + A vy ¥,
3
2 24 \2 Bey Bey 1
<= - Vu5 Vu +—D 5+ —|If|1?,
<2(25) Il by Ivulzs 5 0wl %y + ol

for almost any t € (f,00). We rewrite the above inequality as

11 11 it 1
HVUH2 + o[l Aul® + K, [|[Vul| "’% < KQHVUH ° HVUHLz + K3 [|[Vul| ® ;OIIfIIQ,

11
L5

having set

~ 3
2 24 \? 2
K1:£7 K2:7 ( ~> ) K3: Vlc'
4 5 \ 5v,C 3

In particular, we have

d il 11 1
—[|Vu|* < K| Vul| 3, |V K5 ||Vul ® —|If|%
IVl < K[Vl %y [Vul2e + Ka [Vl by + ]
In light of (5.5), for any t > to and r = (19A;) " we infer that
t+r e t+r 1 1202
/ [Vua(r )||2d <8 . =t 1, / [Vu(r)|| ° dr < dep % r = Rp.
t A2 t Ls nA?
By exploiting Lemma 2.4, we find
[Vua(t)]]? < (VO)\lRl + K3Ry + uo/\2G2) ef2f2 — Ry Vt>T+r=t.

As an immediate consequence, integrating (5.17) from ¢ to ¢ + r, where t > t;, we obtain

t+r 11 1
/ Vu(r)|| %5 dr < el (R3 + KyRyR3 + K3 Ry + 1/3)\26'2) O
t L 1

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

Next, we state the following result concerning the existence of solutions to the data assimilation algorithm

given by (4.1) in the case p = L. This is a consequence of the results obtained in [38,39].

Theorem 5.2 (Ezistence of Weak and Strong Solutions for Data Assimilation Problem). Assume thatp =
and £ € L?(2). Let u be a weak solution of (3.1) with periodic boundary conditions given by Theorem 5.

Then, we have the following:

18

11
5
1.
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1. If vo € L2(2), there exists a weak solution v to (4.1) satisfying

1

. 11 11
v eC(0,T]; L2(R)) N L5 (0,T;Wa"? (2)), dyve LS (0,T;(Wa'™ (2))), VT >0, (5.24)

=

and
Owv,w) + (v-V)v,w) + (T(Dv),Vw) = (f,w) — u(Ip(v—u),w), Vwe VV;%(Q)7 (5.25)

for almost all t € [0,T].
2. If vo € HL(R2), there exists a unique strong solution v to (4.1) such that

133

v € C([0, T]; HA:(2)) N L2(0, T; H2(2)) N LS (0, T; W-¥ (1)), YT >0, (5.26)

which solves (4.1) in weak sense as in (5.25).

RS
3. Ifvg € W,'s (2), there exists a unique strong solution v to (4.1) which satisfies, in addition to (5.26),
.11 ,
v eC(0,T];Wa'® (2)), 8v e L20,T;L2(2)), VT > 0. (5.27)
In particular, in this case v solves (4.1) in weak sense with w € HL(12).

Lastly, we prove the convergence result for p = % in the periodic boundary setting.
Theorem 5.3. Forp = 1—51, let u be a weak solution of (3.1) with periodic boundary conditions given by
Theorem 5.1 and let v be the solution to the data assimilation algorithm given by Theorem 5.2. Assume that
e
p>— <R3 + KoRoR3 + K3Ry + V§A2G2) (5.28)
P

where C is a constant depending on 2 and p and K., Ko, K3, Ry, Rz are defined in Theorem 5.1, and h small
enough such that
peo h? <y,

where ¢ is a dimensionless constant given (2.1). Then, we have
la(t) = v(£)]| < lla(t) = v(tr) e Mo 0, Vit >t

where t1 s as in (5.22) and the positive parameters v* and My are defined in (5.32) and in (5.33), respectively.

Proof. Proceeding as in the proof of Theorem 4.2, we have

2 4 Yo 2 B2
< . - = . 2
S Sl + Vel < | (e Vyue) |~ He] (5.29)
Arguing differently than (4.16), we find
(e V)u,e)l < [l*]| gz [IVu]l 22 = ||e||233 IVull s < lef| 1 ||e|| IVull 2
N , (2 2 - , (5.30)
< cll[le|| 1 || Ve Tt IVull s < *IlVeH test (o) IVl G llell™
Inserting (5.30) in (5.29), we arrive at
22
dt”e”2 = —5 HVUH L lef* <o, (5.31)
uoﬁ Ls

19



Y. Cao, A. Giorgini, M. Jolly et al

Nonlinear Analysis: Real World Applications 68 (2022) 103659
for some constant C' depending only on {2 and the value p = 1

% . Aiming to use Lemma 2.5, let us set
c #
a(t) = | p— IIVUII L

VT7 L
0
By Holder’s inequality and (5.2

3), and also taking r = (1o A1)

t+r 6 t+r 2
[ ads=ur— [ vuts) fas
t 17 Jt 5
0

L

, we obtain

10 7
6 t+r 11 7 t+r 17
> ad —_ [IVu(s)|| 35 ds 1ds
by 5 33
VoAl ,/01 t L5 t
m C 1
- V())\l o

10

1
1 7
(Rs + KoRoR3 + K3Ry + V27 G2>
17)\1 K*

0

Notice that the second term on the right-hand side of the above inequality is independent of u. In particular
in light of the assumption (5.28), we immediately deduce that

t+r
/ a(s)ds > %, Vi > tq,
t
where »
. 2C o N\ T
V= | B3+ K2RaR3 + K3Ry + 5\ G (5.32)
I\ K IT
0 A1 4y
In a similar way, we find -,
/ a~(s)ds < My, Vi >ty
t
where "
° 17
My = 7 (Rg + KsRoRs + K3Ro + VgA? GQ) (5.33)
17A1 K
Therefore, we conclude from Lemma 2.5 that

le(®)[ = [[u(t) -

V(t>|| < ||11(t1) _ V(tl)He(’Y*"‘Ml)e—(t_tl )’y*

=) Vi>t. O
Remark (2D C’ase) The condition (5.28) for the nudging parameter p can be enhanced in 2D. Indeed
recalling that [, (u

)u Audx =0, (5.18) is replaced by

11 1 1
IIVu||2+Vo||AUI|2+2K1 IVul| °35 < K3 [[Vull *y + —|If]]*.
L5 L5 1Z0)
Then, arguing as in the proof of Theorem 5

(5.34)
5.1, it follows that
1 _
[Vua(t)]]? < <V0>\1R1 + K3Ry + 5N} GQ) = R} Vt>T4r=t, (5.35)
and . u ) 3
/t ||Vu(7)||L5¥ dr < K, (R§ + K3Ro + VA G ) ) Vit >t. (5.36)
As a direct consequence, (5.28) becomes
2Cu17 1 1
>0 g (R3 + K3Ry + V§A2G2> : (5.37)
(2K,)1?
Furthermore, the analysis herein presented can be extended for any p > 2 in (1.4)
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Fig. 1. Evolution of the energy of the reference solution over the transient period.

6. Computational results

We demonstrate the effectiveness of nudging for both two and three-dimensional Ladyzhenskaya models
with fully periodic boundary conditions in 2 = [0,27]¢, d = 2, 3. This is first done for the case p = 3, the
Smagorinsky model, which is often used in Large Eddy Simulation (LES) of turbulent flow [46,47]. We then
vary p in the three-dimensional case, and test nudging with only the horizontal components of velocity. For
both cases, the parameter v is chosen from dimensional considerations to be

2T
0= N
where N is the number of Fourier modes used in each direction for the direct numerical simulation (DNS)
of the reference solution.

1
v = 5(085)21/3‘” , Ce=01, (6.1)

The initial condition for the reference solution u(tg) for each data assimilation experiment is chosen so
that it faithfully reflects the long term dynamics of the model. This is done by integrating the model starting
at t = 0 with u(0) = 0 until some time ¢ = t; when it appears the transient period has passed. Fig. 1 shows
the time evolution of the energy |[ul|?, on [0, %o]. By the end of the run, this quantity seems to have reached
its statistically stationary state. We assume then that u(tg) is essentially on the global attractor. We start
the nudging at time ¢ = ¢ by solving the original (u) and the nudging (v) systems simultaneously with
v(tg) = 0. The computations are done using Dedalus, an open-source spectral package (see [68]). The time
stepper is a four-stage third order Runge-Kutta method.

6.1. Two-dimensional case

In two-dimensions, we take the viscosity to be vy = 107%, p = 1, and use a normalized force fop
from [69], so that the Grashof number G = 2.5 x 10°. We demonstrate both the nodal value and Fourier
modes interpolant operators. In the nodal value case, we use every 4th nodal value in each direction so
that h ~ 0.0491. In the Fourier modes case, we use the projection on the low modes with wave vectors
k = (k1, k) such that |k;| < 32 and h = 35 ~ 0.0982. The value of N is fixed at 512. While we have not
analyzed the nodal interpolation operator in this paper, Fig. 2(b) shows synchronization with the DNS of
the reference solution to within machine precision in both the L? and H' norms. The same is true for Fourier
mode interpolation, with a slower rate due to a larger value of h. Field plots of the velocity components and
pressures at several times near the start of nudging corresponding to Fig. 2(a) are shown in Fig. 4.

6.2. Three-dimensional case

In the three-dimensional case, we define a force f3p = (f1, fo, f3) via its Fourier coefficients so that in each
wave vector plane, f3p is similar to fop in the previous section. Specifically, we take the function g := V X fop
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Fig. 2. Convergence of data assimilation for 2D Smagorinsky model for p = 1.
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Fig. 3. Convergence of data assimilation for the 3D Smagorinsky at different values of the nudging parameter p and h = h(m); the
left fixes p© = 10 and the right fixes m = 32.

and set

B (ke 0L ke) — ik3g(k1, k3) P (ke B ) — ikag(k1, k2)

fl( 1,Y, 3)_W) fl( 1, 2, >_W7

" —tk1g(k1, k A tk3g(ko, k

f?(k17k270):kl%g_(|_ll€§2)a f2(0ak27k3):?];§(_|_2k§3)7

; —ik19(k1, k3) ; —ik2g(k1, k2)
k1,0, ky) = o9, N8) g, i) = — 2L F2)

f3( 1703 3) k‘% +k’§ ) fS(Oa 2, 3) k% +l€§ 3

and all other Fourier coefficients of fsp are zero. In 3D it is the viscosity vy that is adjusted so that the
Grashof number remains as G = 2.5 x 10°. We use the Fourier modes interpolation operator Ij, = Py () for

the 3D model, where P} ,,,) denotes the projection on the low modes with wave vectors k = (k1, k2, k3) such
that |k;| < m and

0
h(m) = pl
The value of N is fixed at 256.

Fig. 3 shows the exponential rate of synchronization using different values of nudging parameter p and
resolution h. For fixed u = 10, as we use fewer number of modes, the convergence is slower, but still
exponential. For m = 8, slices of solutions at the mid-plane z = 7 near the start of nudging are shown
in Fig. 5. The convergence fails at m = 4 (not shown).
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Fig. 4. Synchronization of the 2D Smagorinsky model using nodal interpolation, p =1 and h & 0.0491; the reference solution (u, P)
is denoted as (uj,us, P) and the nudging solution (v, Q) is (v, vz, Q).
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Fig. 6. Synchronization for the 3D Ladyzhenskaya model using h = h(32) for different values of p.
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Fig. 7. Abridged nudging for the 3D Smagorinsky model with (@1, 2, p3) = (10,10,0) and h = h(128).

As is the case in other studies (e.g. [55,57,58]), the rigorous bounds on the parameters are not expected
to be sharp, and in simulations p can be taken much smaller and consequently the data much coarser than
what is suggested by the analysis. At the fixed parameter of m = 32, the convergence rate improves as p is
increased (see Fig. 3(b)). At p =1 and p = 5, the convergence rates are nearly identical, while at x = 0.01,
nudging fails to synchronize. This numerical experiment suggests a critical value of p.

We varied p (along with 14 according to (6.1)) in the Ladyzhenskaya model using both p = 10 and
u = 0.1 (see Fig. 6). At these values of u, we detect no discernible difference in the performance of the
nudging algorithm for p ranging from 2.2 = 11/5 to 3.

Finally, we consider an abridged nudging scheme in which only the horizontal components of velocity play
the role of observed data. This amounts to treating p as the vector (u1, u2, u3) = (10,10, 0) and nudging the
jth component of velocity with the factor p;. Fig. 7 shows rapid initial synchronization, which then slows,
particularly for the third component of velocity, which is not nudged. While the error is far from machine
precision even after nudging for 1000 time units, the field plots shown in Fig. 8 display similar features at
rates that are slower for the third component of velocity and pressure.
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