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Abstract—Deep Neural Network (DNN) is becoming adopted
for video analytics on mobile devices. To reduce the delay of
running DNNs, many mobile devices are equipped with Neural
Processing Units (NPU). However, due to the resource limitations
of NPU, these DNNs have to be compressed to increase the
processing speed at the cost of accuracy. To address the low
accuracy problem, we propose a Confidence Based Offloading
(CBO) framework for deep learning video analytics. The major
challenge is to determine when to return the NPU classification
result based on the confidence level of running the DNN, and
when to offload the video frames to the server for further
processing to increase the accuracy. We first identify the problem
of using existing confidence scores to make offloading decisions,
and propose confidence score calibration techniques to improve
the performance. Then, we formulate the CBO problem where
the goal is to maximize accuracy under some time constraint,
and propose an adaptive solution that determines which frames
to offload at what resolution based on the confidence score
and the network condition. Through real implementations and
extensive evaluations, we demonstrate that the proposed solution
can significantly outperform other approaches.

I. INTRODUCTION

Deep Neural Networks (DNN) have been successfully

applied to various computer vision and natural language

processing problems. Recently, many applications based on

DNNs have been developed to provide more intelligent video

analytics. For example, some drones such as DJI Mavic Pro

can recognize and follow a target based on video analytics;

law enforcement officers can use smart glasses to identify

suspects [1]. In these applications, only lightweight DNNs can

be run locally and their accuracy is much lower than advanced

DNNs. Although advanced DNNs can provide us with better

results, they also suffer from high computational overhead

which means long delay and more energy consumption when

running on mobile devices.

In recent years, many companies such as Huawei, Qual-

comm, and Samsung have developed dedicated Neural Pro-

cessing Units (NPUs) for mobile devices, which can process

AI features. With NPU, the running time of these DNNs can

be significantly reduced. For example, on HUAWEI mate 10

pro, running AlexNet (a DNN) [2] on NPU is 30 times faster

than running it on CPU. Although GPUs on mobile devices

can also be used to run DNNs, they are not as powerful as

those running on desktops and servers. Compared to GPUs

on mobile devices, NPUs are much faster and more energy

efficient [3]. However, there are some fundamental limitations

with NPU. The most significant limitation of NPU is the

precision of the floating-point numbers. NPU uses 16 bits or 8

bits to represent the floating-point numbers instead of 32 bits

in CPU. As a result, it runs DNNs much faster but less accurate

compared to CPU. Moreover, NPU has its own memory which

is usually too small for advanced DNNs. The advanced DNNs

have to be compressed in order to be loaded and executed by

NPU at the cost of accuracy.

To address the low accuracy problem on NPU, mobile

devices can offload the data to the edge server and let the edge

server run the DNNs. Since the server has more computational

power, high accuracy can be achieved by processing the data

with the most advanced DNNs in a short time. However,

when the network condition is poor or when the data size

is large which is usually true in video analytics, offloading

may take longer time to transmit the data. There is a tradeoff

between the offloading based approach and the NPU based

approach. The offloading based approach has good accuracy,

but has longer delay under poor network condition. On the

other hand, the NPU based approach is faster, but with less

accuracy. Recent research (e.g., FastVA [4]) tries to combine

these two approaches for video analytics on mobile devices.

To maximize accuracy under some time constraint, FastVA

determines which frames should be processed locally on NPU

and which frames should be offloaded to the edge server.

However, existing research treats DNN as a black box and

never considers exploring insights about running DNNs on

NPU to improve performance.

We address this problem by considering the confidence

level of running DNNs on NPU. The confidence level can be

represented by the confidence score, which is computed based

on the output of the DNN. If the confidence score is higher

than a threshold, the classification result on NPU is most

likely accurate and can be directly used; otherwise, the data

is offloaded for further processing to improve the accuracy.

Similar ideas have been studied in existing work although

for different purpose. For example, in [5], [6], confidence

score is leveraged to reduce the processing delay by early

exit; i.e., returning the classification results without running

all DNN layers. However, there are two unique challenges

for applying this idea to video analytics on mobile devices

with NPU. First, the confidence score of many advanced

DNNs cannot accurately estimate the classification results, and

then may not be effective for making offloading decisions.
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Fig. 1: Performance comparisons of running DNNs on NPU and CPU.

Second, existing research relies on fixed confidence score

threshold to determine when to offload. However, in video

analytics, the decision can be affected by many factors such

as the confidence score, the network condition, the video frame

resolution, and thus fixed threshold will not work well.

In this paper, we address these challenges by proposing

a Confidence Based Offloading (CBO) framework for deep

learning video analytics on mobile devices with NPU. To ad-

dress the first challenge, we propose techniques to calibrate the

confidence score so that it can accurately reflect the correctness

of the classification results on NPU. To address the second

challenge, we formulate the CBO problem, where the goal is

to maximize accuracy under some time constraint. To achieve

this goal, the confidence score threshold is adaptively adjusted

based on the network condition, confidence score and the

selected frame resolution, before being used for determining

if the video frame should be offloaded for further processing.

Our contributions can be summarized as follows.

• To address the accuracy loss problem in deep learning

video analytics on NPU based mobile devices, we study

confidence based offloading and propose confidence score

calibration techniques to improve the performance.

• We formulate the CBO problem, and propose an optimal

solution. Since the optimal solution relies on the perfect

knowledge of all future video frames, we further propose

an online algorithm to relax this assumption.

• Through real implementations and extensive evaluations,

we demonstrate that the proposed solution can signifi-

cantly outperform other approaches.

The rest of the paper is organized as follows. Section II

presents the background and motivation. In Section III, we

evaluate the effectiveness of CBO and propose calibration

techniques to improve performance. In Section IV, we present

our CBO framework for video analytics. Section V presents

the evaluation results and Section VI reviews related work.

Section VII concludes the paper.

II. PRELIMINARY

A. Characteristics of NPU

To have a better understanding of NPU, we conducted some

experiments on HUAWEI mate 10 pro, using the following

four DNN models: 1) VGG [7] with the LFW dataset [8],

2) VocNet [9] with 4000 images from the VOC dataset [10],

3) AlexNet [2] with the VOC dataset, 4) YOLO Small [11]

with 4000 images randomly chosen from the MS COCO

dataset [12]. As shown in Figure 1(a), compared to CPU,

running VGG, VocNet, AlexNet, Yolo Small on NPU can

significantly reduce the processing time by 95%; however,

this may be at the cost of accuracy loss as illustrated in

Figure 1(b). Specifically, compared to CPU, using NPU has

similar accuracy when running VGG, 30% accuracy loss when

running VocNet, 11% accuracy loss for AlexNet, and the F1-

score drops to 0.3 for YOLO Small.

The accuracy loss is mainly because NPU can only support

FP16 operations and store the intermediate result of each layer

using FP16. Running DNNs with FP16 can save memory and

reduce the processing time, but it may reduce the accuracy due

to the numerical instability caused by floating point overflow

or underflow.

The amount of accuracy loss is related to the DNN model.

In VGG, the extracted feature vectors are compared, and

they represent the same person if the similarity is above a

predefined threshold. Although NPU introduced error may

change some values, the relationship between the similarity

and the threshold will remain and thus keep the same level

of accuracy. However, AlexNet, VocNet and Yolo Small use

more information in the feature vectors to identify or locate

multiple objects in the images. Each value in the feature

vector represents the category, the location or the size of an

object and a small error introduced by NPU can change the

prediction completely. As a result, they have lower accuracy

when running on NPU.

As shown in Figure 1, NPU runs much faster than CPU. It is

ideal for running some DNNs such as VGG, where using NPU

can significantly reduce the processing time while maintaining

high accuracy. However, it may not be the best choice for

running DNNs such as VocNet and Yolo small, due to the

high accuracy loss. In this paper, we address this problem by

proposing techniques to improve its accuracy.

B. Motivation

To address the accuracy loss problem, one solution is to

offload the video frames to the edge server or cloud for

processing. However, transmitting all video frames to the

server may take much longer time and may violate the delay

constraint, compared to processing them locally on NPU,

especially when the wireless bandwidth is limited. Instead

of processing video frames only on NPU or only through

offloading, we take advantage of both approaches by exploring

insights about running DNNs on NPU.

Although running DNNs on NPU has lower accuracy in

general, the accuracy of running DNNs for some specific

objects can be much higher, due to the skewed accuracy of

the DNNs. This is because DNNs are becoming more and

more complex, with many parameters and layers designed to

achieve high accuracy for general inference scenarios. These

DNNs have lots of redundancy especially when the inference

scenario is simple; i.e., even when running on NPU with

lower precision parameter and simple model structure, the

compressed DNN can still perform well for some simple

scenarios.

Figure 2 shows the accuracy of running VocNet on CPU

and NPU for different objects. When considering all objects,

the accuracy of running VocNet on NPU is 0.54, which is
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Fig. 2: Accuracy for different objects with VocNet

lower than that on CPU (0.89). When considering specific

objects, VocNet on NPU performs much better for recognizing

airplanes with accuracy of 0.96, which is similar to the

accuracy on CPU. This is because there is much higher visual

difference between the background (i.e., blue sky) and the

airplane. Even though the VocNet has been compressed to

be run on NPU, with lower precision parameters and simpler

model structure, it can still recognize airplanes accurately.

On the other hand, VocNet performs poorly on NPU for

recognizing tables, with accuracy of 0.1. This is because most

tables in the data set have much complex background, and the

visual difference between the background and table is much

smaller. Then, a more complex and advanced DNN (i.e., the

original DNN) is needed to classify these objects correctly.

To consider both cases, two different DNNs should be

applied, a compressed DNN to process simple cases and the

original DNN to process more complex cases. Due to the

resource limitation of NPU, the compressed DNN should

be run on NPU and the original DNN should be run on

the edge server or cloud. Then, images such as airplane

should be processed with local NPU and other images such as

tables should be offloaded to the server for further processing.

However, the system does not know whether an image is an

airplane or table before hand. Thus, we propose the following

solution. First, the image is processed locally on NPU, which

has negligible delay. If the image can be recognized with a

high level of confidence, the classification result is returned;

otherwise, the image is offloaded for further processing. Then,

most images can be processed locally with high accuracy and

low delay, and only images with low accuracy are offloaded.

The key component of this solution is how to quantify the

confidence level of running DNNs on NPU, which will be

discussed in the next section.

III. QUANTIFYING THE CONFIDENCE LEVEL

The result of the DNN is represented by a feature vector

which can be extracted from the last layer of the DNN. To

quantify the confidence level of the DNN, the feature vector

is used to calculate the confidence score. In this section, we

first present an offloading framework based on the calculated

confidence score, and and then present confidence score cali-

bration techniques to improve its accuracy.

A. Confidence Based Offloading (CBO)

Figure 3 illustrates the basic idea of CBO. To determine

which images should be offloaded, confidence score is used

to predict the correctness of the result. The confidence score

can be computed based on the feature vector produced by the

DNN. Let x = [x1, x2, x3, . . . , xN ] denote the extracted fea-

ture vector, where each element xi represents the probability

that object i appears in the image. Normally, the values of

these elements are not normalized and the confidence score is

computed as maxσ(xi), where σ(xi) is the softmax function

and it is defined as σ(xi) = exi
∑

N
k=1 exk

. As shown in Figure

3, when the confidence score is larger than a threshold θ, the

result is returned; otherwise, the image is offloaded for further

processing.

We conducted experiments to evaluate the effectiveness of

CBO. The AlexNet and ResNet-152 which are trained based

on the ImageNet dataset, are used to process videos randomly

selected from the FCVID dataset, which includes thousands of

real-world videos. In the experiment, AlexNet is run on NPU

and ResNet-152 is run on the server. The offload percentage

is defined as no

n
, where no is the number of offloaded frames

and n is the total number of video frames.

The results are shown in Figure 4. When θ is 0, all frames

are only processed by NPU. When θ is 1, all frames are

offloaded to the server. As shown in the figure, as θ increases

from 0 to 1, more frames are offloaded to the server and the

accuracy increases from 0.42 to 0.81. However, this is not

as expected due to the following reason. When the accuracy

requirement is 0.8, the threshold has to be above 0.8 at which

the offloaded traffic is above 90%. Then, CBO does not save

any bandwidth.

The reason of such poor performance is because the confi-

dence score generated by the DNN on NPU cannot accurately

estimate the correctness of the result. We conducted the

following experiment. With the same DNN and the dataset to

identify the reason. In this experiment, the video frames are

divided into 10 bins with 0.1 confidence interval. For example,

the first bin includes the frames with confidence score from

0 to 0.1. For each bin, we process the frames on NPU and

calculate the accuracy. The result is shown in Figure 5. As the

confidence score increases from 0 to 1, the accuracy increases

from 0.29 to 0.5. For example, the accuracy is 0.42 for the

frames with confidence score between 0.2 to 0.3.

CBO is based on the assumption that frames classified

incorrectly on NPU will be offloaded for further processing.

This can be easily achieved if the confidence score of running

the DNN to process the frame is the same as its accuracy.

Then, the classification result of processing frames with con-

fidence score 0.9 is more likely to be correct than that with

confidence score 0.5, and hence the accuracy can be improved

by offloading frames with lower confidence score. However, as

shown in Figure 5, the accuracy remains to be 0.5 for frames

with confidence score much higher than 0.5 (e.g., 0.9). Then,

it is hard to use the confidence score to determine which frame

should be offloaded. This explains why CBO performs poorly

as shown in Figure 4. Fortunately, there is nothing wrong with

CBO. The problem is due to the fact that the confidence score

cannot accurately estimate the correctness of the classification

result, and it should be calibrated.
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B. Confidence Score Calibration

Although modern DNNs can achieve better accuracy in

classification problems, the confidence scores produced by

these DNNs are poorly calibrated [13]. To address this issue,

researchers have proposed many confidence score calibration

techniques, following two different methods.

Platt Calibration: Platt Calibration is a parametric method

[14] and its key idea is to train logistic regression models

which can transform the confidence score into a calibrated one

to provide better correctness estimation. The logistic model

can be defined as P (yi = 1|x) = 1
1+eAf(x)+B

, where A,B

are the parameters that needs to be trained.

Isotonic Regression: Different from Platt Calibration, the

Isotonic Regression is a common non-parametric calibration

method [15]. It learns a piecewise constant function f to

transform the confidence score into a calibrated one, which

means x′
i = f(xi). To train the Isotonic Regression model, f is

trained by minimizing the square loss function
∑n

i=1(f(xi)−
yi)

2.

Although these two methods use different machine learning

models to calibrate the confidence score, they have the same

training procedure for confidence score calibration, and this

procedure is shown in Figure 6. As shown in the figure,

N models are trained for calibrating the confidence score

x1, x2, . . . , xN . For each model i, it takes the feature vector

x = [x1, x2, x3, . . . , xN ] as input and outputs a new confi-

dence score x′
i. When the ith model is being trained, the output

variable yj is set to be 1 if object i appears in the frame Ij .

yj is set to be 0 if Ij does not include object i.
In our CBO, our goal is to choose a method which can

calibrate the confidence score and make it match the accuracy

of the DNN. To achieve this goal, we use the following metrics

to evaluate them and select the best.

• Expected Calibration Error (ECE): ECE measures the ex-

pectation difference between the confidence score and ac-

curacy of the DNN. ECE is defined as
∑10

i=1
Bi

n
|A(Bi)−

C(Bi)|, where Bi (1 ≤ i ≤ 10) is the bins with 0.1

confidence interval. For example B1 includes the frames

with confidence score between 0 to 0.1. For each bin Bi,

we process the frames on NPU and calculate the accuracy

A(Bi) and the average confidence score C(Bi).
• Maximum Calibration Error (MCE): MCE measures

the worst-case difference between the confidence score

and accuracy of the DNN. MCE is defined as

max1≤i≤10 |A(Bi)− C(Bi)|.

With AlexNet and the FCVID dataset, we perform an

experiment to evaluate the performance of different calibration

Method ECE MCE

Uncalibrated 0.27 0.48

Platt Calibration 0.07 0.29

Isotonic Regression 0.16 0.41

TABLE I: Comparison of different calibration techniques.
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Fig. 7: The performance of Platt Calibration.

techniques. In the experiment, the video frames are divided

into 10 bins with 0.1 confidence interval. For example, the first

bin includes the frames with confidence score from 0 to 0.1.

For each bin, we process the frames on NPU and calculate

the accuracy. We use the images from ImageNet validation

dataset and a subset of video frames from FCVID dataset as

the training data for Platt Calibration and Isotonic Regression.

The result is shown in Table I. The uncalibrated confidence

score has the worst performance among the three methods.

Compared to the Isotonic Regression, Platt Calibration has

lower ECE and MCE, which means its performance is better.

This is because the Isotonic Regression suffers from overfit-

ting, where the model can learn the training data well but is

not generalized to new data. Therefore, Platt Calibration is

used for calibrating the confidence score.

The effectiveness of confidence calibration We perform

experiments to evaluate the performance of the calibration

technique using the same setting as that in the last subsection

except that the confidence score is replaced with the calibrated

confidence score based on Platt Calibration.

As shown in Figure 7 (a), the accuracy is increased as

the number of offloaded frames increases. Compared to the

results shown in Figure 4, calibrated confidence score is more

effective. For example, when the accuracy requirement is 0.7,

the threshold has to be above 0.35 at which the offloaded

traffic is 30%. However, as shown in Figure 4, at least 70% of

the frames are offloaded in order to satisfy the same accuracy

requirement.

With the same setting, Figure 7 (b) explains why calibrated

confidence score is more effective. As the confidence score

increases from 0 to 1, the accuracy increases from 0.11 to

1. The accuracy variation is much larger than that shown in

Figure 5. Thus, it is much easier to determine which frames
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Notation Description

Ii The ith frame

Ao
r The accuracy of the DNN with input images

in resolution r

S(Ii, r) The data size of the frame Ii in resolution r

T o The processing time on the server

B Upload bandwidth (data rate)

f Frame rate (fps)

T The time constraint for each frame

n The number of video frames that needs to be processed

θ The confidence score threshold for offloading.

TABLE II: Notation

should be offloaded.

IV. THE CBO FRAMEWORK

A. Overview

Figure 8 shows our CBO framework for video analytics.

The video frames are first processed locally on NPU. Based

on the calibrated confidence score, our framework determines

which frames should be offloaded. To provide real time video

analytics, the processing of each video frame should be

completed within a time constraint. Then, for some offloaded

frames, the resolution may be reduced to save bandwidth and

delay, at the cost of accuracy.

In the figure, CBO is based on the idea presented in

Figure 3. However, the confidence threshold θ is not fixed;

it is adaptively adjusted based on the network condition,

the confidence score and the selected frame resolution. That

is, based on the accuracy and processing time requirement,

we study the CBO problem which adaptively selects θ and

the frame resolution, to maximize accuracy under some time

constraint. In the following, we first formulate the problem

and then propose an adaptive solution which determines which

frames to offload at what resolution based on the confidence

score and the network condition.

B. Problem Formulation

For each frame Ii (1 ≤ i ≤ n), it is first processed by

the DNN on NPU. Let pi denote the calibrated confidence

score and let Anpu
pi

denote the accuracy of running the DNN

to process the frame on NPU. Assume the video frame rate is

f , the time interval between two consecutive video frames is

γ = 1
f

. Since NPU is very fast, the local processing time for

each frame is shorter than γ and it is not the bottleneck. For

the ith video frame, assume its arrival time is iγ, our system

ensures that it is processed before time T + iγ, where T is

the time constraint.

Based on the calibrated confidence score, a frame may

be offloaded to the server for further processing to improve

accuracy. If pi is higher than the threshold θ, the classifica-

tion result is returned. Otherwise, the classification result is

considered to be incorrect and Ii is offloaded to the server in

the original resolution or reduced to resolution r before being

offloaded. Let B denote the upload bandwidth and let L denote

the network latency between the server and the mobile device.

Then, it takes
S(Ii,r)

B
+ T o + L to transmit the ith frame in

resolution r and receive the result from the server. In this way,

the transmission time can be reduced by resizing the frame to

a lower resolution, at a cost of lower accuracy.

The notations used in the problem formulation are listed in

Table II. The CBO problem can be formulated as an integer

programming in the following way.

max
1

n

n∑

i=1

(Anpu
pi

(1−Xi) +
∑

r

A
o
rY

r
i Xi) (1)

s.t. D(k) ≤ (i− k) ∗ γ + T, ∀i, k (2)

θ − pi < Xi, ∀i (3)

pi − θ ≤ 1−Xi, ∀i (4)
∑

r

Y
r
i = 1, ∀i (5)

Xi, Y
r
i ∈ {0, 1}, ∀i (6)

Where D(k) =
∑

r

∑
k≤i

S(k,r)Y r
k Xk

B
+ T oXi + L is the

offloading time for the frames that arrive between Ik and Ii.

Xi is a variable to show whether the frame is needed to be

offloaded and Y r
i is a variable to show which resolution the

frame is resized to before offloading. If Xi = 0, the frame Ii
is only processed locally. If Xi = 1, the frame Ii is offloaded

to the server for further processing. If Y r
i = 1, the frame Ii

is resized to resolution r before offloading.

Objective (1) is to maximize the accuracy of the processed

frames. Constraint (2) specifies that the classification results

should be returned within the time constraint, and constraint

(3) specifies that the frames with confidence score lower than

or equal to threshold θ should be offloaded. Constraint (4)

specifies that frames with confidence score higher than θ

should not be offloaded.

C. Finding the Optimal Solution

In this subsection, we build a solution graph based on which

we can find the optimal solution for the CBO problem. As

shown in Figure 9, nodes at different levels represent the

schedule options for different frames. More specifically, nodes

at level i(1 ≤ i ≤ n) represent the schedule options of

frame Ii. There are (m + 1) nodes at level i, representing

m + 1 scheduling options, where m is the number of frame

resolutions. For example, at level 1 (i.e., for frame I1), node

V
npu
1 represents that the frame is processed on local NPU,

and V rm
1 represents that frame I1 is offloaded to the server in

resolution rm. Each node is associated with a time window

[iγ, iγ+T ] which represents the time constraint for the frame

to be processed. We also create two dummy nodes: Vstart and

Vend. They are the source node and the destination node at

level 0 and n+ 1.

For edges, we add a link from each node at level i to all

nodes at level i + 1. An edge (V r
i , V

r
i+1) has two attributes,



Fig. 9: The solution graph.

cost and time duration. The cost is defined as the negative of

the accuracy c(V r
i , V

r
i+1) = −Ao

r and c(V npu
i , V r

i+1) = Anpu
pi

.

The time duration is the offloading time since local processing

time on NPU is very short and it is not the bottleneck. The time

duration between V r
i and V r

i+1 (for frame Ii with resolution

r) can be computed as t(V r
i , V

r
i+1) = S(i,r)

B
. In this way,

our problem is converted to the problem of finding the least

cost path from Vstart to Vend while visiting each chosen node

within its specific time window.

Theorem 1. The CBO problem is NP-hard.

Proof. We reduce a well known NP-hard problem, the subset

sum problem to our problem. In the subset sum problem, there

is a set U which includes n numbers (a1, a2, a3, . . . , an) and

the goal is to find a subset of numbers so that its sum is equal

to a value K.

For an arbitrary instance of the subset sum problem, we

can construct an instance of our solution graph as follows.

For each number ai, two nodes V 0
i and V 1

i are added to the

graph at level i. The time window of these two nodes are set

to be [−
∑

i |ai|,
∑

i |ai|]. Specially, the time window for the

destination node Vend is set to be [K,K].
For edges, we add links from nodes at level i to nodes at

level i + 1. More specifically, the cost is set to be 0 and the

time duration t(V p
i , V

q
i+1) is set to ai if p = 1; otherwise,

t(V p
i , V

q
i+1) = 0.

A solution to our problem must satisfy the requirement that

the destination node Vend must be visited at the exact time

K. As a result, the sum of the time duration of the selected

nodes is equal to K. Since the time duration of a node is also

equivalent to the value of the corresponding number, the sum

of the selected numbers is also equal to K. This completes

the reduction and hence the proof.

Due to the time window constraint, the shortest path cannot

be found using the Dijkstra algorithm. Instead, a dynamic

programming algorithm is used to search for the optimal path.

Let Pj(V
r
i ) denote the jth feasible path from Vstart to V r

i

and each path has two attributes Tj(V
r
i ) and Cj(V

r
i ), which

are used to record the time duration and the cost of the path.

Initially, T (Vstart) and C(Vend) are set to be 0. For each path

Pj(V
r
i ) = (Vstart, V

r
1 , . . . , V

r
i ), its attributes are iteratively

computed as follows

Tj(V
r
k ) = max(Tj(V

r
k−1) + t(V r

k−1, V
r
k ), kγ)

Cj(V
r
k ) = Cj(V

r
k−1) + c(V r

k−1, V
r
k )

Since the node Vi must be visited during [iγ, iγ + T ], a

feasible path should satisfy iγ ≤ Tj(V
r
k ) ≤ iγ + T . Although

a lot of feasible paths can be found in the iterations, the algo-

rithm only considers the most efficient ones. More specifically,

for two paths P1(V
r
i ) and P2(V

r
i ), if T1(V

r
i ) < T2(V

r
i ) and

C1(V
r
i ) < C2(V

r
i ), P1(V

r
i ) is more efficient than P2(V

r
i ) and

P2(V
r
i ) will not be considered in future iterations. The optimal

path is P (Vend) which has the minimum cost minC(Vend).
Since there are at most T different efficient paths from

Vstart to V r
i , there are at most mT paths at level i(1 ≤ i ≤ n).

Therefore, the time complexity of the optimal algorithm is

O(nm2T ).

D. The CBO Algorithm

The optimal solution can maximize the accuracy within the

time constraint. However, it is not practical since it requires

the complete knowledge of all frames, such as the frame sizes

and the confidence score of running DNN to process the frame.

In this subsection, we remove this assumption and propose an

adaptive solution, called CBO algorithm.

Since the frames with lower confidence scores are classified

with lower accuracy on NPU, they should be offloaded to

increase the accuracy as long as there is available bandwidth.

However, due to bandwidth limitation, some frames cannot be

offloaded and have to rely on local NPU for classification.

We use the following dynamic programming algorithm

to determine which frames should be offloaded with what

resolution. Suppose k frames have been processed locally. For

each frame Ii (1 ≤ i ≤ k), its arrival time is tarri and the

confidence score is pi. The frames are sorted in the descending

order of the confidence scores, which means pi > pj if

i < j. In our algorithm, a list lj (j ∈ [0, k]) is used to

find the schedule decision for maximizing the accuracy. Each

element in the list lj is a pair (t, A), where A is the accuracy

improvement which can be achieved by offloading the first j

frames within time t. If Ii is offloaded in resolution r, the

accuracy improvement can be computed as A = Ao
r − Anpu

pi
.

Initially, l0 = (0, 0). To add pairs to the list lj , we consider

the following two cases.

No offloading: In this case, the jth frame will not be

offloaded to the server for further processing. All pairs in lj−1

will be added to lj .

Offloading: In this case, the jth frame will be offloaded

in resolution r. It takes
S(Ij ,r)

B
to transmit the frame and the

accuracy improvement is Ao
r − Anpu

pj
. For each pair (t, A) ∈

lj−1, a new pair (max(t, tarrj ) +
S(Ij ,r)

B
, A + Ao

r − Anpu
pj

) is

added to lj . Notice that the frames should be processed within

the time constraint. Therefore, max(t, tarrj ) +
S(Ij ,r)

B
+ T o +

L ≤ T + tarrj must be satisfied for all new pairs.



Algorithm 1: CBO algorithm

Result: Confidence threshold θ, frame resolution ro

1 l0 ← {(0, 0)}
2 for j ← 1 to k do

3 for each (t, A) ∈ lj−1 do

4 Add (t, A) to lj
5 for each possible resolution r do

6 t′ ← max(t, tarrj ) + S(j,r)
B

7 if t′ + T o + L ≤ T + tarrj then

8 A′ ← Ao
r −Anpu

pj

9 Add (t′, A+A′) to lj
10 Remove the dominated pairs from lj
11 (t′, A′) ← argmax(t,A)∈lk A

12 for j from k − 1 to 0 do

13 for each pair (t, A) in lj do

14 for each possible resolution r do

15 if t+
S(Ij ,r)

B
= t′ and

A+Ao
r −Anpu

pj
= A′ then

16 A′ ← A, t′ ← t

17 θ ← pj , ro ← r

18 return ro, θ

To improve the efficiency of our algorithm, only the most

efficient pairs in lj are kept. More specifically, a pair (t′, A′)
is said to dominate another pair (t, A) if and only if t′ ≤ t

and A′ ≥ A. The pair (t′, A′) is more efficient than the pair

(t, A) and all the dominated pair will be removed from lj .

With the list of lk, we can find the confidence threshold

θ and offloaded frame resolution ro. After the first frame

is offloaded, the algorithm will be run again for the frames

that have been processed locally. The CBO algorithm is

summarized in Algorithm 1. In Lines 1-10, dynamic algorithm

is applied to maximize the accuracy, and the schedule decision

is determines for frame I1 in Lines 11-20. The running time

of the algorithm is O(k2 ∗m).

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the CBO

algorithm and compare it with other approaches.

A. Evaluation Setup

The evaluations are performed on HUAWEI mate 10 pro,

which is equipped with 6 GB memory, octa-core CPU (4×2.4
GHz and 4×1.8 GHz) and a NPU. HUAWEI has published the

HUAWEI DDK [16] toolset for developers to run the DNN on

NPU. The pre-trained DNNs must be optimized before they

can be run on NPU since NPU has a different architecture

from CPU. The HUAWEI DDK includes toolsets to perform

such optimizations for DNNs. It also includes the APIs to run

the DNNs, and a few Java Native Interface (JNI) functions

are provided to use the APIs on Android. Since these JNI

functions cannot extract the confidence scores, we add JNI

functions to use the confidence score calibration model which

is trained on a powerful desktop.

In the experiment, AlexNet is deployed on the mobile

device and ResNet-152 is deployed on the server. These

40 80 120 160 200 240
Resolution (pixel * pixel)

0.3

0.6

0.9

A
cc
u
ra
cy

Fig. 10: Accuracy vs. Resolution.

DNNs are used for object recognition, and they are very

popular in computer vision community and have been fine-

tuned for many problem. Moreover, AlexNet has a simple

model structure and it can be executed efficiently on NPU

to provide real-time video analytic. In contrast, ResNet-152 is

more complex and it can achieve higher accuracy than AlexNet

at the cost of more computational power.

To measure the performance of our algorithm, we use a

subset of videos from the FCVID dataset, which includes many

real-world videos. These videos have been used for training

models related to object classification and activity recognition.

In our experiment, we focus on object classification, and thus

activity recognition clips are not used. Since the dataset is very

large, about 1.9 TB, we randomly select 40 videos from the

dataset and filter out the noisy data.

In the experiment, the frames are offloaded in the lossless

PNG format. The server is a desktop with AMD Ryzen 7 1700

CPU, GeForce GTX1070 Ti graphics card and 16 GB RAM.

We have installed the Caffe [17] framework to run the DNNs

on GPU.

We evaluate the proposed algorithms with different frame

rates. Most videos in the dataset use 30 fps, and thus we have

to change their frame rate by decoding/encoding. For ResNet-

152, the maximum resolution of the input image is 224x224

pixels. This resolution can be downsized for some offloading

images, and we consider 5 different resolutions: 45x45, 90x90,

134x134, 179x179 and 224x224 pixels. The tradeoff between

accuracy and frame resolution is shown in Figure 10.

Running Time (ms)

AlexNet on NPU 20

ResNet-152 on server 37

Confidence Score Calibration 8

TABLE III: The running time of different models for each frame.

The time constraint for each frame is set to be 200 ms in all

experiments. The running time of our CBO algorithm is less

than 1 ms on smartphone and it is negligible compared to the

time constraint (100 ms level). The running time of different

DNNs are shown in Table III. The data shown in Figure 10

and Table III will be used for making scheduling decisions in

Algorithm 1. We compare CBO with the following approaches.

• Local: All frames are processed locally on NPU. After

a frame has been processed on NPU, the classification

result is returned.

• Server: All frames are offloaded to the server for

processing. Each frame is resized to a resolution due to
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Fig. 13: The performance of different ap-
proaches under different network latency.

bandwidth limitation so that it can be offloaded before

the next frame arrives.

• FastVA: This is an implementation of the FastVA

framework [4] which maximizes accuracy under some

time constraint. Based on the optimization, it determines

which frames should be processed locally on NPU and

which frames should be offloaded to the edge server.

• Compress: This method is similar to FastVA, except that

it runs a compressed DNN to process the frames locally

on CPU. We leverage Tensorflow which is a well-known

deep learning framework to perform pruning and dynamic

range quantization on the original DNN. Specifically, the

sparsity of the model is set to 0.9 in the pruning step.

After compression, the model size is reduced by 95%

and 50% of the processing time is saved on CPU, but

still much slower than NPU.

• CBO without Calibration (CBO-w/o): This algorithm

is the same as CBO, except that the confidence score is

not calibrated.

• Optimal: This shows the performance upper bound

for all algorithms. It tries all possible combinations and

chooses the schedule that maximizes the accuracy. Note

that this method cannot be used for processing videos

in real time since it takes too much time to search all

possible schedules. We can only find the optimal solution

offline by replaying the data trace.

B. Evaluation Results

The performance of the algorithm depends on several fac-

tors, the bandwidth, the network latency, and the video frame

rate.

In Figure 11, we compare CBO with Local, Server, FastVA,

Compress and CBO-w/o under different network conditions.

In the evaluation, the network latency is set to be 100 ms

and the frame rate is set to be 30 fps. Since no frame is

offloaded to the server in the Local approach, its performance

does not change under different network conditions. Local,

FastVA, CBO and CBO-w/o have the same accuracy when the

bandwidth is 0, since no frame can be offloaded to the server.

When the bandwidth is lower than 3 Mbps, the Local approach

achieves higher accuracy than the Server approach. This is

because the frames have to be offloaded in an extremely low

resolution. Even with advanced DNN running at the server,

the accuracy is still pretty low with low resolution frames.

Compared to the Compress approach, FastVA achieves higher

accuracy when the network bandwidth is lower than 15 Mbps.

This is because the running time of compressed DNN on CPU

is long and Compress offloads most frames in low resolution.

Note that the processing time of compressed DNN (50%) is

not reduced as much as the model size (95%). This is because

the reduction of the model size is mainly due to the removal of

the redundant parameters in the fully connected layers. After

compression, there are still many convolutional layers which

are computationally intensive, and it takes a large amount of

time to run these layers. In contrast, FastVA avoids offloading

frames in low resolution by processing video frames on NPU.

As can be seen from the figure, CBO outperforms FastVA,

since CBO knows which frames are classified incorrectly

based on the calibrated confidence scores and it can improve

the accuracy effectively by offloading the frames with low

confidence scores.

From Figure 11, we can also see that CBO-w/o underper-

forms CBO and FastVA because the uncalibrated confidence

scores cannot accurately estimate the correctness of the clas-

sification result. With uncalibrated confidence score, CBO-

w/o may offload frames which have been classified correctly

on NPU, wasting bandwidth resources, and it may return

misclassified results and reduce the accuracy. Compared to the

Server approach, CBO-w/o achieves higher accuracy when the

network bandwidth is low. This is because CBO-w/o avoids

offloading frames in very low resolution by returning the

classification result with high confidence score. When the

bandwidth is high, the Server approach outperforms CBO-

w/o since it can offload frames with higher resolution and

then increase the accuracy. As the bandwidth increases above

36Mbps, the difference among CBO, CBO-w/o, FastVA, Com-

press and Server becomes smaller since most frames can be

offloaded to the server in higher resolution to achieve higher

accuracy.

In Figure 12, we evaluate the impact of frame rate on

accuracy for different approaches. We set the uplink network

bandwidth to be 5 Mbps and set the network latency to be 100

ms. As shown in the figure, CBO significantly outperforms

CBO-w/o, Server, FastVA, Compress and Local. In general,

the accuracy of all approaches drops when the frame rate

increases. The Server approach suffers a 15% accuracy drop

when the frame rate increases from 5 fps to 30 fps. This

is because most frames have to be resized to low resolution

when the frame rate increases to 30 fps. In contrast, only 6%

accuracy drop is observed in CBO, since it only offloads the
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Fig. 14: Comparison between CBO and Optimal.

frames with low confidence scores. With the same amount of

bandwidth, CBO can offload more frames with high resolution

compared to other approaches.

In Figure 13, we evaluate the impact of network latency on

accuracy. We set the uplink network bandwidth to be 5 Mbps

and set the frame rate to be 30 fps. As shown in the figure,

CBO significantly outperforms CBO-w/o, Server, FastVA,

Compress and Local. Since the Local approach does not

offload any frames, its performance remains the same. As the

latency increases, less frames can be offloaded to the server for

processing due to the delay constraint requirement. Therefore,

the performance of Server, Compress, FastVA, CBO and CBO-

w/o degrades as the latency increases. Compared to the Server

approach, the accuracy drop in CBO is much smaller. This is

because CBO can reduce the chance of offloading frames in

low resolution by using NPU based classification results that

have high level of confidence.

In Figure 14, we compare CBO with Optimal under vari-

ous frame rate and network conditions. As shown in Figure

14(a), the accuracy of Optimal increases when the network

bandwidth increases, because the mobile device can upload

more frames with higher resolution. As frame rate requirement

increases, less frames can be offloaded and Optimal has to

offload frames with lower resolution. Therefore, the accuracy

becomes lower.

In Figure 14(b), we show the accuracy difference between

Optimal and CBO. The accuracy difference is computed using

the accuracy of the Optimal approach minus that of CBO. As

can be seen from the figure, the difference is almost zero in

most cases, which indicates that CBO is close to Optimal.

VI. RELATED WORK

In recent years, researchers have made tremendous progress

in applying DNNs for various classification problems [7], [9],

[18], [19]. However, these DNNs are designed for machines

with powerful CPU and GPU, and it is difficult to run them on

mobile devices due to the resource limitations. To address this

issue, researchers leveraged model compression technique to

reduce the resource demand of DNNs. For example, in [20],

[21], the authors proposed techniques to remove the redundant

parameters and operations from the neural network to reduce

the model size and processing time. Although the efficiency

can be improved through these model compression techniques,

the accuracy also drops.

Computation offloading represents another kind of solution

for enabling video analytics on mobile devices. Some general

offloading frameworks [22]–[24] have been proposed to opti-

mize energy and reduce the computation time for mobile ap-

plications. However, these frameworks have limitations when

applied to deep learning based video analytics since a large

amount of data has to be offloaded to the server. To address

this issue, researchers propose offloading framework for deep

learning applications [25]–[30]. There have been some studies

on confidence based offloading. For example, in [5] and [6],

confidence score is leveraged to reduce the processing delay

by early exit; i.e., returning the classification results without

running all DNN layers. Different from them, our framework

is designed for video analytics on mobile device with NPU,

where the goal is to maximize accuracy under some time

constraint. Moreover, we propose confidence score calibration

technique to improve the performance.

Considerable amount of work has been done on improving

the execution efficiency of DNNs on mobile devices through

hardware support. For example, Tan et al. [31] developed

model partitioning techniques to schedule some neural net-

work layers on CPU while executing other layers on NPU

to achieve better tradeoffs between processing time and ac-

curacy. Cappuccino [32] optimized computation by exploiting

imprecise computation on the mobile system-on-chip (SoC).

Oskouei et al. [33] developed an Android library called

CNNdroid for running DNNs on mobile GPU. DeepMon

[34] leveraged GPU for continuous vision analysis on mobile

devices. FastVA [4] leveraged NPU and offloading technique

for video analytics on mobile devices. Different from FastVA,

we explore insights about running DNNs on NPU to improve

performance.

VII. CONCLUSIONS

In this paper, we proposed a CBO framework for video

analytics to address the low accuracy problem of running

DNNs on NPU. The major challenge is to determine when to

return the NPU classification result based on the confidence

level of running the DNN, and when to offload the video

frames to the server for further processing to increase the

accuracy. We found that existing confidence scores were not

effective for making offloading decisions, and thus proposed

techniques to calibrate the confidence score so that it could

accurately reflect the correctness of the classification results

on NPU. We formulated the CBO problem, where the goal is

to maximize accuracy under some time constraint. To achieve

this goal, the confidence score threshold is adaptively adjusted

based on the network condition, the confidence score and the

selected frame resolution, before being used for determining

if the video frame should be offloaded for further processing.

Extensive evaluation results show that the proposed solution

can significantly outperform other approaches.
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