Deep Learning on Mobile Devices Through Neural
Processing Units and Edge Computing

Tianxiang Tan and Guohong Cao
Department of Computer Science and Engineering
The Pennsylvania State University
Email: {txt51, gxc27} @psu.edu

Abstract—Deep Neural Network (DNN) is becoming adopted
for video analytics on mobile devices. To reduce the delay of
running DNNs, many mobile devices are equipped with Neural
Processing Units (NPU). However, due to the resource limitations
of NPU, these DNNs have to be compressed to increase the
processing speed at the cost of accuracy. To address the low
accuracy problem, we propose a Confidence Based Offloading
(CBO) framework for deep learning video analytics. The major
challenge is to determine when to return the NPU classification
result based on the confidence level of running the DNN, and
when to offload the video frames to the server for further
processing to increase the accuracy. We first identify the problem
of using existing confidence scores to make offloading decisions,
and propose confidence score calibration techniques to improve
the performance. Then, we formulate the CBO problem where
the goal is to maximize accuracy under some time constraint,
and propose an adaptive solution that determines which frames
to offload at what resolution based on the confidence score
and the network condition. Through real implementations and
extensive evaluations, we demonstrate that the proposed solution
can significantly outperform other approaches.

I. INTRODUCTION

Deep Neural Networks (DNN) have been successfully
applied to various computer vision and natural language
processing problems. Recently, many applications based on
DNNs have been developed to provide more intelligent video
analytics. For example, some drones such as DJI Mavic Pro
can recognize and follow a target based on video analytics;
law enforcement officers can use smart glasses to identify
suspects [1]. In these applications, only lightweight DNNs can
be run locally and their accuracy is much lower than advanced
DNNs. Although advanced DNNs can provide us with better
results, they also suffer from high computational overhead
which means long delay and more energy consumption when
running on mobile devices.

In recent years, many companies such as Huawei, Qual-
comm, and Samsung have developed dedicated Neural Pro-
cessing Units (NPUs) for mobile devices, which can process
Al features. With NPU, the running time of these DNNs can
be significantly reduced. For example, on HUAWEI mate 10
pro, running AlexNet (a DNN) [2] on NPU is 30 times faster
than running it on CPU. Although GPUs on mobile devices
can also be used to run DNNs, they are not as powerful as
those running on desktops and servers. Compared to GPUs
on mobile devices, NPUs are much faster and more energy
efficient [3]. However, there are some fundamental limitations

with NPU. The most significant limitation of NPU is the
precision of the floating-point numbers. NPU uses 16 bits or 8
bits to represent the floating-point numbers instead of 32 bits
in CPU. As a result, it runs DNNs much faster but less accurate
compared to CPU. Moreover, NPU has its own memory which
is usually too small for advanced DNNs. The advanced DNNs
have to be compressed in order to be loaded and executed by
NPU at the cost of accuracy.

To address the low accuracy problem on NPU, mobile
devices can offload the data to the edge server and let the edge
server run the DNNSs. Since the server has more computational
power, high accuracy can be achieved by processing the data
with the most advanced DNNs in a short time. However,
when the network condition is poor or when the data size
is large which is usually true in video analytics, offloading
may take longer time to transmit the data. There is a tradeoff
between the offloading based approach and the NPU based
approach. The offloading based approach has good accuracy,
but has longer delay under poor network condition. On the
other hand, the NPU based approach is faster, but with less
accuracy. Recent research (e.g., FastVA [4]) tries to combine
these two approaches for video analytics on mobile devices.
To maximize accuracy under some time constraint, FastVA
determines which frames should be processed locally on NPU
and which frames should be offloaded to the edge server.
However, existing research treats DNN as a black box and
never considers exploring insights about running DNNs on
NPU to improve performance.

We address this problem by considering the confidence
level of running DNNs on NPU. The confidence level can be
represented by the confidence score, which is computed based
on the output of the DNN. If the confidence score is higher
than a threshold, the classification result on NPU is most
likely accurate and can be directly used; otherwise, the data
is offloaded for further processing to improve the accuracy.
Similar ideas have been studied in existing work although
for different purpose. For example, in [5], [6], confidence
score is leveraged to reduce the processing delay by early
exit; i.e., returning the classification results without running
all DNN layers. However, there are two unique challenges
for applying this idea to video analytics on mobile devices
with NPU. First, the confidence score of many advanced
DNNSs cannot accurately estimate the classification results, and
then may not be effective for making offloading decisions.

= ol 100

E= NPU

= NPU
= 75
£ 50
N Eﬂ I‘H
- 0 N -)

VGG VocNet AlexNet YOLO VGG VocNet AlexNet YOLO

Processing Time (s)
Accuracy (%)

(a) Processing time comparison (b) Accuracy comparison

Fig. 1: Performance comparisons of running DNNs on NPU and CPU.
Second, existing research relies on fixed confidence score
threshold to determine when to offload. However, in video
analytics, the decision can be affected by many factors such
as the confidence score, the network condition, the video frame
resolution, and thus fixed threshold will not work well.

In this paper, we address these challenges by proposing
a Confidence Based Offloading (CBO) framework for deep
learning video analytics on mobile devices with NPU. To ad-
dress the first challenge, we propose techniques to calibrate the
confidence score so that it can accurately reflect the correctness
of the classification results on NPU. To address the second
challenge, we formulate the CBO problem, where the goal is
to maximize accuracy under some time constraint. To achieve
this goal, the confidence score threshold is adaptively adjusted
based on the network condition, confidence score and the
selected frame resolution, before being used for determining
if the video frame should be offloaded for further processing.

Our contributions can be summarized as follows.

o To address the accuracy loss problem in deep learning
video analytics on NPU based mobile devices, we study
confidence based offloading and propose confidence score
calibration techniques to improve the performance.

o We formulate the CBO problem, and propose an optimal
solution. Since the optimal solution relies on the perfect
knowledge of all future video frames, we further propose
an online algorithm to relax this assumption.

o Through real implementations and extensive evaluations,
we demonstrate that the proposed solution can signifi-
cantly outperform other approaches.

The rest of the paper is organized as follows. Section II
presents the background and motivation. In Section III, we
evaluate the effectiveness of CBO and propose calibration
techniques to improve performance. In Section IV, we present
our CBO framework for video analytics. Section V presents
the evaluation results and Section VI reviews related work.
Section VII concludes the paper.

II. PRELIMINARY
A. Characteristics of NPU

To have a better understanding of NPU, we conducted some
experiments on HUAWEI mate 10 pro, using the following
four DNN models: 1) VGG [7] with the LFW dataset [8],
2) VocNet [9] with 4000 images from the VOC dataset [10],
3) AlexNet [2] with the VOC dataset, 4) YOLO Small [11]
with 4000 images randomly chosen from the MS COCO
dataset [12]. As shown in Figure 1(a), compared to CPU,
running VGG, VocNet, AlexNet, Yolo Small on NPU can
significantly reduce the processing time by 95%; however,

this may be at the cost of accuracy loss as illustrated in
Figure 1(b). Specifically, compared to CPU, using NPU has
similar accuracy when running VGG, 30% accuracy loss when
running VocNet, 11% accuracy loss for AlexNet, and the F1-
score drops to 0.3 for YOLO Small.

The accuracy loss is mainly because NPU can only support
FP16 operations and store the intermediate result of each layer
using FP16. Running DNNs with FP16 can save memory and
reduce the processing time, but it may reduce the accuracy due
to the numerical instability caused by floating point overflow
or underflow.

The amount of accuracy loss is related to the DNN model.
In VGG, the extracted feature vectors are compared, and
they represent the same person if the similarity is above a
predefined threshold. Although NPU introduced error may
change some values, the relationship between the similarity
and the threshold will remain and thus keep the same level
of accuracy. However, AlexNet, VocNet and Yolo Small use
more information in the feature vectors to identify or locate
multiple objects in the images. Each value in the feature
vector represents the category, the location or the size of an
object and a small error introduced by NPU can change the
prediction completely. As a result, they have lower accuracy
when running on NPU.

As shown in Figure 1, NPU runs much faster than CPU. It is
ideal for running some DNNs such as VGG, where using NPU
can significantly reduce the processing time while maintaining
high accuracy. However, it may not be the best choice for
running DNNs such as VocNet and Yolo small, due to the
high accuracy loss. In this paper, we address this problem by
proposing techniques to improve its accuracy.

B. Motivation

To address the accuracy loss problem, one solution is to
offload the video frames to the edge server or cloud for
processing. However, transmitting all video frames to the
server may take much longer time and may violate the delay
constraint, compared to processing them locally on NPU,
especially when the wireless bandwidth is limited. Instead
of processing video frames only on NPU or only through
offloading, we take advantage of both approaches by exploring
insights about running DNNs on NPU.

Although running DNNs on NPU has lower accuracy in
general, the accuracy of running DNNs for some specific
objects can be much higher, due to the skewed accuracy of
the DNNs. This is because DNNs are becoming more and
more complex, with many parameters and layers designed to
achieve high accuracy for general inference scenarios. These
DNNSs have lots of redundancy especially when the inference
scenario is simple; i.e., even when running on NPU with
lower precision parameter and simple model structure, the
compressed DNN can still perform well for some simple
scenarios.

Figure 2 shows the accuracy of running VocNet on CPU
and NPU for different objects. When considering all objects,
the accuracy of running VocNet on NPU is 0.54, which is

I CpPU N \NPU

Accuracy (%)

0.0
All Object plane

Fig. 2: Accuracy for different objects with VocNet

lower than that on CPU (0.89). When considering specific
objects, VocNet on NPU performs much better for recognizing
airplanes with accuracy of 0.96, which is similar to the
accuracy on CPU. This is because there is much higher visual
difference between the background (i.e., blue sky) and the
airplane. Even though the VocNet has been compressed to
be run on NPU, with lower precision parameters and simpler
model structure, it can still recognize airplanes accurately.
On the other hand, VocNet performs poorly on NPU for
recognizing tables, with accuracy of 0.1. This is because most
tables in the data set have much complex background, and the
visual difference between the background and table is much
smaller. Then, a more complex and advanced DNN (i.e., the
original DNN) is needed to classify these objects correctly.

To consider both cases, two different DNNs should be
applied, a compressed DNN to process simple cases and the
original DNN to process more complex cases. Due to the
resource limitation of NPU, the compressed DNN should
be run on NPU and the original DNN should be run on
the edge server or cloud. Then, images such as airplane
should be processed with local NPU and other images such as
tables should be offloaded to the server for further processing.
However, the system does not know whether an image is an
airplane or table before hand. Thus, we propose the following
solution. First, the image is processed locally on NPU, which
has negligible delay. If the image can be recognized with a
high level of confidence, the classification result is returned;
otherwise, the image is offloaded for further processing. Then,
most images can be processed locally with high accuracy and
low delay, and only images with low accuracy are offloaded.
The key component of this solution is how to quantify the
confidence level of running DNNs on NPU, which will be
discussed in the next section.

person chair table

III. QUANTIFYING THE CONFIDENCE LEVEL

The result of the DNN is represented by a feature vector
which can be extracted from the last layer of the DNN. To
quantify the confidence level of the DNN, the feature vector
is used to calculate the confidence score. In this section, we
first present an offloading framework based on the calculated
confidence score, and and then present confidence score cali-
bration techniques to improve its accuracy.

A. Confidence Based Offloading (CBO)

Figure 3 illustrates the basic idea of CBO. To determine
which images should be offloaded, confidence score is used
to predict the correctness of the result. The confidence score
can be computed based on the feature vector produced by the

DNN. Let x = |21, 2,23, ..., 2] denote the extracted fea-
ture vector, where each element x; represents the probability
that object ¢ appears in the image. Normally, the values of
these elements are not normalized and the confidence score is
computed as max o(x;), where o(x;) is the softmax function
and it is defined as o(z;) = ﬁ As shown in Figure
3, when the confidence score is Ik;rlger than a threshold 6, the
result is returned; otherwise, the image is offloaded for further
processing.

We conducted experiments to evaluate the effectiveness of
CBO. The AlexNet and ResNet-152 which are trained based
on the ImageNet dataset, are used to process videos randomly
selected from the FCVID dataset, which includes thousands of
real-world videos. In the experiment, AlexNet is run on NPU
and ResNet-152 is run on the server. The offload percentage
is defined as %0, where n° is the number of offloaded frames
and n is the total number of video frames.

The results are shown in Figure 4. When 6 is 0, all frames
are only processed by NPU. When 6 is 1, all frames are
offloaded to the server. As shown in the figure, as 6 increases
from O to 1, more frames are offloaded to the server and the
accuracy increases from 0.42 to 0.81. However, this is not
as expected due to the following reason. When the accuracy
requirement is 0.8, the threshold has to be above 0.8 at which
the offloaded traffic is above 90%. Then, CBO does not save
any bandwidth.

The reason of such poor performance is because the confi-
dence score generated by the DNN on NPU cannot accurately
estimate the correctness of the result. We conducted the
following experiment. With the same DNN and the dataset to
identify the reason. In this experiment, the video frames are
divided into 10 bins with 0.1 confidence interval. For example,
the first bin includes the frames with confidence score from
0 to 0.1. For each bin, we process the frames on NPU and
calculate the accuracy. The result is shown in Figure 5. As the
confidence score increases from O to 1, the accuracy increases
from 0.29 to 0.5. For example, the accuracy is 0.42 for the
frames with confidence score between 0.2 to 0.3.

CBO is based on the assumption that frames classified
incorrectly on NPU will be offloaded for further processing.
This can be easily achieved if the confidence score of running
the DNN to process the frame is the same as its accuracy.
Then, the classification result of processing frames with con-
fidence score 0.9 is more likely to be correct than that with
confidence score (.5, and hence the accuracy can be improved
by offloading frames with lower confidence score. However, as
shown in Figure 5, the accuracy remains to be 0.5 for frames
with confidence score much higher than 0.5 (e.g., 0.9). Then,
it is hard to use the confidence score to determine which frame
should be offloaded. This explains why CBO performs poorly
as shown in Figure 4. Fortunately, there is nothing wrong with
CBO. The problem is due to the fact that the confidence score
cannot accurately estimate the correctness of the classification
result, and it should be calibrated.

°

* S e]
—_ s oEnECEe

> <)
o

DNN model

Confidence Score | X
x = [o(x1)..,0(zn)]

Input Data

oad Percentage

max(x) < @

(x) >0

Off

0.0
”HHV 0.2 0.4 0.6
Thresholds 8

Server User

Fig. 3: Making offloading deci-
sions based on confidence score.

Fig. 4: The effects of confidence
score threshold 6.

B. Confidence Score Calibration

Although modern DNNs can achieve better accuracy in
classification problems, the confidence scores produced by
these DNNs are poorly calibrated [13]. To address this issue,
researchers have proposed many confidence score calibration
techniques, following two different methods.

Platt Calibration: Platt Calibration is a parametric method
[14] and its key idea is to train logistic regression models
which can transform the confidence score into a calibrated one
to provide better correctness estimation. The logistic model
can be defined as P(y; = 1|x) = oajmors, Where A, B
are the parameters that needs to be trained.

Isotonic Regression: Different from Platt Calibration, the
Isotonic Regression is a common non-parametric calibration
method [15]. It learns a piecewise constant function f to
transform the confidence score into a calibrated one, which
means z; = f(z;). To train the Isotonic Regression model, f is
trained by minimizing the square loss function >, (f(z;) —
yi)?.

Although these two methods use different machine learning
models to calibrate the confidence score, they have the same
training procedure for confidence score calibration, and this
procedure is shown in Figure 6. As shown in the figure,
N models are trained for calibrating the confidence score
r1,%9,...,xN. For each model ¢, it takes the feature vector
X = [z1,22,%3,...,2ZN] as input and outputs a new confi-
dence score z/. When the i*" model is being trained, the output
variable y; is set to be 1 if object 7 appears in the frame I;.
y; is set to be 0 if I; does not include object .

In our CBO, our goal is to choose a method which can
calibrate the confidence score and make it match the accuracy
of the DNN. To achieve this goal, we use the following metrics
to evaluate them and select the best.

o Expected Calibration Error (ECE): ECE measures the ex-
pectation difference between the confidence score and ac-
curacy of the DNN. ECE is defined as Zggl B A(B;) -
C(B;)], where B; (1 < ¢ < 10) is the bins with 0.1
confidence interval. For example B; includes the frames
with confidence score between O to 0.1. For each bin B;,
we process the frames on NPU and calculate the accuracy
A(B;) and the average confidence score C'(B;).

e Maximum Calibration Error (MCE): MCE measures
the worst-case difference between the confidence score
and accuracy of the DNN. MCE is defined as
maxi <i<io |A(B;) — C(By)].

With AlexNet and the FCVID dataset, we perform an

experiment to evaluate the performance of different calibration

/Calibration Model for £9

~\calibration Model for Z |

Fig. 5: Accuracy vs. confidence Fig. 6: Calibration model train-

0.4 0.6

Confidence Score

score. ing.
Method ECE | MCE
Uncalibrated 0.27 | 048
Platt Calibration 0.07 | 0.29
Isotonic Regression | 0.16 | 0.41

TABLE I: Comparison of different calibration techniques.

0.75
/ 0.50

”’”[31 0 0.1 0.2 0.3 0.4 0.5 0.)) 00

“Thresholds 0

Accuracy

0.25

0.0
2]() 0.2 0.4 0.6 0.8 1.0
Confidence Score

(b) Accuracy vs. calibrated confi-
dence score.

(a) Accuracy and offload traffic under
different calibrated confidence score
thresholds.

Fig. 7: The performance of Platt Calibration.

techniques. In the experiment, the video frames are divided
into 10 bins with 0.1 confidence interval. For example, the first
bin includes the frames with confidence score from 0 to 0.1.
For each bin, we process the frames on NPU and calculate
the accuracy. We use the images from ImageNet validation
dataset and a subset of video frames from FCVID dataset as
the training data for Platt Calibration and Isotonic Regression.
The result is shown in Table I. The uncalibrated confidence
score has the worst performance among the three methods.
Compared to the Isotonic Regression, Platt Calibration has
lower ECE and MCE, which means its performance is better.
This is because the Isotonic Regression suffers from overfit-
ting, where the model can learn the training data well but is
not generalized to new data. Therefore, Platt Calibration is
used for calibrating the confidence score.

The effectiveness of confidence calibration We perform
experiments to evaluate the performance of the calibration
technique using the same setting as that in the last subsection
except that the confidence score is replaced with the calibrated
confidence score based on Platt Calibration.

As shown in Figure 7 (a), the accuracy is increased as
the number of offloaded frames increases. Compared to the
results shown in Figure 4, calibrated confidence score is more
effective. For example, when the accuracy requirement is 0.7,
the threshold has to be above 0.35 at which the offloaded
traffic is 30%. However, as shown in Figure 4, at least 70% of
the frames are offloaded in order to satisfy the same accuracy
requirement.

With the same setting, Figure 7 (b) explains why calibrated
confidence score is more effective. As the confidence score
increases from 0 to 1, the accuracy increases from 0.11 to
1. The accuracy variation is much larger than that shown in
Figure 5. Thus, it is much easier to determine which frames

Mobile Device

Network
Condition

>

Edge Server

Confidence Based

Confidence Score Offloading

Calibration

NPU Result
% nn Y

= S Classification
Smartphone _>E NPU = [Result
Camera Feed U T
Fig. 8: The CBO framework.
Notation | Description
I; The ith frame
AL The accuracy of the DNN with input images

in resolution r
S(I;,r) | The data size of the frame I; in resolution r
T° The processing time on the server
Upload bandwidth (data rate)
Frame rate (fps)
The time constraint for each frame
The number of video frames that needs to be processed
The confidence score threshold for offloading.

TABLE 1I: Notation

| 3 ||

should be offloaded.

IV. THE CBO FRAMEWORK
A. Overview

Figure 8 shows our CBO framework for video analytics.
The video frames are first processed locally on NPU. Based
on the calibrated confidence score, our framework determines
which frames should be offloaded. To provide real time video
analytics, the processing of each video frame should be
completed within a time constraint. Then, for some offloaded
frames, the resolution may be reduced to save bandwidth and
delay, at the cost of accuracy.

In the figure, CBO is based on the idea presented in
Figure 3. However, the confidence threshold 6 is not fixed;
it is adaptively adjusted based on the network condition,
the confidence score and the selected frame resolution. That
is, based on the accuracy and processing time requirement,
we study the CBO problem which adaptively selects 6 and
the frame resolution, to maximize accuracy under some time
constraint. In the following, we first formulate the problem
and then propose an adaptive solution which determines which
frames to offload at what resolution based on the confidence
score and the network condition.

B. Problem Formulation

For each frame I; (1 < ¢ < n), it is first processed by
the DNN on NPU. Let p; denote the calibrated confidence
score and let APP" denote the accuracy of running the DNN
to process the frame on NPU. Assume the video frame rate is
f, the time interval between two consecutive video frames is
v = % Since NPU is very fast, the local processing time for
each frame is shorter than v and it is not the bottleneck. For
the i* video frame, assume its arrival time is 47, our system
ensures that it is processed before time 1" + iy, where T is
the time constraint.

Based on the calibrated confidence score, a frame may
be offloaded to the server for further processing to improve

accuracy. If p; is higher than the threshold 6, the classifica-
tion result is returned. Otherwise, the classification result is
considered to be incorrect and I; is offloaded to the server in
the original resolution or reduced to resolution r before being
offloaded. Let B denote the upload bandwidth and let L denote
the network latency between the server and the mobile device.
Then, it takes % + T° + L to transmit the i*" frame in
resolution r and receive the result from the server. In this way,
the transmission time can be reduced by resizing the frame to
a lower resolution, at a cost of lower accuracy.

The notations used in the problem formulation are listed in
Table II. The CBO problem can be formulated as an integer
programming in the following way.

max %;(AZ?“H fX¢)+ZT:A:3Y,-TXi))
st. D(k) < (i—k)x~y+T, Vi, k 2
0—pi < X;, Vi 3)
pi—0<1—X;, Vi “4)
V=1 5)

X, Y7 €{0,1}, Vi (6)

Where D(k) = 3. Zk@M + T°X, + L is the
offloading time for the frames that arrive between I;, and I;.
X; is a variable to show whether the frame is needed to be
offloaded and Y;" is a variable to show which resolution the
frame is resized to before offloading. If X; = 0, the frame I;
is only processed locally. If X; = 1, the frame I; is offloaded
to the server for further processing. If Y;” = 1, the frame I,
is resized to resolution r before offloading.

Objective (1) is to maximize the accuracy of the processed
frames. Constraint (2) specifies that the classification results
should be returned within the time constraint, and constraint
(3) specifies that the frames with confidence score lower than
or equal to threshold # should be offloaded. Constraint (4)
specifies that frames with confidence score higher than 6
should not be offloaded.

C. Finding the Optimal Solution

In this subsection, we build a solution graph based on which
we can find the optimal solution for the CBO problem. As
shown in Figure 9, nodes at different levels represent the
schedule options for different frames. More specifically, nodes
at level i(1 < i < n) represent the schedule options of
frame I;. There are (m + 1) nodes at level i, representing
m + 1 scheduling options, where m is the number of frame
resolutions. For example, at level 1 (i.e., for frame I;), node
V""" represents that the frame is processed on local NPU,
and V™ represents that frame I; is offloaded to the server in
resolution 7,,. Each node is associated with a time window
[iy, 4y +T] which represents the time constraint for the frame
to be processed. We also create two dummy nodes: Viqr and
Vena- They are the source node and the destination node at
level 0 and n + 1.

For edges, we add a link from each node at level ¢ to all
nodes at level i 4 1. An edge (V;",V} ;) has two attributes,

K3

[ny,ny +T)

[ny,ny + T [ny,ny + T

Fig. 9: The solution graph.
cost and time duration. The cost is defined as the negative of
the accuracy c(V;",V/,,) = —Ay and c(V;""*, V],) = ApPe.
The time duration is the offloading time since local processing
time on NPU is very short and it is not the bottleneck. The time

duration between V" and V},; (for frame I; with resolution

2 7

r) can be computed as t(V/,V/) = @ In this way,

our problem is converted to the problem of finding the least
cost path from V4.t to Ve,q While visiting each chosen node
within its specific time window.

Theorem 1. The CBO problem is NP-hard.

Proof. We reduce a well known NP-hard problem, the subset
sum problem to our problem. In the subset sum problem, there
is a set U which includes n numbers (a1, as, as, ..., a,) and
the goal is to find a subset of numbers so that its sum is equal
to a value K.

For an arbitrary instance of the subset sum problem, we
can construct an instance of our solution graph as follows.
For each number a;, two nodes V,° and V! are added to the
graph at level ¢. The time window of these two nodes are set
to be [— >, |ai|, >, |ai|]. Specially, the time window for the
destination node V.4 is set to be [K, K].

For edges, we add links from nodes at level 7 to nodes at
level ¢ + 1. More specifically, the cost is set to be 0 and the
time duration ¢(V} ,V;(j_l) is set to a; if p = 1; otherwise,
HV, V) =0.

A solution to our problem must satisfy the requirement that
the destination node V,,, must be visited at the exact time
K. As a result, the sum of the time duration of the selected
nodes is equal to K. Since the time duration of a node is also
equivalent to the value of the corresponding number, the sum
of the selected numbers is also equal to K. This completes
the reduction and hence the proof. O

Due to the time window constraint, the shortest path cannot
be found using the Dijkstra algorithm. Instead, a dynamic
programming algorithm is used to search for the optimal path.

Let P;(V;") denote the jth feasible path from Ve to v
and each path has two attributes T;(V;") and C;(V}"), which

are used to record the time duration and the cost of the path.
Initially, T'(Vitqr¢) and C(Vepnq) are set to be 0. For each path
P;(V7") = (Vstart, V{'s ..., Vi), its attributes are iteratively
computed as follows
T; (Vi) = max(T;(Vi_y) + t(Vi_y, Vi), k)
Cy(VP) = Cy(Vi) + e(Vi1 VY
Since the node V; must be visited during [iv,iv + T, a
feasible path should satisfy iy < T;(V}7) < iy +T. Although
a lot of feasible paths can be found in the iterations, the algo-
rithm only considers the most efficient ones. More specifically,
for two paths Py (V") and Po(V}"), if T (V") < T2(V;") and
Cy (V) < Co(V]), Pi(V;") is more efficient than P(V;") and
P5(V;") will not be considered in future iterations. The optimal
path is P(V,,4) which has the minimum cost min C'(V,,q4).
Since there are at most 7' different efficient paths from
Vstart to V7, there are at most m7T paths at level i(1 < i < n).
Therefore, the time complexity of the optimal algorithm is
O(nm?T).

D. The CBO Algorithm

The optimal solution can maximize the accuracy within the
time constraint. However, it is not practical since it requires
the complete knowledge of all frames, such as the frame sizes
and the confidence score of running DNN to process the frame.
In this subsection, we remove this assumption and propose an
adaptive solution, called CBO algorithm.

Since the frames with lower confidence scores are classified
with lower accuracy on NPU, they should be offloaded to
increase the accuracy as long as there is available bandwidth.
However, due to bandwidth limitation, some frames cannot be
offloaded and have to rely on local NPU for classification.

We use the following dynamic programming algorithm
to determine which frames should be offloaded with what
resolution. Suppose k& frames have been processed locally. For
each frame I; (1 < ¢ < k), its arrival time is ¢{"" and the
confidence score is p;. The frames are sorted in the descending
order of the confidence scores, which means p; > p; if
i < j. In our algorithm, a list I; (j € [0,k]) is used to
find the schedule decision for maximizing the accuracy. Each
element in the list [; is a pair (¢, A), where A is the accuracy
improvement which can be achieved by offloading the first j
frames within time ¢. If I; is offloaded in resolution r, the
accuracy improvement can be computed as A = A7 — APP.
Initially, Iy = (0,0). To add pairs to the list ;, we consider
the following two cases.

No offloading: 1In this case, the j** frame will not be
offloaded to the server for further processing. All pairs in /;_;
will be added to [;.

Offloading: In this case, the j* frame will be offloaded
in resolution r. It takes @ to transmit the frame and the
accuracy improvement is A7 — APP“. For each pair (¢, 4) €
lj-1, a new pair (maz(t, ") + %,A + A — ApPY) is
added to [;. Notice that the frames should be processed within
the time constraint. Therefore, maz(t,§™") + % +7T°+
L <T +t5"" must be satisfied for all new pairs.

Algorithm 1: CBO algorithm

Result: Confidence threshold 6, frame resolution 7°
1l {(0,0)}
2 for j < 1tok do
for each (t,A) € l;_, do
Add (t,A) to [;
for each possible resolution r do
'« max(t,t]"") + %
if ' +7T°+ L <T+1t"" then
A+ A0 — Apr
Add (', A+ A") to I
10 Remove the dominated pairs from /;
u (', A") « argmax aye;, A
12 for j from k —1 to 0 do
13 for each pair (t,A) in l; do

© e NN N kW

14 for each possible resolution r do
15 if t + 250 — ¢/ and

A+ A — APt = A’ then
16 A — At —t
17 0« pj, 701

18 return 7°, 0

To improve the efficiency of our algorithm, only the most
efficient pairs in [; are kept. More specifically, a pair (¢, A”)
is said to dominate another pair (¢, A) if and only if ¢’ < ¢
and A’ > A. The pair (¢, A’) is more efficient than the pair
(t,A) and all the dominated pair will be removed from [;.

With the list of [, we can find the confidence threshold
0 and offloaded frame resolution r°. After the first frame
is offloaded, the algorithm will be run again for the frames
that have been processed locally. The CBO algorithm is
summarized in Algorithm 1. In Lines 1-10, dynamic algorithm
is applied to maximize the accuracy, and the schedule decision
is determines for frame /; in Lines 11-20. The running time
of the algorithm is O(k? x m).

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the CBO
algorithm and compare it with other approaches.

A. Evaluation Setup

The evaluations are performed on HUAWEI mate 10 pro,
which is equipped with 6 GB memory, octa-core CPU (4 x 2.4
GHz and 4 x 1.8 GHz) and a NPU. HUAWEI has published the
HUAWEI DDK [16] toolset for developers to run the DNN on
NPU. The pre-trained DNNs must be optimized before they
can be run on NPU since NPU has a different architecture
from CPU. The HUAWEI DDK includes toolsets to perform
such optimizations for DNNs. It also includes the APIs to run
the DNNs, and a few Java Native Interface (JNI) functions
are provided to use the APIs on Android. Since these JNI
functions cannot extract the confidence scores, we add JNI
functions to use the confidence score calibration model which
is trained on a powerful desktop.

In the experiment, AlexNet is deployed on the mobile
device and ResNet-152 is deployed on the server. These

0.9

0.6

Accuracy

0.
: 34(] 80 120 160 200 240

Resolution (pixel * pixel)
Fig. 10: Accuracy vs. Resolution.
DNNs are used for object recognition, and they are very
popular in computer vision community and have been fine-
tuned for many problem. Moreover, AlexNet has a simple
model structure and it can be executed efficiently on NPU
to provide real-time video analytic. In contrast, ResNet-152 is
more complex and it can achieve higher accuracy than AlexNet
at the cost of more computational power.

To measure the performance of our algorithm, we use a
subset of videos from the FCVID dataset, which includes many
real-world videos. These videos have been used for training
models related to object classification and activity recognition.
In our experiment, we focus on object classification, and thus
activity recognition clips are not used. Since the dataset is very
large, about 1.9 TB, we randomly select 40 videos from the
dataset and filter out the noisy data.

In the experiment, the frames are offloaded in the lossless
PNG format. The server is a desktop with AMD Ryzen 7 1700
CPU, GeForce GTX1070 Ti graphics card and 16 GB RAM.
We have installed the Caffe [17] framework to run the DNNs
on GPU.

We evaluate the proposed algorithms with different frame
rates. Most videos in the dataset use 30 fps, and thus we have
to change their frame rate by decoding/encoding. For ResNet-
152, the maximum resolution of the input image is 224x224
pixels. This resolution can be downsized for some offloading
images, and we consider 5 different resolutions: 45x45, 90x90,
134x134, 179x179 and 224x224 pixels. The tradeoff between
accuracy and frame resolution is shown in Figure 10.

Running Time (ms)
AlexNet on NPU 20
ResNet-152 on server 37
Confidence Score Calibration 8

TABLE III: The running time of different models for each frame.

The time constraint for each frame is set to be 200 ms in all
experiments. The running time of our CBO algorithm is less
than 1 ms on smartphone and it is negligible compared to the
time constraint (100 ms level). The running time of different
DNNs are shown in Table III. The data shown in Figure 10
and Table III will be used for making scheduling decisions in
Algorithm 1. We compare CBO with the following approaches.

e Local: All frames are processed locally on NPU. After
a frame has been processed on NPU, the classification
result is returned.

e Server: All frames are offloaded to the server for
processing. Each frame is resized to a resolution due to

Local =—%=FastVA —#=CBO-w/o
~®— Server —* Compress —®= CBO

0.75
Local 0.7
Z00s ek [
% —e— Compress % 0.6
Z0.55 —— CBO-w/o =
—4— CBO (l -
0.45 ?
0‘350 15 30 45 0‘45 10 15

Bandwidth (Mbps)

Fig. 11: The performance of different ap-
proaches under different network conditions.

bandwidth limitation so that it can be offloaded before
the next frame arrives.

o FastVA: This is an implementation of the FastVA
framework [4] which maximizes accuracy under some
time constraint. Based on the optimization, it determines
which frames should be processed locally on NPU and
which frames should be offloaded to the edge server.

o Compress: This method is similar to FastVA, except that
it runs a compressed DNN to process the frames locally
on CPU. We leverage Tensorflow which is a well-known
deep learning framework to perform pruning and dynamic
range quantization on the original DNN. Specifically, the
sparsity of the model is set to 0.9 in the pruning step.
After compression, the model size is reduced by 95%
and 50% of the processing time is saved on CPU, but
still much slower than NPU.

« CBO without Calibration (CBO-w/o0): This algorithm
is the same as CBO, except that the confidence score is
not calibrated.

o Optimal: This shows the performance upper bound
for all algorithms. It tries all possible combinations and
chooses the schedule that maximizes the accuracy. Note
that this method cannot be used for processing videos
in real time since it takes too much time to search all
possible schedules. We can only find the optimal solution
offline by replaying the data trace.

B. Evaluation Results

The performance of the algorithm depends on several fac-
tors, the bandwidth, the network latency, and the video frame
rate.

In Figure 11, we compare CBO with Local, Server, FastVA,
Compress and CBO-w/o under different network conditions.
In the evaluation, the network latency is set to be 100 ms
and the frame rate is set to be 30 fps. Since no frame is
offloaded to the server in the Local approach, its performance
does not change under different network conditions. Local,
FastVA, CBO and CBO-w/o have the same accuracy when the
bandwidth is 0, since no frame can be offloaded to the server.
When the bandwidth is lower than 3 Mbps, the Local approach
achieves higher accuracy than the Server approach. This is
because the frames have to be offloaded in an extremely low
resolution. Even with advanced DNN running at the server,
the accuracy is still pretty low with low resolution frames.
Compared to the Compress approach, FastVA achieves higher

Frame Rate (fps)
Fig. 12: The performance of different ap-
proaches under different frame rates.

20 25 30 O’%O 70 90 110 130 150
Delay (ms)

Fig. 13: The performance of different ap-
proaches under different network latency.

accuracy when the network bandwidth is lower than 15 Mbps.
This is because the running time of compressed DNN on CPU
is long and Compress offloads most frames in low resolution.
Note that the processing time of compressed DNN (50%) is
not reduced as much as the model size (95%). This is because
the reduction of the model size is mainly due to the removal of
the redundant parameters in the fully connected layers. After
compression, there are still many convolutional layers which
are computationally intensive, and it takes a large amount of
time to run these layers. In contrast, FastVA avoids offloading
frames in low resolution by processing video frames on NPU.
As can be seen from the figure, CBO outperforms FastVA,
since CBO knows which frames are classified incorrectly
based on the calibrated confidence scores and it can improve
the accuracy effectively by offloading the frames with low
confidence scores.

From Figure 11, we can also see that CBO-w/o underper-
forms CBO and FastVA because the uncalibrated confidence
scores cannot accurately estimate the correctness of the clas-
sification result. With uncalibrated confidence score, CBO-
w/o may offload frames which have been classified correctly
on NPU, wasting bandwidth resources, and it may return
misclassified results and reduce the accuracy. Compared to the
Server approach, CBO-w/o achieves higher accuracy when the
network bandwidth is low. This is because CBO-w/o avoids
offloading frames in very low resolution by returning the
classification result with high confidence score. When the
bandwidth is high, the Server approach outperforms CBO-
w/o since it can offload frames with higher resolution and
then increase the accuracy. As the bandwidth increases above
36Mbps, the difference among CBO, CBO-w/o, FastVA, Com-
press and Server becomes smaller since most frames can be
offloaded to the server in higher resolution to achieve higher
accuracy.

In Figure 12, we evaluate the impact of frame rate on
accuracy for different approaches. We set the uplink network
bandwidth to be 5 Mbps and set the network latency to be 100
ms. As shown in the figure, CBO significantly outperforms
CBO-w/o, Server, FastVA, Compress and Local. In general,
the accuracy of all approaches drops when the frame rate
increases. The Server approach suffers a 15% accuracy drop
when the frame rate increases from 5 fps to 30 fps. This
is because most frames have to be resized to low resolution
when the frame rate increases to 30 fps. In contrast, only 6%
accuracy drop is observed in CBO, since it only offloads the

LoemddV

6 \\\\\)

(a) The performance of Optimal (b) Difference between Optimal and

CBO
Fig. 14: Comparison between CBO and Optimal.
frames with low confidence scores. With the same amount of
bandwidth, CBO can offload more frames with high resolution
compared to other approaches.

In Figure 13, we evaluate the impact of network latency on
accuracy. We set the uplink network bandwidth to be 5 Mbps
and set the frame rate to be 30 fps. As shown in the figure,
CBO significantly outperforms CBO-w/o, Server, FastVA,
Compress and Local. Since the Local approach does not
offload any frames, its performance remains the same. As the
latency increases, less frames can be offloaded to the server for
processing due to the delay constraint requirement. Therefore,
the performance of Server, Compress, FastVA, CBO and CBO-
w/o degrades as the latency increases. Compared to the Server
approach, the accuracy drop in CBO is much smaller. This is
because CBO can reduce the chance of offloading frames in
low resolution by using NPU based classification results that
have high level of confidence.

In Figure 14, we compare CBO with Optimal under vari-
ous frame rate and network conditions. As shown in Figure
14(a), the accuracy of Optimal increases when the network
bandwidth increases, because the mobile device can upload
more frames with higher resolution. As frame rate requirement
increases, less frames can be offloaded and Optimal has to
offload frames with lower resolution. Therefore, the accuracy
becomes lower.

In Figure 14(b), we show the accuracy difference between
Optimal and CBO. The accuracy difference is computed using
the accuracy of the Optimal approach minus that of CBO. As
can be seen from the figure, the difference is almost zero in
most cases, which indicates that CBO is close to Optimal.

VI. RELATED WORK

In recent years, researchers have made tremendous progress
in applying DNNs for various classification problems [7], [9],
[18], [19]. However, these DNNs are designed for machines
with powerful CPU and GPU, and it is difficult to run them on
mobile devices due to the resource limitations. To address this
issue, researchers leveraged model compression technique to
reduce the resource demand of DNNs. For example, in [20],
[21], the authors proposed techniques to remove the redundant
parameters and operations from the neural network to reduce
the model size and processing time. Although the efficiency
can be improved through these model compression techniques,
the accuracy also drops.

Computation offloading represents another kind of solution
for enabling video analytics on mobile devices. Some general
offloading frameworks [22]-[24] have been proposed to opti-
mize energy and reduce the computation time for mobile ap-
plications. However, these frameworks have limitations when
applied to deep learning based video analytics since a large
amount of data has to be offloaded to the server. To address
this issue, researchers propose offloading framework for deep
learning applications [25]-[30]. There have been some studies
on confidence based offloading. For example, in [5] and [6],
confidence score is leveraged to reduce the processing delay
by early exit; i.e., returning the classification results without
running all DNN layers. Different from them, our framework
is designed for video analytics on mobile device with NPU,
where the goal is to maximize accuracy under some time
constraint. Moreover, we propose confidence score calibration
technique to improve the performance.

Considerable amount of work has been done on improving
the execution efficiency of DNNs on mobile devices through
hardware support. For example, Tan et al. [31] developed
model partitioning techniques to schedule some neural net-
work layers on CPU while executing other layers on NPU
to achieve better tradeoffs between processing time and ac-
curacy. Cappuccino [32] optimized computation by exploiting
imprecise computation on the mobile system-on-chip (SoC).
Oskouei et al. [33] developed an Android library called
CNNdroid for running DNNs on mobile GPU. DeepMon
[34] leveraged GPU for continuous vision analysis on mobile
devices. FastVA [4] leveraged NPU and offloading technique
for video analytics on mobile devices. Different from FastVA,
we explore insights about running DNNs on NPU to improve
performance.

VII. CONCLUSIONS

In this paper, we proposed a CBO framework for video
analytics to address the low accuracy problem of running
DNNs on NPU. The major challenge is to determine when to
return the NPU classification result based on the confidence
level of running the DNN, and when to offload the video
frames to the server for further processing to increase the
accuracy. We found that existing confidence scores were not
effective for making offloading decisions, and thus proposed
techniques to calibrate the confidence score so that it could
accurately reflect the correctness of the classification results
on NPU. We formulated the CBO problem, where the goal is
to maximize accuracy under some time constraint. To achieve
this goal, the confidence score threshold is adaptively adjusted
based on the network condition, the confidence score and the
selected frame resolution, before being used for determining
if the video frame should be offloaded for further processing.
Extensive evaluation results show that the proposed solution
can significantly outperform other approaches.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grant number 2125208.

[1]
[2]

[3]

[4]
[5]
[6]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

REFERENCES

“Chinese police spot suspects with surveillance
https://www.bbc.com/news/world-asia-china-42973456.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems (NIPS), 2012.

“HiSilicon Kirin 970 Performance Overview,”
https://www.anandtech.com/show/12195/hisilicon-kirin-970-power-
performance-overview/6f.

T. Tan and G. Cao, “FastVA: Deep Learning Video Analytics Through
Edge Processing and NPU in Mobile,” IEEE INFOCOM, 2020.

S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” IEEE ICDCS, 2017.
S. Wang, S. Yang, and C. Zhao, “SurveilEdge: Real-time Video Query
based on Collaborative Cloud-Edge Deep Learning,” IEEE INFOCOM,
2020.

A. Z. O. Parkhi, A. Vedaldi, “Deep Face Recognition,” British Machine
Vision Conference, 2015.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
Faces in the Wild: A Database for Studying Face Recognition in
Unconstrained Environments,” University of Massachusetts, Ambherst,
Tech. Rep., 2007.

S. Lapuschkin, A. Binder, G. Montavon, K.-R. Miiller, and W. Samek,
“Analyzing classifiers: Fisher vectors and deep neural networks,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
M. Everingham, S. Eslami, L. Van Gool, C. Williams, J. Winn, and A.
Zisserman, “The Pascal Visual Object Classes Challenge: A Retrospec-
tive,” Springer International Journal of Computer Vision (IJCV), 2015.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” IEEE CVPR, 2016.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” European Conference on Computer Vision, 2014.

C. Guo, G. Pleiss, Y. Sun, and K. Weinberger, “On Calibration of
Modern Neural Networks,” ACM International Conference on Machine
Learning (ICML), 2017.

A. Niculescu-Mizil and R. Caruana, “Predicting Good Probabilities
with Supervised Learning,” ACM International Conference on Machine
Learning (ICML), 2005.

B. Zadrozny and C. Elkan, “Transforming Classifier Scores into Accu-
rate Multiclass Probability Estimates,” ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), 2002.

“HiAlL” https://developer.huawei.com/consumer/en/devservice/doc/
2020315.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” ACM International Conference on Multime-
dia, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” IEEE CVPR, 2016.

A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J.
Tenenbaum, and B. Katz, “Objectnet: A Large-Scale Bias-Controlled
Dataset for Pushing the Limits of Object Recognition Models,” Advances
in neural information processing systems (NIPS), 2019.

J. Luo, J. Wu, and W. Lin, “Thinet: A Filter Level Pruning Method for
Deep Neural Network Compression,” IEEE ICCV, 2017.

R. Yu, A. Li, C. Chen, J. Lai, V. Morariu, X. Han, M. Gao, C. Lin, and
L. Davis, “NISP: Pruning Networks Using Neuron Importance Score
Propagation,” IEEE CVPR, 2018.

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” ACM Mobisys, 2010.

Y. Geng, W. Hu, Y. Yang, W. Gao, and G. Cao, “Energy-efficient
computation offloading in cellular networks,” IEEE ICNP, 2015.

Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading
for multicore-based mobile devices,” IEEE INFOCOM, 2018.

S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy, “MCDNN: An Approximation-Based Execution Framework for
Deep Stream Processing Under Resource Constraints,” ACM Mobisys,
2016.

T. Tan and G. Cao, “Deep Learning Video Analytics Through Edge
Computing and Neural Processing Units on Mobile Devices,” IEEE
Transactions on Mobile Computing, To Appear.

sunglasses,”

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “MARVEL: En-
abling Mobile Augmented Reality with Low Energy and Low Latency,”
ACM Sensys, 2018.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A Mobile
Deep Learning Framework for Edge Video Analytics,” IEEE INFOCOM,
2018.

T. Tan and G. Cao, “Deep Learning Video Analytics on Edge Computing
Devices,” IEEE SECON, 2021.

L. Liu, H. Li, and M. Gruteser, “Edge Assisted Real-Time Object De-
tection for Mobile Augmented Reality,” ACM International Conference
on Mobile Computing and Networking, 2019.

T. Tan and G. Cao, “Efficient Execution of Deep Neural Networks on
Mobile Devices with NPU ,” ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2021.

M. Motamedi, D. Fong, and S. Ghiasi, “Cappuccino: efficient CNN in-
ference software synthesis for mobile system-on-chips,” IEEE Embedded
Systems Letters, 2019.

Latifi Oskouei, Seyyed Salar and Golestani, Hossein and Hashemi, Matin
and Ghiasi, Soheil, “Cnndroid: Gpu-accelerated execution of trained
deep convolutional neural networks on android,” ACM International
Conference on Multimedia, 2016.

L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-based
deep learning framework for continuous vision applications,” ACM
Mobisys, 2017.

