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a b s t r a c t

We analyze continuous data assimilation by nudging for the 3D Ladyzhenskaya
equations. The analysis provides conditions on the spatial resolution of the
observed data that guarantee synchronization to the reference solution associated
with the observed, spatially coarse data. This synchronization holds even though
it is not known whether the reference solution, with initial data in L2, is unique;
any particular reference solution is determined by the observed, coarse data.
The efficacy of the algorithm in both 2D and 3D is demonstrated by numerical
computations.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Data assimilation

The insertion of coarse grain observational measurements into a mathematical model is called continuous

data assimilation. This can provide a more accurate forecast in applications ranging from the medical,

environmental and biological sciences, [1,2], to imaging, traffic control, Ąnance and oil exploration [3].

Bayesian and variational approaches (Kalman Ąlters, 3DVar and 4DVar) are based on discrete observations

in time and often used to treat errors in both observed data and model itself [4Ű11]. They are widely used

in practice, but difficult to analyze mathematically, especially for physical models governed by nonlinear

differential equations [12Ű14].

Nudging is a straightforward, deterministic approach to data assimilation. While its origin can be traced

back to [15], it has been more recently applied in the context of synchronizing chaotic dynamical systems.
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See [16,17] for a more complete history, and [18] for a comparison with Kalman Ąltering. In essence, this

method assumes that an accurate initial condition u(0) is not known for a particular model

du

dt
= F(u), (1.1)

but data from a reference solution, interpolated at spatial resolution h is available, denoted as Ihu(t). Those

observations are used in an auxiliary system

dv

dt
= F(v) − µIh(v − u) , v(0) = 0 (1.2)

to drive ∥v − u∥ → 0 at an exponential rate, provided µ is sufficiently large and h is sufficiently small.

Since derivatives are not required of the data in the approach, it can be used with more common types of

observations, such as nodal values.

Rigorous analysis of the nudging algorithm for partial differential equations in Ćuid mechanics began with

the work of Azouani, Olson and Titi. They estimated threshold values for the relaxation parameter µ and

data resolution h for the 2D NSE [19]. Since then, nudging has been rigorously shown to synchronize with

reference solutions in a variety of applications, including the 2D RayleighŰBénard problem [20Ű22], surface

quasigeostrophic equation [23,24], KortewegŰde Vries equation [25], 2D magnetohydrodynamic system [26],

3D Brinkman-Forchheimer-extended Darcy model [27], 3D primitive equations [28], 3D Leray-α model [29],

and Voigt-relaxation of the 2D NSE [30].

In each case, threshold values for µ and h had to be established for both the well-posedness of the

corresponding system (1.2) as well as for synchronization. In some works it has been shown that it is sufficient

to nudge with data in only a subset of the system variables [20Ű22,31,32]. While the nudging algorithm does

not lend itself to directly treat error in the model, the effect of error in the observed data has been studied

in [24,33].

1.2. The Ladyzhenskaya model

The motion of an homogeneous, incompressible, viscous Ćuid in a domain Ω ⊂ R
3 is classically described

by the momentum equation and the incompressibility constraint, that read as

∂tu + (u · ∇)u − ∇ · T(Du) + ∇P = f ,

∇ · u = 0,
in Ω × (0,∞), (1.3)

where u is the Ćuid velocity, P is the Ćuid pressure, f is the forcing term. Here, Du denotes the symmetric

part of the gradient of u. In particular, the NavierŰStokes model corresponds to the case of Newtonian Ćuids

characterized by the (linear) StokesŠ law T(Du) = ν0Du. The lack of a global regularity result makes the

analysis of the nudging algorithm problematic for the 3D NSE, though a recent work provides a condition

on observed data which deals with this issue [34]. In this work we consider a family of 3D globally well-

posed modiĄed NavierŰStokes equations, namely the Ladyzhenskaya model. In the mid-1960s, a number of

modiĄcations to the NavierŰStokes equations were suggested by Ladyzhenskaya for the description of the

dynamics of viscous Ćuids when velocity gradients are large [35Ű37]. These equations form an important

mathematical model describing the Ćow behavior of a wide class of non-Newtonian Ćuids [38Ű40]. In this

work we consider one particular model (see Eq. (3.1)), where the Cauchy tensor in (1.3) takes the following

nonlinear form

T(Du) =
(

2ν0 + 2ν1♣Du♣p−2
F

⎡
Du, (1.4)

where Du = 1
2

[
(∇u) + (∇u)

T
]

and the Frobenius norm ♣Du♣F = (Du : Du)
1
2 . The above relation is

commonly used for non-Newtonian Ćuids with shear dependent viscosity, i.e. the dynamic viscosity depends
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on ♣Du♣2F . The model corresponding to p = 2 reduces to the NavierŰStokes equations (NSE) with kinematic

viscosity equal to (ν0 + ν1). For p = 3, it is mathematically equivalent to the Smagorinsky model [41] and

the NSE with the von Neumann Richtmyer artiĄcial viscosity for shocks [42].

There are various reasons to consider the Ladyzhenskaya models instead of the NavierŰStokes equations.

In the Ąrst place, the laws of conservation of mass and momentum provide an undetermined system of partial

differential equations for the velocity, pressure, and stress tensor. In general, this system of equations is not

closed until the stress tensor, which represents all the internal forces, is related to the Ćuid velocity. Internal

forces, and therefore also the stress tensor, must depend on local velocity differences and some combination

of derivatives of velocity, i.e., the deformation tensor. The simplest relation is a linear law between stress and

deformation, which leads to the NavierŰStokes equations, see [43] for details. This linear relation is only an

approximation for a real Ćuid and schematically the stress and deformation are related nonlinearly, especially

for large deformations. A speciĄc nonlinear mathematical relationship between the stress and deformation

can be derived from StokesŠ hypotheses.1 If one retains some of these nonlinear terms, we arrive at the

Ladyzhenskaya model considered here. We refer the interested reader to [38Ű40] for more details.

Secondly and more from a practical engineering point of view, the study of the Ladyzhenskaya equations

is related to the Ąeld of turbulence modeling. For some values of p, such as p = 3, 4, the Ladyzhenskaya model

considered here is equivalent to those of popular turbulence models, such as large eddy simulation (LES) and

zero-equation models. In both applications and turbulence modeling, the behavior of averaged quantities are

most important and often simulated. To do so, the quantities describing the Ćow are decomposed into its

averaged and Ćuctuating quantities. However, averaging the NSE yields a non-closed system; to close the

system, one must provide the relationship between the Ćuctuating and the averaged quantities. There are a

wide range of closure assumptions which are known collectively as turbulence closure models. Two examples

that are widely used are the zero equation model (or algebraic model) and large eddy simulation, for more

details see e.g., [44,45]. The main feature of these models is that the non-closed part (known as the Reynolds

stresses), which represents the contribution of small scales in the system, is related to the derivatives of the

averaged quantities. See [46,47] for more details on the mathematics of large eddy simulation.

Finally, from the theoretical point of view, while the well-posedness has not been proven for the NavierŰ

Stokes equations in three space dimensions, several results of existence, uniqueness and regularity of

global-in-time solutions of the Ladyzhenskaya model have been proved in the last decades [35Ű38,40,48Ű53].

This provides a Ąrm mathematical foundation for the study of (3.1).

1.3. Results in this paper

In this paper we develop a comprehensive study based on the theoretical analysis and large eddy

simulation of the nudged system (1.2) corresponding to the Ladyzhenskaya model (1.3)Ű(1.4) (see (4.1))

with both no-slip and periodic boundary conditions.

In the no-slip case, we Ąrst use the Schauder Ąxed point theorem to prove that the nudged system has a

unique global weak solution with u0 ∈ L2
σ(Ω) provided p ≥ 5/2 (see Theorem 4.1). To prove the existence of

the solution, unlike some treatments of the nudged system for other models (e.g. [19,54]), this approach does

not require µ to be large, nor h to be small. Then, we Ąnd a threshold value µ∗ in terms of p, ν0, ν1, domain

size and the Grashof number (see (3.5)), such that for µ ≥ µ∗ and h correspondingly small, synchronization

is guaranteed. That is, the nudged solution v converges exponentially fast to the reference solution u after

a transient (see Theorem 4.2). In the case of periodic boundary conditions, the existence of global weak

solutions to the Ladyzhenskaya model over the wider range p ≥ 11/5, originating from u0 ∈ L2
σ(Ω), has

been established in [38]. These weak solutions are not known to be unique, unless the initial condition is

1 Stokes introduced a series of requirements which together serves to deĄne a ordinary Ćuid such as water and air [43].
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more regular (see [38, Theorem 4.37] for u0 ∈ H1
σ(Ω), and also [48] for u0 ∈ W 1,p

σ (Ω) in the no-slip case).

Nonetheless, any one such weak solution becomes more regular after some time. Following the strategy

devised in [38,50], we prove, for the endpoint case p = 11/5, a time averaged bound in L
11
5 (t̄,∞;W 1, 33

5 (Ω))

for the solution u to the Ladyzhenskaya model in terms of the parameters of the system, where t̄ is suitably

chosen (see Theorem 5.1). This bound is then used to prove the synchronization of the nudged solution to

the solutions of the Ladyzhenskaya model (see Theorem 5.3). In contrast to the previous cases studied in

literature when uniqueness of the reference solution holds, the novelty of our result is that synchronization

takes place even without uniqueness of the reference solution for 11/5 ≤ p ≤ 5/2. More precisely, for each

reference solution u corresponding to an initial datum u0 ∈ L2
σ(Ω), the nudged solution vu converges to u

at an exponential rate for large time. As a consequence of our analysis, it is worth concluding that if two

reference solutions u and ũ are such that Ih(u)(t) = Ih(ũ)(t) as t → ∞, then ∥u − ũ∥ → 0 as t → ∞,

i.e., the model has a Ąnite number of determining modes for p ≥ 11/5.

We demonstrate the efficacy of the algorithm by extensive computational studies. Numerical work with

other Ćuid systems has shown that the nudging algorithm achieves synchronization with data that is

much more coarse than required by the rigorous estimates [55Ű58]. We Ąnd this is also the case for the

Ladyzhenskaya model with periodic boundary conditions, for which we achieve exponential convergence to

machine precision with h ≈ 0.1. Most of our computations are done for the case where p = 3 (Smagorinsky

model), corresponding to large eddy simulation [41]. Though for periodic boundary conditions we present

the analysis for a threshold value of µ only in the endpoint case p = 11/5, our numerical computations, show

virtually no sensitivity to p for two choices of µ. Finally we test an abridged nudging scheme which uses data

only for the horizontal components of velocity. We present evidence that synchronization still holds for that

scheme, though at a slower rate for the third component of velocity and pressure.

Organization of this paper

In Section 2, we introduce the inequalities and preliminary results used in the analysis. Section 3 provides

background on the Ladyzhenskaya model. Later, in Sections 4 and 5, we state and prove our main results,

in which we give conditions under which the approximate solutions, obtained by the data assimilation

algorithm, converge to the solution of the Ladyzhenskaya equations. Numerical experiments, demonstrating

and extending beyond the analytical results, are described in Section 6.

2. Notation and preliminaries

Let Ω ⊂ R
d, d = 2, 3, be a bounded open Lipschitz domain with volume ♣Ω ♣ and let p ∈ [1,∞]. The

Lebesgue space Lp(Ω) is the space of all measurable functions v on Ω for which

∥v∥Lp :=

⎤∫

Ω

♣v(x)♣p dx

⎣ 1
p

< ∞ if p ∈ [1,∞),

∥v∥L∞ := ess sup
x∈Ω

♣v(x)♣ < ∞ if p = ∞.

The L2 norm and inner product will be denoted by ∥ · ∥ and (·, ·), respectively. Let V be a Banach space

of functions deĄned on Ω with the associated norm ∥ · ∥V. We denote by Lp(a, b; V), the Bochner space of

measurable functions v : (a, b) → V such that

∥v∥Lp(a,b;V) :=

(∫ b

a

∥v(t)∥p
V
dt

⎜ 1
p

< ∞ if p ∈ [1,∞),

∥v∥L∞(a,b;V) := ess sup
t∈(a,b)

∥v(t)∥V < ∞ if p = ∞.
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The space W 1,p
0 (Ω) consists of all functions in W 1,p(Ω) that vanish on the boundary ∂Ω (in the sense of

traces)

W 1,p
0 (Ω) =

}
v : v ∈ W 1,p(Ω) and v♣∂Ω = 0

}
.

We introduce the Banach spaces of solenoidal functions

L2
σ(Ω) = ¶v : v ∈ L2(Ω), ∇ · v = 0 and v · n♣∂Ω = 0♢,

W 1,p
σ (Ω) =

}
v : v ∈ W 1,p(Ω), ∇ · v = 0 and v♣∂Ω = 0

}
,

which are equipped with the same norms as L2(Ω) and W 1,p
0 (Ω), respectively. The spaces L̇2(Ω), L̇2

σ(Ω),

Ḣ1
σ(Ω), Ẇ 1,p

σ (Ω) will consist of the subsets of L2(Ω), L2
σ(Ω), H1

σ(Ω) and W 1,p
σ (Ω), respectively, whose

functions have zero spatial average, i.e.
√
Ω

u dx = 0. We denote by
(
W 1,p

σ (Ω)
[′

the dual space of W 1,p
σ (Ω).

We recall the following inclusions for p ≥ 2

W 1,p
σ (Ω) ⊂ L2

σ(Ω) ⊂
(
W 1,p

σ (Ω)
[′

if
2d

d+ 2
≤ p < ∞,

where these injections are continuous, dense and compact. For matrix A = (aij)3
i,j=1, the Frobenius norm

of the matrix A is given by

♣A♣F =

∏
∐

3∑

i,j=1

(aij)2

⎞
ˆ

1
2

= (A : A)
1
2 .

The data assimilation method requires that the observational measurements Ih(u), with h > 0, be given as

linear interpolant observables satisfying Ih : L2(Ω) → L2(Ω) such that

∥Ihφ∥ ≤ cI∥φ∥, ∀φ ∈ L2(Ω),

∥φ− Ih φ∥ ≤ c0 h∥φ∥H1(Ω), ∀φ ∈ H1(Ω).
(2.1)

One example of such interpolation operators includes projection onto Fourier modes with wave numbers

♣k♣ ≤ 1/h. Somewhat more physical are the volume elements and constant Ąnite element interpolation [59,60].

Inequalities in Banach and Hilbert spaces

We recall here some well-known inequalities in Banach and Hilbert spaces which can be found in the

classical literature (see, e.g., [61,62]). Let 1 ≤ p ≤ ∞, we denote by p′ the conjugate exponent, 1
p + 1

p′ = 1.

Assume that f ∈ Lp and g ∈ Lp′
with 1 ≤ p ≤ ∞. Then

∥fg∥L1 ≤ ∥f∥Lp ∥g∥
Lp′ . (Hölder inequality)

Moreover, for any a, b ≥ 0 and λ > 0 we have

ab ≤ λ ap + (p λ)
−

p′

p
1

p′
bp′
. (Young inequality)

Suppose 1 < p < ∞, there exist two constants cP and cK such that for any f ∈ W 1,p
0 (Ω)

∥f∥Lp ≤ cP∥∇f∥Lp , (Poincaré inequality)

and

∥∇f∥ ≤
√

2∥Df∥ if p = 2, ∥∇f∥Lp ≤ cK∥Df∥Lp if p ̸= 2, (Korn inequality)
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where Df = 1
2

[
(∇f) + (∇f)

T
]
. The constants cP and cK depend only on p and Ω . In the sequel, we will

make use of the classical embedding theorems for Sobolev spaces

W 1,2(Ω) ↪→ L6(Ω),

W 1,3(Ω) ↪→ Lp(Ω), ∀ p ∈ [1,∞).
(Sobolev embedding)

We recall the interpolation inequalities for Lebesgue and Sobolev spaces. Let f ∈ Lp ∩Lq, with 1 ≤ p, q ≤ ∞.

Then, for all r such that
1

r
=
θ

p
+

1 − θ

q
, 0 ≤ θ ≤ 1,

it follows that f ∈ Lr and

∥f∥Lr ≤ ∥f∥θ
Lp ∥f∥1−θ

Lq . (Lebesgue interpolation inequality)

In addition, for any f ∈ W 1,2
0 (Ω), we have

∥f∥L4 ≤ CL∥f∥ 1
4 ∥∇f∥ 3

4 . (LadyzhenskayaŠs inequality)

We need the following fundamental results (see, e.g., [61,63]).

Theorem 2.1 (Schauder Fixed-point Theorem). Let X be a Banach space, and let A be a nonempty closed

convex set in X . Let F : A → A be a continuous map such that F(A) ⊂ K, where K is a compact subset of

A. Then F has a Ąxed point in K.

Theorem 2.2 (AubinŰLionsŰSimon). Let B0 ⊂ B1 ⊂ B2 be three Banach spaces. We assume that the

embedding of B1 in B2 is continuous and that the embedding of B0 in B1 is compact. For 1 ≤ p, r ≤ +∞ and

T > 0, we deĄne

Ep,r = ¶v ∈ Lp (0, T ; B0) , vt ∈ Lr (0, T ; B2)♢ .
Then, we have

(1) If p < +∞, the embedding of Ep,r in Lp (0, T ; B1) is compact.

(2) If p = +∞ and r > 1, the embedding of Ep,r in C (0, T ; B1) is compact.

Lastly, we report the following Gronwall lemmas which will play a crucial role in our analysis (see,

e.g., [64]).

Lemma 2.3 (GronwallŠs Lemma in Differential Form). Let T ∈ R
+, f ∈ W 1,1(0, T ) and g, λ ∈ L1(0, T ).

Then

f ′(t) ≤ λ(t) f(t) + g(t) a.e. in [0, T ]

implies for almost all t ∈ [0, T ]

f(t) ≤ f(0) e

√ t

0
λ(τ) dτ

+

∫ t

0

g(s) e

√ t

s
λ(τ) dτ

ds.

Lemma 2.4 (Uniform Gronwall Lemma - 1). Let T ∈ R
+, f ∈ W 1,1(t0,∞) and g, λ ∈ L1

loc
(t0,∞) which

satisfy

f ′(t) ≤ λ(t) f(t) + g(t) a.e. in (t0,∞),

and ∫ t+r

t

λ(τ) dτ ≤ a1,

∫ t+r

t

g(τ) dτ ≤ a2,

∫ t+r

t

f(τ) dτ ≤ a3, ∀ t ≥ t0,

for r, a1, a2 and a3 positive. Then, for r > 0, we have

f(t) ≤
(a3

r
+ a2

⎡
ea1 , ∀ t ≥ t0 + r.
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Lemma 2.5 (Uniform Gronwall Lemma - 2). Let Y ∈ W 1,1(0,∞), α ∈ L1
loc

(0,∞), and T > 0 be Ąxed.

Suppose that
d

dt
Y (t) + α(t)Y (t) ≤ 0 a.e. in (0,∞),

where ∫ t+T

t

α(s) ds ≥ β > 0,

∫ t+T

t

α−(s) ds ≤ M < ∞, ∀ t ≥ t0,

with α−(s) = max¶−α(s), 0♢, and t0 ≥ 0. Then, we have

Y (t) ≤ Y (t0)e(β+M)e
−
(

t−t0
T

[
β
, ∀ t ≥ t0.

Proof. An application of Lemma 2.3 gives

Y (t) ≤ Y (t0)e
−
√ t

t0
α(s) ds

, ∀ t ≥ t0.

For any t ≥ t0, there exists K ∈ N such that t0 +KT ≤ t ≤ t0 + (K + 1)T . Then, we have

e
−
√ t

t0
α(s) ds

= exp

(
−
∫ t0+T

t0

α(s) ds

⎜
· · · exp

(
−
∫ t0+KT

t0+(K−1)T

α(s) ds

⎜
exp

⎤
−
∫ t

t0+KT

α(s) ds

⎣

≤ e−Kβexp

(∫ t0+(K+1)T

t0+KT

α−(s) ds

⎜
≤ e

−
(

t−t0
T

−1
[

β
eM ≤ e

−
(

t−t0
T

[
β
eβ+M .

The proof is complete. □

3. The Ladyzhenskaya model

The phenomenon that we consider in this section is the motion of an incompressible viscous Ćuid in a

bounded Lipschitz domain Ω ⊂ R
d, d ∈ ¶2, 3♢ with no-slip boundary conditions. Let u denote the velocity

Ąeld, P the pressure, and f the body force per unit mass. In [35], Ladyzhenskaya proposed the following

mathematical model

∂tu + (u · ∇)u − ∇ · T(Du) + ∇P = f ,

∇ · u = 0,

u♣∂Ω = 0,

(3.1)

where T denotes the Cauchy stress of an incompressible and homogeneous Ćuid whose constitutive relation

is given by

T(Du) = 2
(
ν0 + ν1♣Du♣p−2

F

⎡
Du, p ≥ 2, (3.2)

with initial condition u(·, 0) = u0(·). Here, Du = 1
2

[
(∇u) + (∇u)

T
]
, and ν0 and ν1 are positive parameters.

It is worth mentioning that ν0 scales as (length)2

(time) , and ν1 has dimension (time)p−3×(length)2. In the literature,

some works have been devoted to the case with T = T(∇u), namely Du is replaced by the full velocity

gradient ∇u in (3.2). However, in such a case the model does not comply with the principle of frame

indifference (see, e.g., [38,39]).

Before stating the well-posedness result, we report the following property of the constitutive relation (3.2),

which will be of key usefulness in the sequel. In particular, we will exploit the factor ν0. We refer the reader

to [38,49] for the proof.

7
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Proposition 3.1. Let T be as given in (3.2). For all A,B ∈ R
3×3
sym, we have

(T(A) − T(B)) : (A−B) ≥ 2 ν0 ♣A−B♣2F . (3.3)

Taking advantage of the enhanced regularity due to (3.2), Ladyzhenskaya showed in [35,49] that the

weak solutions to (3.1) are global in time and unique for any Reynolds number and any exponent p ≥ 5
2 .

For an overview, we refer the reader to [36] and [37, Theorem 7.2], and to [37,65,66] for the existence of

compact Ąnite dimensional global attractor. Later on, many contributions have been devoted to the analysis

of the case 1 ≤ p < 5
2 . Without any claim to give an exhaustive survey, we mention the existence of global

measure-valued solutions for 6
5 < p ≤ 9

5 , global weak solutions for p > 9
5 and global strong solutions for

p ≥ 9
4 obtained in [38,52,53]. For the periodic case, enhanced results in terms of p have been achieved as

reported in [39,40]. In particular, the existence, but not uniqueness, of global weak solutions fulĄlling the

energy equality holds for p ≥ 11
5 . Moreover, under additional assumptions on the initial datum and the

forcing term, global in time and unique strong solutions also exist. The asymptotic behavior in the same

range of p has been studied in [51,67].

We now state the well-posedness result for the model (3.1) proved in [35] (see also [38]).

Theorem 3.2 (Existence and Uniqueness of Weak Solutions). Assume that p ≥ 5
2 , f ∈ L2(0, T ;L2(Ω)) and

u0 ∈ L2
σ(Ω). Problem (3.1) has a unique weak solution on (0,∞) satisfying for all T > 0

u ∈ C([0, T ];L2
σ(Ω)) ∩ Lp(0, T ;W 1,p

σ (Ω)), ∂tu ∈ Lp′
(0, T ; (W 1,p

σ (Ω))′),

where p′ is the conjugate exponent of p, and

⟨∂tu,w⟩ + ((u · ∇)u,w) + (T(Du),∇w) = (f ,w), ∀ w ∈ W 1,p
σ (Ω),

for almost all t ∈ [0, T ]. Moreover, the energy equality holds

1

2
∥u(t)∥2 +

∫ t

0

(
2ν0∥Du(τ)∥2 + 2ν1∥Du(τ)∥p

Lp

[
dτ =

1

2
∥u0∥2 +

∫ t

0

(f(τ),u(τ)) dτ, ∀ t ≥ 0. (3.4)

Let λ1 be the smallest eigenvalue of the Stokes operator. Assume that f is time independent. We denote

by G the Grashof number in three-dimensions deĄned as

G =
∥f∥

ν2
0 λ

3/4
1

. (3.5)

We now give bounds on the solution u of (3.1) that will be used in our analysis.

Proposition 3.3. Fix T > 0, and let f ∈ L2(Ω). Suppose that u is a weak solution of (3.1), then we have

∥u(t)∥2 ≤ ∥u0∥2e−λ1ν0t +
∥f∥2

λ2
1ν

2
0

(
1 − e−λ1ν0t

[
, ∀ t ≥ 0. (3.6)

As a consequence, there exists a time t0 > 0 such that for all t ≥ t0 we have

∥u(t)∥2 ≤ 2
ν2

0G
2

λ
1
2
1

(3.7)

and ∫ t+T

t

(
ν0∥Du(τ)∥2 + ν1∥Du(τ)∥p

Lp

[
dτ ≤ 2 (1 + ν0λ1T )

ν2
0G

2

λ
1
2
1

. (3.8)

The proof of Proposition 3.3 is standard and thus omitted here. For the readersŠ convenience, we observe

that (3.6) follows from Lemma 2.3 after dropping the ν1 term in (3.4). In addition, (3.8) is a consequence

of (3.4) and (3.7).

8
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4. The case p ≥ 5

2
with no-slip boundary conditions

In this section, we Ąrst analyze the nudging algorithm for the Ladyzhenskaya model with no-slip boundary

conditions for p ≥ 5
2 . After proving the global well-posedness of the week solution in Theorem 4.1, we proceed

to the task of Ąnding conditions on h and µ under which the approximate solution obtained by this algorithm

converges to the reference solution over time, summarized in Theorem 4.2.

Let Ih(u(t)) represent the observational measurements at a spatial resolution of size h for t > 0 satisfying

(2.1). The approximating solution v with initial condition v(·, 0) = v0(·), chosen arbitrarily, shall be given

by

∂tv + (v · ∇)v − ∇ · T(Dv) + ∇Q = f − µIh(v − u),

∇ · v = 0,

v♣∂Ω = 0.

(4.1)

The Ąrst result of this manuscript concerns the global well-posedness of weak solutions for the Data

Assimilation algorithm.

Theorem 4.1. Assume that p ≥ 5
2 , f ∈ L2(0, T ;L2(Ω)) and v0 ∈ L2

σ(Ω). Let u be the solution to problem

(3.1) from Theorem 3.2. The continuous data assimilation Eqs. (4.1) has a unique global weak solution that

satisĄes for all T > 0

v ∈ C([0, T ];L2
σ(Ω)) ∩ Lp(0, T ;W 1,p

σ (Ω)) ∩W 1,p′
(0, T ; (W 1,p

σ (Ω))′)

where p′ = p
p−1 , and

⟨∂tv,w⟩ + ((v · ∇)v,w) + (T(Dv),∇w) = (f ,w) − µ(Ih(v − u),w), ∀ w ∈ W 1,p
σ (Ω), (4.2)

for almost all t ∈ [0, T ].

Proof. The strategy is to reformulate (4.1) as a Ąxed-point problem. For any Ąxed T > 0, deĄne

F : L2(0, T ;L2
σ(Ω)) → C([0, T ];L2

σ(Ω)) ∩ Lp(0, T ;W 1,p
σ (Ω)) ∩W 1,p′

(0, T ; (W 1,p
σ (Ω))′) (4.3)

by

F(w) = v,

where v is a weak solution to the problem

∂tv + (v · ∇)v − ∇ · T(Dv) + ∇q = fµ − µIhw,

∇ · v = 0,

v♣∂Ω = 0,

v(·, 0) = v0(·),

(4.4)

for a given w ∈ L2(0, T ;L2
σ(Ω)), with fµ = f + µ Ihu. It is easy to verify that fµ ∈ L2(0, T ;L2(Ω)) since

Ih is a continuous and bounded linear operator. The above map F is well-deĄned since the existence and

uniqueness of a weak solution v for any given initial condition v0 ∈ L2
σ(Ω) follows directly from Theorem 3.2.

Now, deĄne

A =

{
w ∈ L2(0, T ;L2

σ(Ω)) :

∫ t

0

∥w(τ)∥2 dτ ≤ c1e
c2 t, ∀ t ∈ [0, T ]

}
, (4.5)

with

c1 = 2T

(
∥v0∥L2

σ
+

∫ T

0

∥fµ(τ)∥ dτ
⎜2

, c2 = 2µ2 c2
I T.

9



Y. Cao, A. Giorgini, M. Jolly et al. Nonlinear Analysis: Real World Applications 68 (2022) 103659

To apply the Schauder Ąxed-point theorem (see Theorem 2.1) to the above problem, we will verify the

theoremŠs assumptions in the next Ąve steps.

Step I. We claim that F : A → A, i.e. F(A) ⊂ A.

From the energy equality (2.1) and (3.4), we have

∥v(τ)∥ ≤ ∥v0∥ +

∫ τ

0

∥fµ(s)∥ ds+ µ

∫ τ

0

∥Ihw(s)∥ ds

≤ ∥v0∥ +

∫ τ

0

∥fµ(s)∥ ds+ µ cI

∫ τ

0

∥w(s)∥ ds
(4.6)

for all τ ∈ [0, T ]. By using YoungŠs inequality and the HölderŠs inequality, we obtain

∥v(τ)∥2 ≤ 2

⎤
∥v0∥ +

∫ τ

0

∥fµ(s)∥ ds
⎣2

+ 2µ2 c2
I

⎤∫ τ

0

∥w(s)∥ ds
⎣2

≤ 2

⎤
∥v0∥ +

∫ τ

0

∥fµ(s)∥ ds
⎣2

+ 2µ2 c2
I T

⎤∫ τ

0

∥w(s)∥2 ds

⎣
.

(4.7)

Since w ∈ A, we infer that

∫ t

0

∥v(τ)∥2 dτ ≤ 2

∫ t

0

(
∥v0∥ +

∫ T

0

∥fµ(s)∥ ds
⎜2

dτ + 2µ2 c2
I T

∫ t

0

∫ τ

0

∥w(s)∥2 ds dτ

≤ c1 + c2

∫ t

0

(c1 e
c2τ ) dτ = c1e

c2 t,

(4.8)

which, in turn, entails v = F(w) ∈ A.

Step II. A is a closed set in L2
(
0, T ;L2

σ(Ω)
[
.

Assume that ¶wn♢∞
n=0 ⊂ A is such that wn → w in L2

(
0, T ;L2

σ(Ω)
[
. It follows that A is closed from the

following argument

∫ t

0

∥w(τ)∥2 dτ = lim
n→∞

∫ t

0

∥wn(τ)∥2 dτ ≤ lim
n→∞

c1e
c2t = c1e

c2t, ∀ t ∈ [0, T ].

Step III. A is convex set in L2
(
0, T ;L2

σ(Ω)
[
.

Let w1,w2 ∈ A, then λw1 + (1 − λ)w2 ∈ L2
(
0, T ;L2

σ(Ω)
[

for any λ ∈ [0, 1]. We compute

∫ t

0

∥λw1(τ) + (1 − λ)w2(τ)∥2 dτ

= λ2

∫ t

0

∥w1(τ)∥2 dτ + 2λ(1 − λ)

∫ t

0

(w1(τ),w2(τ)) dτ + (1 − λ)2

∫ t

0

∥w2(τ)∥2 dτ

≤ λ2

∫ t

0

∥w1(τ)∥2 dτ + 2λ(1 − λ)

⎤∫ t

0

∥w1(τ)∥2 dτ

⎣ 1
2
⎤∫ t

0

∥w2(τ)∥2 dτ

⎣ 1
2

+ (1 − λ)2

∫ t

0

∥w2(τ)∥2 dτ

≤
(
λ2 + (1 − λ)2 + 2λ(1 − λ)

[
c1e

c2t

= c1e
c2t,

which means λw1 + (1 − λ)w2 ∈ A, proving the convexity.

10
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Step IV. F : A → A is continuous.

Consider ¶wn♢∞
n=1 ⊂ A such that wn → w in L2

(
0, T ;L2

σ(Ω)
[
. We are required to show that vn =

F(wn) → F(w) = v in L2
(
0, T ;L2

σ(Ω)
[
. First, deĄne the difference ψn = vn − v, which solves

⟨∂tψn, φ⟩ + (vn · ∇vn, φ) − (v · ∇v, φ) + (T(Dvn) − T(Dv),∇φ) = −µ (Ih(wn − w), φ)

for all φ ∈ W 1,3
σ (Ω), for almost all t ∈ [0, T ]. Thanks to [38, Lemma 2.45], the incompressibility condition

and the regularity (4.3), choosing φ = ψn in the above equation, we obtain

1

2

d

dt
∥ψn∥2 + (ψn · ∇v, ψn) + (T(Dvn) − T(Dv),Dvn − Dv) = −µ (Ih(wn − w), ψn) .

By exploiting (3.3), the Korn inequality, the (Hölder inequality) with p′ = p
p−1 and the (Lebesgue

interpolation inequality) in Lp-spaces with θ = 1 − 3
2p , we Ąnd

1

2

d

dt
∥ψn∥2 + ν0∥∇ψn∥2 ≤ ♣(ψn · ∇v, ψn)♣ + ♣µ (Ih(wn − w), ψn)♣

≤ ∥ψn∥2
L2p′ ∥∇v∥Lp + µ ∥Ih(wn − w)∥ ∥ψn∥

≤ ∥ψn∥2− 3
p ∥ψn∥

3
p

L6 ∥∇v∥Lp + µ cI ∥wn − w∥ ∥ψn∥
≤ cS∥ψn∥2− 3

p ∥∇ψn∥ 3
p ∥∇v∥Lp + µ cI ∥wn − w∥ ∥ψn∥

≤ ν0

2
∥∇ψn∥2 +

⎤
c̃ ν

− 3
2p−3

0 c
2p

2p−3

S ∥∇v∥
2p

2p−3

Lp +
1

4

⎣
∥ψn∥2 + µ2 c2

I ∥wn − w∥2,

where c̃ only depends on p. In the above estimate, the constant cS denotes the (Sobolev embedding)

H1
0 (Ω) ↪→ L6(Ω). Therefore, we obtain

d

dt
∥ψn∥2 ≤

⎤
1

4
+ c̃ ν

− 3
2p−3

0 c
2p

2p−3

S ∥∇v∥
2p

2p−3

Lp

⎣
∥ψn∥2 + µ2 c2

I ∥wn − w∥2.

Applying the Gronwall lemma (see Lemma 2.3) to the above inequality, we get

∥ψn(t)∥2 ≤ ∥ψn(0)∥2 e

√ t

0
λ(τ) dτ

+ µ2 c2
I

∫ t

0

∥wn(s) − w(s)∥2 e

√ t

s
λ(τ) dτ

ds,

for all t ∈ [0, T ], where

λ(τ) =
1

4
+ c̃ ν

− 3
2p−3

0 c
2p

2p−3

S ∥∇v(τ)∥
2p

2p−3

Lp .

Note that having p ≥ 5
2 yields 2p

2p−3 ≤ p, thereby the regularity v ∈ Lp(0, T ;W 1,p
σ (Ω)) entails that

λ(τ) ∈ L1[0, T ]. In light of ψn(0) = 0, we are led to

∥ψn∥L∞(0,T ;L2
σ(Ω)) ≤ µ cI e

1
2 ∥λ∥

L1(0,T ) ∥wn − w∥L2(0,T ;L2
σ(Ω)).

Since the right-hand side converges to 0 as n → ∞, this implies the continuity of F .

Step V. We construct a compact subset K of A such that F(A) ⊂ K. From the energy equality (3.4) written

for the solution to (4.4), and after using the (Hölder inequality), the Korn inequality and (2.1), we have

∥v(t)∥2 +

∫ t

0

⎤
2ν0∥∇v(τ)∥2 +

4ν1

cp
K

∥∇v(τ)∥p
Lp

⎣
dτ ≤ ∥v0∥2 + 2

∫ t

0

(∥fµ(τ)∥ + µ∥Ihw(τ)∥) ∥v(τ)∥ dτ

≤ ∥v0∥2 +
2

λ1

∫ t

0

(∥fµ(τ)∥ + µ∥Ihw(τ)∥) ∥∇v(τ)∥ dτ

≤ ∥v0∥2 + ν0

∫ t

0

∥∇v(τ)∥2 dτ +
1

2ν0λ2
1

∫ t

0

(∥fµ(τ)∥ + µ∥Ihw(τ)∥)
2
dτ

≤ ∥v0∥2 + ν0

∫ t

0

∥∇v(τ)∥2 dτ +
1

ν0λ2
1

∫ t

0

(
∥fµ(τ)∥2 + µ2c2

I ∥w(τ)∥2
[
dτ,

11
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for all t ∈ [0, T ]. Thus, we arrive at

∥v(t)∥2 +

∫ t

0

⎤
ν0∥∇v(τ)∥2 +

4ν1

cp
K

∥∇v(τ)∥p
Lp

⎣
dτ ≤ ∥v0∥2 +

1

ν0λ2
1

∥fµ∥2
L2(0,T ;L2

σ
(Ω)) +

µ2c2
I

ν0λ2
1

c1e
c2T := c̃0,

With c̃0 deĄned as above, we deduce that

∥v∥L∞(0,T ;L2
σ(Ω)) ≤

√
c̃0 := c̃1, ∥v∥

Lp
(

0,T ;W
1,p
σ (Ω)

[ ≤
⎤
c̃0c

p
K

2 ν1

⎣ 1
p

:= c̃2. (4.9)

Then, we infer that

F(A) ⊂ B =

{
v ∈ A : ∥v∥L∞(0,T ;L2

σ(Ω)) ≤ c̃1 and ∥v∥
Lp
(

0,T ;W
1,p
σ (Ω)

[ ≤ c̃2

}
.

Next we investigate the time derivative ∂tv. We recall the weak formulation of (4.4)

⟨∂tv, φ⟩ +

∫

Ω

v · ∇v · φdx +

∫

Ω

2ν0 Dv : Dφ + 2ν1 ♣Dv♣p−2
F Dv : Dφdx

=

∫

Ω

fµ · φdx − µ

∫

Ω

Ihw · φdx

for all φ ∈ W 1,p
σ (Ω), for almost all t ∈ [0, T ]. Due to the incompressibility condition, the nonlinear term can

be written as v · ∇v = ∇ · (v ⊗ v). Then, we have

♣⟨∂tv, φ ⟩♣ ≤
\\\\
∫

Ω

v ⊗ v : ∇φdx

\\\\+

\\\\
∫

Ω

2ν0 Dv : ∇φ + 2ν1 ♣Dv♣p−2
F Dv : ∇φdx

\\\\

+

\\\\
∫

Ω

fµ · φdx

\\\\+ µ

\\\\
∫

Ω

Ihw · φdx

\\\\ .

Let p′ = p
p−1 , and note that p′ < p for p ≥ 5

2 . Using the (Hölder inequality) along with (2.1) yields

♣⟨∂tv, φ ⟩♣ ≤ ∥v∥2
L2p′ ∥∇φ∥Lp + 2ν0∥Dv∥

Lp′ ∥∇φ∥Lp + 2ν1∥Dv∥p−1
Lp ∥∇φ∥Lp + ∥fµ∥ ∥φ∥ + µcI ∥w∥ ∥φ∥.

By taking supremum of the above inequality over all φ ∈ W 1,p
σ (Ω) such that ∥φ∥

W
1,p
σ (Ω)

= 1, and using the

(Lebesgue interpolation inequality), we obtain

∥∂tv∥(
W

1,p
σ (Ω)

[′ ≤ ∥v∥2
L2p′ + 2ν0∥Dv∥

Lp′ + 2ν1∥Dv∥p−1
Lp + C ∥fµ∥ + µ cI C∥w∥

≤ C ∥v∥
2p−3

p ∥∇v∥ 3
p + ν0 C ∥∇v∥L2 + ν1 C∥∇v∥p−1

Lp + C ∥fµ∥ + µ cI C ∥w∥

≤ C ∥v∥
2p−3

p ∥∇v∥
3
p

Lp + ν0 C ∥∇v∥Lp + ν1 C ∥∇v∥p−1
Lp + C ∥fµ∥ + µ cI C ∥w∥,

where C only depends on p and Ω . Hence,

∥∂tv∥p′

Lp′
(

0,T ;
(

W
1,p
σ (Ω)

[′
⎡ =

∫ T

0

∥∂tv(τ)∥p′
(

W
1,p
σ (Ω)

[′ dτ

≤ C

∫ T

0

∥v(τ)∥
2p−3
p−1 ∥∇v(τ)∥

3
p−1

Lp dτ + νp′

0 C

∫ T

0

∥∇v(τ)∥
p

p−1

Lp dτ + νp′

1 C

∫ T

0

∥∇v(τ)∥p
Lp dτ

+ C

∫ T

0

∥fµ(τ)∥p′
dτ + µp′

cp′

I C

∫ T

0

∥w(τ)∥p′
dt

≤ C ∥v∥
2p−3
p−1

L∞(0,T ;L2
σ(Ω))

T
1
α ∥v∥

3
p−1

Lp
(

0,T ;W
1,p
σ (Ω)

[ + νp′

0 C T
1
β ∥v∥p′

Lp
(

0,T ;W
1,p
σ (Ω)

[

+ νp′

1 C ∥v∥p

Lp
(

0,T ;W
1,p
σ (Ω)

[

+ C T
1
γ ∥fµ∥p′

L2(0,T ;L2
σ(Ω))

+ µp′
cp′

I C T
1
γ ∥w∥p′

L2(0,T ;L2
σ(Ω))

:= c̃p′

3 ,

12
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where α, β and γ are the conjugate exponents to (p − 1)p/3, p − 1 and 2/p′, respectively, and the constant

C depends only on p and Ω . Given c̃p′

3 as above, we have

∥∂tv∥
Lp′
(

0,T ;
(

W
1,p
σ (Ω)

[′
⎡ ≤ c̃3. (4.10)

Finally, with c̃1, c̃2, c̃3 given in (4.9) and (4.10), respectively, we infer that

F(A) ⊂ K, (4.11)

where

K =

∏
⨄
⋃v ∈ A : ∥v∥L∞(0,T ;L2

σ(Ω)) ≤ c̃1, ∥v∥
Lp
(

0,T ;W
1,p
σ (Ω)

[ ≤ c̃2 and ∥∂tv∥
Lp′
(

0,T ;
(

W
1,p
σ (Ω)

[′
⎡ ≤ c̃3

⎫
⎬
⋂ .

We are left to show that K is a compact subset of A. Since W 1,p
σ (Ω) ⊂ L2

σ(Ω) ⊂
(
W 1,p

σ (Ω)
[′

, thanks to
Theorem 2.2, we deduce that K is compactly embedded in Lp

(
0, T, L2

σ(Ω)
[
, and, in turn, in L2

(
0, T, L2

σ(Ω)
[

since p ≥ 5
2 . Therefore, to summarize it is proved that

F(A) ⊂ K c
↪→ A

where K is a compact subset of A with respect to the norm L2
(
0, T, L2

σ(Ω)
[
. As a consequence of

Theorem 2.1, F : A → A has a Ąxed point in K, which implies the existence result in Theorem 4.1. Lastly,
the uniqueness of the weak solution to problem (4.1) is obtained from the same argument of Step IV by
replacing vn and v with two solutions v1 and v2, respectively, originating from the same initial datum
v0. □

Next, we prove the convergence result.

Theorem 4.2. For p ≥ 5
2 , let f ∈ L2(Ω) and let u be a weak solution of (3.1) with no-slip Dirichlet boundary

conditions departing from u0 ∈ L2
σ(Ω). Let v be the solution to the data assimilation algorithm given by (4.1).

Then, for µ large enough such that

µ ≥ c̃ ν
3

2p−3
0 ν

−2
2p−3
1 λ

1
2p−3
1 G

4
2p−3 ,

and h > 0 small enough such that

µ c2
0 h

2 ≤ ν0,

where c̃ is a dimensionless number depending only on p and Ω , while c0 is dimensionless constant given in

(2.1), we have

∥u(t) − v(t)∥ ≤ ∥u(t0) − v(t0)∥e(β⋆+M0)e−ν0λ1β⋆(t−t0), ∀ t ≥ t0,

where the positive parameters β⋆ and M0 are deĄned in (4.19) and (4.21), respectively, and t0 is given in

Proposition 3.3.

Proof. Subtracting (3.1) and (4.1), the difference e = u − v satisĄes the following error equation

⟨∂te,w⟩ + ((u · ∇)u,w) − ((v · ∇)v,w) + (T(Du) − T(Dv),Dw) = −µ (Ihe,w). (4.12)

Since

(u · ∇)u − (v · ∇)v = (e · ∇)u + (v · ∇)e,

13
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taking w = e and using [38, Lemma 2.45], the Korn inequality and (3.3), we obtain

1

2

d

dt
∥e∥2 + ν0∥∇e∥2 ≤ −((e · ∇)u , e) − (µ Ihe , e). (4.13)

In light of (2.1) and the assumption µ c2
0 h

2 ≤ ν0, one can estimate the nudging term in (4.13) as

−µ ( Ihe, e) = −µ (Ihe − e + e, e)

= µ (e − Ihe, e) − µ∥e∥2

≤ µ

2
∥e − Ihe∥2 +

µ

2
∥e∥2 − µ∥e∥2

≤ µ

2
c2

0 h
2∥∇e∥2 − µ

2
∥e∥2

≤ ν0

2
∥∇e∥2 − µ

2
∥e∥2.

(4.14)

Thus, we have
1

2

d

dt
∥e∥2 +

ν0

2
∥∇e∥2 ≤ ♣ ((e · ∇) u, e) ♣ − µ

2
∥e∥2. (4.15)

Take p and p′ to be conjugate numbers, i.e., p′ = p
p−1 , and apply the (Lebesgue interpolation inequality),

(Sobolev embedding) and (Young inequality) to estimate the above nonlinear term as

♣ ((e · ∇) u, e)♣ ≤ ∥e2∥
Lp′ ∥∇u∥Lp = ∥e∥2

L2p′ ∥∇u∥Lp ≤ ∥e∥2− 3
p ∥e∥

3
p

L6 ∥∇u∥Lp

≤ c
3
p

S ∥e∥2− 3
p ∥∇e∥ 3

p ∥∇u∥Lp ≤ ν0

2
∥∇e∥2 +

c̄

2
ν

3
3−2p

0 ∥∇u∥
2p

2p−3

Lp ∥e∥2,
(4.16)

for some c̄ depending only on p and Ω . Inserting (4.16) in (4.15), we get

d

dt
∥e∥2 +

(
µ− c̄ ν

3
3−2p

0 ∥∇u∥
2p

2p−3

Lp

[
∥e∥2 ≤ 0. (4.17)

With Lemma 2.5 in mind, denote

α(t) = µ− c̄ ν
3

3−2p

0 ∥∇u(t)∥
2p

2p−3

Lp .

Applying HölderŠs inequality, and choosing T = (ν0 λ1)
−1

in (3.8), we obtain for p ≥ 5
2

∫ t+T

t

α(s) ds = µT − c̄ ν
3

3−2p

0

∫ t+T

t

∥∇u(s)∥
2p

2p−3

Lp ds

≥ µT − c̄ ν
3

3−2p

0 T
2p−5
2p−3

(∫ t+T

t

∥∇u(s)∥p
Lp ds

⎜ 2
2p−3

≥ µT − c̄ ν
3

3−2p

0 T
2p−5
2p−3

⎤
2cp

K (1 + ν0 λ1 T ) ν2
0 ν

−1
1 λ

− 1
2

1 G2

⎣ 2
2p−3

=
µ

ν0 λ1
− 2

4
2p−3 c̄ c

2p
2p−3

K ν
6−2p
2p−3
0 ν

−2
2p−3
1 λ

4−2p
2p−3
1 G

4
2p−3 .

Thus, from above and with µ ≥ 21+ 4
2p−3 c̄ c

2p
2p−3

K ν
3

2p−3
0 ν

−2
2p−3
1 λ

1
2p−3
1 G

4
2p−3 , we have

∫ t+T

t

α(s) ds ≥ β⋆ > 0, ∀ t ≥ t0, (4.18)

where

β⋆ := 2
4

2p−3 c̄ c
2p

2p−3

K ν
6−2p
2p−3
0 ν

−2
2p−3
1

⎤
1

λ1

⎣ 2p−4
2p−3

G
4

2p−3 . (4.19)
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Similarly, by setting α−(s) = max¶−α(s), 0♢, we have

∫ t+T

t

α−(s) ds ≤ M0, ∀ t ≥ t0, (4.20)

where

M0 := 2
4

2p−3 c̄ c
2p

2p−3

K ν
6−2p
2p−3
0 ν

−2
2p−3
1 λ

4−2p
2p−3
1 G

4
2p−3 . (4.21)

Finally, by applying Lemma 2.5 to (4.17), we conclude that

∥e(t)∥ = ∥u(t) − v(t)∥ ≤ ∥u(t0) − v(t0)∥e(β⋆+M0)e
−
(

t−t0
T

[
β⋆

, ∀ t ≥ t0.

That is, the error converges exponentially fast to 0 as t → ∞. □

5. The case p = 11

5
with periodic boundary conditions

In this section we study the dynamics of the solutions u for the Ladyzhenskaya model (3.1)1−2 and v for

the corresponding data assimilation algorithm (4.1)1−2 in Ω = [0, 2π]3 completed with periodic boundary

conditions.

Since the average velocity u(t) =
√
Ω

u(x, t) dx is an invariant of the Ćow provided that
√
Ω

f(x, t) dx = 0

and the interpolant operators (volume elements or Fourier modes) have zero spatial average, we consider

without loss of generality that u(t) = 0 and v(t) = 0 for all t ≥ 0.

Theorem 5.1 (Existence of Weak Solutions and their Propagation of Regularity). Let p = 11
5 , f ∈

L2(0, T ; L̇2(Ω)) and u0 ∈ L̇2
σ(Ω). Then, there exists a weak solution u to (3.1)1−2 on (0,∞) with periodic

boundary conditions such that

u ∈ C([0, T ]; L̇2
σ(Ω)) ∩ L

11
5 (0, T ;W

1, 11
5

σ (Ω)), ∂tu ∈ L
11
6 (0, T ; (W

1, 11
5

σ (Ω))′), ∀T ≥ 0, (5.1)

and

⟨∂tu,w⟩ + ((u · ∇)u,w) + (T(Du),∇w) = (f ,w), ∀ w ∈ W
1, 11

5
σ (Ω), (5.2)

for almost all t ∈ [0, T ]. Moreover, the energy equality holds

1

2
∥u(t)∥2 +

∫ t

0

⎤
2ν0∥Du(τ)∥2 + 2ν1∥Du(τ)∥

11
5

L
11
5

⎣
dτ =

1

2
∥u0∥2 +

∫ t

0

(f(τ),u(τ)) dτ, ∀ t ≥ 0. (5.3)

In particular, if f ∈ L̇2(Ω), there exists a time t0 > 0 such that for all t ≥ t0 we have

∥u(t)∥2 ≤ 2
ν2

0G
2

λ
1
2
1

(5.4)

and ∫ t+T

t

⎤
ν0∥Du(τ)∥2 + ν1∥Du(τ)∥

11
5

L
11
5

⎣
dτ ≤ 2 (1 + ν0λ1T )

ν2
0G

2

λ
1
2
1

, (5.5)

where G is deĄned as in (3.5). In addition, there exists t ∈ [t0, t0 + 1] such that

u ∈ L∞(t, T ; Ḣ1
σ(Ω)) ∩ L2(t, T ;H2

σ(Ω)) ∩ L
11
5 (t, T ;W 1, 33

5 (Ω)), ∀T ≥ t, (5.6)

and ∫ t+r

t

∥∇u(τ)∥
11
5

L
33
5
dτ ≤ 1

K1

⎤
R3 +K2R2R3 +K3R2 + ν2

0λ
1
2
1 G

2

⎣
, ∀ t ≥ t1, (5.7)

where r = (ν0λ1)−1, t1 = t+ r. The constants K1, K2, K3 are deĄned in (5.19), and R1, R2, R3 are given in

(5.21)Ű(5.22).
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Proof. The Ąrst part of Theorem 5.1 is proved in [38, Section 5] (see also [39] Theorem 3.1). Let us now

consider a generic2 weak solution u to (3.1)1−2 on (0,∞) satisfying (5.1), (5.2), (5.3), (5.4) and (5.5). It

follows from (5.5) that there exists t ∈ [t0, t0 + 1] such that

∥Du(t)∥ ≤

∏
∐2 (1 + ν0λ1)

ν0G
2

λ
1
2
1

⎞
ˆ

1
2

.

Since u(t) ∈ Ḣ1
σ(Ω), we infer from [38, Theorem 3.4, Theorem 4.5 and Remark 4.6] (see also [39, Theorem

4.1]) that there exists a unique strong solution ũ on [t,∞) originating from u such that

ũ ∈ L∞(t, T ; Ḣ1
σ(Ω)) ∩ L2(t, T ;H2

σ(Ω)) ∩ L
11
5 (t, T ;W 1, 33

5 (Ω)), ∀T ≥ t,

In addition, in light of the weakŰstrong uniqueness principle proved in [39, Theorem 5.2], we infer that

ũ(t) = u(t) for any t ∈ [t,∞). This, in turn, gives (5.6).

We now perform some formal Sobolev estimates whose rigorous justiĄcation can be performed through

the Galerkin scheme. By deĄnition of the Stokes operator in the periodic setting, multiplying (4.1)1 by −∆u

and integrating over Ω , we obtain

1

2

d

dt
∥∇u∥2 + ν0∥∆u∥2 + 2ν1

∫

Ω

∇ · (♣Du♣
1
5
F Du) · ∆u dx

= −
∫

Ω

f · ∆u dx +

∫

Ω

(u · ∇)u · ∆u dx.

(5.8)

Here we have used that ∇ ·
(
(∇u)T

[
= ∇(∇ · u) = 0 by (4.1)2. A direct calculation shows that

∂k(♣Du♣nF ) = n♣Du♣n−2
F Du : D(∂ku), ∀n > 0. (5.9)

Using integration by parts and (5.9) with n = p− 2, we have for p ≥ 2
∫

Ω

∇ ·
(

♣Du♣p−2
F Du

⎡
· ∆u dx =

∫

Ω

∂j

(
♣Du♣p−2

F (Du)ij

⎡
∂kkui dx

= −
∫

Ω

♣Du♣p−2
F (Du)ij∂kk∂jui dx

=

∫

Ω

∂k

(
♣Du♣p−2

F (Du)ij

⎡
∂k(Du)ij dx

=

∫

Ω

∂k

(
♣Du♣p−2

F

⎡
(Du)ij∂k(Du)ij dx +

∫

Ω

♣Du♣p−2
F ∂k(Du)ij∂k(Du)ij dx

=

∫

Ω

(p− 2)♣Du♣p−4
F (Du)lm(D∂ku)lm (Du)ij(D∂ku)ij dx +

∫

Ω

♣Du♣p−2
F ♣∇(Du)♣2 dx

=

∫

Ω

(p− 2)♣Du♣p−4
F ♣Du : D(∇u)♣2 dx +

∫

Ω

♣Du♣p−2
F ♣∇(Du)♣2 dx.

(5.10)

Exploiting again (5.9) with n = p
2 , we observe that

∫

Ω

♣∇♣Du♣
p
2
F ♣

2

dx =
(p

2

⎡2
∫

Ω

♣Du♣p−4
F ♣Du : D(∇u)♣2 dx.

As a consequence, it follows for p = 11
5 that

∫

Ω

∇ ·
⎤

♣Du♣
1
5
F Du

⎣
· ∆u dx ≥ 1

5
.

⎤
10

11

⎣2 ∫

Ω

♣∇♣Du♣
11
10
F ♣2 dx

2 Indeed, in the case p ∈ [ 11

5
, 5

2
), the weak solutions are not known to be unique (cf. [39]).
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=
20

121

////♣Du♣
11
10
F

////
2

H1

− 20

121

////♣Du♣
11
10
F

////
2

≥ 1

8

////♣Du♣
11
10
F

////
2

H1

− 1

6
∥Du∥

11
5

L
11
5
.

Using the embedding H1(Ω) ↪→ L6(Ω) and the Korn inequality, we infer that

∫

Ω

∇ ·
⎤

♣Du♣
1
5
F Du

⎣
· ∆u dx ≥ 1

8

1

c2
S

////♣Du♣
11
10
F

////
2

L6

− 1

6
∥Du∥p

Lp

≥ 1

8

C
11
5

c2
S

∥Du∥
11
5

L
33
5

− 1

6
∥Du∥

11
5

L
11
5

≥ 1

8

C
11
5

c2
S c

11
5

K

∥∇u∥
11
5

L
33
5

− 1

6
∥Du∥

11
5

L
11
5
.

In order to handle the convective term, we observe that

∫

Ω

(u · ∇)u · ∆u dx =

∫

Ω

uj∂jui∂kkui dx

= −
∫

Ω

∂kuj∂jui∂kui dx −
∫

Ω

uj∂j∂kui∂kui dx

= −
∫

Ω

∂kuj∂jui∂kui dx −
∫

Ω

uj∂j

⎤
1

2
∂kui∂kui

⎣
dx

  
=0

≤ ∥∇u∥3
L3 .

(5.11)

Thus, collecting the above terms together, we Ąnd the differential inequality

1

2

d

dt
∥∇u∥2 + ν0∥∆u∥2 +

ν1C̃

4
∥∇u∥

11
5

L
33
5

≤ ∥∇u∥3
L3 +

ν1

3
∥Du∥

11
5

L
11
5

−
∫

Ω

f · ∆u dx. (5.12)

Here, we have set C̃ = C
11
5

c2
S

c
11
5

K

, which depends only on Ω and the value p = 11
5 . We now proceed with the

estimate of the terms on the right-hand side of (5.12). We exploit the splitting method devised in [38] for

the L3-norm of ∇u which follows from the Lebesgue interpolation. We recall that for p ∈ [2, 3]

∥∇u∥L3 ≤ ∥∇u∥
p−1

2
Lp ∥∇u∥

3−p
2

L3p , ∥∇u∥L3 ≤ ∥∇u∥
2p−2
3p−2

L2 ∥∇u∥
p

3p−2

L3p .

For α ∈ (0, 1), which will be chosen later, exploiting the above interpolation inequalities, we obtain

∥∇u∥3
L3 ≤ ∥∇u∥3α

L3∥∇u∥3(1−α)

L3

≤ ∥∇u∥3α
p−1

2
Lp ∥∇u∥3α

3−p
2

L3p ∥∇u∥3(1−α)
2p−2
3p−2

L2 ∥∇u∥3(1−α)
p

3p−2

L3p

≤ ∥∇u∥3α
p−1

2
Lp ∥∇u∥3(1−α)

2p−2
3p−2

L2 ∥∇u∥3α
3−p

2 +3(1−α)
p

3p−2

L3p .

(5.13)

In particular, for p = 11
5 , we have

∥∇u∥3
L3 ≤ ∥∇u∥

9
5 α

L
11
5

∥∇u∥
36
23 (1−α)

L2 ∥∇u∥
33
23 −α 27

115

L
33
5

.

Setting

α =
22

45
, s =

5

3
, s′ =

5

2
,
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and using the Young inequality, it follows that for any ε > 0

∥∇u∥3
L3 ≤ ∥∇u∥

22
25

L
11
5

∥∇u∥
4
5
L2∥∇u∥

33
25

L
33
5

≤ 3ε

5
∥∇u∥

11
5

L
33
5

+
2

5ε
3
2

∥∇u∥
11
5

L
11
5

∥∇u∥2
L2 .

(5.14)

Choosing ε = 5
24ν1C̃, we are led to

∥∇u∥3
L3 ≤ ν1C̃

8
∥∇u∥

11
5

L
33
5

+
2

5

⎤
24

5ν1C̃

⎣ 3
2

∥∇u∥
11
5

L
11
5

∥∇u∥2
L2 . (5.15)

Also, we have

−
∫

Ω

f · ∆u dx ≤ ν0

2
∥∆u∥2 +

1

2ν0
∥f∥2. (5.16)

Combining (5.12) with (5.15) and (5.16), we end up with

1

2

d

dt
∥∇u∥2 +

ν0

2
∥∆u∥2 +

ν1C̃

8
∥∇u∥

11
5

L
33
5

≤ 2

5

⎤
24

5ν1C̃

⎣ 3
2

∥∇u∥
11
5

L
11
5

∥∇u∥2
L2 +

ν1

3
∥Du∥

11
5

L
11
5

+
1

2ν0
∥f∥2,

(5.17)

for almost any t ∈ (t,∞). We rewrite the above inequality as

d

dt
∥∇u∥2 + ν0∥∆u∥2 +K1 ∥∇u∥

11
5

L
33
5

≤ K2∥∇u∥
11
5

L
11
5

∥∇u∥2
L2 +K3 ∥∇u∥

11
5

L
11
5

+
1

ν0
∥f∥2, (5.18)

having set

K1 =
ν1C̃

4
, K2 =

2

5

⎤
24

5ν1C̃

⎣ 3
2

, K3 =
2ν1C

3
. (5.19)

In particular, we have

d

dt
∥∇u∥2 ≤ K2∥∇u∥

11
5

L
11
5

∥∇u∥2
L2 +K3 ∥∇u∥

11
5

L
11
5

+
1

ν0
∥f∥2. (5.20)

In light of (5.5), for any t ≥ t0 and r = (ν0λ1)−1 we infer that

∫ t+r

t

∥∇u(τ)∥2 dτ ≤ 8
ν0G

2

λ
1
2
1

=: R1,

∫ t+r

t

∥∇u(τ)∥
11
5

L
11
5
dτ ≤ 4c

11
5

K

ν2
0G

2

ν1λ
1
2
1

=: R2. (5.21)

By exploiting Lemma 2.4, we Ąnd

∥∇u(t)∥2 ≤
⎤
ν0λ1R1 +K3R2 + ν2

0λ
1
2
1 G

2

⎣
eK2R2 =: R3, ∀ t ≥ t+ r = t1. (5.22)

As an immediate consequence, integrating (5.17) from t to t+ r, where t ≥ t1, we obtain

∫ t+r

t

∥∇u(τ)∥
11
5

L
33
5
dτ ≤ 1

K1

⎤
R3 +K2R2R3 +K3R2 + ν2

0λ
1
2
1 G

2

⎣
. □ (5.23)

Next, we state the following result concerning the existence of solutions to the data assimilation algorithm

given by (4.1) in the case p = 11
5 . This is a consequence of the results obtained in [38,39].

Theorem 5.2 (Existence of Weak and Strong Solutions for Data Assimilation Problem). Assume that p = 11
5

and f ∈ L̇2(Ω). Let u be a weak solution of (3.1) with periodic boundary conditions given by Theorem 5.1.

Then, we have the following:

18
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1. If v0 ∈ L̇2
σ(Ω), there exists a weak solution v to (4.1) satisfying

v ∈ C([0, T ]; L̇2
σ(Ω)) ∩ L

11
5 (0, T ;W

1, 11
5

σ (Ω)), ∂tv ∈ L
11
6 (0, T ; (W

1, 11
5

σ (Ω))′), ∀T ≥ 0, (5.24)

and

⟨∂tv,w⟩ + ((v · ∇)v,w) + (T(Dv),∇w) = (f ,w) − µ(Ih(v − u),w), ∀ w ∈ Ẇ
1, 11

5
σ (Ω), (5.25)

for almost all t ∈ [0, T ].

2. If v0 ∈ Ḣ1
σ(Ω), there exists a unique strong solution v to (4.1) such that

v ∈ C([0, T ]; Ḣ1
σ(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L

11
5 (0, T ;W 1, 33

5 (Ω)), ∀T ≥ 0, (5.26)

which solves (4.1) in weak sense as in (5.25).

3. If v0 ∈ Ẇ
1, 11

5
σ (Ω), there exists a unique strong solution v to (4.1) which satisĄes, in addition to (5.26),

v ∈ C([0, T ]; Ẇ
1, 11

5
σ (Ω)), ∂tv ∈ L2(0, T ; L̇2

σ(Ω)), ∀T ≥ 0. (5.27)

In particular, in this case v solves (4.1) in weak sense with w ∈ Ḣ1
σ(Ω).

Lastly, we prove the convergence result for p = 11
5 in the periodic boundary setting.

Theorem 5.3. For p = 11
5 , let u be a weak solution of (3.1) with periodic boundary conditions given by

Theorem 5.1 and let v be the solution to the data assimilation algorithm given by Theorem 5.2. Assume that

µ ≥ 2Cν
5

17
0 λ

10
17
1

K
10
17
1

⎤
R3 +K2R2R3 +K3R2 + ν2

0λ
1
2
1 G

2

⎣ 10
17

(5.28)

where C is a constant depending on Ω and p and K1,K2,K3, R2, R3 are deĄned in Theorem 5.1, and h small

enough such that

µ c0 h
2 ≤ ν0,

where c0 is a dimensionless constant given (2.1). Then, we have

∥u(t) − v(t)∥ ≤ ∥u(t1) − v(t1)∥e(γ⋆+M1)e−ν0λ1γ⋆(t−t1), ∀ t ≥ t1,

where t1 is as in (5.22) and the positive parameters γ⋆ and M1 are deĄned in (5.32) and in (5.33), respectively.

Proof. Proceeding as in the proof of Theorem 4.2, we have

1

2

d

dt
∥e∥2 +

ν0

2
∥∇e∥2 ≤ ♣ ((e · ∇) u, e) ♣ − µ

2
∥e∥2. (5.29)

Arguing differently than (4.16), we Ąnd

♣ ((e · ∇) u, e)♣ ≤ ∥e2∥
L

33
28

∥∇u∥
L

33
5

= ∥e∥2

L
33
14

∥∇u∥
L

33
5

≤ ∥e∥ 17
11 ∥e∥

5
11
L6 ∥∇u∥

L
33
5

≤ c
5

11
S ∥e∥ 17

11 ∥∇e∥ 5
11 ∥∇u∥

L
33
5

≤ ν0

2
∥∇e∥2 + c

10
17
S

⎤
2

ν0

⎣ 5
17

∥∇u∥
22
17

L
33
5

∥e∥2.

(5.30)

Inserting (5.30) in (5.29), we arrive at

d

dt
∥e∥2 +

∏
∐µ− C

ν
5

17
0

∥∇u∥
22
17

L
33
5

⎞
ˆ ∥e∥2 ≤ 0, (5.31)

19



Y. Cao, A. Giorgini, M. Jolly et al. Nonlinear Analysis: Real World Applications 68 (2022) 103659

for some constant C depending only on Ω and the value p = 11
5 . Aiming to use Lemma 2.5, let us set

α(t) =

∏
∐µ− C

ν
5

17
0

∥∇u∥
22
17

L
33
5

⎞
ˆ .

By HölderŠs inequality and (5.23), and also taking r = (ν0 λ1)
−1

, we obtain
∫ t+r

t

α(s) ds = µr − C

ν
5

17
0

∫ t+r

t

∥∇u(s)∥
22
17

L
33
5
ds

≥ µ

ν0λ1
− C

ν
5

17
0

⎤∫ t+r

t

∥∇u(s)∥
11
5

L
33
5
ds

⎣ 10
17
⎤∫ t+r

t

1 ds

⎣ 7
17

≥ µ

ν0λ1
− C

ν
12
17
0 λ

7
17
1

1

K
10
17
1

⎤
R3 +K2R2R3 +K3R2 + ν2

0λ
1
2
1 G

2

⎣ 10
17

.

Notice that the second term on the right-hand side of the above inequality is independent of µ. In particular,

in light of the assumption (5.28), we immediately deduce that
∫ t+r

t

α(s) ds ≥ γ⋆, ∀ t ≥ t1,

where

γ⋆ =
2C

ν
12
17
0 λ

7
17
1 K

10
17
1

⎤
R3 +K2R2R3 +K3R2 + ν2

0λ
1
2
1 G

2

⎣ 10
17

. (5.32)

In a similar way, we Ąnd ∫ t+r

t

α−(s) ds ≤ M1, ∀ t ≥ t1,

where

M1 =
C

ν
12
17
0 λ

7
17
1

1

K
10
17
1

⎤
R3 +K2R2R3 +K3R2 + ν2

0λ
1
2
1 G

2

⎣ 10
17

. (5.33)

Therefore, we conclude from Lemma 2.5 that

∥e(t)∥ = ∥u(t) − v(t)∥ ≤ ∥u(t1) − v(t1)∥e(γ⋆+M1)e
−
(

t−t1
r

[
γ⋆

, ∀ t ≥ t1. □

Remark (2D Case). The condition (5.28) for the nudging parameter µ can be enhanced in 2D. Indeed,

recalling that
√
Ω

(u · ∇)u · ∆u dx = 0, (5.18) is replaced by

d

dt
∥∇u∥2 + ν0∥∆u∥2 + 2K1 ∥∇u∥

11
5

L
33
5

≤ K3 ∥∇u∥
11
5

L
11
5

+
1

ν0
∥f∥2. (5.34)

Then, arguing as in the proof of Theorem 5.1, it follows that

∥∇u(t)∥2 ≤
⎤
ν0λ1R1 +K3R2 + ν2

0λ
1
2
1 G

2

⎣
=: R⋆

3, ∀ t ≥ t+ r = t1, (5.35)

and ∫ t+r

t

∥∇u(τ)∥
11
5

L
33
5
dτ ≤ 1

2K1

⎤
R⋆

3 +K3R2 + ν2
0λ

1
2
1 G

2

⎣
, ∀ t ≥ t1. (5.36)

As a direct consequence, (5.28) becomes

µ ≥ 2Cν
5

17
0 λ

10
17
1

(2K1)
10
17

⎤
R⋆

3 +K3R2 + ν2
0λ

1
2
1 G

2

⎣ 10
17

. (5.37)

Furthermore, the analysis herein presented can be extended for any p > 2 in (1.4).
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Fig. 1. Evolution of the energy of the reference solution over the transient period.

6. Computational results

We demonstrate the effectiveness of nudging for both two and three-dimensional Ladyzhenskaya models

with fully periodic boundary conditions in Ω = [0, 2π]d, d = 2, 3. This is Ąrst done for the case p = 3, the

Smagorinsky model, which is often used in Large Eddy Simulation (LES) of turbulent Ćow [46,47]. We then

vary p in the three-dimensional case, and test nudging with only the horizontal components of velocity. For

both cases, the parameter ν1 is chosen from dimensional considerations to be

ν1 =
1

2
(Csδ)

2ν3−p
0 , Cs = 0.1 , δ =

2π

N
, (6.1)

where N is the number of Fourier modes used in each direction for the direct numerical simulation (DNS)

of the reference solution.

The initial condition for the reference solution u(t0) for each data assimilation experiment is chosen so

that it faithfully reĆects the long term dynamics of the model. This is done by integrating the model starting

at t = 0 with u(0) = 0 until some time t = t0 when it appears the transient period has passed. Fig. 1 shows

the time evolution of the energy ∥u∥2
L2 on [0, t0]. By the end of the run, this quantity seems to have reached

its statistically stationary state. We assume then that u(t0) is essentially on the global attractor. We start

the nudging at time t = t0 by solving the original (u) and the nudging (v) systems simultaneously with

v(t0) = 0. The computations are done using Dedalus, an open-source spectral package (see [68]). The time

stepper is a four-stage third order RungeŰKutta method.

6.1. Two-dimensional case

In two-dimensions, we take the viscosity to be ν0 = 10−4, µ = 1, and use a normalized force f2D

from [69], so that the Grashof number G = 2.5 × 105. We demonstrate both the nodal value and Fourier

modes interpolant operators. In the nodal value case, we use every 4th nodal value in each direction so

that h ≈ 0.0491. In the Fourier modes case, we use the projection on the low modes with wave vectors

k = (k1, k2) such that ♣kj ♣ ≤ 32 and h = π
32 ≈ 0.0982. The value of N is Ąxed at 512. While we have not

analyzed the nodal interpolation operator in this paper, Fig. 2(b) shows synchronization with the DNS of

the reference solution to within machine precision in both the L2 and H1 norms. The same is true for Fourier

mode interpolation, with a slower rate due to a larger value of h. Field plots of the velocity components and

pressures at several times near the start of nudging corresponding to Fig. 2(a) are shown in Fig. 4.

6.2. Three-dimensional case

In the three-dimensional case, we deĄne a force f3D = (f1, f2, f3) via its Fourier coefficients so that in each

wave vector plane, f3D is similar to f2D in the previous section. SpeciĄcally, we take the function g := ∇×f2D
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Fig. 2. Convergence of data assimilation for 2D Smagorinsky model for µ = 1.

Fig. 3. Convergence of data assimilation for the 3D Smagorinsky at different values of the nudging parameter µ and h = h(m); the

left Ąxes µ = 10 and the right Ąxes m = 32.

and set

f̂1(k1, 0, k3) =
ik3ĝ(k1, k3)

k2
1 + k2

3

, f̂1(k1, k2, 0) =
ik2ĝ(k1, k2)

k2
1 + k2

2

,

f̂2(k1, k2, 0) =
−ik1ĝ(k1, k2)

k2
1 + k2

2

, f̂2(0, k2, k3) =
ik3ĝ(k2, k3)

k2
2 + k2

3

,

f̂3(k1, 0, k3) =
−ik1ĝ(k1, k3)

k2
1 + k2

3

, f̂3(0, k2, k3) =
−ik2ĝ(k1, k2)

k2
2 + k2

3

,

and all other Fourier coefficients of f3D are zero. In 3D it is the viscosity ν0 that is adjusted so that the

Grashof number remains as G = 2.5 × 105. We use the Fourier modes interpolation operator Ih = Ph(m) for

the 3D model, where Ph(m) denotes the projection on the low modes with wave vectors k = (k1, k2, k3) such

that ♣kj ♣ ≤ m and

h(m) =
π

m
.

The value of N is Ąxed at 256.

Fig. 3 shows the exponential rate of synchronization using different values of nudging parameter µ and

resolution h. For Ąxed µ = 10, as we use fewer number of modes, the convergence is slower, but still

exponential. For m = 8, slices of solutions at the mid-plane z = π near the start of nudging are shown

in Fig. 5. The convergence fails at m = 4 (not shown).
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Fig. 4. Synchronization of the 2D Smagorinsky model using nodal interpolation, µ = 1 and h ≈ 0.0491; the reference solution (u, P )

is denoted as (u1, u2, P ) and the nudging solution (v, Q) is (v1, v2, Q).
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Fig. 5. Synchronization of the 3D Smagorinsky model using µ = 10, h = h(8). These are the slices in the mid-plane (0, 2π) × (0, 2π) ×

¶z = π♢.
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Fig. 6. Synchronization for the 3D Ladyzhenskaya model using h = h(32) for different values of p.

Fig. 7. Abridged nudging for the 3D Smagorinsky model with (µ1, µ2, µ3) = (10, 10, 0) and h = h(128).

As is the case in other studies (e.g. [55,57,58]), the rigorous bounds on the parameters are not expected

to be sharp, and in simulations µ can be taken much smaller and consequently the data much coarser than

what is suggested by the analysis. At the Ąxed parameter of m = 32, the convergence rate improves as µ is

increased (see Fig. 3(b)). At µ = 1 and µ = 5, the convergence rates are nearly identical, while at µ = 0.01,

nudging fails to synchronize. This numerical experiment suggests a critical value of µ.

We varied p (along with ν1 according to (6.1)) in the Ladyzhenskaya model using both µ = 10 and

µ = 0.1 (see Fig. 6). At these values of µ, we detect no discernible difference in the performance of the

nudging algorithm for p ranging from 2.2 = 11/5 to 3.

Finally, we consider an abridged nudging scheme in which only the horizontal components of velocity play

the role of observed data. This amounts to treating µ as the vector (µ1, µ2, µ3) = (10, 10, 0) and nudging the

jth component of velocity with the factor µj . Fig. 7 shows rapid initial synchronization, which then slows,

particularly for the third component of velocity, which is not nudged. While the error is far from machine

precision even after nudging for 1000 time units, the Ąeld plots shown in Fig. 8 display similar features at

rates that are slower for the third component of velocity and pressure.
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Fig. 8. Abridged data assimilation for the 3D Smagorinsky model with (µ1, µ2, µ3) = (10, 10, 0) and h = h(128). These are the slices

on the mid-plane (0, 2π) × (0, 2π) × ¶z = π♢. Note the time progression is different for different components of velocity and pressure.
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